WO2023173782A1 - 一种结构化电极及其制备方法与应用 - Google Patents

一种结构化电极及其制备方法与应用 Download PDF

Info

Publication number
WO2023173782A1
WO2023173782A1 PCT/CN2022/131982 CN2022131982W WO2023173782A1 WO 2023173782 A1 WO2023173782 A1 WO 2023173782A1 CN 2022131982 W CN2022131982 W CN 2022131982W WO 2023173782 A1 WO2023173782 A1 WO 2023173782A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
array
structured
present
printing
Prior art date
Application number
PCT/CN2022/131982
Other languages
English (en)
French (fr)
Inventor
袁伟
叶胤桐
杨阳
高欣竹
王淳
张晓清
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2023173782A1 publication Critical patent/WO2023173782A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture

Definitions

  • the invention relates to the technical field of electrochemistry, and in particular to a structured electrode and its preparation method and application.
  • alkali metal batteries have poor flexibility in flat electrodes, and the slurry easily cracks after bending, and the active material easily falls off during charging and discharging, which limits the cycle life of alkali metal batteries.
  • 3D printing by depositing active materials onto a substrate layer by layer, can efficiently and controllably produce objects with a certain thickness and shape without the need for templates.
  • Laser processing is precisely controlled by processing parameters, processing is performed at specific locations with specified power, and electrodes with the required structure are produced in a highly controllable manner.
  • Both 3D printing and laser processing technology can prepare new electrodes with a three-dimensional structure for alkali metal batteries. While increasing the active material loading, it can shorten the diffusion distance of alkali metal ions during charge and discharge, and accelerate the exchange of alkali metal ions and electrons. Diffusion speed, improve the conductivity of the electrode, and improve the electrochemical performance of the battery.
  • 3D printing technology is used to prepare tin-carbon anodes and lithium iron phosphate cathodes for lithium-ion batteries to change the traditional flat electrodes and shorten the migration distance of lithium ions. No further structural modifications are made to the 3D-printed electrodes.
  • Related technologies also use ultrafast lasers to manufacture three-dimensional structural batteries. The ultrafast laser is controlled to form preset micro-nano patterns on the electrodes prepared by tiles. It does not take into account that the use of laser processing methods can further process the three-dimensional electrodes. processing. Electrodes prepared by the above two methods still have problems of low rate performance and specific capacity.
  • the present invention provides a structured electrode, which has good rate performance and high specific capacity.
  • the invention also provides a method for preparing the above structured electrode.
  • the present invention also provides the application of the above structured electrode in an alkali metal battery.
  • a first aspect of the present invention provides a structured electrode, including an electrode body, an etching structure is provided on the surface of the electrode body; the electrode body is an array structure composed of three-dimensional electrode lines.
  • the electrode body is processed by laser etching to form an etching structure on the electrode surface.
  • the etching structure constructs a larger electrolyte reserve area so that the electrolyte can better wet the structured electrode surface; thereby shortening the It reduces the transmission path of alkali metal ions, accelerates the diffusion rate of alkali metal ions, improves the conductivity of structured electrodes, and shortens the diffusion path of alkali metal ions to reduce the electrochemical impedance of alkali metal ion batteries, thus improving the Charge-discharge specific capacity of alkali metal batteries.
  • the structured electrode of the present invention increases the active material loading, shortens the diffusion distance of alkali metal ions during the charging and discharging process, accelerates the diffusion speed of alkali metal ions, and improves the conductivity of the electrode, thereby helping to enhance the alkali metal ion concentration.
  • the charge-discharge specific capacity and rate performance of the battery is the charge-discharge specific capacity and rate performance of the battery.
  • electrodes prepared through 3D printing technology can be stacked in multiple layers under the same electrode area, thereby increasing the active material loading of the electrode.
  • the electrode body is at least one of a line array, a ring array, or a square array.
  • the line array consists of several three-dimensional electrode lines.
  • the width of the three-dimensional electrode line is 0.1mm ⁇ 1mm.
  • the diameter of the nozzle for 3D printing is 0.05mm ⁇ 5mm, and the diameter of the conventional electrode sheet is 12mm ⁇ 15mm. Therefore, the diameter of the nozzle selected cannot be too large, and the width of the 3D printed electrode line is limited by the diameter of the nozzle and will not be too large.
  • the width of the electrode body is 0.1mm ⁇ 2mm.
  • the spacing between the three-dimensional electrode lines is 2 to 8 times the width of the electrode body.
  • the gaps between the electrode array lines are extruded during the 3D printing process.
  • the length of the electrode lines is not limited. The specific length depends on the diameter of the electrode sheet used.
  • the width and height are related to the printing parameters used in 3D printing.
  • the spacing between adjacent electrode lines is related to the printing interval set during 3D printing.
  • the distance between adjacent three-dimensional electrode lines is 1.2 mm to 1.5 mm.
  • the line width of the three-dimensional electrode lines is 0.15 mm to 0.6 mm.
  • the thickness of the three-dimensional electrode wire is 0.15mm ⁇ 0.6mm.
  • the electrode line width cannot be set too small, otherwise the electrode may collapse due to insufficient electrode strength after subsequent laser etching.
  • the etched structure includes at least one of a line array, a square array, and a hole array.
  • the line array includes at least one of a linear array, a diagonal array and a curved array.
  • the linear array consists of several straight lines.
  • the interval between adjacent straight lines is 0.3 mm to 0.5 mm.
  • the interval between adjacent straight lines is 0.4 mm.
  • the depth of the straight line is 80 ⁇ m ⁇ 120 ⁇ m.
  • the depth of the straight line is 100 ⁇ m.
  • the array of curves includes square spirals.
  • the spacing between connected spirals in the square spiral is 1.4 mm to 1.6 mm.
  • the spacing between connected spirals in the square spiral is 1.5 mm.
  • the square array includes at least one of a rectangular array and a trapezoidal array.
  • the rectangular array consists of several rectangles.
  • the distance between adjacent rectangles is 0.8mm ⁇ 1.2mm.
  • the distance between adjacent rectangles is 1 mm.
  • the width of the rectangle is 0.1mm ⁇ 0.3mm.
  • the width of the rectangle is 0.2 mm.
  • the depth of the rectangle is 80 ⁇ m ⁇ 120 ⁇ m.
  • the depth of the rectangle is 100 ⁇ m.
  • the hole array includes at least one of a blind hole array and a through hole array.
  • the diameter of the holes in the hole array ranges from 1.4 mm to 1.6 mm.
  • the diameter of the holes in the hole array is 1.5 mm.
  • the blind hole array includes at least one of a circular blind hole array, a square blind hole array, and a special-shaped blind hole array.
  • the via array includes at least one of a circular via array, a square via array, and a special-shaped via array.
  • the etched line width of the etched structure is 10% to 100% of the three-dimensional electrode line width in the electrode body.
  • the spacing between adjacent units in the etched structure is 1 to 10 times the etching line width.
  • the etching line width of the etched structure is too large, the strength of the etched electrode body will be insufficient, causing the electrode to collapse. Therefore, the etching line width is generally set to 10% to 100% of the electrode body array line width.
