WO2023170762A1 - 学習方法、伝搬特性推定方法、伝搬特性推定装置、伝搬特性推定システム、伝搬特性推定プログラム - Google Patents

学習方法、伝搬特性推定方法、伝搬特性推定装置、伝搬特性推定システム、伝搬特性推定プログラム Download PDF

Info

Publication number
WO2023170762A1
WO2023170762A1 PCT/JP2022/009810 JP2022009810W WO2023170762A1 WO 2023170762 A1 WO2023170762 A1 WO 2023170762A1 JP 2022009810 W JP2022009810 W JP 2022009810W WO 2023170762 A1 WO2023170762 A1 WO 2023170762A1
Authority
WO
WIPO (PCT)
Prior art keywords
input image
propagation characteristic
target range
estimation
receiving station
Prior art date
Application number
PCT/JP2022/009810
Other languages
English (en)
French (fr)
Inventor
伸晃 久野
稔 猪又
元晴 佐々木
渉 山田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/009810 priority Critical patent/WO2023170762A1/ja
Priority to JP2024505679A priority patent/JPWO2023170762A1/ja
Publication of WO2023170762A1 publication Critical patent/WO2023170762A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present invention relates to a technique for estimating propagation characteristics between a transmitting station and a receiving station in a wireless communication system.
  • Patent Document 1 and Patent Document 2 disclose such propagation characteristic estimation techniques.
  • Patent Document 2 discloses a technique for estimating propagation characteristics using a machine learning model. More specifically, an image representing the distribution of building heights around Rx is prepared. The features of the input image are extracted by inputting that image (input image) to a convolutional neural network (CNN). Then, the propagation characteristics are estimated by inputting the extracted feature amounts to a fully connected neural network (FNN). Similarly, learning of a machine learning model is performed by using an input image as input to the machine learning model and optimizing the estimation result.
  • CNN convolutional neural network
  • FNN fully connected neural network
  • One objective of the present disclosure is to provide a technology that can generate input images from map data at high speed.
  • the first aspect relates to a learning method for a machine learning model that estimates propagation characteristics between a transmitting station and a receiving station in a wireless communication system.
  • the machine learning model includes a feature extraction layer that extracts feature quantities using an input image that provides the distribution of heights of structures around the receiving station as input, and a feature extraction layer that uses at least the feature quantities as input to estimate the propagation characteristics. and an estimation layer.
  • the learning method according to the first aspect includes setting learning data including one or more receiving station positions, and determining each of the one or more receiving station positions from map data including information of the structures on the map.
  • the input image generation process includes a process of identifying an estimation target range on a map that is a target of estimating the propagation characteristic based on the learning data, and a process of identifying the structure in the estimation target range from the map data. a process of generating target range height data giving a height distribution of , and a reading process of generating the input image by reading a part of the target range height data for each of the one or more receiving station positions. processing and
  • the second aspect relates to a propagation characteristic estimation method for estimating propagation characteristics between a transmitting station and a receiving station in a wireless communication system.
  • the propagation characteristic estimation method according to the second aspect includes setting estimation data including one or more receiving station positions, and estimating the one or more receiving station positions from map data including information on structures on the map. executing an input image generation process that generates an input image giving a distribution of heights of the structures around the receiving station according to each of the propagation characteristics by inputting the input image into a machine learning model; It includes estimating and.
  • the machine learning model includes a feature extraction layer that receives the input image as an input and extracts a feature amount, and an estimation layer that uses at least the feature amount as an input and estimates the propagation characteristic.
  • the input image generation process includes a process of identifying an estimation target range on a map that is a target of estimating the propagation characteristics based on the estimation data, and a process of identifying the estimation target range on the map from which the propagation characteristics are to be estimated, and a process of identifying the structure in the estimation target range from the map data.
  • the third aspect relates to a propagation characteristic estimating device that estimates propagation characteristics between a transmitting station and a receiving station in a wireless communication system.
  • the propagation characteristic estimating device according to the third aspect includes a process of acquiring estimation data including the positions of one or more receiving stations, and a process of obtaining the estimated data including the positions of the one or more receiving stations from map data including information of structures on the map.
  • an input image generation process that generates an input image giving a height distribution of structures around the receiving station according to each case; and a process that estimates the propagation characteristic by inputting the input image to a machine learning model. , is configured to run.
  • the machine learning model includes a feature extraction layer that receives the input image as an input and extracts a feature amount, and an estimation layer that uses at least the feature amount as an input and estimates the propagation characteristic.
