WO2023170796A1 - Diagnosis device, diagnosis system, remote monitoring system, and maintenance system - Google Patents

Diagnosis device, diagnosis system, remote monitoring system, and maintenance system Download PDF

Info

Publication number
WO2023170796A1
WO2023170796A1 PCT/JP2022/010064 JP2022010064W WO2023170796A1 WO 2023170796 A1 WO2023170796 A1 WO 2023170796A1 JP 2022010064 W JP2022010064 W JP 2022010064W WO 2023170796 A1 WO2023170796 A1 WO 2023170796A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheave
bearing
car
diagnostic
calculation unit
Prior art date
Application number
PCT/JP2022/010064
Other languages
French (fr)
Japanese (ja)
Inventor
秀紀 長濱
脩平 新倉
康樹 木村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/010064 priority Critical patent/WO2023170796A1/en
Publication of WO2023170796A1 publication Critical patent/WO2023170796A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators

Definitions

  • the present disclosure relates to a diagnostic device, a diagnostic system, a remote monitoring system, and a maintenance management system.
  • Patent Document 1 discloses a bearing diagnostic device. According to the diagnostic device, a detection sensor is provided in a bearing of a hoist in an elevator system. The detection sensor detects noise generated in the bearing. The diagnostic device can diagnose an abnormality in the bearing by analyzing the detected noise.
  • An object of the present disclosure is to provide a diagnostic device, a diagnostic system, a remote monitoring system, and a maintenance management system that can determine abnormalities in a bearing with a simple configuration.
  • a diagnostic device includes a hoist having a first sheave, an electric motor that rotates the first sheave on a rotating shaft, and a bearing that supports the rotating shaft; a second sheave;
  • a rotation angle calculation unit that calculates the total rotation angle of the car, and a rotation angle calculation unit that calculates the total rotation angle when the car travels in a specific section, and detects an abnormality in the bearing.
  • a determination unit that determines.
  • a diagnostic device includes a hoist having a first sheave, an electric motor that rotates the first sheave on a rotating shaft, and a bearing that supports the rotating shaft; a second sheave;
  • an inference unit that infers the amount of axial displacement from the value, the departure floor, the arrival floor, and the loaded weight of the car when the car moves; and the amount of axial displacement inferred by the inference unit.
  • a determining unit that determines whether the bearing is abnormal based on the bearing.
  • a diagnostic system includes a hoisting machine including a first sheave, an electric motor that rotates the first sheave on a rotating shaft, and a bearing that supports the rotating shaft; a second sheave;
  • the remote monitoring system includes the diagnostic system, a monitoring device that receives information on a diagnosis result in which the diagnostic device of the diagnostic system determines that the bearing is abnormal, and transmits information on the diagnosis result to the outside. , equipped with.
  • the maintenance management system includes the diagnostic system, a monitoring device that receives information on a diagnostic result in which a diagnostic device of the diagnostic system determines that the bearing is abnormal, and transmits information on the diagnostic result to the outside; and an information center device that receives information on the diagnosis results from the monitoring device and creates a maintenance plan for the elevator system based on the information on the diagnosis results.
  • a maintenance management system includes a hoist having a first sheave, an electric motor that rotates the first sheave on a rotating shaft, and a bearing that supports the rotating shaft, a second sheave,
  • a maintenance management system for maintaining and managing an elevator system having a main rope wrapped around the first sheave and the second sheave, and a car suspended from the main rope, the car arrives from a departure floor.
  • a rotation angle calculating section that calculates the total value of the rotation angles that the first sheave rotated when moving to the floor; a calculation unit that calculates an amount of axial displacement that is the amount of change in the vertical position from a reference position; a total value of the rotation angles calculated by the rotation angle calculation unit; and an amount of axial displacement calculated by the calculation unit; a learning information acquisition unit that acquires learning information including information in which the departure floor, the arrival floor, and the loading weight when the car is moved; and the learning information acquired by the learning information acquisition unit. Using the learning information, calculate the shaft displacement from the total value of the rotation angles calculated by the rotation angle calculating section, the departure floor, the arrival floor, and the loaded weight of the car when the car moves.
  • a model generation unit that generates a trained model for inferring the quantity.
  • the abnormality of the bearing is determined based on the total value of the rotation angle of the first sheave. Therefore, abnormalities in the bearing can be determined with a simple configuration.
  • FIG. 1 is a diagram illustrating an overview of an elevator system to which a diagnostic device according to a first embodiment is applied.
  • 1 is a schematic cross-sectional diagram of a hoisting machine to which a diagnostic device according to a first embodiment is applied;
  • FIG. 2 is a schematic diagram of a cross section of a first sheave to which the diagnostic device according to the first embodiment is applied.
  • FIG. 1 is a block diagram of a maintenance management system to which the diagnostic device according to the first embodiment is applied.
  • FIG. 2 is a schematic diagram showing the positional relationship between a first sheave, a second sheave, and a main rope to which the diagnostic device according to the first embodiment is applied.
  • FIG. 2 is a flowchart for explaining an overview of a diagnostic operation that the diagnostic device instructs the control panel in the first embodiment.
  • 2 is a flowchart for explaining an overview of a first example of abnormality diagnosis performed by the diagnostic device in the first embodiment.
  • 7 is a flowchart for explaining an overview of a second example of abnormality diagnosis performed by the diagnostic device in the first embodiment.
  • 1 is a hardware configuration diagram of a diagnostic device in Embodiment 1.
  • FIG. 7 is a flowchart for explaining an overview of an operation in which the diagnostic device according to the second embodiment calculates the amount of shaft displacement.
  • FIG. 7 is a schematic cross-sectional diagram of a hoisting machine to which a diagnostic device according to a third embodiment is applied.
  • FIG. 7 is a diagram showing an overview of temperature changes in a bearing to which a diagnostic device in Embodiment 3 is applied.
  • FIG. 3 is a block diagram of a diagnostic device according to a third embodiment.
  • 12 is a flowchart for explaining an overview of a third example of abnormality diagnosis performed by the diagnostic device in Embodiment 3.
  • FIG. 7 is a block diagram of a maintenance management system to which a diagnostic device according to a fourth embodiment is applied.
  • 12 is a flowchart for explaining an overview of learning operations performed by a learning device to which the diagnostic device in Embodiment 4 is applied.
  • 12 is a flowchart for explaining an overview of inference operations performed by the diagnostic device in Embodiment 4.
  • FIG. 1 is a diagram showing an outline of an elevator system to which a diagnostic device according to the first embodiment is applied.
  • a hoistway 1 passes through each floor of a building 2.
  • the machine room 3 is provided directly above the hoistway 1.
  • the plurality of landings 4 are provided on each floor of the building 2.
  • the plurality of landings 4 include a landing 4a on the top floor and a landing 4b on the bottom floor.
  • the hoisting machine 5 is provided in the machine room 3.
  • the hoist 5 includes an electric motor 6, a first sheave 7, a rotating shaft 8, and a plurality of bearings 9.
  • FIG. 1 shows one of the plurality of bearings 9.
  • the electric motor 6 is provided in the machine room 3.
  • the first sheave 7 is a pulley having a rope groove.
  • the first sheave 7 is provided adjacent to the electric motor 6 as a driving sheave.
  • a rotating shaft body 8 is passed through the center of the first sheave 7 .
  • a central portion of the rotating shaft body 8 is fixed to the first sheave 7 .
  • One end of the rotating shaft body 8 is fixed to the electric motor 6.
  • the rotating shaft body 8 may be formed integrally with the first sheave 7.
  • the plurality of bearings 9 rotatably support the rotating shaft body 8.
  • the second sheave 10 is a pulley with a rope groove.
  • the second sheave 10 is provided as a diversion wheel inside the hoistway 1, inside the machine room 3, or at a position spanning the hoistway 1 and the machine room 3.
  • the second sheave 10 is provided at a position separated from the first sheave 7 by a distance x in the horizontal direction.
  • the vertical position of the rotating shaft of the second sheave 10 is a distance y from the vertical position of the first sheave.
  • the rotation axis of the second sheave 10 is parallel to the rotation axis of the first sheave 7.
  • the main rope 11 is wound around the first sheave 7 and the second sheave 10.
  • the main rope 11 is wrapped around the first sheave 7 and the second sheave 10 in a half-wrap manner.
  • the wrapping angle of the main rope 11 with the first sheave 7 is ⁇ .
  • the wrap angle is the central angle corresponding to the arc where the sheave and rope touch.
  • the main rope 11 may be wound around the first sheave 7 and the second sheave 10 in a full wrap manner. In this case, the first sheave 7 and the main rope 11 are in contact with each other by the length of the circular arc corresponding to the central angle obtained by adding ⁇ to the wrapping angle ⁇ .
  • the car 12 is suspended from one end of the main rope 11 on the first sheave 7 side inside the hoistway 1.
  • the car 12 includes a car frame 12a, a car chamber 12b, and a weighing device 12c.
  • the car frame 12a is suspended from the main rope 11.
  • the car chamber 12b is supported by the car frame 12a.
  • the weighing device 12c measures the weight inside the car chamber 12b as the loaded weight of the car 12.
  • the counterweight 13 is suspended from the other end of the main rope 11 inside the hoistway 1 .
  • the rotation angle detection device 14 is an encoder.
  • the rotation angle detection device 14 is attached to the hoisting machine 5.
  • the rotation angle detection device 14 outputs a signal according to the angle at which the rotation shaft body 8 has rotated.
  • the control panel 15 is provided in the machine room 3.
  • the control panel 15 is electrically connected to the electric motor 6, the scale device 12c, and the rotation angle detection device 14.
  • Control panel 15 may provide overall control of the elevator system.
  • the monitoring device 16 is provided in the machine room 3. Monitoring device 16 may obtain information regarding the elevator system from control panel 15 .
  • the monitoring device 16 can grasp the status of the elevator based on information from the control panel 15.
  • the information center device 17 is provided at a location away from the building 2. For example, the information center device 17 is provided at an elevator system maintenance company. Information center device 17 can communicate with monitoring device 16 via a network.
  • the information center device 17 is provided so as to be able to grasp the status of the elevator system based on information from the monitoring device 16.
  • the diagnostic device 20 is provided in the machine room 3.
  • the diagnostic device 20 is electrically connected to the rotation angle detection device 14 , the control panel 15 , and the monitoring device 16 .
  • the electric motor 6 rotates the rotating shaft 8 based on a control command from the control panel 15.
  • the rotating shaft body 8 rotates around the rotating shaft while a vertical load is supported by a plurality of bearings 9 .
  • the first sheave 7 rotates in synchronization with the rotating shaft body 8.
  • the main rope 11 moves following the rotation of the first sheave 7 due to the frictional force between it and the first sheave 7.
  • the car 12 and the counterweight 13 follow the movement of the main rope 11 and move up and down in opposite directions.
  • the rotation angle detection device 14 transmits an angle signal every time the rotation shaft body 8 rotates by a predetermined angle.
  • the control panel 15 operates the car 12 while measuring the position of the car 12 based on information from a plurality of sensors including the angle signal from the rotation angle detection device 14.
  • a diagnostic system, a remote monitoring system, and a maintenance management system are applied to the elevator system in order to keep the bearing 9 in a healthy condition.
  • the diagnostic system includes a rotation angle detection device 14 and a diagnostic device 20.
  • the remote monitoring system also includes a diagnostic system and a monitoring device 16.
  • the maintenance management system includes a remote monitoring system and an information center device 17.
  • Various abnormalities may occur in each of the plurality of bearings 9 as the car 12 operates.
  • the internal shape of the bearing 9 may change due to wear.
  • the rotating shaft body 8 and the bearing 9 may increase in temperature due to frictional heat and may expand.
  • a load is generated between the rotating shaft 8 and the bearing 9 in the rotating shaft direction, which may cause positional deviation or the like.
  • the applied load can shorten the life of the bearing 9.
  • the various abnormalities can be detected by the position of the rotating shaft body 8 in the vertical direction. That is, if the inside of the bearing 9 is worn out, the vertical position of the rotating shaft body 8 may become lower than the reference position. When the rotating shaft body 8 and the bearing 9 thermally expand, the vertical position of the rotating shaft body 8 may become higher than the reference position.
  • the diagnostic device 20 diagnoses an abnormality in the bearing 9 based on the angle signal from the rotation angle detection device 14. Specifically, the diagnostic device 20 calculates the total value of rotation angles, which is the amount of rotation of the rotating shaft body 8, based on the angle signal. For example, the diagnostic device 20 determines the wrapping angle ⁇ based on the total rotation angle of the rotary shaft body 8 calculated when the car 12 moves from the top floor to the bottom floor in a specific section without stopping. Calculate the value of The diagnostic device 20 utilizes the fact that the vertical position of the rotating shaft body 8 can be estimated from the value of the wrapping angle ⁇ , and diagnoses an abnormality in the bearing 9 based on the value of the wrapping angle ⁇ . At this time, the diagnostic device 20 performs abnormality diagnosis, such as the presence or absence of an abnormality, the type of abnormality, and the degree of abnormality.
  • abnormality diagnosis such as the presence or absence of an abnormality, the type of abnormality, and the degree of abnormality.
  • the diagnostic device 20 transmits diagnostic information indicating the result of the abnormality diagnosis to the monitoring device 16.
  • the monitoring device 16 transmits diagnostic information to the information center device 17.
  • the information center device 17 uses the received diagnostic information for maintenance management. Specifically, when the information center device 17 receives diagnostic information indicating that there is an abnormality, it notifies personnel of the maintenance company, such as workers, monitors, and operators, to that effect. Based on the diagnostic information, the information center device 17 estimates the life of the bearing 9 corresponding to the diagnostic information.
  • the information center device 17 creates a maintenance plan including a replacement plan for the bearing 9 based on the estimated lifespan, and notifies maintenance company workers and the like of the maintenance plan.
  • FIG. 2 is a schematic cross-sectional view of a hoisting machine to which the diagnostic device according to the first embodiment is applied.
  • FIG. 3 is a schematic diagram of a main part of a cross section of the first sheave to which the diagnostic device according to the first embodiment is applied.
  • FIG. 2 shows a cross section of the hoist 5 including the first sheave 7 and the rotation axis A of the rotation shaft body 8.
  • the hoist 5 has two bearings 9. Two bearings 9 are arranged on both sides of the first sheave 7, respectively.
  • the bearing 9 includes common types such as deep groove ball bearings, self-aligning ball bearings, angular contact ball bearings, spherical roller bearings, tapered roller bearings, cylindrical roller bearings, toroidal roller bearings, etc. bearings are adopted.
  • a bearing having a gap and a contact angle between an internal rolling element and a moving surface is adopted.
  • the bearing 9 may be a sliding bearing that has an alignment effect.
  • FIG. 3 shows the main part of the cross section of the first sheave 7 including the rotation axis A.
  • the first sheave 7 is shown with the main rope 11 wrapped around it.
  • the first sheave 7 has a plurality of rope grooves 7a.
  • one of the plurality of rope grooves 7a is shown.
  • the bottom portion 7b is a portion that can be regarded as the bottom of the rope groove 7a, assuming that no undercut groove is provided.
  • the sheave diameter D is the diameter of a portion of the sheave that is considered to be the bottom of the rope groove 7a.
  • the rope diameter d is the diameter of the main rope 11.
  • the effective radius Re of the first sheave 7 is calculated as De/2, which is half the effective diameter De.
  • the effective radius Re is the distance from the rotation axis A to the center of the main rope 11 wound around the first sheave 7. That is, the effective radius Re may be calculated by adding up a half value of the sheave diameter D and a half value of the rope diameter d.
  • FIG. 4 is a block diagram of a maintenance management system to which the diagnostic device according to the first embodiment is applied. Note that illustration of the hoist 5 and the car 12 is omitted in FIG. 4 .
  • the diagnostic device 20 includes a storage section 21, a communication section 22, a diagnostic driving command section 23, a rotation angle calculation section 24, a calculation section 25, and a determination section 26.
  • the storage unit 21 stores numerical information necessary for diagnostic operation of the bearing 9.
  • the numerical values stored in the storage unit 21 may be updated at any timing. For example, when the sheave diameter D of the first sheave 7 is measured during inspection, the sheave diameter D stored in the storage unit 21 may be updated to the latest value. For example, when the rope diameter d of the main rope 11 is measured by inspection or update, the rope diameter d stored in the storage unit 21 may be updated to the latest value.
  • the communication unit 22 controls communication between the diagnostic device 20 and external equipment. Specifically, the communication unit 22 receives information from the scale device 12c, the rotation angle detection device 14, and the control panel 15. The communication unit 22 can transmit information to the control panel 15 and the monitoring device 16.
  • the diagnostic operation command unit 23 creates a command to perform a diagnostic operation and sends it to the control panel 15.
  • the diagnostic operation is an operation in which the car 12 travels between the top floor and the bottom floor without stopping.
  • the diagnostic operation may be an operation in which the car 12 is moved back and forth between the top floor and the bottom floor.
  • the diagnostic operation command unit 23 acquires information on the loaded weight measured by the weighing device 12c.
  • the diagnostic operation command unit 23 detects, based on the loaded weight of the car 12, that the car 12 is in a no-load state, which is a state in which there are no people or objects present. For example, when the diagnostic driving command unit 23 detects a no-load state as one of the conditions for performing the diagnostic driving, it transmits a command to the control panel 15 to perform the diagnostic driving. Note that the diagnostic driving command unit 23 may transmit a command to perform diagnostic driving even when the vehicle is not in a no-load state.
  • the rotation angle calculation unit 24 calculates the rotation angle of the rotation shaft body 8 based on the angle signal from the rotation angle detection device 14.
  • the rotation angle calculation unit 24 calculates the total value of rotation angles, which is the amount of rotation when the car 12 travels in a specific section. Specifically, for example, when the car 12 performs a diagnostic operation, the rotation angle calculation unit 24 calculates the total value of rotation angles when the car 12 travels in the section from the top floor to the bottom floor.
  • the calculation unit 25 calculates the amount of shaft displacement, which is the amount of change in the position of the rotating shaft body 8 in the vertical direction, based on the total value of the rotation angles calculated by the rotation angle calculation unit 24.
  • the amount of shaft displacement is the difference in the vertical direction between the position of the rotating shaft 8 calculated from the total value of rotation angles and the position of the rotating shaft 8 serving as a reference. That is, the calculation unit 25 calculates the shaft position, which is the vertical position of the rotating shaft 8, based on the total value of the rotation angles. At this time, the calculation unit 25 calculates the vertical position of the rotation axis A as the shaft position.
  • the calculation unit 25 When calculating the shaft body position, the calculation unit 25 first calculates the wrap angle ⁇ based on the angle signal. The calculation unit 25 calculates the shaft position based on the calculated wrap angle ⁇ .
  • the determination unit 26 determines the abnormality of the bearing 9 using several forms of abnormality diagnosis. For example, when the determination unit 26 performs an abnormality diagnosis, the determination unit 26 causes the communication unit 22 to transmit information on the degree of abnormality indicating the result of the abnormality diagnosis to the monitoring device 16 .
  • the abnormality degree information includes information indicating that an abnormality exists or does not exist in the bearing 9.
  • the information on the degree of abnormality may include information indicating the type of abnormality present in the bearing 9.
  • the information on the degree of abnormality may include information quantitatively indicating the degree of abnormality existing in the bearing 9.
  • the determination unit 26 may calculate the degree of abnormality before determining the abnormality, and determine whether the bearing 9 is abnormal based on the degree of abnormality.
  • the determination unit 26 determines whether the bearing 9 is abnormal based on the total value of the rotation angles calculated by the rotation angle detection device 14. At this time, the determining unit 26 determines whether the bearing 9 is abnormal based on the total value of rotation angles when the car 12 travels in a specific section under prescribed conditions such as a no-load state. For example, if the absolute value of the difference between the total value of rotation angles and the total value of reference rotation angles corresponding to the specified condition exceeds a specified threshold value, the determination unit 26 determines that there is an abnormality in the bearing 9. do.
  • the total value of the reference rotation angles is stored in the storage unit 21 in advance. Note that the total value of the reference rotation angles may be updated in the information stored in the storage unit 21 based on the measured value during maintenance work.
  • the determination unit 26 determines whether the bearing 9 is abnormal based on the amount of shaft displacement that is the calculation result of the calculation unit 25. For example, the determination unit 26 determines that an abnormality exists in the bearing 9 when the absolute value of the difference between the amount of shaft displacement calculated by the calculation unit 25 and the reference amount of shaft displacement exceeds a prescribed threshold value. Further, the determining unit 26 determines whether there is a shape change inside the bearing 9, based on the value of the difference between the amount of shaft displacement calculated by the calculation unit 25 and the reference amount of shaft displacement. It is determined whether there is an abnormality, such as whether the bearing 9 is expanding or whether there is a positional shift in the bearing 9. The value of the reference axial displacement amount is stored in the storage unit 21 in advance.
  • the determining unit 26 determines that the rotating shaft body 8 and the bearing 9 expand, and that the inner ring and outer ring of the bearing 9 are aligned in the direction of the rotating shaft based on the amount of shaft displacement that is the calculation result of the calculating unit 25.
  • the value of the load applied to the bearing 9 due to positional displacement etc. is calculated. This calculation is performed based on the fact that there is a positive correlation between the amount of expansion of the rotating shaft body 8, the increase in the amount of shaft displacement in the vertical direction corresponding to the amount of expansion of the bearing 9, and the applied load.
  • the determination unit 26 determines whether the bearing 9 is abnormal based on the calculated load. For example, the determination unit 26 determines that an abnormality exists in the bearing 9 when the absolute value of the difference between the calculated applied load value and the reference applied load value exceeds a prescribed threshold value.
  • the reference load value is stored in the storage unit 21 in advance.
  • FIG. 5 is a schematic diagram showing the positional relationship between the first sheave, the second sheave, and the main rope to which the diagnostic device according to the first embodiment is applied. Note that illustration of the bearing 9 and the diagnostic device 20 is omitted in FIG.
  • FIG. 5 shows the change in the position of the main rope 11 when the vertical position of the first sheave 7 changes.
  • the first sheave 7 in the standard state immediately after the bearing 9 has been replaced and the main rope 11 at that time are indicated by broken lines.
  • the first sheave 7 and the main rope 11 in a state where the bearing 9 is worn out are shown by dashed lines.
  • the first sheave 7 with the rotating shaft 8 and bearing 9 in an expanded state and the main rope 11 at that time are shown by two-dot chain lines.
  • the distance x is the distance in the horizontal direction from the rotation axis of the second sheave 10 to the rotation axis of the first sheave 7. Even if there is an abnormality in the bearing 9, the distance x can be considered constant.
  • the distance y is the vertical position of the first sheave 7 based on the vertical height position of the rotating shaft of the second sheave 10.
  • the distance y is written as y0 .
  • the distance y is written as y 1 .
  • y 1 is smaller than y 0 .
  • the distance y is described as y2 .
  • y2 is greater than y0 .
  • the wrap angle ⁇ is a central angle corresponding to the arc where the first sheave 7 and the main rope 11 touch in the half-wrap method.
  • the wrapping angle ⁇ is described as ⁇ 0 in the standard state.
  • the wrap angle ⁇ is written as ⁇ 1 .
  • ⁇ 1 is smaller than ⁇ 0 .
  • the wrap angle ⁇ is written as ⁇ 2 .
  • ⁇ 2 is greater than ⁇ 0 .
  • the axial displacement amount h is the value obtained by subtracting y0 from the distance y in a certain state.
  • the amount of shaft displacement h 1 when the bearing 9 is worn is y 1 ⁇ y 0 .
  • h 1 is a negative value, but in FIG. 5, the absolute value of h 1 is shown for convenience of illustration.
  • the shaft displacement amount h 2 when the bearing 9 is expanded is y 2 -y 0 .
  • Equation (2) that represents the relationship between the amount of shaft displacement h and the wrapping angle ⁇ is derived.
  • the axial displacement amount h can be calculated based on the wrapping angle ⁇ .
  • is the friction coefficient between the main rope 11 and the rope groove 7a.
  • K is a groove coefficient corresponding to the shape of the rope groove 7a.
  • C1 is a coefficient expressing the amount of slip during upward operation.
  • C 1 changes depending on the tension of the main rope 11. That is, C 1 is a function of the value of the loaded weight of the car 12.
  • the value of r is a constant determined depending on the roping method of the elevator system. That is, the value of r differs depending on the method such as 1:1 roping, 2:1 roping, etc.
  • X is the distance that the car 12 has moved.
  • Re is the effective radius of the first sheave 7.
  • C2 is a coefficient expressing the amount of slip during descending operation. C2 changes depending on the tension of the main rope 11. That is, C 2 is a function of the value of the car 12's loaded weight. C3 is a coefficient expressing the amount of elongation of the rope. C 3 is a function of the value of the car 12's loaded weight.
  • the storage unit 21 stores the values of constants i, x, y 0 , r, X, Re, C 1 , C 2 , and C 3 included in equations (1) to (5). . At this time, the storage unit 21 stores the latest values of each constant corresponding to the hoisting machine 5.
  • the moving distance X of the car 12 is stored in association with a specific section. Note that the diagnostic device 20 may obtain from the control panel 15 a measured value of the distance traveled during the diagnostic operation as the travel distance X.
  • the rotation angle calculation unit 24 calculates the total value ⁇ up or ⁇ dn of the rotation angle of the first sheave 7 in accordance with the operation of the car 12.
  • the calculation unit 25 uses the constants and functions stored in the storage unit 21 and the total rotation angle calculated by the rotation angle calculation unit 24 to calculate the equation (4). ) or formula (5), the wrap angle ⁇ corresponding to the total value of the rotation angles is calculated.
  • the calculation unit 25 calculates the shaft displacement amount h based on equation (2) using the coefficients stored in the storage unit 21 and the calculated wrap angle ⁇ .
  • the determination unit 26 determines whether the bearing 9 is abnormal based on the total value ⁇ up or ⁇ dn of the rotation angles calculated by the rotation angle calculation unit 24 .
  • the reason why it is possible to determine whether there is an abnormality in the bearing 9 from the total value of the rotation angle is that if the coefficients This is because it becomes a value.
  • the determining unit 26 determines whether the bearing 9 is abnormal based on the shaft displacement amount h calculated by the calculating unit 25.
  • the determination unit 26 calculates the value of the load generated in the bearing 9 based on the shaft displacement amount h calculated by the calculation unit 25.
  • the bearing 9 is a rolling bearing
  • the expansion of the rotating shaft body 8 causes the positions of the inner ring and outer ring of the bearing 9 to shift in the rotating shaft direction. With this positional shift, the contact angle of the rolling elements changes, and the rotating shaft body 8 becomes tensed, thereby increasing the load applied to the rolling elements.
  • the load generated on the bearing 9 due to positional changes, elastic deformation, etc. of the rolling elements is expressed as a load value.
  • the determination unit 26 calculates the value of the applied load by applying the axial displacement amount h to the function for calculating the applied load stored in the storage unit 21.
  • the function for calculating the applied load is a function of the shaft displacement amount h.
  • the determination unit 26 determines whether the bearing 9 is abnormal based on the value of the applied load. For example, the determining unit 26 determines that there is an abnormality in the bearing 9 in which the value of the applied load increases by comparing it with the reference applied load. Note that the determination unit 26 may quantitatively reflect the influence of the load on the bearing 9 in the value of the degree of abnormality.
  • FIG. 6 is a flowchart for explaining the outline of the diagnostic operation that the diagnostic device instructs the control panel in the first embodiment.
  • the specific section in the diagnostic operation is the section from the top floor landing 4a to the bottom floor landing 4b.
  • the specific section may be selected from the top floor to the bottom floor.
  • the diagnostic device 20 starts the operation of the flowchart after confirming that no person or object is loaded in the car 12 using information from the weighing device 12c.
  • step S001 the diagnostic device 20 transmits a command to the control panel 15 to perform a diagnostic operation.
  • the control panel 15 starts diagnostic operation.
  • step S002 the car 12 moves from the current landing 4 to the bottom floor landing 4b.
  • step S003 the operation of step S003 is performed.
  • the car 12 moves to the landing 4a on the top floor without stopping.
  • the transition of the moving speed during the diagnostic operation of the flowchart is similar to the transition of the moving speed of the car during the diagnostic operation of a general elevator system.
  • the car 12 arrives at the landing 4a on the top floor.
  • the diagnostic device 20 calculates the total value ⁇ up of the rotation angles by which the rotary shaft body 8 rotated during the upward operation of the car 12 in step S003.
  • step S004 the operation of step S004 is performed.
  • the car 12 moves to the lowest floor landing 4b without stopping.
  • the car 12 arrives at the landing 4b on the lowest floor.
  • the diagnostic device 20 calculates the total value ⁇ dn of the rotation angles by which the rotary shaft body 8 rotated during the downward operation of the car 12 in step S004.
  • step S005 the diagnostic device 20 uses the calculated rotation angle total values ⁇ up and ⁇ dn to determine an abnormality in the bearing 9 as an abnormality diagnosis. At this time, the diagnostic device 20 determines whether the bearing 9 is abnormal using the average value of the total rotation angle values ⁇ up and ⁇ dn . Note that the diagnostic device 20 may determine whether the bearing 9 is abnormal using at least one of the rotation angle total values ⁇ up and ⁇ dn .
  • the diagnostic device 20 ends the operation of the flowchart.
  • FIG. 7 is a flowchart for explaining an overview of a first example of abnormality diagnosis performed by the diagnostic apparatus in the first embodiment.
  • the diagnostic device 20 starts the abnormality diagnosis shown in FIG. 7 after the diagnostic operation. Note that, even if the diagnostic device 20 does not perform the diagnostic operation, if it detects that the car 12 has moved through a specific section, it may perform the abnormality diagnosis.
  • step S101 the diagnostic device 20 detects that the car 12 has moved in a specific section.
  • step S102 the diagnostic device 20 detects that the first sheave 7 has stopped based on information such as the angle signal from the rotation angle detection device 14.
  • step S103 the rotation angle calculation unit 24 of the diagnostic device 20 calculates the total value ⁇ i of rotation angles caused by the movement of the car 12 in a specific section. Note that ⁇ i is calculated from at least one of ⁇ up and ⁇ dn .
  • step S104 the determining unit 26 of the diagnostic device 20 determines whether the absolute value of the difference between the calculated total value ⁇ i of rotation angles and the reference total value ⁇ 0 of rotation angles exceeds a threshold value. That is, it is determined whether "
  • step S104 if "
  • step S105 the determination unit 26 determines that there is no abnormality in the bearing 9, that is, it is normal.
