WO2023173940A1 - 充电桩散热装置 - Google Patents

充电桩散热装置 Download PDF

Info

Publication number
WO2023173940A1
WO2023173940A1 PCT/CN2023/073814 CN2023073814W WO2023173940A1 WO 2023173940 A1 WO2023173940 A1 WO 2023173940A1 CN 2023073814 W CN2023073814 W CN 2023073814W WO 2023173940 A1 WO2023173940 A1 WO 2023173940A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
chamber
fan
charging pile
module
Prior art date
Application number
PCT/CN2023/073814
Other languages
English (en)
French (fr)
Inventor
张寰
Original Assignee
深圳市道通合创数字能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通合创数字能源有限公司 filed Critical 深圳市道通合创数字能源有限公司
Publication of WO2023173940A1 publication Critical patent/WO2023173940A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present application relates to the technical field of charging piles, and in particular, to a charging pile heat dissipation device.
  • the charging pile is an electrical integrated device for fast charging of electric vehicles. After AC power such as mains power is input into the charging pile, the charging pile can output DC power after being converted by the internal AC-to-DC system. The output DC power can charge the electric vehicle.
  • Its internal AC/DC system is the core component of the charging pile, and it is also the largest heat source of the charging pile. To achieve the normal operation of the charging pile, the internal heat needs to be dissipated in a timely manner.
  • charging piles as electrical products that can be used outdoors, must meet a certain level of protection.
  • charging piles on the market mainly adopt the following three heat dissipation modes: 1. Use air cooling for heat dissipation, and set up a waterproof structure at the air inlet and outlet of the charging pile, and design a filter to prevent external dust and other impurities from contaminating the core components of the charging pile. ; 2. Use industrial air conditioning for cooling and heat dissipation; 3. Use water cooling for heat dissipation.
  • the air-cooling heat dissipation effect is not good, and it is easy to bring in a large amount of dust and other impurities.
  • the filter cannot completely isolate dust and other impurities.
  • the core components of the charging pile will still be contaminated, the sealing effect is not good, and the filter The net needs to be replaced frequently and the noise is high.
  • refrigeration equipment such as air conditioners need to be run, which consumes a lot of heat dissipation energy, is large in size, has high equipment costs and operating costs, and is noisy.
  • the heat dissipation effect of water cooling is not good, and a driving device such as a water pump is required to drive the liquid flow.
  • a driving device such as a water pump is required to drive the liquid flow.
  • the driving equipment and its pipelines are large in size, their operating costs and equipment costs are also large, and they are noisy.
  • This application proposes a charging pile heat dissipation device to solve the technical problems in the prior art that the charging pile heat dissipation device has poor sealing effect, poor cooling effect, and high noise.
  • this application proposes a charging pile heat dissipation device, including:
  • a heat dissipation module the heat dissipation module includes a first end and a second end, the first end is located in the first closed chamber, and the second end extends through the first closed chamber to the outside;
  • a second closed chamber is provided in the heat dissipation module, the second closed chamber extends from the first end to the second end, and the second closed chamber is filled with a heat-conducting fluid medium;
  • a heating module the heating module is located in the first closed chamber
  • a first fan is located in the first enclosed chamber, and the first fan can form an airflow channel in the first enclosed chamber.
  • the first closed chamber includes a first chamber and a second chamber
  • the heating module is in contact with the first end, and the first chamber and the second chamber pass through
  • the heating module is separated from the heat dissipation module, and the first fan is located in the first chamber or/and the second chamber;
  • a first air duct is provided in the first end, and a second air duct is provided in the heating module.
  • the first air duct, the first chamber, the The second air channel and the second chamber are connected in sequence, and form a circulating air flow channel under the action of the first fan.
  • the heat dissipation module includes at least two heat conduction plates, each of the heat conduction plates is provided with the second closed chamber, and the heat conduction plates are stacked in sequence, and there is a gap between the heat conduction plates.
  • a thermal conductive block is connected between any two adjacent thermal conductive plates to form the first spacing.
  • the thermal conductive block is in a square shape.
  • At least two thermal conductive blocks are connected between any two adjacent thermal conductive plates, and there is a second spacing between the thermal conductive blocks located between the two thermal conductive plates.
  • the charging pile heat dissipation device further includes a second fan, the second fan is located on the side of the second end, and the second fan is used to dissipate heat to the second end.
  • a third air duct is provided at the second end, and the second fan is located in an extension direction of the third air duct.
  • the charging pile heat dissipation device further includes a refrigeration module, which is also located in the extension direction of the third air duct;
  • the refrigeration module and the second fan are respectively located on both sides of the second end.
  • the housing is further provided with a receiving chamber, the receiving chamber can communicate with the outside world, and the second end, the second fan and the refrigeration module are all located in the receiving chamber.
  • the heating module is a device that can generate heat on the charging pile, and the first closed chamber can completely seal the heating module, the first end of the heat dissipation module and the first fan. Isolating it from the outside world can prevent external dust and other impurities from contaminating the heating module, one end of the heat dissipation module and the first fan. It can reduce the frequency of maintenance and inspection, reduce maintenance costs, and improve the protection level. And since the first fan is completely enclosed in the first closed cavity, the sealing effect is good and the noise generated by its operation is small.
  • the first fan can form an air flow channel in the first closed chamber, and heat transfer can be quickly achieved between the heating module and the heat dissipation module.
  • the first end When the charging pile heat dissipation device is operating, the first end is located below the second end.
  • the heat-conducting fluid medium in the second closed chamber gathers at the first end under the action of its own gravity.
  • the first end of the heat dissipation module absorbs the heat of the heating module.
  • the heat transfer fluid medium in the second closed chamber evaporates to the second end.
  • the second end of the heat dissipation module is in contact with the outside world and can transfer heat to the outside world. After cooling, the gaseous heat transfer fluid medium at the second end will gather in the first end. End, such a cycle can dissipate the heat generated by the heating module to the outside world in time.
  • the first fan can form an airflow channel, and the airflow channel can speed up the heat transfer efficiency of the heating module and the heat dissipation module.
  • the second closed chamber inside the heat dissipation module speeds up the heat transfer efficiency through the heat-conducting fluid medium, so the heat dissipation effect is better.
