WO2023171277A1 - マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法 - Google Patents

マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法 Download PDF

Info

Publication number
WO2023171277A1
WO2023171277A1 PCT/JP2023/005289 JP2023005289W WO2023171277A1 WO 2023171277 A1 WO2023171277 A1 WO 2023171277A1 JP 2023005289 W JP2023005289 W JP 2023005289W WO 2023171277 A1 WO2023171277 A1 WO 2023171277A1
Authority
WO
WIPO (PCT)
Prior art keywords
dose
area
defect
pattern
charged particle
Prior art date
Application number
PCT/JP2023/005289
Other languages
English (en)
French (fr)
Inventor
靖雄 加藤
亮 川名
Original Assignee
株式会社ニューフレアテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニューフレアテクノロジー filed Critical 株式会社ニューフレアテクノロジー
Publication of WO2023171277A1 publication Critical patent/WO2023171277A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • JP2022-035611 application number filed in Japan on March 8, 2022 as the basic application.
  • the contents described in JP2022-035611 are incorporated into this application.
  • One aspect of the present invention relates to a multi-charged particle beam lithography apparatus and a multi-charged particle beam lithography method, and relates, for example, to a method for reducing pattern dimensional deviation due to multi-beam lithography.
  • Lithography technology which is responsible for the progress of miniaturization of semiconductor devices, is the only extremely important process in the semiconductor manufacturing process that generates patterns.
  • LSIs have become more highly integrated, the circuit line width required for semiconductor devices has become smaller year by year.
  • electron beam (electron beam) drawing technology inherently has excellent resolution, and mask patterns are drawn on mask blanks using electron beams.
  • a writing device that uses multiple beams. Compared to writing with a single electron beam, using multiple beams allows multiple beams to be irradiated at once, resulting in a significant improvement in throughput.
  • a multi-beam drawing device for example, an electron beam emitted from an electron gun is passed through a mask having a plurality of holes to form a multi-beam, and each beam is subjected to blanking control, and each beam that is not blocked is The mask image is reduced by being reduced by the optical system, and is irradiated onto a desired position on the sample by being deflected by a deflector.
  • the dose of each beam is controlled by the irradiation time.
  • the blanking control mechanism or the like due to a failure of the blanking control mechanism or the like, it becomes difficult to control the irradiation time, and a defective beam may be generated in which the beam is irradiated excessively.
  • the sample is not irradiated with the necessary dose, there is a problem in that the pattern formed on the sample will have a shape error.
  • a technique has been proposed in which the excess dose is corrected by having a plurality of surrounding beams share the excess dose (for example, see Patent Document 1).
  • a rectangular area including a position where the defective beam is irradiated in some writing passes has no pattern.
  • Dose amount data is generated independently between writing passes. In this case, for example, in the first writing pass, data is generated on the premise that defect correction will be performed for the position to be irradiated with the defective beam in the second writing pass.
  • a case may occur in which a rectangular area including a position irradiated with a defective beam in the second drawing pass becomes an area without a pattern.
  • One aspect of the present invention provides an apparatus and method that can avoid unnecessary defect correction when correcting an excessive dose due to a defective beam in multi-beam writing across writing passes of multiple writing.
  • a multi-charged particle beam lithography apparatus includes: a beam forming mechanism that forms a multi-charged particle beam; a dose data creation circuit that creates dose data in which an individual dose amount for each position in the processing area is defined for each processing area of a plurality of processing areas into which the drawing area on the sample surface is divided; For each processing area, whether there is a position where a non-zero dose is defined in a region near the defect position that is scheduled to be irradiated with a defect beam that has an excessive dose among the multi-charged particle beams.
  • a dose determination circuit that determines the a defect position dose data creation circuit that creates defect dose data in which a defect dose is defined at a defect position when a non-zero dose is defined in a nearby region; For each unit area on the sample surface where the irradiation area of the multi-charged particle beam is set, the presence or absence of a pattern is determined using the dose data of each scheduled irradiation position in the unit area. a determination circuit; When drawing a pattern on a sample using a multi-charged particle beam, the pattern presence/absence determination unit skips the unit area determined to have no pattern and performs the writing process to the next unit area determined to have a pattern. a writing mechanism that moves a unit area and corrects an excessive dose caused by a defective beam in one writing pass of a plurality of writing passes of multiple writing so as to reduce it in another writing pass; Equipped with
  • a multi-charged particle beam writing method includes: forming a multi-charged particle beam, For each processing area of a plurality of processing areas into which the drawing area on the sample surface is divided, create dose data in which an individual dose amount for each position within the processing area is defined, For each processing area, whether there is a position where a non-zero dose is defined in a region near the defect position that is scheduled to be irradiated with a defect beam that has an excessive dose among the multi-charged particle beams.
  • FIG. 1 is a conceptual diagram showing the configuration of a drawing device in Embodiment 1.
  • FIG. 2 is a conceptual diagram showing the configuration of a molded aperture array substrate in Embodiment 1.
  • FIG. 2 is a cross-sectional view showing the configuration of a blanking aperture array mechanism in Embodiment 1.
  • FIG. 3 is a conceptual diagram for explaining an example of a drawing operation in the first embodiment.
  • FIG. 3 is a diagram showing an example of a multi-beam irradiation area and pixels to be drawn in the first embodiment.
  • FIG. 3 is a diagram for explaining an example of a multi-beam drawing method in Embodiment 1.
  • FIG. 5 is a diagram illustrating an example of the presence or absence of a pattern in each drawing pass in the first embodiment.
  • FIG. 3 is a flowchart showing main steps of the drawing method in the first embodiment.
  • FIG. FIG. 3 is a diagram for explaining beam positional deviation and positional deviation periodicity in Embodiment 1.
  • FIG. 3 is a diagram for explaining beam positional deviation and positional deviation periodicity in Embodiment 1.
  • FIG. 3 is a diagram for explaining an example of a positional deviation correction method in the first embodiment.
  • FIG. 3 is a diagram for explaining an example of a positional deviation correction method in the first embodiment.
  • FIG. 3 is a diagram showing an example of defective beam correction in the first embodiment.
  • FIG. 3 is a diagram showing an example of defective beam correction in the first embodiment.
  • 7 is a diagram showing another example of defective beam correction in the first embodiment.
  • FIG. 7 is a diagram illustrating an example of the presence or absence of a pattern in a processing region and the presence or absence of a pattern for each main deflection region in a comparative example of the first embodiment.
  • FIG. 6 is a diagram illustrating an example of the presence or absence of a pattern in a processing area and the presence or absence of a pattern for each main deflection area in the first embodiment.
  • FIG. 10 is a flowchart showing main steps of a drawing method in Embodiment 3.
  • FIG. FIG. 12 is a flowchart showing main steps of a drawing method in Embodiment 4.
  • FIG. 12 is a conceptual diagram showing the configuration of a drawing device in Embodiment 5.
  • FIG. 12 is a flowchart showing main steps of a drawing method in Embodiment 5.
  • the charged particle beam is not limited to an electron beam, and may be a beam using charged particles such as an ion beam.
  • FIG. 1 is a conceptual diagram showing the configuration of a drawing apparatus in the first embodiment.
  • a drawing apparatus 100 includes a drawing mechanism 150 and a control system circuit 160.
  • the drawing apparatus 100 is an example of a multi-charged particle beam drawing apparatus.
  • the drawing mechanism 150 includes an electron lens barrel 102 (multi-electron beam column) and a drawing chamber 103. Inside the electron lens barrel 102, there are an electron gun 201, an illumination lens 202, a shaped aperture array substrate 203, a blanking aperture array mechanism 204, a reduction lens 205, a batch blanking deflector 212, a limiting aperture substrate 206, an objective lens 207, and a deflector.
  • a deflector 208 and a deflector 209 are arranged.
  • An XY stage 105 is arranged inside the drawing chamber 103.
  • a sample 101 such as a mask blank coated with resist, which becomes a substrate to be drawn upon during drawing, is arranged.
  • the sample 101 includes an exposure mask used in manufacturing a semiconductor device, a semiconductor substrate (silicon wafer) on which a semiconductor device is manufactured, and the like.
  • a mirror 210 for position measurement of the XY stage 105 is further arranged on the XY stage 105. Further, a Faraday cup 106 is arranged on the XY stage 105.
  • the control system circuit 160 includes a control computer 110, a memory 112, a deflection control circuit 130, digital-to-analog conversion (DAC) amplifier units 132, 134, 136, a stage position detector 139, and storage devices 140, 142 such as magnetic disk devices. It has 144.
  • the control computer 110, memory 112, deflection control circuit 130, DAC amplifier units 132, 134, 136, stage position detector 139, and storage devices 140, 142, 144 are connected to each other via a bus (not shown).
  • the deflection control circuit 130 is connected to DAC amplifier units 132 , 134 , 136 and a blanking aperture array mechanism 204 .
  • the output of the DAC amplifier unit 132 is connected to the deflector 209.
  • the output of the DAC amplifier unit 134 is connected to the deflector 208.
  • the output of the DAC amplifier unit 136 is connected to the collective blanking deflector 212.
  • the deflector 208 is composed of four or more electrodes, and each electrode is controlled by the deflection control circuit 130 via the DAC amplifier 134.
  • the deflector 209 is composed of four or more electrodes, and each electrode is controlled by a deflection control circuit 130 via a DAC amplifier 132.
  • the collective blanking deflector 212 is composed of two or more electrodes, and is controlled by the deflection control circuit 130 via the DAC amplifier 136 for each electrode.
  • the stage position detector 139 irradiates the mirror 210 on the XY stage 105 with laser light and receives the reflected light from the mirror 210. Then, the position of the XY stage 105 is measured using the principle of laser interference using information on the reflected light.
  • a rasterizing section 50 Inside the control computer 110, there are a rasterizing section 50, a dose data creating section 52, a beam position shift map creating section 54, a position shift correcting section 56, a detecting section 57, a specifying section 58, a defect correcting section 60, a finite dose determining section 62, A defect dose data creation section 64, an irradiation time calculation section 66, a data processing section 67, a NULL determination section 68, and a drawing control section 74 are arranged.
  • Rasterizing section 50 dose data creation section 52, beam position deviation map creation section 54, position deviation correction section 56, detection section 57, identification section 58, defect correction section 60, finite dose determination section 62, defect dose data creation section 64,
  • Each "section” such as the irradiation time calculation section 66, the data processing section 67, the NULL determination section 68, and the drawing control section 74 has a processing circuit.
  • processing circuits include, for example, electrical circuits, computers, processors, circuit boards, quantum circuits, or semiconductor devices.
  • Each " ⁇ section” may use a common processing circuit (the same processing circuit) or may use different processing circuits (separate processing circuits).
  • Rasterizing section 50 dose data creation section 52, beam position deviation map creation section 54, position deviation correction section 56, detection section 57, identification section 58, defect correction section 60, finite dose determination section 62, defect dose data creation section 64, Information input/output to/from the irradiation time calculation unit 66, data processing unit 67, NULL determination unit 68, and drawing control unit 74 and information being calculated are stored in the memory 112 each time.
  • drawing data is input from outside the drawing device 100 and stored in the storage device 140.
  • the drawing data usually defines information on a plurality of graphic patterns for drawing. Specifically, a graphic code, coordinates, size, etc. are defined for each graphic pattern.
  • FIG. 1 shows the configuration necessary for explaining the first embodiment.
  • the drawing apparatus 100 may normally include other necessary configurations.
  • FIG. 2 is a conceptual diagram showing the configuration of the molded aperture array substrate in the first embodiment.
  • a molded aperture array substrate 203 has holes (openings) 22 arranged in p columns vertically (in the y direction) by q columns horizontally (in the x direction) (p, q ⁇ 2) at a predetermined pitch. It is formed.
  • 512 ⁇ 512 rows of holes 22 are formed in the vertical and horizontal directions (x, y directions).
  • Each hole 22 is formed in a rectangular shape with the same size and shape. Alternatively, they may be circular with the same diameter.
  • a shaped aperture array substrate 203 (beam forming mechanism) forms a multi-beam 20.
  • a portion of the electron beam 200 passes through each of the plurality of holes 22, thereby forming the multi-beam 20.
  • the arrangement of the holes 22 is not limited to the case where the holes 22 are arranged in a grid pattern vertically and horizontally as shown in FIG.
  • the holes in the k-th row in the vertical direction (y direction) and the holes in the k+1-th row may be arranged to be shifted by a dimension a in the horizontal direction (x direction).
  • the holes in the k+1st row in the vertical direction (y direction) and the holes in the k+2nd row may be arranged to be shifted by the dimension b in the horizontal direction (x direction).
  • FIG. 3 is a sectional view showing the configuration of the blanking aperture array mechanism in the first embodiment.
  • a semiconductor substrate 31 made of silicon or the like is placed on a support base 33.
  • the center portion of the substrate 31 is carved, for example, from the back surface side and processed into a membrane region 330 (first region) having a thin film thickness h.
  • the periphery surrounding the membrane region 330 becomes an outer peripheral region 332 (second region) with a thick film thickness H.
  • the upper surface of the membrane region 330 and the upper surface of the outer peripheral region 332 are formed at the same height position or substantially the same height position.
  • the substrate 31 is held on the support base 33 on the back side of the outer peripheral area 332.
  • the center portion of the support base 33 is open, and the membrane region 330 is located in the open area of the support base 33.
  • passage holes 25 openings for each beam of the multi-beam 20 to pass are opened at positions corresponding to the holes 22 of the shaped aperture array substrate 203 shown in FIG.
  • a plurality of passage holes 25 are formed in an array, through which respective beams of the multi-beam 20 using electron beams pass.
  • a plurality of electrode pairs each having two electrodes are arranged on the membrane region 330 of the substrate 31 at positions facing each other with each passage hole 25 in between.
  • a set of control electrodes 24 and counter electrodes 26 for blanking deflection (blanker : blanking deflector: first deflector) are respectively arranged.
  • a control circuit 41 (logic circuit) that applies a deflection voltage to the control electrode 24 for each passage hole 25 is arranged inside the substrate 31 and near each passage hole 25 on the membrane region 330.
  • the counter electrode 26 for each beam is connected to ground.
  • An amplifier (an example of a switching circuit), which is not shown, is arranged within the control circuit 41.
  • a complementary MOS (CMOS) inverter circuit is arranged.
  • the CMOS inverter circuit is connected to a positive potential (Vdd: blanking potential: first potential) (for example, 5V) (first potential) and a ground potential (GND: second potential).
  • Vdd blanking potential: first potential
  • GND ground potential
  • the output line (OUT) of the CMOS inverter circuit is connected to the control electrode 24.
  • the ground potential is applied to the counter electrode 26.
  • a plurality of control electrodes 24 to which a blanking potential and a ground potential are applied in a switchable manner are provided on the substrate 31, and a plurality of counter electrodes 24 are arranged on both sides of the corresponding passage holes 25 of the plurality of passage holes 25. are arranged at positions facing the corresponding counter electrodes 26, respectively.
  • the input (IN) of the CMOS inverter circuit has either an L (low) potential (e.g., ground potential) that is lower than the threshold voltage, or an H (high) potential (e.g., 1.5 V) that is greater than or equal to the threshold voltage. is applied as a control signal.
  • L low
  • H high
  • Vdd positive potential
  • a corresponding one of the multi-beams 20 is deflected by an electric field, and the beam is controlled to be turned off by shielding it with a limiting aperture substrate 206.
  • the beam is controlled to be turned on by passing through the limiting aperture substrate 206.
  • a corresponding electron beam in the multi-beam 20 passing through each passage hole is deflected by a voltage applied to the two control electrodes 24 and the counter electrode 26 that are each independently paired. Blanking is controlled by this deflection.
  • the set of control electrode 24 and counter electrode 26 individually blanks and deflects the corresponding beams of the multi-beam 20 by means of potentials switched by CMOS inverter circuits serving as corresponding switching circuits.
  • the plurality of blankers perform blanking deflection of the corresponding beams among the multi-beams 20 that have passed through the plurality of holes 22 (openings) of the shaped aperture array substrate 203.
  • FIG. 4 is a conceptual diagram for explaining an example of a drawing operation in the first embodiment.
  • the drawing area 30 (thick line) of the sample 101 is virtually divided into a plurality of striped areas 32 having a predetermined width in the y direction, for example.
  • a first stripe layer is set that is composed of a plurality of stripe areas 32 obtained by dividing the drawing area 30.
  • a second stripe layer is set, which is composed of a plurality of stripe regions 32 whose positions are shifted by half the width of the stripe regions 32 in the y direction with respect to the first stripe layer.
  • two stripe layers, the first stripe layer and the second stripe layer are set. Therefore, by combining the first stripe layer and the second stripe layer, a plurality of stripe areas 32 are set that are lined up in the y direction, some of which overlap.
  • the XY stage 105 is moved and adjusted so that the irradiation area 34 of the multi-beam 20 is located at the left end of the first stripe area 32 of the second stripe layer, or further to the left. Then, the first stripe area 32 of the second stripe layer is drawn.
  • the XY stage 105 is moved, for example, in the -x direction, thereby relatively progressing the writing in the x direction.
  • the XY stage 105 is continuously moved, for example, at a constant speed. After the drawing of the first stripe area 32 of the second stripe layer is completed, the stage position is moved in the -y direction by a shift amount of 1/2 the width of the stripe area 32.
  • FIG. 5 is a diagram showing an example of a multi-beam irradiation area and pixels to be drawn in the first embodiment.
  • a plurality of control grids 27 (design grids) are set in the stripe region 32, which are arranged in a grid pattern at the beam size pitch of the multi-beams 20 on the surface of the sample 101, for example.
  • This control grid 27 is preferably arranged at a pitch of about 10 nm, for example.
  • Such a plurality of control grids 27 serve as the designed irradiation positions of the multi-beam 20.
  • the arrangement pitch of the control grid 27 is not limited to the beam size, and may be configured at any size that can be controlled as the deflection position of the deflector 209 regardless of the beam size.
  • a plurality of pixels 36 are set, which are virtually divided into a mesh shape with each control grid 27 at the center and having the same size as the arrangement pitch of the control grids 27.
  • Each pixel 36 becomes a unit area irradiated by one beam of the multi-beam.
  • the drawing area of the sample 101 is multiple in the y direction with substantially the same width as the size of the irradiation area 34 (drawing field) that can be irradiated by one irradiation with the multi-beam 20 (beam array). This shows the case where the area is divided into stripe areas 32.
  • the x-direction size of the irradiation area 34 can be defined as a value obtained by multiplying the beam pitch in the x-direction of the multi-beam 20 by the number of beams in the x-direction.
  • the size of the irradiation area 34 in the y direction can be defined as a value obtained by multiplying the inter-beam pitch in the y direction of the multi-beam 20 by the number of beams in the y direction.
  • the width of the stripe area 32 is not limited to this. It is preferable that the size is n times the size of the irradiation area 34 (n is an integer of 1 or more). In the example of FIG.
