WO2023171588A1 - 抗菌薬を含有するplga製剤 - Google Patents

抗菌薬を含有するplga製剤 Download PDF

Info

Publication number
WO2023171588A1
WO2023171588A1 PCT/JP2023/008202 JP2023008202W WO2023171588A1 WO 2023171588 A1 WO2023171588 A1 WO 2023171588A1 JP 2023008202 W JP2023008202 W JP 2023008202W WO 2023171588 A1 WO2023171588 A1 WO 2023171588A1
Authority
WO
WIPO (PCT)
Prior art keywords
plga
antibacterial agent
particles
amino
formulation
Prior art date
Application number
PCT/JP2023/008202
Other languages
English (en)
French (fr)
Inventor
高志 松▲崎▼
秀樹 巻
修 吉田
誠之 本間
Original Assignee
国立大学法人大阪大学
塩野義製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 塩野義製薬株式会社 filed Critical 国立大学法人大阪大学
Publication of WO2023171588A1 publication Critical patent/WO2023171588A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements

Definitions

  • the present invention relates to PLGA formulations containing antimicrobial agents.
  • the antimicrobial agent is bound outwardly to the surface layer of the PLGA particles.
  • the antibacterial drug is an antibacterial drug having a fat-soluble side chain, and the fat-soluble side chain of the antibacterial drug is bonded to polylactic acid, which is the hydrophobic part of the PLGA particles, and the polycyclic peptide skeleton structure of the antibacterial drug is formed. It relates to a PLGA formulation that is present outward from the surface layer of PLGA particles.
  • glycopeptide antibiotics are antibiotics with a complex polycyclic peptide backbone structure produced by various microorganisms, and provide antibacterial agents effective against most Gram-positive bacteria.
  • bacteria resistant to penicillin, cephalosporin, etc. have appeared, and infections caused by multidrug-resistant bacteria and methicillin-resistant staphylococci (MRSA) are causing important problems in the medical field.
  • MRSA methicillin-resistant staphylococci
  • Glycopeptide antibiotics such as vancomycin are effective against such microorganisms, and vancomycin in particular has become a drug of last resort for infections caused by MRSA and other resistant bacteria.
  • renal damage is well known as a side effect of glycopeptide antibiotics.
  • Targeting is the process of giving a drug the property of directing it to a target site in vivo.
  • methods using carriers are the most common and highly useful.
  • carrier substances lipid particles such as liposomes and polymer matrix particles such as lactic acid/glycolic acid copolymer (hereinafter referred to as PLGA) are known.
  • PLGA is composed of synthetic polymers that are highly biodegradable and biocompatible, and is known to be highly safe.
  • Patent Document 1 discloses polymeric fine particles containing a ligand and PLGA particles containing a ligand. It is further disclosed that the ligand has a first end incorporated into the surface of the microparticle and a second end pointing outward from the surface of the microparticle.
  • the examples are avidin-modified PLGA particles, and there is no description of modified PLGA particles.
  • no antibiotics have been described as ligands.
  • Patent Document 2 there is a report on a sustained-release formulation of vancomycin hydrochloride that uses microparticles of poly(lactide-co-glycolide) (PLGA) as a carrier, but in this formulation, the vancomycin hydrochloride contained in the formulation is It is stated that about 90% of the drug is released within 24 hours, and that the optimum concentration cannot be maintained for a long period of time.
  • PLGA poly(lactide-co-glycolide)
  • Patent Document 3 discloses a drug-eluting stent in which a fat-soluble or water-soluble physiologically active substance is encapsulated and coated in biocompatible nanoparticles made of a lactic acid/glycolic acid copolymer.
  • biocompatible nanoparticles are characterized by being modified with a positive charge by attaching chitosan to the surface.
  • Patent Document 4 discloses PLGA (RG502H) microspheres containing leuprolide.
  • Leuprolide is a luteinizing hormone-releasing hormone derivative (LHRH) represented by (pyr)Glu-His-Trp-Ser-Tyr-D-Leu-Leu-Arg-ProNHC 2 H 5 .
  • LHRH luteinizing hormone-releasing hormone derivative
  • Patent Document 5 discloses a method for producing lipid particles (liposomes or micelles) carrying drug A, but there is no description or suggestion that drug A binds outward to the surface layer of the lipid particles.
  • the present inventors discovered a PLGA formulation in which an antibacterial agent was bound outward to the surface layer of PLGA particles, and found that antibacterial activity was exhibited. If it is a PLGA preparation in which the antibacterial agent is outwardly bound to the surface layer of PLGA particles, the effect will be sustained by increasing the retention of the active ingredient in the blood, and the amount taken up into the reticuloendothelial system such as the liver will be reduced. By reducing the transfer of the active ingredient to the kidneys, it is expected that side effects such as toxicity will be reduced and that antibacterial activity will be exhibited with almost no resistance.
  • the present invention includes the following inventions.
  • the lipid-soluble side chain of antibacterial drugs is below formula: The PLGA preparation according to (2) or (3) above, which is a group represented by: (4a) The lipid-soluble side chain of the antibacterial drug is Below formula: The PLGA preparation according to (2) or (3) above, which is a group represented by: (4b) The lipid-soluble side chain of the antibacterial drug is Below formula: The PLGA preparation according to (2) or (3) above, which is a group represented by: (5) The PLGA preparation according to (2) or (3) above, wherein the antibacterial agent has a lipid-soluble side chain having a CLogP of 2 to 10.
  • the antibacterial agent has the formula (I): A compound represented by telavancin, oritavancin, teicoplanin, dalbavancin, mideplanin, N'-p-octyloxybenzylglycyl-vancomycin, (4''R)-22-O-(3-amino-3-C-methyl-2,3,6-trideoxy- ⁇ -L-arabino-hexopyranosyl)-3''-[(4-chlorobenzyl) amino]-3''-deaminovancomycin, (4''R)-3''-N-(1,1'-biphenyl-4-ylmethyl)-22-O-(3-amino-3-C-methyl-2,3,6-trideoxy- ⁇ -L-arabino-hexopyranosyl)vancomycin, (3S, 15R, 18R, 34R, 35S, 38S, 48S, 50aR) -5, 31-dich
  • the molar ratio of structural units derived from lactic acid is 50%
  • the molar ratio of structural units derived from glycolic acid is 50%
  • the molecular weight of the PLGA particles is 7,000 to 17,000.
  • the PLGA formulation according to (14) above, wherein the average particle diameter of the PLGA formulation is 30 to 200 nm.
  • a method for producing a PLGA formulation in which an antibacterial agent is outwardly bound to the surface layer of PLGA particles comprising the following steps: (A) Dissolving PLGA in an acetone/ethanol solution or acetonitrile/aqueous solution to prepare a first solution, (B) a step of dissolving the antibacterial agent in dimethyl sulfoxide to prepare a second liquid; (C) a step of mixing the first liquid and the second liquid to adjust the third liquid; (D) a step of feeding and mixing the third liquid and the sucrose solution, and (E) a step of collecting the PLGA particles to which the antibacterial agent is bound as a fraction. (21) The manufacturing method according to (20) above, wherein about 70 to 100% of the antibacterial agent used in (B) is bound in the PLGA particles to which the antibacterial agent of (E) is bound. Regarding.
  • the PLGA preparation containing an antibacterial agent of the present invention is a PLGA preparation in which the antibacterial agent is bound outward to the surface layer of PLGA particles, and can reduce side effects, improve blood retention, and produce antibacterial activity. can.
  • S. Aureus RN4220 was mixed with a bacterial solution prepared to have a final concentration of about 1 x 10 to the 7th power cfu/ml, and vancomycin was mixed with a drug solution prepared so that the final concentration was 6.4 ⁇ g/ml. After mixing with Mueller-Hinton agar medium (MHA) and thoroughly drying the surface of MHA containing bacteria and drugs, add 10 ⁇ l of acetyl-Lys-D-Ala-D-Ala at 250, 500, 1000, and 2000 ⁇ g/ml. The results were spotted on MHA and cultured overnight at 35°C. S.
  • MHA Mueller-Hinton agar medium
  • Aureus RN4220 was mixed with a bacterial solution prepared to have a final concentration of approximately 1 x 10 to the 7th power cfu/ml, and telavancin was mixed with a drug solution prepared so that the final concentration was 0.8 ⁇ g/ml.
  • MHA Mueller-Hinton agar medium
  • the drug solution prepared as follows was mixed on Mueller-Hinton agar medium (MHA), and the surface of MHA containing bacteria and drug was sufficiently dried. Results of spotting 10 ⁇ l of 1000 and 2000 ⁇ g/ml onto MHA and culturing overnight at 35°C.
  • MHA Mueller-Hinton agar medium
  • the present invention is a PLGA formulation in which the antimicrobial agent is bound outwardly to the surface layer of the PLGA particles.
  • the antibacterial agent is bound outwardly to the surface layer of the PLGA particles.
  • a portion of the antibacterial agent may be encapsulated within the PLGA or may be bound inward to the surface layer of the PLGA.
  • the fact that the antibacterial agent is outwardly bound to the surface layer of the PLGA particles has been shown in binding evaluations such as SPR (Surface Plasmon Resonance) and QCM (Quartz Crystal Microbalance) (for binding with Lys-D-Ala-D-Ala peptide). You can check whether it is present or not.
  • antibacterial drug refers to a compound that exhibits antibacterial activity and is an active ingredient of a drug substance, that is, a pharmaceutical product.
  • antifungal drug refers to a compound that exhibits antifungal activity and is an active ingredient of a drug substance, that is, a pharmaceutical product.
  • the active ingredients used in the present invention include penicillins, cephems, carbapenems, oxacephems, aminoglycosides, macrolides, tetracyclines, chloramphenicols, oxazolidinones, clindamycins, quinolones, Antibacterial or antifungal drugs such as sulfa drugs, trimethoprim, fosfomycin, isoniazid, rifamycin, pyrazinamide, ethambutol, delamanid, pretomanid, polyene macrolide, azole, and allylamine, but in detail, they are highly toxic.
  • glycopeptide-based antibacterial drugs include glycopeptide-based antibacterial drugs, cyclic lipopeptide-based antibacterial drugs, and echinocandin-based antifungal drugs.
  • it is a glycopeptide-based antibacterial agent or a cyclic lipopeptide-based antibacterial agent, more preferably a glycopeptide-based antibacterial agent, and particularly preferably a glycopeptide-based antibacterial agent having a fat-soluble side chain.
  • Glycopeptide antibacterial agents having lipophilic side chains are sometimes referred to as Lipoglycopeptides.
  • the antibacterial agents used in the pharmaceutical formulations of the invention may exhibit bactericidal or bacteriostatic activity.
  • the pharmaceutical formulation can include more than one antimicrobial agent, for example, the formulation can include a combination of bactericidal and bacteriostatic antimicrobial agents.
  • bactericidal activity against bacteria means that the antimicrobial agent of the composition kills or definitively damages one or more species of bacteria that are susceptible to the antibiotic of the composition. It means having the ability.
  • an antimicrobial agent with bacteriostatic activity may inhibit the growth of one or more species of bacteria without killing the target bacterial species or species that are susceptible to the antibiotic of the present composition. It has the ability to inhibit.
  • the antimicrobial agent of the pharmaceutical formulation is bactericidal or bacteriostatic against Gram-positive bacteria, including, but not limited to, methicillin-resistant Staphylococcus aureus (MRSA) bacteria.
  • MRSA methicillin-resistant Staphylococcus aureus
  • the antibacterial agent that is the active ingredient of the present invention is a glycopeptide antibacterial agent (glycopeptide antibiotic).
  • glycopeptide antibacterial agent as used in the context of the present invention and known to those skilled in the art, means an antibacterial agent whose mechanism of action involves inhibiting the growth of bacterial cell walls.
  • Antibiotics in this class of glycopeptide antimicrobials include, but are not limited to.
  • N'-p-octyloxybenzylglycyl-vancomycin eg GINA-220, Russian Academy & Chiron
  • (4''R) -22-O-(3-amino-3-C-methyl-2,3,6-trideoxy- ⁇ -L-arabino-hexopyranosyl)-3''-[(4-chlorobenzyl) amino]-3''-deaminovancomycin e.g.
  • compositions include hydrochloride, phosphate, sulfate, nitrate, acetate, fumarate, trifluoroacetate, bis(trifluoroacetic acid) salt, tosylate, sodium salt, potassium salt.
  • examples include salts such as , calcium salts, and ammonium salts. More preferred is the compound represented by formula (I), telavancin, oritavancin, or a pharmaceutically acceptable salt thereof, and more preferred is telavancin or its hydrochloride. That is, one embodiment of the present invention is a PLGA preparation in which telavancin or a salt thereof is bound to PLGA particles. A more preferred embodiment is a PLGA preparation in which telavancin is bound to PLGA particles, in which the average particle diameter of the PLGA preparation is 30 to 200 nm.
  • Dalbavancin C1 Mideplanin (MDL62873) It is known to be a mixture of six compounds, and the chemical names and structural formulas of the main components are shown below.
  • a cyclic lipopeptide-based antibacterial agent is used in addition to a glycopeptide-based antibacterial agent.
  • cyclic lipopeptide antibiotics include Daptomycin, Ramoplanin, Plusbacin A3, Stalobacin I, Lysocin E, Micafungin, and Caspo.
  • Caspofungin Anidulafungin, Aminocandin or Rezafungin, or a pharmaceutically acceptable salt thereof, and derivatives thereof.
  • daptomycin Cubist Pharmaceuticals
  • Ramoplanin Plusbacin A3, Stalobacin I
  • Lysocin E micafungin sodium (Micafungin sodium, Astellas Pharma), Caspofungin Caspofungin Acetate (Merck), Anidulafungin (Eli Lilly), Aminocandin hydrochloride (for example NXL-201) Sanofi-Aventis), or Rezafungin acetate (Reza fungin Acetate, e.g. CD-101 (Cidara Therapeutics) is used.
  • PLGA in this specification refers to a lactic acid/glycolic acid copolymer, and is a block polymer in which lactic acid and glycolic acid are copolymerized. PLGA is sometimes referred to as poly(lactic-co-glycolic acid), poly(lactic-glycolic acid) copolymer, poly(lactide-co-glycolide), or Poly Lactic-co-Glycolic Acid. PLGA has complementary physical properties of hydrophobic "polylactic acid (PLA)" derived from lactic acid and hydrophilic "polyglycolic acid (PGA)” derived from glycolic acid.
  • PLA polylactic acid
  • PGA polyglycolic acid
  • the structural unit derived from lactic acid is selected from D,L-lactic acid polymer, L-lactic acid polymer, D-lactic acid polymer, D,L-lactide polymer, L-lactide polymer, and D-lactide polymer. be done.
  • PLGA is a highly biodegradable and biocompatible synthetic polymer because it is hydrolyzed in the body and returned to lactic acid and glycolic acid, and is further metabolized in the TCA cycle (Tricarboxylic acid cycle).
  • PLGA can be produced by heating lactic acid and glycolic acid under weak vacuum using an ion exchange resin as a catalyst to cause condensation polymerization. At that time, lactide may be used instead of lactic acid.
  • PLGA may be a commercially available product.
  • Commercially available products include, for example, RESOMER (registered trademark) RG502, RESOMER (registered trademark) RG502H, RESOMER (registered trademark) RG503, RESOMER (registered trademark) RG503H, RESOMER (registered trademark) RG504, RESOMER (registered trademark) RG504H, RES.
  • RESOMER registered trademark
  • RG502H RESOMER (registered trademark)
  • RG752H RESOMER (registered trademark)
  • the terminal groups of PLGA are selected from alkyl esters, free carboxylic acids, esters, acids.
  • PLGA may include charged polymers on the surface. Charged polymers include, but are not limited to, xanthan gum, guar gum, chitosan, hyaluronic acid, alginate, xyloglucan, xanthan gum, polycarbophil, polyacrylic acid, tamarind seed polysaccharide, or polyamino such as polylysine.
  • PLGA may be branched by modification. PLGA modified with PEG can also be used.
  • PLGA Degradex (registered trademark) PLGA, etc., which are commercially available as microspheres, may be used.
  • PLGA may further contain other biodegradable polymers such as polylactic acid (PLA) and polyglycolic acid (PGA).
  • PLA polylactic acid
  • PGA polyglycolic acid
  • the molar ratio (L:G) of the structural unit derived from lactic acid (L) and the structural unit derived from glycolic acid (G) in PLGA is not particularly limited and may range from 99:1 to 1 depending on the purpose. :99, preferably 90:20 to 40:60, more preferably 85:15 to 50:50, particularly preferably 75:25. In order to realize a uniformly dispersed state of the physiologically active substance, selection of this molar ratio is important, and selection of the molecular weight of PLGA is equally important.
  • the molecular weight of PLGA is not particularly limited and can be appropriately selected from 3,000 to 400,000 depending on the purpose, but preferably 3,500 to 40,000, and 4,000 to 17,000. is more preferable. Selection of this molecular weight is also important in order to achieve a uniform dispersion state of the physiologically active substance.
  • the lipid-soluble side chain of the antibacterial agent and polylactic acid, which is the hydrophobic part of the PLGA particle are bonded, and the polycyclic peptide skeleton structure of the antibacterial agent exists facing outward from the surface layer of the PLGA particle.
  • the polylactic acid part which is the hydrophobic part of the PLGA particle, has a size that is large enough to be able to bind to the fat-soluble side chain of the antibacterial agent, and the above molar ratio and molecular weight are selected based on this. be able to.
  • PLGA tens to millions of polymers associate with a hydrophobic polylactic acid moiety as an inner core to form polymer micelles.
  • drugs are encapsulated in the hydrophobic part of the inner core, but in the present invention, by using an antibacterial agent having a fat-soluble side chain as the drug, the antibacterial agent is absorbed into the surface of the PLGA particle.
  • PLGA formulations are provided that are outwardly bound to.
  • PLGA particles refer to polymeric micelles formed by association of PLGA.
  • PLGA formulation refers to PLGA particles loaded with drug.
  • a PLGA formulation in which an antibacterial agent is bound outward to the surface layer of PLGA particles means that the antibacterial agent is bonded to the PLGA particles, and the polycyclic peptide skeleton structure of the antibacterial agent is bonded outward from the surface layer of the PLGA particles. It refers to an outward-facing PLGA formulation. More specifically, the antibacterial drug is an antibacterial drug having a fat-soluble side chain, and the fat-soluble side chain of the antibacterial drug is bonded to polylactic acid, which is the hydrophobic part of the PLGA particles, and the polycyclic peptide skeleton structure of the antibacterial drug is formed. It refers to a PLGA formulation that exists outward from the surface layer of PLGA particles. Note that the term "lipid-soluble side chain of an antibacterial drug” refers to a chemical side chain that exhibits fat-solubility.
  • bond refers to non-covalent and non-ionic chemical interactions such as hydrogen bonds and van der Waals forces, ionic chemical bonds, and covalent bonds.
  • the bond between the fat-soluble side chain of the antibacterial drug and the polylactic acid, which is the hydrophobic portion of the PLGA particle, is preferably non-covalent and non-ionic chemical interaction.
  • lipid-soluble side chain of an antibacterial drug refers to a chemical side chain that exhibits fat-solubility.
  • the fat-soluble side chains of antibacterial drugs include the fat-soluble side chains of the antibacterial drugs themselves, as well as fat-soluble side chains introduced by chemically modifying the antibacterial drugs. Examples of the fat-soluble side chain include the following side chains.
  • the "lipid-soluble side chain of an antibacterial agent” preferably has a CLogP of 2 to 10, and more preferably has a CLogP of 2.4 to 8.5. Particularly preferred are fat-soluble side chains with a CLogP of 2.61 to 7.44.
  • CLogP in this specification is the most frequently used predicted value of LogP.
  • CLogP is a calculated value obtained by dividing a compound into partial structures (fragments), and was first reported by Hansch and Leo. The value corrected for the hydrophobicity of the fragments and the interaction between each fragment is CLogP.
  • CLogP can be calculated with ChemDraw (registered trademark).
  • the PLGA formulation of the present invention is a PLGA formulation in which the antibacterial agent is bound to the PLGA particles, and the antibacterial agent is bound outward to the surface layer of the PLGA particles.
  • the antibacterial agents present outwardly on the surface of the PLGA particles are highly sensitive to the 1. cell wall precursor, 2. cell membrane, 3. Since it specifically binds to target molecules such as fungal cell wall synthases, it can exhibit high antibacterial activity and reduce toxicity.
  • the PLGA preparations of the present invention also include PLGA preparations whose surfaces are negatively charged and PLGA preparations whose surfaces are positively charged.
  • the surface of bacterial cells is negatively charged, and from the standpoint of exhibiting antibacterial activity, it is desirable to use a PLGA formulation with a positively charged surface, but since biological membranes are also negatively charged, only the surface of bacterial cells It may also interact with biological membranes. From the viewpoint of improving dispersibility and retention while suppressing interaction with biological membranes, a PLGA preparation whose surface is negatively charged is preferable.
  • a preferred embodiment of the PLGA preparation of the present invention is a PLGA preparation whose surface is negatively charged. Even a PLGA formulation whose surface is negatively charged can exhibit sufficient antibacterial activity.
  • a PLGA formulation is preferred in which the antibacterial agent is bound outwardly to the surface layer of the PLGA particles, and the surface is negatively charged.
  • the molar ratio of the structural units derived from lactic acid is 75%
  • the molar ratio of the structural units derived from glycolic acid is 25%
  • the molecular weight of the PLGA particles is 4,000. ⁇ 15,000 PLGA.
  • the particle size distribution of the PLGA preparation of the present invention can be shown by quantitative indicators such as a diagram and a polydispersity index, as well as the average particle diameter (average value) or median value.
  • the "average particle size” herein refers to the statistical average particle size (diameter) of particles.
  • a dynamic light scatterometer is mainly used as a test method for particle size distribution.
  • the average particle diameters shown herein are values measured using a dynamic light scatterometer. Note that the average particle diameter can also be measured using methods known in the art (laser diffraction method, nanoparticle tracking analysis method, electrical resistance nanopulse method, etc.). When using a dynamic light scatterometer, it is necessary to select an appropriate distribution display (number-based distribution, volume-based distribution, etc.).
  • the PLGA formulation of the present invention has an average particle diameter of 5 to 500 nm, preferably 10 to 300 nm, more preferably 20 to 250 nm, and even more preferably 30 to 200 nm.
  • the PLGA particles may be PLGA particles (nanoparticles, nanospheres) having a particle diameter of less than 100 nm, or may be PLGA particles (microparticles, microspheres) having a particle diameter of 100 nm or more.
  • PLGA particles with a large average particle size can contain a large amount of drug, but for intravenous preparations, PLGA formulations with an average particle size of 200 nm or less are preferred.
  • the additives used in the PLGA formulation of the present invention may be those commonly used in the production of PLGA particles.
  • saccharides or polyhydric alcohols may be added in the production of the PLGA preparation.
