WO2023171520A1 - 画像形成システム及び画像形成制御方法 - Google Patents

画像形成システム及び画像形成制御方法 Download PDF

Info

Publication number
WO2023171520A1
WO2023171520A1 PCT/JP2023/007754 JP2023007754W WO2023171520A1 WO 2023171520 A1 WO2023171520 A1 WO 2023171520A1 JP 2023007754 W JP2023007754 W JP 2023007754W WO 2023171520 A1 WO2023171520 A1 WO 2023171520A1
Authority
WO
WIPO (PCT)
Prior art keywords
image forming
gamut
color
virtual
image
Prior art date
Application number
PCT/JP2023/007754
Other languages
English (en)
French (fr)
Inventor
英雄 中原
Original Assignee
京セラドキュメントソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラドキュメントソリューションズ株式会社 filed Critical 京セラドキュメントソリューションズ株式会社
Priority to JP2023553443A priority Critical patent/JPWO2023171520A1/ja
Publication of WO2023171520A1 publication Critical patent/WO2023171520A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to an image forming system and an image forming control method for controlling a plurality of image forming apparatuses.
  • a plurality of image forming apparatuses of various types such as an inkjet type, an offset printing type, or an electrophotographic type, are connected to a network and used.
  • color calibration is performed assuming a common gamut in order to match the colors.
  • each image forming apparatus makes effective use of its own color gamut to perform printing so that the appearance of the printed matter matches.
  • the present invention has been made in view of these circumstances, and aims to improve reproducibility assuming a wide color gamut while suppressing a reduction in the number of image forming apparatuses that can be used to form images based on the same image data.
  • the purpose is to realize high-quality image formation.
  • An image forming system uses each of the reproduced colors of a plurality of virtual gamuts as a reference, including the widest virtual gamut having the widest color gamut and the narrowest virtual gamut having the narrowest color gamut, and a calibration processing unit that performs common color calibration for multiple image forming devices with different color reproduction areas; and an input image analysis unit that analyzes image data to be formed and identifies the color gamut to be reproduced in the image data. and the utilization of each of the plurality of image forming devices based on whether the target color gamut can be reproduced within the color gamut of each of the plurality of image forming devices assuming the widest virtual gamut.
  • a color management unit that determines the possibility, an operation display unit, and a predetermined operation that represents the availability of each of the plurality of image forming devices and selects one of the plurality of virtual gamuts. Assuming a control unit that displays an operation input screen for accepting input on the operation display unit and changes the display indicating availability according to a predetermined operation input input through the operation input screen, and a selected virtual gamut. and an image forming job generation unit that generates an image forming job including the simulated profile.
  • An image formation control method is based on each of the reproduced colors of a plurality of virtual gamuts including the widest virtual gamut having the widest color gamut and the narrowest virtual gamut having the narrowest color gamut.
  • a calibration process is performed in which common color calibration is performed for multiple image forming apparatuses that have different color reproduction areas, and the image data of the image forming target is analyzed to identify the color gamut to be reproduced in the image data.
  • a color management process that determines the availability of each, a color management process that represents the availability of each of a plurality of image forming devices, and a predetermined operation input for selecting one of a plurality of virtual gamuts.
  • a display process in which an operation input screen for accepting the data is displayed on the operation display unit, and a display indicating availability is changed according to a predetermined operation input input through the operation input screen, and a simulation assuming the selected virtual gamut. and an image forming job generation step of generating an image forming job including the profile.
  • the present invention it is possible to realize highly reproducible image formation assuming a wide color gamut while suppressing a reduction in the number of image forming apparatuses that can be used to form images based on the same image data.
  • FIG. 1 is a block diagram showing the configuration of an image forming system.
  • 1 is a block diagram showing the configuration of an image forming apparatus, a personal computer, and an integrated management server.
  • FIG. 2 is a chromaticity diagram showing color gamuts of a plurality of image forming apparatuses.
  • FIG. 3 is a diagram illustrating a comparison of color gamuts of images reproduced by a plurality of image forming apparatuses.
  • 3 is a flowchart showing the contents of virtual gamut calibration processing.
  • 3 is a flowchart showing the contents of common gamut calibration processing.
  • 3 is a flowchart showing the contents of image forming processing.
  • 12 is a flowchart showing the contents of a usage device setting process.
  • FIG. 3 is a diagram showing an example of a user interface screen.
  • FIG. 3 is a diagram showing an example of a user interface screen.
  • FIG. 1 is a block diagram showing the configuration of an image forming system 10 according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configurations of the image forming apparatus 100, the personal computer 200, and the integrated management server 700.
  • the image forming system 10 includes a plurality of image forming apparatuses 100, a plurality of personal computers (hereinafter simply referred to as PCs) 200, and at least one integrated management server 700. I'm here.
  • the plurality of PCs 200 function as client terminals that issue commands to execute services provided by the plurality of image forming apparatuses 100.
  • the image forming system 10 further includes a switching hub 500 that constitutes a wired local area network (also simply referred to as a network) LAN.
  • the switching hub 500 interconnects the plurality of PCs 200, the plurality of image forming apparatuses 100, the integrated management server 700, and the router 600.
  • the plurality of PCs 200, the plurality of image forming apparatuses 100, and the integrated management server 700 that constitute the image forming system 10 are connected to another integrated management server 700 via a router 600 and the Internet.
  • the switching hub 500 is also simply called a hub.
  • Image forming apparatus 100 is a general term for five image forming apparatuses 100A to 100E.
  • the plurality of image forming apparatuses 100 include an image forming apparatus 100A, an image forming apparatus 100B, an image forming apparatus 100C, an image forming apparatus 100D, and an image forming apparatus 100E.
  • the image forming apparatus 100A is an inkjet type image forming apparatus (ie, a 12-color machine) that can use 12 colors of ink.
  • the image forming apparatus 100B is an inkjet image forming apparatus (that is, a 10-color machine) that can use 10 colors of ink.
  • the image forming apparatus 100C and the image forming apparatus 100D are inkjet image forming apparatuses (that is, eight-color machines) that can use eight colors of ink.
  • the image forming apparatus 100E is an inkjet type image forming apparatus (ie, a six-color machine) that can use six colors of ink.
  • the image forming apparatus 100 includes a control section 110, an image forming section 120, an operation display section 130, a storage section 140, a communication interface section 150 (hereinafter referred to as communication I/F 150), and an image reading section 160. It is equipped with The control unit 110 functions as a calibration processing unit 111.
  • the image forming section 120 includes a color conversion processing section 121 and a halftone processing section 122.
  • the storage unit 140 stores an individual profile 141.
  • the image reading unit 160 reads the image of the document, generates RGB image data, and transmits it to the image forming unit 120.
  • the RGB image data is device-dependent (that is, dependent on the image reading unit 160) image data.
  • the individual profile 141 includes an input profile, an output profile, and a device link profile for each image forming apparatus 100. The functions of the calibration processing section 111 will be described later.
  • the image reading unit 160 has characteristics defined by the input profile.
  • device-dependent RGB image data can be converted to Lab image data that is image data in the Lab color space.
  • the image forming apparatus 100 can convert device-dependent RGB image data into, for example, sRGB image data via the Lab color space, and output the converted data as scan data.
  • the image forming unit 120 has characteristics defined by an output profile.
  • Lab image data can be converted into color material image data, which is image data in a color space of 6 to 12 colors, including, for example, CMYK ink colors.
  • the output profile the relationship between the ink gradation value of each ink such as CMYK and the ink ejection amount is registered for each printing paper.
  • the image forming apparatus 100 further includes a device link profile that is a combination of an input profile and an output profile.
  • a device link profile that is a combination of an input profile and an output profile.
  • the color conversion processing unit 121 of the image forming unit 120 converts Lab image data into color material image data using an output profile.
  • the color material image data is device-dependent (that is, dependent on the image forming section 120) image data for reproducing an image using color materials (ink in this example) such as CMYK that can be used by the image forming section 120.
  • the halftone processing unit 122 of the image forming unit 120 performs RIP processing on the color material image data to generate dot data.
  • the dot data is bitmap data representing the state of formation of dots on printing paper, which are formed using ink of each color. For example, in a six-color machine, color materials such as CMYKLcLm or CMYK+Orange+Green can be used.
  • Lc is a light cyan ink having a lower density than C.
  • Lm is a light magenta ink with a lower density than M.
  • the image forming unit 120 forms an image on printing paper based on the dot data.
  • the image forming unit 120 forms an image on printing paper based on an image forming job received from the PC 200.
  • Printing paper is also referred to as imaging media.
  • the PC 200 includes a control section 210, an operation display section 230, a storage section 240, and a communication interface section 250 (hereinafter referred to as communication I/F 250).
  • the control unit 210 functions as an input image analysis unit 211.
  • the operation display section 230 has characteristics defined by the monitor profile.
  • the operation display unit 230 receives user operation inputs (hereinafter simply referred to as user inputs) on a display functioning as a touch panel, various buttons, or switches.
  • the storage unit 240 stores an ICC profile for the display of the operation display unit 230 (ie, a monitor profile). The functions of the input image analysis section 211 will be described later.
  • the integrated management server 700 includes a control unit 710, a management database (hereinafter referred to as management DB) 740, and a communication interface unit 750 (hereinafter referred to as communication I/F 750).
