WO2023174019A1 - 叶轮结构、心脏泵以及心脏辅助系统 - Google Patents

叶轮结构、心脏泵以及心脏辅助系统 Download PDF

Info

Publication number
WO2023174019A1
WO2023174019A1 PCT/CN2023/077528 CN2023077528W WO2023174019A1 WO 2023174019 A1 WO2023174019 A1 WO 2023174019A1 CN 2023077528 W CN2023077528 W CN 2023077528W WO 2023174019 A1 WO2023174019 A1 WO 2023174019A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
axial section
axial
impeller structure
diameter
Prior art date
Application number
PCT/CN2023/077528
Other languages
English (en)
French (fr)
Inventor
高飞
刘旭东
张纪元
易博
罗七一
常兆华
Original Assignee
上海微创心力医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创心力医疗科技有限公司 filed Critical 上海微创心力医疗科技有限公司
Publication of WO2023174019A1 publication Critical patent/WO2023174019A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/13Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel by means of a catheter allowing explantation, e.g. catheter pumps temporarily introduced via the vascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/804Impellers
    • A61M60/806Vanes or blades

Definitions

  • the present application relates to the technical field of medical devices, and in particular to an impeller structure, a heart pump and a heart assist system.
  • the use of axial flow catheter pumps can help improve the patient's blood flow stability and ensure adequate blood supply to the whole body.
  • the doctor percutaneously places the catheter pump into the human body. After the catheter pump is placed in place, the inlet of the blood is located in the left ventricle and the outlet is located in the aorta.
  • the catheter pump When the catheter pump is operating normally, it assists the heart in transporting blood from the left ventricle to the aorta and then throughout the body, allowing the heart to unload and get adequate rest and recovery. Since the impeller rotates at high speed internally when the catheter pump is running, it will inevitably cause damage to human blood.
  • an important indicator for evaluating the performance of the catheter pump is the hemolytic characteristic.
  • the impeller in the prior art catheter pump will cause severe hemolysis. Therefore, there is a need for a catheter pump that can not only improve the hydraulic performance of the pump, but also help improve the hemolysis performance of the pump.
  • This application provides an impeller structure, which includes:
  • a blade the blade is helically arranged on the hub, the blade has a first axial section and a second axial section axially spaced from the distal end to the proximal end, the blade is on the first axis
  • the diameter of the axial section gradually increases from the distal end to the proximal end, and the helix angle change rate of the blade in the first axial section remains constant from the distal end to the proximal end; the second axial section of the blade
  • the segments are configured for driving fluid movement.
  • the diameter of the starting point of the distal end of the first axial section is between 0 mm and 5 mm; and/or,
  • the helix angle change rate of the blade in the first axial section d ⁇ /dz n*2 ⁇ /v z ;
  • n is the fixed-axis rotation speed of the blade along the central axis of the hub
  • v z is the axial flow velocity of the fluid passing through the blade
  • the diameter of the blade in the second axial section remains constant from the distal end to the proximal end and is the same as the maximum diameter of the first axial section.
  • the maximum diameter of the blade in the first axial section is 3 mm to 8 mm; and/or,
  • the blade has a diameter in the second axial section of 3 mm to 8 mm.
  • the rate of change of the helix angle of the blade in the second axial section gradually decreases from the distal end to the proximal end.
  • the maximum diameter of the blade in the first axial section is located in the transition section or the transition point; and/or,
  • the maximum helix angle change rate of the blade in the second axial section is located in the transition section or the transition point.
  • the position of the maximum diameter of the blade in the first axial section and the position of the maximum helix angle change rate of the blade in the second axial section are in the The transition sections or transition points coincide; or,
  • the position of the maximum diameter of the blade in the first axial section and the position of the maximum helix angle change rate of the blade in the second axial section do not coincide within the transition section.
  • the diameter of the hub gradually increases from the distal end to the proximal end.
  • the axial length of the hub is the same as the axial length of the blade; or,
  • the axial length of the blade is 0.5 to 0.95 times the axial length of the hub.
  • the axial distance from the farthest end of the blade to the farthest end of the hub is 0.5mm to 3mm; and/or,
  • the axial length of the hub is 5mm to 10mm; and/or,
  • the axial length of the blades is 4mm to 10mm.
  • the variation pattern of the diameter of the blade in the first axial section is at least one of a polynomial curve, a parabola, an exponential curve, a trigonometric function curve, and a Bezier curve; and/or ,
  • the changing law of the helix angle change rate of the blade in the second axial section is at least one of a polynomial curve, a parabola, an exponential curve, a trigonometric function curve and a Bezier curve.
  • This application also provides a heart pump, which includes:
  • a fluid pipeline having at least one fluid inlet and at least one fluid outlet;
  • the impeller structure is disposed in the pipeline inner cavity of the fluid pipeline, and the impeller structure is configured to guide fluid from the fluid inlet to the fluid outlet.
  • the impeller structure is coaxially arranged with the fluid pipeline, and the radial gap between the blades of the impeller structure and the inner wall of the fluid pipeline is 0.05 mm to 0.3 mm.
  • the present application also provides a heart assist system, which includes the heart pump.
  • Figure 1 is a schematic diagram of an impeller structure provided in an embodiment of the present application.
  • Figure 2 is a schematic diagram of seven blade spirals in an embodiment of the present application.
  • Figure 3 is a schematic diagram of a blade diameter change curve and a blade helix angle change rate change curve in an embodiment of the present application.
  • Figure 4 is a schematic diagram of the change curve of the diameter of the blade along the axial distance in an embodiment of the present application.
  • Figure 5 is a schematic diagram of the change curve of the helix angle change rate of the blade along the axial distance in an embodiment of the present application.
  • Figure 6 is a schematic diagram of the variation curve of the helix angle of the blade along the axial distance in an embodiment of the present application.
  • Figure 7 is a schematic diagram of CFD simulation results of the impeller structure in an embodiment of the present application.
  • 210 first axial section
  • 220 second axial section.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • distal end is defined here to mean the end far away from the operator during the surgical operation
  • proximal end means the end close to the operator during the surgical operation.
  • an embodiment of the present application provides an impeller structure, which includes a hub 100 and blades 200 .
  • the blade 200 is spirally arranged on the hub 100; the blade 200 has a first axial section 210 and a second axial section 220 that are axially separated from the distal end to the proximal end; the blade 200 is located at the hub 100.
  • the diameter of the first axial section 210 gradually increases from the distal end to the proximal end; the helix angle change rate of the blade 200 in the first axial section 210 remains constant from the distal end to the proximal end; the blade
  • the second axial section 220 of 200 is configured for driving fluid movement.
  • the blade 200 starts from the distal end of the hub, and the diameter of the blade 200 starts to grow continuously from a value smaller than the design diameter (which can be zero or a relatively small value), such as the starting point of the distal end of the first axial section.
  • the diameter is between 0mm and 5mm, and the diameter of the starting point can be 0.5mm, 1mm, 1.5mm, 2mm, 2.5mm, 3mm, 3.5mm, 4mm or 5mm, etc., there is no limit here; at the same time, in this section In an axial section 210, the rate of change of the helix angle of the blade helix is maintained at a constant value.
  • the blades 200 mainly play a drainage role, gradually increasing the tangential velocity of the fluid, so as not to form an area of large shear force, so it will not cause red blood cells to rupture and cause hemoglobin to escape, which can effectively solve the problem of hemolysis. .
  • the hub 100 may be a cylindrical structure with a constant diameter along the axial direction.