  • the input image generation process includes a process of identifying an estimation target range on a map that is a target of estimating the propagation characteristics based on the estimation data, and a process of identifying the estimation target range on the map from which the propagation characteristics are to be estimated, and a process of identifying the structure in the estimation target range from the map data. a process of generating target range height data giving a height distribution; and a process of generating the input image by reading a part of the target range height data for each of the one or more receiving station positions. , contains.
  • the fourth aspect relates to a propagation characteristic estimation system that estimates propagation characteristics between a transmitting station and a receiving station in a wireless communication system.
  • a propagation characteristic estimation system includes one or more processors and a data server that manages map data including information on structures on a map as a map database.
  • the one or more processors acquire estimated data including one or more receiving station positions, and structures surrounding the receiving station according to each of the one or more receiving station positions from the map data.
  • the apparatus is configured to perform an input image generation process of generating an input image giving a height distribution of , and a process of estimating the propagation characteristic by inputting the input image to a machine learning model.
  • the machine learning model includes a feature extraction layer that receives the input image as an input and extracts a feature amount, and an estimation layer that uses at least the feature extraction layer as an input and estimates the propagation characteristic.
  • the input image generation process includes a process of identifying an estimation target range on a map that is a target of estimating the propagation characteristics based on the estimation data, and a process of identifying the estimation target range on the map from which the propagation characteristics are to be estimated, and a process of identifying the structure in the estimation target range from the map data. a process of generating target range height data giving a height distribution; and a process of generating the input image by reading a part of the target range height data for each of the one or more receiving station positions. , contains.
  • the fifth aspect relates to a propagation characteristic estimation program that estimates propagation characteristics between a transmitting station and a receiving station in a wireless communication system.
  • the propagation characteristic estimation program according to the fifth aspect includes a process of acquiring estimation data including the positions of one or more receiving stations, and a process of obtaining the estimated data including the positions of the one or more receiving stations from map data including information of structures on the map. an input image generation process that generates an input image that gives a distribution of the heights of the structures around the receiving station according to each case; and a process that estimates the propagation characteristics by inputting the input image to a machine learning model. and make the computer execute it.
  • the machine learning model includes a feature extraction layer that receives the input image as an input and extracts a feature amount, and an estimation layer that uses at least the feature amount as an input and estimates the propagation characteristic.
  • the input image generation process includes a process of identifying an estimation target range on a map that is a target of estimating the propagation characteristics based on the estimation data, and a process of identifying the estimation target range on the map from which the propagation characteristics are to be estimated, and a process of identifying the structure in the estimation target range from the map data. a process of generating target range height data giving a height distribution; and a process of generating the input image by reading a part of the target range height data for each of the one or more receiving station positions. , contains.
  • target range height data is generated in the input image generation process. Then, an input image is generated by reading part of the target range height data for each of the one or more receiving stations given by the learning data or estimated data. This allows input images to be generated at high speed. In turn, it is possible to achieve the effects of improving calculation speed and reducing processing load.
  • FIG. 2 is a conceptual diagram for explaining an overview of a machine learning model used in the propagation characteristic estimation device according to the present embodiment.
  • FIG. 2 is a conceptual diagram for explaining matrix data related to an input image.
  • FIG. 2 is a block diagram showing an example of a functional configuration in a learning stage of the propagation characteristic estimating device according to the present embodiment.
  • FIG. 2 is a block diagram showing an example of a functional configuration at an estimation stage of the propagation characteristic estimating device according to the present embodiment.
  • FIG. 7 is a conceptual diagram for explaining an overview of input image generation processing according to a comparative example. 7 is a flowchart illustrating processing executed when generating one input image in input image generation processing according to a comparative example.
  • FIG. 1 is a conceptual diagram for explaining an overview of a machine learning model used in the propagation characteristic estimation device according to the present embodiment.
  • FIG. 2 is a conceptual diagram for explaining matrix data related to an input image.
  • FIG. 2 is a block diagram showing an example of a functional configuration
  • FIG. 2 is a conceptual diagram for explaining an overview of input image generation processing according to the present embodiment.
  • 7 is a flowchart illustrating processing executed when generating target range height data in input image generation processing according to the present embodiment.
  • 7 is a flowchart illustrating processing executed when generating one input image in input image generation processing according to the present embodiment.
  • FIG. 3 is a conceptual diagram for explaining reading of target range height data by matrix processing using affine transformation.
  • FIG. 1 is a block diagram showing a configuration example of a propagation characteristic estimating device according to the present embodiment.
  • 3 is a flowchart summarizing processing by the propagation characteristic estimating device according to the present embodiment.
  • a transmitting station is a base station (BS), and a receiving station is a mobile station (MS).