  • the determination unit 26 creates information on the degree of abnormality including the fact that there is no abnormality and the value of "
  • the diagnostic device 20 transmits information on the diagnostic results to the monitoring device 16.
  • the diagnostic device 20 ends the abnormality diagnosis.
  • step S104 if "
  • step S106 the determination unit 26 determines that there is an abnormality in the bearing 9.
  • the determination unit 26 creates information on the degree of abnormality including the fact that there is an abnormality and the value of "
  • the diagnostic device 20 transmits information on the diagnostic results to the monitoring device 16.
  • step S107 the monitoring device 16 transmits information on the diagnosis result to the information center device 17.
  • the information center device 17 displays information on the diagnosis results to maintenance company workers and the like.
  • the information center device 17 creates a maintenance inspection plan for the elevator system based on the information of the diagnosis results.
  • FIG. 8 is a flowchart for explaining an overview of a second example of abnormality diagnosis performed by the diagnostic apparatus in the first embodiment.
  • the diagnostic device 20 starts the abnormality diagnosis shown in FIG. 8 after the diagnostic operation. Note that, even if the diagnostic device 20 does not perform the diagnostic operation, if it detects that the car 12 has moved through a specific section, it may perform the abnormality diagnosis.
  • step S201 to step S203 are the same as the operations performed from step S101 to step S103 in the flowchart of FIG.
  • step S204 the calculation unit 25 of the diagnostic device 20 calculates the axial displacement amount h i based on the total rotation angle value ⁇ i calculated in step S203.
  • step S205 the determination unit 26 of the diagnostic device 20 determines whether the absolute value of the difference between the calculated shaft displacement amount hi and the reference shaft displacement amount h0 exceeds a threshold value. That is, it is determined whether "
  • step S205 if "
  • step S206 the determination unit 26 determines that there is no abnormality in the bearing 9, that is, it is normal.
  • the determination unit 26 creates information on the degree of abnormality including the fact that there is no abnormality and the value of "
  • the diagnostic device 20 transmits information on the diagnostic results to the monitoring device 16.
  • the diagnostic device 20 ends the abnormality diagnosis.
  • step S205 if "
  • step S207 the determining unit 26 determines that there is an abnormality in the bearing 9.
  • the determination unit 26 creates abnormality degree information including the fact that there is an abnormality and the value of "
  • the diagnostic device 20 transmits information on the diagnostic results to the monitoring device 16.
  • step S208 the monitoring device 16 transmits information on the diagnosis result to the information center device 17.
  • the information center device 17 displays information on the diagnosis results to the maintenance company workers.
  • the information center device 17 creates a maintenance inspection plan for the elevator system based on the information of the diagnosis results.
  • the determination unit 26 determines that the abnormality in the bearing 9 is due to an internal shape change or thermal expansion of the rotating shaft body 8 and the bearing 9, based on the difference between the value of h i and the value of h 0 . It may be determined that For example, when the difference between the value of h i and the value of h 0 becomes a negative value, the determination unit 26 may determine that an internal shape change has occurred in the bearing 9. When the difference between the value of h i and the value of h 0 is a positive value, the determination unit 26 may determine that thermal expansion is occurring in the rotating shaft body 8 and the bearing 9.
  • the determination unit 26 may create abnormality degree information including the difference between the value of h i and the value of h 0 .
  • the information center device 17 may analyze the transition of the difference. Specifically, the information center device 17 may analyze that the wear of the bearing 9 is progressing based on the trend that the difference is a negative value and is decreasing.
  • the third example of abnormality diagnosis is similar to that shown in FIG. 8 except that the determination unit 26 calculates the applied load and the determination unit 26 determines the abnormality of the bearing 9 based on the applied load. Almost the same operation as in the flowchart is performed.
  • the diagnostic device 20 includes the rotation angle calculation section 24 and the determination section 26.
  • the diagnostic device 20 determines whether there is an abnormality in the bearing 9 based on the total value of the rotation angles of the first sheave 7 calculated when the car 12 travels in a specific section.
  • a device that outputs an angle signal indicating the rotation angle of the first sheave 7 is provided in a general elevator system. Therefore, an abnormality in the bearing 9 can be determined with a simple configuration without attaching an additional device to the hoisting machine 5.
  • the diagnostic system also includes a rotation angle detection device 14 and a diagnostic device 20.
  • an abnormality in the bearing 9 is determined based on information on the total value of the rotation angles of the first sheave 7. Therefore, an abnormality in the bearing 9 can be determined with a simple configuration.
  • the remote monitoring system includes a diagnostic system and a monitoring device 16.
  • the monitoring device 16 can transmit information indicating the diagnosis result of the diagnostic device 20 to the outside. Therefore, abnormalities in the bearing 9 can be transmitted to the outside.
  • the maintenance management system also includes a diagnostic system, a monitoring device 16, and an information center device 17.
  • the information center device 17 creates a maintenance plan based on the diagnosis results of the diagnostic device 20. Therefore, it is possible to diagnose an abnormality in the bearing 9 from a remote location and create a plan for replacement or the like based on the diagnosis result. As a result, the labor required for inspection can be reduced.
  • the diagnostic device 20 also includes a calculation section 25.
  • the diagnostic device 20 calculates the amount of shaft displacement and determines whether the bearing 9 is abnormal based on the amount of shaft displacement. Therefore, abnormalities caused by changes in the shape of the bearing 9 can be determined. As a result, the accuracy of abnormality diagnosis can be improved.
  • the diagnostic device 20 calculates the wrapping angle ⁇ of the main rope 11 with respect to the first sheave 7, and calculates the amount of shaft displacement based on the wrapping angle ⁇ . At this time, the diagnostic device 20 calculates the value of the shaft displacement amount h based on equation (2). Therefore, the amount of axial displacement can be calculated based on the geometric relationship of the configuration in the elevator system.
  • the diagnostic device 20 calculates the value of the wrap angle ⁇ using equations (4) and (5). Therefore, the amount of shaft displacement can be calculated based on the actual traction capacity.
  • the diagnostic device 20 determines that there is an abnormality in which the internal shape of the bearing 9 is changing based on the amount of shaft displacement.
  • the internal shape of the bearing 9 may be caused by wear, damage, etc. Therefore, the type of abnormality in the bearing 9 can be determined.
  • the diagnostic device 20 calculates the value of the load generated on the bearing 9.
  • the diagnostic device 20 determines that there is an abnormality in which the applied load value is increasing. Therefore, the type of abnormality in the bearing 9 can be determined.
  • an increase in the load value is a phenomenon that shortens the life of the bearing 9, but it is not a direct abnormality such as wear of the bearing 9, and is difficult to inspect. Diagnostic device 20 is capable of determining such types of abnormalities.
  • the diagnostic device 20 determines the type of abnormality in the bearing 9 based on the difference between the calculated amount of shaft displacement and the reference value of the amount of shaft displacement.
  • the reference value for the amount of shaft displacement may be set arbitrarily. For example, the amount of shaft displacement calculated immediately after inspection by a worker may be set as the reference value of the amount of shaft displacement. Therefore, the accuracy of determining the type of abnormality can be improved.
  • the diagnostic device 20 is based on the total value of rotation angles calculated when the car 12 is operated back and forth between the top floor and the bottom floor without stopping as a specific section, that is, when the car 12 is operated up and down. Then, the abnormality of the bearing 9 is determined. An abnormality in the bearing 9 is determined based on an estimation of the amount of slippage between the main rope 11 and the first sheave 7. By using the total value of rotation angles when the car 12 operates from the top floor to the bottom floor without stopping, the accuracy of abnormality diagnosis of the bearing 9 can be improved.
  • the diagnostic device 20 further includes a diagnostic driving command section 23.
  • the diagnostic device 20 causes the control panel 15 to perform a diagnostic operation when detecting a no-load state in which no object exists inside the car 12.
  • the amount of slip between the main rope 11 and the first sheave 7 is affected by the loaded weight of the car 12.
  • the diagnostic device 20 can perform an abnormality diagnosis under conditions that exclude uncertain factors such as usage status by the user. As a result, the accuracy of abnormality diagnosis can be improved.
  • the value stored in the storage unit 21 may be updated at any timing.
  • each reference value stored in the storage unit 21 may be updated.
  • the information center device 17 may transmit the updated reference value information to the diagnostic device 20 via the monitoring device 16. In this case, the diagnostic device 20 causes the storage unit 21 to newly store the updated reference value.
  • the determination unit 26 may create information on the degree of abnormality and determine whether the bearing 9 is abnormal based on the degree of abnormality. Specifically, in the first example of the abnormality diagnosis, the determination unit 26 may create information on the degree of abnormality based on the total value of the rotation angles. The degree of abnormality may include an abnormality determination value corresponding to the total value of rotation angles. In the second example of abnormality diagnosis, the determination unit 26 may create information on the degree of abnormality based on the amount of shaft displacement. The degree of abnormality may include an abnormality determination value corresponding to the value of the amount of shaft displacement. In the third example of abnormality diagnosis, the determination unit 26 may create information on the degree of abnormality based on the applied load. The degree of abnormality may include an abnormality determination value corresponding to the value of applied load. In either example, the determination unit 26 may determine that the bearing 9 is abnormal when the abnormality determination value of the degree of abnormality exceeds a prescribed threshold value.
  • the diagnostic device 20 may be applied to an elevator system without a machine room or an elevator system in which a machine room is provided at the bottom of the hoistway.
  • the formula used when calculating the amount of shaft displacement from the total value of rotation angles may be appropriately selected based on the positional relationship between the first sheave, the second sheave, and the main rope.
  • the diagnostic device 20 and the monitoring device 16 may be provided inside the hoistway.
  • FIG. 9 is a hardware configuration diagram of the diagnostic device in the first embodiment.
  • Each function of the diagnostic device 20 can be realized by a processing circuit.
  • the processing circuit includes at least one processor 100a and at least one memory 100b.
  • the processing circuitry includes at least one dedicated hardware 200.
  • each function of the diagnostic device 20 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of software and firmware is stored in at least one memory 100b. At least one processor 100a realizes each function of the diagnostic device 20 by reading and executing a program stored in at least one memory 100b. At least one processor 100a is also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP.
  • the at least one memory 100b is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, etc., a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, etc.
  • the processing circuitry comprises at least one dedicated hardware 200
  • the processing circuitry may be implemented, for example, in a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. Ru.
  • each function of the diagnostic device 20 is realized by a processing circuit.
  • each function of the diagnostic device 20 is realized by a processing circuit.
  • each function of the diagnostic device 20 some parts may be realized by dedicated hardware 200, and other parts may be realized by software or firmware.
  • the function of calculating the total value of rotation angles is realized by a processing circuit as dedicated hardware 200, and the functions other than the function of calculating the total value of rotation angles are realized by at least one processor 100a using at least one memory. It may also be realized by reading and executing a program stored in the computer 100b.
  • the processing circuit realizes each function of the diagnostic device 20 using the hardware 200, software, firmware, or a combination thereof.
  • each function of the monitoring device 16 is also realized by a processing circuit equivalent to the processing circuit that realizes each function of the diagnostic device 20.
  • each function of the information center device 17 is also realized by a processing circuit equivalent to a processing circuit that realizes each function of the diagnostic device 20.
  • FIG. 10 is a flowchart for explaining an overview of the operation of the diagnostic device according to the second embodiment to calculate the amount of shaft displacement. Note that parts that are the same as or equivalent to those in Embodiment 1 are given the same reference numerals. Description of this part will be omitted.
  • the calculation unit 25 calculates the shaft displacement amount h by further using the value of the loaded weight of the car 12 measured by the weighing device 12c.
  • the calculation unit 25 uses the value of the loaded weight of the car 12 to calculate the coefficients C 1 , C 2 , and C 3 in equations (4) and (5). Correct each value. Since the coefficients C 1 , C 2 , and C 3 are all functions of the value of the loaded weight, each has a numerical value corresponding to the value of the loaded weight measured by the weighing device 12c. The calculation unit 25 calculates the wrap angle ⁇ using the corrected coefficients C 1 , C 2 , and C 3 . The calculation unit 25 calculates the shaft displacement amount h using the calculated wrap angle ⁇ .
  • FIG. 10 shows a flowchart of the operation in which the calculation unit 25 calculates the shaft displacement amount h by performing correction based on the loaded weight.
  • step S301 to step S303 are similar to the operations performed from step S201 to step S203 in the flowchart of FIG.
  • step S304 the diagnostic device 20 acquires information on the loaded weight of the car 12 when the car 12 moves in a specific section from the weighing device 12c. Note that the diagnostic device 20 may acquire the information in step S301.
  • the calculation unit 25 of the diagnostic device 20 corrects the values of the coefficients C 1 , C 2 , and C 3 based on the value of the loaded weight.
  • step S305 the calculation unit 25 calculates the shaft displacement amount h using the total rotation angle value ⁇ i and the corrected coefficients C 1 , C 2 , and C 3 .
  • the diagnostic device 20 performs various abnormality diagnoses using the shaft displacement amount h.
  • the diagnostic device 20 calculates the wrap angle ⁇ based on the information on the loaded weight of the car 12 and the total value of the rotation angle. Therefore, the diagnostic device 20 can perform an abnormality diagnosis even when the car 12 is occupied by a person or the like. As a result, the diagnostic device 20 can perform abnormality diagnosis when the elevator system is in normal operation, rather than during special operation.
  • the calculation unit 25 calculates the corrected shaft displacement amount h′. good. In this case, the calculation unit 25 does not correct the values of the coefficients C 1 , C 2 , and C 3 when calculating the axial displacement amount h.
  • the calculation unit 25 may calculate a correction coefficient corresponding to the value of the loaded weight of the car 12, and calculate the corrected shaft displacement amount h' by integrating the correction coefficient and the shaft displacement amount h. .
  • FIG. 11 is a schematic cross-sectional view of a hoisting machine to which the diagnostic device according to the third embodiment is applied.
  • FIG. 12 is a diagram showing an overview of temperature changes in a bearing to which the diagnostic device according to the third embodiment is applied. Note that parts that are the same as or equivalent to those in Embodiment 1 or 2 are given the same reference numerals. Description of this part will be omitted.
  • the bearing 9 is provided with a bearing temperature measuring device 30.
  • the bearing temperature measuring device 30 may be provided adjacent to the bearing 9 in the direction of the rotation axis.
  • the bearing temperature measuring device 30 measures the temperature of the bearing 9.
  • Bearing temperature measuring device 30 may transmit the measured temperature to diagnostic device 20 .
  • FIG. 12 shows an example of a graph showing the change in temperature of the bearing 9 over time.
  • the vertical axis is the bearing temperature of the bearing 9 measured by the bearing temperature measuring device 30.
  • the horizontal axis is time.
  • the horizontal axis shows a period of one week.
  • the operating rate of the hoisting machine 5 is high during the time period from 7:00 to 18:00.
  • the bearing temperature increases or decreases in correspondence with the operating rate. For example, on weekdays, the temperature of the bearing 9 tends to rise from around 7:00. The bearing temperature continues to rise until around 18:00. After that, the operating rate drops rapidly, so the bearing temperature drops and continues to drop until around 7:00 the next day. The bearing temperature repeatedly rises and falls in such a cycle.
  • bearing temperature changes differs depending on the installation location, such as commercial facilities and residential condominiums. Furthermore, the value of the bearing temperature varies depending on the season due to the influence of the outside temperature.
  • the bearing 9 expands. At this time, the temperature of the rotating shaft body 8 rises together with the bearing 9. The rotating shaft body 8 expands together with the bearing 9. Therefore, the bearing temperature affects the load generated on the bearing 9.
  • FIG. 13 is a block diagram of a diagnostic device according to the third embodiment. Note that in FIG. 13, illustration of the hoisting machine 5 is omitted.
  • the diagnostic system further includes a bearing temperature measuring device 30. As shown in FIG. 13, the diagnostic device 20 acquires bearing temperature information from the bearing temperature measuring device 30.
  • the load function stored in the storage unit 21 of the third embodiment is a function of the shaft displacement amount h and the bearing temperature.
  • the determination unit 26 When calculating the applied load, the determination unit 26 reflects the current bearing temperature acquired from the bearing temperature measuring device 30 in the calculation result. Specifically, the determination unit 26 calculates the value of the applied load by inputting the shaft displacement amount h calculated by the calculation unit 25 and the bearing temperature measured by the bearing temperature measurement device 30 into the applied load function. do. The applied load value has higher accuracy than the applied load value calculated in the first embodiment. The determination unit 26 determines whether the bearing 9 is abnormal based on the load value whose accuracy is improved depending on the bearing temperature.
  • FIG. 14 is a flowchart for explaining an overview of a third example of abnormality diagnosis performed by the diagnostic apparatus according to the third embodiment.
  • step S401 to step S404 are similar to the operations performed from step S201 to step S204 in the flowchart of FIG.
  • step S404 After the operation in step S404, the operation in step S405 is performed.
  • step S405 the determination unit 26 acquires bearing temperature information from the bearing temperature measuring device 30.
  • step S406 the determination unit 26 calculates the applied load based on the shaft displacement amount h calculated in step S404 and the acquired bearing temperature.
  • step S407 the determining unit 26 determines whether the bearing 9 is abnormal based on the applied load value. Specifically, the determination unit 26 determines whether the calculated load value exceeds a prescribed threshold value.
  • step S407 if the applied load value does not exceed the prescribed threshold value, the operation in step S408 is performed.
  • step S408 the determination unit 26 determines that there is no abnormality in the bearing 9, that is, it is normal.
  • the determination unit 26 creates information on the degree of abnormality that includes the fact that there is no abnormality and the value of the calculated load as information on the diagnosis result.
  • the diagnostic device 20 transmits information on the diagnostic results to the monitoring device 16. The diagnostic device 20 ends the abnormality diagnosis.
  • step S407 if the load value exceeds the prescribed threshold, the operation in step S409 is performed.
  • step S409 the determining unit 26 determines that there is an abnormality in the bearing 9.
  • the determination unit 26 creates information on the degree of abnormality that includes the fact that there is an abnormality and the calculated load value as information on the diagnosis result.
  • the diagnostic device 20 transmits information on the diagnostic results to the monitoring device 16. The diagnostic device 20 ends the abnormality diagnosis.
  • step S410 the monitoring device 16 transmits information on the diagnosis result to the information center device 17.
  • the information center device 17 displays information on the diagnosis results to maintenance company workers and the like.
  • the information center device 17 creates a maintenance inspection plan for the elevator system based on the information of the diagnosis results.
  • the information center device 17 may perform a lifespan diagnosis of the bearing 9.
  • the diagnostic device 20 calculates the applied load based on the measured value of the temperature of the bearing 9 and the amount of shaft displacement. Therefore, the accuracy of abnormality diagnosis can be improved.
  • the determination unit 26 may estimate the amount of expansion of the bearing 9 based on the measured value of the temperature of the bearing 9. In this case, the determination unit 26 calculates a corrected shaft displacement amount by removing the influence of the expansion amount of the rotating shaft body 8 and bearing 9 from the value of the shaft displacement amount calculated by the calculation unit 25, and adds The applied load may be calculated based on this. Therefore, the state of the internal shape of the bearing 9 can be determined with higher accuracy.
  • the reference value of the shaft displacement amount may be selected depending on the time period in which the total value of the rotation angles is calculated. As shown in FIG. 12, the temperature of the bearing 9 is lowest in the morning. That is, the total value of the rotation angles is calculated in the morning, and the calculated value of the amount of shaft displacement is the value of the amount of shaft displacement in a state where the amount of expansion of the rotating shaft body 8 and the bearing 9 is the smallest.
  • the determination unit 26 may set the value of the shaft displacement amount calculated in the morning as the reference value of the shaft displacement amount. The determination unit 26 can accurately calculate the expansion amount of the rotating shaft body 8 and the bearing 9 by subtracting the reference value from the value of the shaft displacement amount calculated in the evening.
  • FIG. 15 is a block diagram of a maintenance management system to which the diagnostic device according to the fourth embodiment is applied. Note that the same or corresponding parts as those in Embodiment 1 to Embodiment 3 are given the same reference numerals. Description of this part will be omitted.
  • a learned model that infers the amount of shaft displacement is created by supervised machine learning.
  • the amount of axial displacement is inferred by the learning model.
  • the diagnostic device 20 diagnoses an abnormality in the bearing 9 based on the inferred amount of shaft displacement.
  • the information center device 17 further includes a learning device 40.
  • the learning device 40 includes a learning information acquisition section 41 and a model generation section 42.
  • the learning information acquisition unit 41 acquires learning information for performing learning from the control panel 15 and the diagnostic device 20 via the monitoring device 16.
  • the learning information acquisition unit 41 accumulates the acquired information.
  • the learning information includes the total value of rotation angles calculated by the rotation angle calculation unit 24 when the car 12 moves in a specific section, and the amount of shaft displacement calculated by the calculation unit 25 based on the total value of the rotation angles. , is information in which the departure floor of the specific section, the arrival floor of the specific section, and the loaded weight of the car 12 that moved in the specific section are associated with each other.
  • the learning information may include even more information.
  • the learning information may include at least one of the date, day of the week, and time zone in which the total value of rotation angles was calculated.
  • the learning information may include at least one of daily usage frequency, daily cumulative mileage, and daily cumulative rotation angle on the day when the total rotation angle value was calculated.
  • the learning information may include at least one of the temperature of the hoist and the temperature of the machine room on the day when the total value of the rotation angles was calculated.
  • the learning information may include information in which the amount of shaft displacement calculated by the diagnostic device 20 is associated with the amount of shaft displacement actually measured by the displacement measuring device.
  • the model generation unit 42 performs learning based on the learning information acquired by the learning information acquisition unit 41 and generates a learned model. At this time, the model generation unit 42 performs learning using a commonly used supervised machine learning method. The model generation unit 42 stores information about the generated trained model. The model generation unit 42 transmits information about the generated learned model.
  • the learned model includes the total value of the rotation angles calculated by the rotation angle calculation unit 24 when the car 12 moves in a specific section, the departure floor of the specific section, the arrival floor of the specific section, and the This is a model that uses as input information the loaded weight of the car 12 that has moved over a specific section.
  • the learned model is a model whose output information is an inferred value of the amount of axial displacement in response to input information. That is, the learned model is a model that outputs the amount of axial displacement in place of the calculation unit 25.
  • the diagnostic device 20 further includes a model storage section 43, an information acquisition section 44, and an inference section 45.
  • the model storage unit 43 stores information on learned models.
  • the model storage unit 43 receives learned model information from the model generation unit 42 and stores the latest learned model information.
  • the information acquisition unit 44 acquires information to be input to the learned model. Specifically, the information acquisition unit 44 acquires information corresponding to the input information from the control panel 15 and the rotation angle calculation unit 24, and associates the information with the input information. For example, the information acquisition unit 44 acquires information corresponding to input information when diagnostic driving is performed.
  • the information acquisition unit 44 acquires the corresponding input information.
  • the inference unit 45 uses the learned model stored in the model storage unit 43 to infer the amount of axial displacement from the information acquired by the information acquisition unit 44.
  • the determination unit 26 diagnoses an abnormality in the bearing 9 based on the amount of shaft displacement inferred by the inference unit 45. That is, the determination unit 26 performs abnormality diagnosis using the axial displacement amount inferred by the inference unit 45 instead of the axial displacement amount calculated by the calculation unit 25. At this time, the determination unit 26 creates information on the degree of abnormality based on the amount of shaft displacement inferred by the inference unit 45.
  • the determination unit 26 may further perform the abnormality diagnosis using the shaft displacement amount calculated by the calculation unit 25.
  • the determination section 26 compares the degree of abnormality based on the amount of shaft displacement inferred by the inference section 45 and the degree of abnormality based on the amount of shaft displacement calculated by the calculation section 25, and uses the result as the diagnosis result of the abnormality diagnosis. You can also output it as Further, the determination unit 26 corrects the degree of abnormality based on the amount of shaft displacement calculated by the calculation unit 25 with the degree of abnormality based on the amount of shaft displacement inferred by the inference unit 45, and outputs the result as the diagnosis result of the abnormality diagnosis. You may.
  • FIG. 16 is a flowchart for explaining an overview of the learning operation performed by the learning device to which the diagnostic device according to the fourth embodiment is applied.
  • step S501 the learning information acquisition unit 41 of the learning device 40 acquires and accumulates learning information.
  • the learning information acquisition unit 41 may acquire and accumulate learning information at any timing, regardless of the learning operation.
  • step S502 the model generation unit 42 of the learning device 40 performs supervised learning processing using the learning information to generate a learned model.
  • step S503 the model generation unit 42 stores the trained model.
  • the model generation unit 42 transmits the learned model to the diagnostic device 20 via the monitoring device 16.
  • the learning device 40 ends the learning operation.
  • the learning operation of the learning device 40 may be performed at any timing. Specifically, the learning operation is performed at predetermined intervals. The learning operation is performed after the sheave diameter or the diameter of the main rope 11 is inspected during maintenance inspection, based on the learning information accumulated after the inspection.
  • the learning information used in the learning operation may be differentiated and used according to the time period in which the total value of the rotation angles was calculated.
  • the learning information acquisition unit 41 accumulates learning information acquired in the morning, when the temperature of the bearing 9 is low, as the first learning information.
  • the learning information acquisition unit 41 accumulates learning information acquired in the afternoon, when the temperature of the bearing 9 is higher than in the morning, as second learning information.
  • the model generation unit 42 separately creates a learned model based on the first learning information and a learned model based on the second learning information.
  • the model generation unit 42 distinguishes and manages a trained model created based on the first learning information and a trained model created based on the second learning information.
  • FIG. 17 is a flowchart for explaining an overview of the inference operation performed by the diagnostic device in the fourth embodiment.
  • the diagnostic device 20 infers the amount of shaft displacement when diagnosing an abnormality. For example, after a diagnostic operation is performed, the diagnostic device 20 infers the amount of shaft displacement.
  • step S601 the information acquisition unit 44 acquires input information to be input to the learned model.
  • step S602 the inference unit 45 inputs the input information to the learned model.
  • the inference unit 45 performs output processing of the learned model.
  • step S603 the inference unit 45 infers the amount of axial displacement based on the learned model and outputs it as output information.
  • step S604 the determination unit 26 determines whether the bearing 9 is abnormal based on the amount of shaft displacement output by the inference unit 45.
  • the diagnostic device 20 completes the inference operation. After that, the diagnostic device 20 continues the abnormality diagnosis.
  • the maintenance management system includes the rotation angle calculation section 24, the calculation section 25, the learning information acquisition section 41, and the model generation section 42.
  • the maintenance management system creates a learned model that outputs the amount of shaft displacement by inputting information such as the total value of the rotation angle of the first sheave 7 calculated by the rotation angle calculation unit 24.
  • the output shaft displacement amount can be used to determine whether the bearing 9 is abnormal. That is, the abnormality of the bearing 9 can be determined based on the total value of the rotation angles. Therefore, the maintenance management system can determine the abnormality of the bearing 9 with a simple configuration.
  • the diagnostic device 20 also includes a model storage section 43 and an inference section 45.
  • the diagnostic device 20 infers the amount of axial displacement from the total value of the rotation angles based on the learned model.
  • the diagnostic device 20 determines whether the bearing 9 is abnormal based on the inferred amount of shaft displacement. Therefore, an abnormality in the bearing 9 can be determined with a simple configuration. Further, since it is not necessary to calculate the amount of axial displacement each time, the amount of calculation by the diagnostic device 20 can be reduced. Furthermore, since the diagnostic device 20 performs inference based on the learned model, it is possible to perform edge processing and the like and perform inference with higher accuracy compared to when inference is performed by the information center device 17 or the like.
  • the learned model may be a model that outputs the value of the wrapping angle instead of the amount of axial displacement.
  • the inference unit 45 uses the learned model stored in the model storage unit 43 to infer the value of the wrap angle from the information acquired by the information acquisition unit 44.
  • each function of the learning device 40 is realized by a processing circuit equivalent to the processing circuit that realizes each function of the diagnostic device 20.
  • the diagnostic device 20 may include each function of the learning device 40.
  • each function of the learning device 40 may be provided not in the information center device 17 but in a cloud server or the like.
  • the diagnostic device according to the present disclosure can be used in an elevator system.