  • the diameter of the hub 100 can also gradually increase from the distal end to the proximal end.
  • the continuously gradual structure of the hub 100 can reduce the resistance to the axial flow of fluid and facilitate the axial flow of fluid.
  • the blades 200 and the hub 100 can be formed into an integral structure; or the blades 200 can be formed on the outer wall of the hub 100 by welding, plugging, etc.
  • the number of blades 200 can be selected according to requirements. For example, in one embodiment, the number of blades 200 is at least two. When the number of blades 200 is greater than one, multiple blades 200 can be arranged symmetrically on the hub 100 with respect to the central axis of the hub 100 to ensure that the fluid driving force formed by the blades 200 is uniform and stable.
  • the axial length of the hub 100 and the axial length of the blade 200 may be the same or different.
  • the axial length of the blade 200 may be 0.5 to 0.95 times the axial length of the hub 100; blade 200 Set at a suitable position in the axial direction of the wheel hub 100 according to actual needs.
  • the axial distance from the most distal end of the blade 200 to the most distal end of the hub 100 may be 0.5 mm to 3 mm, for example, the most distal end of the blade 200 to the hub 100
  • the axial distance of the farthest end can be 0.5mm, 1mm, 1.5mm, 2mm, 2.5mm or 3mm, etc., so that the farthest end of the hub 100 exceeds the farthest end of the blade 200.
  • the axial length of the hub 100 may be 5 mm to 10 mm.
  • the axial length of the hub 100 may be 5 mm, 5.5 mm, 5 mm, 5.5 mm, 5 mm, 5.5 mm, 5 mm, 5.5 mm, 5 mm, etc.
  • the axial length of the blade 200 may be 4 mm to 10 mm.
  • the axial length of the blade 200 may be 4 mm, 4.5 mm, 5 mm, 5.5 mm, 5 mm, 5.5 mm, 5 mm, 5.5 mm, 5 mm. , 5.5mm, 5mm, etc.
  • Those skilled in the art can select the matching structure of the hub 100 and the blade 200 according to needs, which is not limited here.
  • the first axial section 210 of the blade 200 is at a distal position of the blade 200 relative to the second axial section 220 , that is, the first axial section 210 and the second axial section 220 of the blade 200 Connect in sequence from the far end to the near end.
  • the diameter of the blade 200 represents the radial distance between the farthest radial position of the blade 200 and the central axis of the hub 100 .
  • the diameter of the blade 200 in the first axial section 210 gradually increases from the distal end to the proximal end, so that the diameter of the blade 200 has a gradually changing diameter structure in the first axial section 210 .
  • the diameter of the impeller can be increased from zero, or the diameter of the impeller can be increased from a relatively small diameter value, and the diameter increases until it reaches a preset maximum diameter and remains constant.
  • the gradient structure of the diameter of the blade 200 can be the entire section or a partial section of the first axial section 210. Those skilled in the art can select the actual axial length of the gradient structure and the entire axial length of the blade 200 according to needs. The proportion is not limited here.
  • the gradient structure of the diameter of the blade 200 does not form a large shear force area in the first axial section 210, and plays a role before the blood enters the second axial section.
  • the role of diversion thereby reducing damage to red blood cells and reducing the escape of hemoglobin, can effectively alleviate hemolysis problems.
  • the blade 200 when the diameter of the blade 200 in the first axial section 210 gradually increases from the distal end to the proximal end, the blade 200 can also be positioned in the first axial section.
  • the helix angle change rate of the section 210 remains constant from the distal end to the proximal end, and then in the first axial section 210 of the blade 200, the diameter of the blade 200 forms an axial gradient and the helix angle change rate ensures a constant structural form.
  • the first axial section 210 of the blade 200 can only play a role in guiding the flow, and does almost no work on the fluid (does not increase the enthalpy value of the fluid), but only changes the enthalpy of the fluid.
  • the smooth introduction of fluid improves the blood compatibility of the blade 200, achieving better hydraulic performance and lower risk of hemolysis.
  • the rate of change of the helix angle of the blade 200 is defined as: in the cylindrical coordinate system with the hub 100 as the axis, the blade 200 is abstracted into a surface rotating around the axis with a thickness of zero, and the surface rotating around the axis has a radius of r (2r ⁇ blade 200 design diameter) intersect to form a spiral curve.
  • the coordinates of any point on the curve can be expressed by (r, ⁇ , z), where ⁇ is the angular coordinate of the point, that is, the curve at that point Helix angle; z is the axial coordinate of the point; the variable diameter r of the cylindrical surface remains unchanged on the entire curve, and the curve formed can be called the blade 200 helix.
  • the rate of change of the helix angle of the blade 200 is expressed as d ⁇ /dz. If there are enough sampling points, d ⁇ /dz can be simplified is ⁇ / ⁇ z. Taking one end of the helix of the blade 200 as the starting point, that is, the starting point coordinate is (r, ⁇ 0 , z 0 ), as z changes, ⁇ / ⁇ z can change according to the rate of change of the helix angle of the blade 200.
  • the helix angle change rate of the blade 200 has nothing to do with the radius value of the cylindrical surface. That is, the helix change rate of the helix of the blade 200 formed by the intersection of the cylindrical surface with any radius and the blade 200 has the same change rule along the axial direction.
  • This set of blades 200 spirals are spatially arranged and are the main elements constituting the curved surface characteristics of the blades 200 .
  • the helix angle change rate of the blade 200 in the first axial section 210 remains constant, that is, the helix angle change rate is a constant value (d ⁇ /dz), which can be determined according to the central axis of the blade 200 along the hub 100
  • the fixed shaft rotation speed n and the axial flow velocity v z of the fluid passing through the blade 200 are jointly determined by two factors.
  • the design value of the helix angle change rate d ⁇ /dz can also fluctuate to a certain extent on this basis.
  • the value range of the closest end (minimum value) of the helix angle change rate d ⁇ /dz can be from 0 rad/mm to 1 rad/mm. In one embodiment, the value range of the closest end (minimum value) of the helix angle change rate d ⁇ /dz is 0rad/mm to 0.2rad/mm.
  • the minimum value of the helix angle change rate d ⁇ /dz is 0.05rad/ mm, 0.1rad/mm, 0.15rad/mm, 0.2rad/mm, etc. Those skilled in the art can select appropriate values according to needs, and there is no limit here.
  • the second axial section 220 of the blade 200 needs to play the role of driving the axial movement of the fluid, that is, doing work on the fluid and lifting the fluid.
  • the enthalpy value the increase in enthalpy value is reflected in the increase in the static pressure of the fluid.
  • the blade 200 can adopt any structural form to realize axial driving of the fluid.
  • the helix angle change rate of the blade 200 in the second axial section 220 can gradually decrease from the distal end to the proximal end.
  • the blades 200 with small and gradual helix angle change rates can perform work on the fluid and drive the fluid to flow axially.
  • the diameter of the blade 200 in the second axial section 220 may remain constant from the distal end to the proximal end and be the same as the maximum diameter of the first axial section 210 .
  • the maximum diameter of the blade 200 in the first axial section 210 is 3 mm to 8 mm; the maximum diameter of the blade 200 is the maximum diameter value reached by the blade 200 during the gradual increase in diameter. . Since the diameter of the blade 200 in the second axial section 220 remains constant, the diameter of the blade 200 in the second axial section 220 can also remain the same as the maximum diameter value of the blade 200 in the first axial section 210 consistent.
  • the diameter of the blade 200 in the second axial section 220 is 3 mm to 8 mm.
  • the maximum diameter of the blade 200 in the first axial section 210 may be 3 mm, 4 mm, 5 mm, or 6 mm. , 7mm or 8mm, etc.; the diameter of the blade 200 in the second axial section 220 can also be 3mm, 4mm, 5mm, 6mm, 7mm or 8mm, etc.
  • the diameter of the blade 200 in the second axial section 220 can also be 3mm, 4mm, 5mm, 6mm, 7mm or 8mm, etc.
  • the junction of the first axial section 210 and the second axial section 220 of the blade 200 may be a turning point of the diameter of the blade 200 and the rate of change of the helix angle of the blade 200. Therefore, the first axial section 210 and the second axial section 220 of the blade 200