  • the etching depth is 80 ⁇ m ⁇ 120 ⁇ m.
  • the etching depth is 100 ⁇ m.
  • the raw materials for preparing the main structure include: electrode materials, conductive agents, adhesives and solvents.
  • the main structure includes the following preparation raw materials in parts by weight: 60 to 90 parts of electrode material, 5 to 20 parts of conductive agent, and 5 to 20 parts of adhesive.
  • the electrode material is an alkali metal battery electrode material.
  • the alkali metal battery electrode materials include lithium ion electrode materials and sodium ion electrode materials.
  • the lithium ion electrode material is lithium iron phosphate, lithium manganese phosphate, lithium manganate, lithium iron silicate, lithium manganese silicate, lithium nickel cobalt manganese material, lithium nickel manganate or titanate At least one of lithium.
  • the sodium ion electrode material includes at least one of hard carbon and titanium dioxide.
  • the conductive agent includes at least one of acetylene black, carbon black, graphene, carbon fiber, carbon nanotube, Fe powder, Cu powder, Ag powder and Ni powder.
  • the adhesive includes at least one of polytetrafluoroethylene, low-pressure polyethylene, polyvinylidene fluoride, and polyvinyl alcohol.
  • the solvent includes water or N-methylpyrrolidone.
  • a second aspect of the present invention provides a method for preparing the above-mentioned structured electrode, which includes the following steps: 3D printing the electrode body on the surface of the current collector, etching the electrode body with a laser, and drying;
  • the drying temperature is 50°C to 150°C, and the drying time is 4h to 12h.
  • the preparation method provided by the present invention adopts two simple and highly controllable processing technologies, 3D printing and laser processing, to quickly and accurately process three-dimensional electrodes with a specific three-dimensional structure. Compared with the preparation methods in related technologies, it has the advantages Environmentally friendly and low cost.
  • a laser is used to etch the etching structure. Because the lasers used are different, the laser processing parameters are also different. However, the etching structures are all in the three-dimensional space coordinate system, with the top surface of the electrode body as the benchmark. The surface is produced by laser etching in the direction perpendicular to the highly conductive current collector substrate, and the upper limit of the etching depth is the thickness of the electrode body.
  • the present invention combines 3D printing with laser processing, prints three-dimensional three-dimensional electrodes with different shapes through 3D printing technology, and then uses lasers to etch and re-modify the three-dimensional three-dimensional electrodes, thereby preparing a 3D printing-laser composite processing structured structure. electrode.
  • the current collector includes one of copper foil, aluminum foil, nickel foam, copper foam and carbon cloth.
  • the thickness of the current collector ranges from 35 ⁇ m to 2000 ⁇ m.
  • the method for preparing the main structure includes the following steps: mixing the electrode material, the conductive agent, the adhesive and the solvent and then defoaming to obtain a mixed slurry.
  • the stirring speed of the mixing is 2000rmp ⁇ 3000rpm.
  • the mixing time is 10 min to 60 min.
  • the degassing stirring speed is 1000rmp ⁇ 3000rpm.
  • the degassing time is 5 minutes to 60 minutes.
  • the laser includes at least one of a semiconductor laser and a carbon dioxide laser.
  • the process parameters of 3D printing are as follows:
  • the printing speed is: 5mm/s ⁇ 60mm/s; the pressure is: 5psi ⁇ 80psi; the horizontal height between the nozzle and the current collector is 0.1mm ⁇ 1mm.
  • a third aspect of the present invention provides an alkali metal battery, including the above structured electrode.
  • the structured electrode (3D printing-laser composite processing) provided by the present invention uses a laser to etch the electrode to form an etching structure on the electrode surface, which is conducive to the construction of A larger electrolyte storage area allows the electrolyte to better wet the electrode surface.
  • the structured electrode of an alkali metal battery provided by the present invention shortens the transmission path of alkali metal ions, accelerates the diffusion rate of progressive ions, and improves the conductivity of the electrode, thereby improving the The charge-discharge specific capacity of alkali metal ion batteries (this effect is achieved by laser composite processing to create various types of grooves on the 3D printed structured electrode to increase the electrode surface area).
  • the structured electrode provided by the present invention has etching structures of different shapes, which increases the specific surface area of the three-dimensional electrode, provides a buffer space for the volume expansion of the electrode during the charge and discharge process, thereby improving the performance of the three-dimensional electrode (i.e.
  • the mechanical structural stability of the structured electrode of the present invention improves the reversible capacity and capacity stability of the battery.
  • Figure 1 is a schematic structural diagram of a 3D printing-laser composite processed structured electrode for an alkali metal battery prepared in Example 1 of the present invention.
  • Figure 2 is a schematic diagram of the three-dimensional structure scanning of the 3D printing-laser composite processed structured electrode for alkali metal batteries prepared in Example 1 of the present invention.
  • Figure 3 is a schematic assembly diagram of a sodium ion half cell in an embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of an array ring electrode in Embodiment 4 of the present invention.
  • Figure 5 is a schematic structural diagram of a square electrode in Embodiment 5 of the present invention.
  • Figure 6 is a comparison chart of rate performance of sodium-ion batteries based on 3D printing-laser composite processing structured electrodes, 3D printing electrodes (Comparative Example 1) and flat electrodes (Comparative Example 2) in Example 2.
  • Figure 7 is a cycle performance curve chart of the sodium-ion half-cell based on 3D printing-laser composite processing structured electrodes prepared in Example 2 under the current condition of 100 mA ⁇ g -1 .
  • Figure 8 is a cycle performance curve of the sodium-ion half-battery based on 3D printed electrodes produced in Comparative Example 1 under the current condition of 100 mA ⁇ g -1 .
  • Figure 9 is a cycle performance curve chart of the sodium ion half-cell based on flat electrodes prepared in Comparative Example 2 under the current condition of 100 mA ⁇ g -1 .
  • 1-electrode body cross section 2-etched structure section, 3-electrode body, 4-etched structure, 5-upper battery case, 6-gasket, 7-elastic sheet, 8-sodium sheet, 9-lower battery case, 10-Electrolyte, 11-3D printing-laser composite processing structured electrode, 12-Separator.
  • hard carbon, conductive carbon black, and polyvinylidene fluoride are all purchased from Shenzhen Kejing Co., Ltd.
  • the length and width of the nickel foam match the material table size of the 3D printer (15cm*10cm), and the manufacturer is Kunshan Guangjiayuan Electronic Materials Business Department.
  • This embodiment is a method for preparing a structured electrode, which includes the following steps:
  • the slurry prepared in step S1 Take 0.5cm thick nickel foam as the current collector of the electrode body, use the slurry prepared in step S1 as the 3D printing slurry, place it in the 3D printing base material cylinder, the nozzle diameter is 600 ⁇ m, set the printing parameters (printing speed 20mm/s, air pressure 14psi, lift height of the contact point between the nozzle and the nickel foam 0.6mm), and print three-dimensional array lines (line width 600 ⁇ m, thickness 600 ⁇ m) with a connected interval of 1.5mm as the electrode body.