  • saccharides examples include monosaccharides such as glucose, galactose, mannose, fructose, inositol, ribose, and xylose; disaccharides such as sucrose, lactose, cellobiose, trehalose, and maltose; trisaccharides such as raffinose and melezitose; and cyclodextrin.
  • monosaccharides such as glucose, galactose, mannose, fructose, inositol, ribose, and xylose
  • disaccharides such as sucrose, lactose, cellobiose, trehalose, and maltose
  • trisaccharides such as raffinose and melezitose
  • cyclodextrin examples include oligosaccharides; polysaccharides such as dextrin; sugar alcohols such as xylitol, sorbitol, mann
  • the polyhydric alcohols are not particularly limited as long as they are generally known, but include, for example, glycerin, diglycerin, triglycerin, tetraglycerin, pentaglycerin, hexaglycerin, heptaglycerin, octaglycerin, nonaglycerin, Glycerin compounds such as decaglycerin and polyglycerin; Sugar alcohol compounds such as sorbitol and mannitol; Ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol, octaethylene glycol, Examples include nonaethylene glyco. Among these, preferred are glycerin, diglycerin, triglycerin, sorbitol, mannitol, and polyethylene glycol with a molecular weight of 400 to 10,000 from the viewpoint of availability.
  • additives used in the PLGA formulation of the present invention include basic peptides, alkali metal salts, preferably histidine, sodium phosphate, cholic acid, deoxycholic acid, and the like.
  • antioxidants used in the PLGA formulation of the present invention include antioxidants such as vitamin E (tocopherol), pH adjusters such as glycine, arginine, sodium phosphate, sodium citrate, sodium succinate, and water.
  • pH adjusters such as glycine, arginine, sodium phosphate, sodium citrate, sodium succinate, and water.
  • Sodium oxide, sodium acetate, hydrochloric acid, etc., as tonicity agents, glucose, sucrose, maltose, trehalose, D-mannitol, D-sorbitol, sodium chloride, etc., as excipients, glycerol, dextran, etc., as cryoprotectants examples include polysorbate 20 and polysorbate 80.
  • the weight ratio of PLGA particles to antibacterial agent in the PLGA formulation of the present invention is not particularly limited, but is preferably 3:1 to 20:1. Preferably the ratio is 4:1 to 10:1.
  • the preparation of the present invention can also be used as an oral preparation in addition to an injection or a drip preparation.
  • the method for producing the PLGA formulation which is the formulation of the present invention, is such that an antibacterial agent having a lipophilic side chain is bonded outwardly to the surface layer of the PLGA particle, and more specifically, an antibacterial agent having a lipophilic side chain is bonded outwardly to the surface layer of the PLGA particle.
  • Any manufacturing method may be used as long as it can manufacture a PLGA preparation in which the polylactic acid moiety is bonded and the polycyclic peptide skeleton structure of the antibacterial agent is present outward from the surface layer of the PLGA particles.
  • an organic solvent in which PLGA is dissolved is injected or dropped into an aqueous solvent, and the Emulsion Solvent Diffusion method (ESD) utilizes the formation of micelles due to self-assembly of PLGA in the aqueous solvent.
  • ESD Emulsion Solvent Diffusion method
  • PLGA and the drug are dissolved in a water-miscible organic solvent, and when this is dropped into an aqueous solution that is a poor solvent for PLGA, a pseudo-emulsification effect is created by the self-emulsification effect at the emulsion interface.
  • emulsion droplets are formed, and further, PLGA and the drug are co-precipitated within the emulsion droplets by mutual diffusion of both solvents, thereby producing a solid PLGA preparation.
  • water or an organic solvent may be used as the solvent.
  • water distilled water, buffers containing basic peptides such as histidine, buffers containing alkali metal salts such as sodium phosphate, diethyl ether, isopropyl ether, lower alcohols (e.g. methanol, ethanol) , 1-propanol, 2-propanol, etc.), aprotic polar solvents (eg, dimethyl sulfoxide, etc.), acetonitrile, acetone, etc.
  • a manufacturing method including the following steps. That is, (A1) Dissolving PLGA in an acetone/ethanol solution to prepare a first solution, (B1) a step of dissolving the antibacterial agent in dimethyl sulfoxide to prepare a second liquid; (C1) a step of mixing the first liquid and the second liquid to adjust the third liquid; (D1) A step of feeding and mixing the third liquid and the aqueous solution, and (E1) A step of collecting the PLGA particles to which the antibacterial agent is bound as a fraction.
  • A1 Dissolving PLGA in an acetone/ethanol solution to prepare a first solution
  • B1 a step of dissolving the antibacterial agent in dimethyl sulfoxide to prepare a second liquid
  • C1 a step of mixing the first liquid and the second liquid to adjust the third liquid
  • D1 A step of feeding and mixing the third liquid and the aqueous solution
  • E1 A step of collecting the PLGA particles to which the antibacterial agent is bound as a fraction.
  • the PLGA of the above production method (A1) is preferably PLGA in which the molar ratio of structural units derived from lactic acid is 85 to 50% and the molar ratio of structural units derived from glycolic acid is 15 to 50%. More preferably, the molar ratio of the structural units derived from lactic acid is 75%, the molar ratio of the structural units derived from glycolic acid is 25%, and the molecular weight of PLGA is 4,000 to 15,000. It is.
  • the solvent in the above production method (A1) is not limited to an acetone/ethanol solution, but may also be an acetone/lower alcohol (eg, methanol, 1-propanol, 2-propanol, etc.).
  • the acetone:lower alcohol ratio of the acetone/lower alcohol solution is 30:70 to 70:30, preferably 40:60 to 60:40, more preferably 50:50. .
  • the PLGA concentration of the first liquid is 5.0 to 15.0 mg/ml, preferably 7.5 to 12.5 mg/ml, and more preferably 10.0 mg/ml. ml.
  • the solvent for the above manufacturing method (B1) may be any solvent that can dissolve the drug and is miscible with the solvent used in (A1).
  • Dimethyl sulfoxide is preferred, but aprotic polar solvents (eg, N,N-dimethylformamide, hexamethylphosphoric triamide, etc.), acetonitrile, acetone, etc. may also be used.
  • the drug concentration of the second liquid is 50 to 150 mg/ml, preferably 75 to 125 mg/ml, and more preferably 100 mg/ml.
  • the temperature in the step of preparing the second liquid is room temperature to 70°C, preferably room temperature.
  • the temperature in the step of mixing the first liquid and the second liquid to prepare the third liquid is 60 to 80°C, preferably 70°C.
  • the mixing ratio of the first liquid and the second liquid is 100:1 to 1:1, preferably 75:1 to 25:1, and more preferably 49:1.
  • Another method for producing a PLGA formulation in which an antibacterial agent is outwardly bound to the surface layer of PLGA particles includes the following steps. Even in the case of an antibacterial agent that is difficult to dissolve in an "acetone/ethanol solution", the PLGA formulation of the present invention can be produced by this production method.
  • (A2) a step of dissolving PLGA in an acetonitrile/aqueous solution to prepare a first liquid; (B2) a step of dissolving the antibacterial agent in dimethyl sulfoxide to prepare a second liquid; (C2) a step of mixing the first liquid and the second liquid to adjust the third liquid; (D2) A step of feeding and mixing the third liquid and the aqueous solution, and (E2) A step of collecting the PLGA particles to which the antibacterial agent is bound as a fraction.
  • the PLGA of the above production method (A2) is preferably PLGA in which the molar ratio of structural units derived from lactic acid is 85 to 50%, and the molar ratio of structural units derived from glycolic acid is 15 to 50%. More preferably, the molar ratio of the structural units derived from lactic acid is 50%, the molar ratio of the structural units derived from glycolic acid is 50%, and the molecular weight of PLGA is 7,000 to 17,000. be.
  • the solvent in the above manufacturing method (A2) is not limited to an acetonitrile/aqueous solution.
  • the ratio of acetonitrile to lower water in the acetonitrile/aqueous solution is 60:40 to 40:60, preferably 70:30, more preferably 80:20.
  • the PLGA concentration of the first liquid is 1.0 to 15.0 mg/ml, preferably 2.5 to 10.0 mg/ml, and more preferably 5.0 to 10.0 mg/ml. It is 7.5 mg/ml.
  • the solvent for the above production method (B2) may be any solvent that dissolves the drug and is miscible with the solvent used in (A2).
  • Dimethyl sulfoxide is preferred, but aprotic polar solvents (eg, N,N-dimethylformamide, hexamethylphosphoric triamide, etc.), acetonitrile, acetone, etc. may also be used.
  • the drug concentration of the second liquid is 30.0 to 150 mg/ml, preferably 40.0 to 100.0 mg/ml, more preferably 50.0 to 78.0 mg/ml. It is 3mg/ml.
  • the temperature in the step of preparing the second liquid is 60 to 80°C, preferably 70°C.
  • the temperature in the step of mixing the first liquid and the second liquid to prepare the third liquid is 60 to 80°C, preferably 70°C.
  • the mixing ratio of the first liquid and the second liquid is 100:1 to 1:1, preferably 75:1 to 25:1, and more preferably 49:1.
  • the solution to be mixed with the third liquid may be an aqueous solution, a buffer solution generally used in the manufacturing of PLGA particles.
  • a buffer solution generally used in the manufacturing of PLGA particles.
  • it is a buffer containing a basic peptide and/or an alkali metal salt, more preferably a buffer containing histidine and/or sodium phosphate, particularly preferably an isotonic solution such as 10% sucrose.
  • This is an isotonic buffer solution containing a basic peptide and/or an alkali metal salt.
  • it is a histidine buffered 10% sucrose solution (15mM L-Histidine, 5mM L-Histidine monohydrochloride monohydrate).
  • the temperature in the step of feeding and mixing the third liquid and the aqueous solution is 75 to 95°C, preferably 85°C.
  • the third liquid and the aqueous solution may be fed and mixed in one step, two steps, or multiple steps.
  • the above manufacturing methods include the steps of cooling the recovered fraction of PLGA particles bound to the antibacterial agent to room temperature, dialyzing it, and concentrating it.
  • the fraction recovery amount of PLGA particles bound to an antibacterial agent is divided by the amount of third liquid sent and the 100% recovery amount calculated from the flow rate ratio of the third liquid and the aqueous solution. By doing so, the fraction recovery rate can be calculated.
  • solvents for further dispersing or suspending the PLGA preparation of the present invention include aqueous solvents, such as distilled water, distilled water for injection, physiological saline, phosphate buffer, carbonate buffer, Tris buffer, acetate buffer. Buffers such as can be used.
  • a PLGA suspension in which the PLGA preparation of the present invention is suspended in a liquid can then be pulverized by a process such as vacuum drying or freeze drying.
  • the form and structure of the PLGA preparation of the present invention can be determined by checking the aggregation state of the PLGA preparation.
  • an image analysis method a transmission electron microscope, a cryoelectron microscope, an atomic force microscope, etc. can be used.
  • the surface charge (zeta potential) of the PLGA preparation of the present invention is an important property because it affects in vivo clearance, tissue distribution, and cellular uptake. Since surface charge cannot be directly measured, it is generally evaluated and considered as zeta potential. As a test method, electrophoretic light scattering (laser Doppler method) is mainly used.
  • the zeta potential of the PLGA preparation of the present invention may be the zeta potential of a normal PLGA preparation, but preferably a negatively charged PLGA preparation.
  • thermodynamic properties of the film of the PLGA preparation of the present invention can be evaluated by differential scanning calorimetry, the temperature dependence of the fluorescence spectral characteristics of a fluorescent probe, and the like.
  • Thermodynamic properties such as exothermic and endothermic profiles are useful as indicators of fluidity and uniformity of PLGA particles.
  • the potency of the PLGA preparation of the present invention can be measured by a calorimeter, a microcalorimeter, a quartz crystal microbalance method, and a surface plasmon resonance analysis method.
  • the in vitro release characteristics of the active ingredient from the PLGA formulation of the present invention should demonstrate the ability to release the active ingredient from the PLGA using physiologically and/or clinically appropriate solvents and with stirring if necessary. be.
  • the adjusted osmotic pressure of the PLGA preparation of the present invention is preferably isotonic (approximately 280 mOsm/kg ⁇ H2O) in order to prevent rupture and contraction of the PLGA structure.
  • the drug encapsulation rate in the PLGA formulation of the present invention is determined by separating the drug encapsulated in PLGA and the free drug by solid phase extraction, size exclusion chromatography, ultracentrifugation, gel filtration, dialysis, etc. Techniques for quantifying the drug content of fractions using high performance liquid chromatography or spectrophotometry can be used. Furthermore, the total amount of drug in the preparation can be calculated from the specific gravity of the preparation, and the encapsulation rate of the drug in the PLGA preparation can be calculated based on the amount of drug charged at the time of manufacture.
  • a method for producing a PLGA formulation is shown below.
  • the drugs the compound represented by formula (I), telavancin (manufactured by Shionogi & Co., Ltd.), and oritavancin (manufactured by Shanghai Sun-shine Chemical Technology Corporation) were used.
  • RESOMER registered trademark
  • RG502H and RG752H manufactured by EVONIK were used.
  • PLGA REMER (registered trademark) RG752H manufactured by EVONIK
  • the drug was dissolved in dimethyl sulfoxide (Nacalai Tesque) at a drug concentration of 100 mg/ml, and then mixed with 49 times the amount of PLGA solution in an ultrasonic bath at 70° C. to prepare a drug/PLGA mixture.
  • the drug concentration in the drug/PLGA mixture was 2.0 (mg/ml).
  • the drug/PLGA mixture was mixed with an L-histidine buffered 10% sucrose solution (15 mM L-Histidine, 5 mM L-Histidine monohydrochloride monohydrate) (pH 6.0) at a linear velocity of 0.17 m/s. 5) were each fed by a liquid feeding pump at a linear velocity of 0.77 m/s. After preheating by feeding 10m (the drug/PLGA mixture) and 20m (L-histidine buffered 10% sucrose solution) under heating at 85°C, the two liquids were mixed with a T-shaped mixer at a collision angle of 90°. were mixed.
  • L-histidine buffered 10% sucrose solution 15 mM L-Histidine, 5 mM L-Histidine monohydrochloride monohydrate
  • incubation was performed by feeding the solution through a distance of 10 m under heating at 85° C. to prepare a stock solution of the PLGA nanopreparation.
  • the stock solution of the PLGA nanoformulation was allowed to stand at room temperature until the solution temperature decreased to room temperature.
  • Acetone, ethanol, and dimethyl sulfoxide were removed from the stock solution of the PLGA preparation by tangential flow filtration using KrosFlo (registered trademark) KR2i TFF System (manufactured by Repligen) and a hollow fiber membrane module (115 cm 2 , 500 kD, manufactured by Repligen). was removed and concentrated to prepare a PLGA formulation solution.
  • a histidine-buffered 10% sucrose solution (pH 6.5) was used as a buffer for liquid exchange, and liquid exchange was performed until a permeate volume of 10 times that of the PLGA solution was obtained.
  • Table 1 shows the blending ratio (weight ratio) of PLGA, drug, and PLGA and drug.
  • the drug/PLGA mixture was mixed with histidine-buffered 10% sucrose solution (15 mM L-Histidine, 5 mM L-Histidine monohydrochloride monohydrate) (pH 6.0) at a linear velocity of 0.17 m/s. 5) were each fed by a liquid feeding pump at a linear velocity of 0.77 m/s. After preheating by feeding 10m (the drug/PLGA mixture) and 20m (L-histidine buffered 10% sucrose solution) under heating at 85°C, the two liquids were mixed with a T-shaped mixer at a collision angle of 90°. were mixed.
  • PLGA PLGA
  • concentration of PLGA solution mg/ml
  • concentration of drug solution mg/ml
  • drug concentration in drug/PLGA mixture mg/ml
  • blending ratio weight ratio
  • Test example 1 Measurement of drug (telavancin) content (drug content) in PLGA formulation
  • drug concentration of the manufactured PLGA formulation was measured using a high performance liquid chromatograph mass spectrometer (LCMS-8050, Shimadzu Corporation).
  • LCMS-8050 high performance liquid chromatograph mass spectrometer
  • the conditions for liquid chromatography and mass spectrometry are as follows. [Liquid chromatography conditions] ⁇ Column: Cosmosil Packed Column 5C18-AR-II (4.6mm I.D.
  • the quantitative method used the absolute calibration curve method, and each drug was diluted with the above diluted solution at 0.1, 0.25, 0.5, 1.0, 1.5, 2.0 ⁇ g/ml as a standard solution for the calibration curve. The one adjusted to the following was used.
  • the drug content is determined by dividing the drug weight in the preparation calculated using the drug concentration and the preparation specific gravity of 1.038 by the drug charge weight corrected by the fraction recovery rate of the above manufacturing method (E1 and E2). Calculated.
  • Table 3 shows the drug content (drug content) of Example 1-A, Example B-1, Example B-2, and Example B-3.
  • Test Example 2 Particle size measurement method After diluting the PLGA solution 200 times with PBS(-) (phosphate buffered saline, manufactured by Sigma-Aldrich), dynamic light scattering was performed using Zetasizer nanoZS (manufactured by Malvern). The average particle diameter and particle size distribution were measured by the method.
  • PBS(-) phosphate buffered saline, manufactured by Sigma-Aldrich
  • Table 4 shows the average particle diameters of Example A-1, Example B-1, Example B-2, Example B-3, Example B-4, and Example B-5.
  • PLGA particles were formed, and the average particle diameter was 420 nm or less.
  • the average particle diameter was about 30 to 110 nm.
  • the particle size distribution (PdI) of Example A-1 was 0.05.
  • Example A-1 As shown in Table 5, the membrane potential of Example A-1 showed a strong negative charge.
  • the zeta potential of the PLGA particles alone used in Example A-1 was -37.5 mV. Telavancin is negatively charged, which suggests that the antibacterial agent is bound outward to the surface layer of the PLGA particles.
  • particles carrying such a strong negative charge repel each other and disperse without agglomerating, but the particles of the present invention have a slight tendency to agglomerate and are easily dispersed. It has the property of being redispersed and resuspended. This aggregation tendency is thought to be due to the interaction between the antibacterial agents that are outwardly bound to the surface layer of the PLGA particles. I can guess.
  • Test Example 4 In vitro antibacterial activity of PLGA formulation The in vitro antibacterial activity of the PLGA formulation (drug: telavancin) of Example A-1 was examined by the following method. (Test method) The minimum inhibitory concentration was measured as the in vitro antibacterial activity. The minimum inhibitory concentration (MIC: ⁇ g/ml) was measured according to the Clinical and Laboratory Standards Institute (CLSI) standard method, the inoculum amount was approximately 5 ⁇ 10 cfu/ml, and the test medium was cation-adjusted. It was performed by broth microdilution method using Mueller-Hinton broth (CAMHB).
  • CLSI Clinical and Laboratory Standards Institute
  • Test Example 5 Effect of acetyl-Lys-D-Ala-D-Ala addition on in vitro antibacterial activity
  • the following method was used to determine the effect of acetyl-Lys-D-Ala-D-Ala on the in vitro antibacterial activity of vancomycin, telavancin, and PLGA preparation (drug: telavancin).
  • the effect of adding Lys-D-Ala-D-Ala was investigated.
  • Test method S. aureus RN4220 so that the final concentration after mixing was approximately 1 ⁇ 10 cfu/ml, and vancomycin, telavancin, and the PLGA preparation of Example A-1 were mixed together so that the final concentration was 6.
  • the drug solutions prepared at concentrations of .4, 0.8, and 0.8 ⁇ g/ml were mixed on Mueller-Hinton agar (MHA). After sufficiently drying the surface of MHA containing bacteria and drugs, 10 ⁇ l of acetyl-Lys-D-Ala-D-Ala at 250, 500, 1000, and 2000 ⁇ g/ml were spotted on the MHA and incubated at 35°C. Cultured late.
  • acetyl-Lys-D-Ala-D-Ala is shown as D-Ala-D-Ala, and the numerical value is the spotted concentration and the unit is ⁇ g/ml.
  • acetyl-Lys-D-Ala-D-Ala is a compound similar to the bacterial cell wall component that is the binding target of vancomycin, and vancomycin was used as a control under conditions where no bacterial growth was observed in areas without spots.
  • telavancin has the characteristic of maintaining antibacterial activity by a mechanism that does not depend only on binding to acetyl-Lys-D-Ala-D-Ala, and the PLGA formulation of Example A-1 has this characteristic. It was found that the effect of the drug was reduced, and that it exhibited properties more similar to vancomycin.
  • Tissue migration after administration of PLGA preparation Tissue migration after administration of PLGA preparation will be examined by the following method.
  • the compound of the present invention is intravenously administered to ICR mice at a dose of 5 mg/kg, and at a predetermined time, the mice are exsanguinated by exsanguination by whole blood collection from the inferior aorta or inferior vena cava under isoflurane anesthesia. Thereafter, the liver, kidneys, and lungs are removed, and a 25% homogenate is prepared with distilled water. Further, the obtained blood is centrifuged and converted into plasma. Thereafter, each sample is measured using LC/MS/MS. The obtained concentration value ratio (each tissue/plasma) is defined as the tissue Kp value.
  • Test Example 7 Toxicity evaluation of PLGA formulation (7-1: in vitro cytotoxicity test) Cytotoxicity of the bulk compound of formula (I) and the PLGA formulation of Example 2 is performed by the following method.
  • Test method Pre-cultured Vero cells (final concentration: 2.0 x 10 4 cells/well) and each test substance are added to 96 wells and cultured for 72 hours under 5% CO 2 and 37°C. Thereafter, 10 ⁇ l/well of 0.01% resazurin solution is added, mixed, and cultured for 4 hours under 5% CO 2 and 37° C., and then the fluorescence value (Ex531 nm/Em590 nm) is measured using a microplate reader. The compound concentration (CC50) resulting in 50% cell survival rate is calculated from the fluorescence value at each test substance concentration.
  • the hemolysis rate of the compound compound represented by formula (I) and the PLGA preparation of Example 2 is evaluated by the following method.
  • Test method A 10 mM concentration solution of each test substance is prepared using 5% sugar solution as a solvent, and 12 types of preparation solutions are prepared for each test substance by 2-fold serial dilution to 0.0049 mM.
  • 100% hemolysis is prepared by mixing red blood cells with distilled water at the same dilution ratio as when preparing a 2% red blood cell suspension.
  • the supernatant is collected and the absorbance at 540 nm is measured.
  • the absorbance of the solvent and red blood cell suspension as well as the solvent and medium were defined as "0% hemolysis” and the absorbance of 100% hemolysis was defined as "100% hemolysis".
  • PH (%) (CR-VM) x 100/(VL-VR)
  • PH is the hemolysis rate
  • CR is the absorbance when the test substance preparation solution and 2% red blood cell suspension are mixed
  • VM is the absorbance when the test substance preparation solution and the medium are mixed
  • VL is the absorbance when the test substance preparation solution and the medium are mixed.
  • Absorbance and VR are the absorbances when a DMSO solution and a 2% red blood cell suspension are mixed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Robotics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