  • the second axial section 220 can be connected through a smooth transition of curves to meet the fluid mechanics design requirements and ensure the smooth and continuous development of the streamlines here.
  • the transition section there is a transition section or transition point between the first axial section 210 and the second axial section 220 of the blade 200 , and the transition section is represented on the blade 200 between the first axial section 210 and the second axial section 220 , the diameter of the blade 200 or the helix angle change rate of the blade 200 also has a smooth transition stage or a transition distance.
  • the transition point means that between the first axial section 210 and the second axial section 220 of the blade 200 , the diameter of the blade 200 or the rate of change of the helix angle of the blade 200 is directly connected, or only has an extremely Tiny transitional phase.
  • the maximum diameter of the blade 200 in the first axial section 210 may be located in the transition section or the transition point; the maximum diameter of the blade 200 in the second axial section 220
  • the maximum helix angle change rate of can also be located in the transition section or the transition point.
  • the development of the diameter of the blade 200 in the first axial section 210 and the development of the helix angle change rate of the blade 200 in the second axial section 220 may or may not be synchronized.
  • the synchronous development of the diameter of the blade 200 in the first axial section 210 and the change rate of the helix angle of the blade 200 in the second axial section 220 is expressed as: the diameter of the impeller and the change rate of the helix angle of the blade 200 simultaneously develop in the first axial direction.
  • Section 210 begins to develop, the diameter of the impeller gradually increases, and the rate of change of the helix angle of the blade 200 remains constant, until the diameter of the impeller and the rate of change of the helix angle of the blade 200 simultaneously enter the second axial section 220, and the diameter of the impeller remains constant , the rate of change of the helix angle of the blade 200 gradually decreases.
  • the change node of the diameter of the blade 200 and the change node of the helix angle change rate of the blade 200 are both at the connecting position of the first axial section 210 and the second axial section 220 .
  • curve 1 ie, the curve s1 in the figure
  • curve 2 ie, the curve s2 in the figure
  • Figure 3 points out the overlapping areas of S1 and S2 in their first and second stages respectively, and takes the overlap degree as 100% as an example to form a comparative display.
  • the maximum diameter of the blade 200 in the first axial section 210 is located and the maximum helix angle change rate of the blade 200 in the second axial section 220 is located.
  • the transition section or the transition point can coincide with each other. At this time, it can be ensured that the diameter of the blade 200 in the first axial section 210 and the helix angle change rate of the blade 200 in the second axial section 220 develop simultaneously.
  • the position of the maximum diameter of the blade 200 at the first axial section 210 and the maximum diameter of the blade 200 at the second axial section 220 are The position of the helix angle change rate does not coincide with the transition section. At this time, the diameter of the blade 200 in the first axial section 210 and the helix angle change rate of the blade 200 in the second axial section 220 are different. Synchronous development.
  • the variation pattern of the diameter of the blade 200 in the first axial section 210 may follow at least one of a polynomial curve, a parabola, an exponential curve, a trigonometric function curve, and a Bezier curve.
  • a polynomial curve a parabola
  • an exponential curve a trigonometric function curve
  • a Bezier curve a Bezier curve
  • the blade 200 gradually appears from the distal end of the hub 100, and the diameter of the blade 200 gradually increases linearly along its axial direction from the distal end to the proximal end until the diameter of the blade 200 reaches a preset maximum diameter.
  • a smooth transition that conforms to fluid mechanics can be made.
  • a, b, and c can be set within a certain range, so that the diameter of the blade 200 is smaller than that of the hub 100.
  • the distal end gradually increases along its axial direction from the distal end to the proximal end until the diameter of the blade 200 reaches a preset maximum diameter.
  • the change law of the helix angle change rate of the blade 200 in the second axial section 220 may follow at least one of a polynomial curve, a parabola, an exponential curve, a trigonometric function curve, and a Bezier curve.
  • a polynomial curve a parabola
  • an exponential curve a trigonometric function curve
  • a Bezier curve a polynomial curve
  • the polynomial coefficients e, f, and g can be set within a certain range.
  • the helix angle change rate of the blade 200 gradually decreases monotonically along the axial direction from the distal end to the proximal end of the hub 100, and the helix angle change rate d ⁇ /dz of the most proximal end (minimum value) of the blade 200 ranges from 0 rad/mm to 1 rad/mm; in one embodiment, the helix angle change rate d ⁇ /dz ranges from 0 rad/mm to 0.2 rad/mm.
  • the axial range of the hub 100 is z ⁇ [q,8mm], where q ⁇ -2mm; the helix angle change rate of the blade 200 can be between the first axial section 210 and the second axial section.
  • the upward section 220 is divided into two consecutive stages.
  • the curve increases monotonically, and the minimum helix angle change rate ranges from 0rad/mm to 1rad/mm.
  • FIG 6 which is expressed as a change curve of the helix angle along the axial distance.
  • This curve can be determined by the change rate versus the axial distance. is obtained from the integral.
  • the change rate curve is obtained by deriving the helix angle from the axial distance.
  • the blade 200 can be obtained by setting the helix angle change rate curve or by setting the helix angle curve.
  • the impeller structure can also be equipped with a stator with rear guide vanes.
  • the rear guide vanes of the stator are used to guide the fluid leaving the impeller structure to quickly return to the right axial flow, so that its tangential kinetic energy is gradually converted into axial kinetic energy, and the fluid is relieved.
  • the turbulent flow after leaving the blade 200 further reduces the risk of hemolysis.
  • FIG 7 shows the CFD simulation results of the impeller structure at 33,000 rpm.
  • the ordinate is the pressure rise of the heart pump and the abscissa is the flow rate. It can be seen that at this speed, the impeller structure can provide a pressure rise of 80mmHg to 145mmHg in the flow range of 3L/min to 5L/min, which meets the cardiac assist function in PCI surgical treatment and cardiogenic shock surgical treatment. needs.
  • the application also provides a heart pump.
  • the heart pump includes a fluid pipeline and an impeller structure.
  • the fluid pipeline has at least one fluid inlet and at least one fluid outlet.
  • the impeller structure is disposed on the fluid tube. In the inner cavity of the pipeline, the impeller structure is configured to guide fluid from the fluid inlet to the fluid outlet.
  • the fluid pipeline can be formed by a structure such as a pipe, and the impeller structure is coaxially arranged with the fluid pipeline; the radial direction between the blades 200 of the impeller structure and the inner wall of the fluid pipeline is
  • the gap is 0.05mm to 0.3mm, for example, the radial gap is 0.05mm, 0.1mm, 0.15mm, 0.2mm, 0.25mm or 0.3mm, etc.
  • the present application also provides a heart assist system, which includes the heart pump.
  • the cardiac assist system can be used for PCI surgical treatment and cardiogenic shock surgical treatment, providing patients with intraoperative and postoperative hemodynamic support, ensuring adequate blood supply to the whole body, and allowing the heart to fully rest and recover.
  • the technical features of the above-described embodiments can be combined in any way. To simplify the description, not all possible combinations of the technical features in the above-described embodiments are described. However, as long as there is no contradiction in the combination of these technical features, All should be considered to be within the scope of this manual.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Mechanical Engineering (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种叶轮结构、心脏泵以及心脏辅助系统,叶轮结构包括轮毂(100)和叶片(200),叶片(200)螺旋设置在轮毂(100)上,叶片(200)具有自远端至近端轴向分隔的第一轴向区段(210)和第二轴向区段(220),叶片(200)在第一轴向区段(210)的直径自远端至近端逐渐增大,叶片(200)在第一轴向区段(210)的螺旋角变化率自远端至近端保持恒定;叶片(200)的第二轴向区段(220)被配置为用于驱动流体运动。在叶轮结构、心脏泵以及心脏辅助系统中,当流体沿着轴向流过叶片(200)时,叶片(200)的直径的渐变结构在第一轴向区段(210)不会形成较大剪切力的区域,从而降低对红细胞的损坏并减少血红蛋白的逸出,可以有效地缓解溶血问题。