  • the illustration of 512 ⁇ 512 columns of multibeams is abbreviated to 8 ⁇ 8 columns of multibeams.
  • the irradiation area 34 a plurality of pixels 28 (beam drawing positions) that can be irradiated with one shot of the multi-beam 20 are shown.
  • the pitch between adjacent pixels 28 is the pitch between each beam of the designed multi-beam.
  • one sub-irradiation area 29 is configured by the area surrounded by the inter-beam pitch.
  • each sub-irradiation area 29 is composed of 4 ⁇ 4 pixels.
  • FIG. 6 is a diagram for explaining an example of the multi-beam drawing method in the first embodiment.
  • the coordinates (1, 3), (2, 3), (3, 3), ..., ( 512, 3) shows a part of the sub-irradiation area 29 to be drawn with each beam.
  • the example in FIG. 6 shows, for example, a case where four pixels are drawn (exposed) while the XY stage 105 moves a distance of eight beam pitches. While drawing (exposure) these four pixels, the entire multibeam 20 is deflected at once by the deflector 208 so that the relative position of the irradiation area 34 with respect to the sample 101 does not shift due to movement of the XY stage 105.
  • the deflector 208 serves as a tracking deflector and performs tracking deflection of the multi-beam 20 so that the irradiation area 34 of the multi-beam 20 follows the movement of the stage.
  • the example in FIG. 6 shows a case where one tracking cycle is performed by drawing (exposure) four pixels while moving a distance equivalent to eight beam pitches.
  • a beam is irradiated for a drawing time (irradiation time or exposure time) corresponding to each control grid 27 within the set maximum drawing time.
  • each control grid 27 is irradiated with a corresponding one of the ON beams among the multi-beams 20 .
  • the irradiation position of each beam is moved to the next shot position by collective deflection by the deflector 209 every shot cycle time Ttr, which is the maximum writing time plus the settling time of the DAC amplifier.
  • the DAC amplifier unit 134 resets the beam deflection for tracking control. This returns the tracking position to the tracking start position where tracking control was started.
  • the deflector 209 first aligns the drawing position of the beam corresponding to the control grid 27 of the first pixel from the bottom and second from the right of each sub-irradiation area 29. to deflect (to shift). By repeating this operation, all pixels are drawn.
  • the sub-irradiation area 29 is composed of n ⁇ n pixels
  • each n pixel is drawn by a different beam in n tracking operations. As a result, all pixels within one n ⁇ n pixel area are drawn. Similar operations are performed on other n ⁇ n pixel areas within the multi-beam irradiation area at the same time, and drawing is performed in the same manner.
  • the irradiation area 34 is shifted on the stripe area 32 by, for example, 8 beam pitches, which is the amount of stage movement in one tracking control, and the writing process is proceeded. It turns out.
  • An electron beam 200 emitted from an electron gun 201 illuminates the entire shaped aperture array substrate 203 through an illumination lens 202 .
  • a plurality of rectangular holes 22 (openings) are formed in the molded aperture array substrate 203.
  • the electron beam 200 then illuminates the area including all the holes 22.
  • a portion of each of the electron beams 200 irradiated to the positions of the plurality of holes 22 passes through the plurality of holes 22 of the shaped aperture array substrate 203, respectively.
  • a plurality of rectangular electron beams are formed, for example.
  • the multi-beams 20 pass through corresponding blankers (first deflectors) of the blanking aperture array mechanism 204 . Each such blanker individually deflects the passing electron beam (performs a blanking deflection).
  • the multi-beam 20 that has passed through the blanking aperture array mechanism 204 is reduced by a reduction lens 205 and proceeds toward a central hole formed in a limiting aperture substrate 206.
  • the electron beam deflected by the blanker of the blanking aperture array mechanism 204 is displaced from the center hole of the limiting aperture substrate 206 and is blocked by the limiting aperture substrate 206.
  • the electron beam that is not deflected by the blanker of the blanking aperture array mechanism 204 passes through the central hole of the limiting aperture substrate 206, as shown in FIG.
  • Blanking control is performed by turning ON/OFF the blanker, and ON/OFF of the beam is controlled.
  • the limiting aperture substrate 206 blocks each beam that is deflected by the blanker into a beam OFF state. Then, for each beam, a beam for one shot is formed by the beam that has passed through the limiting aperture substrate 206 and is formed from when the beam is turned on until when the beam is turned off.
  • the multi-beam 20 that has passed through the limited aperture substrate 206 is focused by an objective lens 207 to become a pattern image with a desired reduction ratio, and each beam that has passed through the limited aperture substrate 206 (the passed multi-beam 20) are collectively deflected in the same direction, and each beam is irradiated to each irradiation position on the sample 101.
  • the multi-beams 20 that are irradiated at once are ideally arranged at a pitch equal to the arrangement pitch of the plurality of holes 22 in the shaped aperture array substrate 203 multiplied by the desired reduction ratio described above.
  • defective beams may occur in multi-beams.
  • defect beams There are two types of defect beams: over-dose defect beams in which the beam dose cannot be controlled and the irradiated dose is excessive, and under-dose defect beams in which the beam dose cannot be controlled and the irradiated dose is insufficient.
  • the excessive dose defect beams include an ON defect beam that is always ON and a part of poorly controlled defect beams whose irradiation time is poorly controlled.
  • the insufficient dose defect beams include an OFF defect beam that is always OFF and the remainder of the poorly controlled defect beam.
  • defect correction is performed to offset the excessive dose.
  • multiple drawing is performed in which drawing processing is performed in multiple drawing passes. Therefore, such defect correction is performed in a writing pass different from the writing pass in which the defective beam is irradiated.
  • multi-beam writing for example, the rectangular area (an example of a unit area) irradiated with the multi-beam 20 is shifted on the drawing area of the sample 101.
  • the rectangular area (beam array area) here is a multi-beam irradiation area 34 that is a combination of sub-irradiation areas 29 (small areas) in which each beam of the multi-beam 20 is surrounded by a plurality of other adjacent beams. becomes.
  • the unit area is not limited to a rectangle.
  • the shape of the unit area may be other shapes depending on the shape of the multi-beam array.
  • the irradiation area 34 is shifted by, for example, 8 beam pitches every tracking cycle, so that on the stripe area 32, the rectangular areas irradiated by the multi-beams 20 overlap while being shifted by 8 beam pitches.
  • the first pixel column from the right of each sub-irradiation area 29 is the irradiation target.
  • the second pixel column from the right of each sub-irradiation area 29 is the irradiation target.
  • the third pixel column from the right of each sub-irradiation area 29 is the irradiation target.
  • the fourth pixel column from the right of each sub-irradiation area 29 is the irradiation target.
  • the irradiation target pixels shift in the same way.
  • the entire multi-beam 20 including the defective beam 11 is deflected at once by the batch blanking deflector 212 during the skip operation, so that the entire multi-beam 20 including the defective beam 11 is deflected by the limiting aperture substrate 206. Just cover it up.
  • FIG. 7 is a diagram showing an example of the presence or absence of a pattern in each drawing pass in the first embodiment.
  • a pattern 12 is arranged within a rectangular area 13 in which a certain tracking control is performed in the first drawing pass (first pass).
  • This rectangular area 13 includes a position where the defect beam 11 is irradiated in the second drawing pass (second pass).
  • the illustration of the position to which the defective beam 11 is irradiated in the first pass is omitted.
  • the data is based on the premise that defect correction will be performed to correct the excessive dose caused by the irradiation of the defective beam 11 in the second pass. Generation takes place. Further, the position irradiated with the defect beam 11 in the second pass is included in the rectangular area 13 where a certain tracking control is performed.
  • a case may occur in which the rectangular area 13 including the position irradiated with the defective beam 11 in the second pass becomes an area without a pattern as shown in FIG. In this way, when correcting the excessive dose caused by the defective beam across multiple writing passes, there may be a case where the rectangular area 13 including the position where the defective beam is irradiated in some writing passes has no pattern. .
  • Dose amount data is generated independently between writing passes. In this case, if the drawing process for the rectangular area 13 without a pattern is skipped in the second drawing pass, the defective beam 11 will not be irradiated and the premise of the correction in the first drawing pass will be broken. As a result, there was a problem in that unnecessary defect correction was performed.
  • the rectangular region 13 of the second pass may include the position where the defective beam is irradiated in the first pass.
  • the data is generated on the premise that defect correction will be performed to correct excessive dose due to irradiation with the defective beam in the first pass.
  • a case may occur in which a rectangular area including a position irradiated with the defective beam in the first pass becomes an area without a pattern. If the writing process of a rectangular area without a pattern is skipped in the first writing pass, the defective beam will not be irradiated and the premise of correction in the second writing pass will be broken. As a result, there was a problem in that unnecessary defect correction was performed.
  • Embodiment 1 if there is a pixel for which a designed dose amount of a non-zero value (finite value) exists around the position where the defect beam is irradiated, the rectangular area where the tracking control is performed is 13 is controlled so as not to be skipped even if there is no pattern.
  • a rectangular area 13 whose irradiation target is the position where the defective beam was irradiated in the first pass becomes an area without a pattern in the second pass.
  • the drawing process may be skipped since the defective beam can be ignored.
  • FIG. 8 is a flowchart showing the main steps of the drawing method in the first embodiment.
  • the drawing method in the first embodiment includes a beam position deviation measurement step (S102), a defective beam detection step (S104), a dose amount calculation step (S110), and a position deviation correction step for each pass ( S112), defective beam position identification step for each pass (S120), defective beam correction step (S122), defect vicinity finite dose determination step (S130), defective dose data creation step (S132), and irradiation time calculation
  • a series of steps are performed: a step (S142), a data processing step (S144), a main deflection data NULL determination step (S146), and a drawing step (S150).
  • the NULL determination step (S146) and the drawing step (S150) are performed for each drawing pass.
  • the drawing apparatus 100 measures the position deviation amount by which the irradiation position of each beam of the multi-beam 20 on the surface of the sample 101 deviates from the corresponding control grid 27.
  • FIGS. 9A and 9B are diagrams for explaining beam positional deviation and positional deviation periodicity in the first embodiment.
  • the multi-beam 20 As shown in FIG. 9A, distortion occurs in the exposure field due to the characteristics of the optical system, and due to such distortion, the actual irradiation position 39 of each beam becomes the irradiation position when the ideal grid is irradiated. It deviates from 37. Therefore, in the first embodiment, the amount of positional deviation of the actual irradiation position 39 of each beam is measured.
  • the evaluation board coated with resist is irradiated with the multi-beam 20, and the evaluation board is developed to measure the position of the resist pattern generated by using a position measuring device. This measures the amount of positional deviation for each beam.
  • each beam With the shot size of each beam, if it is difficult to measure the size of the resist pattern at the irradiation position of each beam with a position measuring device, use each beam to draw a graphic pattern (for example, a rectangular pattern) of a size that can be measured with a position measuring device. do. Then, the edge positions on both sides of the graphic pattern (resist pattern) are measured, and the amount of positional deviation of the target beam can be measured from the difference between the intermediate position between both edges and the designed intermediate position of the graphic pattern. Then, the obtained positional deviation amount data of the irradiation position of each beam is input to the drawing device 100 and stored in the storage device 144.
  • a graphic pattern for example, a rectangular pattern
  • writing is performed while shifting the irradiation area 34 within the stripe area 32.
  • the position of the irradiation area 34 is sequentially moved from irradiation area 34a to 34o. Then, each time the irradiation area 34 moves, periodicity occurs in the positional shift of each beam.
  • periodicity occurs in the positional deviation of each beam.
  • the measurement results can be used. In other words, it is only necessary to measure the amount of positional deviation at each pixel 36 in the corresponding sub-irradiation area 29 for each beam.
  • the beam position deviation map creation unit 54 first defines the position deviation amount of each beam for each pixel 36 in a unit of beam array, in other words, one rectangular unit area 35 on the sample surface corresponding to the irradiation area 34.
  • a beam position deviation amount map (1) is created.
  • the beam position deviation map creation unit 54 reads the position deviation amount data of the irradiation position of each beam from the storage device 144, and creates the beam position deviation amount map (1) using such data as a map value. .
  • Which beam irradiates the control grid 27 of each pixel 36 in one rectangular unit area 35 on the sample surface corresponding to the irradiation area 34 of the entire multi-beam 20, for example, as described in FIG.
  • the beam position shift map creation unit 54 identifies the beam responsible for irradiating the control grid 27 for each control grid 27 of each pixel 36 within one unit area 35 according to the drawing sequence, and Calculate the amount of positional deviation.
  • the created beam position shift amount map (1) is stored in the storage device 144.
  • the detection unit 57 detects a defective beam from among the multi-beams 20.
  • the ON defect beam that is always ON always irradiates the beam for the maximum irradiation time in one shot, regardless of the control dose amount. Alternatively, irradiation continues even when moving between pixels. Further, in the case of an OFF defect beam that is always OFF, the beam is always OFF regardless of the control dose amount.
  • the writing mechanism 150 controls the multi-beams 20 one by one so that the blanking aperture array mechanism 204 turns on the beams, and turns off all the remaining beams.
  • the dose data creation unit 52 calculates each position within the processing area for each processing area of a plurality of processing areas into which the drawing area on the surface of the sample 101 is divided. Create dose data in which individual dose amounts are defined. Specifically, it operates as follows. First, the rasterizing unit 50 reads drawing data from the storage device 140 and calculates the pattern area density ⁇ ' in each pixel 36. Such processing is executed for each stripe area 32, for example.
  • the dose data creation unit 52 first virtually divides the drawing area (here, for example, the stripe area 32) into a plurality of adjacent mesh areas (mesh areas for proximity effect correction calculation) in a mesh shape with a predetermined size.
  • the size of the proximity mesh region is preferably set to about 1/10 of the range of influence of the proximity effect, for example, about 1 ⁇ m.
  • the dose map creation unit 62 reads the drawing data from the storage device 140 and calculates, for each adjacent mesh area, the pattern area density ⁇ of the pattern arranged within the adjacent mesh area.
  • the dose data creation unit 52 calculates a proximity effect correction exposure coefficient Dp(x) (correction dose) for correcting the proximity effect for each proximity mesh region.
  • the unknown proximity effect corrected exposure coefficient Dp(x) is calculated using the same proximity calculation as in the conventional method using the backscattering coefficient ⁇ , the dose threshold Dth of the threshold model, the pattern area density ⁇ , and the distribution function g(x). It can be defined by a threshold model for effect correction.
  • the dose data creation unit 52 calculates, for each pixel 36, the incident irradiation amount D(x) (dose amount) for irradiating the pixel 36.
  • the incident dose D(x) may be calculated as, for example, a value obtained by multiplying a preset reference dose Dbase by a proximity effect correction exposure coefficient Dp and a pattern area density ⁇ '.
  • the reference dose Dbase can be defined as, for example, Dth/(1/2+ ⁇ ).
  • the dose data creation unit 52 performs the above-described process for each processing area into which the stripe area 32 is divided. For example, a rectangular unit area 35 having the same size as the irradiation area 34 is used as the processing area. Then, the dose data creation unit 52 creates a dose map that defines the incident dose D(x) for each pixel 36 in units of processing regions. The amount of incident radiation D(x) for each pixel 36 is the amount of incident radiation D(x) scheduled to be irradiated onto the control grid 27 of the pixel 36 in terms of design. The created dose map is stored in the storage device 144, for example.
  • the positional deviation correction unit 56 creates a dose map in which the individual positional deviations of each irradiation position of the multi-beam 20 are corrected for each writing pass.
  • the positional deviation correction unit 56 reads the dose map from the storage device 144 and calculates the dose amount for each drawing pass by dividing the dose amount defined for each pixel by the number of drawing passes. Next, for each drawing pass, the positional deviation of the beam that irradiates each pixel is corrected. Which beam illuminates which pixel for each pass is determined by the writing sequence.
  • FIGS. 10A and 10B are diagrams for explaining an example of a positional deviation correction method in the first embodiment.
  • the example in FIG. 10A shows a case where the beam a' irradiated to the pixel at the coordinates (x, y) is shifted in the -x, -y side.
  • the irradiation amount corresponding to the deviation is This can be corrected by distributing it to pixels on the opposite side to the direction of surrounding pixels.
  • FIG. 10A shows a case where the beam a' irradiated to the pixel at the coordinates (x, y) is shifted in the -x, -y side.
  • the amount of irradiation shifted to the pixel at coordinates (x, y-1) may be distributed to the pixel at coordinates (x, y+1).
  • the amount of irradiation shifted to the pixel at coordinates (x-1, y) may be distributed to the pixel at coordinates (x+1, y).
  • the amount of irradiation shifted to the pixel at coordinates (x-1, y-1) may be distributed to the pixel at coordinates (x+1, y+1).
  • a positional deviation correction distribution amount is calculated, which distributes the irradiation amount to the beam for at least one surrounding pixel in proportion to the amount of positional deviation of the beam.
  • the positional deviation correction data creation unit 52 determines the modulation rate of the beam to the pixel and the modulation of the beam to at least one pixel around the pixel, according to the ratio of the area shifted due to the positional deviation of the beam to the pixel. Calculate the rate. Specifically, for each surrounding pixel where the beam shifts from the pixel of interest and a portion of the beam overlaps, calculate the ratio of the area of the shift (area of the overlapped beam part) divided by the beam area. The pixel is calculated as the distribution amount (beam modulation rate) to the pixel located on the opposite side to the pixel of interest.
  • the area ratio shifted to the pixel at coordinates (x, y-1) is (x direction beam size - (-x) direction shift amount) x y direction shift amount / (x direction beam size x (beam size in the y direction). Therefore, the distribution amount (beam modulation rate) V for distribution to the pixel at coordinates (x, y+1) for correction is (x direction beam size - (-x) direction deviation amount) x y direction deviation amount It can be calculated as /(x-direction beam size x y-direction beam size).
  • the area ratio shifted to the pixel at coordinates (x-1, y-1) is - x direction shift x - y direction shift / (x direction beam size x y direction beam size).
  • the distribution amount (beam modulation rate) W for distributing to the pixel at coordinates (x+1, y+1) for correction is -x direction deviation x -y direction deviation/(x direction beam size x y (direction beam size).
  • the area ratio shifted to the pixel at coordinates (x-1, y) is -x direction shift amount x (y direction beam size - (-y) direction shift amount) / (x direction beam size xy direction beam size). Therefore, the distribution amount (beam modulation rate) Z for distributing to the pixel at coordinates (x+1, y) for correction is -x direction deviation amount x (y direction beam size - (-y) direction deviation amount )/(x-direction beam size x y-direction beam size).
  • the modulation factor U of the beam of the pixel at the coordinates (x, y), which remains undistributed, can be determined by the calculation 1-VWZ.
  • the modulation rate of the beam to the pixel and the distribution destination are determined.
  • a modulation factor of the beam to at least one surrounding pixel is calculated.