抗菌薬がPLGA粒子の表層に外向きに結合した、PLGA製剤を投与することによって、細網内皮系にとりこまれにくく、毒性も軽減されるとともに、血中滞留性を維持することができ、抗菌作用を高めることができる。

Description

抗菌薬を含有するPLGA製剤
 本発明は、抗菌薬を含有するPLGA製剤に関する。詳しくは、抗菌薬がPLGA粒子の表層に外向きに結合した、PLGA製剤に関する。さらに詳しくは、抗菌薬が脂溶性側鎖を有する抗菌薬であり、該抗菌薬の脂溶性側鎖とPLGA粒子の疎水性部分であるポリ乳酸が結合し、抗菌薬の多環ペプチド骨格構造がPLGA粒子の表層から外向きで存在する、PLGA製剤に関する。
 抗菌薬がPLGA粒子の表層に外向きに結合したPLGA製剤であれば、細網内皮系にとりこまれにくく、毒性も軽減されるとともに、血中滞留性を維持することができ、抗菌作用を高めることができる。
 近年,抗菌薬の発展には目覚しいものがあり、感染症治療に大いに貢献している。これらの抗菌薬の第1のターゲットは、感染症原因菌である。したがって、薬物の抗菌活性が重要となる。
 抗菌薬の中で、グリコペプチド抗生物質は、様々な微生物により産生される複雑な多環ペプチド骨格構造を有する抗生物質であり、大部分のグラム陽性菌に対して有効な抗菌剤を提供する。近年、ペニシリン、セファロスポリンなどに耐性の細菌が現れ、多剤耐性菌およびメチシリン耐性ブドウ球菌(MRSA)による感染は、医療現場において重要な問題を招いている。バンコマイシンのようなグリコペプチド系抗生物質は、このような微生物に対して有効であり、特にバンコマイシンはMRSAおよび他の耐性菌による感染の最後のツール薬物となっている。しかし、グリコペプチド系抗生物質の副作用として、腎障害がよく知られている。
 薬物を生体内で標的部位に指向する性質を与えることをターゲッティングという。種々のターゲッティング法のうち、キャリア(運搬体)を利用する方法は、最も一般的で有用性が高い。キャリア(運搬体)となる物質としては、リポソームなどの脂質微粒子、乳酸・グリコール酸共重合体(以下、PLGAという。)などの高分子マトリックス微粒子が知られている。PLGAは、生分解性かつ生体適合性の高い合成高分子を構成成分としており、安全性が高いことが知られている。
 特許文献1には、リガンドを含有するポリマー性微粒子、リガンドを含有するPLGA粒子が開示されている。さらに、リガンドは、微粒子の表面に組み込まれた第1の末端、および該微粒子の表面から外向きに向かう第2の末端を有することも開示されている。しかし、実施例はアビジン修飾されたPLGA粒子であり、被修飾のPLGA粒子の記載はない。また、リガンドとして抗菌薬は記載されていない。
 特許文献2の背景技術には、塩酸バンコマイシンの徐放化製剤として、poly(lactide-co-glycolide)(PLGA)のmicroparticleをキャリアとした製剤の報告があるが、この製剤では含有する塩酸バンコマイシンの約90%が24時間以内に放出されてしまい、長時間の至適濃度の維持はできないことが記載されている。
 特許文献3には、脂溶性又は水溶性の生理活性物質を、乳酸・グリコール酸共重合体で構成された生体適合性ナノ粒子に封入し、コーティングした薬剤溶出型ステントが開示されている。しかし、生体適合性ナノ粒子は、表面にキトサンを付着させることにより正電荷修飾されていることを特徴としている。
 特許文献4には、リュープロリドを含有するPLGA(RG502H)マイクロスフェアが開示されている。リュープロリドは(pyr)Glu-His-Trp-Ser-Tyr-D-Leu-Leu-Arg-ProNHCで表される、黄体形成ホルモン放出ホルモン誘導体(LHRH)である。また、マイクロスフェアの図式が示されているが、本発明とは異なり、薬物が表層に外向きに結合する記載も示唆もない。
 特許文献5には、薬物Aを担持する脂質粒子(リポソームまたはミセル)の製造方法が開示されているが、薬物Aが脂質粒子の表層に外向きに結合する記載も示唆もない。
特表2008-512350号公表 特開2009-184973号公報 特開2009-131672号公報 特開2005-035994号公表 国際公開第2019/088193号公報
 抗菌薬、特にグリコペプチド系抗菌薬、環状リポペプチド系抗菌薬の副作用を低減し、しかも耐性が少なく、抗菌活性を生じる製剤の開発が求められていた。
 本発明者らは、鋭意検討した結果、抗菌薬がPLGA粒子の表層に外向きに結合した、PLGA製剤を見出し、抗菌活性が発揮されることを見出した。抗菌薬がPLGA粒子の表層に外向きに結合したPLGA製剤であれば、有効成分の血中滞留性が増加することにより効果が持続し、肝臓等の細網内皮系に取り込まれる量が低減し、腎臓への有効成分量の移行が低減することにより、毒性等の副作用が低減するとともに、耐性をほとんど生じることなく、抗菌活性を発揮することが期待される。
 すなわち、本発明は以下の発明を包含する。
 (1)抗菌薬がPLGA粒子の表層に外向きに結合した、PLGA製剤。
 (2)抗菌薬が脂溶性側鎖を有する抗菌薬である、上記(1)記載のPLGA製剤。
 (3)該抗菌薬の脂溶性側鎖とPLGA粒子の疎水性部分であるポリ乳酸が結合した、上記(2)記載のPLGA製剤。
 (4)抗菌薬の脂溶性側鎖が、
下式:
Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006

で示される基である、上記(2)または(3)記載のPLGA製剤。
 (4a)抗菌薬の脂溶性側鎖が、
下式:
Figure JPOXMLDOC01-appb-C000007