  • Figure 1 is a schematic structural diagram of a charging pile heat dissipation device in an embodiment of the present application
  • Figure 2 is a cross-sectional view at A-A in Figure 1;
  • Figure 3 is a schematic structural diagram of a thermal conductive plate in an embodiment of the present application.
  • the terms “fixed” and “connected” are also used in the description and claims and should not be construed as being limited to direct connections. Therefore, the expression “device A is connected to device B” should not be limited to devices or systems in which device A is directly connected to device B, but means that there is a path between device A and device B, which may be a path including other devices or tools.
  • Figure 1 is a schematic structural diagram of the charging pile heat dissipation device 100.
  • the direction indicated by the arrow in Figure 1 is the flow direction of the air flow channel and external air.
  • Figure 3 is a schematic structural diagram of the heat conduction plate 26. In Figure 3 The direction shown by the arrow is the schematic direction of evaporation-cooling of the heat transfer fluid medium.
  • the charging pile heat dissipation device 100 includes a housing 10, a heat dissipation module 20, a heating module 30 and a first fan 40; the housing 10 is provided with a first closed chamber 101; the heat dissipation module 20 includes a first end 22 and a second end 24. The first end 22 is located in the first closed chamber 101, and the second end 24 extends through the first closed chamber 101 to the outside world; the heat dissipation module 20 has There is a second closed chamber 201 extending from the first end 22 to the second end 24.
  • the second closed chamber 201 is filled with a heat-conducting fluid medium;
  • the module 30 is located in the first closed chamber 101;
  • the first fan 40 is located in the first closed chamber 101, and the first fan 40 can form an airflow channel in the first closed chamber 101. .
  • the heating module 30 is a device that can generate heat on the charging pile.
  • the first closed chamber 101 can completely seal the heating module 30, the first end 22 of the heat dissipation module 20 and the first fan 40. , to isolate it from the outside world, which can prevent external dust and other impurities from contaminating the heating module 30, one end of the heat dissipation module 20 and the first fan 40, which can reduce the frequency of maintenance and inspection, reduce maintenance costs, and improve the protection level.
  • the first fan 40 is completely enclosed in the first closed cavity, the sealing effect is good and the noise generated by its operation is small.
  • the first fan 40 can form an air flow channel in the first closed chamber 101, and heat transfer can be quickly achieved between the heating module 30 and the heat dissipation module 20.
  • the first end 22 When the charging pile heat dissipation device 100 is operating, the first end 22 is located below or obliquely below the second end 24, and the heat transfer fluid medium in the second closed chamber 201 gathers at the first end 22 under the action of its own gravity, and the heat dissipation module After the first end 22 of the heat dissipation module 20 absorbs the heat of the heating module 30, the heat transfer fluid medium in the second closed chamber 201 evaporates to the second end 24.
  • the second end 24 of the heat dissipation module 20 is in contact with the outside world and can transfer heat to Outside, the gaseous heat-conducting fluid medium at the second end 24 will gather at the first end 22 after being cooled.
  • the heat transfer fluid can be The heat generated by the thermal module 30 is dissipated to the outside world in time. There is no need to use refrigeration equipment for refrigeration, there is no need to use a water pump to drive the heat transfer fluid medium to run, and there is no need to set up heat transfer pipes, so the manufacturing cost and operating cost are lower.
  • the first fan 40 can form an airflow channel, and the airflow channel can speed up the heat transfer efficiency of the heating module 30 and the heat dissipation module 20.
  • the second closed chamber 201 inside the heat dissipation module 20 speeds up the heat transfer efficiency through the heat-conducting fluid medium, so the heat dissipation effect is better. good.
  • the heating module 30 may be a core device in the charging pile, and the core device may be an AC/DC system or the like.
  • the heating module 30 can also be other devices in the charging pile that can generate heat.
  • the housing 10 can be made of iron, aluminum or other metals or alloys, and the heat dissipation module 20 can be made of aluminum or other metals or alloys, so that the heat transfer effect is better.
  • the heat transfer fluid medium can be water, oil, fluorinated liquid and other fluid media. In a preferred embodiment, the heat transfer fluid medium is water. Water has a high specific heat capacity and low cost, which can further improve the heat dissipation effect and reduce costs.
  • the first fan 40 may be an axial fan, a centrifugal fan, a blower, or the like.
  • first end 22 and the second end 24 may also be relatively horizontal, or the second end 24 may be located below or obliquely below the first end 22 .
  • the first closed chamber 101 includes a first chamber 1011 and a second chamber 1012, the heating module 30 is in contact with the first end 22, and the first chamber 1011 and The second chamber 1012 is separated by the heating module 30 and the heat dissipation module 20, and the first fan 40 is located in the first chamber 1011 or/and the second chamber 1012;
  • a first air duct 222 is provided in the first end 22
  • a second air duct (not shown in the figure) is provided in the heating module 30 .
  • the first air duct 222 , the first chamber 1011 , the The second air channel and the second chamber 1012 are connected in sequence, and form the circulating air flow channel under the action of the first fan 40 .
  • the heating module 30 and the heat dissipation module 20 are in contact with each other, which can improve the heat conduction efficiency between the heating module 30 and the heat dissipation module 20 .
  • the first air duct 222, the first chamber 1011, the second air duct and the second chamber The chambers 1012 are connected in sequence, and under the action of the first fan 40, a circulating air flow channel can be formed, which can improve the heat transfer efficiency of one end of the heating module 30 and the heat dissipation module 20.
  • the first end 22 of the heat dissipation module 20 and the heating module 30 completely separate the first chamber 1011 and the second chamber 1012, so that the first chamber 1011 and the second chamber 1012 are not directly Connected.
  • the first fan 40 operates, the negative pressure and guiding effect generated by the first fan 40 are better, and the fluidity of the air flow channel is better, so the heat transfer efficiency is higher.
  • the first fan 40 may be arranged in the first chamber 1011, the second chamber 1012, or both the first chamber 1011 and the second chamber 1012.
  • the number of the first fans 40 in the first chamber 1011 and the second chamber 1012 may be one or more.
  • three first fans 40 are arranged in the first chamber 1011, and three first fans 40 are arranged in the first chamber 1011.
  • the fan 40 is opposite to the first air duct 222 .
  • the heat dissipation module 20 includes at least two heat conduction plates 26, each of the heat conduction plates 26 is provided with the second closed chamber 201, and the heat conduction plates 26 are stacked in sequence, and There is a first spacing between each of the heat conduction plates 26 to form the first air channel 222.