Description

叶轮结构、心脏泵以及心脏辅助系统
相关申请
本申请要求2022年03月15日申请的,申请号为202210252270.6,名称为“叶轮结构、心脏泵以及心脏辅助系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及医疗器械技术领域,尤其涉及一种叶轮结构、心脏泵以及心脏辅助系统。
背景技术
在高危的经皮冠状动脉介入治疗(高危PCI)手术或者心源性休克的治疗手术过程中,轴流式导管泵的使用有利于提高病人的血流稳定性,保障全身供血充分。手术过程中,医生将导管泵经皮放置入人体内,在导管泵放置到位后,血液的入口位于左心室,出口位于主动脉。在导管泵正常运行时,辅助心脏将血液从左心室输送到主动脉继而全身,使心脏卸载并得到充分的休息和恢复。由于导管泵运行时,叶轮在内部高速旋转,不可避免的会对人体血液造成损伤,因此评价导管泵性能的一个重要指标就是溶血特性。现有技术的导管泵中的叶轮会造成较为严重的溶血,因此,需要一种导管泵,在提升泵的水力性能的同时,还有利于改善泵的溶血性能。
发明内容
基于此,有必要针对心脏泵容易发生溶血的技术问题,提供一种叶轮结构、心脏泵以及心脏辅助系统。
本申请提供了一种叶轮结构,所述叶轮结构包括:
轮毂;
叶片,所述叶片螺旋设置在所述轮毂上,所述叶片具有自远端至近端轴向分隔的第一轴向区段和第二轴向区段,所述叶片在所述第一轴向区段的直径自远端至近端逐渐增大,所述叶片在所述第一轴向区段的螺旋角变化率自远端至近端保持恒定;所述叶片的第二轴向区段被配置为用于驱动流体运动。
在其中一个实施例中,所述第一轴向区段的远端的起始点的直径在0mm至5mm之间;和/或,
所述叶片在所述第一轴向区段的螺旋角变化率dθ/dz=n*2π/vz
其中,n为所述叶片沿所述轮毂的中心轴线的定轴转速,vz为经过所述叶片的流体的轴向流速。
在其中一个实施例中,所述叶片在所述第一轴向区段的螺旋角变化率dθ/dz=(0.7-1.3)*n*2π/vz
在其中一个实施例中,所述叶片在所述第二轴向区段的直径自远端至近端保持恒定,且与所述第一轴向区段的最大直径相同。
在其中一个实施例中,所述叶片在所述第一轴向区段的最大直径为3mm至8mm;和/或,
所述叶片在所述第二轴向区段的直径为3mm至8mm。
在其中一个实施例中,所述叶片在所述第二轴向区段的螺旋角变化率自远端至近端逐渐减小。
在其中一个实施例中,所述叶片的所述第一轴向区段和所述第二轴向区段之间具有过渡区段或过渡点。
在其中一个实施例中,所述叶片在所述第一轴向区段的最大直径位于所述过渡区段或所述过渡点;和/或,
所述叶片在所述第二轴向区段的最大螺旋角变化率位于所述过渡区段或所述过渡点。
在其中一个实施例中,所述叶片在所述第一轴向区段的最大直径所在的位置和所述叶片在所述第二轴向区段的最大螺旋角变化率所在的位置在所述过渡区段或所述过渡点重合;或者,
所述叶片在所述第一轴向区段的最大直径所在的位置和所述叶片在所述第二轴向区段的最大螺旋角变化率所在的位置在所述过渡区段内非重合。
在其中一个实施例中,所述轮毂的直径自远端至近端逐渐增大。
在其中一个实施例中,所述轮毂的轴向长度和所述叶片的轴向长度相同;或者,
所述叶片的轴向长度为所述轮毂的轴向长度的0.5倍至0.95倍。
在其中一个实施例中,所述叶片的最远端至所述轮毂的最远端的轴向距离为0.5mm至3mm;和/或,
所述轮毂的轴向长度为5mm至10mm;和/或,
所述叶片的轴向长度为4mm至10mm。
在其中一个实施例中,所述叶片在所述第一轴向区段的直径的变化规律为多项式曲线、抛物线、指数曲线、三角函数曲线和贝塞尔曲线中的至少之一;和/或,
所述叶片在所述第二轴向区段的螺旋角变化率的变化规律为多项式曲线、抛物线、指数曲线、三角函数曲线和贝塞尔曲线中的至少之一。
本申请还提供了一种心脏泵,所述心脏泵包括:
流体管路,所述流体管路具有至少一个流体入口和至少一个流体出口;
所述叶轮结构,设置在所述流体管路的管路内腔中,所述叶轮结构被配置为将流体从所述流体入口导向所述流体出口。
在其中一个实施例中,所述叶轮结构与所述流体管路同轴设置,所述叶轮结构的叶片与所述流体管路的内壁之间的径向间隙为0.05mm至0.3mm。
本申请还提供了一种心脏辅助系统,所述心脏辅助系统包括所述心脏泵。
上述叶轮结构、心脏泵以及心脏辅助系统中,当流体沿着轴向流过叶片时,叶片的直径的渐变结构在第一轴向区段将流体徐徐引入,流体动能逐步提升,不会形成较大剪切力的区域,所以不会导致红细胞破裂进而使血红蛋白逸出,可以有效地解决溶血的问题发生。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请一实施例中提供的叶轮结构的示意图。
图2为本申请一实施例中7条叶片螺旋线的示意图。
图3为本申请一实施例中叶片直径变化曲线和叶片螺旋角变化率变化曲线的曲线示意图。
图4为本申请一实施例中叶片的直径沿轴向距离的变化曲线示意图。
图5为本申请一实施例中叶片的螺旋角变化率沿轴向距离的变化曲线示意图。
图6为本申请一实施例中叶片的螺旋角度沿轴向距离的变化曲线示意图。
图7为本申请一实施例中叶轮结构的CFD仿真结果示意图。
附图标记:
100:轮毂;200:叶片;
210:第一轴向区段;220:第二轴向区段。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
为了更加清楚地描述叶轮结构的机械结构,此处限定术语“远端”表示手术操作过程中远离操作人员的一端,“近端”表示手术操作过程中靠近操作人员的一端。除非另有定 义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本申请在说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
经过对现有技术中心脏泵的机械结构进行研究后发现,现有心脏泵中叶轮结构的叶片200直径通常沿着轴向方向保持恒定,因此,在流体(血液)刚开始经过叶片200侧缘的时候,存在具有较大剪切力的区域,较大的剪切力会导致红细胞破裂,使血红蛋白逸出,这便是容易导致溶血的原因。
为了解决上述技术问题,本申请提供了如下的技术方案。