で示される基である、上記(2)または(3)記載のPLGA製剤。
 (4b)抗菌薬の脂溶性側鎖が、
下式:
Figure JPOXMLDOC01-appb-C000008

で示される基である、上記(2)または(3)記載のPLGA製剤。
 (5)抗菌薬の脂溶性側鎖のCLogPが2~10である、上記(2)または(3)記載のPLGA製剤。
 (5a)抗菌薬の脂溶性側鎖のCLogPが2.4~8.5である、上記(2)または(3)記載のPLGA製剤。
 (5b)抗菌薬の脂溶性側鎖のCLogPが2.61~7.44である、上記(2)または(3)記載のPLGA製剤。
 (5c)抗菌薬の脂溶性側鎖のCLogPが4~6である、上記(2)または(3)記載のPLGA製剤。
 (6)抗菌薬がグリコペプチド系抗菌薬または環状リポペプチド系抗菌薬である、上記(1)~(5)のいずれかに記載のPLGA製剤。
 (7)抗菌薬が、式(I):
Figure JPOXMLDOC01-appb-C000009

で示される化合物、
テラバンシン、
オリタバンシン、
テイコプラニン、
ダルババンシン、
ミデプラニン、
N'-p-オクチルオキシベンジルグリシル-バンコマイシン、
(4''R)-22-O-(3-アミノ-3-C-メチル-2,3,6-トリデオキシ-α-L-アラビノ-ヘキソピラノシル)-3''-[(4-クロロベンジル)アミノ]-3''-デアミノバンコマイシン、
(4''R)-3''-N-(1,1'-ビフェニル-4-イルメチル)-22-O-(3-アミノ-3-C-メチル-2,3,6-トリデオキシ-α-L-アラビノ-ヘキソピラノシル)バンコマイシン、
(3S, 15R, 18R, 34R, 35S, 38S, 48S, 50aR) -5, 31-dichloro-56-[2-deoxy-2-[ (10-methyl-1-oxoundecyl) amino] -β-D-glucopyranosyloxy] -N-[3-(dimethylamino) propyl] -6, 11, 34, 40, 44-pentahydroxy-42-(α-D-mannnopyranosyloxy) -15-(methylamino) -2, 16, 36, 50, 51, 59-hexaoxo-2, 3, 16, 17, 18, 19, 35, 36, 37, 38, 48, 49, 50, 50a-tetradecahydro-1H, 15H,34H-20, 23:30, 33-dietheno-3, 18:35, 48-bis (iminomethano) -4, 8:10, 14:25, 28:43, 47-tetrametheno [1, 14, 6, 22] dioxadiazacyclooctacosino [4, 5-m] [10, 2, 16] benzoxadiazacyclotetracosine-38-carboxamide、
N-(11-Amino-4,8-diazaundecyl)-5,3 1-dichloro-56-[2-deoxy-2-(10-methylundecanamido)-β-D-glucopyranosyloxy]-6,11,34,40, 44-pentahydroxy-42-(α-D-mannopyranosyloxy)-2,16,36,50,51,59-hexaoxo-2,3,16,17,18, 19,35,36,37,38,48,49,50,50a,51,52-hexadecahydro-1H,15H,34H-20,23:30,33-dietheno-3,18:35,48-bis(iminomethano)-4,8:10,14:25,28:43,47-tetrametheno[1,14,6,22]dioxadiazacyclooctacosino[4,5-m][10,2,16]benzooxadiazacyclotetracosine-38-carboxamide、
N-[3-([[(1S,2R,18R,19R,22S,25R,28R,40R)-48-[[(2S,3R,4S,5S,6R)-3-[[(2S,4S,5S,6S)-4-Amino-5-hydroxy-4,6-dimethyltetrahydro-2H-pyran-2-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]oxy]-22-(2-amino-2-oxoethyl)-5,15-dichloro-2,18,32,35,37-pentahydroxy-19-[[(2R)-4-methyl-2-(methylamino)pentanoyl]amino]-20,23,26,42,44-pentaoxo-7,13-dioxa-21,24,27,41,43-pentaazaoctacyclo[26.14.2.2(3,6).2(14,17).1(8,12).1(29,33).0(10,25).0(34,39)]pentaconta-3,5,8(48),9,11,14,16,29(45),30,32,34,36,38,46,49-pentadecaen-40-yl]carbonyl]amino)propyl]-N,N-dimethyloctan-1-aminium、もしくは
(1S,2R,18R,19R,22S,25R,28R,40R)-48-[2-O-(3-Amino-2,3,6-trideoxy-3-methyl-alpha-L-lyxo-hexopyranosyl)-beta-D-glucopyranosyloxy]-22-(carbamoylmethyl)-5,15-dichloro-37-[N-[6-(4-hexylphenylsulfonamido)hexyl]carbamoyloxy]-2,18,32,35-tetrahydroxy-19-(N-methyl-D-leucylamino)-20,23,26,42,44-pentaoxo-7,13-dioxa-21,24,27,41,43-pentaazaoctacyclo[26.14.2.2(3,6).2(14,17).1(8,12).1(29,33).0(10,25).0(34,39)]pentaconta-3,5,8(48),9,11,14,16,29(45),30,32,34,36,38,46,49-pentadecaene-40-carboxylic acid; 28-O-[N-[6-(4-Hexylphenylsulfonamido)hexyl]carbamoyl]vancomycin、
またはその製薬上許容される塩からなる群から選択される1以上である、上記(1)~(6)のいずれかに記載のPLGA製剤。
 (8)抗菌薬が式(I)で示される化合物、テラバンシンもしくはオリタバンシン、またはその製薬上許容される塩である、上記(7)記載のPLGA製剤。
 (9)抗菌薬がテラバンシンまたはその塩酸塩である、上記(8)記載のPLGA製剤。
 (10)PLGA粒子が、ポリ乳酸とポリグリコール酸のブロック共重合体である、上記(1)~(9)のいずれかに記載のPLGA製剤。
 (11)PLGA粒子において、乳酸に由来する構成単位のモル比率が85~50%であり、グリコール酸に由来する構成単位のモル比率が15~50%である、上記(10)記載のPLGA製剤。
 (12)PLGA粒子において、乳酸に由来する構成単位のモル比率が75%であり、グリコール酸に由来する構成単位のモル比率が25%であり、PLGA粒子の分子量が4,000~15,000である、上記(11)記載のPLGA製剤。
 (13)PLGA粒子において、乳酸に由来する構成単位のモル比率が50%であり、グリコール酸に由来する構成単位のモル比率が50%であり、PLGA粒子の分子量が7,000~17,000である、上記(11)記載のPLGA製剤。
 (14)PLGA製剤の平均粒子径が5~500nmである、上記(1)~(13)のいずれかに記載のPLGA製剤。
 (15)PLGA製剤の平均粒子径が30~200nmである、上記(14)記載のPLGA製剤。
 (15a)PLGA製剤の平均粒子径が30~150nmである、上記(14)記載のPLGA製剤。
 (15b)PLGA製剤の平均粒子径が30~110nmである、上記(14)記載のPLGA製剤。
 (16a)PLGA製剤中のPLGA粒子と抗菌薬との重量比が、15:1~20:1である、上記(1)~(15)のいずれかに記載のPLGA製剤。
 (16b)注射剤または点滴製剤である、上記(1)~(15)のいずれかに記載のPLGA製剤。
 (17)テラバンシンがPLGA粒子に結合した、PLGA製剤。
 (18)PLGA製剤の平均粒子径が30~200nmである、上記(17)記載のPLGA製剤。
 (18a)PLGA製剤の平均粒子径が50~150nmである、上記(17)記載のPLGA製剤。
 (18b)PLGA製剤の平均粒子径が90~120nmである、上記(17)記載のPLGA製剤。
 (19)表面が負電荷に帯電した、上記(1)~(18)のいずれかに記載のPLGA製剤。
 (20)以下の工程を含む、抗菌薬がPLGA粒子の表層に外向きに結合した、PLGA製剤の製造方法:
(A)PLGAをアセトン/エタノール溶液またはアセトニトリル/水溶液に溶解して第一液を調製する工程、
(B)抗菌薬をジメチルスルホキシドに溶解して第二液を調整する工程、
(C)第一液と第二液を混合し第三液を調整する工程、
(D)第三液とショ糖溶液を送液混合する工程、および
(E)抗菌薬が結合したPLGA粒子をフラクションとして回収する工程。
 (21)(E)の抗菌薬が結合したPLGA粒子において、(B)で使用した抗菌薬の約70~100%が結合されている、上記(20)記載の製造方法。
に関する。
 本発明の抗菌薬を含有するPLGA製剤は、抗菌薬がPLGA粒子の表層に外向きに結合したPLGA製剤であり、副作用が低減できるとともに、血中滞留性を向上させ、抗菌活性を生じることができる。
S.aureus RN4220を混合後の終濃度が約1×10の7乗cfu/mlとなるように調製した菌液と、バンコマイシンの混合後の終濃度が6.4μg/mlとなるように調製した薬液をミューラーヒントン寒天培地(MHA)に混合し、菌および薬物含有のMHAの表面を十分に乾燥させた後、acetyl-Lys-D-Ala-D-Alaを250、500、1000および2000μg/mlを10μlずつMHA上にスポットし、35℃で一晩培養した結果。 S.aureus RN4220を混合後の終濃度が約1×10の7乗cfu/mlとなるように調製した菌液と、テラバンシンの混合後の終濃度が0.8μg/mlとなるように調製した薬液をミューラーヒントン寒天培地(MHA)に混合し、菌および薬物含有のMHAの表面を十分に乾燥させた後、acetyl-Lys-D-Ala-D-Alaを250、500、1000および2000μg/mlを10μlずつMHA上にスポットし、35℃で一晩培養した結果。 S.aureus RN4220を混合後の終濃度が約1×10の7乗cfu/mlとなるように調製した菌液と、実施例A-1のPLGA製剤の混合後の終濃度が0.8μg/mlとなるように調製した薬液をミューラーヒントン寒天培地(MHA)に混合し、菌および薬物含有のMHAの表面を十分に乾燥させた後、acetyl-Lys-D-Ala-D-Alaを250、500、1000および2000μg/mlを10μlずつMHA上にスポットし、35℃で一晩培養した結果。
 以下に本明細書において用いられる各用語の意味を説明する。各用語は特に断りのない限り、単独で用いられる場合も、または他の用語と組み合わせて用いられる場合も、同一の意味で用いられる。
 式(I)で示される化学構造式も、それぞれの式において統一して用いられる。
 「からなる」という用語は、構成要件のみを有することを意味する。
 「含む」または「含有する」という用語は、構成要件に限定されず、記載されていない要素を排除しないことを意味する。
 また、本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。
 また、本明細書において使用される用語は、特に言及しない限り、当上記分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
 本発明は、抗菌薬がPLGA粒子の表層に外向きに結合した、PLGA製剤である。該PLGA製剤においては、抗菌薬がPLGA粒子の表層に外向きに結合していればよい。抗菌薬の一部はPLGA中に内包されていてもよく、PLGAの表層に内向きに結合していてもよい。
 抗菌薬がPLGA粒子の表層に外向きに結合していることは、SPR(Surface plasmon resonance)やQCM(Quartz crystal microbalance)等の結合評価(Lys-D-Ala-D-Alaペプチドとの結合の有無)で確認することが出来る。
 本明細書中における「抗菌薬」とは、原薬すなわち医薬品の有効成分である、抗菌活性を示す化合物を意味する。本明細書中における「抗真菌薬」とは、原薬すなわち医薬品の有効成分である、抗真菌活性を示す化合物を意味する。
 本発明で使用される有効成分は、ペニシリン系、セフェム系、カルバペネム系、オキサセフェム系、アミノグリコシド系、マクロライド系、テトラサイクリン系、クロラムフェニコール系、オキサゾリジノン系、クリンダマイシン系、キノロン系、サルファ剤、トリメトプリム系、ホスホマイシン系、イソニアジド、リファマイシン系、ピラジナミド、エタンブトール、デラマニド、プレトマニド、ポリエンマクロライド系、アゾール系、アリルアミン系の抗細菌薬または抗真菌薬であるが、詳しくは、毒性が強いグリコペプチド系抗菌薬、環状リポペプチド系抗菌薬、エキノキャンディン系抗真菌薬等である。好ましくは、グリコペプチド系抗菌薬もしくは環状リポペプチド系抗菌薬であり、より好ましくはグリコペプチド系抗菌薬であり、特に好ましくは脂溶性側鎖を有するグリコペプチド系抗菌薬である。脂溶性側鎖を有するグリコペプチド系抗菌薬は、Lipoglycopeptidesと称されることもある。
 本発明の医薬製剤において使用される抗菌薬は、殺菌性または静菌性の活性を発揮することがある。本発明の様々な実施形態において、医薬製剤は2つ以上の抗菌薬を含むことができ、例えば、製剤は殺菌性および静菌性の抗菌薬の組合せを含むことができる。
 一般的に細菌に対して殺菌活性を発揮することは、抗菌薬が本組成物の抗生物質に感受性である細菌の1つまたは複数の種を死滅させ、または決定的に損傷する本組成物の能力を有することを意味する。しかしながら、静菌性の活性を有する抗菌薬は、本組成物の抗生物質に感受性である標的の細菌の種の1つまたは複数を死滅させずに、細菌の1つまたは複数の種の増殖を阻害する能力を有する。
 本発明の好ましい実施形態において、医薬製剤の抗菌薬は、それだけには限定されないが、メチシリン耐性黄色ブドウ球菌(MRSA)細菌を含めたグラム陽性細菌に対して殺菌性または静菌性である。本発明の様々な実施形態において、本発明の有効成分である抗菌薬はグリコペプチド系抗菌薬(糖ペプチド抗生物質)である。本発明の文脈において用いられ、当業者には知られている「グリコペプチド系抗菌薬」の語は、細菌の細胞壁の増殖を阻害することを含む作用機序を有する抗菌薬を意味する。グリコペプチド系抗菌薬のこのクラスにおける抗菌薬には、それだけには限定されない。
例えば、(1S,2R,18R,19R,22S,25R,28R,40S)-2-(3-Amino-2,3,6-trideoxy-3-C-methyl-α-L-arabino-hexopyranosyloxy)-22-carbamoylmethyl-5,15-dichloro-50-(6-{[5-(4-chlorophenyl)thiophen-2-yl]methylamino}-6-deoxy-β-D-galactopyranosyl-(1-4)-β-D-glucopyranosyloxy)-18,32,35,37-tetrahydroxy-19-[(2R)-4-methyl-2-(methylamino)pentanoylamino]-20,23,26,42,44-pentaoxo-7,13-dioxa-21,24,27,41,43-pentaazaoctacyclo[26.14.2.23,6.214,17.18,12.129,33.010,25.034,39]pentaconta-3,5,8,10,12(50),14,16,29,31,33(49),34,36,38,45,47-pentadecaene-40-carboxylic acid(以下本化合物を「式(I)で示される化合物」という場合がある。)、
テラバンシン、
オリタバンシン、
テイコプラニン(Teicoplanin、Gruppro Lepetit社、AstraZeneca社)、
ダルババンシン(Dalbavancin、例えばBI-397、ファイザー社)、
ミデプラニン(Mideplanin、例えばMDL62873、Marion Merrell Dow社、Sanofi社)、
N'-p-オクチルオキシベンジルグリシル-バンコマイシン(例えばGINA-220、Russian Academy & Chiron社)、
(4''R) -22-O-(3-アミノ-3-C-メチル-2,3,6-トリデオキシ-α-L-アラビノ-ヘキソピラノシル)-3''-[(4-クロロベンジル)アミノ]-3''-デアミノバンコマイシン(例えばLY191145、Eli Lilly社)、
(4''R) -3''-N-(1,1'-ビフェニル-4-イルメチル)-22-O-(3-アミノ-3-C-メチル-2,3,6-トリデオキシ-α-L-アラビノ-ヘキソピラノシル)バンコマイシン(例えばLY307599、Eli Lilly社)、
(3S,15R,18R,34R,35S,38S,48S,50aR)-5,31-Dichloro-56-[2-deoxy-2-[(10-methyl-1-oxoundecyl)amino]-β-D-glucopyranosyloxy]-N-[3-(dimethylamino)propyl]-6,11,34,40,44-pentahydroxy-42-(α-D-mannopyranosyloxy)-15-methylamino)-2,16,36,50,51,59,hexaoxo-2,3,16,17,18,19,35,36,37,38,48,49,50,50a-tetradecahydro-1H,15H,34H-20,23:30,33-dietheno-3,18:35,48-bis(iminomethano)-4,8:10,14:25,28:43,47-tetrametheno[1,14,6,22] benzoxadiazacyclotetracosine-38-carboxam(例えばMDL63246、Marion Merrell Dow社、、Sanofi社)、
N-(11-Amino-4,8-diazaundecyl)-5,3 1-dichloro-56-[2-deoxy-2-(10-methylundecanamido)-β-D-glucopyranosyloxy]-6,11,34,40, 44-pentahydroxy-42-(α-D-mannopyranosyloxy)-2,16,36,50,51,59-hexaoxo-2,3,16,17,18, 19,35,36,37,38,48,49,50,50a,51,52-hexadecahydro-1H,15H,34H-20,23:30,33-dietheno-3,18:35,48-bis(iminomethano)-4,8:10,14:25,28:43,47-tetrametheno[1,14,6,22]dioxadiazacyclooctacosino[4,5-m][10,2,16]benzooxadiazacyclotetracosine-38-carboxamide(例えばMDL63042、Marion Merrell Dow社)、
N-[3-([[(1S,2R,18R,19R,22S,25R,28R,40R)-48-[[(2S,3R,4S,5S,6R)-3-[[(2S,4S,5S,6S)-4-Amino-5-hydroxy-4,6-dimethyltetrahydro-2H-pyran-2-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]oxy]-22-(2-amino-2-oxoethyl)-5,15-dichloro-2,18,32,35,37-pentahydroxy-19-[[(2R)-4-methyl-2-(methylamino)pentanoyl]amino]-20,23,26,42,44-pentaoxo-7,13-dioxa-21,24,27,41,43-pentaazaoctacyclo[26.14.2.2(3,6).2(14,17).1(8,12).1(29,33).0(10,25).0(34,39)]pentaconta-3,5,8(48),9,11,14,16,29(45),30,32,34,36,38,46,49-pentadecaen-40-yl]carbonyl]amino)propyl]-N,N-dimethyloctan-1-aminium(例えばYV11455)、
もしくは(1S,2R,18R,19R,22S,25R,28R,40R)-48-[2-O-(3-Amino-2,3,6-trideoxy-3-methyl-alpha-L-lyxo-hexopyranosyl)-beta-D-glucopyranosyloxy]-22-(carbamoylmethyl)-5,15-dichloro-37-[N-[6-(4-hexylphenylsulfonamido)hexyl]carbamoyloxy]-2,18,32,35-tetrahydroxy-19-(N-methyl-D-leucylamino)-20,23,26,42,44-pentaoxo-7,13-dioxa-21,24,27,41,43-pentaazaoctacyclo[26.14.2.2(3,6).2(14,17).1(8,12).1(29,33).0(10,25).0(34,39)]pentaconta-3,5,8(48),9,11,14,16,29(45),30,32,34,36,38,46,49-pentadecaene-40-carboxylic acid; 28-O-[N-[6-(4-Hexylphenylsulfonamido)hexyl]carbamoyl]vancomycin(例えばLT-00786、BioMarin社)、
またはその製薬上許容される塩、およびこれらの誘導体等がある。
 製薬上許容される塩としては、塩酸塩、リン酸塩、硫酸塩、硝酸塩、酢酸塩、フマル酸塩、トリフルオロ酢酸塩、ビス(トリフルオロ酢酸)塩、トシル酸塩、ナトリウム塩、カリウム塩、カルシウム塩、アンモニウム塩などの塩があげられる。
 より好ましくは、式(I)で示される化合物、テラバンシン、もしくはオリタバンシン、またはその製薬上許容される塩であり、より好ましくは、テラバンシンまたはその塩酸塩である。
 すなわち、本発明の態様の一つして、テラバンシンまたはその塩がPLGA粒子に結合したPLGA製剤を挙げることができる。さらに好ましい態様として、PLGA製剤の平均粒子径が30~200nmである、テラバンシンがPLGA粒子に結合したPLGA製剤を挙げることができる。
式(I):
Figure JPOXMLDOC01-appb-C000010