  • the first end 22 and the second end 24 are respectively located on opposite sides of each of the heat conduction plates 26.
  • the housing 10 includes a housing wall 12 .
  • the heat conduction plate 26 can be made of aluminum or other metals or alloys.
  • Each heat conduction plate 26 is provided with a second closed chamber 201. Therefore, each heat conduction plate 26 has an independent evaporation and refrigeration structure.
  • Each heat conduction plate 26 The first end 22 and the second end 24 are separated by the shell wall 12, but the second closed chamber 201 inside each heat conducting plate 26 can extend from the first end 22 to the second end 24, and the second closed chamber 201
  • the liquid heat transfer fluid medium may evaporate from the first end 22 to the second end 24 , and the gaseous heat transfer fluid medium may collect at the first end 22 after cooling at the second end 24 .
  • the first spacing between any two adjacent heat conducting plates 26 forms a first airflow.
  • the heat transfer efficiency between each heat conduction plate 26 and the first air channel 222 can be accelerated.
  • the first spacing between the heat conduction plates 26 may be equal or unequal, that is, the heat conduction plates 26 may be arranged at equal intervals or at unequal intervals.
  • a thermal conductive block 28 is connected between any two adjacent thermal conductive plates 26 to form the first spacing.
  • the thermal block 28 can be made of metal or alloy such as aluminum, and the thermal block 28 and the thermal plate 26 can be made by welding or integrated molding.
  • the heat conduction block 28 can increase the heat transfer efficiency between the heat conduction plates 26 and form the first air channel 222, and can make the connection between the heat conduction plates 26 stronger.
  • the thermal conductive block 28 is in the shape of a square, for example, the thermal conductive block 28 may be in the shape of a rectangular parallelepiped. Since the first end 22 is located below the second end 24 , that is, the first end 22 and the second end 24 are located in the vertical direction, the length direction of the cuboid-shaped heat conduction block 28 is arranged along the horizontal direction, so that the first air duct 222 is arranged along the horizontal direction. Arranged in the horizontal direction, the horizontal first air channel 222 has the smallest wind resistance to the first fan 40, and the formed air flow channel has better fluidity, thereby making the heat transfer efficiency higher.
  • the thermal conductive block 28 can also be cube-shaped, cylindrical, or other special shapes.
  • At least two heat conduction blocks 28 are connected between any two adjacent heat conduction plates 26 , and there is a second heat conduction block 28 between the two heat conduction plates 26 . spacing.
  • first air channels 222 By arranging at least two thermal conductive blocks 28, multiple first air channels 222 can be formed. When the thermal conductive blocks 28 are parallel to each other, the first air channels 222 are parallel to each other and do not interfere with each other. The wind resistance is small and the air flow formed is The channels have better flow and more efficient heat transfer.
  • the second spacing between the heat conduction blocks 28 located between the two heat conduction plates 26 may or may not be equal, that is, the heat conduction blocks 28 may be equidistantly arranged, or Can be set at unequal intervals.
  • only one heat conduction block 28 can be disposed between two adjacent heat conduction plates 26, which has a simple structure.
  • the charging pile heat dissipation device 100 further includes a second fan 50 , the second fan 50 is located on the side of the second end 24 , and the second fan 50 is used to heat the second end 24 . Terminal 24 for heat dissipation.
  • the second fan 50 can timely conduct heat exchange between the second end 24 and the outside world, which can improve the heat exchange efficiency and ultimately allow the charging pile heat dissipation device 100 of this embodiment to dissipate heat. Better results.
  • the second fan 50 can be an axial flow fan, a centrifugal fan, a blower, etc.
  • the second fan 50 can be turned off; when the ambient temperature is high and the charging pile load is large, the second fan can be started. 50, able to adapt to a variety of operating conditions.
  • a third air channel 242 is also provided between each of the heat conduction plates 26.
  • the third air channel 242 is located at the second end 24, and the second fan 50 is located at the third air channel. In the direction of extension of Road 242.
  • the second fan 50 can drive the gas flow in the third air channel 242 and improve the heat exchange efficiency between the second end 24 and the outside air, thereby improving the heat dissipation efficiency.
  • the formation principles and methods of the third air duct 242 and the first air duct 222 are the same.
  • the third air duct 242 is also formed through the connection between the heat conduction plate 26 and the heat conduction block 28, which will not be described again here.
  • the third air channel 242 and the first air channel 222 are independent of each other, and the third air channel 242 and the first air channel 222 are not connected with each other.
  • a certain connection may be established between the third air channel 242 and the first air channel 222.
  • the charging pile heat dissipation device 100 further includes a refrigeration module 60 .
  • the refrigeration module 60 It is also located in the extension direction of the third air duct 242 .
  • the refrigeration module 60 can reduce the ambient temperature near the second end 24 in a timely manner, so that the heat exchange efficiency between the second end 24 and the outside world is higher.
  • the refrigeration module 60 can provide low-temperature air to the third air duct 242 to the greatest extent, further improving the heat dissipation efficiency and effect.
  • the charging pile heat dissipation device 100 of this embodiment is also provided with a refrigeration module 60
  • the refrigeration module 60 of this embodiment is only used when the ambient temperature is relatively high, and may not be used under normal operating conditions. And when using the refrigeration module 60, the charging pile heat dissipation device 100 of this embodiment can combine the refrigeration module 60, "water cooling" and air cooling with each other.
  • the charging pile heat dissipation device 100 of this embodiment has better heat dissipation effect, better sealing performance, and lower noise.
  • the refrigeration module 60 and the second fan 50 are respectively located on both sides of the second end 24, and the refrigeration module 60 and the second fan 50 will not interfere with each other.
  • the refrigeration module 60 is a refrigerator or the like.
  • the housing 10 is also provided with an accommodation chamber 102 that can communicate with the outside world.
  • the second end 24 , the second fan 50 and the refrigeration module 60 are located in the accommodation chamber 102 .
  • the accommodating chamber 102 is used to accommodate the second fan 50, the second end 24 and the refrigeration module 60.
  • the accommodating chamber 102 is open to facilitate heat exchange between the second end 24 and the outside air.
  • One or more second fans 50 may be disposed in the accommodation chamber 102.
  • the number of the second fans 50 is three, and the three second fans 50 are opposite to the third air channel 242.
  • the two fans 50 and the refrigeration module 60 are located on both sides of the third air duct 242 respectively.
  • the housing 10 may form the first closed chamber 101 and the accommodation chamber 102 by integrally molding.