Abstract

Provided are a diagnosis device, a diagnosis system, a remote monitoring system, and a maintenance system capable of determining abnormality in a bearing using a simple configuration. This diagnosis device diagnoses abnormality in a bearing in an elevator system. The elevator system comprises: a hoisting machine having a first sheave, an electric motor that rotates the first sheave by means of a rotary shaft, and a bearing that supports the rotary shaft; a second sheave; a main rope wound around the first sheave and the second sheave; and a car suspended by the main rope. The diagnosis device comprises a rotation angle calculation unit that calculates a total value of rotation angle by which the first sheave has rotated, and a determination unit that determines abnormality in the bearing on the basis of the total value of rotation angle calculated by the rotation angle calculation unit when the car ran in a specific section.

Description

診断装置、診断システム、遠隔監視システムおよび保守管理システムDiagnostic equipment, diagnostic systems, remote monitoring systems and maintenance management systems
 本開示は、診断装置、診断システム、遠隔監視システムおよび保守管理システムに関する。 The present disclosure relates to a diagnostic device, a diagnostic system, a remote monitoring system, and a maintenance management system.
 特許文献1は、軸受の診断装置を開示する。当該診断装置によれば、エレベーターシステムにおける巻上機の軸受に検知センサが設けられる。検知センサは、軸受で発生するノイズを検知する。診断装置は、検知されたノイズを分析することで、軸受の異常を診断し得る。 Patent Document 1 discloses a bearing diagnostic device. According to the diagnostic device, a detection sensor is provided in a bearing of a hoist in an elevator system. The detection sensor detects noise generated in the bearing. The diagnostic device can diagnose an abnormality in the bearing by analyzing the detected noise.
日本特許第3742677号Japanese Patent No. 3742677
 しかしながら、特許文献1に記載の診断装置において、軸受に検知センサを設ける必要がある。このため、構成が複雑となる。 However, in the diagnostic device described in Patent Document 1, it is necessary to provide a detection sensor in the bearing. Therefore, the configuration becomes complicated.
 本開示は、上述の課題を解決するためになされた。本開示の目的は、簡易な構成で軸受の異常を判定できる診断装置、診断システム、遠隔監視システムおよび保守管理システムを提供することである。 The present disclosure has been made to solve the above problems. An object of the present disclosure is to provide a diagnostic device, a diagnostic system, a remote monitoring system, and a maintenance management system that can determine abnormalities in a bearing with a simple configuration.
 本開示に係る診断装置は、第1綱車と前記第1綱車を回転軸体で回転させる電動機と前記回転軸体を支持する軸受とを有する巻上機と、第2綱車と、前記第1綱車および前記第2綱車に巻き掛けられた主ロープと、前記主ロープに吊るされたかごと、を有するエレベーターシステムにおける前記軸受の異常を診断する診断装置であって、前記第1綱車が回転した回転角度の合計値を算出する回転角算出部と、前記かごが特定の区間を走行した際に前記回転角算出部が算出した回転角度の合計値に基づいて、前記軸受の異常を判定する判定部と、を備えた。 A diagnostic device according to the present disclosure includes a hoist having a first sheave, an electric motor that rotates the first sheave on a rotating shaft, and a bearing that supports the rotating shaft; a second sheave; A diagnostic device for diagnosing an abnormality in the bearing in an elevator system having a main rope wound around a first sheave and the second sheave, and a car suspended from the main rope, A rotation angle calculation unit that calculates the total rotation angle of the car, and a rotation angle calculation unit that calculates the total rotation angle when the car travels in a specific section, and detects an abnormality in the bearing. and a determination unit that determines.
 本開示に係る診断装置は、第1綱車と前記第1綱車を回転軸体で回転させる電動機と前記回転軸体を支持する軸受とを有する巻上機と、第2綱車と、前記第1綱車および前記第2綱車に巻き掛けられた主ロープと、前記主ロープに吊るされたかごと、を有するエレベーターシステムにおける前記軸受の異常を診断する診断装置であって、前記第1綱車が回転した回転角度の合計値を算出する回転角算出部と、前記かごが出発階から到着階まで移動した際に前記回転角算出部が算出した回転角度の合計値と、前記出発階と、前記到着階と、前記かごが移動した際の前記かごの積載重量と、から前記回転軸体の鉛直方向の位置が基準位置から変化した変化量である軸変位量を推論するための学習済モデルを記憶するモデル記憶部と、前記モデル記憶部に記憶された前記学習済モデルを用いて、前記かごが出発階から到着階まで移動した際に前記回転角算出部が算出した回転角度の合計値と、前記出発階と、前記到着階と、前記かごが移動した際の前記かごの積載重量と、から前記軸変位量を推論する推論部と、前記推論部が推論した前記軸変位量に基づいて前記軸受の異常を判定する判定部と、を備えた。 A diagnostic device according to the present disclosure includes a hoist having a first sheave, an electric motor that rotates the first sheave on a rotating shaft, and a bearing that supports the rotating shaft; a second sheave; A diagnostic device for diagnosing an abnormality in the bearing in an elevator system having a main rope wound around a first sheave and the second sheave, and a car suspended from the main rope, a rotation angle calculation unit that calculates the total rotation angle of the car; a total rotation angle calculation unit that calculates the rotation angle calculation unit when the car moves from the departure floor to the arrival floor; , learned to infer the amount of shaft displacement, which is the amount of change in the vertical position of the rotary shaft from the reference position, from the arrival floor and the loaded weight of the car when the car moves. A total of rotation angles calculated by the rotation angle calculation unit when the car moves from the departure floor to the arrival floor using a model storage unit that stores a model and the learned model stored in the model storage unit. an inference unit that infers the amount of axial displacement from the value, the departure floor, the arrival floor, and the loaded weight of the car when the car moves; and the amount of axial displacement inferred by the inference unit. and a determining unit that determines whether the bearing is abnormal based on the bearing.
 本開示に係る診断システムは、第1綱車と前記第1綱車を回転軸体で回転させる電動機と前記回転軸体を支持する軸受とを有する巻上機と、第2綱車と、前記第1綱車および前記第2綱車に巻き掛けられた主ロープと、前記主ロープに吊るされたかごと、を有するエレベーターシステムにおける前記軸受の異常を診断する診断システムであって、前記巻上機に設けられ、前記第1綱車が回転した角度に対応する角度信号を送信する回転角検出装置と、前記回転角検出装置からの角度信号に基づいて、前記第1綱車が回転した回転角度の合計値を算出し、前記かごが特定の区間を走行した際に算出した回転角度の合計値に基づいて、前記軸受の異常を判定する診断装置と、を備えた。 A diagnostic system according to the present disclosure includes a hoisting machine including a first sheave, an electric motor that rotates the first sheave on a rotating shaft, and a bearing that supports the rotating shaft; a second sheave; A diagnostic system for diagnosing an abnormality in the bearing in an elevator system having a main rope wound around a first sheave and the second sheave, and a car suspended from the main rope, the system comprising: a rotation angle detection device that is installed at the base and transmits an angle signal corresponding to the angle at which the first sheave has rotated; and a rotation angle at which the first sheave has rotated based on the angle signal from the rotation angle detection device. and a diagnostic device that determines whether there is an abnormality in the bearing based on the total value of rotation angles calculated when the car travels in a specific section.
 本開示に係る遠隔監視システムは、前記診断システムと、前記診断システムの前記診断装置が前記軸受の異常を判定した診断結果の情報を受信し、前記診断結果の情報を外部に送信する監視装置と、を備えた。 The remote monitoring system according to the present disclosure includes the diagnostic system, a monitoring device that receives information on a diagnosis result in which the diagnostic device of the diagnostic system determines that the bearing is abnormal, and transmits information on the diagnosis result to the outside. , equipped with.
 本開示に係る保守管理システムは、前記診断システムと、前記診断システムの診断装置が前記軸受の異常を判定した診断結果の情報を受信し、前記診断結果の情報を外部に送信する監視装置と、前記監視装置から前記診断結果の情報を受信し、前記診断結果の情報に基づいて前記エレベーターシステムの保守計画を作成する情報センター装置と、を備えた。 The maintenance management system according to the present disclosure includes the diagnostic system, a monitoring device that receives information on a diagnostic result in which a diagnostic device of the diagnostic system determines that the bearing is abnormal, and transmits information on the diagnostic result to the outside; and an information center device that receives information on the diagnosis results from the monitoring device and creates a maintenance plan for the elevator system based on the information on the diagnosis results.
 本開示に係る保守管理システムは、第1綱車と前記第1綱車を回転軸体で回転させる電動機と前記回転軸体を支持する軸受とを有する巻上機と、第2綱車と、前記第1綱車および前記第2綱車に巻き掛けられた主ロープと、前記主ロープに吊るされたかごと、を有するエレベーターシステムの保守管理を行う保守管理システムにおいて、前記かごが出発階から到着階まで移動した際に前記第1綱車が回転した回転角度の合計値を算出する回転角算出部と、前記回転角算出部が算出した回転角度の合計値に基づいて、前記回転軸体の鉛直方向の位置が基準位置から変化した変化量である軸変位量を演算する演算部と、前記回転角算出部が算出した回転角度の合計値と、前記演算部が演算した軸変位量と、前記出発階と、前記到着階と、前記かごが移動した際の積載重量と、が対応付けられた情報を含む学習用情報を取得する学習情報取得部と、前記学習情報取得部が取得した前記学習用情報を用いて、前記回転角算出部が算出した回転角度の合計値と、前記出発階と、前記到着階と、前記かごが移動した際の前記かごの積載重量と、から前記軸変位量を推論するための学習済モデルを生成するモデル生成部と、を備えた。 A maintenance management system according to the present disclosure includes a hoist having a first sheave, an electric motor that rotates the first sheave on a rotating shaft, and a bearing that supports the rotating shaft, a second sheave, In a maintenance management system for maintaining and managing an elevator system having a main rope wrapped around the first sheave and the second sheave, and a car suspended from the main rope, the car arrives from a departure floor. a rotation angle calculating section that calculates the total value of the rotation angles that the first sheave rotated when moving to the floor; a calculation unit that calculates an amount of axial displacement that is the amount of change in the vertical position from a reference position; a total value of the rotation angles calculated by the rotation angle calculation unit; and an amount of axial displacement calculated by the calculation unit; a learning information acquisition unit that acquires learning information including information in which the departure floor, the arrival floor, and the loading weight when the car is moved; and the learning information acquired by the learning information acquisition unit. Using the learning information, calculate the shaft displacement from the total value of the rotation angles calculated by the rotation angle calculating section, the departure floor, the arrival floor, and the loaded weight of the car when the car moves. A model generation unit that generates a trained model for inferring the quantity.
 本開示によれば、第1綱車の回転角度の合計値に基づいて、軸受の異常が判定される。このため、簡易な構成で軸受の異常を判定できる。 According to the present disclosure, the abnormality of the bearing is determined based on the total value of the rotation angle of the first sheave. Therefore, abnormalities in the bearing can be determined with a simple configuration.
実施の形態1における診断装置が適用されるエレベーターシステムの概要を示す図である。1 is a diagram illustrating an overview of an elevator system to which a diagnostic device according to a first embodiment is applied. 実施の形態1における診断装置が適用される巻上機の断面の概要図である。1 is a schematic cross-sectional diagram of a hoisting machine to which a diagnostic device according to a first embodiment is applied; FIG. 実施の形態1における診断装置が適用される第1綱車の断面の概要図である。FIG. 2 is a schematic diagram of a cross section of a first sheave to which the diagnostic device according to the first embodiment is applied. 実施の形態1における診断装置が適用される保守管理システムのブロック図である。FIG. 1 is a block diagram of a maintenance management system to which the diagnostic device according to the first embodiment is applied. 実施の形態1における診断装置が適用される第1綱車と第2綱車と主ロープとの位置関係を示す概要図である。FIG. 2 is a schematic diagram showing the positional relationship between a first sheave, a second sheave, and a main rope to which the diagnostic device according to the first embodiment is applied. 実施の形態1における診断装置が制御盤に指令する診断運転の概要を説明するためのフローチャートである。2 is a flowchart for explaining an overview of a diagnostic operation that the diagnostic device instructs the control panel in the first embodiment. 実施の形態1における診断装置が行う異常診断の第1例の概要を説明するためのフローチャートである。2 is a flowchart for explaining an overview of a first example of abnormality diagnosis performed by the diagnostic device in the first embodiment. 実施の形態1における診断装置が行う異常診断の第2例の概要を説明するためのフローチャートである。7 is a flowchart for explaining an overview of a second example of abnormality diagnosis performed by the diagnostic device in the first embodiment. 実施の形態1における診断装置のハードウェア構成図である。1 is a hardware configuration diagram of a diagnostic device in Embodiment 1. FIG. 実施の形態2における診断装置が軸変位量を演算する動作の概要を説明するためのフローチャートである。7 is a flowchart for explaining an overview of an operation in which the diagnostic device according to the second embodiment calculates the amount of shaft displacement. 実施の形態3における診断装置が適用される巻上機の断面の概要図である。FIG. 7 is a schematic cross-sectional diagram of a hoisting machine to which a diagnostic device according to a third embodiment is applied. 実施の形態3における診断装置が適用される軸受の温度変化の概要を示す図である。FIG. 7 is a diagram showing an overview of temperature changes in a bearing to which a diagnostic device in Embodiment 3 is applied. 実施の形態3における診断装置のブロック図である。FIG. 3 is a block diagram of a diagnostic device according to a third embodiment. 実施の形態3における診断装置が行う異常診断の第3例の概要を説明するためのフローチャートである。12 is a flowchart for explaining an overview of a third example of abnormality diagnosis performed by the diagnostic device in Embodiment 3. 実施の形態4における診断装置が適用される保守管理システムのブロック図である。FIG. 7 is a block diagram of a maintenance management system to which a diagnostic device according to a fourth embodiment is applied. 実施の形態4における診断装置が適用される学習装置が行う学習の動作の概要を説明するためのフローチャートである。12 is a flowchart for explaining an overview of learning operations performed by a learning device to which the diagnostic device in Embodiment 4 is applied. 実施の形態4における診断装置が行う推論の動作の概要を説明するためのフローチャートである。12 is a flowchart for explaining an overview of inference operations performed by the diagnostic device in Embodiment 4.
 本開示を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略される。 Embodiments for carrying out the present disclosure will be described with reference to the accompanying drawings. In each figure, the same or corresponding parts are given the same reference numerals. Duplicate explanations of the relevant parts will be simplified or omitted as appropriate.
実施の形態1.
 図1は実施の形態1における診断装置が適用されるエレベーターシステムの概要を示す図である。
Embodiment 1.
FIG. 1 is a diagram showing an outline of an elevator system to which a diagnostic device according to the first embodiment is applied.
 図1のエレベーターシステムにおいて、昇降路1は、建築物2の各階を貫く。機械室3は、昇降路1の直上に設けられる。複数の乗場4は、建築物2の各階にそれぞれ設けられる。例えば、複数の乗場4には、最上階の乗場4aと最下階の乗場4bとが含まれる。 In the elevator system of FIG. 1, a hoistway 1 passes through each floor of a building 2. The machine room 3 is provided directly above the hoistway 1. The plurality of landings 4 are provided on each floor of the building 2. For example, the plurality of landings 4 include a landing 4a on the top floor and a landing 4b on the bottom floor.
 巻上機5は、機械室3に設けられる。巻上機5は、電動機6と第1綱車7と回転軸体8と複数の軸受9とを有する。なお、図1には、複数の軸受9のうちの1つが示される。なお、巻上機5が有する軸受9は、1つであってもよい。電動機6は、機械室3に設けられる。第1綱車7は、ロープ溝を有する滑車である。第1綱車7は、駆動綱車として電動機6に隣接して設けられる。第1綱車7の中心には、回転軸体8が通される。回転軸体8の中央部は、第1綱車7に固定される。回転軸体8の一端部は、電動機6に固定される。なお、回転軸体8は、第1綱車7と一体となるよう形成されてもよい。複数の軸受9は、回転軸体8を回転可能に支持する。 The hoisting machine 5 is provided in the machine room 3. The hoist 5 includes an electric motor 6, a first sheave 7, a rotating shaft 8, and a plurality of bearings 9. Note that FIG. 1 shows one of the plurality of bearings 9. Note that the number of bearings 9 that the hoisting machine 5 has may be one. The electric motor 6 is provided in the machine room 3. The first sheave 7 is a pulley having a rope groove. The first sheave 7 is provided adjacent to the electric motor 6 as a driving sheave. A rotating shaft body 8 is passed through the center of the first sheave 7 . A central portion of the rotating shaft body 8 is fixed to the first sheave 7 . One end of the rotating shaft body 8 is fixed to the electric motor 6. Note that the rotating shaft body 8 may be formed integrally with the first sheave 7. The plurality of bearings 9 rotatably support the rotating shaft body 8.
 第2綱車10は、ロープ溝を有する滑車である。第2綱車10は、そらせ車として昇降路1の内部、機械室3の内部および昇降路1と機械室3とにまたがった位置のいずれかに設けられる。第2綱車10は、第1綱車7から距離xだけ水平方向に離れた位置に設けられる。第2綱車10の回転軸の鉛直方向の位置は、第1綱車の鉛直方向の位置よりも距離yの位置である。第2綱車10の回転軸は、第1綱車7の回転軸と平行である。 The second sheave 10 is a pulley with a rope groove. The second sheave 10 is provided as a diversion wheel inside the hoistway 1, inside the machine room 3, or at a position spanning the hoistway 1 and the machine room 3. The second sheave 10 is provided at a position separated from the first sheave 7 by a distance x in the horizontal direction. The vertical position of the rotating shaft of the second sheave 10 is a distance y from the vertical position of the first sheave. The rotation axis of the second sheave 10 is parallel to the rotation axis of the first sheave 7.
 主ロープ11は、第1綱車7と第2綱車10とに巻き掛けられる。例えば、主ロープ11は、ハーフラップの方式で第1綱車7と第2綱車10とに巻き掛けられる。主ロープ11の第1綱車7との巻付角は、θである。巻付角は、綱車とロープとが接する円弧に対応する中心角である。なお、主ロープ11は、フルラップの方式で第1綱車7と第2綱車10とに巻き掛けられてもよい。この場合、第1綱車7と主ロープ11とは、巻付角θにπを加えた中心角に対応する円弧の長さ分だけ接する。 The main rope 11 is wound around the first sheave 7 and the second sheave 10. For example, the main rope 11 is wrapped around the first sheave 7 and the second sheave 10 in a half-wrap manner. The wrapping angle of the main rope 11 with the first sheave 7 is θ. The wrap angle is the central angle corresponding to the arc where the sheave and rope touch. Note that the main rope 11 may be wound around the first sheave 7 and the second sheave 10 in a full wrap manner. In this case, the first sheave 7 and the main rope 11 are in contact with each other by the length of the circular arc corresponding to the central angle obtained by adding π to the wrapping angle θ.
 かご12は、昇降路1の内部において、主ロープ11の両端部のうち第1綱車7の側の一端に吊るされる。かご12は、かご枠12aとかご室12bと秤装置12cとを備える。かご枠12aは、主ロープ11に吊られる。かご室12bは、かご枠12aに支持される。秤装置12cは、かご室12bの内部の重量をかご12の積載重量として測定する。釣合おもり13は、昇降路1の内部において、主ロープ11の両端部のうち他端に吊るされる。 The car 12 is suspended from one end of the main rope 11 on the first sheave 7 side inside the hoistway 1. The car 12 includes a car frame 12a, a car chamber 12b, and a weighing device 12c. The car frame 12a is suspended from the main rope 11. The car chamber 12b is supported by the car frame 12a. The weighing device 12c measures the weight inside the car chamber 12b as the loaded weight of the car 12. The counterweight 13 is suspended from the other end of the main rope 11 inside the hoistway 1 .
 例えば、回転角検出装置14は、エンコーダである。回転角検出装置14は、巻上機5に取り付けられる。回転角検出装置14は、回転軸体8が回転した角度に応じた信号を出力する。 For example, the rotation angle detection device 14 is an encoder. The rotation angle detection device 14 is attached to the hoisting machine 5. The rotation angle detection device 14 outputs a signal according to the angle at which the rotation shaft body 8 has rotated.
 制御盤15は、機械室3に設けられる。制御盤15は、電動機6と秤装置12cと回転角検出装置14とに電気的に接続される。制御盤15は、エレベーターシステムを全体的に制御し得る。監視装置16は、機械室3に設けられる。監視装置16は、制御盤15からエレベーターシステムに関する情報を取得し得る。監視装置16は、制御盤15からの情報に基づいてエレベーターの状態を把握し得る。情報センター装置17は、建築物2から離れた場所に設けられる。例えば、情報センター装置17は、エレベーターシステムの保守会社に設けられる。情報センター装置17は、監視装置16とネットワークを介して通信し得る。情報センター装置17は、監視装置16からの情報に基づいてエレベーターシステムの状態を把握し得るように設けられる。 The control panel 15 is provided in the machine room 3. The control panel 15 is electrically connected to the electric motor 6, the scale device 12c, and the rotation angle detection device 14. Control panel 15 may provide overall control of the elevator system. The monitoring device 16 is provided in the machine room 3. Monitoring device 16 may obtain information regarding the elevator system from control panel 15 . The monitoring device 16 can grasp the status of the elevator based on information from the control panel 15. The information center device 17 is provided at a location away from the building 2. For example, the information center device 17 is provided at an elevator system maintenance company. Information center device 17 can communicate with monitoring device 16 via a network. The information center device 17 is provided so as to be able to grasp the status of the elevator system based on information from the monitoring device 16.
 診断装置20は、機械室3に設けられる。診断装置20は、回転角検出装置14と制御盤15と監視装置16とに電気的に接続される。 The diagnostic device 20 is provided in the machine room 3. The diagnostic device 20 is electrically connected to the rotation angle detection device 14 , the control panel 15 , and the monitoring device 16 .
 エレベーターシステムが通常運行する場合、制御盤15からの制御指令に基づいて、電動機6は、回転軸体8を回転させる。回転軸体8は、複数の軸受9に鉛直方向の荷重を支持された状態で、回転軸を中心に回転する。第1綱車7は、回転軸体8と同期して回転する。主ロープ11は、第1綱車7との間の摩擦力によって、第1綱車7の回転に追従して移動する。かご12と釣合おもり13とは、主ロープ11の移動に追従して互いに反対方向に昇降する。回転角検出装置14は、回転軸体8が規定の角度だけ回転する毎に角度信号を送信する。制御盤15は、回転角検出装置14からの角度信号を含む複数のセンサからの情報に基づいてかご12の位置を測定しながら、かご12を運行する。 When the elevator system normally operates, the electric motor 6 rotates the rotating shaft 8 based on a control command from the control panel 15. The rotating shaft body 8 rotates around the rotating shaft while a vertical load is supported by a plurality of bearings 9 . The first sheave 7 rotates in synchronization with the rotating shaft body 8. The main rope 11 moves following the rotation of the first sheave 7 due to the frictional force between it and the first sheave 7. The car 12 and the counterweight 13 follow the movement of the main rope 11 and move up and down in opposite directions. The rotation angle detection device 14 transmits an angle signal every time the rotation shaft body 8 rotates by a predetermined angle. The control panel 15 operates the car 12 while measuring the position of the car 12 based on information from a plurality of sensors including the angle signal from the rotation angle detection device 14.
 エレベーターシステムには、軸受9を健全な状態に保つために、診断システム、遠隔監視システム、および保守管理システムが適用される。診断システムは、回転角検出装置14と診断装置20とを含む。また、遠隔監視システムは、診断システムと監視装置16とを含む。保守管理システムは、遠隔監視システムと情報センター装置17とを含む。 A diagnostic system, a remote monitoring system, and a maintenance management system are applied to the elevator system in order to keep the bearing 9 in a healthy condition. The diagnostic system includes a rotation angle detection device 14 and a diagnostic device 20. The remote monitoring system also includes a diagnostic system and a monitoring device 16. The maintenance management system includes a remote monitoring system and an information center device 17.
 複数の軸受9の各々には、かご12の運行に伴って種々の異常が発生し得る。例えば、軸受9の内部の形状は、摩耗によって変化し得る。例えば、回転軸体8と軸受9とは、摩擦熱によって温度上昇し、膨張し得る。この際、回転軸体8が回転軸方向に熱膨張することで、回転軸体8と軸受9との間に回転軸方向への負荷が発生し、位置ずれ等が生じ得る。このように、膨張に伴って軸受9への負荷荷重が増加する。当該負荷荷重は、軸受9の寿命を短くし得る。当該種々の異常は、回転軸体8の鉛直方向の位置によって検出され得る。即ち、軸受9の内部が摩耗した場合、回転軸体8の鉛直方向の位置が基準位置よりも低くなり得る。回転軸体8と軸受9とが熱膨張した場合、回転軸体8の鉛直方向の位置が基準位置よりも高くなり得る。 Various abnormalities may occur in each of the plurality of bearings 9 as the car 12 operates. For example, the internal shape of the bearing 9 may change due to wear. For example, the rotating shaft body 8 and the bearing 9 may increase in temperature due to frictional heat and may expand. At this time, as the rotating shaft 8 thermally expands in the rotating shaft direction, a load is generated between the rotating shaft 8 and the bearing 9 in the rotating shaft direction, which may cause positional deviation or the like. In this way, the load on the bearing 9 increases with expansion. The applied load can shorten the life of the bearing 9. The various abnormalities can be detected by the position of the rotating shaft body 8 in the vertical direction. That is, if the inside of the bearing 9 is worn out, the vertical position of the rotating shaft body 8 may become lower than the reference position. When the rotating shaft body 8 and the bearing 9 thermally expand, the vertical position of the rotating shaft body 8 may become higher than the reference position.
 診断装置20は、回転角検出装置14からの角度信号に基づいて軸受9の異常を診断する。具体的には、診断装置20は、角度信号に基づいて、回転軸体8の回転量である回転角度の合計値を算出する。例えば、診断装置20は、かご12が特定の区間である最上階から最下階まで停止せずに移動した際に算出した回転軸体8の回転角度の合計値に基づいて、巻付角θの値を算出する。診断装置20は、巻付角θの値から回転軸体8の鉛直方向の位置の推定が可能であることを利用し、巻付角θの値に基づいて軸受9の異常を診断する。この際、診断装置20は、異常診断として、異常の有無、異常の種類、異常の程度、等の異常の判定を行う。 The diagnostic device 20 diagnoses an abnormality in the bearing 9 based on the angle signal from the rotation angle detection device 14. Specifically, the diagnostic device 20 calculates the total value of rotation angles, which is the amount of rotation of the rotating shaft body 8, based on the angle signal. For example, the diagnostic device 20 determines the wrapping angle θ based on the total rotation angle of the rotary shaft body 8 calculated when the car 12 moves from the top floor to the bottom floor in a specific section without stopping. Calculate the value of The diagnostic device 20 utilizes the fact that the vertical position of the rotating shaft body 8 can be estimated from the value of the wrapping angle θ, and diagnoses an abnormality in the bearing 9 based on the value of the wrapping angle θ. At this time, the diagnostic device 20 performs abnormality diagnosis, such as the presence or absence of an abnormality, the type of abnormality, and the degree of abnormality.
 診断装置20は、異常診断の結果を示す診断情報を監視装置16に送信する。監視装置16は、診断情報を情報センター装置17に送信する。情報センター装置17は、受信した診断情報を保守管理に利用する。具体的には、情報センター装置17は、異常があることを示す診断情報を受信した場合、作業員、監視員、オペレータ、等の保守会社の人員にその旨を報知する。情報センター装置17は、診断情報に基づいて、診断情報に対応する軸受9の寿命を推定する。情報センター装置17は、推定した寿命に基づいて当該軸受9の交換計画を含む保守計画を作成し、保守会社の作業員等に保守計画を通知する。 The diagnostic device 20 transmits diagnostic information indicating the result of the abnormality diagnosis to the monitoring device 16. The monitoring device 16 transmits diagnostic information to the information center device 17. The information center device 17 uses the received diagnostic information for maintenance management. Specifically, when the information center device 17 receives diagnostic information indicating that there is an abnormality, it notifies personnel of the maintenance company, such as workers, monitors, and operators, to that effect. Based on the diagnostic information, the information center device 17 estimates the life of the bearing 9 corresponding to the diagnostic information. The information center device 17 creates a maintenance plan including a replacement plan for the bearing 9 based on the estimated lifespan, and notifies maintenance company workers and the like of the maintenance plan.
 次に、図2と図3とを用いて、巻上機5を説明する。 Next, the hoisting machine 5 will be explained using FIGS. 2 and 3.
 図2は実施の形態1における診断装置が適用される巻上機の断面の概要図である。図3は実施の形態1における診断装置が適用される第1綱車の断面の要部の概要図である。 FIG. 2 is a schematic cross-sectional view of a hoisting machine to which the diagnostic device according to the first embodiment is applied. FIG. 3 is a schematic diagram of a main part of a cross section of the first sheave to which the diagnostic device according to the first embodiment is applied.
 図2は、第1綱車7および回転軸体8の回転軸Aを含む巻上機5の断面を示す。例えば、巻上機5は、2つの軸受9を有する。2つの軸受9は、第1綱車7の両側にそれぞれ配置される。 FIG. 2 shows a cross section of the hoist 5 including the first sheave 7 and the rotation axis A of the rotation shaft body 8. For example, the hoist 5 has two bearings 9. Two bearings 9 are arranged on both sides of the first sheave 7, respectively.
 軸受9には、転がり軸受が採用される。具体的には、例えば、軸受9には、深溝玉軸受、自動調心玉軸受、アンギュラ玉軸受、自動調心ころ軸受、円錐ころ軸受、円筒ころ軸受、トロイダルころ軸受、等の一般的な種類の軸受が採用される。例えば、軸受9の一例として、内部の転動体と移動面との間に、隙間および接触角を有する形式の軸受が採用される。なお、軸受9には、調心作用を有するすべり軸受が採用されてもよい。 A rolling bearing is adopted as the bearing 9. Specifically, for example, the bearing 9 includes common types such as deep groove ball bearings, self-aligning ball bearings, angular contact ball bearings, spherical roller bearings, tapered roller bearings, cylindrical roller bearings, toroidal roller bearings, etc. bearings are adopted. For example, as an example of the bearing 9, a bearing having a gap and a contact angle between an internal rolling element and a moving surface is adopted. Note that the bearing 9 may be a sliding bearing that has an alignment effect.
 図3は、回転軸Aを含む第1綱車7の断面の要部を示す。図3において、第1綱車7には、主ロープ11が巻き掛けられた状態が示される。第1綱車7は、複数のロープ溝7aを有する。図3には、複数のロープ溝7aのうちの1つが示される。本実施例においては、ロープ溝7aにアンダーカット溝が設けられているため、主ロープ11は、ロープ溝7aの底には接していない。底部7bは、アンダーカット溝が設けられていないと仮定した際に、ロープ溝7aの底とみなせる部分である。シーブ径Dは、シーブであるロープ溝7aの底とみなされる部分の直径である。 FIG. 3 shows the main part of the cross section of the first sheave 7 including the rotation axis A. In FIG. 3, the first sheave 7 is shown with the main rope 11 wrapped around it. The first sheave 7 has a plurality of rope grooves 7a. In FIG. 3, one of the plurality of rope grooves 7a is shown. In this embodiment, since the rope groove 7a is provided with an undercut groove, the main rope 11 is not in contact with the bottom of the rope groove 7a. The bottom portion 7b is a portion that can be regarded as the bottom of the rope groove 7a, assuming that no undercut groove is provided. The sheave diameter D is the diameter of a portion of the sheave that is considered to be the bottom of the rope groove 7a.
 ロープ径dは、主ロープ11の直径である。第1綱車7の有効径Deは、シーブ径Dの値とロープ径dとの和である。即ち、有効径De=D+d/2+d/2=D+dで表される。第1綱車7の有効半径Reは、有効径Deの半分の値であるDe/2として算出される。有効半径Reは、第1綱車7に巻き掛けられている主ロープ11の中心の回転軸Aからの距離である。即ち、有効半径Reは、シーブ径Dの半分の値とロープ径dの半分の値とを合計して算出されてもよい。 The rope diameter d is the diameter of the main rope 11. The effective diameter De of the first sheave 7 is the sum of the sheave diameter D and the rope diameter d. That is, the effective diameter De=D+d/2+d/2=D+d. The effective radius Re of the first sheave 7 is calculated as De/2, which is half the effective diameter De. The effective radius Re is the distance from the rotation axis A to the center of the main rope 11 wound around the first sheave 7. That is, the effective radius Re may be calculated by adding up a half value of the sheave diameter D and a half value of the rope diameter d.
