WO2023174014A1 - 蓄电池的电池管理模块及其方法、装置和存储介质 - Google Patents

蓄电池的电池管理模块及其方法、装置和存储介质 Download PDF

Info

Publication number
WO2023174014A1
WO2023174014A1 PCT/CN2023/077474 CN2023077474W WO2023174014A1 WO 2023174014 A1 WO2023174014 A1 WO 2023174014A1 CN 2023077474 W CN2023077474 W CN 2023077474W WO 2023174014 A1 WO2023174014 A1 WO 2023174014A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
activation
internal resistance
time
power supply
Prior art date
Application number
PCT/CN2023/077474
Other languages
English (en)
French (fr)
Inventor
黄庆铿
梁永昌
陈敬禧
钱玉喜
任申
Original Assignee
广东电网有限责任公司东莞供电局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电网有限责任公司东莞供电局 filed Critical 广东电网有限责任公司东莞供电局
Publication of WO2023174014A1 publication Critical patent/WO2023174014A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4242Regeneration of electrolyte or reactants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery intelligent management, for example, to a battery management module of a storage battery and its method, device and storage medium.
  • the battery is the main component that provides backup power for intelligent terminal equipment.
  • battery management and monitoring usually utilize a battery management module.
  • the management module can set the required voltage and current range of the battery, the charging and discharging time of the battery, and control the external power supply to supply power to the battery.
  • the self-activation performance test and internal resistance test of the battery itself are not covered, and the test can often only be carried out after the battery is manually removed from the smart grid. Manual operation not only affects the stable operation of smart terminals, but the constant disassembly and assembly of batteries also affects the service life of the batteries, increasing the operation and maintenance costs of the smart grid and the workload of operation and maintenance personnel.
  • This application provides a battery management module for a battery, its method, device and storage medium, which can realize intelligent management of battery self-activation and internal resistance testing without manual disassembly and assembly of the battery, reducing the impact on the service life of the battery and simplifying Smart grid operation and maintenance costs improve battery management efficiency.
  • an embodiment of the present application provides a battery management method for a storage battery, applied to a battery management module of the storage battery, including:
  • the battery is controlled to detect self-activation and internal resistance
  • the current state of the battery is determined based on the internal resistance of the battery and the activation time.
  • obtaining the activation time for self-activation of the battery includes:
  • the current SOC value of the battery reaches the preset SOC value, it is determined that the battery has ended self-activation, and the time from the initial SOC value of the battery to reaching the preset SOC value is determined as the activation time.
  • determining the internal resistance of the battery based on each of the discharge current and the discharge voltage includes:
  • the average value of the internal resistance values of the battery at different times is determined as the internal resistance of the battery.
  • determining the current state of the battery based on the internal resistance of the battery and the activation time includes:
  • the first preset condition is that the internal resistance of the battery is within the rated internal resistance range, and the activation time is greater than or Equal to the rated self-activation time;
  • the battery before controlling the battery to detect self-activation and internal resistance, it also includes:
  • the circuit between the external power supply and the battery is controlled to be disconnected;
  • the external power supply and the battery are controlled to be in a conductive state.
  • the method before controlling the connection between the external power supply and the battery, the method further includes:
  • the alarm unit is controlled to issue an alarm, and the power supply voltage record is saved and sent to the monitoring background.
  • the battery management method of the storage battery further includes: judging whether the self-power-off restart time is reached according to the charging and discharging time;
  • the self-power-off restart unit of the battery management module is controlled to restart.
  • an embodiment of the present application also provides a battery management device for a storage battery, which is applied to the battery management module of the storage battery and includes:
  • a charging and discharging time acquisition unit used to acquire the charging and discharging time of the normal operation of the battery
  • An activation period judgment unit is used to judge whether the charge and discharge time reaches the preset activation period
  • a detection control unit configured to control the battery to detect self-activation and internal resistance when the charging and discharging time reaches a preset activation period
  • An activation parameter acquisition unit is used to acquire the activation time of the battery for self-activation, and the discharge current and discharge voltage of the battery at each moment within the activation time;
  • an internal resistance determination unit configured to determine the internal resistance of the battery according to each of the discharge current and the discharge voltage
  • a state determination unit is configured to determine the current state of the battery based on the internal resistance of the battery and the activation time.
  • an embodiment of the present application also provides a battery management module for a storage battery.
  • the battery management module is electrically connected to the external power supply, the storage battery and the load respectively;
  • the external power supply is used to supply power to the battery through the battery management module;
  • the battery is used to power the load through the battery management module
  • the battery management module is used to execute any battery management method for the storage battery provided in this application.
  • an embodiment of the present application further provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and the computer instructions are used to enable the processor to implement the battery provided by the present application when executed. battery management methods.
  • Figure 1 is a schematic flowchart of a battery management method for a storage battery provided according to Embodiment 1 of the present application;
  • Figure 2 is a schematic flowchart of a battery management method for a storage battery provided according to Embodiment 2 of the present application;
  • Figure 3 is a schematic flowchart of a battery management method for a storage battery provided according to Embodiment 3 of the present application;
  • Figure 4 is a schematic flowchart of a battery management method for a storage battery provided according to Embodiment 4 of the present application;
  • FIG. 5 is a schematic flowchart of a battery management method for a storage battery provided according to Embodiment 5 of the present application;
  • Figure 6 is a schematic structural diagram of a battery management device for a storage battery provided according to Embodiment 6 of the present application.
  • FIG. 7 is a schematic structural diagram of a battery management module of a storage battery provided according to Embodiment 7 of the present application.
  • FIG. 1 is a schematic flowchart of a battery management method for a storage battery provided according to Embodiment 1 of the present application.
  • the method can be executed by a battery management device of the storage battery, and the device can be composed of hardware and/or software.
  • the battery management method of the storage battery provided by the embodiment of the present application includes the following steps:
  • the battery can convert chemical energy into electrical energy during the discharge process, and the battery during charging In the process, the battery can store electrical energy as chemical energy.
  • the type of battery may be a lead-acid battery or a lithium iron phosphate battery.
  • the type of battery is not specifically limited.
  • the battery can be a single cell, or it can include one or more battery packs composed of multiple single cells.
  • the number and composition of the single cells in the battery are not specifically limited, and can be determined by each device in the smart terminal. Demand-adaptive choices.
  • the battery is discharged to provide power to the required equipment, and an external power supply is used to provide electric energy to the battery to charge the battery.
  • the preset activation cycle can be a preset time range.
  • the normal charge and discharge time of the battery starts from the end of the last activation test of the battery, and the time the battery continues to charge and discharge normally.
  • the preset activation cycle of the battery is the time required from the end of the last activation of the battery to the start of the next self-activation.
  • the battery begins to detect self-activation and internal resistance.
  • the preset activation period may be three months, five months or six months.
  • the preset activation period is not specifically limited.
  • the above-mentioned battery can also be understood as a battery pack composed of multiple batteries.
  • the battery pack includes two or three groups of batteries that can be discharged.
  • the three groups of small batteries in the battery pack need to be self-activated in sequence, and the self-activation of the three groups of small batteries needs to be detected.
  • the first group of batteries completes the self-activation and internal resistance tests, start the self-activation and internal resistance tests on the second group of batteries.
  • the second group of batteries completes the self-activation and internal resistance tests, start the third group of batteries.
  • the self-activation and internal resistance test ensures that all batteries in the battery pack complete self-activation within the self-activation time and records and saves the self-activation conditions to facilitate grid operation and maintenance personnel to accurately know the self-activation of the batteries. situation in order to promptly detect faulty or aging batteries and replace them in time.
  • S140 Obtain the activation time of the battery for self-activation, and the discharge current and discharge voltage of the battery at each moment within the activation time.
  • the process of battery self-activation is the regeneration process of active materials inside the battery.
  • Different types of batteries have different self-activation times.
  • the battery self-activation time is different depending on the battery working time.
  • the corresponding battery activation time can be obtained according to the specific self-activation situation.
  • the corresponding discharge current and discharge voltage at different times are also different. That is, the battery corresponds to a set of discharge current and discharge voltage at the same time. At different times, the discharge current and discharge voltage may have slight differences, or they may be the same.
  • the internal resistance of the battery is determined through the equation composed of the discharge current, discharge voltage and internal resistance. That is, the internal resistance of the battery can be determined through the relevant formula corresponding to Ohm's law. Using each discharge current and discharge voltage, multiple internal resistance values can be determined.
  • the corresponding discharge current and discharge voltage at different times fluctuate within the normal range due to factors such as external interference and the battery's own charging and discharging capabilities, resulting in internal resistance of the battery at different times. It may be the same, or there may be slight differences.
  • the internal resistance of the battery can be determined by the discharge current and discharge voltage corresponding to a certain moment, or by selecting the discharge current and discharge voltage corresponding to multiple moments during the activation time period to calculate the corresponding resistance value and then calculate the average value. Determine the internal resistance of the battery.
  • S160 Determine the current state of the battery based on the internal resistance and activation time of the battery.
  • the current status of the battery includes the normal working status of the battery and the abnormal working status of the battery.