  • the positional deviation correction unit 56 calculates, for each pixel 36, a value obtained by multiplying the dose defined for the pixel by the modulation rate of the beam to the pixel. In addition, for each drawing pass, the positional deviation correction unit 56 calculates, for each pixel 36, a value obtained by multiplying the dose defined for the pixel by the modulation rate of the beam to at least one surrounding pixel to which it is distributed. do. Then, the calculated value is distributed to the destination pixels. For each drawing pass, the positional deviation correction unit 56 calculates, for each pixel 36, a value obtained by multiplying the dose amount defined for the pixel by the modulation rate of the beam to the pixel, and a value distributed from other pixels. Calculate the total dose amount. As a result, a dose map for each drawing pass in which positional deviation has been corrected (a dose map after positional deviation has been corrected for each pass) can be created. The created dose map after positional deviation correction for each pass is stored in the storage device 144.
  • the identification unit 55 identifies each pixel 36 in a beam array unit for each drawing pass, in other words, in one rectangular unit area 35 on the sample surface corresponding to the irradiation area 34. , the pixels to be irradiated by the excessively dosed defect beam including the always-on defect beam are identified. Which beam irradiates the control grid 27 of each pixel 36 within the rectangular unit area 35 is determined by the drawing sequence, as described above.
  • the defect correction unit 60 performs correction for each drawing pass so as to reduce the excessive dose that has become excessive due to irradiation with a defective beam in another drawing pass.
  • FIGS. 11A and 11B are diagrams showing an example of defective beam correction in the first embodiment.
  • the dose amount in each drawing pass is, for example, the value T( x)/pass is defined.
  • T( x)/pass the value of the defective beam
  • the dose amount in the writing pass in which the defective beam is irradiated cannot be controlled, the dose amount is corrected to the amount obtained by subtracting the excess dose amount ⁇ in other writing passes.
  • the defect beam is irradiated in one drawing pass out of four passes.
  • the excess ⁇ with respect to T(x)/pass is calculated.
  • the dose is corrected to the dose amount obtained by subtracting ⁇ /3 from the respective dose amount T(x)/pass.
  • FIG. 12 is a diagram showing another example of defective beam correction in the first embodiment.
  • the designed dose amount at the position where the defect beam is irradiated is smaller than the excess dose amount ⁇ . In that case, it is difficult to correct the excessive dose amount ⁇ using only the pixel. In such a case, the excess dose ⁇ or the excess that could not be corrected in the pixel irradiated with the defective beam is distributed to the surrounding beams. Therefore, the defect correction unit 60 corrects the excessive dose that has become excessive due to irradiation with the defective beam in another writing pass for each writing pass by distributing it to the surrounding beams. As shown in FIG.
  • the excess amount that could not be completely corrected is distributed to, for example, three irradiation positions 39a, 39c, and 39g located around the irradiation position of the defective beam 11.
  • Each distribution amount is calculated so that the center of gravity of each distribution amount is the irradiation position of the defect beam 11.
  • the calculated distributed dose amount can be subtracted from the dose amount of the beam at the target irradiation position to correct the defective beam.
  • FIG. 13 is a diagram illustrating an example of the presence or absence of a pattern within the processing area and the presence or absence of a pattern for each main deflection area in a comparative example of the first embodiment.
  • Part a of FIG. 13 shows the presence or absence of a pattern within the processing area in one drawing pass among the plurality of drawing passes of multiple drawing.
  • a case is shown in which a rectangular unit area 35 is used as the processing area.
  • the designed pattern 12 is arranged within the rectangular unit area 35.
  • the defect beam 11 is irradiated near the pattern 12.
  • the rectangular area 13 serving as the main deflection area is set for each tracking control, as described above.
  • Part b of FIG. 13 shows, for example, a rectangular area 13a that becomes the main deflection area of the first tracking control.
  • the first pixel column from the right of each sub-irradiation area 29 is the drawing target.
  • the example in part b of FIG. 13 shows a case where the defective beam 11 becomes such a target pixel.
  • a rectangular area 13b that becomes the main deflection area of the second tracking control is shown.
  • the second pixel column from the right of each sub-irradiation area 29 is the drawing target.
  • part d of FIG. 13 shows a case where the partial pattern 9a, which is a part of the pattern 12, is the target pixel.
  • a rectangular area 13c that becomes the main deflection area of the third tracking control is shown.
  • the third pixel column from the right of each sub-irradiation area 29 is the drawing target.
  • the example of part d in FIG. 13 shows a case where the partial pattern 9b, which is another part of the pattern 12, becomes the target pixel. Of these main deflection areas, no pattern is arranged in the rectangular area 13a. Therefore, the drawing process for the rectangular area 13a is skipped. In this case, since the defect beam 11 is not irradiated, if defect correction is performed in another drawing pass, the correction will be unnecessary. Therefore, in the first embodiment, control is performed so that the drawing process for the rectangular area 13a is not skipped under certain conditions.
  • the finite dose determination unit 62 determines whether a defect beam with an excessive dose among the multi-beams 20 is irradiated for each drawing pass and for each processing area. It is determined whether or not there is a position where a non-zero (finite value) dose amount is defined in the vicinity of the defect position that is scheduled to be removed.
  • FIG. 14 is a diagram showing an example of the presence or absence of a pattern in the processing area and the presence or absence of a pattern for each main deflection area in the first embodiment.
  • Part a of FIG. 14 shows the presence or absence of a pattern in the processing area A in one drawing pass among a plurality of drawing passes of multiple drawing.
  • a case is shown in which a rectangular unit area 35 is used as the processing area A.
  • the designed pattern 12 is arranged within the rectangular unit area 35, similar to section a in FIG.
  • the defect beam 11 is irradiated near the pattern 12.
  • the finite dose determination unit 62 determines that a position (pixel ) exists.
  • the nearby region C is a correction region for correcting a positional shift of a pixel scheduled to be irradiated with a defective beam.
  • a pixel area within a radius of several pixels centered on the pixel scheduled to be irradiated with the defective beam.
  • a pixel area within a radius of 1 to 2 beam size pitches centered on the pixel to be irradiated with the defective beam.
  • a rectangular area is shown here as the nearby area C, it is not limited to this. For example, a circular area is also suitable.
  • a margin area B is set around the processing area A in order to take into account defective beams in the adjacent processing area. It is preferable to set the margin width to, for example, several pixels to 1 to 2 beam pitches.
  • the finite dose determination unit 62 determines whether the defective beam 11 is within the processing area A and whether there is a pixel in the nearby area C where a dose amount of a value other than zero (finite value) is defined as designed. do. In this case, it is assumed that the pixels in the nearby region C for which the dose amount of a non-zero value (finite value) is defined do not exceed the margin region B. In the example in part a of FIG. 14, the defective beam 11 is in the processing area A, and a part of the pattern 12 is placed in the nearby area C, so there is no design zero in the nearby area C. It is determined that there is a pixel for which a dose amount of a value (finite value) is defined.
  • the finite dose determining unit 62 determines that there is a pixel for which a non-zero dose (finite value) is defined.
  • the dose amount of each pixel uses a value defined in a dose map stored in the storage device 144.
  • the defect dose data creation unit 64 detects the defect when a non-zero dose (finite value) is defined in the nearby region C. Create defect dose data in which a defect dose is defined at a position. In the example of part a in FIG. 14, defect dose data is created at the position where the defect beam 11 is irradiated.
  • the maximum dose in each drawing pass is set as the defect dose. As the maximum dose in each drawing pass, the maximum dose of each pixel defined in the dose map (dose map after positional deviation correction for each pass) may be used.
  • the irradiation time calculation unit 66 calculates the irradiation time t corresponding to the dose amount of each pixel.
  • the irradiation time t can be calculated by dividing the dose amount D by the current density J.
  • the irradiation time t of each pixel 36 (control grid 27) is calculated as a value within the maximum irradiation time Ttr that can be irradiated with one shot of the multi-beam 20.
  • the irradiation time t of each pixel 36 (control grid 27) is converted into gradation value data of 0 to 1023 gradations, where the maximum irradiation time Ttr is, for example, 1023 gradations (10 bits).
  • the gradated irradiation time data is stored in the storage device 142.
  • the data processing unit 67 rearranges the irradiation time data for each pixel in order of main deflection area and shot order for each drawing pass.
  • the rectangular area 13 serving as the main deflection area is set for each tracking control using tracking deflection.
  • Part b of FIG. 14 shows, for example, a rectangular area 13a that becomes the main deflection area of the first tracking control.
  • the first pixel column from the right of each sub-irradiation area 29 is the drawing target.
  • section c in FIG. 14 shows a case where the defective beam 11 becomes such a target pixel. If the defect dose data is defined at the position of the defect beam 11, the same state as the defect pattern 17 is defined as shown in part b of FIG. 14 will be obtained. Similar to section c in FIG. 13, section c in FIG. 14 shows, for example, a rectangular area 13b that becomes the main deflection area for the second tracking control. In the rectangular area 13b, for example, the second pixel column from the right of each sub-irradiation area 29 is the drawing target. The example of part c in FIG. 14 shows a case where the partial pattern 9a that is part of the pattern 12 is the target pixel, similar to the part c in FIG. 13. Similar to the section d in FIG. 13, the section d in FIG.
  • FIG. 14 shows, for example, a rectangular area 13c which becomes the main deflection area for the third tracking control.
  • the rectangular area 13c for example, the third pixel column from the right of each sub-irradiation area 29 is the drawing target.
  • the example of section d in FIG. 14 shows a case where partial pattern 9b, which is another part of pattern 12, is the target pixel, similar to section d in FIG. 13.
  • the state in which no pattern is arranged as shown in part b of FIG. 13 is changed to the state in which the defect pattern 17 is arranged as shown in part b of FIG. 14. That means that.
  • shot data is separated for each main deflection region.
  • the NULL determination unit 68 performs a process for each rectangular area 13 on the surface of the sample 101 where the irradiation area 34 of the multi-beam 20 is set. The presence or absence of a pattern within the rectangular area 13 is determined using the dose data of each position scheduled for irradiation.
  • the irradiation time data of the rectangular area 13 serving as the main deflection area becomes the main deflection data.
  • NULL no pattern
  • the portion b of FIG. 14 to the portion d of FIG. 14 all are determined to be non-NULL (pattern present).
  • the drawing process will not be skipped.
  • the drawing mechanism 150 skips the drawing process of the rectangular area 13 determined to have no pattern and moves the rectangular area 13 to be subjected to the drawing process to the next rectangular area 13 with a pattern, A pattern is drawn on the sample 101 using the multi-beam 20 while correcting an excessive dose caused by the defective beam 11 in one of the plurality of drawing passes of multiple drawing passes in another drawing pass.
  • the defect will not be skipped in the second writing pass.
  • the defect beam 11 is irradiated to the area. Therefore, defect correction in the first writing pass can be effectively performed.
  • the defective beam 11 will not be skipped in the first writing pass. 11 is irradiated. Therefore, defect correction in the second drawing pass can be effectively performed.
  • Embodiment 2 In the first embodiment, a case will be described where, by creating defect dose data at the irradiation position of the defect beam, it is determined that there is a pattern even in the rectangular area 13 where there is no pattern in the main deflection data NULL determination step (S146). did. In Embodiment 2, other configurations will be described.
  • the configuration of the drawing device in the second embodiment is the same as that in FIG.
  • a flowchart showing the main steps of the drawing method in the second embodiment is the same as FIG. 8 .
  • points not particularly described are the same as those in the first embodiment.
  • the NULL determination unit 68 determines non-NULL (pattern present) in each rectangular area 13 regardless of the presence or absence of a pattern. Other points are the same as in the first embodiment.
  • the defect vicinity finite dose determination step (S130) and the defect dose data creation step (S132) may be omitted.
  • the finite dose determination section 62 and the defective dose data creation section 64 may be omitted.
  • FIG. 15 is a flowchart showing the main steps of the drawing method in the third embodiment. 15, except that the determination result in the main deflection data NULL determination step (S146) is stored in the storage device, and the determination result in the main deflection data NULL determination step (S146) is fed back. Same as 8.
  • Embodiment 3 the configuration of the drawing device in Embodiment 3 is the same as that in FIG. 1. However, in the third embodiment, the finite dose determination unit 62 and the defect dose data creation unit 64 may be omitted. Hereinafter, points not particularly described are the same as those in the first embodiment.
  • the determination result in the main deflection data NULL determination step (S146) is stored in the storage device 144.
  • the defect correction unit 60 performs the main deflection data NULL determination step (S146) for each rectangular area in the preceding pass in the second and subsequent writing passes of the multiple writing passes. ), it is determined whether or not to correct the excessive dose caused by the defective beam 11 in the current pass. For example, whether or not a defective beam was irradiated in the first writing pass can be determined from the determination result of the presence or absence of a pattern in the main deflection data NULL determination step (S146). Therefore, for example, in the second writing pass, based on the determination result, defect correction is performed if the defective beam was irradiated in the first writing pass, and defect correction is performed if the defective beam was not irradiated. Do not do this. Thereby, unnecessary defect correction can be avoided.
  • FIG. 16 is a flowchart showing the main steps of the drawing method in the fourth embodiment.
  • each process in all writing passes from the beam position deviation measurement step (S102) to the main deflection data NULL determination step (S146) is performed as pre-processing before starting the writing process of the first writing pass. It is the same as FIG. 15 except that it is performed as . Therefore, the difference between the third embodiment is that the determination result in the main deflection data NULL determination step (S146) is stored in the storage device 144, and the determination result in the main deflection data NULL determination step (S146) is fed back. It is similar to
  • Embodiment 4 the configuration of the drawing device in Embodiment 4 is the same as that in FIG. 1. However, in the fourth embodiment, the finite dose determination section 62 and the defective dose data creation section 64 may be omitted. Hereinafter, points not particularly described are the same as those in the first embodiment.
  • the defect correction unit 60 determines, for each drawing pass, whether or not the defective beam was irradiated in another drawing pass, based on the pattern in the main deflection data NULL determination step (S146). This can be determined from the judgment result of presence or absence. Therefore, the defect correction unit 60 uses the determination result of the presence or absence of a pattern in the main deflection data NULL determination step (S146) to determine whether or not to correct the excessive dose caused by the defective beam 11 in this pass. In the fourth embodiment, the determination results of the presence or absence of a pattern in the main deflection data NULL determination step (S146) for all the writing passes are completed before starting the writing process of the first writing pass.
  • the fourth embodiment it is also possible to determine whether or not a defective beam will be irradiated in a later writing pass. Therefore, for example, in the first writing pass, it can be determined whether to correct a defective beam that is scheduled to be irradiated in the second writing pass.
  • FIG. 17 is a conceptual diagram showing the configuration of a drawing device in Embodiment 5. 17 is the same as FIG. 1 except that a determination unit 61 is further added to the control computer 110. Rasterization unit 50, dose data creation unit 52, beam position deviation map creation unit 54, position deviation correction unit 56, detection unit 57, identification unit 58, defect correction unit 60, determination unit 61, finite dose determination unit 62, defect dose data
  • Each "section" such as the creation section 64, the irradiation time calculation section 66, the data processing section 67, the NULL determination section 68, and the drawing control section 74 has a processing circuit.
  • processing circuits include, for example, electrical circuits, computers, processors, circuit boards, quantum circuits, or semiconductor devices.
  • Each " ⁇ section" may use a common processing circuit (the same processing circuit) or may use different processing circuits (separate processing circuits).
  • Rasterization unit 50, dose data creation unit 52, beam position deviation map creation unit 54, position deviation correction unit 56, detection unit 57, identification unit 58, defect correction unit 60, determination unit 61, finite dose determination unit 62, defect dose data Information input/output to/from the creation unit 64, irradiation time calculation unit 66, data processing unit 67, NULL determination unit 68, and drawing control unit 74 and information being calculated are stored in the memory 112 each time.
  • FIG. 18 is a flowchart showing the main steps of the drawing method in the fifth embodiment. 17 is the same as FIG. 8 except that a determination step (S128) is added before the defect vicinity finite dose determination step (S130).
  • a beam position deviation measurement step (S102), a defective beam detection step (S104), a dose calculation step (S110), a position deviation correction step for each pass (S112), and a defective beam position identification step for each pass (S102) are the same as in the first embodiment.
  • the determination unit 61 determines whether the size of the region in which only the zero dose is defined is less than or equal to the threshold value. Specifically, the determining unit 61 refers to the positional deviation corrected dose data for each pass and determines whether the size of the area in which only the zero dose is defined is 1/n or n times smaller than the rectangular area. judge whether n is a natural number. If the size of the area in which only a dose of zero is defined is not less than the threshold value, the process proceeds to the defect vicinity finite dose determination step (S130).
  • the defect vicinity finite dose determination step (S130) and the defect dose data creation step (S132) are skipped, and the irradiation time calculation step (S142) is performed. ). In other words, the defect vicinity finite dose determination step (S130) and the defect dose data creation step (S132) are performed only for the blank area of a pattern of a certain size.
  • each step after the defect vicinity finite dose determination step (S130) are the same as in the first embodiment. Note that when skipping the defect vicinity finite dose determination step (S130) and the defect dose data creation step (S132), the main deflection data NULL determination step (S146) is always determined to be non-NULL (pattern present). It is preferable to configure it as follows.
  • the irradiation time of each beam of the multi-beam 20 is individually controlled within the maximum irradiation time Ttr for one shot.
  • the maximum irradiation time Ttr for one shot is divided into a plurality of subshots having different irradiation times. Then, for each beam, a combination of subshots is selected from among the plurality of subshots so that the irradiation time is one shot. It is also preferable to control the irradiation time of one shot for each beam by continuously irradiating the same pixel with the same beam using the selected combination of sub-shots.
  • control signal was input for controlling each control circuit 41, but the number of bits may be set as appropriate.
  • a 2-bit or 3-9 bit control signal may be used.
  • a control signal of 11 bits or more may be used.
  • the present invention relates to a multi-charged particle beam lithography device and a multi-charged particle beam lithography method, and can be used, for example, as a method for reducing pattern dimensional deviation due to multi-beam lithography.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electron Beam Exposure (AREA)