  • the control unit 710 functions as a color management unit 711. The functions of the color management section 711 will be described later.
  • the management DB 740 stores resource information and image characteristic information.
  • the resource information includes the content of the provided service that can be provided by each of the plurality of image forming apparatuses 100 (for example, color inkjet printing) and the amount of service provided per unit time (for example, print size and number of printed pages per unit time). There is.
  • the resource information includes schedule information representing the operating status (including reservation status) of the plurality of image forming apparatuses 100.
  • the control unit 710 updates resource information based on the operating status, maintenance status, available time period of the plurality of image forming apparatuses 100, or resource status such as material inventory including materials or printing paper.
  • the image characteristic information includes a common profile commonly used by at least some of the plurality of image forming apparatuses 100.
  • the control units 110, 210, and 710 include a main storage device such as a RAM and a ROM, and a control device such as an MPU (Micro Processing Unit) or a CPU (Central Processing Unit).
  • the control units 110, 210, and 710 have controller functions related to interfaces such as various I/Os, USB (Universal Serial Bus), buses, and other hardware. Control units 110, 210, and 710 control the entire image forming apparatus 100, PC 200, and integrated management server 700, respectively.
  • the storage units 140 and 240 are storage devices such as hard disk drives or flash memories that are non-temporary recording media.
  • the storage units 140 and 240 respectively store control programs (for example, image formation control programs) and data executed by the control units 110 and 210.
  • FIG. 3 is a chromaticity diagram showing the color gamut of the image forming apparatuses 100A to 100E.
  • the image forming apparatus 100A which is a 12-color machine, has the widest color gamut CGA.
  • the image forming apparatus 100B which is a 10-color machine, has the second widest color gamut CGB.
  • the image forming apparatus 100C which is an eight-color machine, has the third widest color gamut CGC.
  • Image forming apparatus 100D which is an eight-color machine, has almost the same color gamut CGD as image forming apparatus 100B.
  • the image forming apparatus 100E which is a six-color machine, has the narrowest color gamut CGE.
  • the image forming apparatuses 100A to 100E perform gamut mapping that focuses on color differences in order to form an image that is visually the same as the original image (that is, an image that looks the same) within its own color gamut. Run and set the output profile.
  • the color difference refers to a relative color difference within an image.
  • the output profile is set for each image forming apparatus 10 as part of the individual profile.
  • Gamut mapping is set from the viewpoint of reproducing the original image by effectively utilizing the color gamut of each of the plurality of image forming apparatuses 100. Therefore, it is not assumed that images based on the same image data are formed using a plurality of image forming apparatuses 100 having mutually different color reproduction areas. Therefore, when a plurality of image forming apparatuses 100 having mutually different color gamuts are used to form images based on the same image data and the plurality of formed images are compared side by side, a problem arises in that the colors appear different. The inventor of this application believes that this problem becomes a major problem when printing a large number of copies using multiple image forming apparatuses 100 in on-demand printing.
  • FIG. 4 is a diagram showing a comparison of the color gamuts of images reproduced by the image forming apparatuses 100A to 100E.
  • FIG. 4 shows the gamuts GC1 to GC3 of the other image forming apparatuses 100B to 100E, based on the widest gamut GR of the image forming apparatus 100A, which is a 12-color machine.
  • the color gamut ID1 indicates the color gamut to be reproduced of the first image data, which is the image data for image formation.
  • the reproduction target color gamut indicates the color gamut of colors reproduced by image data.
  • the color gamut ID2 indicates the color gamut to be reproduced of the second image data, which is the image data for image formation.
  • Color gamut ID1 and color gamut ID2 are color gamuts that can be reproduced by the image forming apparatus 100A, which is a 12-color machine.
  • the image forming apparatus 100A which is a 12-color machine, is used as a reference apparatus.
  • the color gamut ID1 of the first image data is composed of colors within a color gamut that can be reproduced by the image forming apparatus 100A, which is a 12-color machine, and the image forming apparatus 100B, which is a 10-color machine.
  • color gamut ID1 includes colors that cannot be reproduced by the other image forming apparatuses 100C to 100E.
  • the color gamut ID2 of the second image data can be reproduced by all of the image forming apparatuses 100A to 100E.
  • the gamut mapping of the image forming apparatuses 100A to 100E is set from the viewpoint of reproducing the original image by effectively utilizing the color gamut of each of the image forming apparatuses 100A to 100E. Therefore, when a plurality of images formed by the image forming apparatuses 100A to 100E based on the same image data are compared side by side, the colors may appear different.
  • the color gamut of the plurality of image forming apparatuses 100 is generally set based on ink duty restrictions.
  • Ink duty limit refers to a limit on the amount of ink that can be deposited onto an image forming medium.
  • the image forming unit 120 reproduces colors by subtractive color mixing by injecting inks of multiple colors onto an image forming medium.
  • the color gamut tends to become narrower due to ink duty restrictions. That is, as the number of usable ink colors decreases, the color gamut of the image forming apparatus 100 becomes narrower.
  • the image forming apparatus 100A that can use 12 colors of ink has the widest color gamut.
  • FIG. 5 is a flowchart showing the contents of the virtual gamut calibration process.
  • the virtual gamut calibration process is a process for performing calibration based on a virtual gamut that is set assuming a virtual image forming apparatus 100.
  • the virtual gamut is commonly used by a plurality of image forming apparatuses 100.
  • virtual gamuts having mutually different widths are commonly used among at least some of the plurality of image forming apparatuses 100.
  • step S10 the user executes target device setting processing.
  • the user operates the operation display unit 230 of the PC 200 to select and set a target device to be subjected to the virtual gamut calibration process from among the image forming apparatuses 100A to 100E.
  • the user has selected and set all of the image forming apparatuses 100A to 100E as target apparatuses.
  • step S20 the control unit 211 of the PC 200 executes a reference device setting process.
  • the control unit 211 selects the image forming device 100 having the widest color gamut (in this example, the image forming device 100A) among the image forming devices 100A to 100E, and sets it as the reference device. .
  • EPT End Point Target
  • EPT indicates the amount of ink set due to ink duty restrictions.
  • the EPT of the image forming apparatus 100B is 98%
  • the EPT of the image forming apparatus 100C and the image forming apparatus 100D is 97%
  • the EPT of the image forming apparatus 100E is 95%.
  • the EPTs of the image forming apparatuses 100B to 100E are registered in the management database 740.
  • step S30 the control unit 211 sets the narrowest virtual gamut.
  • the control unit 211 sets a virtual gamut having an outer edge of 95% EPT as the narrowest virtual gamut.
  • the user repeatedly executes the common gamut calibration process (step S40) in the image forming system 10 (step S40). That is, the user executes the common gamut calibration process for each of the six virtual gamuts corresponding to each EPT of 95%, 96%, 97%, 98%, 99%, and 100% (step S40, step S50, step S60). ).
  • a virtual gamut corresponding to 95% EPT may be referred to as 95% virtual gamut.
  • the calibration processing units 111 of the image forming apparatuses 100A to 100E perform a widest virtual gamut (100% virtual gamut) having the widest color gamut and a narrowest virtual gamut (95% virtual gamut) having the narrowest color gamut.
  • a common color calibration is performed using each of the reproduced colors of a plurality of virtual gamuts as a reference.
  • FIG. 6 is a flowchart showing the contents of the common gamut calibration process.
  • the common gamut calibration process is for generating a mock profile for simulating image formation by a reference device (in this example, image forming device 100A) within a color gamut that can be reproduced by each of image forming devices 100B to 100E. It is processing.
  • step S41 the control unit 110 of the image forming apparatus 100A, which is set as a reference device, causes the image forming unit 120 to output a predetermined color chart for color calibration as a reference image forming process.
  • step S42 the user performs color measurement processing by measuring the colors on the color chart using, for example, a colorimeter.
  • step S43 as a reference color setting process, the user operates the operation display unit 130 of each of the image forming apparatuses 100B to 100E to set a reference color using, for example, the measurement value of a colorimeter.
  • step S44 the user sequentially selects the image forming apparatus 100 to be calibrated from among the image forming apparatuses 100B to 100E. In this example, it is assumed that the user first selects image forming apparatus 100B.
  • step S45 the calibration processing unit 111 of the selected image forming apparatus 100B executes a calibration process based on the reference color and generates a simulated profile.
  • the control unit 110 of the image forming apparatus 100B transmits the generated simulated profile to the integrated management server 700 through the communication I/F 150.
  • the control unit 710 of the integrated management server 700 registers the simulated profile in the management DB 740 as a common profile for the image forming apparatus 100B.
  • the user causes the other image forming apparatuses 100C to 100E to sequentially execute the processes of step S44 and step S45.
  • the common gamut calibration process ends.
  • the image forming apparatuses 100B to 100E are able to simulate an image that is physically (not visually) identical to that of the reference device, using the simulation profile etc. set for each image forming apparatus. .
  • the image forming apparatuses 100B to 100E are capable of reproducing colors similar to those of the image forming apparatus 100A as a reference device using the simulated profile, color reproduction in the unreproducible range becomes saturated. It has the characteristic of reproducing colors that are visually degraded.
  • FIG. 7 is a flowchart showing the contents of the image forming process.
  • image forming processing is performed by a business that performs on-demand printing.
  • On-demand printing is a service that provides printed matter in small lots and with short delivery times.
  • the user is an employee of a business that performs on-demand printing.