 次に、図4を用いて診断装置20を説明する。
 図4は実施の形態1における診断装置が適用される保守管理システムのブロック図である。なお、図4では巻上機5およびかご12の図示は省略される。
Next, the diagnostic device 20 will be explained using FIG. 4.
FIG. 4 is a block diagram of a maintenance management system to which the diagnostic device according to the first embodiment is applied. Note that illustration of the hoist 5 and the car 12 is omitted in FIG. 4 .
 図4に示されるように、診断装置20は、記憶部21と通信部22と診断運転指令部23と回転角算出部24と演算部25と判定部26とを備える。 As shown in FIG. 4, the diagnostic device 20 includes a storage section 21, a communication section 22, a diagnostic driving command section 23, a rotation angle calculation section 24, a calculation section 25, and a determination section 26.
 記憶部21は、軸受9の診断運転に必要な数値の情報を記憶する。記憶部21が記憶する数値は、任意のタイミングで更新されてもよい。例えば、点検によって第1綱車7のシーブ径Dが測定された場合、記憶部21が記憶するシーブ径Dは、最新の値に更新されてもよい。例えば、点検によって、または更新によって主ロープ11のロープ径dが測定された場合、記憶部21が記憶するロープ径dは、最新の値に更新されてもよい。 The storage unit 21 stores numerical information necessary for diagnostic operation of the bearing 9. The numerical values stored in the storage unit 21 may be updated at any timing. For example, when the sheave diameter D of the first sheave 7 is measured during inspection, the sheave diameter D stored in the storage unit 21 may be updated to the latest value. For example, when the rope diameter d of the main rope 11 is measured by inspection or update, the rope diameter d stored in the storage unit 21 may be updated to the latest value.
 通信部22は、診断装置20と外部の機器との通信を制御する。具体的には、通信部22は、秤装置12cと回転角検出装置14と制御盤15とから情報の受信を受け付ける。通信部22は、制御盤15と監視装置16とに情報を送信し得る。 The communication unit 22 controls communication between the diagnostic device 20 and external equipment. Specifically, the communication unit 22 receives information from the scale device 12c, the rotation angle detection device 14, and the control panel 15. The communication unit 22 can transmit information to the control panel 15 and the monitoring device 16.
 診断運転指令部23は、診断運転を実施させる指令を作成し、制御盤15に送信する。診断運転は、かご12を最上階と最下階との間を停止することなく走行させる運転である。診断運転は、最上階と最下階とをかご12に往復させる運転であってもよい。 The diagnostic operation command unit 23 creates a command to perform a diagnostic operation and sends it to the control panel 15. The diagnostic operation is an operation in which the car 12 travels between the top floor and the bottom floor without stopping. The diagnostic operation may be an operation in which the car 12 is moved back and forth between the top floor and the bottom floor.
 診断運転指令部23は、秤装置12cが測定した積載重量の情報を取得する。診断運転指令部23は、かご12の積載重量に基づいて、かご12に人および物が存在しない状態であるノーロード状態であることを検出する。例えば、診断運転指令部23は、診断運転を実施させる条件の1つとして、ノーロード状態であることを検出した場合に、診断運転を実施させる指令を制御盤15に送信する。なお、診断運転指令部23は、ノーロード状態でない場合でも、診断運転を実施させる指令を送信してもよい。 The diagnostic operation command unit 23 acquires information on the loaded weight measured by the weighing device 12c. The diagnostic operation command unit 23 detects, based on the loaded weight of the car 12, that the car 12 is in a no-load state, which is a state in which there are no people or objects present. For example, when the diagnostic driving command unit 23 detects a no-load state as one of the conditions for performing the diagnostic driving, it transmits a command to the control panel 15 to perform the diagnostic driving. Note that the diagnostic driving command unit 23 may transmit a command to perform diagnostic driving even when the vehicle is not in a no-load state.
 回転角算出部24は、回転角検出装置14からの角度信号に基づいて回転軸体8の回転角度を算出する。回転角算出部24は、かご12が特定の区間を走行した時の回転量である回転角度の合計値を算出する。具体的には、例えば、かご12が診断運転をした場合、回転角算出部24は、かご12が最上階から最下階までの区間を走行した時の回転角度の合計値を算出する。 The rotation angle calculation unit 24 calculates the rotation angle of the rotation shaft body 8 based on the angle signal from the rotation angle detection device 14. The rotation angle calculation unit 24 calculates the total value of rotation angles, which is the amount of rotation when the car 12 travels in a specific section. Specifically, for example, when the car 12 performs a diagnostic operation, the rotation angle calculation unit 24 calculates the total value of rotation angles when the car 12 travels in the section from the top floor to the bottom floor.
 演算部25は、回転角算出部24が算出した回転角度の合計値に基づいて、回転軸体8の鉛直方向の位置の変化量である軸変位量を演算する。軸変位量は、鉛直方向において、回転角度の合計値から演算される回転軸体8の位置と基準となる回転軸体8の位置との差分である。即ち、演算部25は、回転角度の合計値に基づいて回転軸体8の鉛直方向の位置である軸体位置を演算する。この際、演算部25は、軸体位置として回転軸Aの鉛直方向の位置を演算する。 The calculation unit 25 calculates the amount of shaft displacement, which is the amount of change in the position of the rotating shaft body 8 in the vertical direction, based on the total value of the rotation angles calculated by the rotation angle calculation unit 24. The amount of shaft displacement is the difference in the vertical direction between the position of the rotating shaft 8 calculated from the total value of rotation angles and the position of the rotating shaft 8 serving as a reference. That is, the calculation unit 25 calculates the shaft position, which is the vertical position of the rotating shaft 8, based on the total value of the rotation angles. At this time, the calculation unit 25 calculates the vertical position of the rotation axis A as the shaft position.
 軸体位置を演算する際、まず、演算部25は、角度信号に基づいて巻付角θを演算する。演算部25は、演算した巻付角θに基づいて軸体位置を演算する。 When calculating the shaft body position, the calculation unit 25 first calculates the wrap angle θ based on the angle signal. The calculation unit 25 calculates the shaft position based on the calculated wrap angle θ.
 判定部26は、いくつかの異常診断の形態によって軸受9の異常を判定する。例えば、判定部26は、異常診断を行った場合、異常診断の結果を示す異常度の情報を通信部22に監視装置16へ送信させる。異常度の情報は、軸受9に異常が存在するまたは異常が存在しない旨の情報を含む。異常度の情報は、軸受9に存在する異常の種類を示す情報を含んでもよい。異常度の情報は、軸受9に存在する異常の程度を定量的に示す情報を含んでもよい。 The determination unit 26 determines the abnormality of the bearing 9 using several forms of abnormality diagnosis. For example, when the determination unit 26 performs an abnormality diagnosis, the determination unit 26 causes the communication unit 22 to transmit information on the degree of abnormality indicating the result of the abnormality diagnosis to the monitoring device 16 . The abnormality degree information includes information indicating that an abnormality exists or does not exist in the bearing 9. The information on the degree of abnormality may include information indicating the type of abnormality present in the bearing 9. The information on the degree of abnormality may include information quantitatively indicating the degree of abnormality existing in the bearing 9.
 なお、判定部26は、異常を判定する前に異常度を算出し、異常度に基づいて軸受9の異常を判定してもよい。 Note that the determination unit 26 may calculate the degree of abnormality before determining the abnormality, and determine whether the bearing 9 is abnormal based on the degree of abnormality.
 異常診断の第1例において、判定部26は、回転角検出装置14が算出した回転角度の合計値に基づいて軸受9の異常を判定する。この際、判定部26は、ノーロード状態である等の規定の条件の下、かご12が特定の区間を走行した際の回転角度の合計値に基づいて、軸受9の異常を判定する。例えば、判定部26は、回転角度の合計値と当該規定の条件に対応する基準の回転角度の合計値との差の絶対値が規定の閾値を超えた場合、軸受9に異常が存在すると判定する。基準の回転角度の合計値は、予め記憶部21に記憶される。なお、基準の回転角度の合計値は、保守作業時の計測値に基づいて、記憶部21に記憶された情報が更新されてもよい。 In the first example of abnormality diagnosis, the determination unit 26 determines whether the bearing 9 is abnormal based on the total value of the rotation angles calculated by the rotation angle detection device 14. At this time, the determining unit 26 determines whether the bearing 9 is abnormal based on the total value of rotation angles when the car 12 travels in a specific section under prescribed conditions such as a no-load state. For example, if the absolute value of the difference between the total value of rotation angles and the total value of reference rotation angles corresponding to the specified condition exceeds a specified threshold value, the determination unit 26 determines that there is an abnormality in the bearing 9. do. The total value of the reference rotation angles is stored in the storage unit 21 in advance. Note that the total value of the reference rotation angles may be updated in the information stored in the storage unit 21 based on the measured value during maintenance work.
 異常診断の第2例において、判定部26は、演算部25の演算結果である軸変位量に基づいて軸受9の異常を判定する。例えば、判定部26は、演算部25に演算された軸変位量と基準の軸変位量との差の絶対値が規定の閾値を超えた場合、軸受9に異常が存在すると判定する。また、判定部26は、演算部25に演算された軸変位量と基準の軸変位量との差の値に基づいて、軸受9の内部に形状変化があるか、回転軸体8または軸受9が膨張しているか、軸受9に位置ずれが生じているか、等の異常を判定する。基準の軸変位量の値は、予め記憶部21に記憶される。 In the second example of abnormality diagnosis, the determination unit 26 determines whether the bearing 9 is abnormal based on the amount of shaft displacement that is the calculation result of the calculation unit 25. For example, the determination unit 26 determines that an abnormality exists in the bearing 9 when the absolute value of the difference between the amount of shaft displacement calculated by the calculation unit 25 and the reference amount of shaft displacement exceeds a prescribed threshold value. Further, the determining unit 26 determines whether there is a shape change inside the bearing 9, based on the value of the difference between the amount of shaft displacement calculated by the calculation unit 25 and the reference amount of shaft displacement. It is determined whether there is an abnormality, such as whether the bearing 9 is expanding or whether there is a positional shift in the bearing 9. The value of the reference axial displacement amount is stored in the storage unit 21 in advance.
 異常診断の第3例において、判定部26は、演算部25の演算結果である軸変位量に基づいて、回転軸体8および軸受9が膨張する、軸受9の内輪と外輪とが回転軸方向に位置ずれする、等によって軸受9に負荷される負荷荷重の値を演算する。当該演算は、回転軸体8の膨張量、軸受9の膨張量に対応する鉛直方向の軸変位量の増加と、負荷荷重と、の間に正の相関があることに基づいて行われる。判定部26は、演算した負荷荷重に基づいて軸受9の異常を判定する。例えば、判定部26は、演算した負荷荷重の値と基準の負荷荷重の値との差の絶対値が規定の閾値を超えた場合、軸受9に異常が存在すると判定する。基準の負荷荷重の値は、予め記憶部21に記憶される。 In the third example of abnormality diagnosis, the determining unit 26 determines that the rotating shaft body 8 and the bearing 9 expand, and that the inner ring and outer ring of the bearing 9 are aligned in the direction of the rotating shaft based on the amount of shaft displacement that is the calculation result of the calculating unit 25. The value of the load applied to the bearing 9 due to positional displacement etc. is calculated. This calculation is performed based on the fact that there is a positive correlation between the amount of expansion of the rotating shaft body 8, the increase in the amount of shaft displacement in the vertical direction corresponding to the amount of expansion of the bearing 9, and the applied load. The determination unit 26 determines whether the bearing 9 is abnormal based on the calculated load. For example, the determination unit 26 determines that an abnormality exists in the bearing 9 when the absolute value of the difference between the calculated applied load value and the reference applied load value exceeds a prescribed threshold value. The reference load value is stored in the storage unit 21 in advance.
 次に、図5を用いて回転角度の合計値から軸変位量が演算される原理を説明する。
 図5は実施の形態1における診断装置が適用される第1綱車と第2綱車と主ロープとの位置関係を示す概要図である。なお、図5には軸受9および診断装置20の図示が省略される。
Next, the principle by which the amount of shaft displacement is calculated from the total value of rotation angles will be explained using FIG.
FIG. 5 is a schematic diagram showing the positional relationship between the first sheave, the second sheave, and the main rope to which the diagnostic device according to the first embodiment is applied. Note that illustration of the bearing 9 and the diagnostic device 20 is omitted in FIG.
 図5は、第1綱車7の鉛直方向の位置が変化した際の主ロープ11の位置の変化を示す。軸受9を交換した直後の基準状態にある第1綱車7とその時の主ロープ11は、破線で示される。軸受9が摩耗した状態にある第1綱車7とその時の主ロープ11は、一点鎖線で示される。回転軸体8および軸受9が膨張した状態にある第1綱車7とその時の主ロープ11は、二点鎖線で示される。 FIG. 5 shows the change in the position of the main rope 11 when the vertical position of the first sheave 7 changes. The first sheave 7 in the standard state immediately after the bearing 9 has been replaced and the main rope 11 at that time are indicated by broken lines. The first sheave 7 and the main rope 11 in a state where the bearing 9 is worn out are shown by dashed lines. The first sheave 7 with the rotating shaft 8 and bearing 9 in an expanded state and the main rope 11 at that time are shown by two-dot chain lines.
 距離xは、第2綱車10の回転軸から第1綱車7の回転軸までの水平方向の距離である。軸受9に異常がある場合でも、距離xは、一定とみなすことができる。 The distance x is the distance in the horizontal direction from the rotation axis of the second sheave 10 to the rotation axis of the first sheave 7. Even if there is an abnormality in the bearing 9, the distance x can be considered constant.
 距離yは、第2綱車10の回転軸の鉛直方向の高さ位置を基準とした第1綱車7の鉛直方向の位置である。基準状態において、距離yは、yと記載される。軸受9が摩耗した状態において、距離yは、yと記載される。yは、yよりも小さい。回転軸体8および軸受9が膨張した状態において、距離yは、yと記載される。yは、yよりも大きい。 The distance y is the vertical position of the first sheave 7 based on the vertical height position of the rotating shaft of the second sheave 10. In the reference state, the distance y is written as y0 . In a worn state of the bearing 9, the distance y is written as y 1 . y 1 is smaller than y 0 . In the state where the rotating shaft body 8 and the bearing 9 are expanded, the distance y is described as y2 . y2 is greater than y0 .
 巻付角θは、ハーフラップの方式において、第1綱車7と主ロープ11とが接する円弧に対応する中心角である。図示されないが、基準状態において、巻付角θは、θと記載される。軸受9が摩耗した状態において、巻付角θは、θと記載される。θは、θよりも小さい。軸受9が膨張した状態において、巻付角θは、θと記載される。θは、θよりも大きい。 The wrap angle θ is a central angle corresponding to the arc where the first sheave 7 and the main rope 11 touch in the half-wrap method. Although not shown, the wrapping angle θ is described as θ 0 in the standard state. When the bearing 9 is in a worn state, the wrap angle θ is written as θ 1 . θ 1 is smaller than θ 0 . When the bearing 9 is in an expanded state, the wrap angle θ is written as θ 2 . θ 2 is greater than θ 0 .
 軸変位量hは、ある状態における距離yからyを減算した値である。軸受9が摩耗した状態における軸変位量hは、y-yである。なお、hは負の値となるが、図5では、図示の都合上hの絶対値が示される。軸受9が膨張した状態における軸変位量hは、y-yである。 The axial displacement amount h is the value obtained by subtracting y0 from the distance y in a certain state. The amount of shaft displacement h 1 when the bearing 9 is worn is y 1 −y 0 . Note that h 1 is a negative value, but in FIG. 5, the absolute value of h 1 is shown for convenience of illustration. The shaft displacement amount h 2 when the bearing 9 is expanded is y 2 -y 0 .
 図5に示される幾何学的な関係に基づけば、巻付角θと距離x、yとは、以下の式(1)を満たす。 Based on the geometrical relationship shown in FIG. 5, the wrapping angle θ and the distances x and y satisfy the following equation (1).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(1)において、iは、巻付の方式によって変化する定数である。ハーフラップの場合i=0となる。フルラップの場合、i=1となる。 In formula (1), i is a constant that changes depending on the winding method. In the case of half wrap, i=0. In the case of full wrap, i=1.
 式(1)を変形することで、軸変位量hと巻付角θとの関係を示す以下の式(2)が導出される。 By transforming Equation (1), the following Equation (2) that represents the relationship between the amount of shaft displacement h and the wrapping angle θ is derived.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 エレベーターシステムによって距離xの値および巻付の方式iの値が定まるため、式(2)によれば、巻付角θに基づいて軸変位量hが演算可能である。 Since the value of the distance x and the value of the wrapping method i are determined by the elevator system, according to equation (2), the axial displacement amount h can be calculated based on the wrapping angle θ.
 次に、回転角度の合計値に基づいて巻付角θが導出される原理を説明する。 Next, the principle by which the wrapping angle θ is derived based on the total value of rotation angles will be explained.
 巻付角θが変化した場合、第1綱車7についてのトラクション能力Γが以下の式(3)に基づいて変化する。 When the wrapping angle θ changes, the traction capacity Γ of the first sheave 7 changes based on the following equation (3).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(3)において、μは、主ロープ11とロープ溝7aとの間の摩擦係数である。Kは、ロープ溝7aの形状に対応する溝係数である。トラクション能力Γが変化すると、かご12が移動する際に主ロープ11がロープ溝7aに対して相対的に移動するすべり量が変化する。すべり量が変化するため、かご12の移動量に対する第1綱車7の回転量が変化する。即ち、かご12が同一の区間を走行する場合の第1綱車7の回転角度の合計値は、巻付角θの値に応じて変化する。また、かご12が同一の距離を移動する場合であっても、上昇運転または下降運転という条件が異なる場合、巻付角θと当該すべり量との関係が変化する。 In formula (3), μ is the friction coefficient between the main rope 11 and the rope groove 7a. K is a groove coefficient corresponding to the shape of the rope groove 7a. When the traction capacity Γ changes, the amount of slippage by which the main rope 11 moves relative to the rope groove 7a when the car 12 moves changes. Since the amount of slip changes, the amount of rotation of the first sheave 7 relative to the amount of movement of the car 12 changes. That is, the total value of the rotation angles of the first sheave 7 when the car 12 travels in the same section changes depending on the value of the wrap angle θ. Further, even if the car 12 moves the same distance, the relationship between the wrap angle θ and the slip amount changes if the conditions of upward operation or downward operation are different.
 かご12が特定の区間を上昇運転した際の第1綱車7の回転角度の合計値Θupと巻付角θとの関係は、以下の式(4)で表される。 The relationship between the total value Θ up of the rotation angle of the first sheave 7 and the wrap angle θ when the car 12 runs upward in a specific section is expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(4)において、Cは、上昇運転時のすべり量を表現する係数である。Cは、主ロープ11の張力に応じて変化する。即ち、Cは、かご12の積載重量の値の関数である。rの値は、エレベーターシステムのローピング方式に応じて決定される定数である。即ち、1:1ローピング、2:1ローピング、等の方式が異なると、rの値が異なる。Xは、かご12が移動した距離である。Reは、第1綱車7の有効半径である。 In equation (4), C1 is a coefficient expressing the amount of slip during upward operation. C 1 changes depending on the tension of the main rope 11. That is, C 1 is a function of the value of the loaded weight of the car 12. The value of r is a constant determined depending on the roping method of the elevator system. That is, the value of r differs depending on the method such as 1:1 roping, 2:1 roping, etc. X is the distance that the car 12 has moved. Re is the effective radius of the first sheave 7.
 かご12が特定の区間を下降運転した際の第1綱車7の回転角度の合計値Θdnと巻付角θとの関係は、以下の式(5)で表される。 The relationship between the total value Θ dn of the rotation angle of the first sheave 7 and the wrap angle θ when the car 12 runs downward in a specific section is expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(5)において、Cは、下降運転時のすべり量を表現する係数である。Cは、主ロープ11の張力に応じて変化する。即ち、Cは、かご12の積載重量の値の関数である。Cは、ロープの伸び量を表現する係数である。Cは、かご12の積載重量の値の関数である。 In equation (5), C2 is a coefficient expressing the amount of slip during descending operation. C2 changes depending on the tension of the main rope 11. That is, C 2 is a function of the value of the car 12's loaded weight. C3 is a coefficient expressing the amount of elongation of the rope. C 3 is a function of the value of the car 12's loaded weight.
 診断装置20において、記憶部21は、式(1)から式(5)に含まれる各定数i、x、y、r、X、Re、C、C、Cの値を記憶する。この際、記憶部21は、巻上機5に対応する最新の各定数の値を記憶する。ここで、かご12の移動距離Xは、特定の区間と対応付けて記憶される。なお、診断装置20は、診断運転の際に移動した距離の測定値を移動距離Xとして制御盤15から取得してもよい。 In the diagnostic device 20, the storage unit 21 stores the values of constants i, x, y 0 , r, X, Re, C 1 , C 2 , and C 3 included in equations (1) to (5). . At this time, the storage unit 21 stores the latest values of each constant corresponding to the hoisting machine 5. Here, the moving distance X of the car 12 is stored in association with a specific section. Note that the diagnostic device 20 may obtain from the control panel 15 a measured value of the distance traveled during the diagnostic operation as the travel distance X.
 異常診断を行う場合、回転角算出部24は、かご12の運転に対応して第1綱車7の回転角度の合計値ΘupまたはΘdnを算出する。 When performing an abnormality diagnosis, the rotation angle calculation unit 24 calculates the total value Θ up or Θ dn of the rotation angle of the first sheave 7 in accordance with the operation of the car 12.
 異常診断の第2例および第3例において、演算部25は、記憶部21が記憶する各定数と各関数と回転角算出部24が演算した回転角度の合計値とを用いて、式(4)または式(5)に基づいて、当該回転角度の合計値に対応する巻付角θを演算する。演算部25は、記憶部21が記憶する係数と演算した巻付角θとを用いて、式(2)に基づいて、軸変位量hを演算する。 In the second and third examples of abnormality diagnosis, the calculation unit 25 uses the constants and functions stored in the storage unit 21 and the total rotation angle calculated by the rotation angle calculation unit 24 to calculate the equation (4). ) or formula (5), the wrap angle θ corresponding to the total value of the rotation angles is calculated. The calculation unit 25 calculates the shaft displacement amount h based on equation (2) using the coefficients stored in the storage unit 21 and the calculated wrap angle θ.
 異常診断の第1例において、判定部26は、回転角算出部24が算出した回転角度の合計値ΘupまたはΘdnに基づいて、軸受9の異常を判定する。回転角度の合計値から軸受9の異常を判定可能である理由は、係数X、C、C、Cが同じ値を取るならば、回転角度の合計値に対する軸変位量hは、同じ値となるからである。 In the first example of the abnormality diagnosis, the determination unit 26 determines whether the bearing 9 is abnormal based on the total value Θ up or Θ dn of the rotation angles calculated by the rotation angle calculation unit 24 . The reason why it is possible to determine whether there is an abnormality in the bearing 9 from the total value of the rotation angle is that if the coefficients This is because it becomes a value.
 異常診断の第2例において、判定部26は、演算部25が演算した軸変位量hに基づいて、軸受9の異常を判定する。 In the second example of abnormality diagnosis, the determining unit 26 determines whether the bearing 9 is abnormal based on the shaft displacement amount h calculated by the calculating unit 25.
 異常診断の第3例において、判定部26は、演算部25が演算した軸変位量hに基づいて、軸受9で生じる負荷荷重の値を演算する。例えば、軸受9が転がり軸受である場合、回転軸体8が膨張することで、回転軸方向において軸受9の内輪と外輪との位置がずれる。当該位置ずれに伴って、転動体の接触角が変化し、回転軸体8が突っ張ることで転動体に加わる荷重が増加する。転動体の位置変化、弾性変形、等によって軸受9に生じる負荷が負荷荷重の値として表現される。判定部26は、記憶部21に記憶された負荷荷重を算出する関数に軸変位量hを適用することで、負荷荷重の値を演算する。ここで、負荷荷重を算出する関数は、軸変位量hの関数である。判定部26は、当該負荷荷重の値に基づいて、軸受9の異常を判定する。例えば、判定部26は、軸受9の異常として、基準となる負荷荷重と比較することで、負荷荷重の値が増大している異常があると判定する。なお、判定部26は、当該負荷荷重が軸受9に与える影響を、異常度の値に定量的に反映してもよい。 In the third example of abnormality diagnosis, the determination unit 26 calculates the value of the load generated in the bearing 9 based on the shaft displacement amount h calculated by the calculation unit 25. For example, when the bearing 9 is a rolling bearing, the expansion of the rotating shaft body 8 causes the positions of the inner ring and outer ring of the bearing 9 to shift in the rotating shaft direction. With this positional shift, the contact angle of the rolling elements changes, and the rotating shaft body 8 becomes tensed, thereby increasing the load applied to the rolling elements. The load generated on the bearing 9 due to positional changes, elastic deformation, etc. of the rolling elements is expressed as a load value. The determination unit 26 calculates the value of the applied load by applying the axial displacement amount h to the function for calculating the applied load stored in the storage unit 21. Here, the function for calculating the applied load is a function of the shaft displacement amount h. The determination unit 26 determines whether the bearing 9 is abnormal based on the value of the applied load. For example, the determining unit 26 determines that there is an abnormality in the bearing 9 in which the value of the applied load increases by comparing it with the reference applied load. Note that the determination unit 26 may quantitatively reflect the influence of the load on the bearing 9 in the value of the degree of abnormality.
 次に、図6を用いて、診断運転の例を説明する。
 図6は実施の形態1における診断装置が制御盤に指令する診断運転の概要を説明するためのフローチャートである。
Next, an example of diagnostic operation will be explained using FIG. 6.
FIG. 6 is a flowchart for explaining the outline of the diagnostic operation that the diagnostic device instructs the control panel in the first embodiment.
 図6に示されるフローチャートにおいて、診断運転における特定の区間は、最上階の乗場4aから最下階の乗場4bまでの区間である。異常診断において、かご12が停止することなくなるべく長い距離を走行するほど、演算した巻付角θの値は、実際の巻付角の値に近い値となる。このため、特定の区間は、最上階から最下階までが選定され得る。 In the flowchart shown in FIG. 6, the specific section in the diagnostic operation is the section from the top floor landing 4a to the bottom floor landing 4b. In the abnormality diagnosis, the longer the distance that the car 12 travels without stopping, the closer the calculated value of the wrap angle θ becomes to the value of the actual wrap angle. Therefore, the specific section may be selected from the top floor to the bottom floor.
 例えば、診断装置20は、かご12に人または物が積載されていないことを秤装置12cからの情報で確認した後、フローチャートの動作を開始する。 For example, the diagnostic device 20 starts the operation of the flowchart after confirming that no person or object is loaded in the car 12 using information from the weighing device 12c.
 ステップS001において、診断装置20は、診断運転を実施させる指令を制御盤15に送信する。制御盤15は、診断運転を開始する。 In step S001, the diagnostic device 20 transmits a command to the control panel 15 to perform a diagnostic operation. The control panel 15 starts diagnostic operation.
 その後、ステップS002の動作が行われる。ステップS002において、かご12は、現在の乗場4から最下階の乗場4bへ移動する。 After that, the operation of step S002 is performed. In step S002, the car 12 moves from the current landing 4 to the bottom floor landing 4b.
 その後、ステップS003の動作が行われる。ステップS003において、かご12は、最上階の乗場4aまで停止することなく移動する。当該フローチャートの診断運転における移動速度の推移は、一般的なエレベーターシステムの診断運転におけるかごの移動速度の推移と同様である。かご12は、最上階の乗場4aに到着する。診断装置20は、ステップS003におけるかご12の上昇運転の際に回転軸体8が回転した回転角度の合計値Θupを算出する。 After that, the operation of step S003 is performed. In step S003, the car 12 moves to the landing 4a on the top floor without stopping. The transition of the moving speed during the diagnostic operation of the flowchart is similar to the transition of the moving speed of the car during the diagnostic operation of a general elevator system. The car 12 arrives at the landing 4a on the top floor. The diagnostic device 20 calculates the total value Θ up of the rotation angles by which the rotary shaft body 8 rotated during the upward operation of the car 12 in step S003.
 その後、ステップS004の動作が行われる。ステップS004において、かご12は、最下階の乗場4bまで停止することなく移動する。かご12は、最下階の乗場4bに到着する。診断装置20は、ステップS004におけるかご12の下降運転の際に回転軸体8が回転した回転角度の合計値Θdnを算出する。 After that, the operation of step S004 is performed. In step S004, the car 12 moves to the lowest floor landing 4b without stopping. The car 12 arrives at the landing 4b on the lowest floor. The diagnostic device 20 calculates the total value Θ dn of the rotation angles by which the rotary shaft body 8 rotated during the downward operation of the car 12 in step S004.
 その後、ステップS005の動作が行われる。ステップS005において、診断装置20は、算出した回転角度の合計値ΘupおよびΘdnを用いて、異常診断として軸受9の異常を判定する。この際、診断装置20は、回転角度の合計値ΘupおよびΘdnの平均値を用いて軸受9の異常を判定する。なお、診断装置20は、回転角度の合計値ΘupおよびΘdnのうちの少なくとも一方を用いて、軸受9の異常を判定してもよい。 After that, the operation of step S005 is performed. In step S005, the diagnostic device 20 uses the calculated rotation angle total values Θ up and Θ dn to determine an abnormality in the bearing 9 as an abnormality diagnosis. At this time, the diagnostic device 20 determines whether the bearing 9 is abnormal using the average value of the total rotation angle values Θ up and Θ dn . Note that the diagnostic device 20 may determine whether the bearing 9 is abnormal using at least one of the rotation angle total values Θ up and Θ dn .
 その後、診断装置20は、フローチャートの動作を終了する。 After that, the diagnostic device 20 ends the operation of the flowchart.
 次に、図7を用いて、異常診断の第1例を説明する。
 図7は実施の形態1における診断装置が行う異常診断の第1例の概要を説明するためのフローチャートである。
Next, a first example of abnormality diagnosis will be described using FIG. 7.
FIG. 7 is a flowchart for explaining an overview of a first example of abnormality diagnosis performed by the diagnostic apparatus in the first embodiment.
 例えば、診断装置20は、診断運転の後に図7に示される異常診断を開始する。なお、診断運転の後ではなくても、診断装置20は、かご12が特定の区間を移動したことを検出した場合、異常診断を行ってもよい。 For example, the diagnostic device 20 starts the abnormality diagnosis shown in FIG. 7 after the diagnostic operation. Note that, even if the diagnostic device 20 does not perform the diagnostic operation, if it detects that the car 12 has moved through a specific section, it may perform the abnormality diagnosis.
 ステップS101において、診断装置20は、かご12が特定の区間を移動したことを検出する。 In step S101, the diagnostic device 20 detects that the car 12 has moved in a specific section.
 その後、ステップS102の動作が行われる。ステップS102において、診断装置20は、回転角検出装置14からの角度信号等の情報に基づいて第1綱車7が停止したことを検出する。 After that, the operation of step S102 is performed. In step S102, the diagnostic device 20 detects that the first sheave 7 has stopped based on information such as the angle signal from the rotation angle detection device 14.
 その後、ステップS103の動作が行われる。ステップS103において、診断装置20の回転角算出部24は、かご12が特定の区間を移動したことによる回転角度の合計値Θを算出する。なお、Θは、ΘupおよびΘdnのうち少なくとも一方から算出される。 After that, the operation of step S103 is performed. In step S103, the rotation angle calculation unit 24 of the diagnostic device 20 calculates the total value Θ i of rotation angles caused by the movement of the car 12 in a specific section. Note that Θ i is calculated from at least one of Θ up and Θ dn .