Abstract

一种充电桩散热装置(100),包括壳体(10)、散热模块(20)、发热模块(30)和第一风扇(40);所述壳体(10)内设有第一封闭腔室(101);所述散热模块(20)包括第一端(22)和第二端(24),所述第一端(22)位于所述第一封闭腔室(101)内,所述第二端(24)穿过所述第一封闭腔室(101)延伸至外界;所述散热模块(20)内设有第二封闭腔室(201),所述第二封闭腔室(201)从所述第一端(22)延伸至所述第二端(24),所述第二封闭腔室(201)内填充有导热流体介质;所述发热模块(30)位于所述第一封闭腔室(101)内;所述第一风扇(40)位于所述第一封闭腔室(101)内,所述第一风扇(40)能够在所述第一封闭腔室(101)内形成气流通道。能够降低维护和检修频率,提高防护等级,密封效果好,其工作产生的噪音小,散热效果好,制造成本和运行成本低。

Description

充电桩散热装置
本申请要求于2022年3月15日提交中国专利局、申请号为202210253735X、申请名称为“充电桩散热装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及充电桩技术领域,尤其涉及一种充电桩散热装置。
背景技术
充电桩是一种给电动汽车快速充电的电气集成设备,市电等交流电输入充电桩后,充电桩经过内部的交转直系统转换后可以输出直流电,输出的直流电可以对电动车充电。其内部的交转直系统是充电桩的核心器件,同时也是充电桩的最大发热源,要实现充电桩的正常运行需要及时的将其内部的热量散走。同时充电桩作为可以用于室外的电器产品,必须能满足一定的防护等级。
目前,市面上的充电桩主要采用以下三种散热模式:1、采用风冷散热,并在充电桩的进出风口设置防水结构,并且设计过滤网,以防止外界粉尘等杂质污染充电桩的核心器件;2、采用工业空调制冷散热;3、采用水冷散热。
上述三种散热模式存在以下缺陷:
第一种散热模式中,风冷散热的效果不好,易带入大量的粉尘等杂质,过滤网不能完全隔绝粉尘等杂质,充电桩的核心器件依然会受到污染,密封效果不好,且过滤网经常需要更换,噪音大。
第二种散热模式中,需要运行空调等制冷设备,散热能耗大、设备体积大、设备成本和运行成本都很高,噪音大。
第三种散热模式中,水冷的散热效果也不好,需要水泵等驱动液体流动的驱动设备。驱动设备及其管道体积大、其运行成本和设备成本也很大,噪音大。
发明内容
本申请提出了一种充电桩散热装置,以解决现有技术中充电桩散热装置密封效果不好、制冷效果差、噪音大的技术问题。
为了解决上述技术问题,本申请提出了一种充电桩散热装置,包括:
壳体,所述壳体内设有第一封闭腔室;
散热模块,所述散热模块包括第一端和第二端,所述第一端位于所述第一封闭腔室内,所述第二端穿过所述第一封闭腔室延伸至外界;所述散热模块内设有第二封闭腔室,所述第二封闭腔室从所述第一端延伸至所述第二端,所述第二封闭腔室内填充有导热流体介质;
发热模块,所述发热模块位于所述第一封闭腔室内;
第一风扇,所述第一风扇位于所述第一封闭腔室内,所述第一风扇能够在所述第一封闭腔室内形成气流通道。
可选地,所述第一封闭腔室包括第一腔室和第二腔室,所述发热模块和所述第一端接触相连,所述第一腔室和所述第二腔室通过所述发热模块和所述散热模块隔开,所述第一风扇位于所述第一腔室或/和所述第二腔室内;
所述第一端内设有第一风道,所述发热模块内设有第二风道,所述第一风道、所述第一腔室、所述 第二风道和所述第二腔室依次连通,并在所述第一风扇的作用下形成循环的所述气流通道。
可选地,所述散热模块包括至少两块导热板,每块所述导热板内均设有所述第二封闭腔室,各所述导热板依次叠设,且各所述导热板之间具有第一间距,以形成所述第一风道,所述第一端和所述第二端分别位于各所述导热板相对的两侧。
可选地,任意相邻的两所述导热板之间连接有导热块,以形成所述第一间距。
可选地,所述导热块为方块形。
可选地,任意相邻的两所述导热板之间连接有至少两块所述导热块,位于两所述导热板之间的各所述导热块之间具有第二间距。
可选地,所述充电桩散热装置还包括第二风扇,所述第二风扇位于所述第二端的侧方,所述第二风扇用于对所述第二端散热。
可选地,所述第二端设有第三风道,所述第二风扇位于所述第三风道的延伸方向上。
可选地,所述充电桩散热装置还包括制冷模块,所述制冷模块也位于所述第三风道的延伸方向上;
可选地,所述制冷模块和所述第二风扇分别位于所述第二端的两侧。
可选地,所述壳体上还设有容纳腔室,所述容纳腔室能够和外界连通,所述第二端、所述第二风扇和所述制冷模块均位于所述容纳腔室内。
与现有技术相比,本申请的充电桩散热装置中,发热模块为充电桩上能够发热的器件,第一封闭腔室能够将发热模块、散热模块的第一端和第一风扇完全封闭,使其与外界隔绝,能够防止外界的粉尘等杂质对发热模块、散热模块的一端和第一风扇造成污染,能够降低维护和检修频率,降低维护成本,提高防护等级。且第一风扇由于被完全封闭在第一封闭腔内,密封效果好,其工作产生的噪音小。
第一风扇能够在第一封闭腔室内形成气流通道,发热模块和散热模块之间能够快速实现热传递。