参阅图1所示,本申请一实施例提供了一种叶轮结构,所述叶轮结构包括轮毂100和叶片200。所述叶片200螺旋设置在所述轮毂100上;所述叶片200具有自远端至近端轴向分隔的第一轴向区段210和第二轴向区段220;所述叶片200在所述第一轴向区段上210的直径自远端至近端逐渐增大;叶片200在所述第一轴向区段210的螺旋角变化率自远端至近端保持恒定;所述叶片200的第二轴向区段220被配置为用于驱动流体运动。叶片200自轮毂远端开始,叶片200直径从一个小于设计直径的值(可以是零或者一个比较小的值)开始连续式增长,例如所述第一轴向区段的远端的起始点的直径在0mm至5mm之间,该起始点的直径取值可以为0.5mm、1mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm或5mm等,在此不做限定;同时在该第一轴向区段210上,叶片螺旋线的螺旋角变化率保持在一个恒定值。叶片200主要起到引流作用,使流体的切向速度逐渐增加,以此不会形成较大剪切力的区域,所以不会导致红细胞破裂进而使血红蛋白逸出,可以有效地解决溶血的问题发生。
轮毂100可以为沿轴向方向直径保持恒定的柱状结构。可选地,在一个实施例中,所述轮毂100的直径也可以自远端至近端逐渐增大,不断渐变的轮毂100结构可以减小流体轴向流动的阻力,利于流体轴向流动。叶片200与轮毂100可以采用一体成型的结构构成;或者叶片200可以通过焊接、插接等方式构成在轮毂100的外壁。所述叶片200的数量可以根据需求选择设置,例如在一个实施例中,叶片200的数量至少为两个。当叶片200的数量大于一个时,多个所述叶片200可以相对于所述轮毂100的中心轴线对称设置在所述轮毂100上,以保证叶片200形成的流体驱动力均匀稳定。
所述轮毂100的轴向长度和所述叶片200的轴向长度可以相同或不同,例如所述叶片200的轴向长度可以为所述轮毂100的轴向长度的0.5倍至0.95倍;叶片200根据实际需要设置在轮毂100轴向的合适位置。在一个实施例中,所述叶片200的最远端至所述轮毂100的最远端的轴向距离可以为0.5mm至3mm,例如所述叶片200的最远端至所述轮毂100 的最远端的轴向距离可以为0.5mm、1mm、1.5mm、2mm、2.5mm或3mm等,使轮毂100的最远端超出叶片200的最远端。
所述轮毂100的轴向长度可以为5mm至10mm,例如,所述轮毂100的轴向长度可以为5mm、5.5mm、5mm、5.5mm、5mm、5.5mm、5mm、5.5mm、5mm等。相应地,所述叶片200的轴向长度可以为4mm至10mm,例如,所述叶片200的轴向长度可以为4mm、4.5mm、5mm、5.5mm、5mm、5.5mm、5mm、5.5mm、5mm、5.5mm、5mm等。本领域技术人员可以根据需求选择轮毂100和叶片200的配合结构,在此不做限定。
叶片200的第一轴向区段210相对于第二轴向区段220处在叶片200的远端位置,即,所述叶片200的第一轴向区段210和第二轴向区段220自远端至近端依次相连。叶片200的直径表示叶片200径向最远位置与轮毂100的中心轴线的径向距离。所述叶片200在所述第一轴向区段210的直径自远端至近端逐渐增大,使叶片200的直径在第一轴向区段210具有渐变的直径结构。叶轮的直径可以从零开始增大,或者叶轮的直径也可以从一个比较小的直径值开始增大,直径增大直到达到预设的最大直径后保持恒定。
叶片200的直径的渐变结构可以为第一轴向区段210的整个区段或部分区段,本领域技术人员可以根据需求选择渐变结构的实际轴向长度以及在整个叶片200的轴向长度上的占比,在此不做限定。当流体沿着轴向流过叶片200时,叶片200的直径的渐变结构在第一轴向区段210不会形成较大剪切力的区域,在血液进入第二轴向区段前起到导流的作用,从而降低对红细胞的损坏并减少血红蛋白的逸出,可以有效地缓解溶血问题。
在一个实施例中,当所述叶片200在所述第一轴向区段210的直径自远端至近端逐渐增大的同时,也可以使所述叶片200在所述第一轴向区段210的螺旋角变化率自远端至近端保持恒定,进而在叶片200的第一轴向区段210中,使叶片200的直径构成轴向渐变且螺旋角变化率保证恒定的结构形式,通过叶片200的直径和叶片200的螺旋角变化率的协同变化可以使叶片200的第一轴向区段210仅起到引流的作用,几乎不对流体做功(不提升流体的焓值),只是将流体平滑引入,提高叶片200的血液相容性,实现更佳的水力性能和更低的溶血风险。
叶片200的螺旋角变化率定义为:在以轮毂100为轴的柱坐标系中,将叶片200抽象成厚度为零的一个绕轴旋转的面,该绕轴旋转的面与半径为r(2r≤叶片200设计直径)的圆柱面相交,形成一条盘旋的曲线,该曲线上的任意一点的坐标可以用(r,θ,z)表示,其中θ为点的角度坐标,即曲线在该点的螺旋角;z为点的轴向坐标;圆柱面的变径r在整条曲线上保持不变,形成的曲线可以称为叶片200螺旋线。
叶片200的螺旋角变化率表示为dθ/dz,如果取样点足够多的话,dθ/dz可以简化 为Δθ/Δz。以叶片200螺旋线的一端为起始点,即起点坐标为(r,θ0,z0),随着z的变化,Δθ/Δz可以按照叶片200的螺旋角变化率规律变化。叶片200的螺旋角变化率与圆柱面的半径值无关,即,任意半径的圆柱面与叶片200相交形成的叶片200螺旋线的螺线变化率沿着轴向的变化规律均相同。例如,若半径为r1,r2,r3,…rn的圆柱面与叶片200面相交形成n条曲线,再做z=z0的横截面,与上述n条曲线相交于n个点,那么这n个点的dθ/dz值均相同。
参阅图2所示,图中展示了n=7的一组叶片200螺旋线,这组叶片200螺旋线在空间上排布,为构成叶片200的曲面特征的主要元素。
所述叶片200在所述第一轴向区段210的螺旋角变化率保持恒定,即螺旋角变化率恒定值(dθ/dz),其可以根据所述叶片200沿所述轮毂100的中心轴线的定轴转速n,以及经过所述叶片200的流体的轴向流速vz两个因素共同决定。如螺旋角变化率dθ/dz=n*2π/vz,其中,轴向流速vz还可以由心脏泵的设计流量Q和垂直于流动方向的有效通流截面积Aeff共同决定,即轴向流速vz=Q/Aeff
除此之外,螺旋角变化率dθ/dz的设计值也可以在此基础上具有一定的上下浮动。在一个实施例中,浮动范围为设计值的(0.7-1.3)倍,即,所述叶片200在所述第一轴向区段210的螺旋角变化率dθ/dz=(0.7-1.3)*n*2π/vz。螺旋角变化率dθ/dz的最近端(最小值)的取值范围可以为0rad/mm至1rad/mm。在一个实施例中,螺旋角变化率dθ/dz的最近端(最小值)的取值范围为0rad/mm至0.2rad/mm,例如,螺旋角变化率dθ/dz的最小值为0.05rad/mm、0.1rad/mm、0.15rad/mm、0.2rad/mm等,本领域技术人员可以根据需求选择合适的数值,在此不做限定。
