WO2023170832A1 - 予測システム、予測方法および記録媒体 - Google Patents
予測システム、予測方法および記録媒体 Download PDFInfo
- Publication number
- WO2023170832A1 WO2023170832A1 PCT/JP2022/010336 JP2022010336W WO2023170832A1 WO 2023170832 A1 WO2023170832 A1 WO 2023170832A1 JP 2022010336 W JP2022010336 W JP 2022010336W WO 2023170832 A1 WO2023170832 A1 WO 2023170832A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- race
- prediction
- information
- finish
- horse
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 19
- 241000283086 Equidae Species 0.000 description 20
- 238000011161 development Methods 0.000 description 11
- 230000018109 developmental process Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 238000012549 training Methods 0.000 description 8
- 238000004590 computer program Methods 0.000 description 6
- 241000777300 Congiopodidae Species 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000002860 competitive effect Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000008241 heterogeneous mixture Substances 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000005021 gait Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 208000001613 Gambling Diseases 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/34—Betting or bookmaking, e.g. Internet betting
Definitions
- the present invention relates to a prediction system and the like.
- Patent Document 1 predicts race results using a learning model that is generated based on race results and data regarding competing objects and the like in past races.
- Patent Document 2 aggregates the reasons for predictions of a plurality of people in predicting the race result of a publicly managed competition, and displays the results on a display device.
- Patent No. 6857776 Japanese Patent Application Publication No. 2016-157381
- Patent Document 1 and Patent Document 2 may have difficulty in appropriately presenting the basis of prediction regarding the prediction of race finish.
- the prediction system of the present invention includes an acquisition means for acquiring information about a race that is a target for predicting the finish order of a race in a publicly managed competition, and a prediction system that predicts the finish order of a race from the information about the race.
- the present invention includes a prediction unit that uses a model to predict the finish order of a race based on the acquired information regarding the race, and an output unit that outputs the prediction result and the reason for the prediction.
- the prediction method of the present invention acquires information about a race that is a target for predicting the finish order of a race in a publicly managed competition, and uses a prediction model that predicts the finish order of a race from the information about the race. , predicts the race finish, and outputs the prediction result and the reason for the prediction.
- the recording medium of the present invention uses a process of acquiring information about a race that is a target for predicting the finish order of a race in a publicly managed competition, and a prediction model that predicts the finish order of a race from the information about the race.
- a prediction program is non-temporarily recorded that causes a computer to execute a process of predicting the finish order of a race based on information, and a process of outputting the prediction result and the reason for the prediction.
- FIG. 1 is a diagram showing an example of a configuration of a first embodiment of the present invention.
- FIG. 1 is a diagram showing an example of the configuration of a prediction system according to a first embodiment of the present invention. It is a figure showing an example of a display screen in a 1st embodiment of the present invention. It is a figure showing an example of a display screen in a 1st embodiment of the present invention. It is a figure showing an example of a display screen in a 1st embodiment of the present invention. It is a figure showing an example of a display screen in a 1st embodiment of the present invention. It is a figure showing an example of a display screen in a 1st embodiment of the present invention. It is a figure showing an example of a display screen in a 1st embodiment of the present invention.
- FIG. 1st embodiment of the present invention It is a figure showing an example of a display screen in a 1st embodiment of the present invention. It is a figure showing an example of an operation flow of a prediction system of a 1st embodiment of the present invention. It is a figure showing an example of an operation flow of a prediction system of a 1st embodiment of the present invention. It is a figure showing an example of composition of a prediction system of a 2nd embodiment of the present invention. A diagram showing an example of an operation flow of a prediction system according to a second embodiment of the present invention. It is a figure showing the example of composition of other embodiments of the present invention.
- FIG. 1 is a diagram showing an example of a race result prediction system.
- the race result prediction system includes a prediction system 10, a user terminal device 20, and an information management server 30.
- the prediction system 10 is connected to a user terminal device 20 via a network.
- the prediction system 10 is connected to an information management server 30 via a network.
- the prediction system 10 is a system that predicts race results in publicly managed competitions.
- An example of a publicly managed game is horse racing.
- Publicly managed competitions may be bicycle races, boat races, or auto races. Examples of publicly managed competitions are not limited to those mentioned above, and the type of competition does not matter as long as it is a competition held by a public institution for gambling purposes.
- the prediction system 10 predicts the finish order of a race using, for example, a prediction model that predicts the finish order of the race from information regarding the race.
- the prediction system 10 then outputs the prediction result and the reason for the prediction.
- the reason for the prediction is, for example, information on which the prediction model is based when predicting the race finish.
- the reason for the prediction is, for example, among the information regarding the race, when the prediction model predicts the race finish, an item has a larger influence on the predicted result of the race finish than other items.
- the reason for the prediction may be an item of information regarding the race whose degree of influence on the prediction result of the race finish when the prediction model predicts the race finish is greater than or equal to a preset standard.
- the predictive model is, for example, a trained model generated using a machine learning algorithm.
- the prediction system 10 for example, learns the relationship between race-related information and race finishing order in races held in the past, and generates a prediction model that predicts the race finishing order from the race-related information.
- the prediction model may be a learning model generated outside the prediction system 10. The prediction model will be explained later.
- the user terminal device 20 is, for example, a terminal device owned by a person who uses the prediction results of the prediction system 10.
- a person who uses the prediction result is, for example, a person who purchases a voting ticket for a race.
- the person who uses the results of the prediction may be the person in charge of devising the organization of the race.
- the person who uses the prediction results may be a reporter or a commentator.
- the person who uses the prediction result is not limited to the above example.
- the information management server 30 is, for example, a server that holds information regarding races in publicly managed competitions.
- the information regarding the race is, for example, the conditions of the race and the attributes of the athletes participating in the race.
- the competition body is the main body that participates in the race.
- the attributes of the competition objects are information about each competition object participating in the race.
- the publicly managed competition is horse racing
- the competition object is a horse.
- the attributes of the sport also include information regarding the jockey.
- the publicly managed competition is a bicycle race, a boat race, or an auto race
- the competing objects are athletes.
- the attributes of the competition object may include information about a bicycle, a boat, or a motorcycle. Information regarding races is not limited to the above example.
- the prediction system 10 acquires information regarding the race from the information management server 30, for example. Then, the prediction system 10 receives the information regarding the race acquired from the information management server 30 as input, and predicts the race result using the prediction model. After predicting the race result, the prediction system 10 outputs the prediction result and the reason for the prediction to the user terminal device 20.
- the prediction system 10 may acquire information regarding the race from a plurality of information management servers 30. Further, the prediction system 10 may acquire information regarding the race from the user terminal device 20.
- the prediction system 10 may output the prediction result and the reason for the prediction to the plurality of user terminal devices 20.
- the prediction system 10 may output the prediction result and the reason for the prediction to the user terminal devices 20 used by a plurality of users.
- the number of user terminal devices 20 and information management servers 30 may be set as appropriate.
- FIG. 2 is a diagram showing an example of the configuration of the prediction system 10.
- the prediction system 10 includes an acquisition section 11 , a prediction section 12 , an output section 13 , a model generation section 14 , and a storage section 15 .
- the acquisition unit 11 acquires information regarding races in publicly managed competitions.
- the information regarding the race is, for example, information that may be related to the order of finish in the race.
- the acquisition unit 11 acquires, for example, race conditions and attributes of competition objects as information regarding the race.
- the race conditions include, for example, information regarding the stadium. Further, the race conditions may include race setting conditions and conditions that the runners must satisfy.
- the race conditions include, for example, at least one of distance, race track type, race horse conditions, weight, race rating, race track, weather, race track condition, number of race horses, and running direction.
- the type of horse track is, for example, grass, dirt, or obstacles.
- the conditions for a horse to run are defined by, for example, the age and sex of the horse.
- the condition of the horse track is, for example, information indicating the amount of water contained in the horse track.
- the running direction is, for example, information indicating whether the race is run counterclockwise or clockwise. Race conditions when the publicly managed competition is horse racing are not limited to the above example.
- the attributes of the competition are the attributes of the horses running.
- the attributes of the runners are information about each runner.
- the attributes of the running horses include, for example, lane number, slot number, odds, age, gender, weight, weight change, blood data, muscle mass, training status, health condition, rest history, race participation history, weight load, leg quality, At least one of race record, sire horse, dam horse, owner, stable, trainer, and producer.
- the lane number may be a horse number.
- the training situation is, for example, time and time change for each distance during training.
- the foot quality is set, for example, by classification of a runaway horse, a leading horse, a lead horse, or a chasing horse.
- the attributes of the running horses may include the race records of the sire horse and dam horse.
- race results include, for example, race conditions in past races, attributes of horses running in races, prize money earned, and race developments.
- Lace development includes, for example, positioning and difference in placement. The positioning is, for example, the ranking and time in each section when the entire section of the race is divided into predetermined distances.
- the difference in finish is, for example, the time difference between a horse that is higher in the ranking or a horse that is lower in the ranking.
- the attributes of the running horses are not limited to the above example.
- the acquisition unit 11 may acquire information in the paddock of the runner as an attribute of the runner.
- the information on the paddock of the runners includes, for example, one or more of the gait of the runners, the state of the horse's body, and the presence or absence of excitement.
- the gait is, for example, the stride length and walking speed of the running horse.
- the horse's body includes, for example, the coat, muscle condition, and presence or absence of sweat of the runner.
- the presence or absence of excitement indicates, for example, whether the racehorse is calm or excited.
- the information in the paddock of the running horses is not limited to the above example.
- the acquisition unit 11 acquires information on the paddock of the runner from a server that detects the condition of the runner from an image of the paddock through image recognition processing, for example.
- the acquisition unit 11 may acquire evaluation results by a person who evaluates the condition of horses running in the paddock.
- the acquisition unit 11 may acquire, from the user terminal device 20, information on the paddock of the running horses, which is determined by the person who buys the voting ticket.
- the information on the paddock of a running horse is input into the user terminal device 20 by, for example, a person who buys a voting ticket.
- the race conditions include, for example, at least one of the race track, race distance, and weather.