  • BS base station
  • MS mobile station
  • FIG. 1 is a conceptual diagram for explaining an overview of a machine learning model used in a propagation characteristic estimation apparatus according to this embodiment.
  • CNN is a useful tool that can automatically extract features from images.
  • CNN has a structure in which convolution layers and pooling layers are repeatedly arranged.
  • CNN can also be referred to as a "feature extraction layer.”
  • a fully connected neural network is placed after the CNN.
  • the FNN inputs at least the feature amount extracted by the CNN and outputs a propagation loss L.
  • FNN can also be rephrased as an "estimation layer" for propagation characteristics.
  • the FNN may be configured to input system parameters related to the wireless communication system as well as the feature amounts extracted by the CNN. Examples of system parameters include the frequency of transmitted radio waves, the height of the Tx antenna, the height of the Rx antenna, and the like.
  • an upward view image (for example, colored according to the height) giving the height distribution of a structure such as a building is input to the CNN as input image 1 (machine used as input for the learning model).
  • the upward view image is a two-dimensional image viewed from above, and can also be called an overhead image.
  • an image that gives a distribution of the heights of structures in a predetermined range around Rx is used as the input image 1.
  • the predetermined range is, for example, a rectangular range centered on Rx.
  • such an input image 1 is input to the CNN, and the feature amount of the input image 1 is extracted.
  • the input image 1 that provides the height of structures around Rx is generally managed as matrix data.
  • each element of the matrix corresponds to a position in a predetermined range around Rx, and the value of each element gives the height of the structure at the corresponding position.
  • each position corresponding to each component of the matrix is, for example, one cell when a predetermined range around Rx is divided by a grid.
  • input image 1 is a rectangular range around Rx. Further, the range given by input image 1 includes structure B1 and structure B2. Here, the range of structure B1 and structure B2 is shown by a solid line.
  • FIG. 2 shows how the range given by input image 1 is divided by a grid.
  • the position of each cell can be made to correspond to each component of the matrix.
  • the position of the upper left cell of input image 1 is the component in the 1st row and 1st column of the matrix (hereinafter, the component in the m row and n column of the matrix is referred to as the "(m, n) component").
  • the position of a cell towards the bottom of the drawing is specified by the row number
  • the position of a cell towards the right of the drawing is specified by the column number.
  • the position P1 corresponds to the (3,3) component
  • the position P2 corresponds to the (5,4) component
  • the position P3 corresponds to the (6,5) component.
  • input image 1 can be managed as matrix data by substituting the height of the structure into the matrix component corresponding to the cell position.
  • the height of the structure B1 is assigned to the (3,3) component of the matrix.
  • the position P3 is included in the structure B2
  • the height of the structure B2 is substituted into the (6,5) component of the matrix.
  • position P2 is not included in any structure, no substitution is performed.
  • matrix data may be given as array data when inputting to arithmetic processing or a machine learning model.
  • the propagation characteristic estimation device 100 in the learning stage includes an input image generation section 110, a system parameter generation section 120, a model section 130, an error calculation section 140, and a model update section 150 as functional blocks.
  • the model unit 130 also includes a CNN 131 and an FNN 132 as machine learning models.
  • the learning data includes at least one or more Rx positions (receiving station positions) whose propagation characteristics are to be estimated.
  • the learning data also includes data for evaluating the output results of the machine learning model with respect to the learning data (data that determines the correct answer for the input). For example, it includes Tx transmission power, Rx reception power, propagation loss, etc. For these, actual measured values or values obtained from simulation data using ray tracing can be used.
  • the Tx position, the frequency of the transmitted radio wave, the Tx antenna height, the Rx antenna height, etc. may be set as learning data serving as system parameters.
  • the learning data may similarly include test data for evaluating the learning state and generalization performance of the machine learning model and verification data for adjusting hyperparameters.
  • the input image generation unit 110 executes a process (hereinafter also referred to as "input image generation process") of generating an input image 1 from map data according to each of one or more receiving station positions given by learning data. .
  • the input image generation unit 110 specifies a specific range and acquires information on the position and height of a structure on the map as map data.
  • the map data can be obtained from a map database that manages information on the positions and heights of structures on the map.
  • the input image 1 generated by the input image generation unit 110 becomes an input to the CNN 131.
  • the propagation characteristic estimation device 100 has a feature in input image generation processing. Details of the input image generation process executed in the propagation characteristic estimation device 100 according to this embodiment will be described later.
  • the system parameter generation unit 120 executes processing to generate system parameters that will be input to the FNN 132 based on the learning data. That is, a process of converting the learning data related to the system parameters so as to be input to the FNN 132 is executed. For example, processing for converting learning data into array data is executed. Note that when system parameters are not provided as input to the FNN 132, the system parameter generation unit 120 may be configured not to be included as a functional block.