  • the laser drawing software Ez Cad 2.7.6 configured with a pulse laser to draw a linear array with a pitch of 0.4mm (the total width of the linear array is more than the width of the electrode prepared by 3D printing, and the etching thickness is 100 ⁇ m.
  • the linear array is the same as the electrode in step S2
  • the array lines in the main body are perpendicular), set the laser processing parameters (processing rate 200mm/s, processing power 6W, frequency 20kHz), and use the laser to etch the electrode main body in step S2 according to the drawn pattern.
  • step S4 Wash the laser-etched electrode prepared in step S3 with water and dry it at a temperature of 80°C and a drying time of 10 hours to obtain a structured electrode (the specific surface area is compared with that prepared by 3D printing). electrode increased by 80%).
  • the prepared structured electrode includes an electrode body 3 (where 1 is the cross-section of the electrode body), and the surface of the electrode body 3 is provided with an etching structure 4 (2 is the cross-section of the etching structure) (
  • the structural schematic diagram in the embodiment of the present invention is only used to illustrate the etching shape and does not limit the specific size).
  • This embodiment is a method for preparing a structured electrode, which includes the following steps:
  • step S1 Take nickel foam with a thickness of 0.5cm as the current collector of the three-dimensional electrode, use the slurry prepared in step S1 as the slurry for 3D printing, place it in the 3D printing base material barrel, and set the nozzle diameter to 150 ⁇ m.
  • Set the printing parameters print The speed is 20mm/s, the air pressure is 55psi, and the height of the contact point between the nozzle and the nickel foam is 0.15mm), and three-dimensional array lines (line width 150 ⁇ m, thickness 150 ⁇ m) with an interval of 1.2mm are printed out as the electrode body.
  • the laser drawing software Ez Cad 2.7.6 configured with a pulse laser to draw a rectangular array with a pitch of 1mm and a width of 0.2mm (a rectangular array is an array of multiple rectangles with a pitch of 1mm in the x-axis direction, and the etching thickness is 100 ⁇ m) , set the laser processing parameters (processing rate 150mm/s, processing power 16W, frequency 20kHz), and use the laser to etch the electrode body in step S2 according to the drawn pattern.
  • step S4 Wash the laser-etched electrode prepared in step S3 with deionized water and dry it at a temperature of 60°C and a drying time of 12 hours to obtain the 3D printing-laser composite processing structured structure. Electrode (specific surface area increased by 60% compared to electrodes prepared by 3D printing).
  • the 3D printing-laser composite processed structured electrode of the alkali metal battery in this embodiment includes a 3D printing electrode main structure and a laser etching structure; the laser etching structure is obtained by laser etching on the 3D printing electrode main structure.
  • This embodiment is an alkali metal battery.
  • the 3D printing-laser composite processing structured electrode prepared in Example 2 was used to prepare a sodium ion half-battery based on the 3D printing-laser composite processing structured electrode of Example 2 as the positive electrode and the sodium flake as the negative electrode; when assembling the battery, implement
  • the 3D printed-laser composite processed structured electrode prepared in Example 2 is used as the positive electrode of the sodium-ion battery.
  • the main structure of the 3D printed electrode and the laser etched structure are in direct contact with the separator, and the base nickel foam is in direct close contact with the battery shell.
  • FIG 3 is a schematic diagram of the sodium ion half-cell assembly of 3D printing-laser composite processing of structured electrodes.
  • the electrode sheet 9 is placed on the lower battery shell 7, and the electrolyte 9 directly infiltrates the active material on the electrode sheet 9
  • the electrolyte 8 fills the entire cavity composed of the electrode sheet 9, the lower battery case 7 and the separator 10.
  • the sodium sheet 6 is tightly attached to the diaphragm 10.
  • the gasket 4 and the elastic sheet 5 are placed on the upper surface of the sodium sheet 6 from bottom to top.
  • the gasket 4 and the elastic sheet 5 are used to adjust the pressure of the battery; the elastic sheet 5 is closely connected to the upper battery shell 3. Contact to reduce contact resistance and ensure good conductivity inside the battery.
  • the sodium sheet 6 begins to remove sodium, and the sodium ions enter the electrolyte 8 through the separator 10, and then come into contact with the active material on the electrode sheet 9 and embed in the active material; at the same time, the electrons pass through the gasket 4, the elastic piece 5 and the upper battery case 3 and enter the lower battery case 7; since the lower battery case 7 is in close contact with the electrode sheet 9, the electrons then enter the electrode sheet 9
  • the active material neutralizes the charge with sodium ions to complete the discharge process of the sodium ion half battery.
  • the sodium ions are first embedded from the active material on the electrode sheet 9, enter the electrolyte 8, and then contact the sodium sheet 6 through the separator 10; electrons are transferred from the active material on the electrode sheet 9 Come out, and pass through the lower battery case 7, the upper battery case 3, the spring piece 5 and the gasket 4 and the sodium ions on the sodium piece 6 to balance the charge, and complete the charging process.
  • the LAND CT2001A battery testing system was used to test the rate performance and cycle performance of sodium-ion half-cells based on 3D printing-laser composite processing of structured electrodes.
  • This embodiment is a method for preparing a structured electrode.
  • the electrode body in this embodiment is an array ring electrode.
  • the structural schematic diagram of the array ring electrode in this embodiment is shown in Figure 4 .
  • This embodiment is a method for preparing a structured electrode, which includes the following steps: The difference from Embodiment 1 is that the electrode body in this embodiment is a square electrode, and the structural schematic diagram of the square electrode in this embodiment is shown in Figure 5 .
  • This comparative example is a sodium ion half-cell with 3D printed electrodes.
  • the difference from Example 1 is that this comparative example does not perform step S3 and step S4; that is, a drying process is performed after step S2 is completed, and the temperature of the drying process is 80°C. , drying time is 10 hours.
  • This comparative example is a sodium-ion half-cell based on flat electrodes.
  • the raw materials for preparing the tile electrode in this comparative example are: 7g of hard carbon, 2g of conductive carbon black, 2g of polyvinylidene fluoride and 15mL of N-methylpyrrolidone.
  • the slurry to one side of the four-sided coater, activate the automatic coating machine, and drive the four-sided coater to evenly coat the slurry on the nickel foam (the coating thickness is 100 ⁇ m); drying process, the temperature of the drying process is 80°C. Drying time is 10 hours.
  • Figure 6 is a rate performance comparison curve of the sodium ion half-cell of the structured electrode prepared in Example 2. As can be seen from Figure 6, based on the 3D printing-laser composite processing structured structure in Example 2 After the sodium ion half-cell of the electrode was cycled at 30mA/g, 50mA/g, 100mA/g, 200mA/g, 500mA/g, 50mA/g and 100mA/g, its discharge capacity was 166.7mAh/g and 165.2 respectively.
  • Example 2 shows that the structured electrode in Example 2 of the present invention, based on the coupling effect of the 3D printed electrode main structure and the laser etched structure, has significantly improved the rate performance of the sodium ion half-cell.