  • step S100 the user executes image data input processing.
  • a user inputs image data obtained from a customer online or via a storage medium into one of the plurality of PCs 200.
  • a customer places an order for the use of a plurality of image forming apparatuses 100 from the viewpoint of the number of copies to be printed or delivery date.
  • step S200 the control unit 210 of the PC 200 to which the image data has been input executes a device search process.
  • the control unit 210 searches for a communicable image forming device 100 and acquires data indicating the gamut of the searched image forming device 100.
  • the control unit 210 acquires data indicating each of the reference gamut GR and gamuts GC1 to GC3.
  • step S300 the input image analysis unit 211 of the control unit 210 executes image data analysis processing.
  • the input image analysis unit 211 starts a predetermined application program and executes the image data analysis process.
  • the input image analysis unit 211 converts the image data of the image formation target into Lab image data.
  • the input image analysis unit 211 realizes the conversion by processing image data in the sRGB color space or the AdobeRGB color space using a predetermined conversion program. In this way, the input image analysis unit 211 obtains Lab image data.
  • the input image analysis unit 211 further determines whether the color gamut represented by the Lab image data is within each of the reference gamut GR and gamuts GC1 to GC3.
  • the reference gamut GR is the color gamut of the image forming apparatus 100A, which is selected as the reference apparatus because it has the widest color gamut. Specifically, when the Lab image data represents the color gamut ID1, the input image analysis unit 211 determines that only the reference gamut GR and the gamut GC1 include the color gamut ID1. When the Lab image data represents the color gamut ID2, the input image analysis unit 211 determines that the reference gamut GR and all of the gamuts GC1 to GC3 include the color gamut ID2.
  • step S400 the input image analysis unit 211 inquires of the integrated management server 700 via the local area network (LAN) whether all image forming apparatuses 100 are compatible with color reproduction of Lab image data.
  • LAN local area network
  • the input image analysis unit 211 advances the process to step S500.
  • the input image analysis unit 211 receives the second image data whose reproduction target is the color gamut ID2
  • the input image analysis unit 211 advances the process to step S700.
  • step S500 the color management unit 711 of the integrated management server 700 executes a device extraction process.
  • the color management unit 711 extracts the image forming device 100A having the reference gamut GR and the image forming device 100B having the gamut GC1, and extracts the extraction result.
  • the control unit 210 of the PC 200 advances the process to step S600.
  • FIG. 8 is a flowchart showing the contents of the usage device setting process.
  • the usage device setting process is a process for setting the image forming apparatus 100 to be used for the image forming process based on information such as the number of copies to be printed, the delivery date, or the availability status of the plurality of image forming apparatuses 100.
  • step S610 the control unit 210 of the PC 200 executes a simulated image generation process for the plurality of image forming apparatuses 100.
  • the control unit 210 first uses the image forming apparatus 100B to update the latest simulated profile (i.e., the last calibration (later simulated profile) is acquired from the integrated management server 700.
  • the control unit 210 uses the acquired simulation profile to generate simulated image data representing a simulated image based on the input image data for the image forming apparatus 100B.
  • the control unit 210 further performs similar processing for the image forming apparatuses 100C to 100E.
  • step S620 the control unit 210 uses the monitor profile to create a reproduced image of the image forming apparatus 100A based on the input image data, and a reproduced image of each of the image forming apparatuses 100B to 100E based on each of the simulated image data.
  • the user interface screen D1 shown in FIG. 9A is displayed on the operation display unit 230.
  • the control unit 210 causes the operation display unit 230 to display five reproductions on the user interface screen D1, including a reproduction image of the image forming apparatus 100A and four simulated images as reproduction images of each of the image forming apparatuses 100B to 100E. Displaying the image.
  • the control unit 210 further causes the operation display unit 230 to display on the user interface screen D1 a text T1 that says "The number of image forming devices can be increased or decreased by operating the slide bar," a slide bar SB1, and the number of available devices. (2 in this example) is displayed.
  • the five reproduced images represent the availability of multiple image forming apparatuses 100. That is, the control unit 210 causes the operation display unit 230 to mark each of the simulated images of the image forming apparatuses 100C to 100E, among the simulated images of the image forming apparatuses 100B to 100E, with an x mark indicating that the image forming apparatuses 100C to 100E are not usable. is attached. Therefore, the user interface screen D1 indicates that only the image forming apparatus 100A and the image forming apparatus 100B are capable of image forming processing within the virtual gamut.
  • step S630 the control unit 210 executes device selection processing.
  • the control unit 210 receives the user's selection of the image forming device 100A and the image forming device 100B via the user interface screen D1.
  • step S640 the control unit 210 executes delivery date estimation processing.
  • the control unit 210 acquires schedule information representing the usage schedule of the plurality of selected image forming apparatuses 100 from the management database 740 of the integrated management server 700.
  • the control unit 210 executes a simulation of the image forming process based on the schedule information and calculates the time required to complete the image forming process, that is, the delivery date.
  • the control unit 210 calculates the delivery date in real time as described above according to the selection state of the image forming apparatus 100 and the number of copies to be printed via the user interface screen D1 as an operation input screen, and displays the calculation result on the operation display unit 230. to be displayed.
  • step S650 the user determines whether or not the plurality of image forming apparatuses 100 selected via the user interface screen D1 can meet the order specifications in terms of the number of copies to be printed, delivery date, etc., while consulting with the orderer, for example. to judge.
  • step S650 the control unit 210 causes the operation display unit 230 to display the next user interface screen.
  • step S650 the control unit 210 advances to step S660 in response to the operation on the slide bar SB.
  • step S660 the control unit 210 executes reproduction range adjustment processing.
  • the slide bar SB indicates that 98% EPT is set as the initial value.
  • the user operates the slide bar SB while checking the image quality with a simulated image to lower the narrowest allowable virtual gamut (total narrowest virtual gamut) to 97% virtual gamut (switch or change).
  • the control unit 210 receives the above operation on the slide bar SB, the control unit 210 causes the operation display unit 230 to selectably display the image forming apparatus 100C and the image forming apparatus 100D on the user interface screen D1, as shown in FIG. 9B. .
  • the control unit 210 Upon receiving an instruction to secure schedules for the selected image forming apparatuses 100 via the next user interface screen, the control unit 210 transmits the image forming job to the integrated management server 700 via the communication I/F 250.
  • the control unit 710 of the integrated management server 700 receives the image forming job through the communication I/F 750, it executes a reservation process for the plurality of selected image forming apparatuses 100.
  • the control unit 710 transmits the image forming job to the selected image forming apparatuses 100 as scheduled via the communication I/F 750.
  • control unit 210 when the control unit 210 receives a user input for performing test printing via the operation display unit 230, the control unit 210 causes at least some of the image forming apparatuses 100 to actually perform the test printing. may be configured.
  • step S700 shown in FIG. 7 the control unit 710 of the integrated management server 700 functions as an image forming job generation unit.
  • the control unit 710 transmits the image forming job to the plurality of reserved image forming apparatuses 100 according to the reservation status.
  • the image forming job includes a simulated profile for each image forming apparatus 100 that corresponds to the assumed virtual gamut.
  • the four image forming apparatuses 100A to 100D have mutually different color gamuts, but through image forming processing that assumes gamut mapping that assumes a common virtual gamut, only the appearance when viewed individually is possible. Even in the case of mutual comparison, image reproduction with high reproducibility can be achieved.
  • the image forming system 10 can achieve highly reproducible image formation assuming a wide color gamut while suppressing a reduction in the number of image forming apparatuses 100 that can be used to form images based on the same image data.
  • the necessity of operating the slide bar SB is explained by focusing on the delivery date of printed matter.
  • the purpose of using the slide bar SB is not limited to such factors.
  • the slide bar SB can be used for various purposes such as avoiding load concentration on a specific image forming apparatus 100.
  • the calibration processing unit 110 sets the color gamut of the reference device that has the widest reproducible color gamut among the plurality of image forming devices 100 as the widest virtual gamut.
  • the calibration processing unit 110 may set, for example, the color gamut of the image forming apparatus having the second or third widest reproducible color gamut as the widest virtual gamut.
  • the color gamut of the reference device is set as the widest virtual gamut, it becomes possible to reproduce colors assuming a wider color gamut, thereby making it possible to form images with even higher reproducibility.
  • the present invention is not limited to such an embodiment.
  • the target may include not only a plurality of image forming apparatuses 100 within the same shop, but also image forming apparatuses of other shops connected via the integrated management server 700.
  • the user operates the operation display unit 230 of the PC 200 to select an image forming device of another shop connected via the integrated management server 700 as the target device. can.
  • the image forming system 10 is realized by a combination of the control unit 210 of the PC 200, the control unit 210 of the plurality of image forming apparatuses 100, the control unit 710 of the integrated management server 700, etc.
  • the invention is not limited to such embodiments.
  • the image forming system 10 may be implemented using only one of the control units included in the image forming system 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Color Image Communication Systems (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