Abstract

マルチビーム描画において、欠陥ビームによる過剰ドーズの補正を多重描画の描画パス間を跨いで行う場合に不要な欠陥補正を回避可能な方法を提供する。 マルチビーム描画装置は、処理領域毎に、ドーズ量が過剰になる欠陥ビームが照射される予定の欠陥位置を含む近傍の領域にゼロではない値のドーズ量が定義された位置が存在するかどうかを判定するドーズ判定回路62と、近傍の領域にゼロではない値のドーズ量が定義される場合に、欠陥位置に欠陥用ドーズ量が定義された欠陥用ドーズデータを作成する欠陥位置ドーズデータ作成回路64と、パターン描画時に、パターン有無判定部によりパターン無と判定された単位領域をスキップして次のパターン有と判定された単位領域へと描画処理を行う単位領域を移動させ、多重描画の複数の描画パスのいずれかの描画パスにおける欠陥ビームに起因する過剰ドーズを他の描画パスで減らすように補正する描画機構と、を備えた。

Description

マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
 本出願は、2022年3月8日に日本国に出願されたJP2022-035611(出願番号)を基礎出願とする優先権を主張する出願である。JP2022-035611に記載された内容は、本出願にインコーポレートされる。
 本発明の一態様は、マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法に係り、例えば、マルチビーム描画によるパターンの寸法ずれを低減する手法に関する。
 半導体デバイスの微細化の進展を担うリソグラフィ技術は半導体製造プロセスのなかでも唯一パターンを生成する極めて重要なプロセスである。近年、LSIの高集積化に伴い、半導体デバイスに要求される回路線幅は年々微細化されてきている。ここで、電子線(電子ビーム)描画技術は本質的に優れた解像性を有しており、マスクブランクスへ電子線を使ってマスクパターンを描画することが行われている。
 例えば、マルチビームを使った描画装置がある。1本の電子ビームで描画する場合に比べて、マルチビームを用いることで一度に多くのビームを照射できるのでスループットを大幅に向上させることができる。かかるマルチビーム方式の描画装置では、例えば、電子銃から放出された電子ビームを複数の穴を持ったマスクに通してマルチビームを形成し、各々、ブランキング制御され、遮蔽されなかった各ビームが光学系で縮小されることによりマスク像が縮小されて、偏向器で偏向されることにより試料上の所望の位置へと照射される。
 マルチビーム描画では、各ビームから照射されるドーズ量を照射時間によって制御している。しかしながら、ブランキング制御機構の故障等により照射時間制御が困難となり、ビームが過剰に照射されてしまう欠陥ビームが発生し得る。必要なドーズが試料に照射されない場合、試料上に形成されるパターンの形状誤差が生じてしまうといった問題があった。かかる問題に対して、周辺の複数のビームに過剰ドーズを分担させることで補正するといった技術が提案されている(例えば、特許文献1参照)。
特開2020-021919号公報
 まだ公知にはなっていないと思われるが、欠陥ビームの照射による過剰ドーズを多重描画の描画パス間を跨いで補正するといった技術が検討されている。一方、マルチビーム描画では、例えば試料の描画領域上においてマルチビームで照射される矩形領域をずらしながら描画を進めていく。この場合に、パターンが存在しない矩形領域については、描画時間の短縮を図るためにもかかる矩形領域の描画処理をスキップしたい。
 しかしながら、欠陥ビームによる過剰ドーズの補正を多重描画の描画パス間を跨いで行う場合、一部の描画パスにおいて欠陥ビームが照射される位置を含む矩形領域がパターン無しの場合が起こり得る。描画パス間では、ドーズ量データは独立して生成される。この場合、例えば、1回目の描画パスにおいて、2回目の描画パスで欠陥ビームが照射される位置について欠陥補正を行うことを前提にデータ生成が行われる。しかし、2回目の描画パスにおいて欠陥ビームが照射される位置を含む矩形領域がパターン無しの領域になる場合が起こり得る。この場合、パターン無しの領域の描画処理がスキップされてしまうと、2回目の描画パスで照射されるはずだった欠陥ビームが照射されず、1回目の描画パスでの補正の前提が崩れてしまう。結果的に、不要な欠陥補正が実施されてしまうといった問題があった。
 本発明の一態様は、マルチビーム描画において、欠陥ビームによる過剰ドーズの補正を多重描画の描画パス間を跨いで行う場合に不要な欠陥補正を回避可能な装置及び方法を提供する。
 本発明の一態様のマルチ荷電粒子ビーム描画装置は、
 マルチ荷電粒子ビームを形成するビーム形成機構と、
 試料面上の描画領域が分割された複数の処理領域の処理領域毎に、当該処理領域内の各位置の個別のドーズ量が定義されたドーズデータを作成するドーズデータ作成回路と、
 処理領域毎に、マルチ荷電粒子ビームのうちドーズ量が過剰になる欠陥ビームが照射される予定の欠陥位置を含む近傍の領域にゼロではない値のドーズ量が定義された位置が存在するかどうかを判定するドーズ判定回路と、
 近傍の領域にゼロではない値のドーズ量が定義される場合に、欠陥位置に欠陥用ドーズ量が定義された欠陥用ドーズデータを作成する欠陥位置ドーズデータ作成回路と、
 マルチ荷電粒子ビームの照射領域が設定される試料面上の単位領域毎に、当該単位領域での照射予定の各位置のドーズデータを用いて、当該単位領域内のパターンの有無を判定するパターン有無判定回路と、
 マルチ荷電粒子ビームを用いて、試料にパターンを描画する際に、パターン有無判定部によりパターン無と判定された単位領域をスキップして次のパターン有と判定された単位領域へと描画処理を行う単位領域を移動させ、多重描画の複数の描画パスのいずれかの描画パスにおける欠陥ビームに起因する過剰ドーズを他の描画パスで減らすように補正する描画機構と、
 を備えた。
 本発明の一態様のマルチ荷電粒子ビーム描画方法は、
 マルチ荷電粒子ビームを形成し、
 試料面上の描画領域が分割された複数の処理領域の処理領域毎に、当該処理領域内の各位置の個別のドーズ量が定義されたドーズデータを作成し、
 処理領域毎に、マルチ荷電粒子ビームのうちドーズ量が過剰になる欠陥ビームが照射される予定の欠陥位置を含む近傍の領域にゼロではない値のドーズ量が定義された位置が存在するかどうかを判定し、
 近傍の領域にゼロではない値のドーズ量が定義される場合に、欠陥位置に欠陥用ドーズ量が定義された欠陥用ドーズデータを作成し、
 マルチ荷電粒子ビームの照射領域が設定される試料面上の単位領域毎に、当該単位領域での照射予定の各位置のドーズデータを用いて、当該単位領域内のパターンの有無を判定し、
 マルチ荷電粒子ビームを用いて、試料にパターンを描画し、描画を行う場合に、パターン無と判定された単位領域をスキップして次のパターン有と判定された単位領域へと描画処理を行う単位領域を移動させ、多重描画の複数の描画パスのいずれかの描画パスにおける欠陥ビームに起因する過剰ドーズを他の描画パスで減らすように補正する。
 本発明の一態様によれば、マルチビーム描画において、欠陥ビームによる過剰ドーズの補正を多重描画の描画パス間を跨いで行う場合に不要な欠陥補正を回避できる。
実施の形態1における描画装置の構成を示す概念図である。 実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。 実施の形態1におけるブランキングアパーチャアレイ機構の構成を示す断面図である。 実施の形態1における描画動作の一例を説明するための概念図である。 実施の形態1におけるマルチビームの照射領域と描画対象画素との一例を示す図である。 実施の形態1におけるマルチビームの描画方法の一例を説明するための図である。 実施の形態1における各描画パスでのパターン有無の一例を示す図である。 実施の形態1における描画方法の要部工程を示すフローチャート図である。 実施の形態1におけるビームの位置ずれと位置ずれ周期性とを説明するための図である。 実施の形態1におけるビームの位置ずれと位置ずれ周期性とを説明するための図である。 実施の形態1における位置ずれ補正方法の一例を説明するための図である。 実施の形態1における位置ずれ補正方法の一例を説明するための図である。 実施の形態1における欠陥ビーム補正の一例を示す図である。 実施の形態1における欠陥ビーム補正の一例を示す図である。 実施の形態1における欠陥ビーム補正の他の一例を示す図である。 実施の形態1の比較例における処理領域内のパターン有無と、主偏向領域毎のパターン有無との一例を示す図である。 実施の形態1における処理領域内のパターン有無と、主偏向領域毎のパターン有無との一例を示す図である。 実施の形態3における描画方法の要部工程を示すフローチャート図である。 実施の形態4における描画方法の要部工程を示すフローチャート図である。 実施の形態5における描画装置の構成を示す概念図である。 実施の形態5における描画方法の要部工程を示すフローチャート図である。
 以下、実施の形態では、荷電粒子ビームの一例として、電子ビームを用いた構成について説明する。但し、荷電粒子ビームは、電子ビームに限るものではなく、イオンビーム等の荷電粒子を用いたビームでも構わない。
[実施の形態1]
 図1は、実施の形態1における描画装置の構成を示す概念図である。図1において、描画装置100は、描画機構150と制御系回路160を備えている。描画装置100は、マルチ荷電粒子ビーム描画装置の一例である。描画機構150は、電子鏡筒102(マルチ電子ビームカラム)と描画室103を備えている。電子鏡筒102内には、電子銃201、照明レンズ202、成形アパーチャアレイ基板203、ブランキングアパーチャアレイ機構204、縮小レンズ205、一括ブランキング偏向器212、制限アパーチャ基板206、対物レンズ207、偏向器208、及び偏向器209が配置されている。描画室103内には、XYステージ105が配置される。XYステージ105上には、描画時には描画対象基板となるレジストが塗布されたマスクブランクス等の試料101が配置される。試料101には、半導体装置を製造する際の露光用マスク、或いは、半導体デバイスが製造される半導体基板(シリコンウェハ)等が含まれる。XYステージ105上には、さらに、XYステージ105の位置測定用のミラー210が配置される。XYステージ105上には、さらに、ファラディーカップ106が配置される。
 制御系回路160は、制御計算機110、メモリ112、偏向制御回路130、デジタル・アナログ変換(DAC)アンプユニット132,134,136、ステージ位置検出器139及び磁気ディスク装置等の記憶装置140,142,144を有している。制御計算機110、メモリ112、偏向制御回路130、DACアンプユニット132,134,136、ステージ位置検出器139及び記憶装置140,142,144は、図示しないバスを介して互いに接続されている。偏向制御回路130には、DACアンプユニット132,134,136及びブランキングアパーチャアレイ機構204が接続されている。DACアンプユニット132の出力は、偏向器209に接続される。DACアンプユニット134の出力は、偏向器208に接続される。DACアンプユニット136の出力は、一括ブランキング偏向器212に接続される。偏向器208は、4極以上の電極により構成され、電極毎にDACアンプ134を介して偏向制御回路130により制御される。偏向器209は、4極以上の電極により構成され、電極毎にDACアンプ132を介して偏向制御回路130により制御される。一括ブランキング偏向器212は、2極以上の電極により構成され、電極毎にDACアンプ136を介して偏向制御回路130により制御される。
 ステージ位置検出器139は、レーザ光をXYステージ105上のミラー210に照射し、ミラー210からの反射光を受光する。そして、かかる反射光の情報を使ったレーザ干渉の原理を利用してXYステージ105の位置を測定する。
 制御計算機110内には、ラスタライズ部50、ドーズデータ作成部52、ビーム位置ずれマップ作成部54、位置ずれ補正部56、検出部57、特定部58、欠陥補正部60、有限ドーズ判定部62、欠陥ドーズデータ作成部64、照射時間演算部66、データ加工部67、NULL判定部68、及び描画制御部74が配置されている。ラスタライズ部50、ドーズデータ作成部52、ビーム位置ずれマップ作成部54、位置ずれ補正部56、検出部57、特定部58、欠陥補正部60、有限ドーズ判定部62、欠陥ドーズデータ作成部64、照射時間演算部66、データ加工部67、NULL判定部68、及び描画制御部74といった各「~部」は、処理回路を有する。かかる処理回路は、例えば、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置を含む。各「~部」は、共通する処理回路(同じ処理回路)を用いても良いし、或いは異なる処理回路(別々の処理回路)を用いても良い。ラスタライズ部50、ドーズデータ作成部52、ビーム位置ずれマップ作成部54、位置ずれ補正部56、検出部57、特定部58、欠陥補正部60、有限ドーズ判定部62、欠陥ドーズデータ作成部64、照射時間演算部66、データ加工部67、NULL判定部68、及び描画制御部74に入出力される情報および演算中の情報はメモリ112にその都度格納される。
 また、描画装置100の外部から描画データが入力され、記憶装置140に格納される。描画データには、通常、描画するための複数の図形パターンの情報が定義される。具体的には、図形パターン毎に、図形コード、座標、及びサイズ等が定義される。
 ここで、図1では、実施の形態1を説明する上で必要な構成を記載している。描画装置100にとって、通常、必要なその他の構成を備えていても構わない。
 図2は、実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。図2において、成形アパーチャアレイ基板203には、縦(y方向)p列×横(x方向)q列(p,q≧2)の穴(開口部)22が所定の配列ピッチでマトリクス状に形成されている。図2では、例えば、縦横(x,y方向)に512×512列の穴22が形成される。各穴22は、共に同じ寸法形状の矩形で形成される。或いは、同じ直径の円形であっても構わない。成形アパーチャアレイ基板203(ビーム形成機構)は、マルチビーム20を形成する。具体的には、これらの複数の穴22を電子ビーム200の一部がそれぞれ通過することで、マルチビーム20が形成されることになる。また、穴22の配列の仕方は、図2のように、縦横が格子状に配置される場合に限るものではない。例えば、縦方向(y方向)k段目の列と、k+1段目の列の穴同士が、横方向(x方向)に寸法aだけずれて配置されてもよい。同様に、縦方向(y方向)k+1段目の列と、k+2段目の列の穴同士が、横方向(x方向)に寸法bだけずれて配置されてもよい。
 図3は、実施の形態1におけるブランキングアパーチャアレイ機構の構成を示す断面図である。ブランキングアパーチャアレイ機構204は、図3に示すように、支持台33上にシリコン等からなる半導体基板31が配置される。基板31の中央部は、例えば裏面側から削られ、薄い膜厚hのメンブレン領域330(第1の領域)に加工されている。メンブレン領域330を取り囲む周囲は、厚い膜厚Hの外周領域332(第2の領域)となる。メンブレン領域330の上面と外周領域332の上面とは、同じ高さ位置、或いは、実質的に同じ高さ位置になるように形成される。基板31は、外周領域332の裏面で支持台33上に保持される。支持台33の中央部は開口しており、メンブレン領域330の位置は、支持台33の開口した領域に位置している。
 メンブレン領域330には、図2に示した成形アパーチャアレイ基板203の各穴22に対応する位置にマルチビーム20のそれぞれのビームの通過用の通過孔25(開口部)が開口される。言い換えれば、基板31のメンブレン領域330には、電子線を用いたマルチビーム20のそれぞれ対応するビームが通過する複数の通過孔25がアレイ状に形成される。そして、基板31のメンブレン領域330上であって、各通過孔25を挟んで対向する位置に2つの電極を有する複数の電極対がそれぞれ配置される。具体的には、メンブレン領域330上に、図3に示すように、各通過孔25の近傍位置に該当する通過孔25を挟んでブランキング偏向用の制御電極24と対向電極26の組(ブランカー:ブランキング偏向器:第1の偏向器)がそれぞれ配置される。また、基板31内部であってメンブレン領域330上の各通過孔25の近傍には、各通過孔25用の制御電極24に偏向電圧を印加する制御回路41(ロジック回路)が配置される。各ビーム用の対向電極26は、グランド接続される。
 制御回路41内には、図示しないアンプ(スイッチング回路の一例)が配置される。アンプの一例として、CMOS(Complementary MOS)インバータ回路が配置される。そして、CMOSインバータ回路は正の電位(Vdd:ブランキング電位:第1の電位)(例えば、5V)(第1の電位)とグランド電位(GND:第2の電位)に接続される。CMOSインバータ回路の出力線(OUT)は制御電極24に接続される。一方、対向電極26は、グランド電位が印加される。そして、ブランキング電位とグランド電位とが切り替え可能に印加される複数の制御電極24が、基板31上であって、複数の通過孔25のそれぞれ対応する通過孔25を挟んで複数の対向電極26のそれぞれ対応する対向電極26と対向する位置に配置される。
 CMOSインバータ回路の入力(IN)には、閾値電圧よりも低くなるL(low)電位(例えばグランド電位)と、閾値電圧以上となるH(high)電位(例えば、1.5V)とのいずれかが制御信号として印加される。実施の形態1では、CMOSインバータ回路の入力(IN)にL電位が印加される状態では、CMOSインバータ回路の出力(OUT)は正電位(Vdd)となり、対向電極26のグランド電位との電位差による電界によりマルチビーム20中の対応する1本を偏向し、制限アパーチャ基板206で遮蔽することでビームOFFになるように制御する。一方、CMOSインバータ回路の入力(IN)にH電位が印加される状態(アクティブ状態)では、CMOSインバータ回路の出力(OUT)はグランド電位となり、対向電極26のグランド電位との電位差が無くなりマルチビーム20中の対応する1本を偏向しないので制限アパーチャ基板206を通過することでビームONになるように制御する。
 各通過孔を通過するマルチビーム20中の対応する1本の電子ビームは、それぞれ独立に対となる2つの制御電極24と対向電極26に印加される電圧によって偏向される。かかる偏向によってブランキング制御される。具体的には、制御電極24と対向電極26の組は、それぞれ対応するスイッチング回路となるCMOSインバータ回路によって切り替えられる電位によってマルチビーム20の対応ビームをそれぞれ個別にブランキング偏向する。このように、複数のブランカーが、成形アパーチャアレイ基板203の複数の穴22(開口部)を通過したマルチビーム20のうち、それぞれ対応するビームのブランキング偏向を行う。
 図4は、実施の形態1における描画動作の一例を説明するための概念図である。図4に示すように、試料101の描画領域30(太線)は、例えば、y方向に向かって所定の幅で短冊状の複数のストライプ領域32に仮想分割される。