  • the internal resistance and activation time of the battery meet the standards for normal working of the battery.
  • the internal resistance of the battery is And the activation time does not meet the standards for the normal operation of the battery. That is to say, the current working status of the battery can be further determined based on the internal resistance and activation time of the battery.
  • the operation and maintenance personnel of the power grid can use the current working status of the battery to determine whether the battery is aging or malfunctioning, ensuring that all equipment in the entire power system of normal operation.
  • the circuit between the external power supply and the battery is controlled to be disconnected.
  • the battery when it is judged that the charging and discharging time of the normal operation of the battery has reached the preset activation period, the battery needs to be self-activated.
  • the external power supply needs to be disconnected to achieve self-activation. Disconnect the circuit between the external power supply and the battery to ensure that the battery can self-activate smoothly.
  • the self-power-off restart unit of the battery management module restarts.
  • the battery management module of the battery is equipped with a self-power-off restart unit.
  • a self-power-off restart unit Based on the characteristics of the connected load, after a period of operation, it needs to restart after a short self-power-off to ensure that the load can operate normally. , this function is optional.
  • the self-power-off restart unit can power off and restart the connected load according to the preset automatic startup cycle. For example, some loads cannot operate normally due to hardware or software reasons after working for a period of time, and the load needs to be repaired. Restart operation, the load is restarted through the self-power-off restart unit to ensure the normal operation of the load.
  • the self-power-off restart time can be preset. For example, the self-power-off restart time is 72h.
  • the self-power-off restart unit of the battery management module restarts; when the self-power off restart time is 72h, the battery charge and discharge time is 48h, the self-power-off restart unit of the battery management module will not restart.
  • the self-restart cycle can also be three months, five months, or six months. Here, there is no specific limit on the preset activation cycle.
  • the embodiment of the present application obtains the charging and discharging time of the normal operation of the battery, compares the charging and discharging time with the preset activation period, and controls the battery to start self-activation and internal resistance when the charging and discharging time of the battery reaches the preset activation period. Detect and obtain the activation time of the battery self-activation and the discharge current and discharge voltage of the battery at each moment during the activation time, so that after determining the internal resistance of the battery based on the discharge current and discharge voltage, the internal resistance of the battery and the battery can be determined based on the internal resistance of the battery and the discharge voltage of the battery. activation time to determine the current status of the battery.
  • the technical solution of this application can realize the detection of battery self-activation and internal resistance without human operation, avoids the impact of human operation detection on the operation of the smart grid, simplifies the battery management method, and improves the efficiency of smart grid operation and maintenance personnel. Work efficiency.
  • FIG. 2 is a schematic flowchart of a battery management method for a storage battery provided according to Embodiment 2 of the present application. Based on the above embodiment, a specific solution for determining the self-activation time of the storage battery is provided.
  • the technical solution of this embodiment includes:
  • S250 Determine whether the current SOC value of the battery reaches the preset SOC value. If the current SOC value of the battery When the preset SOC value is reached, S260 is executed.
  • S260 Determine that the battery has completed self-activation, and determine the time from the initial SOC value of the battery to reaching the preset SOC value as the activation time.
  • the corresponding relationship can be a calculation formula or a table, which is not specifically limited here.
  • the SOC values of the batteries corresponding to different moments are different.
  • the current SOC value of the battery reaches the preset SOC value and the current SOC value of the battery does not reach the preset SOC value.
  • the preset SOC value can be set in advance.
  • the preset SOC value can be understood as a specific value.
  • the preset SOC value is 0%, and the initial SOC value of the battery is 100%.
  • the current SOC value of the battery is changing in real time, decreasing from 100%.
  • the current SOC value of the battery is When the value is 0%, it means that the self-activation of the battery has ended.
  • the activation time of the battery is 8h. This is only an exemplary description, and the specific activation time can be specifically set according to different battery types.
  • the relationship between the current SOC value of the battery and the preset SOC value is obtained in real time, and the time it takes for the battery to reach the preset SOC value from the initial SOC value is used as the activation time of the battery.
  • the internal resistance of the battery is determined based on each discharge current and discharge voltage of the battery during the activation process.
  • the current status of the battery is further determined based on the battery activation time and the internal resistance of the battery.
  • FIG. 3 is a schematic flowchart of a battery management method for a storage battery provided according to Embodiment 3 of the present application. Based on the above embodiment, a specific solution for determining the self-activation time of the storage battery is provided.
  • the technical solution of this embodiment includes:
  • S340 Obtain the activation time of the battery for self-activation, and the discharge current and discharge voltage of the battery at each moment within the activation time.
  • S350 Determine the internal resistance value of the battery at different times according to the discharge current and discharge voltage of the battery at different times during the activation time.
  • S360 Determine the average value of the internal resistance values of the battery at different times as the internal resistance of the battery.
  • the internal resistance values at different moments can be determined by the corresponding discharge currents and discharge voltages at different moments. Furthermore, for a certain battery, the internal resistance value is generally a fixed value. The continuous discharge of the battery during the activation time will release the discharge current and discharge voltage. According to the relationship between the discharge current, discharge voltage and internal resistance, the battery is determined Internal resistance values at different times. During the entire battery activation process, there will be slight fluctuations in the discharge current and discharge voltage at different times, making the internal resistance values at different times not completely consistent. Use the average internal resistance calculation formula to calculate the average internal resistance during the activation time, and use the average internal resistance as the internal resistance of the battery.
  • the internal resistance value of the battery corresponding to different times is determined by using the different discharge currents and discharge voltages of the battery at different times during the activation time.
  • the internal resistance of the battery during the activation time is calculated based on the internal resistance values of the battery at different times.
  • FIG. 4 is a schematic flowchart of a battery management method for a storage battery provided according to Embodiment 4 of the present application. Based on the above embodiment, a specific solution for determining the current status of the storage battery is provided.
  • the technical solution of this embodiment includes:
  • S440 Obtain the activation time of the battery for self-activation, and the discharge current and discharge voltage of the battery at each moment within the activation time.
  • S460 Determine whether the first preset condition is met based on the internal resistance and activation time of the battery. If the internal resistance and activation time of the battery meet the first preset condition, execute S470; if the internal resistance and activation time of the battery do not meet the first preset condition. Once a preset condition is reached, S480 is executed.
  • the battery's internal resistance and activation time correspond to the battery's self-activation process.
  • the self-activation ability of the battery gradually weakens, and the corresponding internal resistance and activation time of the battery will deviate from the rated internal resistance range or deviate from the rated activation time.
  • the first preset condition that is, comparing whether the internal resistance of the battery is within the rated internal resistance range, and comparing the activation time of the battery with the rated activation time.
  • the internal resistance and activation time of the battery are considered to meet the first preset condition.
  • the internal resistance of the battery is within the rated internal resistance range and the activation time of the battery is greater than or equal to the rated self-activation time, it is determined that after the battery has continued to work for a period of time, the battery has not aged internally, and the current state of the battery is good.
  • the current state of the battery is regarded as the normal state. When the current status of the battery is normal, the battery can work continuously and stably and provide power to loads or equipment that need power.
  • the battery itself will age after continuous operation for a period of time.
  • the current state of the aged battery is an abnormal state and is in an abnormal state.
  • the battery cannot supply power to the load or power supply equipment again. Grid operation and maintenance personnel need to promptly remove the battery in abnormal condition and replace it with a qualified battery.
  • the embodiment of the present application determines the current working status of the battery by comparing the internal resistance and activation time of the battery with the rated internal resistance range and rated self-activation time of the battery. In this way, it can be simply and conveniently determined whether the battery is aging or not. faults and other problems, thus making it easier for power grid operation and maintenance personnel to promptly detect abnormally working batteries and solve battery abnormality problems in a timely and targeted manner.
  • FIG. 5 is a schematic flowchart of a battery management method for a battery provided according to Embodiment 5 of the present application. Based on the above embodiment, a specific solution is provided on whether the external power supply needs to be cut off to achieve self-activation of the battery.
  • the technical solution of this embodiment includes:
  • the external power supply can be the mains power, or it can be the voltage converted by the high-voltage power of the power system through a voltage transformer.
  • the voltage of the external power supply can be 220V AC or 110V AC.
  • the selection of the external power supply voltage can be selected according to the size of the power supply voltage required by the battery.
  • S502 Determine whether the power supply voltage is within the preset power supply voltage range. If the power supply voltage is not within the preset power supply voltage range, execute S503; if the power supply voltage is within the preset power supply voltage range, execute S504.
  • the power supply voltage provided by the external power supply may be insufficient.
  • the power supply voltage is compared with the preset power supply voltage. When the power supply voltage is within the preset power supply voltage range, it is determined that the voltage provided by the power supply voltage is normal.
  • the external power supply supplies power to the battery, so that the battery and the external power supply are in a conductive state, ensuring that the battery can be charged successfully when the external power supply is supplied.