で示される化合物

テラバンシン
化学名:(3S, 6R, 7R, 22R, 23S, 26S, 36R, 38aR) -3-(2-amino-oxoethyl) -10, 19-dichloro-44-[ [3-[ [2-(decanylamino) ethyl] amino] -2, 3, 6-trideoxy-3-C-metyl-α-L-lyxo-hexopyranosy-(1→2)-β-D-glucopyranosyl] oxy] -7, 22, 28, 30, 32-pentahydroxy-6-[ (2R) -4-methyl-2-(methylamino) pentanamido] -2, 5, 24, 38, 39-pentaoxo-29-[ [(phosphonomethyl) amino] methyl] -2, 3, 4, 5, 6, 7, 23, 24, 25, 26, 36, 37, 38, 38a-tetradecahydro-1H, 22H-23, 36-(epiminomethano) -8, 11:18, 21-dietheno-13, 16:31, 35-bis (metheno) [1, 6, 9] oxadiazacyclohexadecino [4, 5-m] [10, 2, 16] benzoxadiazacyclotetracosine-26-carboxylic acid
Figure JPOXMLDOC01-appb-C000011

オリタバンシン
化学名:(4''R) -22-O-(3-amino-2, 3, 6-trideoxy-3-C-methyl-α-L-arabino-hexopyranosyl) -N3''-[p-(p-chlorophenyl) benzyl] vancomycin
Figure JPOXMLDOC01-appb-C000012

テイコプラニンA2-2
Figure JPOXMLDOC01-appb-C000013

テイコプラニンA2-1
Figure JPOXMLDOC01-appb-C000014

テイコプラニンA2-3
Figure JPOXMLDOC01-appb-C000015

テイコプラニンA2-4
Figure JPOXMLDOC01-appb-C000016

テイコプラニンA2-5
Figure JPOXMLDOC01-appb-C000017

ダルババンシンB0
 以下、フリー体の構造式を示す。
Figure JPOXMLDOC01-appb-C000018

ダルババンシンA0
Figure JPOXMLDOC01-appb-C000019

ダルババンシンA1
Figure JPOXMLDOC01-appb-C000020

ダルババンシンB1
Figure JPOXMLDOC01-appb-C000021

ダルババンシンC0
Figure JPOXMLDOC01-appb-C000022
ダルババンシンC1
Figure JPOXMLDOC01-appb-C000023

ミデプラニン(MDL62873)
 6化合物の混合物であることが知られているが、主要な構成成分の化学名、構造式を示す。
化学名:34-[ (2-acetamide-2-deoxy-β-D-glucopyranosyl) oxy] -15-amino-22, 31-dichloro-56-[ [2-deoxy-2-(8-methylnonamido) -β-D-glucopyranosyl] oxy] -N-[3-(dimethylamino) propyl] -2, 3, 16, 17, 18, 19, 35, 36, 37, 38, 48, 49, 50, 50a-tetradecahydro-6, 11, 40, 44-tetrahydroxy-42-(α-D-mannopyranosyloxy) -2, 16, 36, 50, 51, 59-hexaoxo-1H, 15H, 34H-20, 23:30, 33-dietheno-3, 18:35, 48-bis (iminomethano) -4, 8:10, 14:25, 28:43, 47-tetrametheno-28H-[1, 14, 6, 22] dioxadiazacyclooctacosino [4, 5-m] [10, 2, 16] benzoxadiazacyclotetracosine-38-carboxamide
Figure JPOXMLDOC01-appb-C000024

GINA-220
化学名:N‘-p-octyloxybenzylglycyl-vancomycin
Figure JPOXMLDOC01-appb-C000025

LY191145/
化学名:(4''R)-22-O-(3-アミノ-3-C-メチル-2,3,6-トリデオキシ-α-L-アラビノ-ヘキソピラノシル)-3''-[(4-クロロベンジル)アミノ]-3''-デアミノバンコマイシン/
LY307599
化学名:(4''R)-3''-N-(1,1'-ビフェニル-4-イルメチル)-22-O-(3-アミノ-3-C-メチル-2,3,6-トリデオキシ-α-L-アラビノ-ヘキソピラノシル)バンコマイシン
Figure JPOXMLDOC01-appb-C000026

MDL63246
化学名:(3S, 15R, 18R, 34R, 35S, 38S, 48S, 50aR) -5, 31-dichloro-56-[2-deoxy-2-[ (10-methyl-1-oxoundecyl) amino] -β-D-glucopyranosyloxy] -N-[3-(dimethylamino) propyl] -6, 11, 34, 40, 44-pentahydroxy-42-(α-D-mannnopyranosyloxy) -15-(methylamino) -2, 16, 36, 50, 51, 59-hexaoxo-2, 3, 16, 17, 18, 19, 35, 36, 37, 38, 48, 49, 50, 50a-tetradecahydro-1H, 15H,34H-20, 23:30, 33-dietheno-3, 18:35, 48-bis (iminomethano) -4, 8:10, 14:25, 28:43, 47-tetrametheno [1, 14, 6, 22] dioxadiazacyclooctacosino [4, 5-m] [10, 2, 16] benzoxadiazacyclotetracosine-38-carboxamide
Figure JPOXMLDOC01-appb-C000027

MDL63042
化学名:N-(11-Amino-4,8-diazaundecyl)-5,3 1-dichloro-56-[2-deoxy-2-(10-methylundecanamido)-β-D-glucopyranosyloxy]-6,11,34,40, 44-pentahydroxy-42-(α-D-mannopyranosyloxy)-2,16,36,50,51,59-hexaoxo-2,3,16,17,18, 19,35,36,37,38,48,49,50,50a,51,52-hexadecahydro-1H,15H,34H-20,23:30,33-dietheno-3,18:35,48-bis(iminomethano)-4,8:10,14:25,28:43,47-tetrametheno[1,14,6,22]dioxadiazacyclooctacosino[4,5-m][10,2,16]benzooxadiazacyclotetracosine-38-carboxamide
Figure JPOXMLDOC01-appb-C000028

YV11455
 以下、フリー体の化学名、構造式を示す。
化学名:N-[3-([[(1S,2R,18R,19R,22S,25R,28R,40R)-48-[[(2S,3R,4S,5S,6R)-3-[[(2S,4S,5S,6S)-4-Amino-5-hydroxy-4,6-dimethyltetrahydro-2H-pyran-2-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]oxy]-22-(2-amino-2-oxoethyl)-5,15-dichloro-2,18,32,35,37-pentahydroxy-19-[[(2R)-4-methyl-2-(methylamino)pentanoyl]amino]-20,23,26,42,44-pentaoxo-7,13-dioxa-21,24,27,41,43-pentaazaoctacyclo[26.14.2.2(3,6).2(14,17).1(8,12).1(29,33).0(10,25).0(34,39)]pentaconta-3,5,8(48),9,11,14,16,29(45),30,32,34,36,38,46,49-pentadecaen-40-yl]carbonyl]amino)propyl]-N,N-dimethyloctan-1-aminium
Figure JPOXMLDOC01-appb-C000029

LT-00786
化学名:(1S,2R,18R,19R,22S,25R,28R,40R)-48-[2-O-(3-Amino-2,3,6-trideoxy-3-methyl-alpha-L-lyxo-hexopyranosyl)-beta-D-glucopyranosyloxy]-22-(carbamoylmethyl)-5,15-dichloro-37-[N-[6-(4-hexylphenylsulfonamido)hexyl]carbamoyloxy]-2,18,32,35-tetrahydroxy-19-(N-methyl-D-leucylamino)-20,23,26,42,44-pentaoxo-7,13-dioxa-21,24,27,41,43-pentaazaoctacyclo[26.14.2.2(3,6).2(14,17).1(8,12).1(29,33).0(10,25).0(34,39)]pentaconta-3,5,8(48),9,11,14,16,29(45),30,32,34,36,38,46,49-pentadecaene-40-carboxylic acid; 28-O-[N-[6-(4-Hexylphenylsulfonamido)hexyl]carbamoyl]vancomycin
Figure JPOXMLDOC01-appb-C000030

 以下のものも抗菌薬として使用できる。
5,31-ジクロロ-38-デ(メトキシカルボニル)-7-デメチル-15-デアミノ-19-デオキシ-56-O-[2-デオキシ-2-[(10-メチル-1-オキソウンデシル)アミノ]-β-D-グルコピラノシル]-38-[[[3-(ジメチルアミノ)プロピル]アミノ]カルボニル]-42-O-α-D-マンノピラノシル-15-(メチルアミノ)リストマイシンAアグリコン
 本発明で用いられる抗菌薬としては、グリコペプチド系抗菌薬の他に、環状リポペプチド系抗菌薬が用いられる。環状リポペプチド系抗菌薬の例としては、ダプトマイシン(Daptomycin)、ラモプラニン(Ramoplanin)、プルスバシンA3(Plusbacin A3)、スタロバシンI(Stalobacin I)、ライソシンE(Lysocin E)、ミカファンギン(Micafungin)、カスポファンギン(Caspofungin)、アニデュラファンギン(Anidulafungin)、アミノキャンディン(Aminocandin)もしくはレザファンギン(Rezafungin)、またはその製薬上許容される塩、およびこれらの誘導体が含まれる。
 好ましくは、ダプトマイシン(Daptomycin、Cubist Pharmaceuticals社)、ラモプラニン(Ramoplanin)、プルスバシンA3(Plusbacin A3)、スタロバシンI(Stalobacin I)、ライソシンE(Lysocin E)、ミカファンギンナトリウム(Micafungin sodium、Astellas Pharma社)、カスポファンギン酢酸塩(Caspofungin Acetate、Merck社)、アニデュラファンギン(Anidulafungin、Eli Lilly社)、アミノキャンディン塩酸塩(Aminocandin、例えばNXL-201)Sanofi-Aventis社)、もしくはレザファンギン酢酸塩(Rezafungin Acetate、例えばCD-101、CidaraTherapeutics社)が用いられる。
ダプトマイシン
Figure JPOXMLDOC01-appb-C000031