  • the 3D printing-laser composite processing structured electrode of the alkali metal battery prepared in Example 1 has similar effects to that of Example 2. Please refer to Figure 6 .
  • Figure 7 is a cycle performance curve chart of the sodium ion half-cell based on 3D printing-laser composite processing structured electrodes prepared in Example 2 under a current condition of 100 mA/g.
  • the reversible capacity of the prepared sodium-ion half-battery based on 3D printing-laser composite processed structured electrodes can reach 120.1mAh/g after 100 cycles at 100mA/g current (as shown in Figure 7 ), the capacity retention rate reaches 37.47%.
  • the reversible capacity of the sodium-ion half-battery based on 3D printed electrodes is only 102.5mAh/g (as shown in Figure 8), and the capacity retention rate is 35.56%.
  • the reversible capacity of the sodium-ion half-cell based on the flat electrode is only 88.9mAh/g (as shown in Figure 9), and the capacity retention rate is only 34.52%.
  • the results show that 3D printing-laser composite processing of structured electrodes not only helps to improve the charge-discharge specific capacity of sodium-ion half-battery, but also helps to improve the cycle stability of the battery and extend the battery life.
  • the 3D printing-laser composite processing structured electrode of the alkali metal battery prepared in Example 1 has similar effects to Example 2, as shown in Figures 7, 8 and 9.
  • the 3D printing-laser composite processed structured electrode of the alkali metal battery provided by the present invention has superior electrochemical performance compared with the sodium ion half-battery based on 3D printing electrode and flat electrode. Therefore, the Sodium-ion half cells have better cycle stability and longer cycle life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种结构化电极及其制备方法与应用,属于电化学技术领域。本发明的结构化电极包括电极主体,所述电极主体表面设有刻蚀结构;所述电极主体为三维电极线组成的阵列结构。本发明的结构化电极通过刻蚀3D打印制备出电极主体,进行结构的再修饰,从而获得了电极更大的比表面积,构建了更大体积的电解液储存区,使电解液可以更好地润湿了电极表面,在一定程度上缩短了碱金属离子/电子的传输路径,提高了电极的导电性,从而有助于提升碱金属二次电池的充放电比容量和倍率性能。

Description

一种结构化电极及其制备方法与应用 技术领域
本发明涉及电化学技术领域,具体涉及一种结构化电极及其制备方法与应用。
背景技术
随着对储能器件需求的日益增加,以碱金属电池为主的电化学储能系统已经成为新一代储能系统的发展方向。传统碱金属电池因平板电极柔性较差,弯曲后浆料易皲裂,且充放电过程中活性物质易脱落,限制了碱金属电池的循环寿命。
3D打印,通过将活性物质逐层沉积到基板上,无需模板便能高效可控制备出一定厚度和形貌的物件。激光加工,由加工参数精准控制,在特定的位点以指定的功率进行加工,高度可控地制备出所需结构的电极。3D打印和激光加工技术均能制备出具有碱金属电池用三维立体结构的新型电极,在提高活性物质载量的同时,缩短碱金属离子充放电过程中的扩散距离,加速碱金属离子和电子的扩散速度,提高电极的导电性,提升电池的电化学性能。
相关技术中使用3D打印技术制备锂离子电池用锡碳阳极和磷酸铁锂阴极,以改变传统平板电极,缩短锂离子的迁移距离,并未对3D打印后的电极进行结构上的进一步修饰。相关技术中还通过超快激光制造三维结构电池的方法,控制超快激光在平铺制备的电极上形成预设的微纳图案,并未考虑到使用激光加工方法可对三维立体电极进行进一步的加工。上述两种方法制备的电极仍存在倍率性能和比容量低的问题。
因此,需要开发一种结构化电极,该电极的倍率性能好且比容量高。
发明内容
为解决现有技术中存在的问题,本发明提供了一种结构化电极,该电极的倍率性能好且比容量高。
本发明还提供了上述结构化电极的制备方法。
本发明还提供了上述结构化电极在碱金属电池中的应用。
本发明第一方面提供了一种结构化电极,包括电极主体,所述电极主体表面设有刻蚀结构;所述电极主体为三维电极线组成的阵列结构。
根据本发明的至少一种实施方式,至少具备如下有益效果:
本发明通过激光刻蚀加工电极主体,在电极表面形成了刻蚀结构,该刻蚀结构构建了更大体积的电解液储备区,使电解液能够更好地润湿结构化电极表面;从而缩短了碱金属离子的传输路径,加速了碱金属离子的扩散速度,提高了结构化电极的导电性,还可缩短碱金属离子的扩散路径,以降低碱金属离子电池的电化学阻抗,从而提升了碱金属电池的充放电比容量。
本发明的结构化电极,提高了活性物质载量,缩短了碱金属离子充放电过程中的扩散距离,加速了碱金属离子的扩散速度,提高了电极的导电性,从而有助于提升碱金属电池的充放电比容量和倍率性能。
相较于平铺电极而言,通过3D打印技术制备的电极可以在同样的电极面积下进行多层堆叠,从而提高电极的活性物质载量。