画像形成システム(10)は、最広仮想ガマットと最狭仮想ガマットとを含む複数の仮想ガマットの再現色のそれぞれを基準として、複数の画像形成装置に対して共通する色校正を行なう校正処理部(110)と、画像データの再現対象色域を特定する入力画像解析部(211)と、最広仮想ガマットを想定した複数の画像形成装置のそれぞれが有する色域の範囲内で再現対象色域を再現可能であるか否かに基づいて利用可能性を判断する色管理部(711)と、操作表示部(230)と、複数の画像形成装置のそれぞれの利用可能性を表すとともに、仮想ガマットを選択するための所定の操作入力を受付けるための操作入力画面を操作表示部(230)に表示させ、所定の操作入力に応じて利用可能性を表す表示を変更する制御部(210)と、選択された仮想ガマットを想定した模擬プロファイルを含む画像形成ジョブを生成する制御部(710)と、を備える。

Description

画像形成システム及び画像形成制御方法
 本発明は、複数の画像形成装置を制御するための画像形成システム、及び画像形成制御方法に関する。
 いわゆる出力センターその他の印刷事業を行なう会社では、インクジェット方式、オフセット印刷方式、又は電子写真方式等の様々な方式の複数の画像形成装置がネットワークに接続されて使用されている。複数の画像形成装置を用いて同一の印刷物を多くの部数出力する場合には、色を一致させるために共通するガマットを想定した色校正を行なう。当該色校正によって、各画像形成装置は、それぞれが有する色域を有効活用して、印刷物の見た目が一致するように、印刷を行なう。
 このような色校正は、複数の画像形成装置の中で最も狭い範囲の色域を有する画像形成装置に合わせて行なうよう制限されるという問題がある。すなわち、広範囲の色域を利用して印刷を行なう必要がある場合には、利用可能な画像形成装置が、色域の範囲が広い高性能の画像形成装置に限定されてしまうため、少なくなる。一方、利用可能な画像形成装置を多くするためには、利用対象の色域を狭くする必要がある。
 本発明は、このような事情に鑑みてなされたものであり、同一画像データに基づく画像の形成に利用可能な画像形成装置の数の低減を抑制しつつ、広い色域を想定した再現性の高い画像形成を実現することを目的とする。
 本発明の一局面に係る画像形成システムは、最も広い色域を有する最広仮想ガマットと最も狭い色域を有する最狭仮想ガマットとを含む複数の仮想ガマットの再現色のそれぞれを基準として、相互に色再現領域が相違する複数の画像形成装置に対して共通する色校正を行なう校正処理部と、画像形成対象の画像データを解析して、画像データの再現対象色域を特定する入力画像解析部と、最広仮想ガマットを想定した複数の画像形成装置のそれぞれが有する色域の範囲内で再現対象色域を再現可能であるか否かに基づいて、複数の画像形成装置のそれぞれの利用可能性を判断する色管理部と、操作表示部と、複数の画像形成装置のそれぞれの利用可能性を表すとともに、複数の仮想ガマットのうちのいずれかの仮想ガマットを選択するための所定の操作入力を受付けるための操作入力画面を操作表示部に表示させ、操作入力画面を通じて入力された所定の操作入力に応じて利用可能性を表す表示を変更する制御部と、選択された仮想ガマットを想定した模擬プロファイルを含む画像形成ジョブを生成する画像形成ジョブ生成部とを備える。
 本発明の他の一局面に係る画像形成制御方法は、最も広い色域を有する最広仮想ガマットと最も狭い色域を有する最狭仮想ガマットとを含む複数の仮想ガマットの再現色のそれぞれを基準として、相互に色再現領域が相違する複数の画像形成装置に対して共通する色校正を行なう校正処理工程と、画像形成対象の画像データを解析して、画像データの再現対象色域を特定する入力画像解析工程と、最広仮想ガマットを想定した複数の画像形成装置のそれぞれが有する色域の範囲内で再現対象色域を再現可能であるか否かに基づいて、複数の画像形成装置のそれぞれの利用可能性を判断する色管理工程と、複数の画像形成装置のそれぞれの利用可能性を表すとともに、複数の仮想ガマットのうちのいずれかの仮想ガマットを選択するための所定の操作入力を受付けるための操作入力画面を操作表示部に表示させ、操作入力画面を通じて入力された所定の操作入力に応じて利用可能性を表す表示を変更する表示工程と、選択された仮想ガマットを想定した模擬プロファイルを含む画像形成ジョブを生成する画像形成ジョブ生成工程と、を含む。
 本発明によれば、同一画像データに基づく画像の形成に利用可能な画像形成装置の数の低減を抑制しつつ、広い色域を想定した再現性の高い画像形成を実現できる。
画像形成システムの構成を示すブロックダイアグラムである。 画像形成装置、パーソナルコンピュータ、及び統合管理サーバの構成を示すブロックダイアグラムである。 複数の画像形成装置の色域を示す色度図である。 複数の画像形成装置による再現画像の色域を比較して示す図である。 仮想ガマット校正処理の内容を示すフローチャートである。 共通ガマット校正処理の内容を示すフローチャートである。 画像形成処理の内容を示すフローチャートである。 利用装置設定処理の内容を示すフローチャートである。 ユーザーインターフェース画面の一例を示す図である。 ユーザーインターフェース画面の一例を示す図である。
 以下、本発明の一実施形態を、図面を参照して説明する。図1は、本発明の一実施形態に係る画像形成システム10の構成を示すブロックダイアグラムである。図2は、画像形成装置100、パーソナルコンピュータ200、及び統合管理サーバ700の構成を示すブロックダイアグラムである。図1及び図2に示すように、画像形成システム10は、複数の画像形成装置100と、複数のパーソナルコンピュータ(以下、単にPCと記す。)200と、少なくとも1つの統合管理サーバ700とを含んでいる。複数のPC200は、複数の画像形成装置100が提供するサービスの実行を指令するクライアント端末として機能する。
 画像形成システム10は、さらに、有線のローカルエリアネットワーク(単にネットワークとも呼ばれる。)LANを構成するスイッチングハブ500を含んでいる。スイッチングハブ500は、複数のPC200と、複数の画像形成装置100と、統合管理サーバ700と、ルーター600とを相互に接続している。画像形成システム10を構成するこれらの複数のPC200、複数の画像形成装置100、及び、統合管理サーバ700は、ルーター600とインターネットとを介して他の統合管理サーバ700に接続されている。スイッチングハブ500は、単にハブとも呼ばれる。
 画像形成装置100は、5つの画像形成装置100A乃至100Eの総称を示す。複数の画像形成装置100は、画像形成装置100Aと、画像形成装置100Bと、画像形成装置100Cと、画像形成装置100Dと、画像形成装置100Eとを含んでいる。画像形成装置100Aは、12色のインクを使用可能なインクジェット方式の画像形成装置(すなわち、12色機)である。
 画像形成装置100Bは、10色のインクを使用可能なインクジェット方式の画像形成装置(すなわち、10色機)である。画像形成装置100C及び画像形成装置100Dは、8色のインクを使用可能なインクジェット方式の画像形成装置(すなわち、8色機)である。画像形成装置100Eは、6色のインクを使用可能なインクジェット方式の画像形成装置(すなわち、6色機)である。
 画像形成装置100は、制御部110と、画像形成部120と、操作表示部130と、記憶部140と、通信インターフェース部150(以下、通信I/F150と記す。)と、画像読取部160とを備えている。制御部110は、校正処理部111として機能する。画像形成部120は、色変換処理部121と、ハーフトーン処理部122とを備えている。記憶部140は、個別プロファイル141を格納する。
 画像読取部160は、原稿の画像を読取ってRGB画像データを生成して、画像形成部120に送信する。RGB画像データは、デバイス依存(すなわち、画像読取部160に依存)の画像データである。個別プロファイル141は、画像形成装置100毎の、入力プロファイル、出力プロファイル、及びデバイスリンクプロファイルを含んでいる。校正処理部111の機能については後述する。
 画像読取部160は、入力プロファイルで定義される特性を有している。入力プロファイルを使用すれば、デバイス依存のRGB画像データをLab色空間の画像データであるLab画像データに変換できる。これにより、画像形成装置100は、デバイス依存のRGB画像データを、Lab色空間を経由して、例えばsRGB画像データ等に変換してスキャンデータとして出力できる。