充电桩散热装置作业时,第一端位于第二端的下方,第二封闭腔室内的导热流体介质在其自身重力的作用下聚集在第一端,散热模块的第一端吸收了发热模块的热之后,第二封闭腔室内的导热流体介质蒸发至第二端,散热模块的第二端与外界接触,能够将热传递至外界,第二端气态的导热流体介质冷却后又会聚集在第一端,如此循环,能够将发热模块产生的热及时散发至外界。不需要使用制冷设备制冷,也不需要采用水泵驱动导热流体介质运行,不需要设置导热管道,故而制造成本和运行成本更低。且第一风扇能够形成气流通道,气流通道能够加快发热模块和散热模块的热传递效率,散热模块内部的第二封闭腔室通过导热流体介质加快热传递效率,故而散热效果更好。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请一实施例中充电桩散热装置的结构示意图;
图2为图1中A-A处的剖面图;
图3为本申请一实施例中导热板的结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,在说明书和权利要求书中的术语第一、第二、第三等仅用于区别相同技术特征的描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,也不一定描述次序或时间顺序。在合适的情况下术语是可以互换的。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
类似地,在说明书和权利要求书中同样使用术语“固定”、“连接”,不应理解为限于直接的连接。因此,表达“装置A与装置B连接”不应该限于装置或系统中装置A直接连接到装置B,其意思是装置A与装置B之间具有路径,这可以是包括其他装置或工具的路径。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参照图1至图3,图1为充电桩散热装置100的结构示意图,图1中箭头所示方向为气流通道及外界空气的流动方向,图3为导热板26的结构示意图,图3中的箭头所示方向为导热流体介质蒸发-冷却的示意方向。
所述充电桩散热装置100包括壳体10、散热模块20、发热模块30和第一风扇40;所述壳体10内设有第一封闭腔室101;所述散热模块20包括第一端22和第二端24,所述第一端22位于所述第一封闭腔室101内,所述第二端24穿过所述第一封闭腔室101延伸至外界;所述散热模块20内设有第二封闭腔室201,所述第二封闭腔室201从所述第一端22延伸至所述第二端24,所述第二封闭腔室201内填充有导热流体介质;所述发热模块30位于所述第一封闭腔室101内;所述第一风扇40位于所述第一封闭腔室101内,所述第一风扇40能够在所述第一封闭腔室101内形成气流通道。
本实施例的充电桩散热装置100中,发热模块30为充电桩上能够发热的器件,第一封闭腔室101能够将发热模块30、散热模块20的第一端22和第一风扇40完全封闭,使其与外界隔绝,能够防止外界的粉尘等杂质对发热模块30、散热模块20的一端和第一风扇40造成污染,能够降低维护和检修频率,降低维护成本,提高防护等级。且第一风扇40由于被完全封闭在第一封闭腔内,密封效果好,其工作产生的噪音小。
第一风扇40能够在第一封闭腔室101内形成气流通道,发热模块30和散热模块20之间能够快速实现热传递。
充电桩散热装置100作业时,第一端22位于第二端24的下方或斜下方,第二封闭腔室201内的导热流体介质在其自身重力的作用下聚集在第一端22,散热模块20的第一端22吸收了发热模块30的热之后,第二封闭腔室201内的导热流体介质蒸发至第二端24,散热模块20的第二端24与外界接触,能够将热传递至外界,第二端24气态的导热流体介质冷却后又会聚集在第一端22,如此循环,能够将发 热模块30产生的热及时散发至外界。不需要使用制冷设备制冷,也不需要采用水泵驱动导热流体介质运行,不需要设置导热管道,故而制造成本和运行成本更低。且第一风扇40能够形成气流通道,气流通道能够加快发热模块30和散热模块20的热传递效率,散热模块20内部的第二封闭腔室201通过导热流体介质加快热传递效率,故而散热效果更好。
在本实施例中,发热模块30可以为充电桩中的核心器件,该核心器件为交转直系统等。发热模块30还可以为充电桩中其他能够产生热量的器件。壳体10可以采用铁、铝等金属或合金制成,散热模块20可以采用铝等金属或合金制成,使其热传递的效果更好。导热流体介质可以采用水、油、氟化液等流体介质。在一优选的实施例中,导热流体介质为水,水的比热容值较高、且水的成本低,可以进一步提高散热效果,降低成本。第一风扇40可以采用轴流风机、离心风机、鼓风机等中的一种。
可以理解的是,在一些实施例中,第一端22和第二端24也可以相对水平,或者,第二端24位于第一端22下方或斜下方。
在一实施例中,所述第一封闭腔室101包括第一腔室1011和第二腔室1012,所述发热模块30和所述第一端22接触相连,所述第一腔室1011和所述第二腔室1012通过所述发热模块30和所述散热模块20隔开,所述第一风扇40位于所述第一腔室1011或/和所述第二腔室1012内;所述第一端22内设有第一风道222,所述发热模块30内设有第二风道(图中未显示),所述第一风道222、所述第一腔室1011、所述第二风道和所述第二腔室1012依次连通,并在所述第一风扇40的作用下形成循环的所述气流通道。