 その後、ステップS104の動作が行われる。ステップS104において、診断装置20の判定部26は、算出された回転角度の合計値Θと基準の回転角度の合計値Θとの差の絶対値が閾値を超えたか否かを判定する。即ち、「|Θ-Θ|>閾値」であるか否かを判定する。 After that, the operation of step S104 is performed. In step S104, the determining unit 26 of the diagnostic device 20 determines whether the absolute value of the difference between the calculated total value Θ i of rotation angles and the reference total value Θ 0 of rotation angles exceeds a threshold value. That is, it is determined whether "|Θ 0i |>threshold".
 ステップS104で、「|Θ-Θ|>閾値」でない場合、ステップS105の動作が行われる。ステップS105において、判定部26は、軸受9に異常が無い、即ち正常であると判定する。判定部26は、診断結果の情報として異常が無い旨および「|Θ-Θ|」の値を含む異常度の情報を作成する。診断装置20は、診断結果の情報を監視装置16に送信する。診断装置20は、異常診断を終了する。 In step S104, if "|Θ 0 - Θ i |>threshold" is not satisfied, the operation in step S105 is performed. In step S105, the determination unit 26 determines that there is no abnormality in the bearing 9, that is, it is normal. The determination unit 26 creates information on the degree of abnormality including the fact that there is no abnormality and the value of "|Θ 0i |" as information on the diagnosis result. The diagnostic device 20 transmits information on the diagnostic results to the monitoring device 16. The diagnostic device 20 ends the abnormality diagnosis.
 ステップS104で、「|Θ-Θ|>閾値」である場合、ステップS106の動作が行われる。ステップS106において、判定部26は、軸受9に異常があると判定する。判定部26は、診断結果の情報として異常がある旨および「|Θ-Θ|」の値を含む異常度の情報を作成する。診断装置20は、診断結果の情報を監視装置16に送信する。診断装置20は、異常診断を終了する。 In step S104, if "|Θ 0 −Θ i |>threshold", the operation in step S106 is performed. In step S106, the determination unit 26 determines that there is an abnormality in the bearing 9. The determination unit 26 creates information on the degree of abnormality including the fact that there is an abnormality and the value of "|Θ 0 −Θ i |" as information on the diagnosis result. The diagnostic device 20 transmits information on the diagnostic results to the monitoring device 16. The diagnostic device 20 ends the abnormality diagnosis.
 ステップS105の動作またはステップS106の動作が行われた後、ステップS107の動作が行われる。ステップS107において、監視装置16は、診断結果の情報を情報センター装置17に送信する。情報センター装置17は、診断結果の情報を保守会社の作業員等に対して表示する。情報センター装置17は、診断結果の情報に基づいて、当該エレベーターシステムの保守点検計画を作成する。 After the operation of step S105 or step S106 is performed, the operation of step S107 is performed. In step S107, the monitoring device 16 transmits information on the diagnosis result to the information center device 17. The information center device 17 displays information on the diagnosis results to maintenance company workers and the like. The information center device 17 creates a maintenance inspection plan for the elevator system based on the information of the diagnosis results.
 その後、フローチャートの動作が終了する。 After that, the operation of the flowchart ends.
 次に、図8を用いて、異常診断の第2例を説明する。
 図8は実施の形態1における診断装置が行う異常診断の第2例の概要を説明するためのフローチャートである。
Next, a second example of abnormality diagnosis will be described using FIG. 8.
FIG. 8 is a flowchart for explaining an overview of a second example of abnormality diagnosis performed by the diagnostic apparatus in the first embodiment.
 例えば、診断装置20は、診断運転の後に図8に示される異常診断を開始する。なお、診断運転の後ではなくても、診断装置20は、かご12が特定の区間を移動したことを検出した場合、異常診断を行ってもよい。 For example, the diagnostic device 20 starts the abnormality diagnosis shown in FIG. 8 after the diagnostic operation. Note that, even if the diagnostic device 20 does not perform the diagnostic operation, if it detects that the car 12 has moved through a specific section, it may perform the abnormality diagnosis.
 ステップS201からステップS203で行われる動作は、図7のフローチャートのステップS101からステップS103で行われる動作と同じである。 The operations performed from step S201 to step S203 are the same as the operations performed from step S101 to step S103 in the flowchart of FIG.
 ステップS203の動作が行われた後、ステップS204の動作が行われる。ステップS204において、診断装置20の演算部25は、ステップS203で算出された回転角度の合計値Θに基づいて、軸変位量hを演算する。 After the operation in step S203 is performed, the operation in step S204 is performed. In step S204, the calculation unit 25 of the diagnostic device 20 calculates the axial displacement amount h i based on the total rotation angle value Θ i calculated in step S203.
 その後、ステップS205の動作が行われる。ステップS205において、診断装置20の判定部26は、演算された軸変位量hiと基準の軸変位量hとの差の絶対値が閾値を超えたか否かを判定する。即ち、「|h-h|>閾値」であるか否かを判定する。 After that, the operation of step S205 is performed. In step S205, the determination unit 26 of the diagnostic device 20 determines whether the absolute value of the difference between the calculated shaft displacement amount hi and the reference shaft displacement amount h0 exceeds a threshold value. That is, it is determined whether "|h 0 -h i |>threshold".
 ステップS205で、「|h-h|>閾値」でない場合、ステップS206の動作が行われる。ステップS206において、判定部26は、軸受9に異常が無い、即ち正常であると判定する。判定部26は、診断結果の情報として異常が無い旨および「|h-h|」の値を含む異常度の情報を作成する。診断装置20は、診断結果の情報を監視装置16に送信する。診断装置20は、異常診断を終了する。 In step S205, if "|h 0 -h i |>threshold" is not satisfied, the operation in step S206 is performed. In step S206, the determination unit 26 determines that there is no abnormality in the bearing 9, that is, it is normal. The determination unit 26 creates information on the degree of abnormality including the fact that there is no abnormality and the value of "|h 0 - h i |" as information on the diagnosis result. The diagnostic device 20 transmits information on the diagnostic results to the monitoring device 16. The diagnostic device 20 ends the abnormality diagnosis.
 ステップS205で、「|h-h|>閾値」である場合、ステップS207の動作が行われる。ステップS207において、判定部26は、軸受9に異常があると判定する。判定部26は、診断結果の情報として異常がある旨および「|h-h|」の値を含む異常度の情報を作成する。診断装置20は、診断結果の情報を監視装置16に送信する。診断装置20は、異常診断を終了する。 In step S205, if "|h 0 -h i |>threshold", the operation in step S207 is performed. In step S207, the determining unit 26 determines that there is an abnormality in the bearing 9. The determination unit 26 creates abnormality degree information including the fact that there is an abnormality and the value of "|h 0 -h i |" as diagnostic result information. The diagnostic device 20 transmits information on the diagnostic results to the monitoring device 16. The diagnostic device 20 ends the abnormality diagnosis.
 ステップS206の動作またはステップS207の動作が行われた後、ステップS208の動作が行われる。ステップS208において、監視装置16は、診断結果の情報を情報センター装置17に送信する。情報センター装置17は、診断結果の情報を保守会社の作業員に対して表示する。情報センター装置17は、診断結果の情報に基づいて、当該エレベーターシステムの保守点検計画を作成する。 After the operation of step S206 or the operation of step S207 is performed, the operation of step S208 is performed. In step S208, the monitoring device 16 transmits information on the diagnosis result to the information center device 17. The information center device 17 displays information on the diagnosis results to the maintenance company workers. The information center device 17 creates a maintenance inspection plan for the elevator system based on the information of the diagnosis results.
 その後、フローチャートの動作が終了する。 After that, the operation of the flowchart ends.
 なお、ステップS207において、判定部26は、hの値とhの値との差分に基づいて、軸受9の異常が、内部の形状変化であるまたは回転軸体8および軸受9の熱膨張であることを判定してもよい。例えば、hの値とhの値との差分が負の値となる場合、判定部26は、軸受9において内部の形状変化が起きていると判定してもよい。hの値とhの値との差分が正の値となる場合、判定部26は、回転軸体8および軸受9において熱膨張が起きていると判定してもよい。 In addition, in step S207, the determination unit 26 determines that the abnormality in the bearing 9 is due to an internal shape change or thermal expansion of the rotating shaft body 8 and the bearing 9, based on the difference between the value of h i and the value of h 0 . It may be determined that For example, when the difference between the value of h i and the value of h 0 becomes a negative value, the determination unit 26 may determine that an internal shape change has occurred in the bearing 9. When the difference between the value of h i and the value of h 0 is a positive value, the determination unit 26 may determine that thermal expansion is occurring in the rotating shaft body 8 and the bearing 9.
 なお、ステップS206およびステップS207において、判定部26は、hの値とhの値との差分を含む異常度の情報を作成してもよい。この場合、ステップS208において、情報センター装置17は、当該差分の推移を解析してもよい。具体的には、情報センター装置17は、当該差分が負の値でかつ減少しているという推移に基づいて、軸受9の摩耗が進行していることを解析してもよい。 Note that in step S206 and step S207, the determination unit 26 may create abnormality degree information including the difference between the value of h i and the value of h 0 . In this case, in step S208, the information center device 17 may analyze the transition of the difference. Specifically, the information center device 17 may analyze that the wear of the bearing 9 is progressing based on the trend that the difference is a negative value and is decreasing.
 なお、異常診断の第3例においても、判定部26が負荷荷重を演算する動作、判定部26が負荷荷重に基づいて軸受9の異常を判定する動作、が加わる点を除いて、図8のフローチャートとほぼ同様の動作が行われる。 The third example of abnormality diagnosis is similar to that shown in FIG. 8 except that the determination unit 26 calculates the applied load and the determination unit 26 determines the abnormality of the bearing 9 based on the applied load. Almost the same operation as in the flowchart is performed.
 以上で説明した実施の形態1によれば、診断装置20は、回転角算出部24と判定部26とを備える。診断装置20は、かご12が特定の区間を走行した際に算出した第1綱車7の回転角度の合計値に基づいて、軸受9の異常を判定する。第1綱車7の回転角度を示す角度信号を出力する装置は、一般的なエレベーターシステムに設けられている。このため、巻上機5に追加の装置を取り付けることなく、簡易な構成で軸受9の異常を判定することができる。 According to the first embodiment described above, the diagnostic device 20 includes the rotation angle calculation section 24 and the determination section 26. The diagnostic device 20 determines whether there is an abnormality in the bearing 9 based on the total value of the rotation angles of the first sheave 7 calculated when the car 12 travels in a specific section. A device that outputs an angle signal indicating the rotation angle of the first sheave 7 is provided in a general elevator system. Therefore, an abnormality in the bearing 9 can be determined with a simple configuration without attaching an additional device to the hoisting machine 5.
 また、診断システムは、回転角検出装置14と診断装置20とを備える。診断システムにおいて、第1綱車7の回転角度の合計値の情報に基づいて、軸受9の異常が判定される。このため、簡易な構成で軸受9の異常を判定することができる。 The diagnostic system also includes a rotation angle detection device 14 and a diagnostic device 20. In the diagnostic system, an abnormality in the bearing 9 is determined based on information on the total value of the rotation angles of the first sheave 7. Therefore, an abnormality in the bearing 9 can be determined with a simple configuration.
 また、遠隔監視システムは、診断システムと監視装置16とを備える。監視装置16は、診断装置20の診断結果を示す情報を外部に送信し得る。このため、軸受9の異常を外部に送信することができる。 Additionally, the remote monitoring system includes a diagnostic system and a monitoring device 16. The monitoring device 16 can transmit information indicating the diagnosis result of the diagnostic device 20 to the outside. Therefore, abnormalities in the bearing 9 can be transmitted to the outside.
 また、保守管理システムは、診断システムと監視装置16と情報センター装置17とを備える。情報センター装置17は、診断装置20の診断結果に基づいて保守計画を作成する。このため、遠隔地点から、軸受9の異常を診断し、診断結果に基づいて交換等の計画を作成することができる。その結果、点検に必要な労力を削減することができる。 The maintenance management system also includes a diagnostic system, a monitoring device 16, and an information center device 17. The information center device 17 creates a maintenance plan based on the diagnosis results of the diagnostic device 20. Therefore, it is possible to diagnose an abnormality in the bearing 9 from a remote location and create a plan for replacement or the like based on the diagnosis result. As a result, the labor required for inspection can be reduced.
 また、診断装置20は、演算部25を備える。診断装置20は、軸変位量を演算し、軸変位量に基づいて軸受9の異常を判定する。このため、軸受9の形状の変化に起因する異常を判定することができる。その結果、異常診断の精度を向上することができる。 The diagnostic device 20 also includes a calculation section 25. The diagnostic device 20 calculates the amount of shaft displacement and determines whether the bearing 9 is abnormal based on the amount of shaft displacement. Therefore, abnormalities caused by changes in the shape of the bearing 9 can be determined. As a result, the accuracy of abnormality diagnosis can be improved.
 また、診断装置20は、主ロープ11の第1綱車7に対する巻付角θを演算し、巻付角θに基づいて軸変位量を演算する。この際、診断装置20は、式(2)に基づいて軸変位量hの値を演算する。このため、エレベーターシステムにおける構成の幾何学的な関係に基づいて軸変位量を演算することができる。 Furthermore, the diagnostic device 20 calculates the wrapping angle θ of the main rope 11 with respect to the first sheave 7, and calculates the amount of shaft displacement based on the wrapping angle θ. At this time, the diagnostic device 20 calculates the value of the shaft displacement amount h based on equation (2). Therefore, the amount of axial displacement can be calculated based on the geometric relationship of the configuration in the elevator system.
 また、診断装置20は、式(4)および式(5)を用いて巻付角θの値を演算する。このため、実際のトラクション能力に基づいて軸変位量を演算することができる。 Furthermore, the diagnostic device 20 calculates the value of the wrap angle θ using equations (4) and (5). Therefore, the amount of shaft displacement can be calculated based on the actual traction capacity.
 また、診断装置20は、軸変位量に基づいて、軸受9の内部形状が変化している異常があると判定する。例えば、軸受9の内部形状は、摩耗、損傷、等によって発生し得る。このため、軸受9の異常の種類を判定することができる。 Furthermore, the diagnostic device 20 determines that there is an abnormality in which the internal shape of the bearing 9 is changing based on the amount of shaft displacement. For example, the internal shape of the bearing 9 may be caused by wear, damage, etc. Therefore, the type of abnormality in the bearing 9 can be determined.
 また、診断装置20は、軸受9に生じる負荷荷重の値を演算する。診断装置20は、負荷荷重の値が増大している異常があると判定する。このため、軸受9の異常の種類を判定することができる。特に、負荷荷重の値が増大していることは、軸受9の寿命を縮める事象であるが、軸受9の摩耗等の直接的な異常ではなく、点検で検査することが難しい。診断装置20は、そのような種類の異常を判定することができる。 Furthermore, the diagnostic device 20 calculates the value of the load generated on the bearing 9. The diagnostic device 20 determines that there is an abnormality in which the applied load value is increasing. Therefore, the type of abnormality in the bearing 9 can be determined. In particular, an increase in the load value is a phenomenon that shortens the life of the bearing 9, but it is not a direct abnormality such as wear of the bearing 9, and is difficult to inspect. Diagnostic device 20 is capable of determining such types of abnormalities.
 また、診断装置20は、演算した軸変位量と軸変位量の基準値との差分に基づいて、軸受9の異常の種類を判定する。なお、軸変位量の基準値は、任意に設定されればよい。例えば、作業員による点検の直後に演算された軸変位量が軸変位量の基準値に設定されてもよい。このため、異常の種類を判定する精度を向上させることができる。 Furthermore, the diagnostic device 20 determines the type of abnormality in the bearing 9 based on the difference between the calculated amount of shaft displacement and the reference value of the amount of shaft displacement. Note that the reference value for the amount of shaft displacement may be set arbitrarily. For example, the amount of shaft displacement calculated immediately after inspection by a worker may be set as the reference value of the amount of shaft displacement. Therefore, the accuracy of determining the type of abnormality can be improved.
 また、診断装置20は、特定の区間として最上階と最下階との間をかご12が停止することなく往復運転した、即ち上昇運転および下降運転した際に算出した回転角度の合計値に基づいて、軸受9の異常を判定する。軸受9の異常は、主ロープ11と第1綱車7とのすべり量の推定に基づいて判定される。最上階から最下階まで停止することなくかご12が運転した場合の回転角度の合計値が用いられることで、軸受9の異常診断の精度を向上させることができる。 Further, the diagnostic device 20 is based on the total value of rotation angles calculated when the car 12 is operated back and forth between the top floor and the bottom floor without stopping as a specific section, that is, when the car 12 is operated up and down. Then, the abnormality of the bearing 9 is determined. An abnormality in the bearing 9 is determined based on an estimation of the amount of slippage between the main rope 11 and the first sheave 7. By using the total value of rotation angles when the car 12 operates from the top floor to the bottom floor without stopping, the accuracy of abnormality diagnosis of the bearing 9 can be improved.
 また、診断装置20は、診断運転指令部23を更に備える。診断装置20は、かご12の内部に物体が存在しないノーロード状態であることを検出した場合に、制御盤15に診断運転を行わせる。主ロープ11と第1綱車7とのすべり量は、かご12の積載重量の影響を受ける。診断装置20は、診断運転を行わせることで、利用者による利用状況という不確定な要素を排除した条件の下で異常診断を行うことができる。その結果、異常診断の精度を向上させることができる。 Furthermore, the diagnostic device 20 further includes a diagnostic driving command section 23. The diagnostic device 20 causes the control panel 15 to perform a diagnostic operation when detecting a no-load state in which no object exists inside the car 12. The amount of slip between the main rope 11 and the first sheave 7 is affected by the loaded weight of the car 12. By performing a diagnostic operation, the diagnostic device 20 can perform an abnormality diagnosis under conditions that exclude uncertain factors such as usage status by the user. As a result, the accuracy of abnormality diagnosis can be improved.
 なお、記憶部21が記憶する値は、任意のタイミングで更新されてもよい。例えば、記憶部21が記憶する各基準値は、更新されてもよい。例えば、情報センター装置17は、監視装置16を介して、診断装置20に対して、更新後の基準値の情報を送信してもよい。この場合、診断装置20は、更新後の基準値の値を記憶部21に新しく記憶させる。 Note that the value stored in the storage unit 21 may be updated at any timing. For example, each reference value stored in the storage unit 21 may be updated. For example, the information center device 17 may transmit the updated reference value information to the diagnostic device 20 via the monitoring device 16. In this case, the diagnostic device 20 causes the storage unit 21 to newly store the updated reference value.
 なお、判定部26は、異常度の情報を作成し、異常度に基づいて軸受9の異常の判定を行ってもよい。具体的には、異常診断の第1例において、判定部26は、回転角度の合計値に基づいて異常度の情報を作成してもよい。当該異常度は、回転角度の合計値に対応する異常判定値を含んでもよい。異常診断の第2例において、判定部26は、軸変位量に基づいて異常度の情報を作成してもよい。当該異常度は、軸変位量の値に対応する異常判定値を含んでもよい。異常診断の第3例において、判定部26は、負荷荷重に基づいて異常度の情報を作成してもよい。当該異常度は、負荷荷重の値に対応する異常判定値を含んでもよい。いずれの例においても、判定部26は、異常度の異常判定値が規定の閾値を超えた場合に、軸受9が異常であると判定してもよい。 Note that the determination unit 26 may create information on the degree of abnormality and determine whether the bearing 9 is abnormal based on the degree of abnormality. Specifically, in the first example of the abnormality diagnosis, the determination unit 26 may create information on the degree of abnormality based on the total value of the rotation angles. The degree of abnormality may include an abnormality determination value corresponding to the total value of rotation angles. In the second example of abnormality diagnosis, the determination unit 26 may create information on the degree of abnormality based on the amount of shaft displacement. The degree of abnormality may include an abnormality determination value corresponding to the value of the amount of shaft displacement. In the third example of abnormality diagnosis, the determination unit 26 may create information on the degree of abnormality based on the applied load. The degree of abnormality may include an abnormality determination value corresponding to the value of applied load. In either example, the determination unit 26 may determine that the bearing 9 is abnormal when the abnormality determination value of the degree of abnormality exceeds a prescribed threshold value.
 なお、診断装置20は、機械室が無い方式のエレベーターシステム、機械室が昇降路の下部に設けられる方式のエレベーターシステムに適用されてもよい。この際、第1綱車と第2綱車と主ロープとの位置関係に基づいて、回転角度の合計値から軸変位量を演算する際に用られる式などが適宜選択されてもよい。また、この場合、診断装置20および監視装置16は、昇降路の内部に設けられてもよい。 Note that the diagnostic device 20 may be applied to an elevator system without a machine room or an elevator system in which a machine room is provided at the bottom of the hoistway. At this time, the formula used when calculating the amount of shaft displacement from the total value of rotation angles may be appropriately selected based on the positional relationship between the first sheave, the second sheave, and the main rope. Further, in this case, the diagnostic device 20 and the monitoring device 16 may be provided inside the hoistway.
 次に、図9を用いて、診断装置20を構成するハードウェアの例を説明する。
 図9は実施の形態1における診断装置のハードウェア構成図である。
Next, an example of hardware constituting the diagnostic device 20 will be described using FIG. 9.
FIG. 9 is a hardware configuration diagram of the diagnostic device in the first embodiment.
 診断装置20の各機能は、処理回路により実現し得る。例えば、処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。例えば、処理回路は、少なくとも1つの専用のハードウェア200を備える。 Each function of the diagnostic device 20 can be realized by a processing circuit. For example, the processing circuit includes at least one processor 100a and at least one memory 100b. For example, the processing circuitry includes at least one dedicated hardware 200.
 処理回路が少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える場合、診断装置20の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ100bに格納される。少なくとも1つのプロセッサ100aは、少なくとも1つのメモリ100bに記憶されたプログラムを読み出して実行することにより、診断装置20の各機能を実現する。少なくとも1つのプロセッサ100aは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。例えば、少なくとも1つのメモリ100bは、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。 When the processing circuit includes at least one processor 100a and at least one memory 100b, each function of the diagnostic device 20 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of software and firmware is stored in at least one memory 100b. At least one processor 100a realizes each function of the diagnostic device 20 by reading and executing a program stored in at least one memory 100b. At least one processor 100a is also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP. For example, the at least one memory 100b is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, etc., a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, etc.
 処理回路が少なくとも1つの専用のハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。例えば、診断装置20の各機能は、それぞれ処理回路で実現される。例えば、診断装置20の各機能は、まとめて処理回路で実現される。 If the processing circuitry comprises at least one dedicated hardware 200, the processing circuitry may be implemented, for example, in a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. Ru. For example, each function of the diagnostic device 20 is realized by a processing circuit. For example, each function of the diagnostic device 20 is realized by a processing circuit.
 診断装置20の各機能について、一部を専用のハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。例えば、回転角度の合計値を算出する機能については専用のハードウェア200としての処理回路で実現し、回転角度の合計値を算出する機能以外の機能については少なくとも1つのプロセッサ100aが少なくとも1つのメモリ100bに格納されたプログラムを読み出して実行することにより実現してもよい。 Regarding each function of the diagnostic device 20, some parts may be realized by dedicated hardware 200, and other parts may be realized by software or firmware. For example, the function of calculating the total value of rotation angles is realized by a processing circuit as dedicated hardware 200, and the functions other than the function of calculating the total value of rotation angles are realized by at least one processor 100a using at least one memory. It may also be realized by reading and executing a program stored in the computer 100b.
 このように、処理回路は、ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせで診断装置20の各機能を実現する。 In this way, the processing circuit realizes each function of the diagnostic device 20 using the hardware 200, software, firmware, or a combination thereof.
 図示されないが、監視装置16の各機能も、診断装置20の各機能を実現する処理回路と同等の処理回路で実現される。図示されないが、情報センター装置17の各機能も、診断装置20の各機能を実現する処理回路と同等の処理回路で実現される。 Although not shown, each function of the monitoring device 16 is also realized by a processing circuit equivalent to the processing circuit that realizes each function of the diagnostic device 20. Although not shown, each function of the information center device 17 is also realized by a processing circuit equivalent to a processing circuit that realizes each function of the diagnostic device 20.
実施の形態2.
 図10は実施の形態2における診断装置が軸変位量を演算する動作の概要を説明するためのフローチャートである。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 2.
FIG. 10 is a flowchart for explaining an overview of the operation of the diagnostic device according to the second embodiment to calculate the amount of shaft displacement. Note that parts that are the same as or equivalent to those in Embodiment 1 are given the same reference numerals. Description of this part will be omitted.
 実施の形態2において、演算部25は、秤装置12cが測定したかご12の積載重量の値を更に用いて軸変位量hを演算する。 In the second embodiment, the calculation unit 25 calculates the shaft displacement amount h by further using the value of the loaded weight of the car 12 measured by the weighing device 12c.
 具体的には、演算部25は、軸変位量hを演算する際に、かご12の積載重量の値を用いて式(4)および式(5)における係数C、C、Cの値をそれぞれ補正する。係数C、C、Cは、いずれも積載重量の値の関数であるため、それぞれが秤装置12cが測定した積載重量の値に応じた数値となる。演算部25は、補正後の係数C、C、Cを用いて、巻付角θを演算する。演算部25は、演算した巻付角θを用いて軸変位量hを演算する。 Specifically, when calculating the shaft displacement amount h, the calculation unit 25 uses the value of the loaded weight of the car 12 to calculate the coefficients C 1 , C 2 , and C 3 in equations (4) and (5). Correct each value. Since the coefficients C 1 , C 2 , and C 3 are all functions of the value of the loaded weight, each has a numerical value corresponding to the value of the loaded weight measured by the weighing device 12c. The calculation unit 25 calculates the wrap angle θ using the corrected coefficients C 1 , C 2 , and C 3 . The calculation unit 25 calculates the shaft displacement amount h using the calculated wrap angle θ.
 図10には、演算部25が積載重量による補正を行って軸変位量hを演算する動作のフローチャートが示される。 FIG. 10 shows a flowchart of the operation in which the calculation unit 25 calculates the shaft displacement amount h by performing correction based on the loaded weight.
 ステップS301からステップS303で行われる動作は、図8のフローチャートのステップS201からステップS203で行われる動作と同様である。 The operations performed from step S301 to step S303 are similar to the operations performed from step S201 to step S203 in the flowchart of FIG.
 ステップS303の動作が行われた後、ステップS304の動作が行われる。ステップS304において、診断装置20は、かご12が特定の区間を移動した時のかご12の積載重量の情報を秤装置12cから取得する。なお、診断装置20は、ステップS301において当該情報を取得していてもよい。診断装置20の演算部25は、積載重量の値に基づいて係数C、C、Cの値をそれぞれ補正する。 After the operation in step S303 is performed, the operation in step S304 is performed. In step S304, the diagnostic device 20 acquires information on the loaded weight of the car 12 when the car 12 moves in a specific section from the weighing device 12c. Note that the diagnostic device 20 may acquire the information in step S301. The calculation unit 25 of the diagnostic device 20 corrects the values of the coefficients C 1 , C 2 , and C 3 based on the value of the loaded weight.
 その後、ステップS305の動作が行われる。ステップS305において、演算部25は、回転角度の合計値Θと補正後の係数C、C、Cとを用いて、軸変位量hを演算する。 After that, the operation of step S305 is performed. In step S305, the calculation unit 25 calculates the shaft displacement amount h using the total rotation angle value Θ i and the corrected coefficients C 1 , C 2 , and C 3 .
 その後、演算部25は、軸変位量hを演算する動作を終了する。診断装置20は、当該軸変位量hを用いて各種の異常診断を行う。 Thereafter, the calculation unit 25 ends the operation of calculating the axial displacement amount h. The diagnostic device 20 performs various abnormality diagnoses using the shaft displacement amount h.
 以上で説明した実施の形態2によれば、診断装置20は、かご12の積載重量の情報と回転角度の合計値とに基づいて、巻付角θを演算する。このため、診断装置20は、かご12に人等が乗っている場合でも、異常診断を行うことができる。その結果、特別な運転ではなく、エレベーターシステムが通常運行している際に、診断装置20は、異常診断を行うことができる。 According to the second embodiment described above, the diagnostic device 20 calculates the wrap angle θ based on the information on the loaded weight of the car 12 and the total value of the rotation angle. Therefore, the diagnostic device 20 can perform an abnormality diagnosis even when the car 12 is occupied by a person or the like. As a result, the diagnostic device 20 can perform abnormality diagnosis when the elevator system is in normal operation, rather than during special operation.
 なお、演算部25は、秤装置12cが測定したかご12の積載重量の値を用いて、軸変位量hの演算結果を補正することで、補正後の軸変位量h´を演算してもよい。この場合、演算部25は、軸変位量hを演算する際に係数C、C、Cの値を補正しない。例えば、演算部25は、かご12の積載重量の値に対応する補正係数を算出し、補正係数と軸変位量hとを積算することで補正後の軸変位量h´を演算してもよい。 Note that, by correcting the calculation result of the shaft displacement amount h using the value of the loaded weight of the car 12 measured by the weighing device 12c, the calculation unit 25 calculates the corrected shaft displacement amount h′. good. In this case, the calculation unit 25 does not correct the values of the coefficients C 1 , C 2 , and C 3 when calculating the axial displacement amount h. For example, the calculation unit 25 may calculate a correction coefficient corresponding to the value of the loaded weight of the car 12, and calculate the corrected shaft displacement amount h' by integrating the correction coefficient and the shaft displacement amount h. .
実施の形態3.
 図11は実施の形態3における診断装置が適用される巻上機の断面の概要図である。図12は実施の形態3における診断装置が適用される軸受の温度変化の概要を示す図である。なお、実施の形態1または2の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 3.
FIG. 11 is a schematic cross-sectional view of a hoisting machine to which the diagnostic device according to the third embodiment is applied. FIG. 12 is a diagram showing an overview of temperature changes in a bearing to which the diagnostic device according to the third embodiment is applied. Note that parts that are the same as or equivalent to those in Embodiment 1 or 2 are given the same reference numerals. Description of this part will be omitted.
 図11に示されるように、実施の形態3において、軸受9には、軸受温度測定装置30が設けられる。なお、図示されないが、軸受温度測定装置30は、軸受9に対して回転軸方向に隣接して設けられてもよい。軸受温度測定装置30は、軸受9の温度を測定する。軸受温度測定装置30は、測定した温度を診断装置20に送信し得る。 As shown in FIG. 11, in the third embodiment, the bearing 9 is provided with a bearing temperature measuring device 30. Although not shown, the bearing temperature measuring device 30 may be provided adjacent to the bearing 9 in the direction of the rotation axis. The bearing temperature measuring device 30 measures the temperature of the bearing 9. Bearing temperature measuring device 30 may transmit the measured temperature to diagnostic device 20 .