 画像形成部120は、出力プロファイルで定義される特性を有している。出力プロファイルを使用すれば、Lab画像データを、例えばCMYKのインク色を含む6色乃至12色の色空間の画像データである色材画像データに変換できる。出力プロファイルには、CMYK等の各インクのインク階調値とインク吐出量との関係が印刷用紙毎に登録されている。
 画像形成装置100は、入力プロファイルと出力プロファイルとを組合せたデバイスリンクプロファイルをさらに有している。デバイスリンクプロファイルを使用すれば、複写処理において、色変換処理の負担を軽減しつつ印刷速度を向上できる。
 画像形成部120の色変換処理部121は、入力された画像データに基づく画像の形成時には、出力プロファイルを使用して、Lab画像データを色材画像データに変換する。色材画像データは、画像形成部120で利用可能なCMYK等の色材(この例ではインク)で画像を再現するためのデバイス依存(すなわち、画像形成部120に依存)の画像データである。
 画像形成部120のハーフトーン処理部122は、色材画像データに対してRIP処理を実行して、ドットデータを生成する。ドットデータは、各色のインクで形成される、印刷用紙上のドットの形成状態を表すビットマップデータである。例えば6色機では、CMYKLcLm、又は、CMYK+Orange+Green等の色材を利用可能である。Lcは、Cよりも濃度が低い淡シアン色のインクである。Lmは、Mよりも濃度が低い淡マゼンタ色のインクである。
 画像形成部120は、ドットデータに基づいて印刷用紙に画像を形成する。この例では、画像形成部120は、PC200から受信した画像形成ジョブに基づいて、印刷用紙に画像を形成する。印刷用紙は、画像形成媒体とも呼ばれる。
 PC200は、制御部210と、操作表示部230と、記憶部240と、通信インターフェース部250(以下、通信I/F250と記す。)と、を備えている。制御部210は、入力画像解析部211として機能する。操作表示部230は、モニタープロファイルで定義される特性を有する。操作表示部230は、タッチパネルとして機能するディスプレイ、各種ボタン、又はスイッチに対するユーザーの操作入力(以下、単にユーザー入力と記す。)を受付ける。記憶部240は、操作表示部230のディスプレイ用のICCプロファイル(すなわち、モニタープロファイル)を格納している。入力画像解析部211の機能については後述する。
 統合管理サーバ700は、制御部710と、管理データベース(以下、管理DBと記す。)740と、通信インターフェース部750(以下、通信I/F750と記す。)と、を備えている。制御部710は、色管理部711として機能する。色管理部711の機能については後述する。
 管理DB740は、リソース情報と画像特性情報とを格納している。リソース情報は、複数の画像形成装置100のそれぞれで提供可能な提供サービスの内容(例えばカラーインクジェット印刷)と単位時間当たりの提供分量(例えば単位時間当たりの印刷サイズ及び印刷ページ数)とを含んでいる。リソース情報は、複数の画像形成装置100の稼働状況(予約状況を含む。)を表すスケジュール情報を含む。制御部710は、複数の画像形成装置100の稼働状況、メインテナンス状況、利用可能時間帯、又は、資材若しくは印刷用紙を含む資材在庫等のリソースの状態に基づいて、リソース情報を更新する。画像特性情報は、複数の画像形成装置100のうちの少なくとも一部で共通して使用される共通プロファイルを含んでいる。
 制御部110,210,710は、RAM及びROM等の主記憶装置、並びに、MPU(Micro Processing Unit)又はCPU(Central Processing Unit)等の制御装置を備えている。制御部110,210,710は、各種I/O、USB(ユニバーサル・シリアル・バス)、バス、及びその他のハードウェア等のインターフェースに関連するコントローラ機能を備えている。制御部110,210,710は、それぞれ、画像形成装置100、PC200、及び統合管理サーバ700の全体を制御する。
 記憶部140,240は、非一時的な記録媒体であるハードディスクドライブ又はフラッシュメモリー等の記憶装置である。記憶部140,240は、それぞれ、制御部110,210が実行する制御プログラム(例えば、画像形成制御プログラム)及びデータを記憶する。
 図3は、画像形成装置100A乃至100Eの色域を示す色度図である。12色機である画像形成装置100Aは、最も広い色域CGAを有している。10色機である画像形成装置100Bは、2番目に広い色域CGBを有している。8色機である画像形成装置100Cは、3番目に広い色域CGCを有している。8色機である画像形成装置100Dは、画像形成装置100Bとほぼ同一の色域CGDを有している。6色機である画像形成装置100Eは、最も狭い色域CGEを有している。
 画像形成装置100A乃至100Eは、それぞれが有する色域(ガマット)の範囲内で原画像と視覚的に同一の画像(すなわち見た目が同一の画像)を形成するために、色差に着目したガマットマッピングを実行して、出力プロファイルを設定している。ここで、色差とは、画像内の相対的な色の差を示す。出力プロファイルは、個別プロファイルの一部として画像形成装置10毎に設定されている。
 ガマットマッピングは、複数の画像形成装置100のそれぞれが有する色域を有効活用して原画像を再現するという観点から設定されている。そのため、色再現領域が相互に相違する複数の画像形成装置100を使用して同一画像データに基づく画像を形成することを想定していない。したがって、色域が相互に相違する複数の画像形成装置100を使用して同一画像データに基づく画像を形成し、形成された複数の画像を並べて比較すると色が違って見えるという問題が生じる。本願発明者は、この問題は、オンデマンド印刷において大量の部数の印刷を複数の画像形成装置100で実行する際に大きな問題となると考えている。
 図4は、画像形成装置100A乃至100Eによる再現画像の色域(ガマット)を比較して示す図である。図4は、12色機である画像形成装置100Aが有する最も広いガマットGRを基準として、他の画像形成装置100B乃至100Eが有するガマットGC1乃至GC3を示している。色域ID1は、画像形成対象の画像データである第1画像データの再現対象色域を示している。再現対象色域とは、画像データで再現される色の色域を示す。色域ID2は、画像形成対象の画像データである第2画像データの再現対象色域を示している。色域ID1及び色域ID2は、12色機である画像形成装置100Aで再現可能な色域である。本実施形態では、12色機である画像形成装置100Aを、基準装置とする。
 第1画像データの色域ID1は、12色機である画像形成装置100A及び10色機である画像形成装置100Bで再現可能な色域内の色で構成されている。一方、色域ID1は、他の画像形成装置100C乃至100Eで再現不可能な色を含んでいる。第2画像データの色域ID2は、画像形成装置100A乃至100Eの全てで再現可能である。しかしながら、画像形成装置100A乃至100Eのガマットマッピングは、画像形成装置100A乃至100Eのそれぞれが有する色域を有効活用して原画像を再現するという観点から設定されている。そのため、同一画像データに基づいて画像形成装置100A乃至100Eにより形成された複数の画像を並べて比較すると、色が違って見える場合がある。
 複数の画像形成装置100の色域は、一般的にはインクデューティー制限に基づいて設定されている。インクデューティー制限とは、画像形成媒体上に打ち込むことが可能なインク量の制限を示す。インクジェット方式の印刷では、画像形成部120は、複数色のインクを画像形成媒体上へ打ち込むことによって減法混色により色再現を行なう。利用可能なインク色の種類が少ないほど混色の割合が多くなるので、インクデューティー制限に起因して色域が狭くなる傾向がある。すなわち、使用可能なインク色が少なくなるほど、画像形成装置100の色域が狭くなる。この例では、12色のインクを使用可能な画像形成装置100Aが最も広い色域を有している。
 図5は、仮想ガマット校正処理の内容を示すフローチャートである。仮想ガマット校正処理とは、仮想の画像形成装置100を想定して設定されている仮想ガマットに基づいて校正を行なうための処理である。仮想ガマットは、複数の画像形成装置100で共通して使用される。この例では、相互に広さが異なる仮想ガマットは、複数の画像形成装置100の少なくとも一部の画像形成装置100の間で共通に使用される。