 また、図4の例では、描画領域30を分割した複数のストライプ領域32で構成される第1のストライプレイヤを設定する。また、第1のストライプレイヤに対してy方向にストライプ領域32の幅の1/2のサイズで位置をずらした複数のストライプ領域32で構成される第2のストライプレイヤを設定する。このように、図4の例では、第1のストライプレイヤと第2のストライプレイヤとの2つのストライプレイヤが設定される。よって、第1のストライプレイヤと第2のストライプレイヤとを組み合わせることで、y方向に一部が重複しながら並ぶ複数のストライプ領域32が設定される。図4の例では、y方向に隣接するストライプ領域32同士が1/2の領域ずつ互いに重複する場合を示している。また、第2のストライプレイヤにおいては描画領域30の端部から-y方向に1つ余分にストライプ領域32を設定すると好適である。次に、描画動作の一例を説明する。
 まず、XYステージ105を移動させて、第2のストライプレイヤの第1番目のストライプ領域32の左端、或いはさらに左側の位置にマルチビーム20の照射領域34が位置するように調整する。そして、第2のストライプレイヤの第1番目のストライプ領域32の描画が行われる。第2のストライプレイヤの第1番目のストライプ領域32を描画する際には、XYステージ105を例えば-x方向に移動させることにより、相対的にx方向へと描画を進めていく。XYステージ105は例えば等速で連続移動させる。第2のストライプレイヤの第1番目のストライプ領域32の描画終了後、ステージ位置を-y方向にストライプ領域32の幅の1/2サイズのずらし量だけ移動させる。
 そして、次に、第1のストライプレイヤの第1番目のストライプ領域32の右端、或いはさらに右側の位置にマルチビーム20の照射領域34が位置するように調整する。そして、XYステージ105を例えばx方向に移動させることにより、相対的に-x方向へと描画を進めていく。これにより、第1のストライプレイヤの第1番目のストライプ領域32の描画が行われる。第1のストライプレイヤの第1番目のストライプ領域32の描画が終了後、第2のストライプレイヤの第2番目のストライプ領域32の描画が行われる。第1のストライプレイヤと第2のストライプレイヤとを交互に描画することで、各位置では多重描画が行われる。また、上述した例では交互に向きを変えながら描画する場合を示したが、これに限らず、各ストライプ領域32を描画する際、同じ方向に向かって描画を進めるようにしても構わない。
 図5は、実施の形態1におけるマルチビームの照射領域と描画対象画素との一例を示す図である。図5において、ストライプ領域32には、例えば、試料101面上におけるマルチビーム20のビームサイズピッチで格子状に配列される複数の制御グリッド27(設計グリッド)が設定される。この制御グリッド27は、例えば、10nm程度の配列ピッチにすると好適である。かかる複数の制御グリッド27が、マルチビーム20の設計上の照射位置となる。制御グリッド27の配列ピッチはビームサイズに限定されるものではなく、ビームサイズとは関係なく偏向器209の偏向位置として制御可能な任意の大きさで構成されるものでも構わない。そして、各制御グリッド27を中心とした、制御グリッド27の配列ピッチと同サイズでメッシュ状に仮想分割された複数の画素36が設定される。各画素36は、マルチビームの1つのビームあたりの照射単位領域となる。図5の例では、試料101の描画領域が、例えばy方向に、1回のマルチビーム20(ビームアレイ)の照射で照射可能な照射領域34(描画フィールド)のサイズと実質同じ幅サイズで複数のストライプ領域32に分割された場合を示している。照射領域34のx方向サイズは、マルチビーム20のx方向のビーム間ピッチにx方向のビーム数を乗じた値で定義できる。照射領域34のy方向サイズは、マルチビーム20のy方向のビーム間ピッチにy方向のビーム数を乗じた値で定義できる。なお、ストライプ領域32の幅は、これに限るものではない。照射領域34のn倍(nは1以上の整数)のサイズであると好適である。図5の例では、例えば512×512列のマルチビームの図示を8×8列のマルチビームに省略して示している。そして、照射領域34内に、1回のマルチビーム20のショットで照射可能な複数の画素28(ビームの描画位置)が示されている。言い換えれば、隣り合う画素28間のピッチが設計上のマルチビームの各ビーム間のピッチとなる。図5の例では、ビーム間ピッチで囲まれる領域で1つのサブ照射領域29を構成する。図5の例では、各サブ照射領域29は、4×4画素で構成される場合を示している。
 図6は、実施の形態1におけるマルチビームの描画方法の一例を説明するための図である。図6では、図5で示したストライプ領域32を描画するマルチビームのうち、y方向k段目の座標(1,3),(2,3),(3,3),・・・,(512,3)の各ビームで描画するサブ照射領域29の一部を示している。図6の例では、例えば、XYステージ105が8ビームピッチ分の距離を移動する間に4つの画素を描画(露光)する場合を示している。かかる4つの画素を描画(露光)する間、照射領域34がXYステージ105の移動によって試料101との相対位置がずれないように、偏向器208によってマルチビーム20全体を一括偏向する。これによって、照射領域34をXYステージ105の移動に追従させる。言い換えれば、トラッキング制御が行われる。偏向器208がトラッキング偏向器として、マルチビーム20の照射領域34がステージの移動に追従するようにマルチビーム20のトラッキング偏向を行う。図6の例では、8ビームピッチ分の距離を移動する間に4つの画素を描画(露光)することで1回のトラッキングサイクルを実施する場合を示している。
 具体的には、各ショットにおいて、設定された最大描画時間内のそれぞれの制御グリッド27に対応する描画時間(照射時間、或いは露光時間)ビームを照射する。具体的には、各制御グリッド27にマルチビーム20のうちONビームのそれぞれ対応するビームを照射する。そして、最大描画時間にDACアンプの整定時間を加算したショットサイクル時間Ttr毎に、偏向器209による一括偏向により各ビームの照射位置を次のショット位置へと移動する。
 そして、図6の例では4ショット終了した時点で、DACアンプユニット134は、トラッキング制御用のビーム偏向をリセットする。これにより、トラッキング位置をトラッキング制御が開始されたトラッキング開始位置に戻す。
 なお、各サブ照射領域29の右から1番目の画素列の描画は終了している。よって、トラッキングリセットした後に、次回のトラッキングサイクルにおいてまず偏向器209は、各サブ照射領域29の下から1段目かつ右から2番目の画素の制御グリッド27にそれぞれ対応するビームの描画位置を合わせる(シフトする)ように偏向する。かかる動作を繰り返すことで、すべての画素の描画が行われる。サブ照射領域29がn×n画素で構成される場合に、n回のトラッキング動作でそれぞれ異なるビームによってn画素ずつ描画される。これにより、1つのn×n画素の領域内のすべての画素が描画される。マルチビームの照射領域内の他のn×n画素の領域についても同時期に同様の動作が実施され、同様に描画される。
 かかる動作により、図4の照射領域34a~34oで示すように、1回のトラッキング制御でのステージ移動量である例えば8ビームピッチずつ照射領域34がストライプ領域32上でシフトしながら描画処理を進めることになる。
 次に描画装置100における描画機構150の動作について説明する。電子銃201(放出源)から放出された電子ビーム200は、照明レンズ202により成形アパーチャアレイ基板203全体を照明する。成形アパーチャアレイ基板203には、矩形の複数の穴22(開口部)が形成される。そして、電子ビーム200は、すべての複数の穴22が含まれる領域を照明する。複数の穴22の位置に照射された電子ビーム200の各一部が、かかる成形アパーチャアレイ基板203の複数の穴22をそれぞれ通過する。これによって、例えば矩形形状の複数の電子ビーム(マルチビーム20)が形成される。かかるマルチビーム20は、ブランキングアパーチャアレイ機構204のそれぞれ対応するブランカー(第1の偏向器)内を通過する。かかるブランカーは、それぞれ、個別に通過する電子ビームを偏向する(ブランキング偏向を行う)。
 ブランキングアパーチャアレイ機構204を通過したマルチビーム20は、縮小レンズ205によって、縮小され、制限アパーチャ基板206に形成された中心の穴に向かって進む。ここで、マルチビーム20のうち、ブランキングアパーチャアレイ機構204のブランカーによって偏向された電子ビームは、制限アパーチャ基板206の中心の穴から位置がはずれ、制限アパーチャ基板206によって遮蔽される。一方、ブランキングアパーチャアレイ機構204のブランカーによって偏向されなかった電子ビームは、図1に示すように制限アパーチャ基板206の中心の穴を通過する。かかるブランカーのON/OFFによって、ブランキング制御が行われ、ビームのON/OFFが制御される。このように、制限アパーチャ基板206は、ブランカーによってビームOFFの状態になるように偏向された各ビームを遮蔽する。そして、ビーム毎に、ビームONになってからビームOFFになるまでに形成された、制限アパーチャ基板206を通過したビームにより、1回分のショットのビームが形成される。制限アパーチャ基板206を通過したマルチビーム20は、対物レンズ207により焦点が合わされ、所望の縮小率のパターン像となり、偏向器208,209によって、制限アパーチャ基板206を通過した各ビーム(通過したマルチビーム20全体)が同方向に一括して偏向され、各ビームの試料101上のそれぞれの照射位置に照射される。一度に照射されるマルチビーム20は、理想的には成形アパーチャアレイ基板203の複数の穴22の配列ピッチに上述した所望の縮小率を乗じたピッチで並ぶことになる。
 上述したように、マルチビームには欠陥ビームが生じ得る。欠陥ビームには、ビームのドーズ量制御ができず照射されるドーズ量が過剰になるドーズ過剰欠陥ビームと、ビームのドーズ量制御ができず照射されるドーズ量が不足になるドーズ不足欠陥ビームと、があげられる。ドーズ過剰欠陥ビームの中には、常時ONとなるON欠陥ビームと照射時間制御が不良な制御不良欠陥ビームの一部とが含まれる。ドーズ不足欠陥ビームの中には、常時OFFとなるOFF欠陥ビームと制御不良欠陥ビームの残部とが含まれる。
 欠陥ビームによって予定されるドーズ量よりも過剰なドーズ量が試料に照射される場合、試料上に形成されるパターンの形状誤差が生じてしまうといった問題があった。かかる問題に対して、過剰ドーズ量を相殺する欠陥補正が行われる。実施の形態1では、複数回の描画パスで描画処理を実施する多重描画を行う。そこで、かかる欠陥補正を欠陥ビームが照射される描画パスとは異なる描画パスにて実施する。一方、マルチビーム描画では、例えば試料101の描画領域上においてマルチビーム20で照射される矩形領域(単位領域の一例)をずらしながら進めていく。ここでの矩形領域(ビームアレイ領域)は、マルチビーム20の各ビームが隣接する他の複数のビームとの間で囲まれる各サブ照射領域29(小領域)を組み合わせたマルチビームの照射領域34となる。なお、単位領域は矩形に限るものではない。マルチビームの配列形状に合わせて単位領域の形状は他の形状であっても構わない。
 図4の例では、照射領域34がトラッキングサイクル毎に例えば8ビームピッチずつシフトするので、ストライプ領域32上ではマルチビーム20で照射される矩形領域が8ビームピッチずつずれながら重なり合うことになる。例えば、照射領域34aに対応する矩形領域では、各サブ照射領域29の右から1番目の画素列が照射対象となる。例えば、照射領域34bに対応する矩形領域では、各サブ照射領域29の右から2番目の画素列が照射対象となる。例えば、照射領域34cに対応する矩形領域では、各サブ照射領域29の右から3番目の画素列が照射対象となる。例えば、照射領域34dに対応する矩形領域では、各サブ照射領域29の右から4番目の画素列が照射対象となる。以降の矩形領域においても照射対象画素が同様にずれていく。この場合に、照射対象画素にパターンが存在しない矩形領域については、描画時間の短縮を図るためにもかかる矩形領域の描画処理をスキップしたい。
 なお、矩形領域の描画処理をスキップする場合、スキップ動作の間、一括ブランキング偏向器212によりマルチビーム20全体を一括偏向することで欠陥ビーム11を含めたマルチビーム20全体を制限アパーチャ基板206で遮蔽すればよい。
 図7は、実施の形態1における各描画パスでのパターン有無の一例を示す図である。図7において、1回目の描画パス(1パス目)においてあるトラッキング制御が行われる矩形領域13内にはパターン12が配置される。かかる矩形領域13内には2回目の描画パス(2パス目)で欠陥ビーム11が照射される位置が含まれる。1パス目での欠陥ビーム11が照射される位置については図示を省略している。
 そして、かかる1パス目の矩形領域13を照射するためのドーズデータを作成する際に、2パス目で欠陥ビーム11が照射されることによる過剰ドーズを補正する欠陥補正を行うことを前提にデータ生成が行われる。また、2パス目において欠陥ビーム11が照射される位置は、あるトラッキング制御が行われる矩形領域13に含まれることになる。ここで、2パス目において欠陥ビーム11が照射される位置を含む矩形領域13が図7に示すようにパターン無しの領域になる場合が起こり得る。このように、欠陥ビームによる過剰ドーズの補正を多重描画の描画パス間を跨いで行う場合、一部の描画パスにおいて欠陥ビームが照射される位置を含む矩形領域13がパターン無しの場合が起こり得る。描画パス間では、ドーズ量データは独立して生成される。この場合、2回目の描画パスにおいてパターン無しの矩形領域13の描画処理がスキップされてしまうと欠陥ビーム11が照射されず1回目の描画パスでの補正の前提が崩れてしまう。結果的に、不要な欠陥補正が実施されてしまうといった問題があった。
 逆に、2パス目の矩形領域13に1パス目で欠陥ビームが照射される位置が含まれる場合もあり得る。2パス目の矩形領域13を照射するためのドーズデータを作成する際に、1パス目で欠陥ビームが照射されることによる過剰ドーズを補正する欠陥補正を行うことを前提にデータ生成が行われる。しかしながら、1パス目において欠陥ビームが照射される位置を含む矩形領域がパターン無しの領域になる場合が起こり得る。1回目の描画パスにおいてパターン無しの矩形領域の描画処理がスキップされてしまうと欠陥ビームが照射されず2回目の描画パスでの補正の前提が崩れてしまう。結果的に、不要な欠陥補正が実施されてしまうといった問題があった。
 そこで、実施の形態1では、欠陥ビームが照射される位置周辺に設計上のゼロではない値(有限値)のドーズ量が定義される画素が存在する場合には、トラッキング制御が行われる矩形領域13がパターン無しであってもあえてスキップしないように制御する。
 なお、例えば1パス目の描画処理にて欠陥ビームが照射された場合に、2パス目において1パス目で欠陥ビームが照射された位置を照射対象とする矩形領域13がパターン無しの領域になる場合がある。欠陥ビームの周囲にそもそも設計上のパターンが存在しなければ欠陥ビームに起因するパターンの形状誤差は生じない。よって、かかる場合には欠陥ビームを無視できるので描画処理はスキップされても構わない。
 図8は、実施の形態1における描画方法の要部工程を示すフローチャート図である。図8において、実施の形態1における描画方法は、ビーム位置ずれ量測定工程(S102)と、欠陥ビーム検出工程(S104)と、ドーズ量演算工程(S110)と、パス毎の位置ずれ補正工程(S112)と、パス毎の欠陥ビーム位置特定工程(S120)と、欠陥ビーム補正工程(S122)と、欠陥近傍有限ドーズ判定工程(S130)と、欠陥ドーズデータ作成工程(S132)と、照射時間演算工程(S142)と、データ加工工程(S144)と、主偏向データNULL判定工程(S146)と、描画工程(S150)と、いう一連の工程を実施する。
 欠陥ビーム補正工程(S122)と、欠陥近傍有限ドーズ判定工程(S130)と、欠陥ドーズデータ作成工程(S132)と、照射時間演算工程(S142)と、データ加工工程(S144)と、主偏向データNULL判定工程(S146)と、描画工程(S150)と、の各工程は、描画パス毎に実施される。
 ビーム位置ずれ量測定工程(S102)として、描画装置100は、マルチビーム20の各ビームの試料101面上の照射位置が、対応する制御グリッド27からずれる位置ずれ量を測定する。
 図9Aと図9Bは、実施の形態1におけるビームの位置ずれと位置ずれ周期性とを説明するための図である。マルチビーム20では、図9Aに示すように、光学系の特性上、露光フィールドに歪が生じ、かかる歪等によって、個々のビームの実際の照射位置39が理想グリッドに照射される場合の照射位置37からずれてしまう。そこで、実施の形態1では、かかる個々のビームの実際の照射位置39の位置ずれ量を測定する。具体的には、レジストが塗布された評価基板に、マルチビーム20を照射し、評価基板を現像することで生成されるレジストパターンの位置を位置測定器で測定する。これにより、ビーム毎の位置ずれ量を測定する。各ビームのショットサイズでは、各ビームの照射位置におけるレジストパターンのサイズを位置測定器で測定困難であれば、各ビームで、位置測定器で測定可能なサイズの図形パターン(例えば矩形パターン)を描画する。そして、図形パターン(レジストパターン)の両側のエッジ位置を測定して、両エッジ間の中間位置と設計上の図形パターンの中間位置との差分から対象ビームの位置ずれ量を測定すればよい。そして、得られた各ビームの照射位置の位置ずれ量データは、描画装置100に入力され、記憶装置144に格納される。また、マルチビーム描画では、ストライプ領域32内において照射領域34をずらしながら描画を進めていくため、例えば、図6において説明した描画シーケンスでは、図4の下段に示すように、ストライプ領域32の描画中、照射領域34a~34oといった具合に順次照射領域34の位置が移動する。そして、照射領域34の移動毎に、各ビームの位置ずれに周期性が生じることになる。或いは、各ビームが、それぞれ対応するサブ照射領域29内のすべての画素36を照射する描画シーケンスの場合であれば、図9Bに示すように、少なくとも照射領域34と同じサイズの単位領域35毎(35a、35b、・・・)に各ビームの位置ずれに周期性が生じることになる。よって、ビームアレイの照射領域34分の各ビームの位置ずれ量を測定すれば、測定結果を流用できる。言い換えれば、各ビームについて、対応するサブ照射領域29内の各画素36での位置ずれ量を測定できれば良い。