根据本发明的一些实施方式,所述的电极主体为线阵列、环阵列或方格阵列中的至少一种。
根据本发明的一些实施方式,所述线阵列由若干三维电极线组成。
根据本发明的一些实施方式,所述三维电极线的宽度为0.1mm~1mm。
3D打印用喷头直径为0.05mm~5mm,常规电极片直径为12mm~15mm,因此所选用的喷头直径不能过大,3D打印出的电极线宽度受喷头直径限制也不会过大。
根据本发明的一些实施方式,所述电极主体的宽度为0.1mm~2mm。
根据本发明的一些实施方式,所述三维电极线之间的间隔为所述电极主体的宽度的2倍~8倍。
3D打印过程中挤出电极阵列线之间的空白处的间隔。
电极线的长度不限,具体长度视所用的电极片直径大小所定,宽度与高度均与3D打印时所采用的打印参数有关,相邻电极线的间距与3D打印时设置的打印间隔有关。
根据本发明的一些实施方式,相邻所述三维电极线之间的间隔为1.2mm~1.5mm。
根据本发明的一些实施方式,所述三维电极线的线宽为0.15mm~0.6mm。
根据本发明的一些实施方式,所述三维电极线的厚度为0.15mm~0.6mm。
电极线宽度不能设置太小,否则进行后续的激光刻蚀后,可能会因电极强度不够造成电极坍塌。
根据本发明的一些实施方式,所述刻蚀结构包括线阵列、方格阵列和孔阵列中的至少一种。
根据本发明的一些实施方式,所述线阵列包括但直线阵列、斜线阵列和曲线阵列中的至少一种。
根据本发明的一些实施方式,所述直线阵列由若干直线组成。
根据本发明的一些实施方式,相邻所述直线的间隔为0.3mm~0.5mm。
根据本发明的一些实施方式,相邻所述直线的间隔为0.4mm。
根据本发明的一些实施方式,所述直线的深度为80μm~120μm。
根据本发明的一些实施方式,所述直线的深度为100μm。
根据本发明的一些实施方式,所述曲线阵列包括方形螺旋线。
根据本发明的一些实施方式,所述方形螺旋线中相连螺旋线的间隔为1.4mm~1.6mm。
根据本发明的一些实施方式,所述方形螺旋线中相连螺旋线的间隔为1.5mm。
根据本发明的一些实施方式,所述方格阵列包括矩形阵列和梯形阵列中的至少一种。
根据本发明的一些实施方式,所述矩形阵列由若干个矩形组成。
根据本发明的一些实施方式,相邻所述矩形的间隔为0.8mm~1.2mm。
根据本发明的一些实施方式,相邻所述矩形的间隔为1mm。
根据本发明的一些实施方式,所述矩形的宽度为0.1mm~0.3mm。
根据本发明的一些实施方式,所述矩形的宽度为0.2mm。
根据本发明的一些实施方式,所述矩形的深度为80μm~120μm。
根据本发明的一些实施方式,所述矩形的深度为100μm。
根据本发明的一些实施方式,所述孔阵列包括盲孔阵列和通孔阵列中的至少一种。
根据本发明的一些实施方式,所述孔阵列中孔的直径为1.4mm~1.6mm。
根据本发明的一些实施方式,所述孔阵列中孔的直径为1.5mm。
根据本发明的一些实施方式,所述盲孔阵列包括圆形盲孔阵列、方形盲孔阵列和异形盲孔阵列中的至少一种。
根据本发明的一些实施方式,所述通孔阵列包括圆形通孔阵列、方形通孔阵列和异形通孔阵列中的至少一种。
根据本发明的一些实施方式,所述刻蚀结构的刻蚀线宽为电极主体中三维电极线宽度的10%~100%。
根据本发明的一些实施方式,所述刻蚀结构中相邻单元的间距为刻蚀线宽的1倍~10倍。
刻蚀结构的刻蚀线宽过大,会导致刻蚀后的电极主体强度不足,从而造成电极坍塌,所以一般将刻蚀线宽定为电极主体阵列线宽度的10%~100%。
根据本发明的一些实施方式,所述刻蚀的深度为80μm~120μm。
根据本发明的一些实施方式,所述刻蚀的深度为100μm。
由于激光加工具有热效应,会导致刻蚀位置外围的部分电极主体阵列线结构也被刻蚀,因此如果刻蚀间距设定过小,会导致电极阵列线结构表面一层都被刻蚀,无法形成刻蚀结构。另外,由于实验制备电池均为扣式电池,电极片直径为12~15mm,如果所选刻蚀间距过大,无法在限定的面积内刻蚀出足够的刻蚀结构,会导致性能提升效果不明显。
根据本发明的一些实施方式,所述主体结构的制备原料包括:电极材料、导电剂、粘接剂和溶剂。
根据本发明的一些实施方式,所述主体结构包括以下重量份数的制备原料:60份~90份的电极材料、5份~20份的导电剂和5份~20份粘接剂。
根据本发明的一些实施方式,所述电极材料为碱金属电池电极材料。
根据本发明的一些实施方式,所述碱金属电池电极材料包括锂离子电极材料和钠离子电极材料。
根据本发明的一些实施方式,所述锂离子电极材料为磷酸铁锂、磷酸锰锂、锰酸锂、 硅酸铁锂、硅酸锰锂、镍钴锰锂材料、镍锰酸锂或钛酸锂中的至少一种。
根据本发明的一些实施方式,所述钠离子电极材料包括硬碳和二氧化钛中的至少一种。
根据本发明的一些实施方式,所述导电剂包括乙炔黑、炭黑、石墨烯、碳纤维、碳纳米管、Fe粉、Cu粉、Ag粉和Ni粉中的至少一种。
根据本发明的一些实施方式,所述粘接剂包括聚四氟乙烯、低压聚乙烯、聚偏氟乙烯和聚乙烯醇中的至少一种。
根据本发明的一些实施方式,所述溶剂包括水或N-甲基吡咯烷酮。
本发明第二方面提供了上述结构化电极的制备方法,包括如下步骤:在集流体表面采用3D打印所述电极主体,再通过激光器刻蚀所述电极主体,干燥;
其中,所述干燥的温度为50℃~150℃,干燥的时间为4h~12h。
根据本发明的至少一种实施方式,具备如下有益效果:
本发明提供的制备方法,采用3D打印和激光加工两种操作简单、高度可控的加工技术,快速精准地加工出了具有特定三维结构的立体电极,相较于相关技术中的制备方法,具有环境友好和成本低等优点。
本发明制备过程中选用激光器进行刻蚀的刻蚀结构,因使用的激光器不同,因此激光加工参数也不相同,但此刻蚀结构均为在三维空间坐标系内,以电极主体的顶面为基准面,在垂直于高导电性集流体基底方向采用激光器刻蚀而制得,刻蚀深度上限为电极主体的厚度。
本发明将3D打印与激光加工相结合,通过3D打印技术打印出不同形貌的三维立体电极,再利用激光器对三维立体电极刻蚀,进行再修饰,从而制备出3D打印-激光复合加工结构化电极。
根据本发明的一些实施方式,所述集流体包括铜箔、铝箔、泡沫镍、泡沫铜和碳布中的一种。
根据本发明的一些实施方式,所述集流体的厚度为35μm~2000μm。
根据本发明的一些实施方式,所述主体结构的制备方法,包括以下步骤:将所述电 极材料、所述导电剂、所述粘接剂和所述溶剂混合后脱泡,得混合浆料。
根据本发明的一些实施方式,所述混合的搅拌速度为2000rmp~3000rpm。
根据本发明的一些实施方式,所述混合的时间为10min~60min。
根据本发明的一些实施方式,所述脱泡的搅拌速度为1000rmp~3000rpm。
根据本发明的一些实施方式,所述脱泡的时间为5min~60min。
根据本发明的一些实施方式,所述激光器包括半导体激光器和二氧化碳激光器中的至少一种。
根据本发明的一些实施方式,所述3D打印的工艺参数如下:
打印速度为:5mm/s~60mm/s;压力为:5psi~80psi;喷头与所述集流体的水平高度为0.1mm~1mm。
本发明第三方面提供了一种碱金属电池,包括上述的结构化电极。
根据本发明的至少一种实施方法,具备如下有益效果:
1.本发明提供的结构化电极(3D打印-激光复合加工),相较于常用3D打印制备的三维立体电极,再使用激光器对电极进行刻蚀,在电极表面形成刻蚀结构,有利于构建更大体积的电解液储存区,使电解液可以更好地润湿电极表面。