由于叶片200的第一轴向区段210仅起到将流体平滑引入的作用,所以叶片200的第二轴向区段220需要起到驱动流体轴向运动的作用,即对流体做功,提升流体的焓值,焓值的提升体现为流体的静压的提高。叶片200可以采用任意的结构形式实现流体的轴向驱动,例如在一个实施例中,所述叶片200在所述第二轴向区段220的螺旋角变化率可以自远端至近端逐渐减小,螺旋角变化率渐变的叶片200可以实现对流体的做功,驱动流体轴向流动。
所述叶片200在所述第二轴向区段220的直径可以自远端至近端保持恒定,且与所述第一轴向区段210的最大直径相同。在一个实施例中,所述叶片200在所述第一轴向区段210的最大直径为3mm至8mm;叶片200的最大直径即叶片200经过直径逐渐增大的渐变过程中达到的最大直径值。由于第二轴向区段220中叶片200的直径保持恒定,所以第二轴向区段220中的叶片200直径也可以与第一轴向区段210中叶片200的最大直径值保持 一致。例如所述叶片200在所述第二轴向区段220的直径为3mm至8mm,即,所述叶片200在所述第一轴向区段210的最大直径可以为3mm、4mm、5mm、6mm、7mm或8mm等;所述叶片200在所述第二轴向区段220的直径也可以为3mm、4mm、5mm、6mm、7mm或8mm等,本领域技术人员可以根据需求选择合适的数值,在此不做限定。
叶片200的第一轴向区段210和第二轴向区段220的衔接处可以是叶片200的直径和叶片200的螺旋角变化率的转折点,因此叶片200的第一轴向区段210和第二轴向区段220可以通过曲线圆滑过渡连接,满足流体力学设计要求,保证此处流线的平稳和连续发展。例如在一个实施例中,所述叶片200的所述第一轴向区段210和所述第二轴向区段220之间具有过渡区段或过渡点,过渡区段表示在所述叶片200的所述第一轴向区段210和所述第二轴向区段220之间,叶片200的直径或叶片200的螺旋角变化率还具有平滑过渡的阶段或过渡的距离。过渡点表示在所述叶片200的所述第一轴向区段210和所述第二轴向区段220之间,叶片200的直径或叶片200的螺旋角变化率直接相连,或仅具有极其微小的过渡阶段。
在一个实施例中,所述叶片200在所述第一轴向区段210的最大直径可以位于所述过渡区段或所述过渡点;所述叶片200在所述第二轴向区段220的最大螺旋角变化率也可以位于所述过渡区段或所述过渡点。叶片200的直径在第一轴向区段210的发展和叶片200的螺旋角变化率在第二轴向区段220的发展可以同步也可以不同步。叶片200的直径在第一轴向区段210与叶片200的螺旋角变化率在第二轴向区段220同步发展表示为:叶轮的直径和叶片200的螺旋角变化率同时在第一轴向区段210开始发展,叶轮的直径逐渐增长,叶片200的螺旋角变化率保持恒定,直到叶轮的直径和叶片200的螺旋角变化率同时进入第二轴向区段220,叶轮的直径保持不变,叶片200的螺旋角变化率逐渐减小。其中,叶片200的直径的变化节点和叶片200的螺旋角变化率的变化节点均处于第一轴向区段210和第二轴向区段220的相连位置。
举例说明,如图3所示,假定曲线1(即图中s1曲线)为叶片200的直径的变化曲线,曲线2(即图中s2曲线)为叶片200的螺旋角变化率的变化曲线。图3中指出了S1和S2分别在其第一阶段和第二阶段的重合区域,并以重合度为100%为例形成对比展示。
在一个实施例中,所述叶片200在所述第一轴向区段210的最大直径所在的位置和所述叶片200在所述第二轴向区段220的最大螺旋角变化率所在的位置可以在所述过渡区段或所述过渡点重合,此时可以保证叶片200的直径在第一轴向区段210与叶片200的螺旋角变化率在第二轴向区段220同步发展。可选地,在一个实施例中,所述叶片200在所述第一轴向区段210的最大直径所在的位置和所述叶片200在所述第二轴向区段220的最大 螺旋角变化率所在的位置在所述过渡区段内非重合,此时叶片200的直径在第一轴向区段210与叶片200的螺旋角变化率在第二轴向区段220便为非同步发展。
在一个实施例中,所述叶片200在所述第一轴向区段210的直径的变化规律可以遵循多项式曲线、抛物线、指数曲线、三角函数曲线和贝塞尔曲线中的至少之一。以二阶多项式曲线为例,D=a*z2+b*z+c,其中D为叶片200的直径,z为叶片200的轴向长度。
当多项式系数a=0时,多项式方程简化为D=b*z+c,叶片200的直径与轴向长度的关系是线性的。例如,自轮毂100的远端开始叶片200逐渐出现,且叶片200的直径沿自远端至近端方向沿其轴向逐渐线性增大,直到叶片200的直径达到预设的最大直径。在线性增长段与恒定段的转折点处,可以做符合流体力学的圆滑过渡。
当多项式系数a≠0时,多项式方程为二阶多项式D=a*z2+b*z+c,a、b、c可以在一定范围内进行设定,使得叶片200的直径自轮毂100的远端开始自远端至近端方向沿其轴向逐渐增大,直到叶片200的直径达到预设的最大直径。
举例说明,参阅图4所示,轮毂100的轴向范围为z∈[p,8mm],其中p≤-2mm;叶片200的直径变化可以分为两个阶段,在z∈[-2mm,0]范围内,叶片200直径从零增加到rf,rf的取值范围为3mm至8mm;第一轴向区段210的拟合曲线为二阶多项式曲线y=a*z2+b*z+rf,其中a、b的取值使得第一轴向区段210的拟合曲线单调递增直到y=rf,在z∈[0,8mm]范围内,叶片200的直径维持在rf
所述叶片200在所述第二轴向区段220的螺旋角变化率的变化规律可以遵循多项式曲线、抛物线、指数曲线、三角函数曲线和贝塞尔曲线中的至少之一。以二阶多项式曲线为例,在叶片200的第二轴向区段220,dθ/dz=e*z2+f*z+g,多项式系数e、f、g可以在一定范围内进行设定,使得叶片200的螺旋角变化率自轮毂100的远端至近端沿轴向逐渐单调递减,叶片200的最近端(最小值)的螺旋角变化率dθ/dz的取值范围为0rad/mm至1rad/mm;在一个实施例中,螺旋角变化率dθ/dz的取值范围是0rad/mm至0.2rad/mm。
举例说明,参阅图5所示,轮毂100的轴向范围为z∈[q,8mm],其中q≤-2mm;叶片200的螺旋角变化率可以在第一轴向区段210和第二轴向区段220上分为两个连续的阶段,在z∈[-2mm,0]范围内,螺旋角变化率为定值g=ε*n*2π/vz;其中vz为经过所述叶片200的流体的轴向流速,轴向流速vz可以由心脏泵的设计流量Q和垂直于流动方向的有效通流截面积Aeff共同决定,即轴向流速vz=Q/Aeff;ε的取值范围为0.7至1.3。在z∈[0,8mm]范围内,螺旋角变化率单调递减,曲线为多项式曲线y=e*z2+f*z+g,其中e、f的取值使得第二轴向区段220曲线单调递增,最小的螺旋角变化率的取值范围为0rad/mm至1rad/mm。