- the attributes of the competition body include at least one of the athlete's height, weight, age, leg quality, odds, and match record.
- examples of race conditions and attributes of the race bodies are not limited to the above.
- the race conditions include, for example, at least one of the race track, race distance, and weather.
- the attributes of the competition body include at least one of the athlete's height, weight, age, rank, odds, and match record.
- examples of race conditions and attributes of competition objects are not limited to the above.
- the race conditions include, for example, at least one of the race track, the presence or absence of a handicap, and the weather.
- the attributes of the athlete are at least one of the athlete's height, weight, age, affiliation, class, odds, and match record.
- the attributes of the competition object may include start display information. Examples of race conditions and attributes of race objects when the publicly managed competition is an auto race are not limited to the above.
- the acquisition unit 11 may acquire the selection results of the prediction models from the user terminal device 20.
- the prediction model selection result may be acquired from the user terminal device 20 by, for example, a prediction model selection input into the user terminal device 20 by an operation of a person who uses the prediction result. Further, the acquisition unit 11 may acquire from the user terminal device 20 a selection of display items that is input to the user terminal device 20 through an operation by a person who uses the prediction result.
- the acquisition unit 11 may acquire race conditions, attributes of the competitive body, and race results as training data for generating the prediction model. Moreover, when the prediction model to be generated uses the past results of the athlete as input data, the acquisition unit 11 may acquire the past results of the athlete.
- the acquisition unit 11 stores, for example, the acquired race conditions, attributes of the competition objects, and race results in the storage unit 15.
- the prediction unit 12 predicts the finish order of the race from the acquired information about the race using a prediction model that predicts the finish order of the race from the information about the race.
- the prediction unit 12 also extracts the reason why the prediction model predicted the race finish as the reason for the prediction. For example, the prediction unit 12 acquires the parameters used when the prediction model predicts the finish order of a race, and extracts the reason for the prediction from the parameters that make a large contribution to predicting the finish order.
- the prediction unit 12 may predict the race finish using a prediction model that corresponds to the timing of predicting the race finish. For example, the prediction unit 12 may predict the race finish using different prediction models until the day before the race and on the day of the race.
- the prediction unit 12 may make predictions using different prediction models up to the paddock start time and after the paddock start time.
- the prediction unit 12 predicts the race finish using, for example, a prediction model that does not input paddock information of runners until the paddock start time. Then, after the paddock start time, the prediction unit 12 predicts the race finish using a prediction model that receives information about the paddock of the horses entering the race. Further, whether or not to use the information in the paddock for prediction may be selected by the person who uses the prediction result. In this case, the prediction unit 12 predicts the finish order of the race using the prediction model according to the selection.
- the prediction unit 12 may predict the race development using a prediction model that predicts the race development. For example, the prediction unit 12 predicts the ranking for each section when the race is divided into predetermined distances. The prediction unit 12 then uses the ranking for each section and the finishing order at the goal as the prediction result.
- the prediction unit 12 may predict the race finish using a prediction model according to the attributes of the person using the prediction results.
- the attribute of the person who uses the prediction result is, for example, a beginner, an intermediate, or an expert.
- the attributes of the person who uses the prediction results may be voting ticket purchase history, budget, or voting ticket refund history.
- the prediction unit 12 may predict the race finish using a prediction model that is generated for each item that is important to a person using the prediction results. For example, when making a prediction for a person who places importance on the development of a race, the prediction unit 12 receives information regarding the development of the race as input and predicts the finish order of the race.
- the prediction unit 12 predicts the finish order of the race using, for example, a prediction model that includes as input the leg quality of the horses running and the rankings for each distance in past races. Further, the prediction unit 12 may predict the race finish for people who place importance on the pedigree of the horses running, using a prediction model that includes the sire horse's race record and the mother horse's race record as input.
- the output unit 13 outputs the result of predicting the race finish and the reason for the prediction.
- the output unit 13 outputs, for example, the result of predicting the race finish and the reason for the prediction to the user terminal device 20.
- the output unit 13 may output the prediction result and the reason for the prediction to a display device (not shown) connected to the prediction system 10. Further, the output unit 13 may output the result of predicting the race finish and the reason for the prediction to a server that distributes the result of the race prediction.
- the output unit 13 outputs the reason for prediction for each competition object, for example.
- the output unit 13 may output the reason for the prediction for the entire finish prediction for one race.
- the output unit 13 is, for example. Outputs items that have a high degree of contribution to the prediction result for many of the competitive bodies participating in the race. Further, the output unit 13 may output items having a high degree of contribution to the prediction result by weighting them according to the order of finish in the race.
- the output unit 13 may output information on items that a predetermined person considers important in predicting the finish order of the race, which is added to the prediction result as reference information, among information related to the race, along with the prediction result.
- the predetermined person is, for example, a person who uses the prediction result, a commentator, or an expert.
- the predetermined person may be someone other than the above.
- the items that a predetermined person emphasizes in predicting the finish order of a race are, for example, items that the predetermined person considers to have a high frequency of influencing the outcome of the race.
- the predetermined person places importance on information related to pedigree and pedigree. For example, in predicting the finish order of a race, the output unit 13 adds information on items that are important to a person who uses the prediction results to the prediction results and outputs the result. Items to be emphasized in predicting race finish may be set by a prediction expert when generating a prediction model. Furthermore, when outputting information on items that a predetermined person considers important in predicting race finish, the output unit 13 may output data that highlights items that correspond to the reason for the prediction.
- the output unit 13 may output, as reference information, items selected by the person who uses the prediction results from among the information regarding the race.
- the output unit 13 may output data that highlights items selected by the person who uses the prediction results among the reference information. Highlighting is performed, for example, by changing at least one of the color, font size, font thickness, and decoration around the font from other items.
- the output unit 13 When the publicly managed competition is horse racing, the output unit 13 outputs, for example, at least one item among body weight, leg quality, sire horse, dam horse, trainer, and race record as reference information. Moreover, the output unit 13 may output highlighted data corresponding to the reason for prediction when there is an item corresponding to the reason for prediction among the items of reference information.
- the output unit 13 may output an item that is a negative factor for the prediction result as the reason for the prediction.
- Negative factors are items that have a large influence on the prediction that the finish will be in the lower order, among the items that have a large influence on the predicted result of the finish.
- a large influence means, for example, that when a certain item is changed, the result of predicting the finish order fluctuates more than other items.
- the publicly managed competition is horse racing
- the race distance is extracted as a negative factor.
- race participation history, health condition, time change during training, or weight change may be extracted as negative factors.
- the output unit 13 may output the reason for the prediction as a text.
- the output unit 13 outputs a sentence indicating the reason for the prediction, for example, based on information regarding a race that has a high degree of influence on prediction of race finish. For example, the relationship between information about races that have a high degree of influence on the prediction of race finish and sentences indicating the reason for the prediction is set in advance.
- the output unit 13 outputs a sentence such as "This horse is recommended because it is good at long distance running" as the reason for the prediction. Good too.
- the output unit 13 may output the result of the race development prediction. For example, the output unit 13 may output a display screen displaying the ranking for each section on a plan view of the racetrack.
- the output unit 13 may output an image of the competition object. Further, the output unit 13 may output images of past races whose race results are similar to the predicted results.
- the output unit 13 may output the result of the prediction and the reason for the prediction superimposed on the image of the competitive object participating in the race. Further, the output unit 13 may output the result of the prediction or the reason for the prediction superimposed on the image of the athlete participating in the race. Further, the output unit 13 may output the result of the prediction and the reason for the prediction superimposed on an image of a past race in which the result of the race is similar to the result of the prediction.
- the output unit 13 may output the contents of that case.
- the output unit 13 outputs, for example, the content of the difference between the information regarding the race in the past race and the information regarding the race in the prediction target race, regarding an item of the information regarding the race whose finishing order changes when the information changes. do.
- the output unit 13 outputs, for example, the difference between the weight of a horse running in a past race and the weight of a horse running in a race to be predicted as an increase/decrease value in horse weight.
- the output unit 13 may output the difference between the training time at the time of a past race and the training time at the time of prediction.
- the output unit 13 may output images of horses running in the paddock. Further, the output unit 13 may output the result of the prediction and the reason for the prediction superimposed on the image of the horse running in the paddock.
- the output unit 13 may output images of past races of horses running in the race.
- the output unit 13 may output the results of the prediction and the reason for the prediction superimposed on past race images of the running horses.
- the output unit 13 may output an image of a father horse, a mother horse, a sibling horse, or a horse with similar attributes instead of an image of a running horse.
- the output unit 13 may output only the reason for the prediction out of the prediction result of the race finish and the reason for the prediction. For example, if a person who uses the prediction results of the prediction system 10 wishes to refer only to the reason for the prediction and does not wish to refer to the result of the prediction of the race finish, the output unit 13 outputs the prediction result of the race finish. Of the result and the reason for the prediction, only the reason for the prediction is output. The setting to output only the reason for the prediction is performed, for example, by an operation by a person who uses the prediction result.
- the output unit 13 may output the above-mentioned information together with the prediction result and the reason for the prediction. Further, the output unit 13 may output the above-mentioned information together with either the prediction result or the reason for the prediction.
- FIG. 3 shows an example of a display screen showing the result of prediction when the race finish is predicted when the publicly managed competition is horse racing.
- the race track name, race number, race distance, and race type are displayed at the top of the screen.
- the finishing order indicates the finishing order of the race in the prediction results.
- the lane indicates the lane number that the horse enters at the start.
- the horse name indicates the name of the participating horse.
- the reason for prediction indicates an item of the reason for prediction that the prediction model outputs together with the prediction result.
- the reason for prediction may be multiple items.
- FIG. 4 shows an example of a display screen that further displays negative factors as reasons for prediction in the example of the display screen of FIG. 3.
- the plus factor indicates a positive factor.
- a positive factor is an item that has a large influence on the prediction of a high finish among the items that have a large influence on the predicted result of the finish.
- negative factors are shown as negative factors. Negative factors are items that have a large influence on the prediction of a low finish among the items that have a large influence on the prediction of the finish order.
- FIG. 5 shows an example of a display screen that further displays reference information in the example of the display screen of FIG. 4.