  • the alarm unit in the battery management module will issue an alarm indication, record and save the voltage value of the power supply voltage and send it to the monitoring background , the monitoring background arranges relevant personnel to check the power supply of the external power supply based on the alarm information, and efficiently handles and solves the above problems in a targeted manner.
  • S506. Determine whether the charging and discharging time reaches the preset activation period. If the charging and discharging time reaches the preset activation period, execute S507.
  • S507 Control the circuit between the external power supply and the battery to be disconnected.
  • S509 Obtain the activation time of the battery for self-activation, and the discharge current and discharge voltage of the battery at each moment within the activation time.
  • S511 Determine the current state of the battery based on the internal resistance and activation time of the battery.
  • the embodiment of the present application determines the circuit connection relationship between the battery and the external power supply by comparing the battery charge and discharge time with the preset activation cycle before performing self-activation and internal resistance detection on the battery, where the circuit connection relationship is disconnected. open or conductive state.
  • the circuit between the battery and the external power supply needs to be connected, it is further determined whether the external power supply meets the conditions for powering the battery to ensure that the battery is charged smoothly under the external power supply.
  • the information about the external power supply is recorded and the alarm signal is transmitted to the monitoring background.
  • FIG. 6 is a schematic structural diagram of a battery management device for a storage battery provided according to Embodiment 6 of the present application.
  • the device may consist of hardware and/or software.
  • the device includes: charge and discharge time acquisition unit 610, activation period determination unit 620, detection control unit 630, activation parameter acquisition unit 640, internal resistance determination unit 650, status determination unit 660, supply voltage determination unit 670 , self-power-off restart unit 680.
  • the charging and discharging time acquisition unit 610 is used to acquire the charging and discharging time of the normal operation of the battery.
  • the activation period judgment unit 620 is used to judge whether the charging and discharging time reaches the preset activation period.
  • the detection control unit 630 is used to control the battery to perform self-activation and internal resistance detection when the charging and discharging time reaches the preset activation period.
  • the activation parameter acquisition unit 640 is used to acquire the activation time of the battery for self-activation, as well as the discharge current and discharge voltage of the battery at each moment within the activation time.
  • the internal resistance determining unit 650 is used to determine the internal resistance of the battery based on each discharge current and discharge voltage.
  • the state determination unit 660 is used to determine the current state of the battery based on the internal resistance and activation time of the battery.
  • the power supply voltage judgment unit 670 is used to obtain the power supply voltage provided by the external power supply, and determine whether the power supply voltage is within the preset power supply voltage range. If the power supply voltage is not within the preset power supply voltage range, the alarm unit is controlled to issue an alarm and the power supply is The voltage record is saved and sent to the monitoring background.
  • the self-power-off restart unit 680 is used to determine whether the self-power-off restart time is reached based on the charging and discharging time; if the charging and discharging time reaches the self-power-off restarting time, control the self-power off restarting unit of the battery management module to restart.
  • the activation period judgment unit 620 is also used to determine if the charging and discharging time reaches the preset activation period. Then the circuit between the external power supply and the battery is controlled to be in a disconnected state; if the charging and discharging time does not reach the preset activation period, the circuit between the external power supply and the battery is controlled to be in a conductive state.
  • the activation parameter acquisition unit 640 is also used to obtain the current SOC value of the battery in real time during the activation process of the battery, and determine whether the current SOC value of the battery reaches the preset SOC value. If the current SOC value of the battery reaches the preset SOC value, then It is determined that the battery has completed self-activation, and the time from the initial SOC value of the battery to reaching the preset SOC value is determined as the activation time.
  • the internal resistance determining unit 650 is also used to determine the internal resistance value of the battery at different times according to the discharge current and discharge voltage of the battery at different times during the activation time, and determine the average value of the internal resistance value of the battery at different times as the battery's internal resistance value. Internal resistance.
  • the status determination unit 660 is also used to determine whether the first preset condition is met based on the internal resistance and activation time of the battery, where the first preset condition is that the internal resistance of the battery is within the rated internal resistance range, and the activation time is greater than or Equal to the rated self-activation time. If the internal resistance and activation time of the battery meet the first preset condition, the current state of the battery is determined to be a normal state. If the internal resistance and activation time of the battery do not meet the first preset condition, the battery is determined to be in a normal state. The current status is abnormal.
  • the embodiment of the present application uses the charge and discharge time acquisition unit to obtain the charging time of the normal operation of the battery, and determines whether the charge and discharge time reaches the preset activation period according to the activation cycle judgment unit.
  • the detection control unit controls the battery to detect self-activation and internal resistance.
  • the activation time and the discharge current and discharge voltage at each moment are obtained to determine the internal resistance of the battery.
  • the current state of the battery is determined using the battery's internal resistance and activation time.
  • the above-mentioned battery management device for a storage battery can execute the battery management method for a storage battery provided by any embodiment of the present invention, and has functional modules and beneficial effects corresponding to the execution method.
  • FIG. 7 is a schematic structural diagram of a battery management module of a storage battery provided according to Embodiment 7 of the present application.
  • the battery management module 10 is electrically connected to the external power supply VCC, the battery 20 and the load 30 respectively; the external power supply VCC is used to pass the battery management
  • the module 10 supplies power to the battery 20; the battery 20 is used to supply power to the load 30 through the battery management module 10.
  • the battery management module 10 is connected to an external power supply, and the external power supply provides the required power supply voltage for the battery through the battery management module 10 with a voltage that meets the requirements.
  • the battery management module 10 determines, records, saves, and alarms the external power supply VCC, and communicates the information about the external power supply through the RS485 communication line or optical fiber communication method. transmitted to the communication management machine.
  • the communication management machine transmits the above information to the management background, and the management background solves the problems in a targeted manner based on the transmitted information.
  • the battery management module 10 has the function of setting, judging, and recording the normal charging and discharging time of the battery 20 and the self-activation time of the battery 20 .
  • the battery management module 10 When the battery reaches the preset activation period, the battery management module 10 will disconnect the power supply between the battery and the external power supply, so that the battery begins to test self-activation and internal resistance.
  • the battery 20 discharges, and the discharge current generated during the discharge process
  • the battery discharge current and discharge voltage are converted into the current and voltage required by the load 30 through the voltage and current conversion unit, so as to supply power to the load 30 .
  • the battery management module 10 is also provided with a self-interruption and restart function. By setting the self-interruption and restart time, the circuit between the battery management module 10 and the load 30 is periodically powered off and restarted.
  • the battery management module 10 can include multiple battery management modules 10 in the entire smart grid system according to different targeted settings of the number of batteries 20 or battery groups, which is not specifically limited here.
  • the battery management module 10 of the above-mentioned storage battery can execute the battery management method of the storage battery provided by any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • Embodiment 8 of this application provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program used to implement the method of this application can be written using any combination of one or more programming languages. .
  • These computer programs may be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, such that the computer program, when executed by the processor, causes the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • a computer program may execute entirely on the machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a computer-readable storage medium may be a tangible medium that may contain or store a computer program for use by or in connection with an instruction execution system, apparatus, or device.
  • Computer-readable storage media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • the computer-readable storage medium may be a machine-readable signal medium.
  • machine-readable storage media would include one or more wire-based electrical connections, laptop disks, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM portable compact disk read-only memory
  • magnetic storage device or any suitable combination of the above.
  • the systems and techniques described herein may be implemented on electronic devices in order to provide interactions with users
  • the electronic device has: a display device (for example, a CRT (cathode ray tube) or an LCD (liquid crystal display) monitor) for displaying information to a user; and a keyboard and a pointing device (for example, a mouse or a trackball) through which the user can
  • the keyboard and the pointing device are used to provide input to the electronic device.
  • Other kinds of devices may also be used to provide interaction with the user; for example, the feedback provided to the user may be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and may be provided in any form, including Acoustic input, voice input or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., A user's computer having a graphical user interface or web browser through which the user can interact with implementations of the systems and technologies described herein), or including such backend components, middleware components, or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communications network). Examples of communication networks include: local area network (LAN), wide area network (WAN), blockchain network, and the Internet.
  • Computing systems may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact over a communications network.
  • the relationship of client and server is created by computer programs running on corresponding computers and having a client-server relationship with each other.
  • the server can be a cloud server, also known as cloud computing server or cloud host. It is a host product in the cloud computing service system to solve the problems of difficult management and weak business scalability in traditional physical hosts and VPS services. defect.