 ステップS10では、ユーザーは、対象装置設定処理を実行する。対象装置設定処理では、ユーザーは、PC200の操作表示部230を操作して、画像形成装置100A乃至100Eの中から、仮想ガマット校正処理の対象となる対象装置を選択して設定する。この例では、ユーザーは、画像形成装置100A乃至100Eの全てを、対象装置として選択して設定したものとする。
 ステップS20では、PC200の制御部211は、基準装置設定処理を実行する。基準装置設定処理では、制御部211は、画像形成装置100A乃至100Eの中で最も広い色域を有する画像形成装置100(この例では、画像形成装置100A)を選択して、基準装置として設定する。
 基準装置の色域の外縁は、EPT(End Point Target)100%として定義する。EPTとは、インクデューティー制限に起因して設定されているインク量を示す。この例では、画像形成装置100BのEPTは98%であり、画像形成装置100C及び画像形成装置100DのEPTは97%であり、画像形成装置100EのEPTは95%であるものとする。画像形成装置100B乃至100EのEPTは、管理データベース740に登録されている。
 ステップS30では、制御部211は、最狭仮想ガマットを設定する。この例では、制御部211は、最狭仮想ガマットとして95%のEPTを外縁とする仮想ガマットを設定する。ユーザーは、画像形成システム10において共通ガマット校正処理(ステップS40)を繰返して実行する(ステップS40)。すなわち、ユーザーは、95%、96%、97%、98%、99%及び100%の各EPTに対応する6つの仮想ガマット毎に共通ガマット校正処理を実行する(ステップS40,ステップS50,ステップS60)。以下、例えば95%EPTに対応する仮想ガマットを、95%仮想ガマットと記す場合がある。
 この例では、画像形成装置100A乃至100Eの校正処理部111は、最も広い色域を有する最広仮想ガマット(100%仮想ガマット)と最も狭い色域を有する最狭仮想ガマット(95%仮想ガマット)とを含む複数の仮想ガマットの再現色のそれぞれを基準として、共通する色校正を行なう。
 図6は、共通ガマット校正処理の内容を示すフローチャートである。共通ガマット校正処理は、画像形成装置100B乃至100Eのそれぞれが再現可能な色域内で、基準装置(この例では、画像形成装置100A)の画像形成をシミュレートするための模擬プロファイルを生成するための処理である。
 ステップS41では、基準装置として設定されている画像形成装置100Aの制御部110は、基準画像形成処理として、画像形成部120に対し、色校正のための所定のカラーチャートを出力させる。ステップS42では、ユーザーは、測色処理として、例えば測色計を使用してカラーチャート上の色を測色する。ステップS43では、ユーザーは、基準色設定処理として、画像形成装置100B乃至100Eそれぞれの操作表示部130を操作して、例えば測色計の計測値を使用して基準色を設定する。
 ステップS44では、ユーザーは、校正対象となる画像形成装置100を、画像形成装置100B乃至100Eの中から順に選択する。この例では、ユーザーは、最初に、画像形成装置100Bを選択したものとする。ステップS45では、選択された画像形成装置100Bの校正処理部111は、基準色に基づいて校正処理を実行し、模擬プロファイルを生成する。
 画像形成装置100Bの制御部110は、通信I/F150を通じて、生成した模擬ンプロファイルを統合管理サーバ700に送信する。統合管理サーバ700の制御部710は、通信I/F750を通じて模擬プロファイルを受信すると、当該模擬プロファイルを、画像形成装置100B用の共通プロファイルとして、管理DB740に登録する。ユーザーは、ステップS44及びステップS45の処理を、他の画像形成装置100C乃至100Eに対して順に実行させる。画像形成装置100B乃至100Eの全てがステップS44及びステップS45の処理を実行すると(ステップS46にてYES)、共通ガマット校正処理は終了する。
 共通ガマット校正処理により、画像形成装置100B乃至100Eは、それぞれに設定されている模擬プロファイル等を用いて、基準装置と物理的(見た目ではなく)に同一の画像を模擬的に再現できるようになる。ただし、画像形成装置100B乃至100Eは、模擬プロファイルを用いて、基準装置としての画像形成装置100Aと同じような色を再現可能である一方、再現不可能な範囲の色再現が飽和することにより、見た目にも劣化した色を再現してしまうという特性を有している。
 図7は、画像形成処理の内容を示すフローチャートである。本実施形態では、オンデマンド印刷を行なう事業者による画像形成処理を想定しているものとする。オンデマンド印刷とは、小ロット且つ短納期で印刷物を提供するサービスである。本実施形態では、ユーザーは、オンデマンド印刷を行なう事業者の従業員である。
 ステップS100では、ユーザーは、画像データ入力処理を実行する。画像データ入力処理では、ユーザーは、オンライン又は記憶媒体を介して顧客から取得した画像データを複数のPC200のうちの一つに入力する。この例では、顧客により、印刷部数又は納期等の観点から、複数の画像形成装置100の利用を望む発注があったものとする。
 ステップS200では、画像データが入力されたPC200の制御部210は、装置検索処理を実行する。装置検索処理では、制御部210は、通信可能な画像形成装置100を検索し、検索した画像形成装置100が有するガマットを示すデータを取得する。この例では、制御部210は、基準ガマットGR及びガマットGC1乃至GC3のそれぞれを示すデータを取得する。
 ステップS300では、制御部210の入力画像解析部211は、画像データ解析処理を実行する。画像データ解析処理では、入力画像解析部211は、所定のアプリケーションプログラムを起動し、画像データ解析処理を実行する。画像データ解析処理では、入力画像解析部211は、画像形成対象の画像データをLab画像データに変換する。入力画像解析部211は、所定の変換プログラムを使用して、sRGB色空間又はAdobeRGB色空間の画像データを処理することによって、当該変換を実現する。このようにして、入力画像解析部211は、Lab画像データを取得する。
 画像データ解析処理では、入力画像解析部211はさらに、Lab画像データによって表される色域が基準ガマットGR及びガマットGC1乃至GC3のそれぞれの範囲内であるか否かを判断する。基準ガマットGRは、最も広い色域を有するが故に基準装置として選択される画像形成装置100Aが有する色域である。具体的には、入力画像解析部211は、Lab画像データが色域ID1を表す場合には、基準ガマットGR及びガマットGC1のみが色域ID1を包含していると判断する。入力画像解析部211は、Lab画像データが色域ID2を表す場合には、基準ガマットGR及びガマットGC1乃至GC3の全てが色域ID2を包含していると判断する。
 ステップS400では、入力画像解析部211は、Lab画像データの色再現に全ての画像形成装置100が対応しているか否かを、ローカルエリアネットワーク(LAN)を介して統合管理サーバ700に照会する。この例では、入力画像解析部211は、色域ID1を再現対象とする第1画像データが入力された場合には、処理をステップS500に進める。入力画像解析部211は、色域ID2を再現対象とする第2画像データが入力された場合には、処理をステップS700に進める。
 ステップS500では、統合管理サーバ700の色管理部711は、装置抽出処理を実行する。装置抽出処理では、色管理部711は、第1画像データが入力された場合には、基準ガマットGRを有する画像形成装置100Aと、ガマットGC1を有する画像形成装置100Bとを抽出し、抽出結果をPC200に送信する。PC200の制御部210は、抽出結果を受信すると、処理をステップS600に進める。
 図8は、利用装置設定処理の内容を示すフローチャートである。利用装置設定処理は、印刷部数、納期、又は、複数の画像形成装置100の空き状態等の情報に基づいて画像形成処理に利用するための画像形成装置100を設定するための処理である。
 ステップS610では、PC200の制御部210は、複数の画像形成装置100について、模擬画像生成処理を実行する。この例では、模擬画像生成処理において、制御部210はまず、画像形成装置100Bで、基準装置である画像形成装置100Aの画像形成をシミュレートするための最新の模擬プロファイル(すなわち、最後の校正処理後の模擬プロファイル)を、統合管理サーバ700から取得する。制御部210は、取得した模擬プロファイルを使用して、画像形成装置100Bについての、入力された画像データに基づく模擬画像を示す模擬画像データを生成する。制御部210はさらに、画像形成装置100C乃至画像形成装置100Eについても同様の処理を行なう。