ラモプラニン
Figure JPOXMLDOC01-appb-C000032

プルスバシンA3
Figure JPOXMLDOC01-appb-C000033

スタロバシンI
Figure JPOXMLDOC01-appb-C000034

ライソシンE(Lysocin E)
Figure JPOXMLDOC01-appb-C000035

ミカファンギン
 以下、フリー体の構造式を示す。
Figure JPOXMLDOC01-appb-C000036

カスポファンギン
 以下、フリー体の構造式を示す。
Figure JPOXMLDOC01-appb-C000037

アニデュラファンギン
Figure JPOXMLDOC01-appb-C000038

アミノキャンディン
 以下、フリー体の構造式を示す。
Figure JPOXMLDOC01-appb-C000039

レザファンギン
Figure JPOXMLDOC01-appb-C000040
 本明細書中における「PLGA」とは、乳酸・グリコール酸共重合体のことであり、乳酸とグリコール酸が共重合したブロックポリマーである。PLGAは、ポリ(乳酸-co-グリコール酸)、ポリ(乳酸・グリコール酸)共重合体、ポリ(ラクチド-コ-グリコリド)、Poly Lactic-co-Glycolic Acidと称されることもある。
 PLGAは、乳酸に由来する、疎水性の「ポリ乳酸(PLA)」と、グリコール酸に由来する、親水性の「ポリグリコール酸(PGA)」の相補した物性をもつ。
 乳酸に由来する構成単位としては、D,L-乳酸重合体、L-乳酸重合体、D-乳酸重合体、D,L-ラクチド重合体、L-ラクチド重合体およびD-ラクチド重合体から選択される。
 PLGAは、体内で加水分解されて乳酸とグリコール酸に戻り、さらにTCA回路(Tricarboxylicacid cycle)で代謝されるため、生分解性かつ生体適合性の高い合成高分子である。
 PLGAは、乳酸とグリコール酸を、イオン交換樹脂を触媒として弱い減圧下に加熱し、縮合重合させることにより製造することができる。その際、乳酸に代えて、ラクチドを用いてもよい。
 PLGAは市販品であってもよい。市販品としては、例えば、RESOMER(登録商標) RG502、RESOMER(登録商標) RG502H、RESOMER(登録商標) RG503、RESOMER(登録商標) RG503H、RESOMER(登録商標) RG504、RESOMER(登録商標) RG504H、RESOMER(登録商標) RG505、RESOMER(登録商標) RG635H、RESOMER(登録商標) RG752H、RESOMER(登録商標) RG752S、RESOMER(登録商標) RG753H、RESOMER(登録商標) RG753S、RESOMER(登録商標) RG755S、RESOMER(登録商標) RG756S、RESOMER(登録商標) RG750S、RESOMER(登録商標) RG757S、RESOMER(登録商標) RG858S、RESOMER(登録商標) LG824S、RESOMER(登録商標) LG855S、RESOMER(登録商標) LG857S(EVONIK社製)、PURASORB PDLG 5002、PURASORB PDLG 5002A、PURASORB PDLG 5002AY、PURASORB PDLG 5004、PURASORB PDLG 5004A、PURASORB PDLG 5008、PURASORB PDLG5010、PURASORB PDLG5505G、PURASORB PDLG75016A、PURASORB PDLG7502、PURASORB PDLG7502A、PURASORB PDLG7504、PURASORB PDLG7504A、PURASORB PDLG7507、PURASORB PDLG7507Y、PURASORB PDLG7509、PURASORB PDLG7509Y、PURASORB PDLG7510、PURASORB PDLG8503、PURASORB PDLG8505A(Corbion社製)、Poly(Lactic-co-Glycolic Acid), Acid Endcapped、Poly(Lactic-co-Glycolic Acid),Ester Endcapped、Poly(Lactic-co-Glycolic Acid),O-Acetyl/Carboxylic Acid Endcapped、Poly(Lactic-co-Glycolic) Copolymer,Ester Endcapped、Star Poly(Lactic-co-Glycolic Acid)-Glucose、Poly(lactide-co-glycolide)-b-poly(ethylene glycol)-maleimide、Poly(lactide-co-glycolide)-b-poly(ethylene glycol)-carboxylic acid endcap、Poly(lactide-co-glycolide)-b-poly(ethylene glycol)-amine endcap、Poly(lactide-co-glycolide)-b-poly(ethylene glycol)-n-hydroxysuccinimide endcap、Poly(lactide-co―glycolide)-b-Poly(ethylene glycol)-Azide、Poly(lactide-co-glycolide)-b-Poly(ethylene glycol)-Azide copolymer、Poly(lactide-co-glycolide)-b-Poly(ethylene glycol)-b-Poly(lactide-co-glycolide)-diacrylate、Poly(lactide-co-glycolide)-b-Poly(ethylene glycol)-thiol、Poly(lactide-co-glycolide)-b-Poly(ethylene glycol)-Amine、Poly(lactide-co-glycolide)-b-poly(ethylene glycol)-Pyridine Dithioethylamide、Poly(lactide-co-glycolide)-b-Poly(ethylene glycol)4-arm star copolymer(Akina Inc.社製)等を用いることができる。また、それらのいずれかを組み合わせて用いることが出来る。
 特に、RESOMER(登録商標) RG502H、RESOMER(登録商標) RG752Hが好ましい。
 PLGAの末端基は、アルキルエステル、カルボン酸(free carboxylic acid)、エステル、酸から選択される。
 PLGAは、表面に荷電ポリマーを含んでもよい。荷電ポリマーは、限定されないが、キサンタンガム、グアーガム、キトサン、ヒアルロン酸、アルギン酸塩、キシログルカン、キサンタンガム、ポリカルボフィル、ポリアクリル酸、タマリンド種子の多糖、又はポリリジン等のポリアミノ等である。また、PLGAは、修飾により分岐していてもよい。
 PEGにより修飾されたPLGAも使用することが出来る。
 PLGAは、マイクロスフェアとして市販さている、Degradex(登録商標)PLGA等を使用してもよい。
 PLGAは、さらに、PLGAは、ポリ乳酸(PLA)、ポリグリコール酸(PGA)等の他の生体分解性高分子を含んでいてもよい。
 PLGAにおける、乳酸に由来する構成単位(L)と、グリコール酸に由来する構成単位(G)とのモル比率(L:G)としては、特に制限はなく、目的に応じて99:1~1:99の間で適宜選択することができるが、90:20~40:60が好ましく、85:15~50:50がより好ましく、75:25が特に好ましい。生理活性物質の均一な分散状態を実現するためには、このモル比率の選択が重要であり、PLGAの分子量の選択も同様に重要である。
 PLGAの分子量としては、特に制限はなく、目的に応じて3,000~400,000の間で適宜選択することができるが、3,500~40,000が好ましく、4,000~17,000がより好ましい。生理活性物質の均一な分散状態を実現するためには、この分子量の選択も重要である。
 本発明のPLGA製剤においては、抗菌薬の脂溶性側鎖とPLGA粒子の疎水性部分であるポリ乳酸が結合し、抗菌薬の多環ペプチド骨格構造がPLGA粒子の表層から外向きで存在する。PLGA粒子の疎水性部分であるポリ乳酸部分が、抗菌薬の脂溶性側鎖と結合することができる程度の大きさを有することが重要であり、それを踏まえて上記モル比及び分子量を選択することができる。
 PLGAは、疎水性のポリ乳酸部分を内核として、数十~数百万個の高分子が会合し、高分子ミセルを形成する。一般的に、薬物は内核の疎水性部分に内包されることが知られているが、本発明においては、薬物として脂溶性側鎖を有する抗菌薬を用いることにより、抗菌薬がPLGA粒子の表層に外向きに結合したPLGA製剤を提供する。
 本明細書中における「PLGA粒子」とは、PLGAが会合して形成した高分子ミセルのことである。「PLGA製剤」とは、薬物を含入したPLGA粒子のことである。
 本明細書中における「抗菌薬がPLGA粒子の表層に外向きに結合した、PLGA製剤」とは、抗菌薬がPLGA粒子と結合するとともに、抗菌薬の多環ペプチド骨格構造がPLGA粒子の表層から外向きに存在する、PLGA製剤のことである。さらに詳しくは、抗菌薬が脂溶性側鎖を有する抗菌薬であり、該抗菌薬の脂溶性側鎖とPLGA粒子の疎水性部分であるポリ乳酸が結合し、抗菌薬の多環ペプチド骨格構造がPLGA粒子の表層から外向きに存在する、PLGA製剤のことである。なお、「抗菌薬の脂溶性側鎖」とは、脂溶性を示す化学的な側鎖のことである。
 本明細書中における「結合」とは、水素結合、ファンデルワールス力などの非共有結合性かつ非イオン性の化学的相互作用、イオン性の化学結合、共有結合をいう。
 抗菌薬の脂溶性側鎖とPLGA粒子の疎水性部分であるポリ乳酸との結合は、非共有結合性かつ非イオン性の化学的相互作用が好ましい。
 本明細書中における「抗菌薬の脂溶性側鎖」とは、脂溶性を示す化学的な側鎖のことである。抗菌薬の脂溶性側鎖には、抗菌薬自体の脂溶性側鎖も含まれ、抗菌薬に化学修飾を施すことにより導入された脂溶性側鎖も含まれる。
 脂溶性側鎖としては、例えば、以下のような側鎖が例示される。
Figure JPOXMLDOC01-appb-C000041