2.本发明提供的碱金属电池的结构化电极,相较于传统的扁平电极,缩短了碱金属离子的传输路径,加速了渐进式离子的扩散速度,提高了电极的导电性,从而提升了碱金属离子电池的充放电比容量(通过在3D打印的结构化电极之上,再度进行激光复合加工出各种类型的沟槽,以实现提高电极表面积的效果,从而实现该效果)。
3.本发明提供的结构化电极具有不同形貌的刻蚀结构,增大了三维立体电极的比表面积,为充放电过程中电极的体积膨胀提供了缓冲空间,从而改善了三维立体电极(即本发明的结构化电极)的机械结构稳定性,提高了电池的可逆容量和容量稳定性。
4.本申请中容量保持率达到37.47%;而对比例容量保持率为35.56%。
影响锂离子电池容量保持率的因素有很多,包括电解液的分解,SEI膜的形成,电极的结构特性等。电极比表面积越大,与电解液接触的面积越大,则会生成越多SEI膜,消耗更多电解液,从而导致电池容量的损失,造成容量保持率的下降。本申请中制备的 结构化电极的比表面积大于3D打印阵列线电极,因此在充放电过程中会消耗更多的电解液,产生更多的容量损失。但是相较于3D打印阵列线电极,结构化电极因为具备刻蚀结构,对活性材料在充放电过程中的体积膨胀有缓冲作用,因此具有较好的结构稳定性,提高了电极的容量保持率。综上所述,锂离子电池容量保持率受多种要素影响,因此之后需进行进一步的优化方可显著提升电极的容量保持率。
附图说明
图1为本发明实施例1中制得的用于碱金属电池的3D打印-激光复合加工结构化电极的结构示意图。
图2为本发明实施例1中制得的用于碱金属电池的3D打印-激光复合加工结构化电极的三维结构扫描示意图。
图3为本发明实施方式中的钠离子半电池装配示意图。
图4为本发明实施例4中阵列环电极的结构示意图。
图5为本发明实施例5中方形电极的结构示意图。
图6为实施例2中的基于3D打印-激光复合加工结构化电极、3D打印电极(对比例1)和平铺电极(对比例2)的钠离子电池的倍率性能对比图。
图7为实施例2制得的基于3D打印-激光复合加工结构化电极的钠离子半电池在100mA·g -1电流条件下的循环性能曲线图。
图8为对比例1制得的基于3D打印电极的钠离子半电池在100mA·g -1电流条件下的循环性能曲线图。
图9为对比例2制得的基于平铺电极的钠离子半电池在100mA·g -1电流条件下的循环性能曲线图。
附图标记:
1-电极主体截面,2-刻蚀结构截面,3-电极主体,4-刻蚀结构,5-上电池壳,6-垫片,7-弹片,8-钠片,9-下电池壳,10-电解液,11-3D打印-激光复合加工结构化电极,12-隔膜。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
本发明的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
需要补充的是,本发明要求保护的范围并不局限于实施例表述的范围,若有未特殊说明之处,均是本领域技术人员可以参照相关技术实现或者理解的。所用的试剂、仪器均可以通过市售购买所得的常规产品。
本发明实施方式中硬碳、导电炭黑、聚偏氟乙烯均购自深圳科晶有限公司。
本发明实施方式中泡沫镍的长度与宽度与3D打印机的物料台尺寸(15cm*10cm)匹配,厂家为昆山市广嘉源电子材料经营部。
下面详细描述本发明的具体实施例。
实施例1
本实施例为一种结构化电极的制备方法,包括如下步骤:
S1、浆料配制:
称取硬碳8g、导电炭黑1g和聚偏氟乙烯1g,量取15mL N-甲基吡咯烷酮到脱泡搅拌机专用料杯中,通过高速搅拌机在2000rpm的搅拌速度下处理60min,进行均匀混合,然后在3000rpm的搅拌速度下脱泡5min。
S2、3D打印制备电极主体:
取厚度为0.5cm的泡沫镍作为电极主体的集流体,将步骤S1中制备的浆料作为3D打印的浆料,置于3D打印基料筒内,喷头直径为600μm,设置打印参数(打印速度20mm/s,气压14psi,喷头与泡沫镍接触处抬升高度0.6mm),打印出相连间隔为1.5mm的三维 阵列线(线宽为600μm,厚度为600μm)立体电极作为电极主体。
S3、激光刻蚀:
使用脉冲激光器配置的激光绘图软件Ez Cad 2.7.6绘制间距为0.4mm的直线阵列(直线阵列的总宽度多于3D打印制备的电极宽度,刻蚀厚度为100μm,该直线阵列与步骤S2中电极主体中的阵列线相垂直),设置激光加工参数(加工速率200mm/s,加工功率6W,频率20kHz),用激光器根据绘制图案进行对步骤S2中的电极主体进行刻蚀。
S4、将步骤S3制备的进行激光刻蚀后的电极用水洗涤,并进行干燥处理,干燥处理的温度为80℃,干燥时间为10小时,得到结构化电极(比表面积相较于3D打印制备的电极提高80%)。
本实施例制得的碱金属电池的3D打印-激光复合加工结构化电极的结构示意图可参照图1和图2所示。从图1和图2可以看出,制备的结构化电极,包括电极主体3(其中1为电极主体的截面),电极主体3表面设有刻蚀结构4(2为刻蚀结构的截面)(本发明实施方式中结构示意图仅用作示意刻蚀形状,并不做具体尺寸的限定)。
实施例2
本实施例为一种结构化电极的制备方法,包括如下步骤:
S1、浆料配制:
称取质硬碳7g、导电炭黑2g和聚偏氟乙烯2g,再量取17mL N-甲基吡咯烷酮到脱泡搅拌机专用料杯中,通过高速搅拌机在2500rpm的搅拌速度下处理90min,进行均匀混合,然后在3000rpm的搅拌速度下脱泡5min。
S2、3D打印制备三维立体电极:
取厚度为0.5cm的泡沫镍作为三维立体电极的集流体,将步骤S1中制备的浆料作为3D打印的浆料,置于3D打印基料筒内,喷头直径为150μm,设置打印参数(打印速度20mm/s,气压55psi,喷头与泡沫镍接触处抬升高度0.15mm),打印出间隔为1.2mm的三维阵列线(线宽为150μm,厚度为150μm)立体电极作为电极主体。
S3、激光刻蚀:
使用脉冲激光器配置的激光绘图软件Ez Cad 2.7.6绘制间距为1mm,宽度为0.2mm 的矩形阵列(矩形阵列即为多个矩形往x轴方向进行间距为1mm的阵列,刻蚀厚度为100μm),设置激光加工参数(加工速率150mm/s,加工功率16W,频率20kHz),用激光器根据绘制图案进行对步骤S2的电极主体进行刻蚀。
S4、将步骤S3制备的进行激光刻蚀后的电极用去离子水洗涤,进行干燥处理,干燥处理的温度为60℃,干燥时间为12小时,得到所述的3D打印-激光复合加工结构化电极(比表面积相较于3D打印制备的电极提高60%)。
本实施例的碱金属电池的3D打印-激光复合加工结构化电极包括3D打印电极主体结构和激光刻蚀结构;激光刻蚀结构是在3D打印电极主体结构上进行激光刻蚀所得。
实施例3
本实施例为一种碱金属电池。
采用实施例2制备的3D打印-激光复合加工结构化电极,制备基于实施例2的3D打印-激光复合加工结构化电极作为正极,钠片作为负极的钠离子半电池;装配电池时,以实施例2制备的3D打印-激光复合加工结构化电极作为钠离子电池的正极,3D打印电极主体结构和激光刻蚀结构直接与隔膜接触,基底泡沫镍直接与电池壳紧密接触。
图3为3D打印-激光复合加工结构化电极的钠离子半电池装配示意图,如图2所示,电极片9置于下电池壳7上,电解液9直接浸润所述电极片9上的活性物质,电解液8充满由电极片9、下电池壳7和隔膜10所组成的整个腔体。钠片6紧贴在隔膜10上,钠片6的上表面从下至上依次放置着垫片4和弹片5,垫片4和弹片5用于调整电池的压力;弹片5和上电池壳3紧密接触以减小接触电阻,保证电池内部良好的导电性。