 そして、ビーム位置ずれマップ作成部54は、まず、ビームアレイ単位、言い換えれば、照射領域34に対応する試料面上の1つの矩形単位領域35内の各画素36の各ビームの位置ずれ量を定義するビーム位置ずれ量マップ(1)を作成する。具体的には、ビーム位置ずれマップ作成部54は、記憶装置144から各ビームの照射位置の位置ずれ量データを読み出し、かかるデータをマップ値としてビーム位置ずれ量マップ(1)を作成すればよい。マルチビーム20全体の照射領域34に対応する試料面上の1つの矩形単位領域35内の各画素36の制御グリッド27をどのビームが照射するのかは、例えば図6において説明したように、描画シーケンスによって決まる。よって、ビーム位置ずれマップ作成部54は、描画シーケンスに応じて1つの単位領域35内の各画素36の制御グリッド27毎に当該制御グリッド27への照射を担当するビームを特定して、当該ビームの位置ずれ量を演算する。作成されたビーム位置ずれ量マップ(1)は、記憶装置144に格納しておく。
 欠陥ビーム検出工程(S104)として、検出部57は、マルチビーム20の中から欠陥ビームを検出する。常時ONとなるON欠陥ビームでは、制御ドーズ量に関わらず、常に、1回のショットにおける最大照射時間のビームを照射する。或いは、さらに画素間の移動時も照射し続ける。また、常時OFFとなるOFF欠陥ビームでは、制御ドーズ量に関わらず、常に、ビームOFFとなる。具体的には、描画制御部74による制御のもと、描画機構150は、マルチビーム20を1本ずつブランキングアパーチャアレイ機構204でビームONになるように制御すると共に、残りはすべてビームOFFになるように制御する。かかる状態で、ファラディーカップ106で電流が検出されなかったビームは、OFF欠陥ビームとして検出される。逆に、かかる状態から検出対象ビームをビームOFFになるように制御を切り替える。その際、ビームONからビームOFFに切り替えたのにもかかわらず、ファラディーカップ106で常時電流が検出されたビームは、ON欠陥ビームとして検出される。ビームONからビームOFFに切り替えたのち、ファラディーカップ106で所定の期間だけ電流が検出されたビームは、制御不良欠陥ビームとして検出される。マルチビーム20のすべてのビームについて同じ方法で順に確認すれば、欠陥ビームの有無、種類及び欠陥ビームがどの位置のビームなのかを検出できる。ここでは、ON欠陥ビーム以外の欠陥ビームについても検出する場合を説明しているが、常時ONとなるON欠陥ビームを検出するだけでも構わない。検出された欠陥ビームの情報は記憶装置144に格納される。
 ドーズ量演算工程(S110)として、ドーズデータ作成部52(ドーズ量演算部)は、試料101面上の描画領域が分割された複数の処理領域の処理領域毎に、当該処理領域内の各位置の個別のドーズ量が定義されたドーズデータを作成する。具体的には、以下のように動作する。まず、ラスタライズ部50は、記憶装置140から描画データを読み出し、画素36毎に、当該画素36内のパターン面積密度ρ’を演算する。かかる処理は、例えば、ストライプ領域32毎に実行する。
 次に、ドーズデータ作成部52は、まず、描画領域(ここでは、例えばストライプ領域32)を所定のサイズでメッシュ状に複数の近接メッシュ領域(近接効果補正計算用メッシュ領域)に仮想分割する。近接メッシュ領域のサイズは、近接効果の影響範囲の1/10程度、例えば、1μm程度に設定すると好適である。ドーズマップ作成部62は、記憶装置140から描画データを読み出し、近接メッシュ領域毎に、当該近接メッシュ領域内に配置されるパターンのパターン面積密度ρを演算する。
 次に、ドーズデータ作成部52は、近接メッシュ領域毎に、近接効果を補正するための近接効果補正照射係数Dp(x)(補正照射量)を演算する。未知の近接効果補正照射係数Dp(x)は、後方散乱係数η、しきい値モデルの照射量閾値Dth、パターン面積密度ρ、及び分布関数g(x)を用いた、従来手法と同様の近接効果補正用のしきい値モデルによって定義できる。
 次に、ドーズデータ作成部52は、画素36毎に、当該画素36に照射するための入射照射量D(x)(ドーズ量)を演算する。入射照射量D(x)は、例えば、予め設定された基準照射量Dbaseに近接効果補正照射係数Dpとパターン面積密度ρ’とを乗じた値として演算すればよい。基準照射量Dbaseは、例えば、Dth/(1/2+η)で定義できる。以上により、描画データに定義される複数の図形パターンのレイアウトに基づいた、近接効果が補正された本来の所望する入射照射量D(x)を得ることができる。
 ドーズデータ作成部52は、上述した処理をストライプ領域32が分割された処理領域毎に実施する。処理領域として、例えば、照射領域34と同じサイズとなる矩形単位領域35が用いられる。そして、ドーズデータ作成部52は、処理領域単位で画素36毎の入射照射量D(x)を定義したドーズマップを作成する。かかる画素36毎の入射照射量D(x)は、設計上、当該画素36の制御グリッド27に照射される予定の入射照射量D(x)となる。作成されたドーズマップは、例えば、記憶装置144に格納される。
 パス毎に位置ずれ補正工程(S112)として、位置ずれ補正部56は、描画パス毎に、マルチビーム20の各照射位置の個別の位置ずれを補正したドーズマップを作成する。
 まず、描画パス毎の各画素のドーズ量を定義する。具体的には以下のように動作する。位置ずれ補正部56は、例えば、記憶装置144からドーズマップを読み出し、各画素に定義されるドーズ量を描画パス数で割った描画パス毎のドーズ量を算出する。次に、描画パス毎に、各画素を照射するビームの位置ずれ補正を行う。パス毎にどのビームがどの画素を照射するのかは描画シーケンスによって決定される。
 図10Aと図10Bは、実施の形態1における位置ずれ補正方法の一例を説明するための図である。図10Aの例では、座標(x,y)の画素に照射されたビームa’が-x,-y側に位置ずれを起こした場合を示している。かかる位置ずれが生じているビームa’によって形成されるパターンの位置ずれを図10Bのように座標(x,y)の画素に合う位置に補正するには、ずれた分の照射量を、ずれた周囲の画素の方向とは反対側の画素に分配することで補正できる。図10Aの例では、座標(x,y-1)の画素にずれた分の照射量は、座標(x,y+1)の画素に分配されればよい。座標(x-1,y)の画素にずれた分の照射量は、座標(x+1,y)の画素に分配されればよい。座標(x-1,y-1)の画素にずれた分の照射量は、座標(x+1,y+1)の画素に分配されればよい。
 実施の形態1では、ビームの位置ずれ量に比例して周囲の少なくとも1つの画素用のビームに照射量を分配する位置ずれ補正分配量を演算する。位置ずれ補正データ作成部52は、当該画素へのビームの位置ずれによりずれた面積の比率に応じて、当該画素へのビームの変調率と当該画素の周囲の少なくとも1つの画素へのビームの変調率とを演算する。具体的には、ビームが注目画素からずれて、ビームの一部が重なった周囲の画素毎に、ずれた分の面積(重なったビーム部分の面積)をビーム面積で割った割合を、重なった画素とは注目画素に対して反対側に位置する画素への分配量(ビームの変調率)として演算する。
 図10Aの例において、座標(x,y-1)の画素へとずれた面積比は、(x方向ビームサイズ-(-x)方向ずれ量)×y方向ずれ量/(x方向ビームサイズ×y方向ビームサイズ)で演算できる。よって、補正のために座標(x,y+1)の画素へと分配するための分配量(ビームの変調率)Vは、(x方向ビームサイズ-(-x)方向ずれ量)×y方向ずれ量/(x方向ビームサイズ×y方向ビームサイズ)で演算できる。
 図10Aの例において、座標(x-1,y-1)の画素へとずれた面積比は、-x方向ずれ量×-y方向ずれ量/(x方向ビームサイズ×y方向ビームサイズ)で演算できる。よって、補正のために座標(x+1,y+1)の画素へと分配するための分配量(ビームの変調率)Wは、-x方向ずれ量×-y方向ずれ量/(x方向ビームサイズ×y方向ビームサイズ)で演算できる。
 図10Aの例において、座標(x-1,y)の画素へとずれた面積比は、-x方向ずれ量×(y方向ビームサイズ-(-y)方向ずれ量)/(x方向ビームサイズ×y方向ビームサイズ)で演算できる。よって、補正のために座標(x+1,y)の画素へと分配するための分配量(ビームの変調率)Zは、-x方向ずれ量×(y方向ビームサイズ-(-y)方向ずれ量)/(x方向ビームサイズ×y方向ビームサイズ)で演算できる。
 この結果、分配されずに残った分となる、座標(x,y)の画素のビームの変調率Uは、1-V-W-Zの演算で求めることができる。
 以上のようにして、ビームアレイ単位、言い換えれば、照射領域34に対応する試料面上の1つの矩形単位領域35内の各画素36について、当該画素へのビームの変調率と、分配先となる少なくとも1つの周囲の画素へのビームの変調率とを演算する。
 そして、位置ずれ補正部56は、描画パス毎に、各画素36について、当該画素に定義されるドーズ量に当該画素へのビームの変調率を乗じた値を算出する。また、位置ずれ補正部56は、描画パス毎に、各画素36について、当該画素に定義されるドーズ量に分配先となる少なくとも1つの周囲の画素へのビームの変調率を乗じた値を算出する。そして、算出された値を分配先の画素へと分配する。位置ずれ補正部56は、描画パス毎に、各画素36について、当該画素に定義されるドーズ量に当該画素へのビームの変調率を乗じた値と、他の画素から分配された値とを合算したドーズ量を算出する。これにより、位置ずれが補正された描画パス毎のドーズマップ(パス毎の位置ずれ補正後のドーズマップ)が作成できる。作成されたパス毎の位置ずれ補正後のドーズマップは記憶装置144に格納される。
 パス毎の欠陥ビーム位置特定工程(S120)として、特定部55は、描画パス毎にビームアレイ単位、言い換えれば、照射領域34に対応する試料面上の1つの矩形単位領域35内の各画素36について、常時ON欠陥ビームを含む過剰ドーズ欠陥ビームが照射する画素を特定する。矩形単位領域35内の各画素36の制御グリッド27をどのビームが照射するのかは、上述したように、描画シーケンスによって決まる。
 欠陥ビーム補正工程(S122)として、欠陥補正部60は、描画パス毎に、他の描画パスにて欠陥ビームが照射されることにより過剰となった過剰ドーズを減らすように補正する。
 図11Aと図11Bは、実施の形態1における欠陥ビーム補正の一例を示す図である。図11Aにおいて、例えば、4パスの多重描画(多重度=4)を行う場合を示している。かかる場合、欠陥ビームが照射されない画素では、例えば、各描画パスでのドーズ量は、各画素に照射されるドーズ量T(x)を描画パス数pass(ここでは4)で割った値T(x)/passが定義される。しかしながら、欠陥ビームが照射される画素では、このままでは過剰ドーズになってしまう。そこで、欠陥ビームが照射される描画パスでのドーズ量は制御できないので、他の描画パスで過剰ドーズ量Δを差し引いたドーズ量に補正する。図11Bの例では、4パスのうち1回の描画パスで欠陥ビームが照射される。かかる場合、まず、T(x)/passに対する過剰分Δを算出する。そして、正常ビームが照射される残りの3回の描画パスについて、それぞれのドーズ量T(x)/passからΔ/3を差し引いたドーズ量に補正する。
 図12は、実施の形態1における欠陥ビーム補正の他の一例を示す図である。欠陥ビームが照射される位置における設計上のドーズ量が過剰ドーズ量Δよりも小さい場合があり得る。その場合、当該画素だけでは過剰ドーズ量Δを補正することは困難である。かかる場合、過剰ドーズ量Δ、或いは欠陥ビームが照射された画素で補正しきれなかった過剰分を周辺のビームへと分配する。そこで、欠陥補正部60は、描画パス毎に、他の描画パスにて欠陥ビームが照射されることにより過剰となった過剰ドーズを周辺のビームへと分配することで補正する。図12に示すように、欠陥ビーム11の照射位置の周囲に位置する例えば3つの照射位置39a,39c,39gに補正しきれなかった過剰分を分配する。各分配量の重心が欠陥ビーム11の照射位置になるように各分配量を算出する。算出された分配ドーズ量は、対象となる照射位置のビームのドーズ量から差し引かれることで欠陥ビームを補正できる。
 図13は、実施の形態1の比較例における処理領域内のパターン有無と、主偏向領域毎のパターン有無との一例を示す図である。図13のa部では、多重描画の複数の描画パスのうち、1つの描画パスでの処理領域内のパターンの有無を示している。ここでは、処理領域として矩形単位領域35を用いた場合を示している。図13のa部の例では、矩形単位領域35内に設計上のパターン12が配置される。また、当該描画パスではパターン12の近傍に欠陥ビーム11が照射される。かかる矩形単位領域35を描画する場合、上述したように、トラッキング制御毎に、主偏向領域となる矩形領域13が設定される。
 図13のb部には、例えば、1回目のトラッキング制御の主偏向領域となる矩形領域13aが示されている。矩形領域13aでは、例えば、各サブ照射領域29の右から1番目の画素列が描画対象となる。図13のb部の例では、欠陥ビーム11がかかる対象画素となる場合を示している。
 図13のc部には、例えば、2回目のトラッキング制御の主偏向領域となる矩形領域13bが示されている。矩形領域13bでは、例えば、各サブ照射領域29の右から2番目の画素列が描画対象となる。図13のc部の例では、パターン12の一部である部分パターン9aがかかる対象画素となる場合を示している。
 図13のd部には、例えば、3回目のトラッキング制御の主偏向領域となる矩形領域13cが示されている。矩形領域13cでは、例えば、各サブ照射領域29の右から3番目の画素列が描画対象となる。図13のd部の例では、パターン12の他の一部である部分パターン9bがかかる対象画素となる場合を示している。
 これらの主偏向領域のうち、矩形領域13aでは、パターンが配置されない。よって、矩形領域13aの描画処理はスキップされてしまう。この場合、欠陥ビーム11が照射されないので、他の描画パスで欠陥補正を行った場合、不要な補正となってしまう。そこで、実施の形態1では、ある条件の下、かかる矩形領域13aの描画処理がスキップされないように制御する。
 欠陥近傍有限ドーズ判定工程(S130)として、有限ドーズ判定部62(ドーズ判定部)は、描画パス毎に、かつ処理領域毎に、マルチビーム20のうちドーズ量が過剰になる欠陥ビームが照射される予定の欠陥位置を含む近傍の領域にゼロではない値(有限値)のドーズ量が定義された位置が存在するかどうかを判定する。
 図14は、実施の形態1における処理領域内のパターン有無と、主偏向領域毎のパターン有無との一例を示す図である。図14のa部では、多重描画の複数の描画パスのうち、1つの描画パスでの処理領域A内のパターンの有無を示している。ここでは、処理領域Aとして矩形単位領域35を用いた場合を示している。図14のa部の例では、図13のa部と同様、矩形単位領域35内に設計上のパターン12が配置される。また、当該描画パスではパターン12の近傍に欠陥ビーム11が照射される。ここで、有限ドーズ判定部62は、欠陥ビーム11が照射される予定の欠陥位置(欠陥画素)を含む近傍の領域Cにゼロではない値(有限値)のドーズ量が定義された位置(画素)が存在するかどうかを判定する。近傍の領域Cとして、欠陥ビームの照射予定画素の位置ずれを補正する補正領域を想定すると好適である。例えば、欠陥ビームの照射予定画素を中心とした半径数画素の範囲内の画素領域を想定すると好適である。或いは、欠陥ビームの照射予定画素を中心とした半径1~2ビームサイズピッチの範囲内の画素領域を想定すると好適である。ここでは近傍の領域Cとして矩形領域が示されているが、これに限るものではない。例えば円形の領域であっても好適である。また、処理領域Aの周囲に隣接する処理領域の欠陥ビームを考慮するためのマージン領域Bを設定する。マージン幅として、例えば、数画素から1~2ビームピッチに設定すると好適である。
 有限ドーズ判定部62は、欠陥ビーム11が処理領域A内にあり、かつ近傍の領域C内に設計上のゼロではない値(有限値)のドーズ量が定義される画素があるかどうかを判定する。この場合、近傍の領域C内のゼロではない値(有限値)のドーズ量が定義される画素が、マージン領域Bを超えないことが前提となる。
 図14のa部の例では、欠陥ビーム11が処理領域A内にあり、かつ近傍の領域C内にパターン12の一部が配置されるので、近傍の領域C内に設計上のゼロではない値(有限値)のドーズ量が定義される画素があると判定する。近傍の領域C内のゼロではない値(有限値)のドーズ量が定義される画素が、マージン領域Bを超えないので前提も問題ない。
 よって、有限ドーズ判定部62は、ゼロではない値(有限値)のドーズ量が定義される画素があると判定する。各画素のドーズ量は、記憶装置144に格納されたドーズマップに定義される値を用いる。ここで、ドーズマップとして、パス毎の位置ずれ補正後のドーズマップを用いると好適である。
 欠陥ドーズデータ作成工程(S132)として、欠陥ドーズデータ作成部64(欠陥位置ドーズデータ作成部)は、近傍の領域Cにゼロではない値(有限値)のドーズ量が定義される場合に、欠陥位置に欠陥用ドーズ量が定義された欠陥用ドーズデータを作成する。図14のa部の例では、欠陥ビーム11が照射される位置に欠陥用ドーズデータを作成する。欠陥用ドーズ量として、例えば、各描画パスでの最大ドーズ量を設定する。各描画パスでの最大ドーズ量は、ドーズマップ(パス毎の位置ずれ補正後のドーズマップ)に定義された各画素のドーズ量の最大ドーズ量を用いれば良い。
 照射時間演算工程(S142)として、照射時間演算部66は、各画素のドーズ量に対応する照射時間tを演算する。照射時間tは、ドーズ量Dを電流密度Jで割ることで演算できる。各画素36(制御グリッド27)の照射時間tは、マルチビーム20の1ショットで照射可能な最大照射時間Ttr内の値として演算される。各画素36(制御グリッド27)の照射時間tは、最大照射時間Ttrを例えば1023階調(10ビット)とする0~1023階調の階調値データに変換する。階調化された照射時間データは記憶装置142に格納される。
 データ加工工程(S144)として、データ加工部67は、描画パス毎に、画素毎の照射時間データを主偏向領域順、かつショット順に並び替える。主偏向領域となる矩形領域13は、トラッキング偏向によるトラッキング制御ごとに設定される。図14のa部の例を主偏向領域順に並べる場合の一部を説明する。図14のb部には、例えば、1回目のトラッキング制御の主偏向領域となる矩形領域13aが示されている。矩形領域13aでは、例えば、各サブ照射領域29の右から1番目の画素列が描画対象となる。図14のb部の例では、欠陥ビーム11がかかる対象画素となる場合を示している。欠陥ビーム11の位置に欠陥用ドーズデータが定義されていれば、図14のb部に示すように欠陥用パターン17が定義された状態と同じ状態となる。図14のc部には、図13のc部と同様、例えば、2回目のトラッキング制御の主偏向領域となる矩形領域13bが示されている。矩形領域13bでは、例えば、各サブ照射領域29の右から2番目の画素列が描画対象となる。図14のc部の例では、図13のc部と同様、パターン12の一部である部分パターン9aがかかる対象画素となる場合を示している。図14のd部には、図13のd部と同様、例えば、3回目のトラッキング制御の主偏向領域となる矩形領域13cが示されている。矩形領域13cでは、例えば、各サブ照射領域29の右から3番目の画素列が描画対象となる。図14のd部の例では、図13のd部と同様、パターン12の他の一部である部分パターン9bがかかる対象画素となる場合を示している。
 