发热模块30和散热模块20相互接触,能够提高发热模块30和散热模块20之间的导热效率。当第一端22内具有第一风道222,发热模块30内具有第二风道时,第一风道222、所述第一腔室1011、所述第二风道和所述第二腔室1012依次连通,在第一风扇40的作用下,能够形成循环的气流通道,可以提高发热模块30和散热模块20一端的热传递效率。
在一优选的实施例中,散热模块20的第一端22和发热模块30将第一腔室1011和第二腔室1012完全隔开,使第一腔室1011和第二腔室1012不直接连通。当第一风扇40作用时,第一风扇40产生的负压及导向效果更好,气流通道的流动性更好,故而,热传递效率更高。
第一风扇40可以布置在第一腔室1011内,也可以布置在第二腔室1012内,或者同时布置在第一腔室1011和第二腔室1012内。第一腔室1011和第二腔室1012内第一风扇40的数量可以布置一个或多个,在一实施例中,在第一腔室1011内布置有三个第一风扇40,三个第一风扇40和第一风道222相对。
在一实施例中,所述散热模块20包括至少两块导热板26,每块所述导热板26内均设有所述第二封闭腔室201,各所述导热板26依次叠设,且各所述导热板26之间具有第一间距,以形成所述第一风道222,所述第一端22和所述第二端24分别位于各所述导热板26相对的两侧。其中,壳体10包括壳壁12。导热板26可以采用铝等金属或合金制成,每块导热板26内均设有第二封闭腔室201,因此,每块导热板26内均具有独立的蒸发制冷结构,每块导热板26的第一端22和第二端24通过壳壁12隔断,但是每块导热板26内部的第二封闭腔室201可以从第一端22延伸至第二端24,第二封闭腔室201内液态的导热流体介质可以从第一端22蒸发至第二端24,气态的导热流体介质在第二端24冷却后,可以聚集在第一端22。
其次,由于各导热板26之间存在第一间距,任意相邻的两导热板26之间的第一间距形成了第一风 道222,当第一风扇40工作时,能够加快各导热板26和第一风道222之间的热传递效率。
可以理解的是,根据实际需要,各导热板26之间的第一间距可以相等,也可以不相等,即各导热板26可以等距设置,也可以不等距设置。
在一实施例中,任意相邻的两所述导热板26之间连接有导热块28,以形成所述第一间距。导热块28可以采用铝等金属或合金制成,导热块28和导热板26可以采用焊接或一体成型等工艺制成。导热块28能够增加各导热板26之间的热传递效率,并形成第一风道222,且能够使各导热板26之间的连接更加牢固。
在一实施例中,所述导热块28为方块形,如导热块28可以为长方体形。由于第一端22位于第二端24下方,即第一端22和第二端24位于竖直方向上,则长方体形的导热块28的长度方向沿水平方向设置,使第一风道222沿水平方向设置,水平的第一风道222对第一风扇40的风阻最小,所形成的气流通道流动性更好,从而使得热传递效率更高。
可以理解的是,根据实际需要,在一些实施例中,导热块28还可以为正方体形、圆柱形或其他异形。
在一实施例中,任意相邻的两所述导热板26之间连接有至少两块所述导热块28,位于两所述导热板26之间的各所述导热块28之间具有第二间距。
通过设置至少两块导热块28,能够形成多条第一风道222,当各导热块28相互平行时,各第一风道222相互平行,且互不干涉,风阻较小,所形成的气流通道的流动性更好,热传递效率更高。
可以理解的是,根据实际需要,位于两所述导热板26之间的各所述导热块28之间具有第二间距可以相等,也可以不相等,即各导热块28可以等距设置,也可以不等距设置。
可以理解的是,在一些实施例中,两相邻的导热板26之间也可以仅设置一块导热块28,结构简单。
当充电桩功率较大或充电桩长期使用时,发热模块30产生的热量较多,此时,需要更高效率的散热效果方能够满足需求。在一实施例中,所述充电桩散热装置100还包括第二风扇50,所述第二风扇50位于所述第二端24的侧方,所述第二风扇50用于对所述第二端24散热。当第一端22的热传递到第二端24时,第二风扇50能够及时使第二端24和外界进行热交换,可以提高热交换效率,最终使本实施例的充电桩散热装置100散热效果更好。其中,第二风扇50可以采用轴流风机、离心风机、鼓风机等。
当环境温度比较低,充电桩的负载输出较小、噪音要求比较严格的工况下,可以关闭第二风扇50;当环境温度高、充电桩负载较大的工况下,可以启动第二风扇50,能够适应多种作业工况。
在一实施例中,各所述导热板26之间还设有第三风道242,所述第三风道242位于所述第二端24,所述第二风扇50位于所述第三风道242的延伸方向上。第二风扇50能够带动第三风道242内的气体流动,提高第二端24和外界空气的热交换效率,从而可以提高散热效率。
第三风道242和第一风道222的形成原理和方式一致,第三风道242也是通过导热板26、导热块28之间的连接形成的,在此不再赘述。为了提高第一封闭腔室101的密封性能,第三风道242和第一风道222是相互独立的,第三风道242和第一风道222之间不连通。