制备的3D打印-激光复合加工结构化电极的钠离子半电池放电时,钠片6开始脱钠,钠离子经过隔膜10进入到电解液8中,随后与电极片9上面的活性物质接触,嵌入活性物质中;与此同时,电子先后经过垫片4、弹片5和上电池壳3进入到下电池壳7;由于下电池壳7与电极片9紧密接触,因而电子随后便进入到电极片9的活性物质里与钠离子进行电荷中和,完成钠离子半电池的放电过程。而钠离子半电池充电时,钠离子首先从电极片9上的活性物质里面嵌出,进入到电解液8中,随后通过隔膜10与钠片6接触;电子从电极片9上面的活性物质转移出来,先后经过下电池壳7、上电池壳3、 弹片5和垫片4与钠片6上的钠离子进行电荷平衡,完成充电过程。
使用LAND CT2001A电池测试系统对基于3D打印-激光复合加工结构化电极的钠离子半电池进行倍率性能和循环性能测试。
实施例4
本实施例为一种结构化电极的制备方法,与实施例1的差异在于:本实施例中电极主体为阵列环电极,本实施例的阵列环电极的结构示意图如图4所示。
本实施例中仅需要切换3D打印路径为如图4所示的环状(3D打印机中更换打印路径的程序为阵列环打印的程序,仅需设置阵列环的参数:直径为1.5mm,其余设定程序同实施例1)。
实施例5
本实施例为一种结构化电极的制备方法,包括如下步骤:与实施例1的差异在于:本实施例中电极主体为方形电极,本实施例的方形电极的结构示意图如图5所示。
本实施例中仅需要切换3D打印路径为如图5所示的方形螺旋线(3D打印机中更换打印路径的程序为方形螺旋线环打印的程序,仅需设置方形螺旋线的参数:外部方形边长的宽度为12mm,螺旋线间隔为1.5mm,其余设定程序同实施例1)。
对比例1
本对比例为3D打印电极的钠离子半电池,与实施例1的差异在于:本对比例不进行步骤S3和步骤S4;即在步骤S2完成后即进行干燥处理,干燥处理的温度为80℃,干燥时间为10小时。
本对比例中钠离子半电池的装配方式见图3。
对比例2
本对比例为基于平铺电极的钠离子半电池。
本对比例中平铺电极的制备原料为:硬碳7g、导电炭黑2g、聚偏氟乙烯2g和15mL N-甲基吡咯烷酮。
本对比例中钠离子半电池的装配方式见图3。
称取硬碳7g、导电炭黑2g和聚偏氟乙烯2g,再量取15mL N-甲基吡咯烷酮到高速 搅拌机专用料杯中,用高速搅拌机3000rpm处理30min,进行均匀混合,然后3000rpm脱泡5min,得到混合浆料。本对比例中平铺电极使用自动涂布机作为平铺电极的涂覆设备,选用泡沫镍作为集流体,平放于自动涂布机的样品台上,选用100μm的四面涂布器,将浆料涂抹于四面涂布器一侧,启用自动涂布机,带动四面涂布器将浆料均匀涂覆在泡沫镍上(涂覆厚度为100μm);干燥处理,干燥处理的温度为80℃,干燥时间为10小时。
图6为实施例2制得的结构化电极的钠离子半电池的倍率性能对比曲线如图6所示,从图6中可以看出,基于本实施2中的3D打印-激光复合加工结构化电极的钠离子半电池依次经过30mA/g,50mA/g,100mA/g,200mA/g,500mA/g,50mA/g和100mA/g倍率循环后,其放电容量分别为166.7mAh/g、165.2mAh/g、128.7mAh/g、86.3mAh/g、57.4mAh/g、156.9mAh/g和118.6mAh/g,高于基于3D打印电极的钠离子半电池(对比例1,134.6mAh/g、132.2mAh/g、116.3mAh/g、79mAh/g、54.7mAh/g、144.6mAh/g和106.8mAh/g)及基于平铺电极的钠离子半电池(对比例2,122.2mAh/g、111.4mAh/g、86.6mAh/g、67.2mAh/g、52.2mAh/g、111.2mAh/g和83.9mAh/g)。由此说明,本发明实施例2中的结构化电极,基于3D打印电极主体结构和激光刻蚀结构的耦合作用,钠离子半电池的倍率性能得到了明显的提升。
实施例1制得的碱金属电池的3D打印-激光复合加工结构化电极与实施例2效果相似,可以参照图6。
图7为实施例2制得的基于3D打印-激光复合加工结构化电极的钠离子半电池在100mA/g的电流条件下的循环性能曲线图。从图7可以看出,制备的基于3D打印-激光复合加工结构化电极的钠离子半电池在100mA/g电流下循环100次后,其可逆容量可达到120.1mAh/g(如图7所示),容量保持率达到37.47%。而同等条件下,基于3D打印电极的钠离子半电池的可逆容量只有102.5mAh/g(如图8所示),容量保持率为35.56%。基于平铺电极的钠离子半电池的可逆容量仅剩88.9mAh/g(如图9所示),容量保持率仅为34.52%。结果表明,3D打印-激光复合加工结构化电极不仅有助于提高钠离子半电池的充放电比容量,并且有利于提高电池的循环稳定性,延长电池寿命。
实施例1制备的碱金属电池的3D打印-激光复合加工结构化电极与实施例2效果相似,参照图7、图8和图9所示。
综上所述,本发明提供的碱金属电池的3D打印-激光复合加工结构化电极相较于基于3D打印电极和平铺电极的钠离子半电池的电化学性能而言较为优越,因此制得的钠离子半电池具有更优秀的循环稳定性和更长的循环寿命。
上面结合具体实施方式对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种结构化电极,其特征在于:包括电极主体,所述电极主体表面设有刻蚀结构;所述电极主体为三维电极线组成的阵列结构。
  2. 根据权利要求1所述的一种结构化电极,其特征在于:所述的电极主体为线阵列、环阵列或方格阵列中的至少一种;优选地,所述三维电极线的宽度为0.1mm~1mm。
  3. 根据权利要求1所述的一种结构化电极,其特征在于:所述刻蚀结构包括线阵列、方格阵列和孔阵列中的至少一种;优选地,所述线阵列包括直线阵列、斜线阵列和曲线阵列中的至少一种;优选地,所述方格阵列包括矩形阵列和梯形阵列中的至少一种;优选地,所述孔阵列包括盲孔阵列和通孔阵列中的至少一种;优选地,所述盲孔阵列包括圆形盲孔阵列、方形盲孔阵列和异形盲孔阵列中的至少一种;优选地,所述通孔阵列包括圆形通孔阵列、方形通孔阵列和异形通孔阵列中的至少一种;优选地,所述刻蚀结构的刻蚀线宽为电极主体中三维电极线的10%~100%;优选地,所述刻蚀结构中相邻单元的间距为刻蚀线宽的1倍~10倍。
  4. 根据权利要求1至3任一项所述的一种结构化电极,其特征在于:所述主体结构的制备原料包括:电极材料、导电剂、粘接剂和溶剂;优选地,所述主体结构包括以下重量份数的制备原料:60份~90份的电极材料、5份~20份的导电剂和5份~20份粘接剂;优选地,所述电极材料为碱金属电池电极材料;优选地,所述碱金属电池电极材料包括锂离子电极材料和钠离子电极材料;优选地,所述锂离子电极材料为磷酸铁锂、磷酸锰锂、锰酸锂、硅酸铁锂、硅酸锰锂、镍钴锰锂材料、镍锰酸锂或钛酸锂中的至少一种;优选地,所述钠离子电极材料包括硬碳和二氧化钛中的至少一种;优选地,所述导电剂包括乙炔黑、炭黑、石墨烯、碳纤维、碳纳米管、Fe粉、Cu粉、Ag粉和Ni粉中的至少一种;所述粘接剂包括聚四氟乙烯、低压聚乙烯、聚偏氟乙烯和聚乙烯醇中的至少一种;所述溶剂包括水或N-甲基吡咯烷酮。
  5. 一种制备如权利要求4所述的结构化电极的方法,其特征在于:包括如下步骤:在集流体表面采用3D打印所述电极主体,再通过激光器刻蚀所述电极主体,干燥;