- information regarding horse B running is shown as reference information in the right frame.
- the horse's age, stable, trainer, pedigree, weight, and race record are displayed as reference information. Items displayed as reference information are not limited to the above.
- reference information about the selected runner is displayed in the reference information column. Good too.
- FIG. 6 shows an example of a display screen that outputs images of running horses in the example of the display screen of FIG. 5.
- images of running horses are displayed on the left side of the lower row.
- the images of the runners may be displayed in the finish prediction column, and when any runner is selected, the image of the selected runner may be displayed in the image display area.
- an image of the parent horse of the running horse may be displayed.
- images of past races or training may be displayed as images of horses running in the race.
- the image of the running horse is acquired from the information management server 30, for example.
- FIG. 7 shows an example of a display screen that outputs images of runners in the paddock in the example of the display screen of FIG. 5.
- images of horses running in the paddock are displayed on the left side of the lower row.
- information indicating the condition of the runners is displayed superimposed on an image of the runners in the paddock.
- information indicating the condition of the racehorse is displayed that the coat is in good condition.
- the image of the runner in the paddock may be such that when any runner is selected in the finish prediction column, the image of the selected runner may be displayed in the display area of the paddock image.
- FIG. 8 shows an example of a display screen that outputs images of horses running in the paddock and reference information.
- images of horses running in the paddock are displayed in the paddock image column.
- the predicted ranking, condition, lane number, horse name, jockey name, superimposition, weight, and weight change amount for the displayed horse are superimposed on the paddock image. has been done.
- the image of the selected runner and reference information may be displayed on the image displaying the entire paddock.
- the model generation unit 14 When generating a prediction model in the prediction system 10, the model generation unit 14 generates a prediction model that predicts the finish order of the race from information regarding the race.
- the model generation unit 14, for example, learns the relationship between race-related information and race finish in races held in the past, and generates a prediction model that predicts race finish from the race-related information.
- the model generation unit 14 generates a predictive model using, for example, a learning algorithm based on factorized asymptotic Bayesian inference.
- the model generation unit 14 uses information about the race as input data and the order of finish in the race as correct answer data, and divides the cases according to decision tree-style rules. . Then, the model generation unit 14 generates a learning model that predicts the race finish using a linear model that combines different explanatory variables in each case.
- the model generation unit 14 generates a learning model by sequentially optimizing data case classification conditions, generating a predictive model by optimizing combinations of explanatory variables, and deleting unnecessary predictive models.
- This method of generating a learning model is also called heterogeneous mixture learning because it makes predictions by combining prediction models based on combinations of different explanatory variables.
- By generating a prediction model using heterogeneous mixture learning it is possible to explain the results of predicting the race finish using conditions that have a strong influence on the prediction results. Improves sex.
- a method of heterogeneous mixture learning is disclosed in, for example, US Patent Application Publication No. 2014/0222741.
- the learning algorithm used for machine learning to generate a predictive model is not limited to the above example.
- the model generation unit 14 may generate, for example, a learning model that predicts the finish order of a race from information regarding the race by deep learning using a neural network.
- the model generation unit 14 for example, varies the data of each item and predicts items that have a large influence on the race finish based on changes in the race finish.
- the model generation unit 14 may generate a prediction model that predicts the race development from information regarding the race.
- the prediction unit 12 When generating a prediction model that predicts the development of a race, the prediction unit 12 generates the prediction model using, for example, information regarding the race including at least one of the rank and time for each section in past races as learning data. .
- the storage unit 15 stores, for example, a prediction model. When a plurality of prediction models are used, the storage unit 15 stores the plurality of prediction models. Further, when the prediction system 10 generates a prediction model, the storage unit 15 may store data in which race-related information and race finishing order in past races are associated. Further, when adding reference information to the prediction result, the storage unit 15 may store data used as the reference information. Note that the prediction model used by the prediction unit 12 may be stored in a storage means other than the storage unit 15.
- the user terminal device 20 acquires the prediction result and the reason for the prediction from the prediction system 10. Then, the user terminal device 20 outputs the prediction result and the reason for the prediction to, for example, a display device (not shown).
- the user terminal device 20 When a prediction model is selected by the user, the user terminal device 20 obtains, for example, the name of the prediction model input by the user's operation. The user terminal device 20 then outputs the name of the input prediction model to the prediction system 10.
- a smartphone, a tablet computer, a notebook computer, or a desktop computer is used as the user terminal device 20.
- the terminal device used for the user terminal device 20 is not limited to the above example.
- the information management server 30 is, for example, a server that stores or manages information regarding races.
- the information management server 30 may be a plurality of servers installed according to the content of information regarding the race. Information regarding the race may be stored in a storage device managed by the information management server 30. Additionally, the information management server 30 may store images of competition objects.
- FIG. 9 is a diagram illustrating an example of an operation flow when the prediction system 10 predicts the finish order of a race.
- the acquisition unit 11 acquires information regarding races that are targets for predicting race finish in publicly managed competitions (step S11).
- the acquisition unit 11 acquires information regarding the race from the information management server 30, for example.
- the prediction unit 12 predicts the finish order of the race from the information about the race obtained by the acquisition unit 11 using a prediction model that predicts the finish order of the race from the information about the race ( Step S12).
- the output unit 13 outputs the prediction result and the reason for the prediction (step S13).
- the output unit 13 outputs the prediction result and the reason for the prediction to the user terminal device 20, for example.
- FIG. 10 is a diagram illustrating an example of an operation flow when the prediction system 10 generates a prediction model.
- the acquisition unit 11 acquires race-related information and race results in races held in the past (step S21). After acquiring the information regarding the race and the race result, the model generation unit 14 learns the relationship between the information regarding the race and the race result, and generates a prediction model for predicting the finish order in the race from the information regarding the race (step S22). After generating the predictive model, the model generating unit 14 stores the generated predictive model in the storage unit 15 (step S23).
- the prediction system 10 of the race result prediction system of this embodiment acquires information regarding races in publicly managed competitions, and uses a prediction model to predict the finish order of the race. Then, the prediction system 10 outputs the prediction result and the reason for the prediction to the user terminal device 20, for example. By outputting the reason for the prediction together with the result of the race finish prediction, a person using the prediction result can easily interpret the race finish prediction result. Therefore, by using the prediction system 10, it is possible to easily interpret the results of predicting the race finish.
- the prediction system 10 uses a prediction model according to the selection of the person using the prediction results, so that the prediction results match the preferences of the person using the prediction results. At the same time, the reason for the prediction can be output. Furthermore, when using a prediction model that corresponds to the timing of prediction, the prediction system 10 can output appropriate prediction results and reasons for the prediction, depending on the timing of prediction, for example.
- the prediction system 10 When outputting reference information together with the prediction result, the prediction system 10 adds reference information to the prediction result and the reason for the prediction. By referring to the reasons and reference information, you can more easily interpret the reasons for the prediction.
- FIG. 11 is a diagram showing an example of the configuration of the prediction system 100 of this embodiment.
- the prediction system 100 includes an acquisition section 101, a prediction section 102, and an output section 103.
- the acquisition unit 101 acquires information regarding races that are targets for predicting race finish in publicly managed competitions.
- the prediction unit 102 predicts the finish order of a race from the acquired information about the race using a prediction model that predicts the finish order of the race from the information about the race.
- the output unit 103 outputs the prediction result and the reason for the prediction.
- the acquisition unit 11 of the first embodiment is an example of the acquisition unit 101. Further, the acquisition unit 101 is one aspect of an acquisition means.
- the prediction unit 12 of the first embodiment is an example of the prediction unit 102. Furthermore, the prediction unit 102 is one aspect of prediction means.
- the output unit 13 of the first embodiment is an example of the output unit 103. Furthermore, the output unit 103 is one aspect of output means.
- FIG. 12 is a diagram illustrating an example of the operation flow of the prediction system 100.
- the acquisition unit 101 acquires information regarding a race that is a target for predicting the race finish in a publicly managed competition (step S101).
- the prediction unit 102 predicts the order of finish in the race from the acquired information regarding the race using a prediction model that predicts the order of finish in the race from the information regarding the race (step S102).
- the output unit 103 outputs the prediction result and the reason for the prediction (step S103).
- the prediction system 100 of this embodiment uses a prediction model to predict the finish order of a race in a publicly managed competition. Then, the prediction system 10 outputs the prediction result of the race finish and the reason for the prediction. As a result, the prediction system 10 can facilitate the interpretation of the results of the race finish prediction.
- FIG. 13 shows an example of the configuration of a computer 200 that executes a computer program that performs each process in the prediction system 10 of the first embodiment and the prediction system 100 of the second embodiment.
- the computer 200 includes a CPU (Central Processing Unit) 201, a memory 202, a storage device 203, an input/output I/F (Interface) 204, and a communication I/F 205.
- CPU Central Processing Unit
- the CPU 201 reads computer programs for performing each process from the storage device 203 and executes them.
- the CPU 201 may be configured by a combination of multiple CPUs. Further, the CPU 201 may be configured by a combination of a CPU and other types of processors. For example, the CPU 201 may be configured by a combination of a CPU and a GPU (Graphics Processing Unit).
- the memory 202 is configured with a DRAM (Dynamic Random Access Memory) or the like, and temporarily stores computer programs executed by the CPU 201 and data being processed.
- the storage device 203 stores computer programs executed by the CPU 201.
- the storage device 203 is configured by, for example, a nonvolatile semiconductor storage device. Other storage devices such as a hard disk drive may be used as the storage device 203.
- the input/output I/F 204 is an interface that receives input from a worker and outputs display data and the like.
- the communication I/F 205 is an interface that transmits and receives data between the user terminal device 20 and the information management server 30. Further, the user terminal device 20 and the information management server 30 may also have similar configurations.
- the computer program used to execute each process can also be stored and distributed in a computer-readable recording medium that non-temporarily records data.
- a computer-readable recording medium for example, a magnetic tape for data recording or a magnetic disk such as a hard disk can be used.
- an optical disc such as a CD-ROM (Compact Disc Read Only Memory) can also be used.