可以理解的是,根据实际需要,在一些实施例中,第三风道242和第一风道222之间可以产生一定的连通。
当充电桩的作业工况的环境温度很高时,第二风扇50仍然不能满足散热的情况下,在一实施例中,所述充电桩散热装置100还包括制冷模块60,所述制冷模块60也位于所述第三风道242的延伸方向上。制冷模块60能够及时的将第二端24附近的环境温度降低,使第二端24和外界热交换的效率更高。当制冷模块60位于第三风道242的延伸方向上时,制冷模块60能够最大程度的为第三风道242提供低温空气,进一步提高散热效率和效果。本实施例的充电桩散热装置100虽然也设置了制冷模块60,但是,本实施例的制冷模块60是在环境温度较高的情况下才会使用,在常规的工况下可以不使用。且当使用制冷模块60时,本实施例的充电桩散热装置100可以将制冷模块60、“水冷”、风冷三者相互结合。
与现有空调制冷的方式相比,本实施例的充电桩散热装置100的散热效果更好、密封性更好,噪音较小。
在一实施例中,所述制冷模块60和所述第二风扇50分别位于所述第二端24的两侧,制冷模块60和第二风扇50不会相互干涉。其中,制冷模块60为制冷器等。
在一实施例中,所述壳体10上还设有容纳腔室102,所述容纳腔室102能够和外界连通,所述第二端24、所述第二风扇50和所述制冷模块60均位于所述容纳腔室102内。容纳腔室102用于容纳第二风扇50、第二端24和制冷模块60,容纳腔室102为敞开式的,便于第二端24和外界空气产生热交换。在容纳腔室102内可以设置一个或多个第二风扇50,在一具体的实施例中,第二风扇50的数量为三个,三个第二风扇50和第三风道242相对,第二风扇50和制冷模块60分别位于第三风道242的两侧。壳体10可以通过一体成型的方式形成第一封闭腔室101和容纳腔室102。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种充电桩散热装置,其特征在于,包括:
    壳体,所述壳体内设有第一封闭腔室;
    散热模块,所述散热模块包括第一端和第二端,所述第一端位于所述第一封闭腔室内,所述第二端穿过所述第一封闭腔室延伸至外界;所述散热模块内设有第二封闭腔室,所述第二封闭腔室从所述第一端延伸至所述第二端,所述第二封闭腔室内填充有导热流体介质;
    发热模块,所述发热模块位于所述第一封闭腔室内;
    第一风扇,所述第一风扇位于所述第一封闭腔室内,所述第一风扇能够在所述第一封闭腔室内形成气流通道。
  2. 根据权利要求1所述的充电桩散热装置,其特征在于,所述第一封闭腔室包括第一腔室和第二腔室,所述发热模块和所述第一端接触相连,所述第一腔室和所述第二腔室通过所述发热模块和所述散热模块隔开,所述第一风扇位于所述第一腔室或/和所述第二腔室内;
    所述第一端内设有第一风道,所述发热模块内设有第二风道,所述第一风道、所述第一腔室、所述第二风道和所述第二腔室依次连通,并在所述第一风扇的作用下形成循环的所述气流通道。
  3. 根据权利要求2所述的充电桩散热装置,其特征在于,所述散热模块包括至少两块导热板,每块所述导热板内均设有所述第二封闭腔室,各所述导热板依次叠设,且各所述导热板之间具有第一间距,以形成所述第一风道,所述第一端和所述第二端分别位于各所述导热板相对的两侧。
  4. 根据权利要求3所述的充电桩散热装置,其特征在于,任意相邻的两所述导热板之间连接有导热块,以形成所述第一间距。
  5. 根据权利要求4所述的充电桩散热装置,其特征在于,所述导热块为方块形。
  6. 根据权利要求4所述的充电桩散热装置,其特征在于,任意相邻的两所述导热板之间连接有至少两块所述导热块,位于两所述导热板之间的各所述导热块之间具有第二间距。
  7. 根据权利要求1至6任一项所述的充电桩散热装置,其特征在于,还包括第二风扇,所述第二风扇位于所述第二端的侧方,所述第二风扇用于对所述第二端散热。
  8. 根据权利要求7所述的充电桩散热装置,其特征在于,所述第二端设有第三风道,所述第二风扇位于所述第三风道的延伸方向上。
  9. 根据权利要求8所述的充电桩散热装置,其特征在于,还包括制冷模块,所述制冷模块也位于所述第三风道的延伸方向上;所述制冷模块和所述第二风扇分别位于所述第二端的两侧。
  10. 根据权利要求9所述的充电桩散热装置,其特征在于,所述壳体上还设有容纳腔室,所述容纳腔室和外界连通,所述第二端、所述第二风扇和所述制冷模块均位于所述容纳腔室内。
PCT/CN2023/073814 2022-03-15 2023-01-30 充电桩散热装置 WO2023173940A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210253735.XA CN114604117B (zh) 2022-03-15 2022-03-15 充电桩散热装置
CN202210253735.X 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023173940A1 true WO2023173940A1 (zh) 2023-09-21