    其中,所述干燥的温度为50℃~150℃,干燥的时间为4h~12h。
  6. 根据权利要求5所述的方法,其特征在于:所述集流体包括铜箔、铝箔、泡沫镍、泡沫铜和碳布中的一种;优选地,所述集流体的厚度为35μm~2000μm。
  7. 根据权利要求5所述的方法,其特征在于:所述主体结构的制备方法,包括以下步骤:将所述电极材料、所述导电剂、所述粘接剂和所述溶剂混合后脱泡,得混合浆料;优选地,所述混合的搅拌速度为2000rmp~3000rpm;优选地,所述混合的时间为10min~60min;优选地,所述脱泡的搅拌速度为1000rmp~3000rpm;优选地,所述脱泡的时间为5min~60min。
  8. 根据权利要求5所述的方法,其特征在于:所述激光器包括半导体激光器和二氧化碳激光器中的至少一种。
  9. 根据权利要求5所述的方法,其特征在于:所述3D打印的工艺参数如下:
    打印速度为:5mm/s~60mm/s;压力为:5psi~80psi;喷头与所述集流体的水平高度为0.1mm~1mm。
  10. 一种碱金属电池,其特征在于:包括如权利要求1至4任一项所述的结构化电极。
PCT/CN2022/131982 2022-03-15 2022-11-15 一种结构化电极及其制备方法与应用 WO2023173782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210251512.X 2022-03-15
CN202210251512.XA CN116799136A (zh) 2022-03-15 2022-03-15 一种结构化电极及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023173782A1 true WO2023173782A1 (zh) 2023-09-21

Family

ID=88022129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131982 WO2023173782A1 (zh) 2022-03-15 2022-11-15 一种结构化电极及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN116799136A (zh)
WO (1) WO2023173782A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151491A (zh) * 2011-12-06 2013-06-12 深圳市比克电池有限公司 电极及其制造方法
US10581065B1 (en) * 2019-01-28 2020-03-03 StoreDot Ltd. Production of metalloid-based anodes for lithium ion batteries using dry etching
CN114094036A (zh) * 2021-09-26 2022-02-25 上海工程技术大学 一种电池电极的结构及其制备方法
CN114141979A (zh) * 2020-09-04 2022-03-04 上海卡耐新能源有限公司 电极及其制备方法和锂电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151491A (zh) * 2011-12-06 2013-06-12 深圳市比克电池有限公司 电极及其制造方法
US10581065B1 (en) * 2019-01-28 2020-03-03 StoreDot Ltd. Production of metalloid-based anodes for lithium ion batteries using dry etching
CN114141979A (zh) * 2020-09-04 2022-03-04 上海卡耐新能源有限公司 电极及其制备方法和锂电池
CN114094036A (zh) * 2021-09-26 2022-02-25 上海工程技术大学 一种电池电极的结构及其制备方法

Also Published As

Publication number Publication date
CN116799136A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
CN105958008B (zh) 一种锂离子电池用复合正极片、制备方法及锂离子电池
US9728816B2 (en) Lithium-rich electrode sheet of lithium-ion battery and preparation method thereof
CN104681857B (zh) 一种可折叠锂离子电池及其制作方法
CN105470564A (zh) 一种固体电解质膜及其制备方法和锂离子电池
CN106848272B (zh) 一种多孔锡箔负极及其制备方法和钠离子二次电池
CN103985923B (zh) 准固态电解质pva‑锌‑空气电池
CN112635915A (zh) 一种用于金属锂负极的改性隔膜及其制备方法和应用
CN106745251B (zh) 一种适于工业化生产的纳米五氧化二钒正极材料的制备方法及应用
CN105742695A (zh) 一种锂离子电池及其制备方法
US20230327133A1 (en) Current Collector Having Pore-Forming Functional Coating Layer, Electrode Sheet and Battery
CN109244531A (zh) 一种高纯铜基体石墨烯复合锂离子电池及其制备方法
AU2014212256B2 (en) Coated iron electrode and method of making same
CN108470877A (zh) 一种18650锂离子电池及其制备方法
WO2023173782A1 (zh) 一种结构化电极及其制备方法与应用
CN108630864A (zh) 一种负极和隔膜一体化结构及其制备方法和电池
CN105591151A (zh) 一种倍率型三元电池及其制备方法
CN115020641A (zh) 一种锂金属负极片及其制备方法和应用
JPH11260336A (ja) ポリマー電解質電池
KR20180100997A (ko) 건조전극의 표면에 패턴을 형성하는 방법
CN109585936A (zh) 一种单面叠片软包电池的模板化制作方法
CN115692718A (zh) 水系电池
CN206564287U (zh) 用于锂离子电池的活性物质储藏式新型电极
WO2024040435A1 (zh) 二次电池、电子装置及二次电池的制备方法
CN109950484A (zh) 制备富锂复合正极材料的方法、正极、电池
CN109301198A (zh) 一种镍纳米片阵列负载氧化锌复合电极及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931794

Country of ref document: EP

Kind code of ref document: A1