 図12は、軸受9の温度の時間推移を表すグラフの例を示す。例として、オフィスビルに設けられたエレベーターシステムにおける軸受9の温度の時間推移が示される。縦軸は、軸受温度測定装置30が測定した軸受9の軸受温度である。横軸は、時間である。横軸には、1週間の期間が示される。 FIG. 12 shows an example of a graph showing the change in temperature of the bearing 9 over time. As an example, the time course of the temperature of a bearing 9 in an elevator system installed in an office building is shown. The vertical axis is the bearing temperature of the bearing 9 measured by the bearing temperature measuring device 30. The horizontal axis is time. The horizontal axis shows a period of one week.
 例えば、平日のオフィスビルでは、時刻7:00から時刻18:00までの時間帯で巻上機5の稼働率が高い。稼働率と対応して、軸受温度が上昇または下降する。例えば、平日において、軸受9の温度は、時刻7:00ごろから軸受温度が上昇する傾向がある。軸受温度は、時刻18:00ごろまで上がり続ける。その後は、稼働率が急激に下がるため、軸受温度は、下降し、次の日の7:00ごろまで下がり続ける。軸受温度は、このような周期で上昇および下降を繰り返す。 For example, in an office building on weekdays, the operating rate of the hoisting machine 5 is high during the time period from 7:00 to 18:00. The bearing temperature increases or decreases in correspondence with the operating rate. For example, on weekdays, the temperature of the bearing 9 tends to rise from around 7:00. The bearing temperature continues to rise until around 18:00. After that, the operating rate drops rapidly, so the bearing temperature drops and continues to drop until around 7:00 the next day. The bearing temperature repeatedly rises and falls in such a cycle.
 休日のオフィスビルにおいても、平日と同様の周期で軸受温度が変化する。ただし、休日のオフィスビルでは、平日よりも稼働率が全体的に低いため、休日の軸受温度の最高値は、平日の軸受温度の最高値よりも低い。 Even in office buildings on holidays, bearing temperatures change at the same frequency as on weekdays. However, in office buildings on holidays, the occupancy rate is generally lower than on weekdays, so the maximum bearing temperature on holidays is lower than the maximum bearing temperature on weekdays.
 なお、商業施設、居住用のマンション、等の設置場所に応じて、軸受温度の変化の傾向はそれぞれ異なる。また、外気温の影響によって、軸受温度の値は、季節によって異なる。 Note that the tendency of bearing temperature changes differs depending on the installation location, such as commercial facilities and residential condominiums. Furthermore, the value of the bearing temperature varies depending on the season due to the influence of the outside temperature.
 軸受温度が上昇すると、軸受9が膨張する。この際、回転軸体8の温度は、軸受9と共に上昇する。回転軸体8は、軸受9と共に膨張する。このため、軸受温度は、軸受9に発生する負荷荷重に影響を与える。 When the bearing temperature rises, the bearing 9 expands. At this time, the temperature of the rotating shaft body 8 rises together with the bearing 9. The rotating shaft body 8 expands together with the bearing 9. Therefore, the bearing temperature affects the load generated on the bearing 9.
 次に、図13を用いて実施の形態3における診断システムを説明する。
 図13は実施の形態3における診断装置のブロック図である。なお、図13では巻上機5の図示は省略される。
Next, a diagnosis system according to the third embodiment will be explained using FIG. 13.
FIG. 13 is a block diagram of a diagnostic device according to the third embodiment. Note that in FIG. 13, illustration of the hoisting machine 5 is omitted.
 実施の形態3において、診断システムは、軸受温度測定装置30を更に含む。図13に示されるように、診断装置20は、軸受温度測定装置30から軸受温度の情報を取得する。 In the third embodiment, the diagnostic system further includes a bearing temperature measuring device 30. As shown in FIG. 13, the diagnostic device 20 acquires bearing temperature information from the bearing temperature measuring device 30.
 実施の形態3の記憶部21が記憶する負荷荷重の関数は、軸変位量hと軸受温度との関数である。 The load function stored in the storage unit 21 of the third embodiment is a function of the shaft displacement amount h and the bearing temperature.
 判定部26は、負荷荷重の演算を行う際に、軸受温度測定装置30から取得した現在の軸受温度を演算の結果に反映する。具体的には、判定部26は、負荷荷重の関数に、演算部25が演算した軸変位量hと軸受温度測定装置30が測定した軸受温度とを入力することで、負荷荷重の値を演算する。当該負荷荷重の値は、実施の形態1で演算される負荷荷重の値よりも精度が高い。判定部26は、軸受温度によってより精度が向上した負荷荷重の値に基づいて軸受9の異常を判定する。 When calculating the applied load, the determination unit 26 reflects the current bearing temperature acquired from the bearing temperature measuring device 30 in the calculation result. Specifically, the determination unit 26 calculates the value of the applied load by inputting the shaft displacement amount h calculated by the calculation unit 25 and the bearing temperature measured by the bearing temperature measurement device 30 into the applied load function. do. The applied load value has higher accuracy than the applied load value calculated in the first embodiment. The determination unit 26 determines whether the bearing 9 is abnormal based on the load value whose accuracy is improved depending on the bearing temperature.
 次に、図14を用いて、実施の形態3における異常診断の第3例を説明する。
 図14は実施の形態3における診断装置が行う異常診断の第3例の概要を説明するためのフローチャートである。
Next, a third example of abnormality diagnosis in the third embodiment will be described using FIG. 14.
FIG. 14 is a flowchart for explaining an overview of a third example of abnormality diagnosis performed by the diagnostic apparatus according to the third embodiment.
 図14に示されるフローチャートにおいて、ステップS401からステップS404で行われる動作は、図8のフローチャートのステップS201からステップS204で行われる動作と同様である。 In the flowchart shown in FIG. 14, the operations performed from step S401 to step S404 are similar to the operations performed from step S201 to step S204 in the flowchart of FIG.
 ステップS404の動作の後、ステップS405の動作が行われる。ステップS405において、判定部26は、軸受温度測定装置30から軸受温度の情報を取得する。 After the operation in step S404, the operation in step S405 is performed. In step S405, the determination unit 26 acquires bearing temperature information from the bearing temperature measuring device 30.
 その後、ステップS406の動作が行われる。ステップS406において、判定部26は、ステップS404で演算された軸変位量hと取得した軸受温度とに基づいて負荷荷重を演算する。 Thereafter, the operation of step S406 is performed. In step S406, the determination unit 26 calculates the applied load based on the shaft displacement amount h calculated in step S404 and the acquired bearing temperature.
 その後、ステップS407の動作が行われる。ステップS407において、判定部26は、負荷荷重の値に基づいて軸受9の異常を判定する。具体的には、判定部26は、演算した負荷荷重の値が規定の閾値を超えたか否かを判定する。 Thereafter, the operation of step S407 is performed. In step S407, the determining unit 26 determines whether the bearing 9 is abnormal based on the applied load value. Specifically, the determination unit 26 determines whether the calculated load value exceeds a prescribed threshold value.
 ステップS407で、負荷荷重の値が規定の閾値を超えない場合、ステップS408の動作が行われる。ステップS408において、判定部26は、軸受9に異常が無い、即ち正常であると判定する。判定部26は、診断結果の情報として異常が無い旨および演算した負荷荷重の値を含む異常度の情報を作成する。診断装置20は、診断結果の情報を監視装置16に送信する。診断装置20は、異常診断を終了する。 In step S407, if the applied load value does not exceed the prescribed threshold value, the operation in step S408 is performed. In step S408, the determination unit 26 determines that there is no abnormality in the bearing 9, that is, it is normal. The determination unit 26 creates information on the degree of abnormality that includes the fact that there is no abnormality and the value of the calculated load as information on the diagnosis result. The diagnostic device 20 transmits information on the diagnostic results to the monitoring device 16. The diagnostic device 20 ends the abnormality diagnosis.
 ステップS407で、負荷荷重の値が規定の閾値を超えた場合、ステップS409の動作が行われる。ステップS409において、判定部26は、軸受9に異常があると判定する。判定部26は、診断結果の情報として異常がある旨および演算した負荷荷重の値を含む異常度の情報を作成する。診断装置20は、診断結果の情報を監視装置16に送信する。診断装置20は、異常診断を終了する。 In step S407, if the load value exceeds the prescribed threshold, the operation in step S409 is performed. In step S409, the determining unit 26 determines that there is an abnormality in the bearing 9. The determination unit 26 creates information on the degree of abnormality that includes the fact that there is an abnormality and the calculated load value as information on the diagnosis result. The diagnostic device 20 transmits information on the diagnostic results to the monitoring device 16. The diagnostic device 20 ends the abnormality diagnosis.
 ステップS408の動作またはステップS409の動作が行われた後、ステップS410の動作が行われる。ステップS410において、監視装置16は、診断結果の情報を情報センター装置17に送信する。情報センター装置17は、診断結果の情報を保守会社の作業員等に対して表示する。情報センター装置17は、診断結果の情報に基づいて、当該エレベーターシステムの保守点検計画を作成する。この際、情報センター装置17は、軸受9の寿命診断を行ってもよい。 After the operation of step S408 or step S409 is performed, the operation of step S410 is performed. In step S410, the monitoring device 16 transmits information on the diagnosis result to the information center device 17. The information center device 17 displays information on the diagnosis results to maintenance company workers and the like. The information center device 17 creates a maintenance inspection plan for the elevator system based on the information of the diagnosis results. At this time, the information center device 17 may perform a lifespan diagnosis of the bearing 9.
 以上で説明した実施の形態3によれば、診断装置20は、軸受9の温度の測定値と軸変位量とに基づいて負荷荷重を演算する。このため、異常診断の精度を向上させることができる。 According to the third embodiment described above, the diagnostic device 20 calculates the applied load based on the measured value of the temperature of the bearing 9 and the amount of shaft displacement. Therefore, the accuracy of abnormality diagnosis can be improved.
 なお、判定部26は、軸受9の温度の測定値に基づいて軸受9の膨張量を推定してもよい。この場合、判定部26は、演算部25に演算された軸変位量の値から回転軸体8および軸受9の膨張量の影響を除いた補正軸変位量を演算し、当該補正軸変位量に基づいて負荷荷重を演算してもよい。このため、軸受9の内部形状の状態をより高精度に判定することができる。 Note that the determination unit 26 may estimate the amount of expansion of the bearing 9 based on the measured value of the temperature of the bearing 9. In this case, the determination unit 26 calculates a corrected shaft displacement amount by removing the influence of the expansion amount of the rotating shaft body 8 and bearing 9 from the value of the shaft displacement amount calculated by the calculation unit 25, and adds The applied load may be calculated based on this. Therefore, the state of the internal shape of the bearing 9 can be determined with higher accuracy.
 なお、実施の形態1から実施の形態3において、軸変位量の基準値は、回転角度の合計値が算出された時間帯に応じて選択されてもよい。図12に示されるように、軸受9の温度は、朝方に最も低い。即ち、朝方に回転角度の合計値が算出され、演算された軸変位量の値は、回転軸体8および軸受9の膨張量が最も小さい状態の軸変位量の値である。判定部26は、朝方に演算された軸変位量の値を軸変位量の基準値として設定してもよい。判定部26は、夕方に演算された軸変位量の値から当該基準値を減算することで、回転軸体8および軸受9の膨張量を精度よく演算することができる。 Note that in Embodiments 1 to 3, the reference value of the shaft displacement amount may be selected depending on the time period in which the total value of the rotation angles is calculated. As shown in FIG. 12, the temperature of the bearing 9 is lowest in the morning. That is, the total value of the rotation angles is calculated in the morning, and the calculated value of the amount of shaft displacement is the value of the amount of shaft displacement in a state where the amount of expansion of the rotating shaft body 8 and the bearing 9 is the smallest. The determination unit 26 may set the value of the shaft displacement amount calculated in the morning as the reference value of the shaft displacement amount. The determination unit 26 can accurately calculate the expansion amount of the rotating shaft body 8 and the bearing 9 by subtracting the reference value from the value of the shaft displacement amount calculated in the evening.
実施の形態4.
 図15は実施の形態4における診断装置が適用される保守管理システムのブロック図である。なお、実施の形態1から実施の形態3の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 4.
FIG. 15 is a block diagram of a maintenance management system to which the diagnostic device according to the fourth embodiment is applied. Note that the same or corresponding parts as those in Embodiment 1 to Embodiment 3 are given the same reference numerals. Description of this part will be omitted.
 実施の形態4の保守管理システムにおいて、教師ありの機械学習によって軸変位量を推論する学習済モデルが作成される。軸変位量は、当該学習モデルによって推論される。診断装置20は、推論された軸変位量に基づいて軸受9の異常を診断する。 In the maintenance management system of Embodiment 4, a learned model that infers the amount of shaft displacement is created by supervised machine learning. The amount of axial displacement is inferred by the learning model. The diagnostic device 20 diagnoses an abnormality in the bearing 9 based on the inferred amount of shaft displacement.
 図15に示されるように、情報センター装置17は、学習装置40を更に備える。学習装置40は、学習情報取得部41とモデル生成部42とを備える。 As shown in FIG. 15, the information center device 17 further includes a learning device 40. The learning device 40 includes a learning information acquisition section 41 and a model generation section 42.
 学習情報取得部41は、学習を行うための学習用情報を、監視装置16を介して、制御盤15および診断装置20から取得する。学習情報取得部41は、取得した情報を蓄積する。学習用情報は、かご12が特定の区間を移動した際に回転角算出部24が算出した回転角度の合計値と、当該回転角度の合計値に基づいて演算部25が演算した軸変位量と、当該特定の区間の出発階と、当該特定の区間の到着階と、当該特定の区間を移動したかご12の積載重量と、が対応付けられた情報である。 The learning information acquisition unit 41 acquires learning information for performing learning from the control panel 15 and the diagnostic device 20 via the monitoring device 16. The learning information acquisition unit 41 accumulates the acquired information. The learning information includes the total value of rotation angles calculated by the rotation angle calculation unit 24 when the car 12 moves in a specific section, and the amount of shaft displacement calculated by the calculation unit 25 based on the total value of the rotation angles. , is information in which the departure floor of the specific section, the arrival floor of the specific section, and the loaded weight of the car 12 that moved in the specific section are associated with each other.
 なお、出力の精度を向上させるために、学習用情報には、更に多くの情報が含まれていてもよい。具体的には、学習用情報には、回転角度の合計値が算出された日付、曜日、および時間帯のうち少なくとも1つが含まれていてもよい。学習用情報には、回転角度の合計値が算出された日における、1日の使用頻度、1日の累積走行距離、1日の累積回転角度のうち少なくとも1つが含まれていてもよい。学習用情報には、回転角度の合計値が算出された日の巻上機の温度および機械室の温度の少なくとも一方が含まれていてもよい。学習用情報には、診断装置20が演算した軸変位量と実際に変位測定機器によって測定された軸変位量とが対応付けられた情報が含まれていてもよい。 Note that in order to improve the accuracy of the output, the learning information may include even more information. Specifically, the learning information may include at least one of the date, day of the week, and time zone in which the total value of rotation angles was calculated. The learning information may include at least one of daily usage frequency, daily cumulative mileage, and daily cumulative rotation angle on the day when the total rotation angle value was calculated. The learning information may include at least one of the temperature of the hoist and the temperature of the machine room on the day when the total value of the rotation angles was calculated. The learning information may include information in which the amount of shaft displacement calculated by the diagnostic device 20 is associated with the amount of shaft displacement actually measured by the displacement measuring device.
 モデル生成部42は、学習情報取得部41が取得した学習用情報に基づいて学習を行い、学習済モデルを生成する。この際、モデル生成部42は、一般的に用いられる教師あり機械学習の手法を利用して学習を行う。モデル生成部42は、生成した学習済モデルの情報を記憶する。モデル生成部42は、生成した学習済モデルの情報を送信する。 The model generation unit 42 performs learning based on the learning information acquired by the learning information acquisition unit 41 and generates a learned model. At this time, the model generation unit 42 performs learning using a commonly used supervised machine learning method. The model generation unit 42 stores information about the generated trained model. The model generation unit 42 transmits information about the generated learned model.
 学習済モデルは、かご12が特定の区間を移動した際に回転角算出部24が算出した回転角度の合計値と、当該特定の区間の出発階と、当該特定の区間の到着階と、当該特定の区間を移動したかご12の積載重量と、を入力情報とするモデルである。学習済モデルは、入力情報に対して、軸変位量の推論値を出力情報とするモデルである。即ち、学習済モデルは、演算部25の代わりとなって軸変位量を出力するモデルである。 The learned model includes the total value of the rotation angles calculated by the rotation angle calculation unit 24 when the car 12 moves in a specific section, the departure floor of the specific section, the arrival floor of the specific section, and the This is a model that uses as input information the loaded weight of the car 12 that has moved over a specific section. The learned model is a model whose output information is an inferred value of the amount of axial displacement in response to input information. That is, the learned model is a model that outputs the amount of axial displacement in place of the calculation unit 25.
 診断装置20は、モデル記憶部43と情報取得部44と推論部45とを更に備える。 The diagnostic device 20 further includes a model storage section 43, an information acquisition section 44, and an inference section 45.
 モデル記憶部43は、学習済モデルの情報を記憶する。例えば、モデル記憶部43は、モデル生成部42から学習済モデルの情報を受信し、最新の学習済モデルの情報を記憶する。 The model storage unit 43 stores information on learned models. For example, the model storage unit 43 receives learned model information from the model generation unit 42 and stores the latest learned model information.
 情報取得部44は、学習済モデルに入力する情報を取得する。具体的には、情報取得部44は、入力情報に対応する情報を制御盤15および回転角算出部24から取得し、対応付ける。例えば、情報取得部44は、診断運転が行われた際に、入力情報に対応する情報を取得する。 The information acquisition unit 44 acquires information to be input to the learned model. Specifically, the information acquisition unit 44 acquires information corresponding to the input information from the control panel 15 and the rotation angle calculation unit 24, and associates the information with the input information. For example, the information acquisition unit 44 acquires information corresponding to input information when diagnostic driving is performed.
 なお、学習済モデルが更に多くの入力情報に対応する場合、情報取得部44は、当該対応する入力情報を取得する。 Note that when the learned model corresponds to more input information, the information acquisition unit 44 acquires the corresponding input information.
 推論部45は、異常診断において、モデル記憶部43に記憶された学習済モデルを用いて、情報取得部44が取得した情報から軸変位量を推論する。 In the abnormality diagnosis, the inference unit 45 uses the learned model stored in the model storage unit 43 to infer the amount of axial displacement from the information acquired by the information acquisition unit 44.
 判定部26は、異常診断の第2例または第3例において、推論部45が推論した軸変位量に基づいて、軸受9の異常を診断する。即ち、判定部26は、演算部25が演算した軸変位量の代わりに、推論部45が推論した軸変位量を用いて異常診断を行う。この際、判定部26は、推論部45が推論した軸変位量に基づいて、異常度の情報を作成する。 In the second or third example of abnormality diagnosis, the determination unit 26 diagnoses an abnormality in the bearing 9 based on the amount of shaft displacement inferred by the inference unit 45. That is, the determination unit 26 performs abnormality diagnosis using the axial displacement amount inferred by the inference unit 45 instead of the axial displacement amount calculated by the calculation unit 25. At this time, the determination unit 26 creates information on the degree of abnormality based on the amount of shaft displacement inferred by the inference unit 45.
 なお、判定部26は、異常診断の第2例または第3例において、更に演算部25が演算した軸変位量を用いて異常診断を行ってもよい。この場合、判定部26は、推論部45に推論された軸変位量に基づく異常度と演算部25に演算された軸変位量に基づく異常度とを比較し、その結果を異常診断の診断結果として出力してもよい。また、判定部26は、演算部25に演算された軸変位量に基づく異常度を推論部45に推論された軸変位量に基づく異常度で補正し、その結果を異常診断の診断結果として出力してもよい。 Note that, in the second or third example of the abnormality diagnosis, the determination unit 26 may further perform the abnormality diagnosis using the shaft displacement amount calculated by the calculation unit 25. In this case, the determination section 26 compares the degree of abnormality based on the amount of shaft displacement inferred by the inference section 45 and the degree of abnormality based on the amount of shaft displacement calculated by the calculation section 25, and uses the result as the diagnosis result of the abnormality diagnosis. You can also output it as Further, the determination unit 26 corrects the degree of abnormality based on the amount of shaft displacement calculated by the calculation unit 25 with the degree of abnormality based on the amount of shaft displacement inferred by the inference unit 45, and outputs the result as the diagnosis result of the abnormality diagnosis. You may.
 次に、図16を用いて、学習装置40の動作を説明する。
 図16は実施の形態4における診断装置が適用される学習装置が行う学習の動作の概要を説明するためのフローチャートである。
Next, the operation of the learning device 40 will be explained using FIG. 16.
FIG. 16 is a flowchart for explaining an overview of the learning operation performed by the learning device to which the diagnostic device according to the fourth embodiment is applied.
 図16に示されるように、ステップS501において、学習装置40の学習情報取得部41は、学習用情報を取得し、蓄積する。なお、学習情報取得部41は、学習の動作に関わらず、任意のタイミングで学習用情報を取得し、蓄積していてもよい。 As shown in FIG. 16, in step S501, the learning information acquisition unit 41 of the learning device 40 acquires and accumulates learning information. Note that the learning information acquisition unit 41 may acquire and accumulate learning information at any timing, regardless of the learning operation.
 その後、ステップS502の動作が行われる。ステップS502において、学習装置40のモデル生成部42は、学習用情報を用いて教師あり学習の処理を行い、学習済モデルを生成する。 Thereafter, the operation of step S502 is performed. In step S502, the model generation unit 42 of the learning device 40 performs supervised learning processing using the learning information to generate a learned model.
 その後、ステップS503の動作が行われる。ステップS503において、モデル生成部42は、学習済モデルを記憶する。モデル生成部42は、監視装置16を介して、学習済モデルを診断装置20に送信する。 After that, the operation of step S503 is performed. In step S503, the model generation unit 42 stores the trained model. The model generation unit 42 transmits the learned model to the diagnostic device 20 via the monitoring device 16.
 その後、学習装置40は、学習の動作を終了する。 After that, the learning device 40 ends the learning operation.
 なお、学習装置40の学習の動作は、任意のタイミングで行われればよい。具体的には、学習の動作は、規定の周期ごとに行われる。学習の動作は、保守点検でシーブ径または主ロープ11の径が検査された後、検査後に蓄積された学習用情報に基づいて行われる。 Note that the learning operation of the learning device 40 may be performed at any timing. Specifically, the learning operation is performed at predetermined intervals. The learning operation is performed after the sheave diameter or the diameter of the main rope 11 is inspected during maintenance inspection, based on the learning information accumulated after the inspection.
 なお、学習の動作で用いられる学習用情報は、回転角度の合計値が算出された時間帯に応じて区別されて用いられてもよい。具体的には、例えば、学習情報取得部41は、軸受9の温度が低い時間帯である朝方に取得した学習用情報を第1学習用情報として蓄積する。学習情報取得部41は、軸受9の温度が朝方よりも高い時間帯である昼に取得した学習用情報を第2学習用情報として蓄積する。この場合、モデル生成部42は、第1学習用情報に基づいた学習済モデルと第2学習用情報に基づいた学習済モデルとを区別して作成する。モデル生成部42は、第1学習用情報に基づいて作成した学習済モデルと第2学習用情報に基づいて作成した学習済モデルとを区別して管理する。 Note that the learning information used in the learning operation may be differentiated and used according to the time period in which the total value of the rotation angles was calculated. Specifically, for example, the learning information acquisition unit 41 accumulates learning information acquired in the morning, when the temperature of the bearing 9 is low, as the first learning information. The learning information acquisition unit 41 accumulates learning information acquired in the afternoon, when the temperature of the bearing 9 is higher than in the morning, as second learning information. In this case, the model generation unit 42 separately creates a learned model based on the first learning information and a learned model based on the second learning information. The model generation unit 42 distinguishes and manages a trained model created based on the first learning information and a trained model created based on the second learning information.
 次に、図17を用いて、診断装置20が推論する動作を説明する。
 図17は実施の形態4における診断装置が行う推論の動作の概要を説明するためのフローチャートである。
Next, the operation inferred by the diagnostic device 20 will be explained using FIG. 17.
FIG. 17 is a flowchart for explaining an overview of the inference operation performed by the diagnostic device in the fourth embodiment.
 診断装置20は、異常診断の際に軸変位量の推論を行う。例えば、診断運転が行われた後、診断装置20は、軸変位量の推論を行う。 The diagnostic device 20 infers the amount of shaft displacement when diagnosing an abnormality. For example, after a diagnostic operation is performed, the diagnostic device 20 infers the amount of shaft displacement.
 ステップS601において、情報取得部44は、学習済モデルに入力する入力情報を取得する。 In step S601, the information acquisition unit 44 acquires input information to be input to the learned model.
 その後、ステップS602の動作が行われる。ステップS602において、推論部45は、入力情報を学習済モデルに入力する。推論部45は、学習済モデルの出力処理を行う。 Thereafter, the operation of step S602 is performed. In step S602, the inference unit 45 inputs the input information to the learned model. The inference unit 45 performs output processing of the learned model.
 その後、ステップS603の動作が行われる。ステップS603において、推論部45は、学習済モデルに基づいて軸変位量を推論し、出力情報として出力する。 Thereafter, the operation of step S603 is performed. In step S603, the inference unit 45 infers the amount of axial displacement based on the learned model and outputs it as output information.
 その後、ステップS604の動作が行われる。ステップS604において、判定部26は、推論部45が出力した軸変位量に基づいて、軸受9の異常を判定する。 Thereafter, the operation of step S604 is performed. In step S604, the determination unit 26 determines whether the bearing 9 is abnormal based on the amount of shaft displacement output by the inference unit 45.
 診断装置20は、推論の動作を完了する。その後、診断装置20は、異常診断を継続する。 The diagnostic device 20 completes the inference operation. After that, the diagnostic device 20 continues the abnormality diagnosis.
 以上で説明した実施の形態4によれば、保守管理システムは、回転角算出部24と演算部25と学習情報取得部41とモデル生成部42とを備える。保守管理システムは、回転角算出部24が算出した第1綱車7の回転角度の合計値等の情報を入力することで、軸変位量を出力する学習済モデルを作成する。例えば、出力された軸変位量は、軸受9の異常の判定に用いられ得る。即ち、回転角度の合計値に基づいて軸受9の異常が判定され得る。このため、保守管理システムは、簡易な構成で軸受9の異常を判定することができる。 According to the fourth embodiment described above, the maintenance management system includes the rotation angle calculation section 24, the calculation section 25, the learning information acquisition section 41, and the model generation section 42. The maintenance management system creates a learned model that outputs the amount of shaft displacement by inputting information such as the total value of the rotation angle of the first sheave 7 calculated by the rotation angle calculation unit 24. For example, the output shaft displacement amount can be used to determine whether the bearing 9 is abnormal. That is, the abnormality of the bearing 9 can be determined based on the total value of the rotation angles. Therefore, the maintenance management system can determine the abnormality of the bearing 9 with a simple configuration.
 また、診断装置20は、モデル記憶部43と推論部45とを備える。診断装置20は、学習済モデルに基づいて、回転角度の合計値から軸変位量を推論する。診断装置20は、推論した軸変位量から軸受9の異常を判定する。このため、簡易な構成で軸受9の異常を判定することができる。また、軸変位量を都度演算する必要がないため、診断装置20の演算量を低減することができる。また、診断装置20が学習済モデルに基づく推論を行うため、情報センター装置17等で推論を行う場合と比べて、エッジ処理等を行うことができ、より精度よく推論を行うことができる。 The diagnostic device 20 also includes a model storage section 43 and an inference section 45. The diagnostic device 20 infers the amount of axial displacement from the total value of the rotation angles based on the learned model. The diagnostic device 20 determines whether the bearing 9 is abnormal based on the inferred amount of shaft displacement. Therefore, an abnormality in the bearing 9 can be determined with a simple configuration. Further, since it is not necessary to calculate the amount of axial displacement each time, the amount of calculation by the diagnostic device 20 can be reduced. Furthermore, since the diagnostic device 20 performs inference based on the learned model, it is possible to perform edge processing and the like and perform inference with higher accuracy compared to when inference is performed by the information center device 17 or the like.
 なお、学習済モデルは、軸変位量でなく、巻付角の値を出力するモデルであってもよい。この場合、推論部45は、異常診断において、モデル記憶部43に記憶された学習済モデルを用いて、情報取得部44が取得した情報から巻付角の値を推論する。 Note that the learned model may be a model that outputs the value of the wrapping angle instead of the amount of axial displacement. In this case, in the abnormality diagnosis, the inference unit 45 uses the learned model stored in the model storage unit 43 to infer the value of the wrap angle from the information acquired by the information acquisition unit 44.
 なお、図示されないが、学習装置40の各機能は、診断装置20の各機能を実現する処理回路と同等の処理回路で実現される。また、学習装置40の各機能を診断装置20が備えていてもよい。また、学習装置40の各機能は、情報センター装置17でなく、クラウドサーバ等に設けられてもよい。 Although not illustrated, each function of the learning device 40 is realized by a processing circuit equivalent to the processing circuit that realizes each function of the diagnostic device 20. Furthermore, the diagnostic device 20 may include each function of the learning device 40. Further, each function of the learning device 40 may be provided not in the information center device 17 but in a cloud server or the like.
 以上のように、本開示に係る診断装置は、エレベーターシステムに利用できる。 As described above, the diagnostic device according to the present disclosure can be used in an elevator system.
 1 昇降路、 2 建築物、 3 機械室、 4,4a,4b 乗場、 5 巻上機、 6 電動機、 7 第1綱車、 7a ロープ溝、 7b 底部、 8 回転軸体、 9 軸受、 10 第2綱車、 11 主ロープ、 12 かご、 12a かご枠、 12b かご室、 12c 秤装置、 13 釣合おもり、 14 回転角検出装置、 15 制御盤、 16 監視装置、 17 情報センター装置、 20 診断装置、 21 記憶部、 22 通信部、 23 診断運転指令部、 24 回転角算出部、 25 演算部、 26 判定部、 30 軸受温度測定装置、 40 学習装置、 41 学習情報取得部、 42 モデル生成部、 43 モデル記憶部、 44 情報取得部、 45 推論部、 100a プロセッサ、 100b メモリ、 200 ハードウェア、 A 回転軸 1 Hoistway, 2 Building, 3 Machine room, 4, 4a, 4b landing, 5 Hoisting machine, 6 Electric motor, 7 First sheave, 7a Rope groove, 7b Bottom, 8 Rotating shaft, 9 Bearing, 10th 2 Sheave, 11 Main rope, 12 Car, 12a Car frame, 12b Car room, 12c Weighing device, 13 Counterweight, 14 Rotation angle detection device, 15 Control panel, 16 Monitoring device, 17 Information center equipment, 20 Diagnostic equipment , 21 Memories, 22 Communication Department, 23 Diagnosis Driving Directors, 24 -rotation angle calculation department, 25 operations department, 26 judgment unit, 30 -axis temperature measuring device, 40 learning device, 41 learning information acquisition, 42 model generation department, 43 Model storage unit, 44 Information acquisition unit, 45 Inference unit, 100a Processor, 100b Memory, 200 Hardware, A Rotation axis