参阅图6所示,表示为螺旋角度沿轴向距离的变化曲线,该曲线可由变化率对轴向距 离积分得到,换而言之,变化率曲线是螺旋角度对轴向距离求导得到,叶片200可以通过设定螺旋角变化率曲线获得,也可以通过设定螺旋角度曲线获得,本领域技术人员可以根据需求选择,在此不做限定。
叶轮结构还可以配备具有后导叶的定子同时使用,利用定子的后导叶引导离开叶轮结构的流体快速回归到正轨的轴向流动,使其切向动能逐渐转化成轴向动能,并且缓解流体离开叶片200后的湍流,进一步降低溶血风险。
参阅图7所示,表示的为叶轮结构在33000rpm下的CFD仿真结果,其中纵坐标为心脏泵的压升,横坐标为流量。由此可知,该叶轮结构在该转速下,在3L/min至5L/min的流量范围内,可以提供80mmHg至145mmHg的压升,满足在PCI手术治疗和心源性休克手术治疗中心脏辅助功能的需求。
本申请还提供了一种心脏泵,所述心脏泵包括流体管路和所述叶轮结构,所述流体管路具有至少一个流体入口和至少一个流体出口,所述叶轮结构设置在所述流体管路的管路内腔中,所述叶轮结构被配置为能够将流体从所述流体入口导向所述流体出口。在一个实施例中,流体管路可以通过管道等结构形成,所述叶轮结构与所述流体管路同轴设置;所述叶轮结构的叶片200与所述流体管路的内壁之间的径向间隙为0.05mm至0.3mm,例如径向间隙为0.05mm、0.1mm、0.15mm、0.2mm、0.25mm或0.3mm等,本领域技术人员可以根据需求选择具体的数值,以及选择流体入口和流体出口的具体结构形式和数量,在此不做限定。由于所述叶轮结构的具体结构、功能原理以及技术效果均在前文详述,在此便不再赘述,任何有关于所述叶轮结构的技术内容均可参考前文的记载。
本申请还提供了一种心脏辅助系统,所述心脏辅助系统包括所述心脏泵。心脏辅助系统能够用于PCI手术治疗和心源性休克手术治疗,为患者提供术中和术后的血流动力学支持,保证全身供血充足,让心脏获得充分的休息和恢复。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种叶轮结构,包括:
    轮毂;
    叶片,所述叶片螺旋设置在所述轮毂上,所述叶片具有自远端至近端轴向分隔的第一轴向区段和第二轴向区段,所述叶片在所述第一轴向区段的直径自远端至近端逐渐增大,所述叶片在所述第一轴向区段的螺旋角变化率自远端至近端保持恒定;所述叶片的第二轴向区段被配置为用于驱动流体运动。
  2. 根据权利要求1所述的叶轮结构,其中,所述第一轴向区段的远端的起始点的直径在0mm至5mm之间;和/或,
    所述叶片在所述第一轴向区段的螺旋角变化率dθ/dz=n*2π/vz
    其中,n为所述叶片沿所述轮毂的中心轴线的定轴转速,vz为经过所述叶片的流体的轴向流速。
  3. 根据权利要求1所述的叶轮结构,其中,所述叶片在所述第一轴向区段的螺旋角变化率dθ/dz=(0.7-1.3)*n*2π/vz
  4. 根据权利要求1所述的叶轮结构,其中,所述叶片在所述第二轴向区段的直径自远端至近端保持恒定,且与所述第一轴向区段的最大直径相同。
  5. 根据权利要求4所述的叶轮结构,其中,所述叶片在所述第一轴向区段的最大直径为3mm至8mm;和/或,
    所述叶片在所述第二轴向区段的直径为3mm至8mm。
  6. 根据权利要求4所述的叶轮结构,其中,所述叶片在所述第二轴向区段的螺旋角变化率自远端至近端逐渐减小。
  7. 根据权利要求1所述的叶轮结构,其中,所述叶片的所述第一轴向区段和所述第二轴向区段之间具有过渡区段或过渡点;所述叶片在所述第一轴向区段的最大直径位于所述过渡区段或所述过渡点;和/或,
    所述叶片在所述第二轴向区段的最大螺旋角变化率位于所述过渡区段或所述过渡点。
  8. 根据权利要求7所述的叶轮结构,其中,所述叶片在所述第一轴向区段的最大直径所在的位置和所述叶片在所述第二轴向区段的最大螺旋角变化率所在的位置在所述过渡区段或所述过渡点重合;或者,
    所述叶片在所述第一轴向区段的最大直径所在的位置处和所述叶片在所述第二轴向 区段的最大螺旋角变化率所在的位置在所述过渡区段内非重合。
  9. 根据权利要求1所述的叶轮结构,其中,所述轮毂的直径自远端至近端逐渐增大。
  10. 根据权利要求1所述的叶轮结构,其中,所述轮毂的轴向长度和所述叶片的轴向长度相同;或者,
    所述叶片的轴向长度为所述轮毂的轴向长度的0.5倍至0.95倍。
  11. 根据权利要求10所述的叶轮结构,其中,所述叶片的最远端至所述轮毂的最远端的轴向距离为0.5mm至3mm;和/或,
    所述轮毂的轴向长度为5mm至10mm;和/或,
    所述叶片的轴向长度为4mm至10mm。
  12. 根据权利要求1所述的叶轮结构,其中,所述叶片在所述第一轴向区段的直径的变化规律为多项式曲线、抛物线、指数曲线、三角函数曲线和贝塞尔曲线中的至少之一;和/或,
    所述叶片在所述第二轴向区段的螺旋角变化率的变化规律为多项式曲线、抛物线、指数曲线、三角函数曲线和贝塞尔曲线中的至少之一。
  13. 一种心脏泵,包括:
    流体管路,所述流体管路具有至少一个流体入口和至少一个流体出口;
    权利要求1-12中任一项所述的叶轮结构,设置在所述流体管路的管路内腔中,所述叶轮结构被配置为将流体从所述流体入口导向所述流体出口。
  14. 根据权利要求13所述的心脏泵,其中,所述叶轮结构与所述流体管路同轴设置,所述叶轮结构的叶片与所述流体管路的内壁之间的径向间隙为0.05mm至0.3mm。
  15. 一种心脏辅助系统,包括如权利要求13或14所述的心脏泵。
PCT/CN2023/077528 2022-03-15 2023-02-22 叶轮结构、心脏泵以及心脏辅助系统 WO2023174019A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210252270.6 2022-03-15
CN202210252270.6A CN116785583A (zh) 2022-03-15 2022-03-15 叶轮结构、心脏泵以及心脏辅助系统