 ステップS620では、制御部210は、モニタープロファイルを使用して、入力された画像データに基づく画像形成装置100Aの再現画像と、模擬画像データのそれぞれに基づく画像形成装置100B乃至100Eそれぞれの再現画像とを含む、図9Aに示すユーザーインターフェース画面D1を、操作表示部230に表示させる。
 制御部210は、操作表示部230に対し、ユーザーインターフェース画面D1に、画像形成装置100Aの再現画像、及び、画像形成装置100B乃至100Eそれぞれの再現画像としての4つの模擬画像とを含む5つの再現画像を表示させている。制御部210はさらに、操作表示部230に対し、ユーザーインターフェース画面D1に、「画像形成装置は、スライドバーの操作で増減できます。」というテキストT1と、スライドバーSB1と、利用可能な装置数(この例では2)とを表示させている。
 5つの再現画像は、複数の画像形成装置100の利用可能性を表している。すなわち、制御部210は、操作表示部230に対し、画像形成装置100B乃至100Eのそれぞれの模擬画像のうち、画像形成装置100C乃至100Eのそれぞれの模擬画像に、利用不可であることを示す×印を付させている。したがって、ユーザーインターフェース画面D1は、画像形成装置100A及び画像形成装置100Bだけが、仮想ガマット内での画像形成処理が可能であることを示している。この例では、画像形成システム10において、初期許容EPTとして98%が設定されており、色管理部711が、画像形成装置100A(EPT=100%)及び画像形成装置100B(EPT=98%)を抽出したものとする。
 ステップS630では、制御部210は、装置選択処理を実行する。装置選択処理では、制御部210は、ユーザーインターフェース画面D1を介して、画像形成装置100A及び画像形成装置100Bに対するユーザーの選択を受付ける。
 ステップS640では、制御部210は、納期推定処理を実行する。納期推定処理では、制御部210は、統合管理サーバ700の管理データベース740から、選択された複数の画像形成装置100の使用予定を表すスケジュール情報を取得する。制御部210は、スケジュール情報に基づいて、画像成形処理のシミュレーションを実行して、画像形成処理の完了までに要する時間、すなわち納期を算出する。制御部210は、操作入力画面としてのユーザーインターフェース画面D1を介した画像形成装置100の選択状態と印刷部数とに応じて上記のようにして納期をリアルタイムで計算し、計算結果を操作表示部230に表示させる。
 ステップS650では、ユーザーは、ユーザーインターフェース画面D1を介して選択した複数の画像形成装置100について、例えば発注者と協議しつつ印刷部数又は納期等の観点から発注の仕様を満たすことができるか否かを判断する。
 ユーザーは、発注者の要求に応じることができると判断した場合(この例では、納期を満たす場合)には、「次画面」を示すアイコンN(次画面)をクリックして複数の画像形成装置100の選択を確定する(ステップS650にてYES)。ステップS670において、制御部210は、操作表示部230に対し、次のユーザーインターフェース画面を表示させる。
 一方、ユーザーは、発注者の要求に応じることができないと判断した場合(この例では、納期を満たさない場合)には、図9Bに示すように、スライドバーSBを操作して、選択可能な画像形成装置100を増やすことができる(ステップS650にてNO)。制御部210は、スライドバーSBに対する操作に応じてステップS660の処理に進む。ステップS660では、制御部210は、再現範囲調整処理を実行する。
 図9Aに示すユーザーインターフェース画面D1では、スライドバーSBは、初期値として98%EPTが設定されていることを示している。再現範囲調整処理では、ユーザーは、模擬画像で画質を確認しつつスライドバーSBを操作して、許容される最狭の仮想ガマット(許容最狭仮想ガマット)を97%仮想ガマットまで下げる(切り替え又は変更)。制御部210は、スライドバーSBに対する上記操作を受付けると、図9Bに示すように、操作表示部230に対し、ユーザーインターフェース画面D1において、画像形成装置100C及び画像形成装置100Dも選択可能に表示させる。
 制御部210は、次のユーザーインターフェース画面を介して、選択した複数の画像形成装置100のスケジュールの確保指示を受付けると、通信I/F250を通じて、画像形成ジョブを統合管理サーバ700に送信する。統合管理サーバ700の制御部710は、通信I/F750を通じて画像形成ジョブを受信すると、選択された複数の画像形成装置100の予約処理を実行する。制御部710は、通信I/F750を通じて、予定通りに、選択された複数の画像形成装置100に対して画像形成ジョブを送信する。
 なお、制御部210は、操作表示部230を介して、テスト印刷を行なうためのユーザー入力を受け付けた場合に、少なくとも一部の画像形成装置100に対して、テスト印刷を実際に実行させるように構成されていてもよい。
 図7に示すステップS700では、統合管理サーバ700の制御部710は、画像形成ジョブ生成部として機能する。制御部710は、予約状態に応じて、予約されている複数の画像形成装置100に画像形成ジョブを送信する。画像形成ジョブには、想定した仮想ガマットに対応する画像形成装置100毎の模擬プロファイルが含まれている。
 ステップS800では、複数の画像形成装置100のそれぞれの制御部110は、模擬プロファイルを使用して、仮想ガマットを想定して画像形成処理を実行する。具体的には、例えば許容EPTがスライドバーSBの操作によって97%に切替えられている場合には、台の画像形成装置100A乃至100Dは、仮想ガマット(EPT=97%)を想定した共通ガマット校正処理によって校正された各模擬プロファイルを使用して、同一の印刷物を出力する。4台の画像形成装置100A乃至100Dは、相互に異なる色域を有しているが、共通する仮想ガマットを想定したガマットマッピングを前提とする画像形成処理によって、単一で見た場合の見た目だけではなく、相互比較する場合であっても、再現性の高い画像再現を実現できる。
 このように、画像形成システム10は、同一画像データに基づく画像の形成に利用可能な画像形成装置100の数の低減を抑制しつつ、広い色域を想定した再現性の高い画像形成を実現できる。なお、上記実施形態では、印刷物の納期に着目してスライドバーSBの操作の必要性を説明している。しかしながら、スライドバーSBの利用目的はこのような要因に限定されない。スライドバーSBは、特定の画像形成装置100への負荷集中の回避等の様々な目的のために利用可能である。
 本発明は、上記実施形態だけでなく、以下のような変形例でも実施できる。
 第1変形例:上記実施形態では、校正処理部110は、最広仮想ガマットとして、複数の画像形成装置100のうちで再現可能な色域が最も広い基準装置の色域を設定しているが、本発明はそのような実施形態に限定されない。校正処理部110は、最広仮想ガマットとして、例えば再現可能な色域が2番目又は3番目に広い画像形成装置の色域を設定してもよい。ただし、最広仮想ガマットとして基準装置の色域を設定すれば、より広い色域を想定した色再現が可能になるので、再現性のより一層高い画像形成が可能になる。
 第2変形例:上記実施形態では、同一のローカルエリアネットワーク内(すなわち、同一ショップ内)の複数の画像形成装置100を対象としているが、本発明はそのような実施形態に限定されない。例えば、同一ショップ内の複数の画像形成装置100だけでなく、統合管理サーバ700を介して接続されている他のショップの画像形成装置も対象として含んでいてもよい。この場合、対象装置設定処理(ステップS10)では、ユーザーは、PC200の操作表示部230を操作して、統合管理サーバ700を介して接続されている他のショップの画像形成装置を対象装置として選択できる。
 第3変形例:上記実施形態では、画像形成システム10を、PC200の制御部210、複数の画像形成装置100の制御部210、及び統合管理サーバ700の制御部710等の組合せにより実現しているが、本発明はそのような実施形態に限定されない。例えば、画像形成システム10を、画像形成システム10が備えているいずれかの制御部のみで実現してもよい。