- a nonvolatile semiconductor memory device may be used as the recording medium.
- the output means outputs, out of the information regarding the race, information on items that a predetermined person emphasizes in predicting the finish order of the race, added to the result of the prediction.
- the output means superimposes and displays at least one of the prediction result and the reason for the prediction on an image of the athlete participating in the race.
- the prediction system according to appendix 1 or 2.
- the output means outputs, as the reason for the prediction, an item that is a negative factor for the result of the prediction.
- the prediction system according to any one of Supplementary Notes 1 to 3.
- the output means outputs a difference in content between information regarding races in past races and information regarding races in a race to be predicted.
- the prediction system according to any one of Supplementary Notes 1 to 4.
- the prediction means predicts the finish order of the race using a prediction model according to an attribute that uses the result of the prediction.
- the prediction system according to any one of Supplementary Notes 1 to 5.
- the prediction means predicts the finish order of the race using a prediction model according to the timing of predicting the finish order of the race.
- the publicly managed competition is horse racing;
- the output means outputs an image of a horse running in a paddock or an image of a horse running in a past race.
- the publicly managed competition is horse racing;
- the output means outputs at least one of an image of the parent horse of the horse to run or information regarding the race of the parent horse when the age of the horse to be predicted is less than a standard;
- the prediction system according to any one of Supplementary Notes 1 to 8.
- the publicly managed competition is horse racing; Information regarding the race includes the condition of the runners in the paddock, the age of the runners, the gender of the runners, the quality of the legs of the runners, the jockeys riding the runners, changes in the weight of the runners, and the pedigrees of the runners.
- a process of acquiring information regarding a race that is the target of predicting the finish order of a race in a publicly managed competition A process of predicting the finish order of the race from the obtained information about the race using a prediction model that predicts the finish order of the race from the information about the race;
- a non-temporary recording medium that records a prediction program that causes a computer to execute a process of outputting the prediction result and the reason for the prediction.
- Prediction System 11 Acquisition Unit 12 Prediction Unit 13 Output Unit 14 Model Generation Unit 15 Storage Unit 20 User Terminal Device 30 Information Management Server 100 Prediction System 101 Acquisition Unit 102 Prediction Unit 103 Output Unit 200 Computer 201 CPU 202 Memory 203 Storage device 204 Input/output I/F 205 Communication I/F
Landscapes
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
予測システムは、取得部と、予測部と、出力部を備える。取得部は、公営競技においてレースの着順を予測する対象となるレースに関する情報を取得する。予測部は、レースに関する情報からレースの着順を予測する予測モデルを用いて、取得したレースに関する情報から、レースの着順を予測する。出力部は、予測の結果と、予測の理由とを出力する。
Description
本発明は、予測システム等に関する。
公営競技では、例えば、レース条件、およびレースに出場する競技体の状態に関する多くの要素がレース結果に影響を及ぼし得る。多くの要素の影響がレース結果の予測を難しくする一方で、予測の難しさは、レース結果の予想が愛好者の楽しみの1つとなり得る。しかし、例えば、初心者にとっては、レースの結果を予測する際に、レースに関する情報のどの項目に着目するかが難しい場合がある。そのため、レースの着順の予測に関する情報を提供できるシステムがあることが望ましい。
特許文献1の情報処理装置は、過去のレースにおける競技体等に関するデータとレース結果とを基に生成された学習モデルを用いてレース結果を予測する。
特許文献2の情報処理システムは、公営競技のレース結果の予測における複数の人物の予測の理由を集計し、表示装置に表示する。
特許文献1および特許文献2の情報処理装置は、レースの着順の予測について、予測の根拠を適切に提示することが難しい場合がある。
上記の課題を解決するため、レースの着順の予測の結果の解釈を容易にすることができる予測システム等を提供することを目的とする。
上記の課題を解決するため、本発明の予測システムは、公営競技においてレースの着順を予測する対象となるレースに関する情報を取得する取得手段と、レースに関する情報からレースの着順を予測する予測モデルを用いて、取得したレースに関する情報から、レースの着順を予測する予測手段と、予測の結果と、予測の理由とを出力する出力手段とを備える。
本発明の予測方法は、公営競技においてレースの着順を予測する対象となるレースに関する情報を取得し、レースに関する情報からレースの着順を予測する予測モデルを用いて、取得したレースに関する情報から、レースの着順を予測し、予測の結果と、予測の理由とを出力する。
本発明の記録媒体は、公営競技においてレースの着順を予測する対象となるレースに関する情報を取得する処理と、レースに関する情報からレースの着順を予測する予測モデルを用いて、取得したレースに関する情報から、レースの着順を予測する処理と、予測の結果と、予測の理由とを出力する処理とをコンピュータに実行させる予測プログラムを非一時的に記録する。
本発明によると、レースの着順の予測の結果の解釈を容易にすることができる。
本発明の第1の実施形態について、図を参照して詳細に説明する。図1は、レース結果予測システムの例を示す図である。一例として、レース結果予測システムは、予測システム10と、利用者端末装置20と、情報管理サーバ30を備える。予測システム10は、ネットワークを介して、利用者端末装置20と接続している。また、予測システム10は、ネットワークを介して、情報管理サーバ30と接続している。
予測システム10は、公営競技におけるレース結果を予測するシステムである。公営競技は、例えば、競馬である。公営競技は、競輪、競艇またはオートレースであってもよい。公営競技の例は、上記に限られず、公的機関がギャンブルとして開催する競技であれば、競技の種類は問わない。予測システム10は、例えば、レースに関する情報からレースの着順を予測する予測モデルを用いてレースの着順を予測する。そして、予測システム10は、予測の結果と、予測の理由とを出力する。予測の理由は、例えば、予測モデルがレースの着順を予測する際に根拠となった情報である。予測の理由は、例えば、レースに関する情報のうち、予測モデルがレースの着順を予測する際に、レースの着順の予測結果への影響が他の項目よりも大きい項目である。予測の理由は、レースに関する情報のうち、予測モデルがレースの着順を予測する際の、レースの着順の予測結果への影響の度合いがあらかじめ設定された基準以上の項目でもよい。予測モデルは、例えば、機械学習アルゴリズムを用いて生成された学習済みモデルである。予測システム10は、例えば、過去に行われたレースにおける、レースに関する情報と、レースの着順との関係を学習し、レースに関する情報からレースの着順を予測する予測モデルを生成する。予測モデルは、予測システム10の外部で生成された学習モデルであってもよい。予測モデルについては、後で説明する。
利用者端末装置20は、例えば、予測システム10の予測の結果を利用する人物が所持している端末装置である。予測の結果を利用する人物は、例えば、レースの投票券を購入する人物である。予測の結果を利用する人物は、レースの編成を考案する担当者であってもよい。また、予測の結果を利用する人物は、記者または解説者であってもよい。予測の結果を利用する人物は、上記の例に限られない。
情報管理サーバ30は、例えば、公営競技のレースに関する情報を保有しているサーバである。レースに関する情報は、例えば、レースの条件およびレースに出場する競技体の属性である。競技体は、レースに参加する主体である。競技体の属性は、レースに参加する競技体それぞれの情報である。公営競技が競馬である場合に、競技体は、馬である。公営競技が競馬である場合に、競技体の属性には、騎手に関する情報も含まれる。公営競技が競輪、競艇またはオートレースである場合に、競技体は、選手である。競技体の属性には、自転車、ボートまたはオートバイの情報が含まれていてもよい。レースに関する情報は、上記の例に限られない。