これらの主偏向領域のうち、矩形領域13aでは、図13のb部に示すようにパターンが配置されない状態から、図14のb部に示すように欠陥用パターン17が配置された状態に変更されたことになる。
 以上のように、主偏向領域毎にショット用のデータが分かれることになる。
 主偏向データNULL判定工程(S146)として、NULL判定部68(パターン有無判定部)は、マルチビーム20の照射領域34が設定される試料101面上の矩形領域13毎に、当該矩形領域13での照射予定の各位置のドーズデータを用いて、当該矩形領域13内のパターンの有無を判定する。主偏向領域となる矩形領域13の照射時間データが主偏向データとなる。主偏向データが無い状態、すなわちパターンが無い状態ではNULL(パターン無し)と判定されることになる。図14のb部から図14のd部では、いずれもnon-NULL(パターン有)と判定されることになる。特に、欠陥ビーム11が照射される矩形領域13aでは、設計上のパターンが無い場合でも、欠陥用ドーズデータが定義されるので描画処理はスキップされないことになる。
 描画工程(S150)として、描画機構150は、パターン無と判定された矩形領域13の描画処理をスキップして次のパターン有の矩形領域13へと描画処理を行う矩形領域13を移動させると共に、多重描画の複数の描画パスのいずれかの描画パスにおける欠陥ビーム11に起因する過剰ドーズを他の描画パスで補正しながら、マルチビーム20を用いて、試料101にパターンを描画する。図14の例では、例えば、1回目の描画パスにおいて、欠陥ビーム11が2回目の描画パスで照射されることを前提に欠陥補正を行った場合でも、2回目の描画パスにおいて、スキップされずに欠陥ビーム11が照射される。よって、1回目の描画パスでの欠陥補正を有効に機能させることができる。同様に、例えば、2回目の描画パスにおいて、欠陥ビーム11が1回目の描画パスで照射されることを前提に欠陥補正を行った場合でも、1回目の描画パスにおいて、スキップされずに欠陥ビーム11が照射される。よって、2回目の描画パスでの欠陥補正を有効に機能させることができる。
 以上のように、実施の形態1によれば、マルチビーム描画において、欠陥ビーム11による過剰ドーズの補正を多重描画の描画パス間を跨いで行う場合に不要な欠陥補正を回避できる。
[実施の形態2]
 実施の形態1では、欠陥ビームの照射位置に欠陥用ドーズデータを作成することにより、主偏向データNULL判定工程(S146)にて、パターンが無い矩形領域13においてもパターン有と判定させる場合を説明した。実施の形態2では、その他の構成について説明する。実施の形態2における描画装置の構成は図1と同様である。実施の形態2における描画方法の要部工程を示しフローチャート図は、図8と同様である。以下、特に説明の無い点は実施の形態1と同様である。
 実施の形態2における主偏向データNULL判定工程(S146)では、NULL判定部68(パターン有無判定部)は、パターン有無にかかわらず、各矩形領域13においてnon-NULL(パターン有)と判定する。その他の点は実施の形態1と同様である。
 実施の形態2では、欠陥近傍有限ドーズ判定工程(S130)と、欠陥ドーズデータ作成工程(S132)と、を省略しても構わない。かかる場合、有限ドーズ判定部62、及び欠陥ドーズデータ作成部64を省略しても構わない。
 これにより、スキップされる矩形領域13は無くなるものの、欠陥ビーム11が照射されない状態を回避できる。よって、すべての欠陥補正を有効に機能させることができる。
[実施の形態3]
 図15は、実施の形態3における描画方法の要部工程を示すフローチャート図である。図15において、主偏向データNULL判定工程(S146)での判定結果が記憶装置に格納される点、及び主偏向データNULL判定工程(S146)での判定結果がフィードバックされる点、以外は、図8と同様である。
 また、実施の形態3における描画装置の構成は図1と同様である。但し、実施の形態3では、有限ドーズ判定部62、及び欠陥ドーズデータ作成部64を省略しても構わない。以下、特に説明の無い点は実施の形態1と同様である。
 実施の形態3では、主偏向データNULL判定工程(S146)での判定結果が記憶装置144に格納される。
 よって、欠陥ビーム補正工程(S122)において、欠陥補正部60は、多重描画の複数の描画パスの2回目以降の描画パスでは、先行するパスでの矩形領域毎の主偏向データNULL判定工程(S146)でのパターンの有無の判定結果に基づいて、当該パスで、欠陥ビーム11に起因する過剰ドーズを補正するかどうかを決定する。例えば、1回目の描画パスで欠陥ビームが照射されたかどうかは、主偏向データNULL判定工程(S146)でのパターンの有無の判定結果でわかる。よって、例えば、2回目の描画パスでは、かかる判定結果に基づいて、1回目の描画パスで欠陥ビームが照射された場合には欠陥補正を行い、欠陥ビームが照射されていない場合には欠陥補正を行わない。これにより、不要な欠陥補正を回避できる。
[実施の形態4]
 図16は、実施の形態4における描画方法の要部工程を示すフローチャート図である。図16において、ビーム位置ずれ量測定工程(S102)から主偏向データNULL判定工程(S146)までのすべての描画パスでの各工程を、1回目の描画パスの描画処理を開始する前の前処理として行う点以外は、図15と同様である。よって、主偏向データNULL判定工程(S146)での判定結果が記憶装置144に格納される点、及び主偏向データNULL判定工程(S146)での判定結果がフィードバックされる点は、実施の形態3と同様である。
 また、実施の形態4における描画装置の構成は図1と同様である。但し、実施の形態4では、有限ドーズ判定部62、及び欠陥ドーズデータ作成部64を省略しても構わない。以下、特に説明の無い点は実施の形態1と同様である。
 実施の形態4では、1回目の描画パスの描画処理を開始する前の前処理として、ビーム位置ずれ量測定工程(S102)から主偏向データNULL判定工程(S146)までのすべての描画パスでの各工程を実施する。よって、矩形領域13毎のパターンの有無の判定は、描画処理を開始する前の前処理として実施される。
 これにより、欠陥ビーム補正工程(S122)において、欠陥補正部60は、描画パス毎に、他の描画パスで欠陥ビームが照射されたか否かが、主偏向データNULL判定工程(S146)でのパターンの有無の判定結果でわかる。よって、欠陥補正部60は、主偏向データNULL判定工程(S146)でのパターンの有無の判定結果を用いて、当該パスで、欠陥ビーム11に起因する過剰ドーズを補正するかどうかを決定する。実施の形態4では、1回目の描画パスの描画処理を開始する前に全描画パスでの主偏向データNULL判定工程(S146)でのパターンの有無の判定結果が揃う。よって、実施の形態4では、さらに、後に行う描画パスで欠陥ビームが照射されるか否かも判断できる。そのため、例えば、1回目の描画パスにおいて、2回目の描画パスで照射される予定の欠陥ビームの補正を行うかどうかを決定できる。
[実施の形態5]
 図17は、実施の形態5における描画装置の構成を示す概念図である。図17において、制御計算機110内に、さらに、判定部61が追加された点以外は図1と同様である。ラスタライズ部50、ドーズデータ作成部52、ビーム位置ずれマップ作成部54、位置ずれ補正部56、検出部57、特定部58、欠陥補正部60、判定部61、有限ドーズ判定部62、欠陥ドーズデータ作成部64、照射時間演算部66、データ加工部67、NULL判定部68、及び描画制御部74といった各「~部」は、処理回路を有する。かかる処理回路は、例えば、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置を含む。各「~部」は、共通する処理回路(同じ処理回路)を用いても良いし、或いは異なる処理回路(別々の処理回路)を用いても良い。ラスタライズ部50、ドーズデータ作成部52、ビーム位置ずれマップ作成部54、位置ずれ補正部56、検出部57、特定部58、欠陥補正部60、判定部61、有限ドーズ判定部62、欠陥ドーズデータ作成部64、照射時間演算部66、データ加工部67、NULL判定部68、及び描画制御部74に入出力される情報および演算中の情報はメモリ112にその都度格納される。
 図18は、実施の形態5における描画方法の要部工程を示すフローチャート図である。図17において、欠陥近傍有限ドーズ判定工程(S130)の前に判定工程(S128)を追加した点以外は、図8と同様である。
 また、以下、特に説明する点以外の内容は実施の形態1と同様である。
 ビーム位置ずれ量測定工程(S102)と、欠陥ビーム検出工程(S104)と、ドーズ量演算工程(S110)と、パス毎の位置ずれ補正工程(S112)と、パス毎の欠陥ビーム位置特定工程(S120)と、欠陥ビーム補正工程(S122)と、の各工程の内容は実施の形態1と同様である。
 判定工程(S128)として、判定部61は、ゼロのドーズ量のみが定義される領域の大きさが閾値以下かどうかを判定する。具体的には、判定部61は、パス毎の位置ずれ補正後ドーズデータを参照して、ゼロのドーズ量のみが定義される領域の大きさが、矩形領域の1/n或いはn倍以下かどうかを判定する。nは自然数である。ゼロのドーズ量のみが定義される領域の大きさが閾値以下でなければ欠陥近傍有限ドーズ判定工程(S130)に進む。ゼロのドーズ量のみが定義される領域の大きさが閾値以下であれば、欠陥近傍有限ドーズ判定工程(S130)と欠陥ドーズデータ作成工程(S132)とをスキップして、照射時間演算工程(S142)に進む。言い換えれば、ある程度の大きさのパターンの無の領域についてだけ欠陥近傍有限ドーズ判定工程(S130)と欠陥ドーズデータ作成工程(S132)とを行う。
 欠陥近傍有限ドーズ判定工程(S130)以降の各工程の内容は実施の形態1と同様である。なお、欠陥近傍有限ドーズ判定工程(S130)と欠陥ドーズデータ作成工程(S132)とをスキップする場合には、主偏向データNULL判定工程(S146)において、常にnon-NULL(パターン有)と判定するように構成すると好適である。
 以上のように、パターンの無の領域のうち、小さい領域についてはスキップすることで、描画処理時間の短縮に繋げることができる。
 以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。上述した例では、1ショット分の最大照射時間Ttr内で、マルチビーム20の各ビームが照射時間をビーム毎に個別に制御する場合について説明した。しかし、これに限るものではない。例えば、1ショット分の最大照射時間Ttrを照射時間の異なる複数のサブショットに分割する。そして、各ビームに対して、それぞれ複数のサブショットの中から1ショット分の照射時間になるようにサブショットの組合せを選択する。そして、選択されたサブショットの組合せが同じ画素に対して連続して同じビームで照射されることにより、ビーム毎に1ショット分の照射時間を制御するようにしても好適である。
 また、上述した例では、各制御回路41の制御用に10ビットの制御信号が入力される場合を示したが、ビット数は、適宜設定すればよい。例えば、2ビット、或いは3ビット~9ビットの制御信号を用いてもよい。なお、11ビット以上の制御信号を用いてもよい。
 また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。例えば、描画装置100を制御する制御部構成については、記載を省略したが、必要とされる制御部構成を適宜選択して用いることは言うまでもない。
 その他、本発明の要素を具備し、当業者が適宜設計変更しうる全てのマルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法は、本発明の範囲に包含される。
 マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法に係り、例えば、マルチビーム描画によるパターンの寸法ずれを低減する手法に利用できる。
9 部分パターン
11 欠陥ビーム
12 パターン
13 矩形領域
20 マルチビーム
22 穴
24 制御電極
25 通過孔
26 対向電極
27 制御グリッド
28 画素
29 サブ照射領域
30 描画領域
32 ストライプ領域
31 基板
33 支持台
34 照射領域
35 矩形単位領域
36 画素
39 照射位置
41 制御回路
50 ラスタライズ部
52 ドーズデータ作成部
54 ビーム位置ずれマップ作成部
56 位置ずれ補正部
57 検出部
58 特定部
60 欠陥補正部
61 判定部
62 有限ドーズ判定部
64 欠陥ドーズデータ作成部
66 照射時間演算部
67 データ加工部
68 NULL判定部
74 描画制御部
100 描画装置
101 試料
102 電子鏡筒
103 描画室
105 XYステージ
106 ファラディーカップ
110 制御計算機
112 メモリ
130 偏向制御回路
132,134,136 DACアンプユニット
139 ステージ位置検出器
140,142,144 記憶装置
150 描画機構
160 制御系回路
200 電子ビーム
201 電子銃
202 照明レンズ
203 成形アパーチャアレイ基板
204 ブランキングアパーチャアレイ機構
205 縮小レンズ
206 制限アパーチャ基板
207 対物レンズ
208,209 偏向器
210 ミラー
212 一括ブランキング偏向器
330 メンブレン領域
332 外周領域