Abstract

一种蓄电池的电池管理模块及其方法、装置和存储介质,该方法应用于蓄电池的电池管理模块,包括:获取蓄电池正常工作的充放电时间;判断充放电时间是否达到预设活化周期;若判断所述充放电时间达到预设活化周期,则控制蓄电池进行自活化和内阻的检测;获取蓄电池进行自活化的活化时间、以及位于活化时间内蓄电池在每个时刻的放电电流和放电电压;根据各放电电流和放电电压,确定蓄电池的内阻;根据蓄电池的内阻和活化时间,确定蓄电池的当前状态。

Description

蓄电池的电池管理模块及其方法、装置和存储介质
本申请要求申请日为2022年03月18日、申请号为202210267075.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池智能管理领域,例如涉及一种蓄电池的电池管理模块及其方法、装置和存储介质。
背景技术
伴随着智能电网的不断发展,使得智能终端设备的投入不断增加。利用智能终端可以有效地监测整个智能电网的运行状态。蓄电池是为智能终端设备提供后备电源的主要组成部分。
相关技术中,对于蓄电池的管理和监测通常是利用电池管理模块该管理模块可以设置蓄电池的所需的电压、电流区间范围、蓄电池的充放电时间以及控制外部供电电源为蓄电池供电。但是,对于蓄电池本身的自活化性能测试和内阻测试并没有涉及,往往只能通过人为将蓄电池从智能电网中拆除后才能进行测试。人为手动操作不仅影响智能终端的稳定运行,不断的拆装蓄电池还影响蓄电池的使用寿命,增加了智能电网的运维成本和运维人员的工作负担。
发明内容
本申请提供了一种蓄电池的电池管理模块及其方法、装置和存储介质,能够实现蓄电池自活化和内阻测试的智能管理,无需手动拆装蓄电池,降低了对蓄电池使用寿命的影响,简化了智能电网的运维成本,提高了蓄电池管理的效率。
第一方面,本申请一实施例提供了一种蓄电池的电池管理方法,应用于所述蓄电池的电池管理模块,包括:
获取所述蓄电池正常工作的充放电时间;
判断所述充放电时间是否达到预设活化周期;
若判断所述充放电时间达到预设活化周期,则控制所述蓄电池进行自活化和内阻的检测;
获取所述蓄电池进行自活化的活化时间、以及位于所述活化时间内所述蓄电池在每个时刻的放电电流和放电电压;
根据每一所述放电电流和所述放电电压,确定所述蓄电池的内阻;
根据所述蓄电池的内阻和所述活化时间,确定所述蓄电池的当前状态。
可选地,所述获取所述蓄电池进行自活化的活化时间,包括:
在所述蓄电池进行活化过程中,实时获取所述蓄电池的当前SOC值;
判断所述蓄电池的当前SOC值是否达到预设SOC值;
若所述蓄电池的当前SOC值达到预设SOC值,则确定所述蓄电池结束自活化,并将所述蓄电池从初始SOC值至达到所述预设SOC值的时间确定为所述活化时间。
可选地,所述根据每一所述放电电流和所述放电电压,确定所述蓄电池的内阻,包括:
根据所述蓄电池在所述活化时间内不同时刻的所述放电电流和所述放电电压,确定所述蓄电池在不同时刻的内阻值;及
将所述蓄电池在不同时刻的内阻值的平均值确定为所述蓄电池的内阻。
可选地,所述根据所述蓄电池的内阻和所述活化时间,确定所述蓄电池的当前状态,包括:
根据所述蓄电池的内阻和所述活化时间,判断是否满足第一预设条件;所述第一预设条件为所述蓄电池的内阻处于额定内阻范围内,且所述活化时间大于或等于额定自活化时间;
若所述蓄电池的内阻和所述活化时间满足第一预设条件,则确定所述蓄电池的当前状态为正常状态;
若所述蓄电池的内阻和所述活化时间不满足第一预设条件,则确定所述蓄电池的当前状态为异常状态。
可选地,在控制所述蓄电池进行自活化和内阻的检测之前,还包括:
若所述充放电时间达到预设活化周期,则控制外部供电电源与所述蓄电池之间的电路处于断开状态;
若所述充放电时间未达到预设活化周期,则控制所述外部供电电源与所述蓄电池之间处于导通状态。
可选地,控制所述外部供电电源与所述蓄电池之间处于导通状态之前,还包括:
获取外部供电电源提供的供电电压;
判断所述供电电压是否在预设供电电压范围内;
若所述供电电压在预设供电电压范围内,则执行控制所述外部供电电源与所述蓄电池之间处于导通状态的步骤;
若所述供电电压不在预设供电电压范围内,则控制报警单元进行报警,并将所述供电电压记录保存后发送至监控后台。
可选地,蓄电池的电池管理方法,还包括:根据所述充放电时间,判断是否达到自断电重启时间;
若所述充放电时间达到自断电重启时间,则控制所述电池管理模块的自断电重启单元进行重启。
第二方面,本申请一实施例还提供了一种蓄电池的电池管理装置,应用于所述蓄电池的电池管理模块,包括:
充放电时间获取单元,用于获取所述蓄电池正常工作的充放电时间;
活化周期判断单元,用于判断所述充放电时间是否达到预设活化周期;
检测控制单元,用于在所述充放电时间达到预设活化周期时,控制所述蓄电池进行自活化和内阻的检测;
活化参数获取单元,用于获取所述蓄电池进行自活化的活化时间、以及位于所述活化时间内所述蓄电池在每个时刻的放电电流和放电电压;
内阻确定单元,用于根据各所述放电电流和所述放电电压,确定所述蓄电池的内阻;及
状态确定单元,用于根据所述蓄电池的内阻和所述活化时间,确定所述蓄电池的当前状态。
第三方面,本申请一实施例还提供了一种蓄电池的电池管理模块,所述电池管理模块分别与外部供电电源、蓄电池和负载电连接;
所述外部供电电源用于通过所述电池管理模块为所述蓄电池供电;
所述蓄电池用于通过所述电池管理模块为所述负载供电;
所述电池管理模块用于执行本申请任意提供的蓄电池的电池管理方法。
第四方面,本申请一实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现本申请所提供的蓄电池的电池管理方法。
附图说明
图1是根据本申请实施例一提供的一种蓄电池的电池管理方法的流程示意图;
图2是根据本申请实施例二提供的一种蓄电池的电池管理方法的流程示意图;
图3是根据本申请实施例三提供的一种蓄电池的电池管理方法的流程示意图;
图4是根据本申请实施例四提供的一种蓄电池的电池管理方法的流程示意图;
图5是根据本申请实施例五提供的一种蓄电池的电池管理方法的流程示意图;
图6是根据本申请实施例六提供的一种蓄电池的电池管理装置的结构示意图;
图7是根据本申请实施例七提供的一种蓄电池的电池管理模块的结构示意图。
具体实施方式
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例一
图1是根据本申请实施例一提供的一种蓄电池的电池管理方法的流程示意图,该方法可以由蓄电池的电池管理装置来执行,该装置可由硬件和/或软件组成。本申请实施例提供的蓄电池的电池管理方法包括如下步骤:
S110、获取蓄电池正常工作的充放电时间。
其中,在放电过程中蓄电池可以将化学能转化为电能的电池,以及在充电 过程中蓄电池可以将电能存储为化学能。蓄电池的种类可以是铅酸蓄电池,还可以是磷酸铁锂蓄电池,此处,对于蓄电池的种类不做具体限定。蓄电池可以是单电池,也可以包括由多个单电池组成的一个或多个电池组,此处,对蓄电池中单电池的个数和组成不做具体限定,可以通过智能终端中每个设备的需求适应性的选择。在智能电网中,通过蓄电池放电实现对所需设备的供电,以及通过外部供电电源为蓄电池提供电能,实现对蓄电池的充电。在蓄电池正常工作情况下,即蓄电池正常充电和放电情况下,通过记录蓄电池的充放电时间,可以有效地获知蓄电池正常工作的时长。
S120、判断充放电时间是否达到预设活化周期,若充放电时间达到预设活化周期,则执行S130。
S130、控制蓄电池进行自活化和内阻的检测。
其中,蓄电池在经过一段时间的正常充电和放电后,需要对蓄电池进行自活化,以确保蓄电池具备良好的活化性能。此外,通过对蓄电池内阻进行检测,可以确定蓄电池的工作状态。预设活化周期可以预先设定好的时间范围。蓄电池正常充放电的时间是从蓄电池上一次活化检测结束时开始计时,蓄电池持续进行正常的充放电的时间。蓄电池的预设活化周期为蓄电池上一次活化结束到下一次自活化开始所需的时间。当充放电时间达到预设活化周期后,蓄电池开始进行自活化和内阻的检测。示例性的,预设活化周期可以为三个月、五个月或者六个月,此处,对于预设活化周期不做具体限定。
进一步地,上述蓄电池也可以理解成由多个蓄电池组成的蓄电池组,蓄电池组中包括两组或三组可以进行放电的蓄电池。示例性的,以蓄电池组内设置三组小型蓄电池为例进行说明,当蓄电池组达到预设活化周期后,需要对蓄电池组内的三组小型蓄电池依次进行自活化,检测三组小型蓄电池的自活化情况是否正常并对其进行内阻测试。当第一组蓄电池完成自活化和内阻的测试后,开始对第二组蓄电池进行自活化和内阻测试,类似的,当第二组蓄电池完成自活化和内阻测试后开展第三组蓄电池的自活化和内阻测试,确保在自活化的时间内,蓄电池组内的所有蓄电池均完成自活化并对自活化情况进行记录和保存,方便电网运维人员对蓄电池的准确获知蓄电池的自活化情况,以便及时发现存在故障或老化的蓄电池并及时更换。
S140、获取蓄电池进行自活化的活化时间、以及位于活化时间内蓄电池在每个时刻的放电电流和放电电压。
其中,蓄电池进行自活化的过程是蓄电池内部活性物质的再生过程,对于不同类型的蓄电池,其自活化时间也不相同。对于同样类型的蓄电池,根据蓄电池工作时间长短的不同,其蓄电池自活化时间也不相同,可以根据具体地自活化情况获取对应的蓄电池活化时间。此外,在蓄电池活化的过程中,不同时刻对应的放电电流和放电电压也不同。即同一时刻下蓄电池对应有一组放电电流和放电电压。不同时刻下,放电电流和放电电压可以存在微小的差别,也可能相同。
S150、根据各放电电流和放电电压,确定蓄电池的内阻。