Claims (6)

  1.  最も広い色域を有する最広仮想ガマットと最も狭い色域を有する最狭仮想ガマットとを含む複数の仮想ガマットの再現色のそれぞれを基準として、相互に色再現領域が相違する複数の画像形成装置に対して共通する色校正を行なう校正処理部と、
     画像形成対象の画像データを解析して、前記画像データの再現対象色域を特定する入力画像解析部と、
     前記最広仮想ガマットを想定した前記複数の画像形成装置のそれぞれが有する色域の範囲内で前記再現対象色域を再現可能であるか否かに基づいて、前記複数の画像形成装置のそれぞれの利用可能性を判断する色管理部と、
     操作表示部と、
     前記複数の画像形成装置のそれぞれの前記利用可能性を表すとともに、前記複数の仮想ガマットのうちのいずれかの仮想ガマットを選択するための所定の操作入力を受付けるための操作入力画面を前記操作表示部に表示させ、前記操作入力画面を通じて入力された前記所定の操作入力に応じて前記利用可能性を表す表示を変更する制御部と、
     選択された前記仮想ガマットを想定した模擬プロファイルを含む画像形成ジョブを生成する画像形成ジョブ生成部と、を備える、画像形成システム。
  2.  請求項1に記載の画像形成システムであって、
     前記校正処理部は、前記最広仮想ガマットとして、前記複数の画像形成装置のうちで再現可能な色域が最も広い基準装置の色域を設定する。
  3.  請求項1に記載の画像形成システムであって、
     前記制御部は、前記複数の画像形成装置のそれぞれの使用予定を表すスケジュール情報を取得し、
     前記制御部は、前記操作入力画面を通じて、前記操作入力画面において利用可能と示されている画像形成装置を選択するための操作入力を受付けると、前記スケジュール情報に基づいて、選択された前記画像形成装置についての画像形成処理の完了までに要する時間を算出し、算出結果を前記操作表示部に表示させる。
  4.  請求項1に記載の画像形成システムであって、
     前記制御部は、前記複数の画像形成装置のうちの少なくとも一つが利用可能でないと判断された場合に、前記操作入力画面を前記操作表示部に表示させる。
  5.  請求項1に記載の画像形成システムであって、
     前記校正処理部は、前記基準装置によって出力される基準色に基づいて前記色校正を実行して、前記複数の画像形成装置のそれぞれについて、当該それぞれの画像形成装置が再現可能な色域内で前記基準装置の画像形成をシミュレートするための模擬プロファイルを生成する。
  6.  最も広い色域を有する最広仮想ガマットと最も狭い色域を有する最狭仮想ガマットとを含む複数の仮想ガマットの再現色のそれぞれを基準として、相互に色再現領域が相違する複数の画像形成装置に対して共通する色校正を行なう校正処理工程と、
     画像形成対象の画像データを解析して、前記画像データの再現対象色域を特定する入力画像解析工程と、
     前記最広仮想ガマットを想定した前記複数の画像形成装置のそれぞれが有する色域の範囲内で前記再現対象色域を再現可能であるか否かに基づいて、前記複数の画像形成装置のそれぞれの利用可能性を判断する色管理工程と、
     前記複数の画像形成装置のそれぞれの前記利用可能性を表すとともに、前記複数の仮想ガマットのうちのいずれかの仮想ガマットを選択するための所定の操作入力を受付けるための操作入力画面を操作表示部に表示させ、前記操作入力画面を通じて入力された前記所定の操作入力に応じて前記利用可能性を表す表示を変更する表示工程と、
     選択された前記仮想ガマットを想定した模擬プロファイルを含む画像形成ジョブを生成する画像形成ジョブ生成工程と、を含む、画像形成制御方法。
PCT/JP2023/007754 2022-03-08 2023-03-02 画像形成システム及び画像形成制御方法 WO2023171520A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023553443A JPWO2023171520A1 (ja) 2022-03-08 2023-03-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-035384 2022-03-08
JP2022035384 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023171520A1 true WO2023171520A1 (ja) 2023-09-14

Family

ID=87935310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007754 WO2023171520A1 (ja) 2022-03-08 2023-03-02 画像形成システム及び画像形成制御方法

Country Status (2)

Country Link
JP (1) JPWO2023171520A1 (ja)
WO (1) WO2023171520A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039898A (ja) * 2009-08-17 2011-02-24 Konica Minolta Business Technologies Inc 画像形成装置、情報処理装置、および印刷プレビュー処理方法
JP2013129097A (ja) * 2011-12-21 2013-07-04 Ricoh Co Ltd 画像処理装置、画像出力システム、画像処理制御方法及び画像処理制御プログラム
JP2019029787A (ja) * 2017-07-28 2019-02-21 セイコーエプソン株式会社 情報処理装置、プログラム、及び情報処理装置の制御方法
JP2020152003A (ja) * 2019-03-20 2020-09-24 京セラドキュメントソリューションズ株式会社 画像形成制御装置、画像形成制御方法及び画像形成制御プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039898A (ja) * 2009-08-17 2011-02-24 Konica Minolta Business Technologies Inc 画像形成装置、情報処理装置、および印刷プレビュー処理方法
JP2013129097A (ja) * 2011-12-21 2013-07-04 Ricoh Co Ltd 画像処理装置、画像出力システム、画像処理制御方法及び画像処理制御プログラム
JP2019029787A (ja) * 2017-07-28 2019-02-21 セイコーエプソン株式会社 情報処理装置、プログラム、及び情報処理装置の制御方法
JP2020152003A (ja) * 2019-03-20 2020-09-24 京セラドキュメントソリューションズ株式会社 画像形成制御装置、画像形成制御方法及び画像形成制御プログラム

Also Published As

Publication number Publication date
JPWO2023171520A1 (ja) 2023-09-14

Similar Documents

Publication Publication Date Title
US7826089B2 (en) Image processing method, program, computer readable information recording medium, image processing apparatus and image forming apparatus
US7489422B2 (en) Methods and apparatus for real time calibration of a print system marking engine
US7349124B2 (en) Methods and apparatus for real time calibration of a marking engine in a print system
US6157735A (en) System for distributing controlling color reproduction at multiple sites
US20050212907A1 (en) Color conversion apparatus and color conversion program storage medium
US6563944B1 (en) Image processing apparatus and method that automatically selects a substitute output device
CN101598913B (zh) 图像处理装置及其控制方法
JP5658192B2 (ja) 印刷条件設定装置、印刷条件設定方法及びプログラム
US10979602B2 (en) Image forming control device that selects image forming medium for reproducing image color indicated by inputted image data, image forming apparatus, image forming control method, and non-transitory computer-readable recording medium having image forming control program
WO2023171520A1 (ja) 画像形成システム及び画像形成制御方法
JP7238559B2 (ja) 印刷再現色シミュレーションシステム、印刷再現色シミュレーション方法及びプログラム
JP4893793B2 (ja) デバイスリンクプロファイル作成装置、デバイスリンクプロファイル作成方法及びプログラム
JP3915879B2 (ja) カラーデータ処理装置、カラーデータ処理方法、及び記憶媒体
US11769025B2 (en) Method for using a paper catalog map with a paper catalog for printing operations
US7145575B2 (en) Color image processing device, color image processing method, recording medium, and program
JP4687361B2 (ja) 画像変換システム
US11902490B2 (en) Methods and system for ink limit adjustments to ICC profiles for color printing
US11544025B1 (en) Methods for using a paper catalog map with a paper catalog to manage paper types for color printing operations
JP2002307643A (ja) カラープルーフ作成システム、情報処理方法、情報処理装置、及び情報記録媒体
JP7409079B2 (ja) 印刷システムおよび印刷方法
US20150070717A1 (en) Color reproduction assisting system, color reproduction assisting method, and non-transitory storage medium
JP2008147829A (ja) 印刷システムおよびキャリブレーションデータ作成方法とプログラム
CA2247005C (en) A system for distributing and controlling color reproduction at multiple sites
JP2021141358A (ja) 画像処理装置、方法及びプログラム
McCarthy Color Fidelity Across Open Distributed Systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023553443

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766696

Country of ref document: EP

Kind code of ref document: A1