  • the model unit 130 receives the input image 1 generated by the input image generation unit 110 and the system parameters generated by the system parameter generation unit 120 as input, and outputs the estimation result of the propagation characteristic. More specifically, the CNN 131 receives the input image 1 and extracts the feature amount, and the FNN 132 receives the output feature amount and system parameters of the CNN 131 and outputs the estimation result of the propagation characteristic.
  • the CNN 131 and the FNN 132 may have a suitable configuration depending on the environment in which the propagation characteristic estimation device 100 according to the present embodiment is applied.
  • the error calculation unit 140 obtains the estimation results output from the model unit 130. Then, the error calculation unit 140 calculates the estimation error by the model unit 130 with reference to the learning data. For example, when the model unit 130 outputs a propagation loss as an estimation result, the error calculation unit 140 calculates the difference between the received power calculated from the estimated propagation loss and the received power given as correct data in the learning data. Based on this, estimate error is calculated. Alternatively, the error calculation unit 140 calculates the value of a predetermined loss function as the estimation error.
  • the model update unit 150 updates the parameters of the machine learning model included in the model unit 130 until the estimation error converges to a certain level or less.
  • the model updating unit 150 updates the parameters of the machine learning model using gradient descent using error backpropagation to reduce the estimation error.
  • the parameters of the machine learning model include filter parameters and bias values related to the CNN 131, and weight parameters and bias values related to the FNN 132.
  • the propagation characteristic estimation device 100 in the propagation characteristic estimation stage includes an input image generation section 110, a system parameter generation section 120, a model section 130, and a result output section 160 as functional blocks.
  • estimation data is first set.
  • the estimated data provides data that is the target of estimating propagation characteristics.
  • the estimated data is data about the same content as the data given as learning data in the learning stage (excluding data that is the correct answer to the input). That is, the estimation data includes at least one or more receiving station positions whose propagation characteristics are to be estimated.
  • the estimated data may include data serving as system parameters.
  • the input image generation unit 110 and the system parameter generation unit 120 are the same functional blocks as in the learning stage.
  • the model unit 130 has been trained through the learning stage.
  • the trained model unit 130 receives the input image 1 generated by the input image generation unit 110 and the system parameters generated by the system parameter generation unit 120 as input, and outputs a propagation characteristic estimation result.
  • the result output unit 160 stores the estimation result data output from the model unit 130 in a storage device or presents it to the user.
  • the propagation characteristic estimating device 100 is characterized by the input image generation process executed in the input image generation unit 110. The details of the input image generation process executed in the propagation characteristic estimation device 100 according to this embodiment will be described below.
  • FIG. 5 is a conceptual diagram for explaining an overview of input image generation processing according to a comparative example.
  • range 2 on the map (hereinafter also referred to as "estimation target range 2") that is the target of propagation characteristic estimation as shown in (A) of FIG. 5 is specified.
  • the estimation target range 2 is specified based on the set learning data or estimation data. For example, a range including one or more transmitting station positions and one or more receiving station positions given as learning data or estimation data is specified as the estimation target range 2.
  • the subscript j is given to distinguish each of the plurality of structures. Therefore, Nb is an integer and indicates the number of structures Bj included in the estimation target range 2.
  • map data (including position and height information) of each of the plurality of structures Bj included in the estimation target range 2 is acquired. That is, Nb pieces of map data for each of the plurality of structures Bj are acquired.
  • FIG. 6 shows the process executed when generating one input image 1 in the input image generation process according to the comparative example.
  • the flowchart shown in FIG. 6 starts, for example, when input image 1 is generated according to the position of a certain receiving station. Then, it is repeatedly executed for each of one or more receiving station positions given as learning data or estimated data.
  • specific processing of the input image generation processing according to the comparative example will be described.
  • step S100 the elements of the matrix to be substituted are initialized, and in step S101, the structure Bj to be determined as inside/outside is initialized. Then, in step S102, inside/outside determination is performed.
  • step S102 When the result of the inside/outside determination is affirmative (step S102; Yes), the height of the structure Bj targeted for inside/outside determination is substituted into the element of the matrix targeted for substitution (step S103), and the process continues at step S106. Proceed to.
  • step S102; No the process proceeds to step S104.
  • step S104 it is determined whether the inside/outside determination has been performed for all of the plurality of structures Bj for which map data has been acquired. If the inside/outside determination has not yet been performed for all of the plurality of structures Bj (step S104; Yes), j is incremented (step S105), and the inside/outside determination is performed again (step S102). If the inside/outside determination has been performed for all of the plurality of structures Bj (step S104; No), the process proceeds to step S106.