其中,蓄电池在自活化时间内,通过放电电流和放电电压与内阻构成的等式确定蓄电池的内阻,即通过欧姆定律对应的相关公式就能够确定出蓄电池的内阻。利用每个放电电流和放电电压,可以确定多个内阻值。蓄电池活化的过程中,不同时刻对应的放电电流和放电电压因外界干扰和蓄电池自身充放电的能力等因素,造成放电电流和放电电压之间存在正常范围内的波动,导致不同时刻蓄电池的内阻可能相同,也可能有微小的差别。对于蓄电池内阻的确定,可以通过某一时刻对应的放电电流和放电电压确定,也可以通过活化时间段选取多个时刻对应的放电电流和放电电压计算出对应电阻值后,计算平均值的方式确定蓄电池的内阻。
S160、根据蓄电池的内阻和活化时间,确定蓄电池的当前状态。
其中,蓄电池的当前状态包括蓄电池正常工作状态和蓄电池异常工作状态,在蓄电池正常工作的状态下,蓄电池的内阻和活化时间符合蓄电池正常工作的标准,在蓄电池异常工作的状态,蓄电池的内阻和活化时间不符合蓄电池的正常工作的标准。即根据蓄电池的内阻和活化时间能够进一步地确定蓄电池的当前工作状态,电网的运维人员可以通过蓄电池的当前工作状态,确定蓄电池是否存在老化或者是否故障等问题,保证整个电力系统中各设备的正常运行。
在上述实施例的基础上,当充放电时间达到预设活化周期后,可选地,控制外部供电电源与蓄电池之间的电路处于断开状态。
其中,当判断蓄电池正常工作的充放电时间已经达到预设活化周期时,需要对蓄电池进行自活化。在蓄电池自活化的过程中,需要断开外部电源才能够实现自活化。断开外部供电电源与蓄电池之间的电路,以保证蓄电池能够顺利进行自活化。
可选地,根据充放电时间,判断是否达到自断电重启时间,当达到自断电 重启时间时,电池管理模块的自断电重启单元进行重启。
其中,蓄电池的电池管理模块中设置有自断电重启单元,基于所接入的负载的特性,在经过一段时间的运行后,需要经过短暂的自断电进行重新启动,以确保负载能够正常运作,该项功能为选用功能。自断电重启单元可以根据预设值的自动启周期对所接负载的运行需要进行断电重启,例如部分负载由于硬件或软件原因在工作一段时间后出现不能正常运转的情况,需要对负载进行重启操作,通过自断电重启单元实现负载的重新启动,确保负载正常工作。自断电重启时间可以预设设置。示例性的,自断电重启时间为72h,当蓄电池的充放电时间达到72h后,电池管理模块的自断电重启单元进行重启;当自断电重启时间为72h,而蓄电池的充放电时间为48h,则电池管理模块的自断电重启单元不会进行重启,同样自重启周期也可以为三个月、五个月或者六个月,此处,对于预设活化周期不做具体限定。
本申请实施例通过获取蓄电池正常工作的充放电时间,并将充放电时间与预设活化周期比较,且在蓄电池的充放电时间达到预设活化周期时,控制蓄电池开始进行自活化和内阻的检测,并获取蓄电池自活化的活化时间和在活化时间内蓄电池在每个时刻的放电电流和放电电压,以在根据放电电流和放电电压确定蓄电池的内阻后,能够基于蓄电池的内阻和蓄电池的活化时间,进而确定蓄电池的当前状态。本申请的技术方案,无需人为操作,即可实现对蓄电池自活化和内阻的检测,避免了因人为操作检测影响智能电网的运行,简化了蓄电池的管理方法,提高了智能电网运维人员的工作效率。
实施例二
图2是根据本申请实施例二提供的一种蓄电池的电池管理方法的流程示意图,在上述实施例的基础上,具体提供了确定蓄电池自活化时间的方案。本实施例的技术方案包括:
S210、获取蓄电池正常工作的充放电时间。
S220、判断充放电时间是否达到预设活化周期,若充放电时间达到预设活化周期,则执行S230。
S230、控制蓄电池进行自活化和内阻的检测。
S240、在蓄电池进行活化过程中,实时获取蓄电池的当前SOC值。
S250、判断蓄电池的当前SOC值是否达到预设SOC值,若蓄电池的当前SOC值 达到预设SOC值,则执行S260。
S260、确定蓄电池结束自活化,并将蓄电池从初始SOC值至达到预设SOC值的时间确定为活化时间。
其中,蓄电池的电能与蓄电池的SOC值之间存在对应关系,对应关系可以是计算公式或表格,此处不做具体限定。在活化过程中,不同时刻对应的蓄电池的SOC值不同。通过实时的获取蓄电池的当前SOC值并将蓄电池的当前SOC值与预设SOC值进行比较。蓄电池的当前SOC值与预设SOC值之间的关系为两种,蓄电池的当前SOC值达到预设SOC值和蓄电池的当前SOC值未达到预设SOC值。预设SOC值可以预先设定,在蓄电池活化的过程中,预设SOC值可以理解成一个具体的数值。当蓄电池的当前SOC值达到预设SOC值时,则蓄电池自活化结束。蓄电池的活化时间从初始SOC值到预设SOC值所经历的时间。
示例性的,预设SOC值为0%,蓄电池的初始SOC值为100%,在蓄电池活化过程中,蓄电池的当前SOC值实时在变化,从100%一直在减少,经过8h,蓄电池的当前SOC值为0%时,则说明蓄电池的自活化结束。则蓄电池的活化时间为8h。此处仅为示例性的说明,对于具体的活化时间可以根据蓄电池类型的不同具体设定。
S270、获取位于活化时间内蓄电池在每个时刻的放电电流和放电电压。
S280、根据各放电电流和放电电压,确定蓄电池的内阻。
S290、根据蓄电池的内阻和活化时间,确定蓄电池的当前状态。
本申请实施例在蓄电池活化过程中,通过实时获取蓄电池的当前SOC值与预设SOC值之间的大小关系,将蓄电池从初始SOC值到达预设SOC值所经历的时间作为蓄电池的活化时间。根据活化过程中蓄电池的每一个放电电流和放电电压确定蓄电池的内阻。进一步依据蓄电池活化时间和蓄电池的内阻确定出蓄电池的当前状态。本申请解决了通过人为操作实现对蓄电池自活化和内阻的检测问题,避免了因人为操作检测影响智能电网的运行,简化了蓄电池的管理方法,提高了智能电网运维人员的工作效率。
实施例三
图3是根据本申请实施例三提供的一种蓄电池的电池管理方法的流程示意图,在上述实施例的基础上,具体提供了确定蓄电池自活化时间的方案。本实施例的技术方案包括:
S310、获取蓄电池正常工作的充放电时间。
S320、判断充放电时间是否达到预设活化周期,若充放电时间达到预设活化周期,则执行S330。
S330、控制蓄电池进行自活化和内阻的检测。
S340、获取蓄电池进行自活化的活化时间、以及位于活化时间内蓄电池在每个时刻的放电电流和放电电压。
S350、根据蓄电池在活化时间内不同时刻的放电电流和放电电压,确定蓄电池在不同时刻的内阻值。
S360、将蓄电池在不同时刻的内阻值的平均值确定为蓄电池的内阻。
其中,蓄电池在活化过程中,不同的时刻对应蓄电池不同的放电电流和放电电压,对于不同时刻的内阻值可以通过不同时刻对应的放电电流和放电电压进行确定。进一步地,对于确定的蓄电池,内阻值一般为定值,蓄电池在活化时间内持续性的放电会释放放电电流和放电电压,根据放电电流和放电电压以及内阻之间的关系,确定出蓄电池不同时刻的内阻值。在整个蓄电池活化的过程中,不同时刻的放电电流和放电电压会存在微小的波动,使得不同时刻的内阻值不完全一致。利用内阻平均值计算公式求解活化时间内的内阻平均值,并将内阻平均值作为蓄电池的内阻。
S370、根据蓄电池的内阻和活化时间,确定蓄电池的当前状态。
本申请实施例在获取蓄电池进行自活化的活化时间后,利用活化时间内蓄电池在不同时刻对应不同的放电电流和放电电压确定出不同时刻对应的蓄电池的内阻值。通过内阻平均值计算的方式,根据不同时刻蓄电池的内阻值计算出活化时间内蓄电池的内阻。本申请解决了通过人为操作实现对蓄电池自活化和内阻的检测问题,避免了因人为操作检测影响智能电网的运行,简化了蓄电池的管理方法,提高了智能电网运维人员的工作效率。
实施例四
图4是根据本申请实施例四提供的一种蓄电池的电池管理方法的流程示意图,在上述实施例的基础上,具体提供了确定蓄电池当前状态的方案。本实施例的技术方案包括:
S410、获取蓄电池正常工作的充放电时间。
S420、判断充放电时间是否达到预设活化周期,若充放电时间达到预设活 化周期,则执行S430。
S430、控制蓄电池进行自活化和内阻的检测。
S440、获取蓄电池进行自活化的活化时间、以及位于活化时间内蓄电池在每个时刻的放电电流和放电电压。
S450、根据各放电电流和放电电压,确定蓄电池的内阻。
S460、根据蓄电池的内阻和活化时间,判断是否满足第一预设条件,若蓄电池的内阻和活化时间满足第一预设条件,则执行S470;若蓄电池的内阻和活化时间不满足第一预设条件,则执行S480。
S470、确定蓄电池的当前状态为正常状态。
S480、确定蓄电池的当前状态为异常状态。
其中,蓄电池在自活化过程中对应有蓄电池的内阻和活化时间。随着蓄电池的工作年限的增加,蓄电池的自活化能力逐渐减弱,对应的蓄电池的内阻和活化时间会偏离额定内阻范围或偏离额定活化时间。通过判断蓄电池的内阻以及活化时间是否满足第一预设条件,即比较蓄电池的内阻是否处于额定内阻范围,比较蓄电池的活化时间与定额活化时间的大小。当蓄电池的内阻处于额定内阻范围内,且活化时间大于或等于额定自活化时间时,认为蓄电池的内阻以及活化时间满足第一预设条件。其中,当蓄电池的内阻在额定内阻范围内并且蓄电池的活化时间大于或等于额定自活化时间时,确定蓄电池在持续工作一段时间后,蓄电池的内部未发生老化,蓄电池的当前状态良好,将蓄电池的当前状态作为正常状态。蓄电池当前状态正常时,蓄电池能够持续、稳定的工作并为需要供电的负载或设备供电。当蓄电池的内阻不在额定内阻范围或蓄电池的活化时间小于额定自活化时间时,则蓄电池在持续工作一段时间后,蓄电池本身存在老化,老化后的蓄电池当前状态为异常状态,处于异常状态下的蓄电池无法再次向负载或供电设备供电,需要电网运维人员及时地将异常状态下的蓄电池拆除并更换符合条件的蓄电池。