Figure JPOXMLDOC01-appb-C000042

Figure JPOXMLDOC01-appb-C000043

Figure JPOXMLDOC01-appb-C000044
 本明細書中における「抗菌薬の脂溶性側鎖」としては、CLogPが2~10の脂溶性側鎖が好ましく、さらには、CLogPが2.4~8.5の脂溶性側鎖が好ましい。特にCLogPが2.61~7.44の脂溶性側鎖が好ましい。
 本明細書中における「CLogP」とは、LogPの予測値として最も頻繁に使われているものである。「CLogP」は化合物の部分構造(フラグメント)に分けて得られる計算値であり、HanschとLeoによってはじめて報告されている。フラグメントの疎水性と、それぞれのフラグメントからなる相互作用について補正した値がCLogPとなる。CLogPはChemDraw(登録商標)で計算可能である。
 本発明のPLGA製剤は、抗菌薬がPLGA粒子と結合するとともに、抗菌薬がPLGA粒子の表層に外向きに結合したPLGA製剤である。PLGA粒子の表層に外向きに存在する抗菌薬は、メチシリン感受性黄色ブドウ球菌(MSSA)およびメチシリン耐性黄色ブドウ球菌(MRSA)など、標的病原微生物の1.細胞壁前駆体、2.細胞膜、3.真菌の細胞壁合成酵素等との標的分子と特異的に結合するので、高い抗菌活性を発現するとともに、毒性を低減することができる。
 本発明のPLGA製剤には、表面が負電荷に帯電したPLGA製剤、表面が正電荷に帯電したPLGA製剤も含まれる。菌体の表面は負電荷を帯びており、抗菌活性の発揮という点からは、表面が正電荷に帯電したPLGA製剤が望ましいが、生体膜も負電荷を帯びているため、菌体の表面のみならず、生体膜とも作用する可能性がある。生体膜との作用を抑えつつ、分散性や滞留性を向上させるという点からは、表面が負電荷に帯電したPLGA製剤が好ましい。本発明のPLGA製剤の好ましい態様は、表面が負電荷に帯電したPLGA製剤である。表面が負電荷に帯電したPLGA製剤においても、十分な抗菌活性を発揮することができる。
 本発明の態様の一つとして、抗菌薬がPLGA粒子の表層に外向きに結合し、表面が負電荷に帯電したPLGA製剤が好ましい。
 PLGA製剤に用いるPLGAの好ましい態様としては、乳酸に由来する構成単位のモル比率が75%であり、グリコール酸に由来する構成単位のモル比率が25%であり、PLGA粒子の分子量が4,000~15,000であるPLGAが挙げられる。
 PLGA製剤に用いるPLGAの別の好ましい態様としては、乳酸に由来する構成単位のモル比率が50%であり、グリコール酸に由来する構成単位のモル比率が50%であり、PLGA粒子の分子量が7,000~17,000である、PLGAが挙げられる。
 本発明のPLGA製剤の粒度分布は、平均粒子径(平均値)または中央値とともに、分布を図および多分散指数等の定量的な指標で示すことができる。
 本明細書中における「平均粒子径」は、粒子の統計的平均粒径(直径)をいう。粒度分布の試験法としては、動的光散乱計が主として用いられる。本明細書において示されている平均粒子径は、動的光散乱計を用いて測定した値である。なお、平均粒子径は当該分野で公知の方法(レーザー回折法、ナノ粒子トラッキング解析法、電気抵抗ナノパルス法など)を使用しても測定することができる。動的光散乱計を用いる場合、適切な分布表示(個数基準分布や体積基準分布など)を選択する必要がある。
 本発明のPLGA製剤は、平均粒子径が5~500nmであり、好ましくは10~300nm、より好ましくは20~250nm、さらに好ましくは30~200nmである。なお、PLGA粒子は、100nm未満の粒子径を有するPLGA粒子(ナノ粒子、ナノスフェア)であってもよいし、100nm以上の粒子径を有するPLGA粒子(マイクロ粒子、マイクロスフェア)であってもよい。平均粒子径が大きいPLGA粒子は薬物を多く含有することができるが、静注製剤においては、平均粒子径が200nm以下のPLGA製剤が好ましい。
 本発明のPLGA製剤に使用する添加剤としては、一般的にPLGA粒子の製造で用いられるものであればよい。
 なお、本発明においては、PLGAの物理化学的安定性を向上させるために、PLGA製剤の製造において、糖類あるいは多価アルコール類を添加してもよい。
 前記糖類としては、例えばグルコース、ガラクトース、マンノース、フルクトース、イノシトール、リボース、キシロース等の単糖類;サッカロース、ラクトース、セロビオース、トレハロース、マルトース等の二糖類;ラフィノース、メレジトース等の三糖類;シクロデキストリン等のオリゴ糖;デキストリン等の多糖類;キシリトール、ソルビトール、マンニトール、マルチトール等の糖アルコールなどが挙げられる。
 前記多価アルコール類としては、一般に知られているものであれば特に限定されないが、例えば、グリセリン、ジグリセリン、トリグリセリン、テトラグリセリン、ペンタグリセリン、ヘキサグリセリン、ヘプタグリセリン、オクタグリセリン、ノナグリセリン、デカグリセリン、ポリグリセリンなどのグリセリン系化合物;ソルビトール、マンニトールなどの糖アルコール系化合物;エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール、オクタエチレングリコール、ノナエチレングリコなどが挙げられる。このうち、グリセリン、ジグリセリン、トリグリセリン、ソルビトール、マンニトール、分子量400~10000のポリエチレングリコールが入手性の点から好ましく挙げられる。
 本発明のPLGA製剤に使用する他の添加剤として、塩基性ペプチド、アルカリ金属塩、好ましくは、ヒスチジン、リン酸ナトリウム、コール酸、デオキシコール酸等が挙げられる。
 本発明のPLGA製剤に使用する添加剤としては、他に、酸化防止剤として、ビタミンE(トコフェロール)等、pH調整剤として、グリシン、アルギニン、リン酸ナトリウム、クエン酸ナトリウム、コハク酸ナトリウム、水酸化ナトリウム、酢酸ナトリウム、塩酸等、等張化剤として、グルコース、スクロース、マルトース、トレハロース、D-マンニトール、D-ソルビトール、塩化ナトリウム等、賦形剤として、グリセロール、デキストラン等、凍結保護剤として、ポリソルベート20、ポリソルベート80等が挙げられる。
 本発明のPLGA製剤中のPLGA粒子と抗菌薬との重量比は、特に限定されることはないが、好ましくは、3:1~20:1である。好ましくは4:1~10:1である。
 本発明製剤は、注射剤、点滴製剤の他、経口製剤として用いることもできる。
 本発明製剤であるPLGA製剤の製造方法としては、PLGA粒子の表層に外向きに結合、さらに詳しくは、脂溶性側鎖を有する抗菌薬が該抗菌薬の脂溶性側鎖とPLGA粒子の疎水性部分であるポリ乳酸が結合し、抗菌薬の多環ペプチド骨格構造がPLGA粒子の表層から外向きに存在するPLGA製剤を製造できる製造方法であればよい。
 PLGA製剤の製造方法として、PLGAを溶解した有機溶媒を水系溶媒に注入または滴下し、水系溶媒中でPLGAの自己組織化によるミセル形成を利用した「水中エマルション溶媒拡散法(Emulsion Solvent Diffusion method、ESD法)」がある。
 水中エマルション溶媒拡散法とは、PLGAと薬物を水混和性の有機溶媒へ溶解させておき、これをPLGAの貧溶媒となる水溶液中に滴下する際、エマルション界面での自己乳化作用により擬似的なエマルション滴が形成され、さらに、両溶媒の相互拡散によりエマルション滴内でPLGAと薬物を共沈させ、固体のPLGA製剤を製造する方法である。
 さらに、水中エマルション溶媒拡散法として、閉鎖された細管内で連続的にPLGAを形成させる「インライン製造技術」がある。
 本発明製剤であるPLGA製剤の製造する際に、溶媒としては、水や有機溶媒を用いてもよい。具体的には、水、蒸留水、ヒスチジン等の塩基性ペプチドを含有する緩衝液、リン酸ナトリウム等のアルカリ金属塩を含有する緩衝液、ジエチルエーテル、イソプロピルエーテル、低級アルコール(例:メタノール、エタノール、1-プロパノール、2-プロパノール等)、非プロトン性極性溶媒(例:ジメチルスルホキシド等)、アセトニトリル、アセトン等である。
 抗菌薬がPLGA粒子の表層に外向きに結合したPLGA製剤の製造方法として、以下の工程を含む製造方法がある。
すなわち、
(A1)PLGAをアセトン/エタノール溶液に溶解して第一液を調製する工程、
(B1)抗菌薬をジメチルスルホキシドに溶解して第二液を調整する工程、
(C1)第一液と第二液を混合し第三液を調整する工程、
(D1)第三液と水溶液を送液混合する工程、および
(E1)抗菌薬が結合したPLGA粒子をフラクションとして回収する工程。
を含む方法である。
 上記の製造方法(A1)のPLGAとしては、乳酸に由来する構成単位のモル比率が85~50%であり、グリコール酸に由来する構成単位のモル比率が15~50%であるPLGAが好ましい。より好ましくは、乳酸に由来する構成単位のモル比率が75%であり、グリコール酸に由来する構成単位のモル比率が25%であり、PLGAの分子量が4,000~15,000である、PLGAである。
 上記の製造方法(A1)の溶媒は、アセトン/エタノール溶液に限らず、アセトン/低級アルコール(例:メタノール、1-プロパノール、2-プロパノール等)であってもよい。
 上記の製造方法(A1)において、アセトン/低級アルコール溶液のアセトン:低級アルコール比率は、30:70~70:30であり、好ましくは40:60~60:40、より好ましくは50:50である。
 上記の製造方法(A1)において、第一液のPLGA濃度は、5.0~15.0mg/mlであり、好ましくは7.5~12.5mg/mlであり、より好ましくは10.0mg/mlである。
 上記の製造方法(B1)の溶媒は、薬物を溶解することができ、(A1)で用いた溶媒と混和する溶媒あればよい。ジメチルスルホキシドが好ましいが、非プロトン性極性溶媒(例:N,N-ジメチルホルムアミド、ヘキサメチルリン酸トリアミド等)、アセトニトリル、アセトン等であってもよい。
 上記の製造方法(B1)において、第二液の薬物濃度は、50~150mg/mlであり、好ましくは75~125mg/mlであり、より好ましくは100mg/mlである。
 上記の製造方法(B1)において、第二液の調製を調製する工程の温度は室温~70℃であり、好ましくは室温である。
 上記の製造方法(C1)において、第一液と第二液を混合し第三液を調製する工程の温度は60~80℃であり、好ましくは70℃である。
 上記の製造方法(C1)において、第一液と第二液の混合比率は、100:1~1:1であり、好ましくは75:1~25:1、より好ましくは49:1である。
 抗菌薬がPLGA粒子の表層に外向きに結合したPLGA製剤の別の製造方法として、以下の工程を含む製造方法がある。「アセトン/エタノール溶液」に溶解しにくい抗菌薬の場合であっても、本製造方法により、本発明のPLGA製剤を製造することができる。
すなわち、
(A2)PLGAをアセトニトリル/水溶液に溶解して第一液を調製する工程、
(B2)抗菌薬をジメチルスルホキシドに溶解して第二液を調整する工程、
(C2)第一液と第二液を混合し第三液を調整する工程、
(D2)第三液と水溶液を送液混合する工程、および
(E2)抗菌薬が結合したPLGA粒子をフラクションとして回収する工程。
を含む方法である。
 上記の製造方法(A2)のPLGAとしては、乳酸に由来する構成単位のモル比率が85~50%であり、グリコール酸に由来する構成単位のモル比率が15~50%であるPLGAが好ましい。より好ましくは、乳酸に由来する構成単位のモル比率が50%であり、グリコール酸に由来する構成単位のモル比率が50%であり、PLGAの分子量が7,000~17,000であるPLGAである。
 上記の製造方法(A2)の溶媒は、アセトニトリル/水溶液に限らない。
 上記の製造方法(A2)において、アセトニトリル/水溶液のアセトニトリル:低級水の比率は、60:40~40:60であり、好ましくは70:30、より好ましくは80:20である。
 上記の製造方法(A2)において、第一液のPLGA濃度は、1.0~15.0mg/mlであり、好ましくは2.5~10.0mg/mlであり、より好ましくは5.0~7.5mg/mlである。
 上記の製造方法(B2)の溶媒は、薬物を溶解し、(A2)で用いた溶媒と混和する溶媒あればよい。ジメチルスルホキシドが好ましいが、非プロトン性極性溶媒(例:N,N-ジメチルホルムアミド、ヘキサメチルリン酸トリアミド等)、アセトニトリル、アセトン等であってもよい。
 上記の製造方法(B2)において、第二液の薬物濃度は、30.0~150mg/mlであり、好ましくは40.0~100.0mg/mlであり、より好ましくは50.0~78.3mg/mlである。
 上記の製造方法(B2)において、第二液の調製を調製する工程の温度は60~80℃であり、好ましくは70℃である。
 上記の製造方法(C2)において、第一液と第二液を混合し第三液を調製する工程の温度は60~80℃であり、好ましくは70℃である。
 上記の製造方法(C2)において、第一液と第二液の混合比率は、100:1~1:1であり、好ましくは75:1~25:1、より好ましくは49:1である。
 上記の製造方法(D1およびD2)において、第三液と送液混合する溶液は、水溶液、一般にPLGA粒子の製造で使用される緩衝液であればよい。好ましくは、塩基性ペプチドおよび/またはアルカリ金属塩を含有する緩衝液であり、より好ましくはヒスチジンおよび/またはリン酸ナトリウムを含有する緩衝液であり、特に好ましくは、10%スクロース等の等張液に塩基性ペプチドおよび/またはアルカリ金属塩を添加した等張緩衝液である。具体的には、ヒスチジン緩衝10%スクロース溶液(15mMのL-Histidine、5mMのL-Histidine monohydrochloride monohydrate)である。
 上記の製造方法(D1およびD2)において、第三液と水溶液を送液混合する工程の温度は75~95℃であり、好ましくは85℃である。
 上記の製造方法(D1およびD2)において、第三液と水溶液の送液混合は、一段階、二段階、複数段階でもよい。
 さらに、上記の製造方法(E1およびE2)において、回収した抗菌薬が結合したPLGA粒子のフラクションを、室温まで冷却する工程、透析する工程および濃縮する工程を含む。
 上記の製造方法(E1およびE2)において、抗菌薬が結合したPLGA粒子のフラクション回収量を、第三液の送液量と、第三液と水溶液の流速比より算出した100%回収量で除すことによりフラクション回収率を算出することができる。
 本発明のPLGA製剤をさらに分散または懸濁する溶媒としては、水系溶媒、例えば、蒸留水、注射用蒸留水、生理的食塩水、リン酸緩衝液、炭酸緩衝液、トリス緩衝液、酢酸緩衝液等の緩衝液などが使用できる。
 本発明のPLGA製剤を液中に懸濁したPLGA懸濁液は、その後、真空乾燥、凍結乾燥等の処理により粉末化することができる。
 本発明のPLGA製剤の形態や構造は、PLGA製剤の凝集状態等を確認することによって、行うことができる。画像解析手法として透過型電子顕微鏡、低温電子顕微鏡、原子間力顕微鏡等が用いることができる。
 本発明のPLGA製剤の表面電荷(ゼータ電位)は、in vivoでのクリアランス、組織分布、細胞内への取り込みに影響を及ぼすため重要な特性である。表面電荷を直接測定することはできないことから、一般的にはゼータ電位として評価検討される。試験法としては、電気泳動光散乱(レーザードップラー法)が主として用いられる。本発明のPLGA製剤のゼータ電位は、通常のPLGA製剤のゼータ電位であればよいが、好ましくは、負電荷に荷電したPLGA製剤であればよい。
 本発明のPLGA製剤の膜の熱力学的特性は、示差走査熱量測定や蛍光プローブの蛍光スペクトル特性における温度依存性などにより評価することができる。発熱や吸熱プロファイルなどの熱力学的特性はPLGA粒子の流動性と均一性を表す指標として有用である。
 本発明のPLGA製剤の力価は、カロリーメーター、マイクロカロリーメーター、水晶振動微量天秤法および表面プラズモン共鳴分析法によって測定することができる。
 本発明のPLGA製剤からの有効成分のin vitro放出特性は、生理的および/または臨床的に適切な溶媒を用い、必要に応じて撹拌しながらPLGAからの有効成分の放出性が示されるべきである。
 本発明のPLGA製剤の調整後の浸透圧は、PLGA構造の破裂や収縮を防ぐために、等張(約280mOsm/kg・H2O)であることが望ましい。
 本発明のPLGA製剤中の薬物の封入率は、PLGAに封入された薬物と遊離薬物を、固相抽出、サイズ排除クロマトグラフィー、超遠心法、ゲル濾過法、透析法などにより分離した後、各分画の薬物含量を高速液体クロマトグラフィーや分光光度計により定量する手法を用いることができる。また、製剤の比重から製剤中の薬物総量を算出し、製造時の仕込み薬物量を元に、PLGA製剤中の薬物の封入率を算出することができる。
 以下に、実施例を挙げて、本発明をさらに詳しく説明するが、これらは本発明を限定するものではない。数値(例えば、量、温度等)に関しては、いくらかの誤差および偏差は考慮されるべきである。
 特筆しない限り、%は成分の重量%および組成物の全重量の重量%であり、圧力は大気圧かまたはそれに近い圧力である。
 以下に、PLGA製剤の製造方法を示す。
 薬物としては、式(I)で示される化合物、テラバンシン(塩野義製薬社製)、オリタバンシン(Shanghai Sun-shine Chemical Technology Corporation社製)を用いた。PLGAとしては、EVONIK社製 RESOMER(登録商標) RG502H、RG752Hを使用した。
(実施例A)
 PLGA(EVONIK社製 RESOMER(登録商標) RG752H)をアセトン/エタノール溶液(アセトン:エタノール=1:1)で溶解し、濃度10mg/mlのPLGA溶液を調製した。薬物を薬物濃度100mg/mlでジメチルスルホキシド(ナカライテスク)に溶解後、70℃の超音波温浴中で49倍量のPLGA溶液と混合し、薬物/PLGA混液を調製した。該薬物/PLGA混液中の薬物濃度は2.0(mg/ml)とした。
 内径1.0mmのステンレス細管を用い、該薬物/PLGA混液を0.17m/sの線速度によって、L-ヒスチジン緩衝10%スクロース溶液(15mM L-Histidine、5mM L-Histidine monohydrochloride monohydrate)(pH6.5)を0.77m/sの線速度によって、それぞれ送液ポンプで送液した。85℃の加温下で、10m(該薬物/PLGA混液)および20m(L-ヒスチジン緩衝10%スクロース溶液)の送液による予備加熱後、T字型ミキサーにより90°の衝突角度で前記2液を混合した。混合後、85℃の加温下で10mの送液によるインキュベーションを行い、PLGAナノ製剤の原液を調製した。該PLGAナノ製剤の原液は、液温が室温に低下するまで室温で静置した。
 KrosFlo(登録商標)KR2i TFF System(Repligen社製)および中空糸膜モジュール(115cm,500kD、Repligen社製)を用いたタンジェンシャルフローろ過により、該PLGA製剤の原液から、アセトン、エタノールおよびジメチルスルホキシドの除去と濃縮を行ない、PLGA製剤液を調整した。液交換用のバッファーとしてヒスチジン緩衝10%スクロース溶液(pH6.5)を用い、PLGA液の10倍量の透過液量を得るまで液交換を行なった。
 PLGA、薬物、PLGAと薬物の配合比(重量比)を表1に示す。
Figure JPOXMLDOC01-appb-T000045
(実施例B)
 PLGA(EVONIK社製 RESOMER(登録商標) RG502H)をアセトニトリル水溶液(アセトニトリル:注射用水=4:1)に溶解し、濃度5.0~7.5mg/mlのPLGA溶液を調製した。各薬物を50.0~78.3mg/mlでメチルスルホキシド(ナカライテスク)に溶解後、70℃の超音波温浴中で49倍量のPLGA溶液と混合し、薬物/PLGA混液を調製した。
 内径1.0mmのステンレス細管を用い、該薬物/PLGA混液を0.17m/sの線速度によって、ヒスチジン緩衝10%スクロース溶液(15mMのL-Histidine、5mMのL-Histidine monohydrochloride monohydrate)(pH6.5)を0.77m/sの線速度によって、それぞれ送液ポンプで送液した。85℃の加温下で、10m(該薬物/PLGA混液)および20m(L-ヒスチジン緩衝10%スクロース溶液)の送液による予備加熱後、T字型ミキサーにより90°の衝突角度で前記2液を混合した。混合後、85℃の加温下で10mの送液によるインキュベーションを行い、PLGAナノ製剤の原液を調製した。該PLGAナノ製剤の原液は、液温が室温に低下するまで室温で静置した。
 KrosFlo(登録商標)KR2i TFF System(Repligen社製)および中空糸膜モジュール(115cm,500kD、Repligen社製)を用いたタンジェンシャルフローろ過により、該PLGA製剤の原液からアセトニトリルおよびジメチルスルホキシドの除去と濃縮を行ない、PLGA製剤液を調整した。液交換用のバッファーとしてヒスチジン緩衝10%スクロース溶液(pH6.5)を用い、PLGA液の10倍量の透過液量を得るまで液交換を行なった。
 PLGA、薬物、PLGA溶液の濃度(mg/ml)、薬物溶液の濃度(mg/ml)、薬物/PLGA混液中の薬物濃度(mg/ml)、PLGAと薬物の配合比(重量比)を表2に示す。
Figure JPOXMLDOC01-appb-T000046
(試験例1)
PLGA製剤中の薬物(テラバンシン)含量(薬物含有率)測定
 製造したPLGA製剤の薬物濃度は、高速液体クロマトグラフ質量分析計(LCMS-8050、島津製作所)によって測定を行った。液体クロマトグラフィー、質量分析計の条件は、それぞれ以下の通りである。
[液体クロマトグラフィーの条件]
・カラム:Cosmosil Packed Column 5C18-AR-II(4.6mm I.D.×150mm)
・カラムオーブン温度:25℃
・移動相A:0.1%ギ酸水溶液
・移動相B:0.1%ギ酸入りアセトニトリル溶液
・流速:1.0mL/min
・グラディエント:0min:B12%、10min:B20%、15min:B90%、20min:B12%
・注入量:10μL
・オートサンプラー温度:4℃
・測定時間:20分間
[質量分析計の条件]
・イオン化モード:ESI(ポジティブモード)
・ネブライザーガズ:3.0L/min
・ドライイングガス:10L/min
・Desolvation line温度:250℃
・ブロックヒーター:400℃
・測定モード:single ion monitoring(SIM)
・定量イオン:式(I)で示される化合物(m/z=838)、テラバンシン(m/z=823)、オリタバンシン(m/z=897)
 測定サンプルは、Triton X-100を終濃度0.1%となるように添加し、希釈液(88%移動相A+12%移動相B)で100~500倍に希釈した。定量方法は絶対検量線法を用い、検量線用の標準溶液として、各薬物を前記希釈液で0.1、0.25、0.5、1.0、1.5、2.0μg/mlに調整したものを用いた。
 薬物含有率は、該薬物濃度および製剤比重1.038を用いて算出した製剤中の薬物重量を、上記の製造方法(E1およびE2)のフラクション回収率で補正した薬物仕込み重量で除すことにより算出した。
(結果)
 実施例1-A、実施例B-1、実施例B-2および実施例B-3の薬物含量(薬物含有率)を表3に示す。
Figure JPOXMLDOC01-appb-T000047
(試験例2)粒子径測定法
 PLGA液をPBS(-)(リン酸緩衝生理食塩水、シグマアルドリッチ社製)で200倍に希釈後、Zetasizer nanoZS(Malvern社製)を用いた動的光散乱法により平均粒子径と粒度分布を測定した。
(結果)
 実施例A-1、実施例B-1、実施例B-2、実施例B-3、実施例B-4および実施例B-5の平均粒子径を表4に示す。いずれの場合もPLGA粒子を形成し、平均粒子径は420nm以下であった。特に、抗菌薬としてテラバンシンを用いた実施例A-1、実施例B-1、実施例B-2、実施例B-3においては、平均粒子径は約30~110nmであった。なお、実施例A-1の粒度分布(PdI)は0.05であった。
Figure JPOXMLDOC01-appb-T000048
(試験例3)膜電位測定法
 PLGA液を注射用水(大塚製薬工場社製)で50倍に希釈後、Zetasizer nanoZS(Malvern社製)を用いた電気泳動法によりゼータ電位を測定した。
(結果)
 実施例A-1の膜電位は表5に示す通り、強い負電荷を示した。実施例A-1で使用したPLGA粒子単体のゼータ電位は-37.5mVであった。テラバンシンは負電荷を帯びており、このことから抗菌薬がPLGA粒子の表層に外向きに結合していると推測できる。また、通常、このような強い負電荷を帯びている粒子は相互に反発しあい、凝集せずに分散するのが一般的であるが、本発明の粒子は、若干の凝集傾向があり、容易に再分散・再懸濁するという性質を有する。この凝集傾向は、PLGA粒子の表層に外向きに結合している抗菌薬同士の相互作用によるものと考えられ、このことからも、抗菌薬がPLGA粒子の表層に外向きに結合していると推測できる。
Figure JPOXMLDOC01-appb-T000049
(試験例4)PLGA製剤のin vitro抗菌活性
 以下の方法によって、実施例A-1のPLGA製剤(薬物:テラバンシン)のin vitro抗菌活性を検討した。
(試験方法)
 in vitro抗菌活性として、最小発育阻止濃度を測定した。最小発育阻止濃度(MIC:μg/ml)の測定は、Clinical and Laboratory Standards Institute(CLSI)標準法に準じ、接種菌量は約5×10の5乗cfu/ml、試験培地はカチオン調整されたミューラー・ヒントンブロス(CAMHB)を用いて、微量液体希釈法により実施した。
(結果)
実験結果を表6に示す。表中、阻害活性の数値の単位はμg/mlである。また、表中のS.aureusは、黄色ブドウ球菌、E.faecalisは、ヒト腸管の正常細菌叢に常在するグラム陽性細菌(腸球菌)であり、術後の心内膜炎などの原因菌となりうる。
 その結果、実施例A-1のPLGA製剤は、バンコマイシン耐性菌を含むいずれの菌種、株で、原体と同程度のMICであり、高い抗菌活性を示すことがわかった。
Figure JPOXMLDOC01-appb-T000050
(試験例5)in vitro抗菌活性に与えるacetyl-Lys-D-Ala-D-Ala添加の影響
 以下の方法によって、バンコマイシン、テラバンシンおよびPLGA製剤(薬物:テラバンシン)のin vitro抗菌活性に与えるacetyl-Lys-D-Ala-D-Ala添加の影響を検討した。
(試験方法)
 S.aureus RN4220を混合後の終濃度が約1×10の7乗cfu/mlとなるように調製した菌液と、バンコマイシン、テラバンシンおよび実施例A-1のPLGA製剤それぞれを混合後の終濃度が6.4、0.8、および0.8μg/mlとなるように調製した薬液をミューラーヒントン寒天培地(MHA)に混合した。菌および薬物含有のMHAの表面を十分に乾燥させた後、acetyl-Lys-D-Ala-D-Alaを250、500、1000および2000μg/mlを10μlずつMHA上にスポットし、35℃で一晩培養した。
(結果)
 バンコマイシンの実験結果を図1に、テラバンシンの実験結果を図2に、実施例A-1(薬物:テラバンシン)のPLGA製剤の実験結果を図3に示す。
 図中、acetyl-Lys-D-Ala-D-AlalをD-Ala-D-Alaで示し、数値はスポットした濃度で単位はμg/mlである。acetyl-Lys-D-Ala-D-Alaは、バンコマイシンの結合標的である細菌細胞壁成分の類似化合物であり、対照としたバンコマイシンは、スポットのない部位での細菌増殖像がみられない条件で、スポットした濃度に応じた増殖像の増大が観察された。すなわち、acetyl-Lys-D-Ala-D-Ala添加による抗菌活性の減弱が認められた。この現象は、テラバンシン、実施例A-1のPLGA製剤ともに観察されたが、同濃度のacetyl-Lys-D-Ala-D-Ala添加の影響は、テラバンシンの方が小さかった。
 以上の結果から、テラバンシンは、acetyl-Lys-D-Ala-D-Alaへの結合だけに依存しないメカニズムで抗菌活性を維持する特徴を有するが、実施例A-1のPLGA製剤は、その特徴が軽減し、よりバンコマイシンに近い性質を示すことがわかった。
(試験例5)PLGA製剤投与後の有効成分の血漿中濃度
 以下の方法によって、PLGA製剤投与後の血漿中濃度を検討する。
(検討実験材料と方法)
1)使用動物:ICRマウスを使用する。
2)飼育条件:マウスは、固形飼料および滅菌水道水を自由摂取させる。
3)投与量、群分けの設定:静脈内投与を所定の投与量により実施する。静脈内投与量は、5mg/kg(n=3)とする。
4)投与液の調製:5%グルコース溶液として投与する。
5)投与方法:注射針を付けたシリンジにより尾静脈から投与する。
6)評価項目:経時的に採血し、血漿中本発明化合物濃度をLC/MS/MSを用いて測定する。
7)パラメーター解析:血漿中本発明化合物濃度について、非コンパートメントモデル解析により本発明化合物の血漿中濃度‐時間曲線下面積(AUC)、全身クリアランス(CLtоt)、消失半減期(t1/2)、定常状態分布容積(Vdss)を算出する。
(試験例6)PLGA製剤投与後の有効成分の組織移行性
 以下の方法によって、PLGA製剤投与後の組織移行性を検討する。
(組織移行性試験)
 ICRマウスに5mg/kgの用量で本発明化合物を静脈内投与し、所定の時間にイソフルラン麻酔下で下大動脈あるいは下大静脈より全採血により放血死させる。その後、肝臓,腎臓,肺を摘出し、蒸留水で25%ホモジネートを調製する。また、得られた血液は遠心処理後、血漿にする。その後、それぞれのサンプルをLC/MS/MSを用いて測定する。得られた濃度値比(各組織/血漿)を組織Kp値とする。
(試験例7)PLGA製剤の毒性評価
(7-1:in vitro細胞毒性試験)
 以下の方法によって、式(I)で示される化合物原体および実施例2のPLGA製剤の細胞毒性を実施する。
(試験方法)
予め培養したVero細胞(最終濃度:2.0 x 104 cells/well)および各被験物質を96wellに添加して、5%CO、37℃条件下で72時間培養する。その後、0.01%のresazurin溶液を10μl/well添加、混和後に5%CO、37℃条件下で4時間培養した後、マイクロプレートリーダーを用いて蛍光値(Ex531nm/Em590nm)を測定する。各被験物質濃度での蛍光値から50%の細胞生存率となる化合物濃度(CC50)を算出する。
(7-2:in vitro溶血性試験)
以下の方法によって、式(I)で示される化合物原体および実施例2のPLGA製剤の溶血率評価を実施する。
(試験方法)
溶媒に5%糖液を用いて各被験物質の10mM濃度液を調製し、さらに2倍段階希釈により、0.0049mMまで各被験物質ごとに12種類の調製液を準備する。20%FBS添加M-199 medium(With Earle‘s salts、sodium bicarbonate and 25mM HEPE、supplement with 0.1g/L L-glutamine)を培地として用い、2%赤血球浮遊液(脱繊維綿羊血)を調製し、溶媒または各被験物質調製液と混合する(n=2)。なお100%溶血状態を溶血率の基準とするために、2%赤血球浮遊液を調製する際の希釈倍率で赤血球を蒸留水に混合して100%溶血液を調製する。赤血球浮遊液の代わりに培地を用い、各被験物質調製液と混合する(n=2)。溶媒または各被験物質調製液と、赤血球浮遊液または培地との混合液を、24時間インキュベート後、上清を採取し、540nmの吸光度を測定する。各インキュベーションを終えた段階で、溶媒と赤血球浮遊液、および溶媒と培地の吸光度を「溶血率0%」、100%溶血液の吸光度を「100%溶血」の基準とし、各被験物質調製液と赤血球浮遊液の混合・インキュベーションによる溶血率を下記計算式により算出する。
PH(%)=(CR―VM)×100/(VL―VR)
 なお、PHは溶血率、CRは披験物質調整液と2%赤血球浮遊液を混合した場合の吸光度、VMは披験物質調整液と培地を混合した場合の吸光度、VLは100%溶血液の吸光度、VRはDMSO溶液と2%赤血球浮遊液を混合した場合の吸光度である。
 抗菌薬がPLGA粒子の表層に外向きに結合したPLGA製剤を提供することにより、副作用が少なく、抗菌活性が高い抗菌薬製剤を製造することができる。