予測システム10は、例えば、情報管理サーバ30からレースに関する情報を取得する。そして、予測システム10は、情報管理サーバ30から取得したレースに関する情報を入力とし、予測モデルを用いてレース結果を予測する。レース結果を予測すると、予測システム10は、利用者端末装置20に、予測の結果と、予測の理由とを出力する。
予測システム10は、複数の情報管理サーバ30からレースに関する情報を取得してもよい。また、予測システム10は、利用者端末装置20から、レースに関する情報を取得してもよい。
予測システム10は、複数の利用者端末装置20に、予測の結果と、予測の理由とを出力してもよい。予測システム10は、例えば、複数の利用者がそれぞれ利用している利用者端末装置20に、予測の結果と、予測の理由とを出力してもよい。利用者端末装置20および情報管理サーバ30の数は、適宜、設定され得る。
予測システム10の構成について説明する。図2は、予測システム10の構成の例を示す図である。予測システム10は、取得部11と、予測部12と、出力部13と、モデル生成部14と、記憶部15を備える。
取得部11は、公営競技のレースに関する情報を取得する。レースに関する情報は、例えば、レースの着順に関係し得る情報である。取得部11は、レースに関する情報として、例えば、レース条件と、競技体の属性とを取得する。
公営競技が競馬の場合に、レース条件には、例えば、競技場に関する情報が含まれる。また、レース条件には、レースの設定条件と、出走馬が満たすべき条件が含まれていてもよい。レース条件は、例えば、距離、馬場の種類、出走馬の条件、斤量、レースの格付け、レース場、天候、馬場の状態、出走馬の数および走行方向のうち少なくも1つ以上である。馬場の種類は、例えば、芝、ダートまたは障害の区別である。出走馬の条件は、例えば、馬齢および性別によって規定される出走の条件である。馬場の状態は、例えば、馬場が含む水分量を示す情報である。走行方向は、例えば、レースが左回りで行われるか右回りで行われるかを示す情報である。公営競技が競馬の場合におけるレース条件は、上記の例に限られない。
公営競技が競馬の場合に、競技体の属性は、出走馬の属性である。出走馬の属性は、出走馬それぞれの情報である。出走馬の属性は、例えば、レーン番号、枠番号、オッズ、年齢、性別、体重、体重変化、血液データ、筋肉量、調教状況、健康状態、休養履歴、レース出場履歴、負担斤量、脚質、戦績、父馬、母馬、馬主、厩舎、調教師および生産者のうち少なくも1つ以上である。レーン番号は、馬番であってもよい。調教状況は、例えば、調教時の距離ごとのタイムおよびタイム変化である。脚質は、例えば、逃げ馬、先行馬、差し馬または追い込み馬の区分によって設定される。出走馬の属性には、父馬および母馬の戦績が含まれていてもよい。また、戦績は、例えば、過去のレースにおけるレース条件、レース時における出走馬の属性、獲得賞金およびレース展開である。レース展開は、例えば、位置取りおよび着差である。位置取りは、例えば、レースの全区間を所定の距離ごとに分割した場合における、各区間における順位およびタイムである。着差は、例えば、順位が上の出走馬または順位が下の出走馬とのタイム差である。出走馬の属性は、上記の例に限られない。
予測モデルがパドックにおける情報を用いてレース結果を予測する場合に、取得部11は、出走馬の属性として、出走馬のパドックにおける情報を取得してもよい。出走馬のパドックにおける情報は、例えば、出走馬の歩様、馬体の状態および興奮の有無のうち1つ以上である。歩様は、例えば、出走馬の歩幅および歩く速さである。馬体は、例えば、出走馬の毛並み、筋肉の状態および発汗の有無である。興奮の有無は、例えば、出走馬が冷静な状態か、興奮状態かを示す。出走馬のパドックにおける情報は、上記の例に限られない。
取得部11は、例えば、画像認識処理によってパドックを撮影した画像から出走馬の状態を検出するサーバから、出走馬のパドックにおける情報を取得する。取得部11は、パドックにおける出走馬の状態を評価する人物による評価結果を取得してもよい。取得部11は、利用者端末装置20から、投票券を買う人物が判断する、出走馬のパドックにおける情報を取得してもよい。利用者端末装置20から、出走馬のパドックにおける情報を取得する場合に、出走馬のパドックにおける情報は、例えば、投票券を買う人物によって利用者端末装置20に入力される。
公営競技が競輪の場合に、レースの条件は、例えば、レース場、競争距離および天候のうち少なくも1つ以上である。また、競技体の属性は、選手の身長、体重、年齢、脚質、オッズおよび戦績のうち少なくも1つ以上である。公営競技が競輪の場合における、レースの条件および競技体の属性の例は、上記に限られない。
公営競技が競艇の場合に、レースの条件は、例えば、レース場、競争距離および天候のうち少なくも1つ以上である。また、競技体の属性は、選手の身長、体重、年齢、ランク、オッズおよび戦績のうち少なくも1つ以上である。公営競技が競艇の場合における、レースの条件および競技体の属性の例は、上記に限られない。
公営競技がオートレースの場合に、レースの条件は、例えば、レース場、ハンデの有無および天候のうち少なくも1つ以上である。また、競技体の属性は、選手の身長、体重、年齢、所属、階級、オッズおよび戦績のうち少なくも1つ以上である。競技体の属性は、スタート展示情報を含んでいてもよい。公営競技がオートレースの場合におけるレースの条件および競技体の属性の例は、上記に限られない。
複数の予測モデルが用いられる場合に、取得部11は、予測モデルの選択結果を利用者端末装置20から取得してもよい。予測モデルの選択結果は、例えば、予測の結果を利用する人物の操作によって利用者端末装置20に入力される予測モデルの選択を、利用者端末装置20から取得してもよい。また、取得部11は、予測の結果を利用する人物の操作によって利用者端末装置20に入力される表示項目の選択を、利用者端末装置20から取得してもよい。
予測システム10が予測モデルを生成する場合に、取得部11は、予測モデルを生成するための教師データとして、レースの条件、競技体の属性およびレース結果を取得してもよい。また、生成する予測モデルが競技体の過去の戦績を入力データとして用いる場合には、取得部11は、競技体の過去の戦績を取得してもよい。取得部11は、例えば、取得したレースの条件、競技体の属性およびレース結果を記憶部15に保存する。
予測部12は、レースに関する情報からレースの着順を予測する予測モデルを用いて、取得したレースに関する情報から、レースの着順を予測する。また、予測部12は、予測モデルがレースの着順を予測した理由を、予測の理由として抽出する。予測部12は、例えば、予測モデルがレースの着順を予測した際のパラメータを取得し、着順の予測に寄与が大きいパラメータから予測の理由を抽出する。
予測部12は、レースの着順を予測するタイミングに応じた予測モデルを用いて、レースの着順を予測してもよい。予測部12は、例えば、レース前日までと、レース当日で別の予測モデルを用いてレースの着順を予測してもよい。
公営競技が競馬である場合に、予測部12は、パドックの開始時刻までと、パドックの開始時刻後で別の予測モデルを用いて予測してもよい。予測部12は、例えば、パドックの開始時刻までは、出走馬のパドックにおける情報を入力としない予測モデルを用いて、レースの着順を予測する。そして、予測部12は、パドックの開始時刻後は、出走馬のパドックにおける情報を入力とする予測モデルを用いて、レースの着順を予測する。また、パドックにおける情報を予測に用いるか否かは、予測の結果を利用する人物によって選択されてもよい。この場合に、予測部12は、選択に応じた予測モデルを用いてレースの着順を予測する。
予測部12は、レース展開を予測する予測モデルを用いてレース展開を予測してもよい。予測部12は、例えば、レースを所定の距離ごとに区切った場合における、区間ごとの順位を予測する。そして、予測部12は、区間ごとの順位と、ゴールにおける着順を予測の結果とする。
予測部12は、予測の結果を利用する人物の属性に応じた予測モデルを用いて、レースの着順を予測してもよい。予測の結果を利用する人物の属性は、例えば、初心者、中級者または上級者の区別である。予測の結果を利用する人物の属性は、投票券の購入履歴、予算または投票券の払い戻し実績であってもよい。予測部12は、予測の結果を利用する人物が重視する項目ごとに生成されている予測モデルを用いて、レースの着順を予測してもよい。予測部12は、例えば、レース展開を重視する人物向けの予測を行う場合に、レース展開に関する情報を入力として、レースの着順を予測する。公営競技が競馬である場合に、予測部12は、例えば、出走馬の脚質と、過去のレースの距離ごとの順位とを入力に含む予測モデルを用いて、レースの着順を予測する。また、予測部12は、出走馬の血統を重視する人物向けに、父馬の戦績と、母馬の戦績とを入力に含む予測モデルを用いて、レースの着順を予測してもよい。
出力部13は、レースの着順の予測の結果と、予測の理由とを出力する。出力部13は、例えば、利用者端末装置20に、レースの着順の予測の結果と、予測の理由とを出力する。出力部13は、予測システム10と接続されている、図示しない表示装置に、予測の結果と、予測の理由とを出力してもよい。また、出力部13は、レースの予測の結果を配信するサーバに、レースの着順の予測の結果と、予測の理由とを出力してもよい。
出力部13は、例えば、競技体ごとに、予測の理由を出力する。出力部13は、1レースの着順の予測全体に対して予測の理由を出力してもよい。出力部13は、例えば。レースに参加している競技体のうち、多くの競技体において、予測の結果への寄与度が高い項目を出力する。また、出力部13は、レースの着順に応じて重み付けして、予測の結果への寄与度が高い項目を出力してもよい。
出力部13は、予測の結果とともに、レースに関する情報のうち、所定の人物がレースの着順の予測において重視する項目の情報を参考情報として予測の結果に付加して出力してもよい。所定の人物は、例えば、予測の結果を利用する人物、解説者または専門家である。所定の人物は、上記以外であってもよい。所定の人物がレースの着順の予測において重視する項目は、例えば、所定の人物がレースの結果に影響を及ぼす頻度が高いと考える項目である。例えば、所定の人物が、レースに関する情報のうち血統および脚質によってレースの結果が決まることが多いと考える場合に、所定の人物は、血統および脚質に関連する情報を重視する。出力部13は、例えば、レースの着順の予想において、予測の結果を利用する人物が重視する項目の情報を、予測の結果に付加して出力する。レースの着順の予測において重視する項目は、予測モデルを生成する際に、予測の専門家によって設定されてもよい。また、所定の人物がレースの着順の予測において重視する項目の情報を出力する場合に、出力部13は、予測の理由に該当する項目を強調表示するデータを出力してもよい。出力部13は、レースに関する情報のうち、予測の結果を利用する人物が選択した項目を参考情報として出力してもよい。出力部13は、参考情報のうち、予測の結果を利用する人物が選択した項目を強調表示するデータを出力してもよい。強調表示は、例えば、色、文字の大きさ、文字の太さ、文字の周囲の装飾の少なくとも1つを他の項目と変えることで行われる。
公営競技が競馬である場合に、出力部13は、例えば、体重、脚質、父馬、母馬、調教師および戦績のうち少なくとも1つ以上の項目を参考情報として出力する。また、出力部13は、参考情報の項目のうち、予測の理由に該当する項目がある場合に、予測の理由に該当する強調表示するデータを出力してもよい。
出力部13は、予測の理由として、予測の結果に対して負の要因となる項目を出力してもよい。負の要因は、着順の予測の結果に影響が大きい項目のうち、着順が下位になる予測への影響が大きい項目である。影響が大きいとは、例えば、ある項目を変化させた場合に、他の項目よりも着順の予測の結果の変動が大きいことをいう。
公営競技が競馬の場合に、例えば、短距離に向いている出走馬が、レース距離が長いレースに出走する場合に、レース距離が負の要因として抽出される。また、例えば、レース出場履歴、健康状態、調教時のタイム変化または体重の変化が負の要因として抽出され得る。