Publications (1)

Publication Number Publication Date
WO2023174019A1 true WO2023174019A1 (zh) 2023-09-21

Family

ID=88022326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077528 WO2023174019A1 (zh) 2022-03-15 2023-02-22 叶轮结构、心脏泵以及心脏辅助系统

Country Status (2)

Country Link
CN (1) CN116785583A (zh)
WO (1) WO2023174019A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3299821A (en) * 1964-08-21 1967-01-24 Sundstrand Corp Pump inducer
US20050135948A1 (en) * 2003-09-25 2005-06-23 Medforte Research Foundation Axial-flow blood pump with magnetically suspended, radially and axially stabilized impeller
CN104107466A (zh) * 2014-08-04 2014-10-22 中国医学科学院阜外心血管病医院 半叶片转子式轴流血泵
CN104707194A (zh) * 2015-03-30 2015-06-17 武汉理工大学 一种基于血流动压和Pivot支承的可植入轴流式血泵
CN106310410A (zh) * 2016-08-12 2017-01-11 常俊 一种脉动自适应人工心脏
CN107143527A (zh) * 2017-06-06 2017-09-08 浙江理工大学 一种多级预旋的微型螺旋泵及其工作流程
US20180243489A1 (en) * 2015-08-25 2018-08-30 Fineheart Blood flow pump for ventricular assistance
CN112654389A (zh) * 2018-08-07 2021-04-13 开迪恩有限公司 用于心脏支持系统的轴承装置和冲洗用于心脏支持系统的轴承装置中的中间空间的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3299821A (en) * 1964-08-21 1967-01-24 Sundstrand Corp Pump inducer
US20050135948A1 (en) * 2003-09-25 2005-06-23 Medforte Research Foundation Axial-flow blood pump with magnetically suspended, radially and axially stabilized impeller
CN104107466A (zh) * 2014-08-04 2014-10-22 中国医学科学院阜外心血管病医院 半叶片转子式轴流血泵
CN104707194A (zh) * 2015-03-30 2015-06-17 武汉理工大学 一种基于血流动压和Pivot支承的可植入轴流式血泵
US20180243489A1 (en) * 2015-08-25 2018-08-30 Fineheart Blood flow pump for ventricular assistance
CN106310410A (zh) * 2016-08-12 2017-01-11 常俊 一种脉动自适应人工心脏
CN107143527A (zh) * 2017-06-06 2017-09-08 浙江理工大学 一种多级预旋的微型螺旋泵及其工作流程
CN112654389A (zh) * 2018-08-07 2021-04-13 开迪恩有限公司 用于心脏支持系统的轴承装置和冲洗用于心脏支持系统的轴承装置中的中间空间的方法

Also Published As

Publication number Publication date
CN116785583A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
US10159773B2 (en) Blood pump
US10786610B2 (en) Catheter pump assembly including a stator
US10232099B2 (en) Blood pump
US20210330958A1 (en) Axial-flow pump for a ventricular assist device and method for producing an axial-flow pump for a ventricular assist device
EP3808390B1 (en) Catheter pump assembly including a stator
CN101822854B (zh) 人工心脏血液泵的带分流叶片的前导流式转子结构
JP2019080594A (ja) カテーテルポンプおよび処置方法
CN111637090A (zh) 泵转子
WO2023174019A1 (zh) 叶轮结构、心脏泵以及心脏辅助系统
CN113153804B (zh) 一种泵血叶轮及心室辅助装置
CN115999044A (zh) 一种泵血叶轮及辅助血液循环装置
CN115591105B (zh) 一种心脏辅助装置的叶轮及心脏辅助装置
CN115364367A (zh) 一种心脏辅助装置
WO2024037119A1 (zh) 具有出口导流结构的介入式血泵
CN116999688B (zh) 一种叶轮及其右心室辅助装置
US20220211930A1 (en) Coaxial cannula for use with extracorporeal membrane oxygenation systems
CN213116830U (zh) 泵转子
WO2023179737A1 (zh) 一种血液泵系统
CN115245626A (zh) 一种泵血导管及心室辅助装置
CN116262159A (zh) 具有出口导流结构的介入式血泵
CN116832319A (zh) 一种带有整流罩的血泵以及心室辅助装置
CN117045931A (zh) 送液管、套管组件及血泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769527

Country of ref document: EP

Kind code of ref document: A1