本申请实施例通过将蓄电池的内阻和活化时间与蓄电池额定内阻范围和额定自活化时间比较,进而确定出蓄电池的当前工作状态,以此可以简单、便捷地确定出蓄电池是够发生老化、故障等问题,从而方便电网运维人员及时发现工作异常的蓄电池,并及时针对性的解决蓄电池异常的问题。
实施例五
图5是根据本申请实施例五提供的一种蓄电池的电池管理方法的流程示意图,在上述实施例的基础上,具体提供了是否需要切断外部电源实现蓄电池自活化的方案。本实施例的技术方案包括:
S501、获取外部供电电源提供的供电电压。
其中,当判断蓄电池正常工作的充放电时间未达到预设活化周期时,蓄电池需要外部电源供电的方式来实现蓄电池本身的充电。外部供电电源可以是市电,还可以是电力系统的高压电经过电压互感器转变后的电压。外部供电电源的电压可以是220V交流电,还可以是110V交流电。外部供电电源电压的选择可以根据蓄电池所需供电电压的大小而选择。
S502、判断供电电压是否在预设供电电压范围内,若供电电压不在预设供电电压范围内,则执行S503;若供电电压在预设供电电压范围内,则执行S504。
S504、控制外部供电电源与蓄电池之间处于导通状态。
S503、控制报警单元进行报警,并将供电电压记录保存后发送至监控后台。
其中,外部电源提供的供电电压可能存在供电电压不足的情况,将供电电压与预设供电电压进行比较,当供电电压在预设供电电压范围内,则确定供电电压所提供的电压正常。外部供电电源为蓄电池供电,使蓄电池和外部供电电源处于导通状态,保证蓄电池在外部供电电源供电的情况下顺利完成蓄电池的充电。当供电电压不在预设供电电压范围内,则外部电压不满足为蓄电池供电的要求,则在电池管理模块中的报警单元会进行报警指示,将供电电压的电压数值进行记录保存并发送给监控后台,监控后台根据报警信息,安排相关人员检查外部电源的供电情况,高效地处理并针对性的解决上述问题。
S504、控制外部供电电源与蓄电池之间处于导通状态。
S505、获取蓄电池正常工作的充放电时间。
S506、判断充放电时间是否达到预设活化周期,若充放电时间达到预设活化周期,则执行S507。
S507、控制外部供电电源与蓄电池之间的电路处于断开状态。
S508、控制蓄电池进行自活化和内阻的检测。
S509、获取蓄电池进行自活化的活化时间、以及位于活化时间内蓄电池在每个时刻的放电电流和放电电压。
S510、根据每一放电电流和放电电压,确定蓄电池的内阻。
S511、根据蓄电池的内阻和活化时间,确定蓄电池的当前状态。
本申请实施例通过在对蓄电池进行自活化和内阻检测之前,利用蓄电池充放电时间与预设活化周期的比较,确定蓄电池与外部供电电源之间的电路连接关系,其中,电路连接关系为断开状态或导通状态。当需要系电池与外部供电电源的电路导通时,进一步判断外部供电电源是否满足为蓄电池供电的条件,以确保蓄电池在外部供电电源供电下顺利充电。当外部供电电源不满足供电条件,将外部供电电源的信息记录保存并将报警信号传输至监控后台。本申请实施例提供的技术方案,有效地解决了对外部供电电源工作是否正常的判断,简化了蓄电池的管理方法,提高了智能电网运维人员的工作效率。
实施例六
图6是根据本申请实施例六提供的一种蓄电池的电池管理装置的结构示意图。该装置可由硬件和/或软件组成。如图6所示,该装置包括:充放电时间获取单元610、活化周期判断单元620、检测控制单元630、活化参数获取单元640、内阻确定单元650、状态确定单元660、供电电压判断单元670、自断电重启单元680。
充放电时间获取单元610,用于获取蓄电池正常工作的充放电时间。
活化周期判断单元620,用于判断充放电时间是否达到预设活化周期。
检测控制单元630,用于在充放电时间达到预设活化周期时,控制蓄电池进行自活化和内阻的检测。
活化参数获取单元640,用于获取蓄电池进行自活化的活化时间、以及位于活化时间内蓄电池在每个时刻的放电电流和放电电压。
内阻确定单元650,用于根据各放电电流和放电电压,确定蓄电池的内阻。
状态确定单元660,用于根据蓄电池的内阻和活化时间,确定蓄电池的当前状态。
供电电压判断单元670,用于获取外部供电电源提供的供电电压,判断供电电压是否在预设供电电压范围内,若供电电压不在预设供电电压范围内,则控制报警单元进行报警,并将供电电压记录保存后发送至监控后台。
自断电重启单元680,用于根据充放电时间,判断是否达到自断电重启时间;若充放电时间达到自断电重启时间,则控制电池管理模块的自断电重启单元进行重启。
进一步地,活化周期判断单元620,还用于若充放电时间达到预设活化周期, 则控制外部供电电源与蓄电池之间的电路处于断开状态;若充放电时间未达到预设活化周期,则控制外部供电电源与蓄电池之间处于导通状态。
活化参数获取单元640,还用于在蓄电池进行活化过程中,实时获取蓄电池的当前SOC值,判断蓄电池的当前SOC值是否达到预设SOC值,若蓄电池的当前SOC值达到预设SOC值,则确定蓄电池结束自活化,并将蓄电池从初始SOC值至达到预设SOC值的时间确定为活化时间。
内阻确定单元650,还用于根据蓄电池在活化时间内不同时刻的放电电流和放电电压,确定蓄电池在不同时刻的内阻值,将蓄电池在不同时刻的内阻值的平均值确定为蓄电池的内阻。
状态确定单元660,还用于根据蓄电池的内阻和活化时间,判断是否满足第一预设条件,其中,第一预设条件为蓄电池的内阻处于额定内阻范围内,且活化时间大于或等于额定自活化时间,若蓄电池的内阻和活化时间满足第一预设条件,则确定蓄电池的当前状态为正常状态,若蓄电池的内阻和活化时间不满足第一预设条件,则确定蓄电池的当前状态为异常状态。
本申请实施例利用充放电时间获取单元获取蓄电池正常工作的充点电时间,根据活化周期判断单元判断充放电时间是否达到预设活化周期。检测控制单元在充放电时间到达预设活化周期时,控制蓄电池进行自活化和内阻的检测。基于活化参数获取单元获取活化时间以及每个时刻的放电电流和放电电压进而确定蓄电池的内阻。利用蓄电池的内阻和活化时间确定出蓄电池的当前状态。上述蓄电池的电池管理装置可执行本发明任意实施例所提供的蓄电池的电池管理方法,具备执行方法相应的功能模块和有益效果。
实施例七
图7是根据本申请实施例七提供的一种蓄电池的电池管理模块的结构示意图,电池管理模块10分别与外部供电电源VCC、蓄电池20和负载30电连接;外部供电电源VCC用于通过电池管理模块10为蓄电池20供电;蓄电池20用于通过电池管理模块10为负载30供电。在本申请实施例的基础上,提供了一个具体的实施例。在一实施例中,电池管理模块10连接外部供电电源,外部供电电源将符合要求的电压通过电池管理模块10为蓄电池提供所需的供电电压,在外部供电电源为不符合要求的供电电压时,电池管理模块10对外部供电电源VCC进行判断、记录,保存、报警并将外部供电电源的信息通过RS485通讯线或者光纤通讯的方 式传输至通讯管理机。通讯管理机将上述信息传输至管理后台,管理后台根据传输信息针对性的解决出现的问题。电池管理模块10具有设置、判断、记录蓄电池20正常充放电时间和蓄电池20的自活化时间。当蓄电池到达预设活化周期时,电池管理模块10会断开蓄电池与外部供电电源之间的电源,使蓄电池开始进行自活化和内阻的测试,蓄电池20进行放电,放电过程中产生的放电电流和放电电压经过电压电流变换单元将蓄电池放电电流和放电电压转变为负载30所需的电流和电压,以实现为负载30进行供电。电池管理模块10还设置有自断重启功能,通过设置自断重启时间,定期断电重启电池管理模块10与负载30的电路。此外,蓄电池管理模块10可以根据蓄电池20或蓄电池组个数的不同针对性的设置,在整个智能电网系统中包括多个电池管理模块10,此处不做具体限定。上述蓄电池的电池管理模块10可执行本申请任意实施例所提供的蓄电池的电池管理方法,具备执行方法相应的功能模块和有益效果。
实施例八
本申请是实施例八提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,用于实施本申请的方法的计算机程序可以采用一个或多个编程语言的任何组合来编写。这些计算机程序可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,使得计算机程序当由处理器执行时使流程图和/或框图中所规定的功能/操作被实施。计算机程序可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本申请的上下文中,计算机可读存储介质可以是有形的介质,可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。备选地,计算机可读存储介质可以是机器可读信号介质。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在电子设备上实施此处描述的系统和技术, 该电子设备具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给电子设备。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)、区块链网络和互联网。
计算系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决了传统物理主机与VPS服务中,存在的管理难度大,业务扩展性弱的缺陷。
应该理解,可以使用上面所示的多种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的每一步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请的技术方案所期望的结果,本文在此不进行限制。