 

Claims (10)

  1.  マルチ荷電粒子ビームを形成するビーム形成機構と、
     試料面上の描画領域が分割された複数の処理領域の処理領域毎に、当該処理領域内の各位置の個別のドーズ量が定義されたドーズデータを作成するドーズデータ作成回路と、
     前記処理領域毎に、前記マルチ荷電粒子ビームのうちドーズ量が過剰になる欠陥ビームが照射される予定の欠陥位置を含む近傍の領域にゼロではない値のドーズ量が定義された位置が存在するかどうかを判定するドーズ判定回路と、
     前記近傍の領域にゼロではない値のドーズ量が定義される場合に、前記欠陥位置に欠陥用ドーズ量が定義された欠陥用ドーズデータを作成する欠陥位置ドーズデータ作成回路と、
     前記マルチ荷電粒子ビームの照射領域が設定される前記試料面上の単位領域毎に、当該単位領域での照射予定の各位置のドーズデータを用いて、当該単位領域内のパターンの有無を判定するパターン有無判定回路と、
     前記マルチ荷電粒子ビームを用いて、前記試料にパターンを描画する際に、前記パターン有無判定部によりパターン無と判定された単位領域をスキップして次のパターン有と判定された単位領域へと、描画処理を行う単位領域を移動させ、多重描画の複数の描画パスのいずれかの描画パスにおける前記欠陥ビームに起因する過剰ドーズを他の描画パスで減らすように補正する描画機構と、
     を備えたマルチ荷電粒子ビーム描画装置。
  2.  前記試料を載置する移動可能なステージと、
     前記マルチ荷電粒子ビームの照射領域が前記ステージの移動に追従するように前記マルチ荷電粒子ビームのトラッキング偏向を行うトラッキング偏向器と、
     をさらに備え、
     前記単位領域は、前記トラッキング偏向によるトラッキング制御ごとに設定される請求項1記載のマルチ荷電粒子ビーム描画装置。
  3.  前記パターン有無判定部は、各単位領域においてパターン有と判定する請求項1記載のマルチ荷電粒子ビーム描画装置。
  4.  前記単位領域毎のパターンの有無の判定結果を格納する記憶装置をさらに備え、
     前記多重描画の複数の描画パスの2回目以降の描画パスでは、先行するパスでの単位領域毎のパターンの有無の判定結果に基づいて、当該パスで、前記欠陥ビームに起因する過剰ドーズの補正の要否を決定する請求項1記載のマルチ荷電粒子ビーム描画装置。
  5.  前記単位領域毎のパターンの有無の判定は、描画処理を開始する前の前処理として実施される請求項1記載のマルチ荷電粒子ビーム描画装置。
  6.  描画パス毎に、前記マルチ荷電粒子ビームの照射領域が設定される前記試料面上の単位領域内の各位置について、常時ON欠陥ビームを含む過剰ドーズ欠陥ビームが照射する位置を特定する特定回路をさらに備えた請求項1記載のマルチ荷電粒子ビーム描画装置。
  7.  描画パス毎に、他の描画パスにて過剰ドーズ欠陥ビームが照射されることにより過剰となった過剰ドーズを周辺のビームへと分配することで補正する欠陥補正回路をさらに備えた請求項1記載のマルチ荷電粒子ビーム描画装置。
  8.  描画パス毎に、ゼロのドーズ量のみが定義される領域の大きさが、矩形領域の1/n或いはn倍以下かどうかを判定する判定部をさらに備え、
     前記ドーズ判定回路は、前記ゼロのドーズ量のみが定義される前記領域の大きさが閾値以下でない場合に、前記欠陥ビームが照射される予定の前記欠陥位置を含む近傍の領域にゼロではない値の前記ドーズ量が定義された前記位置が存在するかどうかを判定する請求項1記載のマルチ荷電粒子ビーム描画装置。
  9.  マルチ荷電粒子ビームを形成し、
     試料面上の描画領域が分割された複数の処理領域の処理領域毎に、当該処理領域内の各位置の個別のドーズ量が定義されたドーズデータを作成し、
     前記処理領域毎に、前記マルチ荷電粒子ビームのうちドーズ量が過剰になる欠陥ビームが照射される予定の欠陥位置を含む近傍の領域にゼロではない値のドーズ量が定義された位置が存在するかどうかを判定し、
     前記近傍の領域にゼロではない値のドーズ量が定義される場合に、前記欠陥位置に欠陥用ドーズ量が定義された欠陥用ドーズデータを作成し、
     前記マルチ荷電粒子ビームの照射領域が設定される前記試料面上の単位領域毎に、当該単位領域での照射予定の各位置のドーズデータを用いて、当該単位領域内のパターンの有無を判定し、
     前記マルチ荷電粒子ビームを用いて、前記試料にパターンを描画し、前記描画を行う場合に、パターン無と判定された単位領域をスキップして次のパターン有と判定された単位領域へと描画処理を行う単位領域を移動させ、多重描画の複数の描画パスのいずれかの描画パスにおける前記欠陥ビームに起因する過剰ドーズを他の描画パスで減らすように補正する、
     マルチ荷電粒子ビーム描画方法。
  10.  前記マルチ荷電粒子ビームの照射領域が前記試料を載置する移動可能なステージの移動に追従するように前記マルチ荷電粒子ビームのトラッキング偏向を行い、
     前記単位領域は、前記トラッキング偏向によるトラッキング制御ごとに設定される請求項9記載のマルチ荷電粒子ビーム描画方法。
PCT/JP2023/005289 2022-03-08 2023-02-15 マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法 WO2023171277A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-035611 2022-03-08
JP2022035611A JP2023130984A (ja) 2022-03-08 2022-03-08 マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法

Publications (1)

Publication Number Publication Date
WO2023171277A1 true WO2023171277A1 (ja) 2023-09-14

Family

ID=87936753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005289 WO2023171277A1 (ja) 2022-03-08 2023-02-15 マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法

Country Status (3)

Country Link
JP (1) JP2023130984A (ja)
TW (1) TW202401486A (ja)
WO (1) WO2023171277A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115946A (ja) * 2016-02-18 2016-06-23 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画方法
JP2018137358A (ja) * 2017-02-22 2018-08-30 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画方法およびマルチ荷電粒子ビーム描画装置
JP2019033117A (ja) * 2017-08-04 2019-02-28 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP2019212869A (ja) * 2018-06-08 2019-12-12 株式会社ニューフレアテクノロジー データ処理方法、データ処理装置、及びマルチ荷電粒子ビーム描画装置
JP2020021919A (ja) * 2018-08-03 2020-02-06 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP2020119682A (ja) * 2019-01-22 2020-08-06 株式会社ニューフレアテクノロジー マルチ電子ビーム照射装置、マルチ電子ビーム検査装置、及びマルチ電子ビーム照射方法
JP2021197425A (ja) * 2020-06-12 2021-12-27 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115946A (ja) * 2016-02-18 2016-06-23 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画方法
JP2018137358A (ja) * 2017-02-22 2018-08-30 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画方法およびマルチ荷電粒子ビーム描画装置
JP2019033117A (ja) * 2017-08-04 2019-02-28 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP2019212869A (ja) * 2018-06-08 2019-12-12 株式会社ニューフレアテクノロジー データ処理方法、データ処理装置、及びマルチ荷電粒子ビーム描画装置
JP2020021919A (ja) * 2018-08-03 2020-02-06 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP2020119682A (ja) * 2019-01-22 2020-08-06 株式会社ニューフレアテクノロジー マルチ電子ビーム照射装置、マルチ電子ビーム検査装置、及びマルチ電子ビーム照射方法
JP2021197425A (ja) * 2020-06-12 2021-12-27 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法

Also Published As

Publication number Publication date
JP2023130984A (ja) 2023-09-21
TW202401486A (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
KR102093808B1 (ko) 멀티 하전 입자 빔 묘화 장치 및 멀티 하전 입자 빔 묘화 방법
US9601315B2 (en) Multiple charged particle beam lithography apparatus and multiple charged particle beam pattern writing method
JP7026554B2 (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
KR102303435B1 (ko) 멀티 하전 입자 빔 묘화 장치 및 멀티 하전 입자 빔 묘화 방법
TWI712067B (zh) 資料處理方法、資料處理裝置以及多帶電粒子束描繪裝置
US10607812B2 (en) Multiple charged particle beam writing apparatus, and multiple charged particle beam writing method
JP7002837B2 (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
WO2021250965A1 (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP7482742B2 (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
WO2023171277A1 (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
WO2023234178A1 (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP7446940B2 (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
WO2023058290A1 (ja) マルチ荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766457

Country of ref document: EP

Kind code of ref document: A1