出力部13は、予測の理由を文章として出力してもよい。出力部13は、例えば、レースの着順の予測への影響度が高いレースに関する情報に基づいて、予測の理由を示す文章を出力する。例えば、レースの着順の予測への影響度が高いレースに関する情報と、予測の理由を示す文章と関係は、あらかじめ設定されている。公営競技が競馬の場合において、予測の理由が距離の場合に、出力部13は、例えば、予測の理由として「長距離を得意とする馬のためおすすめです。」のような文章を出力してもよい。
予測部12がレース展開を予測する場合に、出力部13は、レース展開の予測の結果を出力してもよい。出力部13は、例えば、レース場の平面図の上に、区間ごとの順位の表示する表示画面を出力してもよい。
出力部13は、競技体の画像を出力してもよい。また、出力部13は、レースの結果が予測の結果と類似している過去のレースの画像を出力してもよい。
出力部13は、レースに出場する競技体の画像に、予測の結果と、予測の理由とを重畳して出力してもよい。また、出力部13は、レースに出場する競技体の画像に、予測の結果と、予測の理由の一方を重畳して出力してもよい。また、出力部13は、レースの結果が予測の結果と類似している過去のレースの画像に、予測の結果と、予測の理由とを重畳して出力してもよい。
出力部13は、過去のレースにおけるレースに関する情報と、予測対象のレースにおけるレースに関する情報とで差異がある場合、当該際の内容を出力してもよい。出力部13は、例えば、レースに関する情報のうち、変化した場合に、着順が変動する項目について、過去のレースにおけるレースに関する情報と、予測対象のレースにおけるレースに関する情報との差異の内容を出力する。公営競技が競馬の場合に、出力部13は、例えば、過去のレースにおける出走馬の体重と、予測対象のレースにおける出走馬の体重との差を馬体重の増減値として出力する。また、出力部13は、過去のレースの開催時における調教タイムと、予測時における調教タイムとの差を出力しもてよい。
公営競技が競馬の場合に、出力部13は、パドックの出走馬の画像を出力してもよい。また、出力部13は、パドックの出走馬の画像に、予測の結果と、予測の理由とを重畳して出力してもよい。
出力部13は、出走馬の過去のレースの画像を出力してもよい。出力部13は、出走馬の過去のレース画像に予測の結果と、予測の理由とを重畳して出力してもよい。また、出力部13は、出走馬の画像に代えて、父馬、母馬、兄弟馬または属性が類似している馬の画像を出力してもよい。
出力部13は、レースの着順の予測の結果と、予測の理由のうち、予測の理由のみを出力してもよい。例えば、予測システム10の予測の結果を利用する人物が予測の理由のみの参照を希望し、レースの着順の予測の結果について参照を希望しない場合に、出力部13はレースの着順の予測の結果と、予測の理由のうち、予測の理由のみを出力する。予測の理由のみを出力する設定は、例えば、予測の結果を利用する人物の操作によって行われる。
出力部13は、上述した情報を、予測の結果と、予測の理由とともに出力してもよい。また、出力部13は、上述した情報を、予測の結果と、予測の理由の一方とともに出力してもよい。
図3は、公営競技が競馬である場合に、レースの着順を予測した際における、予測の結果の表示画面の例を示す。図3の表示画面の例において、画面の上部には、レース場名、レース番号、レースの距離および場の種類が表示されている。図3の表示画面の例において、着順は、予測の結果におけるレースの着順を示す。レーンは、スタート時に出走馬が入るレーン番号を示している。馬名は、出走馬の名称を示す。また、予測の理由は、予測モデルが、予測の結果とともに出力する予測の理由の項目を示す。予測の理由は、複数の項目であってもよい。
図4は、図3の表示画面の例において、予測の理由として負の要因をさらに表示する表示画面の例を示す。図4の表示画面の例において、プラス要因は、正の要因を示す。正の要因は、着順の予測の結果に影響が大きい項目のうち、着順が高くなる予測への影響が大きい項目である。図4の表示画面の例では、負の要因がマイナス要因として示されている。負の要因は、着順の予測の結果に影響が大きい項目のうち、着順が低くなる予測への影響が大きい項目である。
図5は、図4の表示画面の例において、参考情報をさらに表示する表示画面の例を示す。図5の表示画面の例では、右の枠内に、Bの出走馬に関する情報が参考情報として示されている。図5の表示画面の例では、参考情報として、馬齢、厩舎、調教師、血統、体重および戦績が表示されている。参考情報として表示する項目は、上記に限られない。また、図5の表示画面の例において、着順予測の欄で、いずれかの出走馬が選択されると、参考情報の欄に、選択された出走馬に関する参考情報が表示されるようにしてもよい。
図6は、図5の表示画面の例において、出走馬の画像を出力する表示画面の例を示す。図6の表示画面の例では、下段の左側に出走馬の画像が表示されている。出走馬の画像は、着順予測の欄で、いずれかの出走馬が選択されると、画像の表示箇所に、選択された出走馬の画像が表示されるようにしてもよい。また、出走馬の画像に代えて、出走馬の親馬の画像が表示されるようにしてもよい。また、出走馬の画像として、過去のレース時、またはトレーニング時の映像が表示されるようにしてもよい。出走馬の画像は、例えば、情報管理サーバ30から取得される。
図7は、図5の表示画面の例において、パドックにおける出走馬の画像を出力する表示画面の例を示す。図7の表示画面の例では、下段の左側にパドックにおける出走馬の画像が表示されている。図7の表示画面の例では、パドックにおける出走馬の画像上に、出走馬の状態を示す情報が重畳して表示されている。図7の表示画面の例では、出走馬の状態を示す情報として、毛並みが良好であることが表示されている。パドックにおける出走馬の画像は、着順予測の欄で、いずれかの出走馬が選択されると、パドック映像の表示箇所に、選択された出走馬の画像が表示されるようにしてもよい。
図8は、パドックにおける出走馬の画像と、参考情報とを出力する表示画面の例を示す。図8の表示画面の例では、パドック映像の欄にパドックにおける出走馬の画像が表示されている。図8の表示画面の例では、パドック映像の画像上に、表示されている出走馬についての予測順位、状態、レーン番号、馬名、騎手名、重畳、体重および体重変化量が重畳して表示されている。図8の表示画面の例において、パドック全体を表示する画像上において、選択された出走馬の画像および参考情報が表示されるようにしてもよい。
予測システム10において予測モデルを生成する場合に、モデル生成部14は、レースに関する情報からレースの着順を予測する予測モデルを生成する。モデル生成部14は、例えば、過去に行われたレースにおけるレースに関する情報と、レースの着順との関係を学習し、レースに関する情報からレースの着順を予測する予測モデルを生成する。
モデル生成部14は、例えば、因子化漸近ベイズ推論を基にした学習アルゴリズムを用いて予測モデルを生成する。因子化漸近ベイズ推論を基にした学習アルゴリズムを用いて学習を行う際に、モデル生成部14は、レースに関する情報を入力データ、レースの着順を正解データとして決定木形式のルールによって場合分けする。そして、モデル生成部14は、各場合で異なる説明変数を組み合わせた線形モデルでレースの着順を予測する学習モデルを生成する。モデル生成部14は、データの場合分け条件の最適化、説明変数の組み合わせの最適化のよる予測モデルの生成、および不要な予測モデルの削除の処理を順に行うことで学習モデルを生成する。このような学習モデルの生成方法は、異なる説明変数の組み合わせによる予測モデルを組み合わせて予測するため、異種混合学習とも呼ばれる。異種混合学習によって予測モデルを生成することで、予測の結果への影響が強い場合分けの条件を用いてレースの着順の予測の結果を説明することが可能になるため、予測の結果の説明性が向上する。異種混合学習の手法は、例えば、米国特許出願公開第2014/0222741号明細書に開示されている。
予測モデルを生成する機械学習に用いる学習アルゴリズムは、上記の例に限られない。モデル生成部14は、例えば、レースに関する情報からレースの着順を予測する学習モデルを、ニューラルネットワークを用いた深層学習によって生成してもよい。このような学習モデルを生成する際に、モデル生成部14は、例えば、各項目のデータを変動させ、レースの着順の変化を基に、レースの着順への影響の大きい項目を予測の理由として抽出する予測モデルを生成する。そして、モデル生成部14は、各項目のデータを変動させ、レースの着順への影響が大きい項目を予測の理由として抽出する。
予測部12がレース展開を予測する場合に、モデル生成部14は、レースに関する情報からレース展開を予測する予測モデルを生成してもよい。レース展開を予測する予測モデルを生成する場合に、予測部12は、例えば、過去のレースにおける区間ごとの順位またはタイムの少なくとも一方を含むレースに関する情報を学習データとして用いて、予測モデルを生成する。
記憶部15は、例えば、予測モデルを保存する。複数の予測モデルが用いられる場合には、記憶部15は、複数の予測モデルを保存する。また、予測システム10が予測モデルを生成する場合に、記憶部15は、過去のレースにおける、レースに関する情報と、レースの着順とを関連付けたデータを保存してもよい。また、予測の結果に参考情報を付加する場合に、記憶部15は、参考情報として用いるデータを保存してもよい。なお、予測部12が用いる予測モデルは、記憶部15以外の記憶手段に保存されていてもよい。
利用者端末装置20は、予測システム10から、予測の結果と、予測の理由とを取得する。そして、利用者端末装置20は、例えば、図示しない表示装置に、予測の結果と、予測の理由と出力する。
利用者によって予測モデルの選択が行われる場合に、利用者端末装置20は、例えば、利用者の操作によって入力される予測モデルの名称を取得する。そして、利用者端末装置20は、予測システム10に、入力された予測モデルの名称を出力する。
利用者端末装置20には、例えば、スマートフォン、タブレット型コンピュータ、ノート型コンピュータまたはデスクトップ型コンピュータが用いられる。利用者端末装置20に用いられる端末装置は、上記の例に限られない。
情報管理サーバ30は、例えば、レースに関する情報を保存または管理するサーバである。情報管理サーバ30は、レースに関する情報の内容に応じて設置されている複数のサーバであってもよい。レースに関する情報は、情報管理サーバ30が管理する記憶装置に保存されてもよい。また、情報管理サーバ30は、競技体の画像を保存してもよい。
レース結果予測システムの予測システム10において、レースの着順を予測する際の動作について説明する。図9は、予測システム10がレースの着順を予測する際の動作フローの例を示す図である。
取得部11は、公営競技においてレースの着順を予測する対象となるレースに関する情報を取得する(ステップS11)。取得部11は、例えば、情報管理サーバ30から、レースに関する情報を取得する。
レースに関する情報が取得されると、予測部12は、レースに関する情報からレースの着順を予測する予測モデルを用いて、取得部11が取得したレースに関する情報から、レースの着順を予測する(ステップS12)。
レースの着順が予測されると、出力部13は、予測の結果と、予測の理由とを出力する(ステップS13)。出力部13は、例えば、利用者端末装置20に、予測の結果と、予測の理由とを出力する。
予測システム10において、予測モデルを生成する際の動作について説明する。図10は、予測システム10が予測モデルを生成する際の動作フローの例を示す図である。
取得部11は、過去に実施されたレースにおける、レースに関する情報と、レース結果とを取得する(ステップS21)。レースに関する情報と、レース結果とを取得すると、モデル生成部14は、レースに関する情報と、レース結果との関係を学習し、レースに関する情報からレースの着順を予測する予測モデルを生成する(ステップS22)。予測モデルを生成すると、モデル生成部14は、生成した予測モデルを記憶部15に保存する(ステップS23)。
本実施形態のレース結果予測システムの予測システム10は、公営競技におけるレースに関する情報を取得し、予測モデルを用いて、レースの着順を予測している。そして、予測システム10は、例えば、利用者端末装置20に、予測の結果と、予測の理由を出力する。レースの着順の予測の結果とともに、予測の理由を出力することで、予測の結果を利用する人物は、レースの着順の予測の結果を容易に解釈することができる。よって、予測システム10を用いることで、レースの着順の予測の結果の解釈を容易にすることができる。