Claims (10)

  1. 一种蓄电池的电池管理方法,应用于所述蓄电池的电池管理模块,包括:
    获取所述蓄电池正常工作的充放电时间;
    判断所述充放电时间是否达到预设活化周期;
    若判断所述充放电时间达到预设活化周期,则控制所述蓄电池进行自活化和内阻的检测;
    获取所述蓄电池进行自活化的活化时间、以及位于所述活化时间内所述蓄电池在每个时刻的放电电流和放电电压;
    根据每一所述放电电流和所述放电电压,确定所述蓄电池的内阻;及
    根据所述蓄电池的内阻和所述活化时间,确定所述蓄电池的当前状态。
  2. 根据权利要求1所述的蓄电池的电池管理方法,其中,所述获取所述蓄电池进行自活化的活化时间,包括:
    在所述蓄电池进行活化过程中,实时获取所述蓄电池的当前SOC值;
    判断所述蓄电池的当前SOC值是否达到预设SOC值;
    若所述蓄电池的当前SOC值达到预设SOC值,则确定所述蓄电池结束自活化,并将所述蓄电池从初始SOC值至达到所述预设SOC值的时间确定为所述活化时间。
  3. 根据权利要求1所述的蓄电池的电池管理方法,其中,所述根据每一所述放电电流和所述放电电压,确定所述蓄电池的内阻,包括:
    根据所述蓄电池在所述活化时间内不同时刻的所述放电电流和所述放电电压,确定所述蓄电池在不同时刻的内阻值;及
    将所述蓄电池在不同时刻的内阻值的平均值确定为所述蓄电池的内阻。
  4. 根据权利要求1所述的蓄电池的电池管理方法,其中,所述根据所述蓄电池的内阻和所述活化时间,确定所述蓄电池的当前状态,包括:
    根据所述蓄电池的内阻和所述活化时间,判断是否满足第一预设条件;所述第一预设条件为所述蓄电池的内阻处于额定内阻范围内,且所述活化时间大于或等于额定自活化时间;
    若所述蓄电池的内阻和所述活化时间满足第一预设条件,则确定所述蓄电池的当前状态为正常状态;
    若所述蓄电池的内阻和所述活化时间不满足第一预设条件,则确定所述蓄电池的当前状态为异常状态。
  5. 根据权利要求1所述的蓄电池的电池管理方法,其中,在控制所述蓄电池进行自活化和内阻的检测之前,还包括:
    若所述充放电时间达到预设活化周期,则控制外部供电电源与所述蓄电池之间的电路处于断开状态;
    若所述充放电时间未达到预设活化周期,则控制所述外部供电电源与所述蓄电池之间处于导通状态。
  6. 根据权利要求5所述的蓄电池的电池管理方法,其中,在控制所述外部供电电源与所述蓄电池之间处于导通状态之前,还包括:
    获取外部供电电源提供的供电电压;
    判断所述供电电压是否在预设供电电压范围内;
    若所述供电电压在预设供电电压范围内,则执行控制所述外部供电电源与所述蓄电池之间处于导通状态的步骤;
    若所述供电电压不在预设供电电压范围内,则控制报警单元进行报警,并将所述供电电压记录保存后发送至监控后台。
  7. 根据权利要求1所述的蓄电池的电池管理方法,还包括:根据所述充放电时间,判断是否达到自断电重启时间;
    若所述充放电时间达到自断电重启时间,则控制所述电池管理模块的自断电重启单元进行重启。
  8. 一种蓄电池的电池管理装置,应用于所述蓄电池的电池管理模块,包括:
    充放电时间获取单元,用于获取所述蓄电池正常工作的充放电时间;
    活化周期判断单元,用于判断所述充放电时间是否达到预设活化周期;
    检测控制单元,用于在所述充放电时间达到预设活化周期时,控制所述蓄电池进行自活化和内阻的检测;
    活化参数获取单元,用于获取所述蓄电池进行自活化的活化时间、以及位于所述活化时间内所述蓄电池在每个时刻的放电电流和放电电压;
    内阻确定单元,用于根据各所述放电电流和所述放电电压,确定所述蓄电池的内阻;及
    状态确定单元,用于根据所述蓄电池的内阻和所述活化时间,确定所述蓄电池的当前状态。
  9. 一种蓄电池的电池管理模块,所述电池管理模块分别与外部供电电源、蓄电池和负载电连接;
    所述外部供电电源用于通过所述电池管理模块为所述蓄电池供电;
    所述蓄电池用于通过所述电池管理模块为所述负载供电;
    所述电池管理模块用于执行权利要求1-7任一项所述的蓄电池的电池管理方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现权利要求1-7中任一项所述的蓄电池的电池管理方法。
PCT/CN2023/077474 2022-03-18 2023-02-21 蓄电池的电池管理模块及其方法、装置和存储介质 WO2023174014A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210267075.0 2022-03-18
CN202210267075.0A CN114361621B (zh) 2022-03-18 2022-03-18 一种蓄电池的电池管理模块及其方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2023174014A1 true WO2023174014A1 (zh) 2023-09-21