Claims (18)

  1.  第1綱車と前記第1綱車を回転軸体で回転させる電動機と前記回転軸体を支持する軸受とを有する巻上機と、第2綱車と、前記第1綱車および前記第2綱車に巻き掛けられた主ロープと、前記主ロープに吊るされたかごと、を有するエレベーターシステムにおける前記軸受の異常を診断する診断装置であって、
     前記第1綱車が回転した回転角度の合計値を算出する回転角算出部と、
     前記かごが特定の区間を走行した際に前記回転角算出部が算出した回転角度の合計値に基づいて、前記軸受の異常を判定する判定部と、
    を備えた診断装置。
    A hoist having a first sheave, an electric motor that rotates the first sheave on a rotating shaft, and a bearing that supports the rotating shaft, a second sheave, and the first sheave and the second sheave. A diagnostic device for diagnosing an abnormality in the bearing in an elevator system having a main rope wrapped around a sheave and a car suspended from the main rope,
    a rotation angle calculation unit that calculates a total value of rotation angles of the first sheave;
    a determination unit that determines whether the bearing is abnormal based on a total value of rotation angles calculated by the rotation angle calculation unit when the car travels in a specific section;
    Diagnostic equipment with
  2.  前記回転角算出部が算出した回転角度の合計値に基づいて、前記回転軸体の鉛直方向の位置が基準位置から変化した変化量である軸変位量を演算する演算部、
    を更に備え、
     前記判定部は、前記演算部が演算した前記軸変位量に基づいて前記軸受の異常を判定する請求項1に記載の診断装置。
    a calculation unit that calculates an amount of shaft displacement, which is the amount of change in the vertical position of the rotating shaft body from a reference position, based on the total value of the rotation angles calculated by the rotation angle calculation unit;
    further comprising;
    The diagnostic device according to claim 1, wherein the determination unit determines whether the bearing is abnormal based on the amount of shaft displacement calculated by the calculation unit.
  3.  前記演算部は、前記回転角算出部が算出した回転角度の合計値に基づいて、前記主ロープの前記第1綱車に対する巻付角を演算し、演算した巻付角に基づいて前記軸変位量を演算する請求項2に記載の診断装置。 The calculation unit calculates a wrap angle of the main rope with respect to the first sheave based on the total value of the rotation angles calculated by the rotation angle calculation unit, and calculates the shaft displacement based on the calculated wrap angle. The diagnostic device according to claim 2, which calculates a quantity.
  4.  前記演算部は、演算した巻付角θ、前記第1綱車の中心と前記第2綱車の中心との水平方向における距離x、前記第1綱車が基準位置にある場合の前記第1綱車の中心と前記第2綱車の中心との鉛直方向の距離y、および前記第1綱車と前記第2綱車とに対する前記主ロープの巻付け方式を示す定数i、を以下の式(1)に適用することで前記軸変位量hを演算する請求項3に記載の診断装置。
    Figure JPOXMLDOC01-appb-M000001
    The calculation unit calculates the calculated wrap angle θ, the distance x in the horizontal direction between the center of the first sheave and the center of the second sheave, and the first sheave when the first sheave is at the reference position. The vertical distance y 0 between the center of the sheave and the center of the second sheave, and the constant i indicating the winding method of the main rope around the first sheave and the second sheave, are expressed as follows: The diagnostic device according to claim 3, wherein the axial displacement amount h is calculated by applying equation (1).
    Figure JPOXMLDOC01-appb-M000001
  5.  前記演算部は、
     前記かごが上昇運転した場合に、前記かごが前記特定の区間を上昇運転した際の回転角度の合計値Θup、前記エレベーターシステムのローピング方式を示す定数r、前記特定の区間の距離X、前記第1綱車のシーブ直径と前記主ロープの直径との和の半分である有効半径Re、および係数C、を以下の式(2)に適用することで前記巻付角θを演算し、
     前記かごが下降運転した場合に、前記かごが前記特定の区間を下降運転した際の回転角度の合計値Θdn、定数r、距離X、有効半径Re、係数C、および係数C、を以下の式(3)に適用することで前記巻付角θを演算する、
    請求項3または請求項4に記載の診断装置。
    Figure JPOXMLDOC01-appb-M000002