複数の予測モデルを用いる場合に、予測システム10は、例えば、予測の結果を利用する人物の選択に応じた予測モデルを用いることで、予測の結果を利用する人物の好みに沿った予測の結果とともに、予測の理由を出力することができる。また、予測のタイミングに応じた予測モデルを用いる場合には、予測システム10は、例えば、予測のタイミングに応じて適切な予測の結果と、予測の理由を出力することができる。
予測の結果とともに、参考情報を出力する場合に、予測システム10が、予測の結果と、予測の理由に、さらに参考情報を付加して出力することで、予測の結果を利用する人物は、予測の理由と参考情報を参照して、より容易に予測の理由を解釈することができる。
(第2の実施形態)
本発明の第2の実施形態について図を参照して詳細に説明する。図11は、本実施形態の予測システム100の構成の例を示す図である。予測システム100は、取得部101と、予測部102と、出力部103を備える。
本発明の第2の実施形態について図を参照して詳細に説明する。図11は、本実施形態の予測システム100の構成の例を示す図である。予測システム100は、取得部101と、予測部102と、出力部103を備える。
取得部101は、公営競技においてレースの着順を予測する対象となるレースに関する情報を取得する。予測部102は、レースに関する情報からレースの着順を予測する予測モデルを用いて、取得したレースに関する情報から、レースの着順を予測する。出力部103は、予測の結果と、予測の理由とを出力する。
ここで、第1の実施形態の取得部11は、取得部101の一例である。また、取得部101は、取得手段の一態様である。第1の実施形態の予測部12は、予測部102の一例である。また、予測部102は、予測手段の一態様である。第1の実施形態の出力部13は、出力部103の一例である。また、出力部103は、出力手段の一態様である。
予測システム100の動作について説明する。図12は、予測システム100の動作フローの例を示す図である。
取得部101は、公営競技においてレースの着順を予測する対象となるレースに関する情報を取得する(ステップS101)。レースに関する情報が取得されると、予測部102は、レースに関する情報からレースの着順を予測する予測モデルを用いて、取得したレースに関する情報から、レースの着順を予測する(ステップS102)。レースの着順が予測されると、出力部103は、予測の結果と、予測の理由とを出力する(ステップS103)。
本実施形態の予測システム100は、予測モデルを用いて公営競技におけるレースの着順を予測する。そして、予測システム10は、レースの着順の予測の結果と、予測の理由とを出力する。その結果、予測システム10は、レースの着順の予測の結果の解釈を容易にすることができる。
第1の実施形態の予測システム10および第2の実施形態の予測システム100における各処理は、コンピュータプログラムをコンピュータで実行することによって実現することができる。図13は、第1の実施形態の予測システム10および第2の実施形態の予測システム100における各処理を行うコンピュータプログラムを実行するコンピュータ200の構成の例を示したものである。コンピュータ200は、CPU(Central Processing Unit)201と、メモリ202と、記憶装置203と、入出力I/F(Interface)204と、通信I/F205を備える。
CPU201は、記憶装置203から各処理を行うコンピュータプログラムを読み出して実行する。CPU201は、複数のCPUの組み合わせによって構成されていてもよい。また、CPU201は、CPUと他の種類のプロセッサの組み合わせによって構成されていてもよい。例えば、CPU201は、CPUとGPU(Graphics Processing Unit)の組み合わせによって構成されていてもよい。メモリ202は、DRAM(Dynamic Random Access Memory)等によって構成され、CPU201が実行するコンピュータプログラムや処理中のデータが一時記憶される。記憶装置203は、CPU201が実行するコンピュータプログラムを記憶している。記憶装置203は、例えば、不揮発性の半導体記憶装置によって構成されている。記憶装置203には、ハードディスクドライブ等の他の記憶装置が用いられてもよい。入出力I/F204は、作業者からの入力の受付および表示データ等の出力を行うインタフェースである。通信I/F205は、利用者端末装置20および情報管理サーバ30との間でデータの送受信を行うインタフェースである。また、利用者端末装置20および情報管理サーバ30も同様の構成としてもよい。
各処理の実行に用いられるコンピュータプログラムは、データを非一時的に記録するコンピュータ読み取り可能な記録媒体に格納して頒布することもできる。記録媒体としては、例えば、データ記録用磁気テープや、ハードディスクなどの磁気ディスクを用いることができる。また、記録媒体としては、CD-ROM(Compact Disc Read Only Memory)等の光ディスクを用いることもできる。不揮発性の半導体記憶装置を記録媒体として用いてもよい。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
[付記1]
公営競技においてレースの着順を予測する対象となるレースに関する情報を取得する取得手段と、
レースに関する情報からレースの着順を予測する予測モデルを用いて、取得した前記レースに関する情報から、レースの着順を予測する予測手段と、
前記予測の結果と、予測の理由とを出力する出力手段と
を備える予測システム。
[付記2]
前記出力手段は、前記レースに関する情報のうち、所定の人物がレースの着順の予測において重視する項目の情報を前記予測の結果に付加して出力する、
付記1に記載の予測システム。
[付記3]
前記出力手段は、前記レースに出場する競技体の画像に、前記予測の結果と、前記予測の理由の少なくとも一方を重畳して表示する、
付記1または2に記載の予測システム。
[付記4]
前記出力手段は、前記予測の理由として、前記予測の結果に対して負の要因となる項目を出力する、
付記1から3いずれかに記載の予測システム。
[付記5]
前記出力手段は、過去のレースにおけるレースに関する情報と、予測対象のレースにおけるレースに関する情報との内容の差異を出力する、
付記1から4いずれかに記載の予測システム。
[付記6]
前記予測手段は、前記予測の結果を利用する属性に応じた予測モデルを用いて、前記レースの着順を予測する、
付記1から5いずれかに記載の予測システム。
[付記7]
前記予測手段は、レースの着順を予測するタイミングに応じた予測モデルを用いて、前記レースの着順を予測する、
付記1から6いずれかに記載の予測システム。
[付記8]
前記公営競技は、競馬であり、
前記出力手段は、パドックにおいて出走馬を撮像した画像または過去のレースにおける出走馬の画像を出力する、
付記1から7いずれかに記載の予測システム。
[付記9]
前記公営競技は、競馬であり、
前記出力手段は、予測の対象の馬齢が基準未満の場合に、出走する馬の親馬の画像または親馬のレースに関する情報に少なくとも一方を出力する、
付記1から8いずれかに記載の予測システム。
[付記10]
前記公営競技は、競馬であり、
前記レースに関する情報は、パドックにおける出走馬の状態、出走馬の馬齢と、出走馬の性別と、出走馬の脚質と、出走馬に騎乗する騎手と、出走馬の体重変化と、出走馬の血統と、レース時の天候と、レース時の場特性と、レース距離のうち少なくとも1つを含む、
付記1から9いずれかに記載の予測システム。
[付記11]
過去に行われたレースにおけるレースに関する情報と、レースの着順との関係を学習し、レースに関する情報からレースの着順を予測する予測モデルを生成するモデル生成手段をさらに備える
付記1から10いずれかに記載の予測システム。
[付記12]
公営競技においてレースの着順を予測する対象となるレースに関する情報を取得し、
レースに関する情報からレースの着順を予測する予測モデルを用いて、取得した前記レースに関する情報から、レースの着順を予測し、
前記予測の結果と、予測の理由とを出力する、
予測方法。
[付記13]
公営競技においてレースの着順を予測する対象となるレースに関する情報を取得する処理と、
レースに関する情報からレースの着順を予測する予測モデルを用いて、取得した前記レースに関する情報から、レースの着順を予測する処理と、
前記予測の結果と、予測の理由とを出力する処理と
をコンピュータに実行させる予測プログラムを記録する非一時的な記録媒体。
[付記1]
公営競技においてレースの着順を予測する対象となるレースに関する情報を取得する取得手段と、
レースに関する情報からレースの着順を予測する予測モデルを用いて、取得した前記レースに関する情報から、レースの着順を予測する予測手段と、
前記予測の結果と、予測の理由とを出力する出力手段と
を備える予測システム。
[付記2]
前記出力手段は、前記レースに関する情報のうち、所定の人物がレースの着順の予測において重視する項目の情報を前記予測の結果に付加して出力する、
付記1に記載の予測システム。
[付記3]
前記出力手段は、前記レースに出場する競技体の画像に、前記予測の結果と、前記予測の理由の少なくとも一方を重畳して表示する、
付記1または2に記載の予測システム。
[付記4]
前記出力手段は、前記予測の理由として、前記予測の結果に対して負の要因となる項目を出力する、
付記1から3いずれかに記載の予測システム。
[付記5]
前記出力手段は、過去のレースにおけるレースに関する情報と、予測対象のレースにおけるレースに関する情報との内容の差異を出力する、
付記1から4いずれかに記載の予測システム。
[付記6]
前記予測手段は、前記予測の結果を利用する属性に応じた予測モデルを用いて、前記レースの着順を予測する、
付記1から5いずれかに記載の予測システム。
[付記7]
前記予測手段は、レースの着順を予測するタイミングに応じた予測モデルを用いて、前記レースの着順を予測する、
付記1から6いずれかに記載の予測システム。
[付記8]
前記公営競技は、競馬であり、
前記出力手段は、パドックにおいて出走馬を撮像した画像または過去のレースにおける出走馬の画像を出力する、
付記1から7いずれかに記載の予測システム。
[付記9]
前記公営競技は、競馬であり、
前記出力手段は、予測の対象の馬齢が基準未満の場合に、出走する馬の親馬の画像または親馬のレースに関する情報に少なくとも一方を出力する、
付記1から8いずれかに記載の予測システム。
[付記10]
前記公営競技は、競馬であり、
前記レースに関する情報は、パドックにおける出走馬の状態、出走馬の馬齢と、出走馬の性別と、出走馬の脚質と、出走馬に騎乗する騎手と、出走馬の体重変化と、出走馬の血統と、レース時の天候と、レース時の場特性と、レース距離のうち少なくとも1つを含む、
付記1から9いずれかに記載の予測システム。
[付記11]
過去に行われたレースにおけるレースに関する情報と、レースの着順との関係を学習し、レースに関する情報からレースの着順を予測する予測モデルを生成するモデル生成手段をさらに備える
付記1から10いずれかに記載の予測システム。
[付記12]
公営競技においてレースの着順を予測する対象となるレースに関する情報を取得し、
レースに関する情報からレースの着順を予測する予測モデルを用いて、取得した前記レースに関する情報から、レースの着順を予測し、
前記予測の結果と、予測の理由とを出力する、
予測方法。
[付記13]
公営競技においてレースの着順を予測する対象となるレースに関する情報を取得する処理と、
レースに関する情報からレースの着順を予測する予測モデルを用いて、取得した前記レースに関する情報から、レースの着順を予測する処理と、
前記予測の結果と、予測の理由とを出力する処理と
をコンピュータに実行させる予測プログラムを記録する非一時的な記録媒体。
以上、上述した実施形態を例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
10 予測システム
11 取得部
12 予測部
13 出力部
14 モデル生成部
15 記憶部
20 利用者端末装置
30 情報管理サーバ
100 予測システム
101 取得部
102 予測部
103 出力部
200 コンピュータ
201 CPU
202 メモリ
203 記憶装置
204 入出力I/F
205 通信I/F
11 取得部
12 予測部
13 出力部
14 モデル生成部
15 記憶部
20 利用者端末装置
30 情報管理サーバ
100 予測システム
101 取得部
102 予測部
103 出力部
200 コンピュータ
201 CPU
202 メモリ
203 記憶装置