Family

ID=81094852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077474 WO2023174014A1 (zh) 2022-03-18 2023-02-21 蓄电池的电池管理模块及其方法、装置和存储介质

Country Status (2)

Country Link
CN (1) CN114361621B (zh)
WO (1) WO2023174014A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361621B (zh) * 2022-03-18 2022-07-08 广东电网有限责任公司东莞供电局 一种蓄电池的电池管理模块及其方法、装置和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198942A (zh) * 2014-08-01 2014-12-10 珠海许继电气有限公司 一种阀控式铅酸蓄电池失效的在线判断系统
CN104316879A (zh) * 2014-10-13 2015-01-28 珠海许继电气有限公司 一种铅酸蓄电池组寿命的预测方法
CN108064428A (zh) * 2017-03-20 2018-05-22 深圳中兴力维技术有限公司 一种铅酸蓄电池活化方法及其系统
CN109921103A (zh) * 2017-12-13 2019-06-21 中国电信股份有限公司 蓄电池组的维护方法和系统、蓄电池的维护方法和系统
CN112909367A (zh) * 2021-01-18 2021-06-04 深圳蓝信电气有限公司 一种蓄电池活化核容及修复方法
CN114361621A (zh) * 2022-03-18 2022-04-15 广东电网有限责任公司东莞供电局 一种蓄电池的电池管理模块及其方法、装置和存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104852096B (zh) * 2015-06-02 2018-10-19 江苏景之源科技有限公司 蓄电池智能诊断预测系统
CN108306061A (zh) * 2018-01-09 2018-07-20 北京零极中盛科技有限公司 一种新型电池活化维护和检测方法
CN108879003A (zh) * 2018-06-07 2018-11-23 广东电网有限责任公司 一种电力通信电源蓄电池在线放电方法
CN209544544U (zh) * 2019-05-08 2019-10-25 深圳蓝信电气有限公司 一种蓄电池组定期活化核容及修复系统
CN111856308B (zh) * 2020-07-13 2023-04-28 深圳蓝信电气有限公司 一种电源设备蓄电池定期在线活化核容方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198942A (zh) * 2014-08-01 2014-12-10 珠海许继电气有限公司 一种阀控式铅酸蓄电池失效的在线判断系统
CN104316879A (zh) * 2014-10-13 2015-01-28 珠海许继电气有限公司 一种铅酸蓄电池组寿命的预测方法
CN108064428A (zh) * 2017-03-20 2018-05-22 深圳中兴力维技术有限公司 一种铅酸蓄电池活化方法及其系统
CN109921103A (zh) * 2017-12-13 2019-06-21 中国电信股份有限公司 蓄电池组的维护方法和系统、蓄电池的维护方法和系统
CN112909367A (zh) * 2021-01-18 2021-06-04 深圳蓝信电气有限公司 一种蓄电池活化核容及修复方法
CN114361621A (zh) * 2022-03-18 2022-04-15 广东电网有限责任公司东莞供电局 一种蓄电池的电池管理模块及其方法、装置和存储介质

Also Published As

Publication number Publication date
CN114361621B (zh) 2022-07-08
CN114361621A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
CN106338690B (zh) 一种备用电池检测方法、装置、系统及供电方法
CN105738831B (zh) 一种移动终端的电池电量监控方法及装置
CN102157759B (zh) 一种给风力发电机紧急变桨电池组的充电管理方法
CN106841881B (zh) 用电模块的分析方法及装置
WO2023174014A1 (zh) 蓄电池的电池管理模块及其方法、装置和存储介质
JP5089619B2 (ja) 二次電池の劣化診断装置
KR101202165B1 (ko) 배터리 진단 및 재생을 통해 배터리의 수명을 연장할 수 있는 전력 저장 및 공급 장치
JP2016176709A (ja) 二次電池劣化検出システム、二次電池劣化検出方法
CN111277008A (zh) 蓄电池在线监控方法及其装置、设备、系统和存储介质
CN105162215A (zh) 一种用于铅酸蓄电池组均衡的分布式电池管理系统及方法
CN112462289A (zh) 蓄电池组在线核容管理装置
US20190296403A1 (en) Battery analysis via electrochemical impedance spectroscopy apparatus (eisa) measurements
CN105743190A (zh) 智能电源适配系统
WO2017012173A1 (zh) 采集模组、新型铅酸蓄电池、充放电控制装置及智能电池
CN112737042A (zh) 一种ups电池智能管理系统及方法
CN115184817A (zh) 蓄电池在线监测系统
WO2017113896A1 (zh) 混合供电装置和混合供电的方法
CN115356653B (zh) 一种应急电源状态监控方法
JP2015060775A (ja) 蓄電システムの保守管理システム
JP2007024639A (ja) 蓄電池劣化判定装置
CN114184959A (zh) 蓄电池在线检测装置
CN204681115U (zh) 蓄电池充电器
KR101638435B1 (ko) 레독스 흐름 전지 성능 평가용 고정밀 스마트 충방전 방법
WO2014042224A1 (ja) 電力供給システム、充電制御方法および充電制御プログラム
CN219369950U (zh) 一种基于可控硅的蓄电池在线测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769522

Country of ref document: EP

Kind code of ref document: A1