    Figure JPOXMLDOC01-appb-M000003
    The arithmetic unit is
    When the car is in upward operation, the total value Θ up of rotation angles when the car is in upward operation in the specific section, a constant r indicating the roping method of the elevator system, the distance X of the specific section, the Calculate the wrap angle θ by applying an effective radius Re, which is half the sum of the sheave diameter of the first sheave and the diameter of the main rope, and a coefficient C 1 to the following equation (2),
    When the car runs down, the total rotation angle Θ dn , constant r, distance X, effective radius Re, coefficient C 2 , and coefficient C 3 when the car runs down the specific section are Calculating the wrapping angle θ by applying the following equation (3),
    The diagnostic device according to claim 3 or 4.
    Figure JPOXMLDOC01-appb-M000002

    Figure JPOXMLDOC01-appb-M000003
  6.  前記演算部は、前記かごの積載重量の測定値と前記回転角度の合計値とに基づいて、前記巻付角を演算する請求項3から請求項5のいずれか一項に記載の診断装置。 The diagnostic device according to any one of claims 3 to 5, wherein the calculation unit calculates the wrap angle based on the measured value of the loaded weight of the car and the total value of the rotation angle.
  7.  前記判定部は、前記軸変位量に基づいて、前記軸受の異常として、前記軸受の内部形状が変化している異常があると判定する請求項2から請求項6のいずれか一項に記載の診断装置。 7. The determination unit determines, based on the shaft displacement amount, that the bearing has an abnormality in which an internal shape of the bearing has changed. Diagnostic equipment.
  8.  前記判定部は、前記軸変位量に基づいて、前記軸受および前記回転軸体の少なくとも一方が膨張することで前記軸受に生じる負荷荷重の値を演算し、前記軸受の異常として、前記負荷荷重の値が増大している異常があると判定する請求項2から請求項7のいずれか一項に記載の診断装置。 The determination unit calculates the value of the load generated on the bearing due to expansion of at least one of the bearing and the rotating shaft body based on the amount of shaft displacement, and determines the load as an abnormality of the bearing. The diagnostic device according to any one of claims 2 to 7, which determines that there is an abnormality in which the value is increasing.
  9.  前記判定部は、前記軸受の温度の測定値と前記軸変位量とに基づいて、前記軸受の異常を判定する請求項8に記載の診断装置。 The diagnostic device according to claim 8, wherein the determination unit determines whether the bearing is abnormal based on the measured value of the temperature of the bearing and the amount of shaft displacement.
  10.  前記判定部は、前記演算部が演算した前記軸変位量と前記軸変位量の基準値との差に基づいて前記軸受の異常の種類を判定する請求項2から請求項9のいずれか一項に記載の診断装置。 The determination unit determines the type of abnormality in the bearing based on the difference between the shaft displacement amount calculated by the calculation unit and a reference value of the shaft displacement amount. The diagnostic device described in .
  11.  前記判定部は、前記特定の区間として前記かごに設定された最上階と最下階との間を前記かごが停止することなく上昇運転および下降運転した際に前記回転角算出部が算出した回転角度の合計値に基づいて、前記軸受の異常を判定する請求項1から請求項10のいずれか一項に記載の診断装置。 The determination unit determines the rotation calculated by the rotation angle calculation unit when the car performs upward and downward operation between the highest floor and the lowest floor set for the car as the specific section without stopping. The diagnostic device according to any one of claims 1 to 10, wherein an abnormality of the bearing is determined based on a total value of angles.
  12.  前記かごの積載重量の測定値に基づいて前記かごの内部に物体が存在しないことを検出した場合に、前記かごに設定された最上階と最下階との間を前記かごが停止することなく上昇運転および下降運転する診断運転を実施させる指令を送信する診断運転指令部、
    を更に備え、
     前記判定部は、前記診断運転が実施された際に前記回転角算出部が算出した回転角度の合計値に基づいて、前記軸受の異常を判定する請求項1から請求項10のいずれか一項に記載の診断装置。
    When it is detected that there is no object inside the car based on the measured value of the loaded weight of the car, the car moves between the top and bottom floors set for the car without stopping. a diagnostic operation command unit that sends a command to perform a diagnostic operation of ascending and descending operations;
    further comprising;
    Any one of claims 1 to 10, wherein the determination unit determines whether the bearing is abnormal based on a total value of rotation angles calculated by the rotation angle calculation unit when the diagnostic operation is performed. The diagnostic device described in .
  13.  前記かごが出発階から到着階まで移動した際に前記回転角算出部が算出した回転角度の合計値と、前記出発階と、前記到着階と、前記かごが移動した際の前記かごの積載重量と、から前記回転軸体の鉛直方向の位置が基準位置から変化した変化量である軸変位量を推論するための学習済モデルを記憶するモデル記憶部と、
     前記モデル記憶部に記憶された前記学習済モデルを用いて、前記かごが出発階から到着階まで移動した際に前記回転角算出部が算出した回転角度の合計値と、前記出発階と、前記到着階と、前記かごが移動した際の前記かごの積載重量と、から前記軸変位量を推論する推論部と、
    を更に備え、
     前記判定部は、前記推論部が推論した前記軸変位量に基づいて前記軸受の異常を判定する請求項1から請求項12のいずれか一項に記載の診断装置。
    The total value of the rotation angles calculated by the rotation angle calculation unit when the car moves from the departure floor to the arrival floor, the departure floor, the arrival floor, and the loaded weight of the car when the car moves. and a model storage unit that stores a learned model for inferring an amount of shaft displacement, which is the amount of change in the vertical position of the rotating shaft body from a reference position.
    Using the learned model stored in the model storage unit, the total value of rotation angles calculated by the rotation angle calculation unit when the car moves from the departure floor to the arrival floor, the departure floor, and the an inference unit that infers the axial displacement amount from the arrival floor and the loaded weight of the car when the car moves;
    further comprising;
    The diagnostic device according to any one of claims 1 to 12, wherein the determination unit determines whether the bearing is abnormal based on the shaft displacement amount inferred by the inference unit.
  14.  第1綱車と前記第1綱車を回転軸体で回転させる電動機と前記回転軸体を支持する軸受とを有する巻上機と、第2綱車と、前記第1綱車および前記第2綱車に巻き掛けられた主ロープと、前記主ロープに吊るされたかごと、を有するエレベーターシステムにおける前記軸受の異常を診断する診断装置であって、
     前記第1綱車が回転した回転角度の合計値を算出する回転角算出部と、
     前記かごが出発階から到着階まで移動した際に前記回転角算出部が算出した回転角度の合計値と、前記出発階と、前記到着階と、前記かごが移動した際の前記かごの積載重量と、から前記回転軸体の鉛直方向の位置が基準位置から変化した変化量である軸変位量を推論するための学習済モデルを記憶するモデル記憶部と、
     前記モデル記憶部に記憶された前記学習済モデルを用いて、前記かごが出発階から到着階まで移動した際に前記回転角算出部が算出した回転角度の合計値と、前記出発階と、前記到着階と、前記かごが移動した際の前記かごの積載重量と、から前記軸変位量を推論する推論部と、
     前記推論部が推論した前記軸変位量に基づいて前記軸受の異常を判定する判定部と、
    を備えた診断装置。
    A hoist having a first sheave, an electric motor that rotates the first sheave on a rotating shaft, and a bearing that supports the rotating shaft, a second sheave, and the first sheave and the second sheave. A diagnostic device for diagnosing an abnormality in the bearing in an elevator system having a main rope wrapped around a sheave and a car suspended from the main rope,
    a rotation angle calculation unit that calculates a total value of rotation angles of the first sheave;
    The total value of the rotation angles calculated by the rotation angle calculation unit when the car moves from the departure floor to the arrival floor, the departure floor, the arrival floor, and the loaded weight of the car when the car moves. and a model storage unit that stores a learned model for inferring an amount of shaft displacement, which is the amount of change in the vertical position of the rotating shaft body from a reference position.
    Using the learned model stored in the model storage unit, the total value of rotation angles calculated by the rotation angle calculation unit when the car moves from the departure floor to the arrival floor, the departure floor, and the an inference unit that infers the axial displacement amount from the arrival floor and the loaded weight of the car when the car moves;
    a determination unit that determines whether the bearing is abnormal based on the shaft displacement amount inferred by the inference unit;
    Diagnostic equipment with
  15.  第1綱車と前記第1綱車を回転軸体で回転させる電動機と前記回転軸体を支持する軸受とを有する巻上機と、第2綱車と、前記第1綱車および前記第2綱車に巻き掛けられた主ロープと、前記主ロープに吊るされたかごと、を有するエレベーターシステムにおける前記軸受の異常を診断する診断システムであって、
     前記巻上機に設けられ、前記第1綱車が回転した角度に対応する角度信号を送信する回転角検出装置と、
     前記回転角検出装置からの角度信号に基づいて、前記第1綱車が回転した回転角度の合計値を算出し、前記かごが特定の区間を走行した際に算出した回転角度の合計値に基づいて、前記軸受の異常を判定する請求項1から請求項14のいずれか一項に記載の診断装置と、
    を備えた診断システム。
    A hoist having a first sheave, an electric motor that rotates the first sheave on a rotating shaft, and a bearing that supports the rotating shaft, a second sheave, and the first sheave and the second sheave. A diagnostic system for diagnosing an abnormality in the bearing in an elevator system having a main rope wrapped around a sheave and a car suspended from the main rope,
    a rotation angle detection device that is provided on the hoist and transmits an angle signal corresponding to the angle at which the first sheave has rotated;
    Based on the angle signal from the rotation angle detection device, calculate the total value of the rotation angle through which the first sheave has rotated, and based on the total value of the rotation angle calculated when the car runs in a specific section. The diagnostic device according to any one of claims 1 to 14, which determines whether the bearing is abnormal;
    Diagnostic system with.
  16.  請求項15に記載の診断システムと、
     前記診断システムの前記診断装置が前記軸受の異常を判定した診断結果の情報を受信し、前記診断結果の情報を外部に送信する監視装置と、
    を備えた遠隔監視システム。
    A diagnostic system according to claim 15,
    a monitoring device that receives information on a diagnosis result in which the diagnosis device of the diagnosis system determines that the bearing is abnormal, and transmits information on the diagnosis result to the outside;
    Remote monitoring system with.
  17.  請求項15に記載の診断システムと、
     前記診断システムの診断装置が前記軸受の異常を判定した診断結果の情報を受信し、前記診断結果の情報を外部に送信する監視装置と、
     前記監視装置から前記診断結果の情報を受信し、前記診断結果の情報に基づいて前記エレベーターシステムの保守計画を作成する情報センター装置と、
    を備えた保守管理システム。
    A diagnostic system according to claim 15,
    a monitoring device that receives information on a diagnosis result in which a diagnostic device of the diagnostic system determines that the bearing is abnormal, and transmits information on the diagnosis result to the outside;
    an information center device that receives information on the diagnosis results from the monitoring device and creates a maintenance plan for the elevator system based on the information on the diagnosis results;
    A maintenance management system equipped with
  18.  第1綱車と前記第1綱車を回転軸体で回転させる電動機と前記回転軸体を支持する軸受とを有する巻上機と、第2綱車と、前記第1綱車および前記第2綱車に巻き掛けられた主ロープと、前記主ロープに吊るされたかごと、を有するエレベーターシステムの保守管理を行う保守管理システムにおいて、
     前記かごが出発階から到着階まで移動した際に前記第1綱車が回転した回転角度の合計値を算出する回転角算出部と、
     前記回転角算出部が算出した回転角度の合計値に基づいて、前記回転軸体の鉛直方向の位置が基準位置から変化した変化量である軸変位量を演算する演算部と、
     前記回転角算出部が算出した回転角度の合計値と、前記演算部が演算した軸変位量と、前記出発階と、前記到着階と、前記かごが移動した際の積載重量と、が対応付けられた情報を含む学習用情報を取得する学習情報取得部と、
     前記学習情報取得部が取得した前記学習用情報を用いて、前記回転角算出部が算出した回転角度の合計値と、前記出発階と、前記到着階と、前記かごが移動した際の前記かごの積載重量と、から前記軸変位量を推論するための学習済モデルを生成するモデル生成部と、
    を備えた保守管理システム。
    A hoist having a first sheave, an electric motor that rotates the first sheave on a rotating shaft, and a bearing that supports the rotating shaft, a second sheave, and the first sheave and the second sheave. In a maintenance management system that performs maintenance management of an elevator system having a main rope wrapped around a sheave and a car suspended from the main rope,
    a rotation angle calculation unit that calculates a total value of rotation angles of the first sheave when the car moves from the departure floor to the arrival floor;
    a calculation unit that calculates an amount of shaft displacement, which is the amount of change in the vertical position of the rotating shaft body from a reference position, based on the total value of the rotation angles calculated by the rotation angle calculation unit;
    The total value of the rotation angles calculated by the rotation angle calculation unit, the axial displacement amount calculated by the calculation unit, the departure floor, the arrival floor, and the loaded weight when the car moves are associated with each other. a learning information acquisition unit that acquires learning information including the information that has been learned;
    The total value of the rotation angles calculated by the rotation angle calculation unit using the learning information acquired by the learning information acquisition unit, the departure floor, the arrival floor, and the car when the car moves. a model generation unit that generates a trained model for inferring the amount of axial displacement from the loaded weight of the
    A maintenance management system equipped with
PCT/JP2022/010064 2022-03-08 2022-03-08 Diagnosis device, diagnosis system, remote monitoring system, and maintenance system WO2023170796A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010064 WO2023170796A1 (en) 2022-03-08 2022-03-08 Diagnosis device, diagnosis system, remote monitoring system, and maintenance system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010064 WO2023170796A1 (en) 2022-03-08 2022-03-08 Diagnosis device, diagnosis system, remote monitoring system, and maintenance system

Publications (1)

Publication Number Publication Date
WO2023170796A1 true WO2023170796A1 (en) 2023-09-14

Family

ID=87936369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010064 WO2023170796A1 (en) 2022-03-08 2022-03-08 Diagnosis device, diagnosis system, remote monitoring system, and maintenance system

Country Status (1)

Country Link
WO (1) WO2023170796A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136776A (en) * 1995-11-13 1997-05-27 Hitachi Building Syst Co Ltd Rotary bearing damage detecting device for elevator
JP2008156127A (en) * 2008-02-13 2008-07-10 Hitachi Ltd Elevator
JP2017203561A (en) * 2016-05-09 2017-11-16 東芝ホームテクノ株式会社 Heating cooker
WO2017203561A1 (en) * 2016-05-23 2017-11-30 三菱電機株式会社 Elevator apparatus
JP2020040763A (en) * 2018-09-07 2020-03-19 東芝エレベータ株式会社 Elevator inspection device
WO2020089508A1 (en) * 2018-11-02 2020-05-07 Kone Corporation Arrangement for detecting bearing failures in elevator
WO2021260942A1 (en) * 2020-06-26 2021-12-30 三菱電機ビルテクノサービス株式会社 Elevator system and inspection terminal
JP2022018941A (en) * 2020-07-16 2022-01-27 フジテック株式会社 Elevator bearing vibration data acquisition device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136776A (en) * 1995-11-13 1997-05-27 Hitachi Building Syst Co Ltd Rotary bearing damage detecting device for elevator
JP2008156127A (en) * 2008-02-13 2008-07-10 Hitachi Ltd Elevator
JP2017203561A (en) * 2016-05-09 2017-11-16 東芝ホームテクノ株式会社 Heating cooker
WO2017203561A1 (en) * 2016-05-23 2017-11-30 三菱電機株式会社 Elevator apparatus
JP2020040763A (en) * 2018-09-07 2020-03-19 東芝エレベータ株式会社 Elevator inspection device
WO2020089508A1 (en) * 2018-11-02 2020-05-07 Kone Corporation Arrangement for detecting bearing failures in elevator
WO2021260942A1 (en) * 2020-06-26 2021-12-30 三菱電機ビルテクノサービス株式会社 Elevator system and inspection terminal
JP2022018941A (en) * 2020-07-16 2022-01-27 フジテック株式会社 Elevator bearing vibration data acquisition device

Similar Documents

Publication Publication Date Title
EP3130555B1 (en) Rope and rope groove monitoring
JP5050362B2 (en) elevator
US7350883B2 (en) Detecting elevator brake and other dragging by monitoring motor current
JP2002068626A (en) Diagnosing method of elevator
JP5135858B2 (en) Elevator diagnostic operation apparatus and diagnostic operation method
JP6771396B2 (en) Elevator rope maintenance method
JP6716751B1 (en) Elevator rope inspection system
JP2011195253A (en) Sheave wear amount measuring device for elevator
JP6987255B2 (en) Elevator diagnostic system
JP5947094B2 (en) elevator
JP2006027888A (en) Main rope diagnostic device of elevator
US20170327342A1 (en) Elevator diagnosing device
WO2023170796A1 (en) Diagnosis device, diagnosis system, remote monitoring system, and maintenance system
JP6021656B2 (en) Elevator group management device and elevator group management method
WO2021260942A1 (en) Elevator system and inspection terminal
JP2008156127A (en) Elevator
CN109928285B (en) Online health prediction method and device for elevator composite steel belt
JP4486104B2 (en) Elevator diagnostic operation apparatus and diagnostic operation method
KR20210056420A (en) Elevator brake system deterioration prediction system
JP7047972B2 (en) Elevator slip detection system
KR102266228B1 (en) Temperature trend specific device, maintenance planning system and elevator system
JP5941013B2 (en) Elevator abnormality diagnosis device
JP2013241247A (en) Elevator sheave diagnosis device
JP2022177567A (en) Sheave inspection system and sheave inspection method for rope-type elevator
US20240025700A1 (en) Method and system for estimating rope slip in an elevator system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930781

Country of ref document: EP

Kind code of ref document: A1