204 入出力I/F
205 通信I/F
Claims (13)
- 公営競技においてレースの着順を予測する対象となるレースに関する情報を取得する取得手段と、
レースに関する情報からレースの着順を予測する予測モデルを用いて、取得した前記レースに関する情報から、レースの着順を予測する予測手段と、
前記予測の結果と、予測の理由とを出力する出力手段と
を備える予測システム。 - 前記出力手段は、前記レースに関する情報のうち、所定の人物がレースの着順の予測において重視する項目の情報を前記予測の結果に付加して出力する、
請求項1に記載の予測システム。 - 前記出力手段は、前記レースに出場する競技体の画像に、前記予測の結果と、前記予測の理由の少なくとも一方を重畳して表示する、
請求項1または2に記載の予測システム。 - 前記出力手段は、前記予測の理由として、前記予測の結果に対して負の要因となる項目を出力する、
請求項1から3いずれかに記載の予測システム。 - 前記出力手段は、過去のレースにおけるレースに関する情報と、予測対象のレースにおけるレースに関する情報との内容の差異を出力する、
請求項1から4いずれかに記載の予測システム。 - 前記予測手段は、前記予測の結果を利用する属性に応じた予測モデルを用いて、前記レースの着順を予測する、
請求項1から5いずれかに記載の予測システム。 - 前記予測手段は、レースの着順を予測するタイミングに応じた予測モデルを用いて、前記レースの着順を予測する、
請求項1から6いずれかに記載の予測システム。 - 前記公営競技は、競馬であり、
前記出力手段は、パドックにおいて出走馬を撮像した画像または過去のレースにおける出走馬の画像を出力する、
請求項1から7いずれかに記載の予測システム。 - 前記公営競技は、競馬であり、
前記出力手段は、予測の対象の馬齢が基準未満の場合に、出走する馬の親馬の画像または親馬のレースに関する情報に少なくとも一方を出力する、
請求項1から8いずれかに記載の予測システム。 - 前記公営競技は、競馬であり、
前記レースに関する情報は、パドックにおける出走馬の状態、出走馬の馬齢と、出走馬の性別と、出走馬の脚質と、出走馬に騎乗する騎手と、出走馬の体重変化と、出走馬の血統と、レース時の天候と、レース時の場特性と、レース距離のうち少なくとも1つを含む、
請求項1から9いずれかに記載の予測システム。 - 過去に行われたレースにおけるレースに関する情報と、レースの着順との関係を学習し、レースに関する情報からレースの着順を予測する予測モデルを生成するモデル生成手段をさらに備える
請求項1から10いずれかに記載の予測システム。 - 公営競技においてレースの着順を予測する対象となるレースに関する情報を取得し、
レースに関する情報からレースの着順を予測する予測モデルを用いて、取得した前記レースに関する情報から、レースの着順を予測し、
前記予測の結果と、予測の理由とを出力する、
予測方法。 - 公営競技においてレースの着順を予測する対象となるレースに関する情報を取得する処理と、
レースに関する情報からレースの着順を予測する予測モデルを用いて、取得した前記レースに関する情報から、レースの着順を予測する処理と、
前記予測の結果と、予測の理由とを出力する処理と
をコンピュータに実行させる予測プログラムを記録する非一時的な記録媒体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024505735A JPWO2023170832A5 (ja) | 2022-03-09 | 予測システム、予測方法および予測プログラム | |
PCT/JP2022/010336 WO2023170832A1 (ja) | 2022-03-09 | 2022-03-09 | 予測システム、予測方法および記録媒体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/010336 WO2023170832A1 (ja) | 2022-03-09 | 2022-03-09 | 予測システム、予測方法および記録媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023170832A1 true WO2023170832A1 (ja) | 2023-09-14 |
Family
ID=87936319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/010336 WO2023170832A1 (ja) | 2022-03-09 | 2022-03-09 | 予測システム、予測方法および記録媒体 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023170832A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002169924A (ja) * | 2000-09-25 | 2002-06-14 | Fujitsu Ltd | 予測方法並びに記録媒体 |
JP2002373218A (ja) * | 2001-06-15 | 2002-12-26 | Nd Cube Kk | 競走順位予想システム |
JP2008003898A (ja) * | 2006-06-23 | 2008-01-10 | Nittei:Kk | 競艇着順予想方法及びその装置 |
JP2016157381A (ja) * | 2015-02-26 | 2016-09-01 | 日本電気株式会社 | 情報処理装置、情報共有方法、システムおよびプログラム |
-
2022
- 2022-03-09 WO PCT/JP2022/010336 patent/WO2023170832A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002169924A (ja) * | 2000-09-25 | 2002-06-14 | Fujitsu Ltd | 予測方法並びに記録媒体 |
JP2002373218A (ja) * | 2001-06-15 | 2002-12-26 | Nd Cube Kk | 競走順位予想システム |
JP2008003898A (ja) * | 2006-06-23 | 2008-01-10 | Nittei:Kk | 競艇着順予想方法及びその装置 |
JP2016157381A (ja) * | 2015-02-26 | 2016-09-01 | 日本電気株式会社 | 情報処理装置、情報共有方法、システムおよびプログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023170832A1 (ja) | 2023-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Van Doorn et al. | A good hustle: the moral economy of market competition in adult webcam modeling | |
Lane et al. | Effects of music interventions on emotional states and running performance | |
Aicher et al. | To explore or race? Examining endurance athletes’ destination event choices | |
Wolf et al. | Predictors of the precompetitive anxiety response: Relative impact and prospects for anxiety regulation | |
Qiu et al. | Serious leisure qualities and participation behaviors of Chinese marathon runners | |
Fletcher et al. | ‘Bring on the dancing horses!’: ambivalence and class obsession within British Media reports of the dressage at London 2012 | |
Fisher et al. | Body projects: making, remaking, and inhabiting the woman's futebol body in Brazil | |
Paravizo et al. | Playing for real: an exploratory analysis of professional esports athletes’ work | |
JP5702422B2 (ja) | 情報処理装置、情報処理方法及び情報処理プログラム | |
Noble et al. | Marathon specialization in elites: a head start for Africans | |
JP2006130127A (ja) | スポーツ能力評価システム | |
Swain | Sport, power and politics: Exploring sport and social control within the changing context of modernity | |
Wong et al. | Stress, coping, coping effectiveness and emotions in Malaysian Elite tenpin bowlers: Role of context and importance | |
Wang et al. | Does network externality affect your project? Evidences from reward-based technology crowdfunding | |
Hill | The heat is on: Tournament structure, peer effects, and performance | |
Neuloh et al. | The association of end-spurt behaviour with seasonal best time in long-distance freestyle pool swimming | |
Horne | The relationship of race discipline with overall performance in sprint and standard distance triathlon age-group world championships | |
CN113393063A (zh) | 比赛结果预测方法、系统、程序产品及存储介质 | |
WO2023170832A1 (ja) | 予測システム、予測方法および記録媒体 | |
King et al. | Stressors experienced by professional jockeys | |
Dixon et al. | Enhancing women’s participation and advancement in competitive cycling | |
Schell | Socially constructing the female athlete: A monolithic media representation of active women | |
Howe | Hitting the barriers–Women in Formula 1 and W series racing | |
Chawansky et al. | Wanting to be Anna: examining lesbian sporting celebrity on The L Word | |
WO2023175809A1 (ja) | 状態予測システム、状態予測方法および記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22930814 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024505735 Country of ref document: JP Kind code of ref document: A |