Claims (20)

  1. 抗菌薬がPLGA粒子の表層に外向きに結合した、PLGA製剤。
  2. 抗菌薬が脂溶性側鎖を有する抗菌薬である、請求項1記載のPLGA製剤。
  3. 該抗菌薬の脂溶性側鎖とPLGA粒子の疎水性部分であるポリ乳酸が結合した、請求項2記載のPLGA製剤。
  4. 抗菌薬の脂溶性側鎖が、
    下式:
    Figure JPOXMLDOC01-appb-C000001


    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    で示される基である、請求項2または3記載のPLGA製剤。
  5. 抗菌薬の脂溶性側鎖のCLogPが2~10である、請求項2または3記載のPLGA製剤。
  6. 抗菌薬がグリコペプチド系抗菌薬または環状リポペプチド系抗菌薬である、請求項1~5のいずれかに記載のPLGA製剤。
  7. 抗菌薬が、式(I):
    Figure JPOXMLDOC01-appb-C000004

    で示される化合物、
    テラバンシン、
    オリタバンシン、
    テイコプラニン、
    ダルババンシン、
    ミデプラニン、
    N'-p-オクチルオキシベンジルグリシル-バンコマイシン、
    (4''R)-22-O-(3-アミノ-3-C-メチル-2,3,6-トリデオキシ-α-L-アラビノ-ヘキソピラノシル)-3''-[(4-クロロベンジル)アミノ]-3''-デアミノバンコマイシン、
    (4''R)-3''-N-(1,1'-ビフェニル-4-イルメチル)-22-O-(3-アミノ-3-C-メチル-2,3,6-トリデオキシ-α-L-アラビノ-ヘキソピラノシル)バンコマイシン、
    3S, 15R, 18R, 34R, 35S, 38S, 48S, 50aR) -5, 31-dichloro-56-[2-deoxy-2-[ (10-methyl-1-oxoundecyl) amino] -β-D-glucopyranosyloxy] -N-[3-(dimethylamino) propyl] -6, 11, 34, 40, 44-pentahydroxy-42-(α-D-mannnopyranosyloxy) -15-(methylamino) -2, 16, 36, 50, 51, 59-hexaoxo-2, 3, 16, 17, 18, 19, 35, 36, 37, 38, 48, 49, 50, 50a-tetradecahydro-1H, 15H,34H-20, 23:30, 33-dietheno-3, 18:35, 48-bis (iminomethano) -4, 8:10, 14:25, 28:43, 47-tetrametheno [1, 14, 6, 22] dioxadiazacyclooctacosino [4, 5-m] [10, 2, 16] benzoxadiazacyclotetracosine-38-carboxamide、
    N-(11-Amino-4,8-diazaundecyl)-5,3 1-dichloro-56-[2-deoxy-2-(10-methylundecanamido)-β-D-glucopyranosyloxy]-6,11,34,40, 44-pentahydroxy-42-(α-D-mannopyranosyloxy)-2,16,36,50,51,59-hexaoxo-2,3,16,17,18, 19,35,36,37,38,48,49,50,50a,51,52-hexadecahydro-1H,15H,34H-20,23:30,33-dietheno-3,18:35,48-bis(iminomethano)-4,8:10,14:25,28:43,47-tetrametheno[1,14,6,22]dioxadiazacyclooctacosino[4,5-m][10,2,16]benzooxadiazacyclotetracosine-38-carboxamide、
    N-[3-([[(1S,2R,18R,19R,22S,25R,28R,40R)-48-[[(2S,3R,4S,5S,6R)-3-[[(2S,4S,5S,6S)-4-Amino-5-hydroxy-4,6-dimethyltetrahydro-2H-pyran-2-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]oxy]-22-(2-amino-2-oxoethyl)-5,15-dichloro-2,18,32,35,37-pentahydroxy-19-[[(2R)-4-methyl-2-(methylamino)pentanoyl]amino]-20,23,26,42,44-pentaoxo-7,13-dioxa-21,24,27,41,43-pentaazaoctacyclo[26.14.2.2(3,6).2(14,17).1(8,12).1(29,33).0(10,25).0(34,39)]pentaconta-3,5,8(48),9,11,14,16,29(45),30,32,34,36,38,46,49-pentadecaen-40-yl]carbonyl]amino)propyl]-N,N-dimethyloctan-1-aminiumもしくは
    (1S,2R,18R,19R,22S,25R,28R,40R)-48-[2-O-(3-Amino-2,3,6-trideoxy-3-methyl-alpha-L-lyxo-hexopyranosyl)-beta-D-glucopyranosyloxy]-22-(carbamoylmethyl)-5,15-dichloro-37-[N-[6-(4-hexylphenylsulfonamido)hexyl]carbamoyloxy]-2,18,32,35-tetrahydroxy-19-(N-methyl-D-leucylamino)-20,23,26,42,44-pentaoxo-7,13-dioxa-21,24,27,41,43-pentaazaoctacyclo[26.14.2.2(3,6).2(14,17).1(8,12).1(29,33).0(10,25).0(34,39)]pentaconta-3,5,8(48),9,11,14,16,29(45),30,32,34,36,38,46,49-pentadecaene-40-carboxylic acid; 28-O-[N-[6-(4-Hexylphenylsulfonamido)hexyl]carbamoyl]vancomycin、
    またはその製薬上許容される塩からなる群から選択される1以上である、請求項1~5のいずれかに記載のPLGA製剤。
  8. 抗菌薬が式(I)で示される化合物、テラバンシンもしくはオリタバンシン、またはその製薬上許容される塩である、請求項7記載のPLGA製剤。
  9. 抗菌薬がテラバンシンまたはその塩酸塩である、請求項8記載のPLGA製剤。
  10. PLGA粒子が、ポリ乳酸とポリグリコール酸のブロック共重合体である、請求項1~9のいずれかに記載のPLGA製剤。
  11. PLGA粒子において、乳酸に由来する構成単位のモル比率が85~50%であり、グリコール酸に由来する構成単位のモル比率が15~50%である、請求項10記載のPLGA製剤。
  12. PLGA粒子において、乳酸に由来する構成単位のモル比率が75%であり、グリコール酸に由来する構成単位のモル比率が25%であり、PLGA粒子の分子量が4,000~15,000である、請求項11記載のPLGA製剤。
  13. PLGA粒子において、乳酸に由来する構成単位のモル比率が50%であり、グリコール酸に由来する構成単位のモル比率が50%であり、PLGA粒子の分子量が7,000~17,000である、請求項11記載のPLGA製剤。
  14. PLGA製剤の平均粒子径が5~500nmである、請求項1~13のいずれかに記載のPLGA製剤。
  15. PLGA製剤の平均粒子径が30~200nmである、請求項14記載のPLGA製剤。
  16. テラバンシンがPLGA粒子に結合した、PLGA製剤。
  17. PLGA製剤の平均粒子径が30~200nmである、請求項16記載のPLGA製剤。
  18. 表面が負電荷に帯電した、請求項1~17のいずれかに記載のPLGA製剤。
  19. 以下の工程を含む、抗菌薬がPLGA粒子の表層に外向きに結合した、PLGA製剤の製造方法:
    (A)PLGAをアセトン/エタノール溶液またはアセトニトリル/水溶液に溶解して第一液を調製する工程、
    (B)抗菌薬をジメチルスルホキシドに溶解して第二液を調整する工程、
    (C)第一液と第二液を混合し第三液を調整する工程、
    (D)第三液とショ糖溶液を送液混合する工程、及び
    (E)抗菌薬が結合したPLGA粒子をフラクションとして回収する工程。
  20. (E)の抗菌薬が結合したPLGA粒子において、(B)で使用した抗菌薬の約70~100%が結合されている、請求項19記載の製造方法。
PCT/JP2023/008202 2022-03-08 2023-03-06 抗菌薬を含有するplga製剤 WO2023171588A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022035641 2022-03-08
JP2022-035641 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023171588A1 true WO2023171588A1 (ja) 2023-09-14

Family

ID=87934986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008202 WO2023171588A1 (ja) 2022-03-08 2023-03-06 抗菌薬を含有するplga製剤

Country Status (1)

Country Link
WO (1) WO2023171588A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031003A (ja) * 2008-07-01 2010-02-12 Nitto Denko Corp 表面被覆微粒子の医薬組成物
WO2012169518A1 (ja) * 2011-06-07 2012-12-13 ホソカワミクロン株式会社 液状組成物及びそれを用いた化粧料並びに育毛剤
JP2014505695A (ja) * 2011-01-24 2014-03-06 イッサム リサーチ ディべロップメント カンパニー オブ ザ ヘブライ ユニバーシティー オブ エルサレム,リミテッド 薬物の皮膚及び全身送達のためのナノ粒子
JP2017533218A (ja) * 2014-11-06 2017-11-09 クセリア ファーマシューティカルズ エーピーエスXellia Pharmaceuticals ApS グリコペプチド組成物
JP2018505910A (ja) * 2015-02-23 2018-03-01 セラヴァンス バイオファーマ アンチバイオティクス アイピー, エルエルシー テラバンシンを投与するための用量および方法
JP2019518733A (ja) * 2016-05-09 2019-07-04 クセリア ファーマシューティカルズ エーピーエスXellia Pharmaceuticals ApS 安定化されたグリコペプチド抗生物質製剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031003A (ja) * 2008-07-01 2010-02-12 Nitto Denko Corp 表面被覆微粒子の医薬組成物
JP2014505695A (ja) * 2011-01-24 2014-03-06 イッサム リサーチ ディべロップメント カンパニー オブ ザ ヘブライ ユニバーシティー オブ エルサレム,リミテッド 薬物の皮膚及び全身送達のためのナノ粒子
WO2012169518A1 (ja) * 2011-06-07 2012-12-13 ホソカワミクロン株式会社 液状組成物及びそれを用いた化粧料並びに育毛剤
JP2017533218A (ja) * 2014-11-06 2017-11-09 クセリア ファーマシューティカルズ エーピーエスXellia Pharmaceuticals ApS グリコペプチド組成物
JP2018505910A (ja) * 2015-02-23 2018-03-01 セラヴァンス バイオファーマ アンチバイオティクス アイピー, エルエルシー テラバンシンを投与するための用量および方法
JP2019518733A (ja) * 2016-05-09 2019-07-04 クセリア ファーマシューティカルズ エーピーエスXellia Pharmaceuticals ApS 安定化されたグリコペプチド抗生物質製剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ÖZTÜRK A. ALPER, YENILMEZ EVRIM, ÖZARDA MUSTAFA GÜÇLÜ: "Clarithromycin-Loaded Poly (Lactic-co-glycolic Acid) (PLGA) Nanoparticles for Oral Administration: Effect of Polymer Molecular Weight and Surface Modification with Chitosan on Formulation, Nanoparticle Characterization and Antibacterial Effects", POLYMERS, vol. 11, no. 10, pages 1632, XP093090898, DOI: 10.3390/polym11101632 *
YURTDAŞ-KIRIMLIOĞLU GÜLSEL, GÖRGÜLÜ ŞENNUR: "Surface modification of PLGA nanoparticles with chitosan or Eudragit® RS 100: Characterization, prolonged release, cytotoxicity, and enhanced antimicrobial activity", JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, vol. 61, 1 February 2021 (2021-02-01), FR , pages 102145, XP093090889, ISSN: 1773-2247, DOI: 10.1016/j.jddst.2020.102145 *

Similar Documents

Publication Publication Date Title
Rawal et al. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis
AU2017239541B2 (en) Use of polymeric excipients for lyophilization or freezing of particles
Pai et al. Development and evaluation of chitosan microparticles based dry powder inhalation formulations of rifampicin and rifabutin
Yang et al. Development of highly porous large PLGA microparticles for pulmonary drug delivery
CN101910274B (zh) 含紫杉烷的两亲嵌段共聚物胶束组合物及其制备方法
Sung et al. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery
EP1985309B1 (en) Nanoparticles containing water-soluble non-peptide low-molecular weight drug
CN110522919B (zh) 甘露糖受体靶向的组合物、药物及其制备方法和应用
KR101763195B1 (ko) 건조 분말 반코마이신 조성물 및 관련 방법
Zhang et al. High azithromycin loading powders for inhalation and their in vivo evaluation in rats
CN101474155A (zh) 注射用肺靶向载药前体脂质体及其使用方法
Tran et al. An evaluation of inhaled antibiotic liposome versus antibiotic nanoplex in controlling infection in bronchiectasis
AU2018271873B2 (en) Glycopeptide derivative compounds and uses thereof
CN109771663B (zh) 一种酸响应性抗癌纳米药物的制备及应用
CN102370622A (zh) 一种载药物纳米粒及其制备方法和应用
WO2019137005A1 (zh) 一种基于单宁酸的载药纳米颗粒及其制备方法和应用
WO2021057007A1 (zh) 一种雷帕霉素纳米缓释剂及其制备方法
SI2231189T1 (en) A delivery system for administering pharmaceutical active substances that are poorly soluble in water
Rani et al. Surface-engineered liposomes for dual-drug delivery targeting strategy against methicillin-resistant Staphylococcus aureus (MRSA)
CN102614498B (zh) 一种胰岛素纳米粒及其制备方法
Patil et al. Formulation and evaluation of novel spray-dried alginate microspheres as pulmonary delivery systems of rifampicin in rats
CN1318028C (zh) 去甲斑蝥素缓释微球的制备方法
WO2023171588A1 (ja) 抗菌薬を含有するplga製剤
Abonashey et al. Formulation, pharmacokinetics, and antibacterial activity of florfenicol-loaded niosome
CN105288631A (zh) 一种新型抗癌药物纳米制剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766764

Country of ref document: EP

Kind code of ref document: A1