Family

ID=81863376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073814 WO2023173940A1 (zh) 2022-03-15 2023-01-30 充电桩散热装置

Country Status (2)

Country Link
CN (1) CN114604117B (zh)
WO (1) WO2023173940A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114604117B (zh) * 2022-03-15 2024-02-23 深圳市道通合创数字能源有限公司 充电桩散热装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106102424A (zh) * 2016-08-19 2016-11-09 苏州科勒迪电子有限公司 热管型散热模组及采用该热管型散热模组的充电桩模块
DE102015011285A1 (de) * 2015-08-27 2017-03-02 Daimler Ag Bodenstation zum Laden eines Kraftfahrzeugs
CN107846812A (zh) * 2016-09-20 2018-03-27 宁波三星智能电气有限公司 一种充电桩的双风扇式散热装置
CN207200354U (zh) * 2017-09-29 2018-04-06 深圳市英维克科技股份有限公司 一种温控充电柜
US20200338998A1 (en) * 2019-04-26 2020-10-29 Hanon Systems Electric vehicle fast charging and battery cooling system using a charger cooled fluid-to-battery cooled fluid heat exchange device
RU2746427C1 (ru) * 2019-12-18 2021-04-13 Федеральное государственное автономное образовательное учреждение высшего образования "Московский политехнический университет" (Московский Политех) Способ терморегулирования для аккумуляторного накопителя энергии
CN214775425U (zh) * 2021-01-13 2021-11-19 深圳市银宝山新科技股份有限公司 充电桩及充电设备
CN114013312A (zh) * 2021-11-05 2022-02-08 深圳市道通合创新能源有限公司 一种充电桩及充电桩的控制方法
CN215793242U (zh) * 2020-11-30 2022-02-11 深圳市科华恒盛科技有限公司 一种充电桩散热系统
CN114604117A (zh) * 2022-03-15 2022-06-10 深圳市道通合创新能源有限公司 充电桩散热装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940718B2 (en) * 2003-08-27 2005-09-06 Hewlett-Packard Development Company, L.P. Heat dissipation apparatus and method
JP2011135649A (ja) * 2009-12-22 2011-07-07 Mitsubishi Heavy Ind Ltd インバータ装置
CN207466395U (zh) * 2017-09-20 2018-06-08 惠安县信达友工业设计有限公司 一种基于新能源领域的设有散热装置的充电桩
CN208745775U (zh) * 2018-07-06 2019-04-16 宁格朗电气股份有限公司 一种充电桩散热装置
CN110891399A (zh) * 2018-09-11 2020-03-17 深圳市万景华科技有限公司 新能源汽车充电桩电源的散热装置
CN214822651U (zh) * 2021-05-12 2021-11-23 美达电器(重庆)有限公司 一种壁挂式充电桩散热装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015011285A1 (de) * 2015-08-27 2017-03-02 Daimler Ag Bodenstation zum Laden eines Kraftfahrzeugs
CN106102424A (zh) * 2016-08-19 2016-11-09 苏州科勒迪电子有限公司 热管型散热模组及采用该热管型散热模组的充电桩模块
CN107846812A (zh) * 2016-09-20 2018-03-27 宁波三星智能电气有限公司 一种充电桩的双风扇式散热装置
CN207200354U (zh) * 2017-09-29 2018-04-06 深圳市英维克科技股份有限公司 一种温控充电柜
US20200338998A1 (en) * 2019-04-26 2020-10-29 Hanon Systems Electric vehicle fast charging and battery cooling system using a charger cooled fluid-to-battery cooled fluid heat exchange device
RU2746427C1 (ru) * 2019-12-18 2021-04-13 Федеральное государственное автономное образовательное учреждение высшего образования "Московский политехнический университет" (Московский Политех) Способ терморегулирования для аккумуляторного накопителя энергии
CN215793242U (zh) * 2020-11-30 2022-02-11 深圳市科华恒盛科技有限公司 一种充电桩散热系统
CN214775425U (zh) * 2021-01-13 2021-11-19 深圳市银宝山新科技股份有限公司 充电桩及充电设备
CN114013312A (zh) * 2021-11-05 2022-02-08 深圳市道通合创新能源有限公司 一种充电桩及充电桩的控制方法
CN114604117A (zh) * 2022-03-15 2022-06-10 深圳市道通合创新能源有限公司 充电桩散热装置

Also Published As

Publication number Publication date
CN114604117A (zh) 2022-06-10
CN114604117B (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
Ma et al. Experimental study on the performance of vehicle integrated thermal management system for pure electric vehicles
CN201230257Y (zh) 马达散热结构
WO2023173940A1 (zh) 充电桩散热装置
CN101922778A (zh) 一种半导体制冷空调装置
WO2013041047A1 (zh) 一种电机水冷却装置
CN114785030A (zh) 一种散热机壳、电机和空压机
CN201844486U (zh) 一种半导体制冷空调装置
CN207219278U (zh) 一种电气设备及其散热结构
CN211370626U (zh) 一种高效的风力发电机散热装置
CN104235332A (zh) 一种齿轮箱润滑油的自然散热装置
CN104457017A (zh) 一种用于磁制冷循环的磁工质封装盒
CN207624749U (zh) 一种电池箱散热结构
CN206893674U (zh) 一种散热电池箱
CN212989598U (zh) 燃料电池测试平台散热系统
CN204046356U (zh) 直连螺杆压缩机的电机冷却结构
CN210016794U (zh) 耗热型散热装置
CN208174462U (zh) 高压电机用空冷装置
CN219421417U (zh) 一种室外通讯服务器散热工装
CN219145951U (zh) 一种机箱侧壁散热装置
CN219628208U (zh) 一种户外用散热除尘型电气控制柜
CN205487756U (zh) 一种电容器散热结构
CN220750537U (zh) 一种高效散热的集成式水冷机
CN220776347U (zh) 冷却系统及相关设备
CN210430615U (zh) 一种防高温配电柜
CN217715113U (zh) 具有制冷功能的多功能浴霸

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769451

Country of ref document: EP

Kind code of ref document: A1