  • step S106 it is determined whether the inside/outside determination for the plurality of structures Bj has been performed for all the elements of the matrix. If all the elements of the matrix have not yet been determined to be inside or outside for the plurality of structures Bj (step S106; Yes), i is incremented (step S107), and the process returns to step S101 again to repeat the process. If the inside/outside determination for the plurality of structures Bj has been performed for all the components of the matrix (step S106; No), the generation process of one input image 1 is ended.
  • a maximum of N ⁇ Nb search points are required.
  • the number of search points becomes even larger. For example, suppose that the number of cells when the estimation target range 2 is divided into grids like the input image 1 is Np, and a receiving station position is given to each cell position in the estimation target range 2. In this case, since Np input images 1 are generated, the maximum number of search points is Np ⁇ N ⁇ Nb.
  • the number of search points is (1 / ⁇ ) ⁇ N ⁇ Np ⁇ 2.
  • Nb (1/ ⁇ ) ⁇ Np ( ⁇ is a constant indicating the density of the distribution)
  • the number of search points is (1 / ⁇ ) ⁇ N ⁇ Np ⁇ 2.
  • FIG. 7 is a conceptual diagram for explaining an overview of input image generation processing according to this embodiment.
  • an estimation target range 2 as shown in (A) of FIG. 7 is specified.
  • map data (including position and height information) of each of the plurality of structures Bj included in the estimation target range 2 is acquired.
  • the height of the structure Bj is substituted into the matrix element corresponding to the position Qk of the cell included in the range of the structure Bj. This completes the generation of the target range height data 3 by referring to the map data of all the plurality of structures Bj.
  • the number of search points in the assignment process performed with reference to one structure Bj is sufficient to search from the minimum coordinate to the maximum coordinate of the position information indicating the range of the structure Bj in the map data. It is. Therefore, considering that the plurality of structures Bj generally do not interfere with each other, it can be considered that the number of search points required to complete the generation of the target range height data 3 is at most a constant times Np. .
  • FIG. 8 shows the process executed when generating the target range height data 3 in the input image generation process according to this embodiment. With reference to FIG. 8, specific processing executed when generating the target range height data 3 will be described.
  • step S200 the structure Bj to be referenced is initialized. After step S200, the process proceeds to step S201.
  • step S201 the height of the structure Bj is substituted into the matrix element corresponding to the position Qk of the cell included in the range of the structure Bj. After step S201, the process proceeds to step S202.
  • step S202 it is determined whether all of the plurality of structures Bj for which map data has been acquired have been referenced. If all of the plurality of structures Bj have not been referenced yet (step S202; Yes), j is incremented (step S203), and the process returns to step S201 again to repeat the process. If all of the plurality of structures Bj have been referenced (step S202; No), the process ends.
  • the input image 1 is generated by reading a part of the target range height data 3 (See FIG. 7(B)). This can be done by specifying the receiving station position and the range of input image 1 (range around Rx).
  • FIG. 9 shows the process executed when generating one input image 1 in the input image generation process according to this embodiment.
  • the flowchart shown in FIG. 9 starts, for example, when input image 1 is generated according to the position of a certain receiving station.
  • specific processing executed when generating one input image 1 in the input image generation processing according to this embodiment will be described.
  • step S300 the components of the matrix to be substituted are initialized. After step S300, the process advances to step S301.
  • step S301 reading process
  • the target range height data 3 at the position corresponding to the component of the matrix to be substituted is read. After step S301, the process proceeds to step S302.
  • step S302 it is determined whether the target range height data 3 has been read for all the components of the matrix. If the target range height data 3 has not yet been read for all the components of the matrix (step S302; Yes), i is incremented (step S303), and the process returns to step S301 again to repeat the process. If the target range height data 3 has been read for all the components of the matrix (step S302; No), the generation process of one input image 1 is ended.
  • the number of search points until the generation of one input image 1 is completed is N.
  • the input image generation process according to the present embodiment even when the input image 1 is generated according to each of a plurality of receiving station positions given by the set learning data or estimation data, even when the input image 1 is generated based on the same target The input image 1 can be generated by reading part of the range height data 3. That is, it is sufficient to generate the target range height data 3 once for the set learning data or estimated data.
  • the maximum number of search points is Np ⁇ N + ⁇ ⁇ Np. ( ⁇ is a constant).
  • ⁇ N the number of search points is approximately Np ⁇ N, which is 1/Nb times that of the comparative example.
  • the number of search points until the generation of the target range height data 3 in the input image generation process according to this embodiment is completed is 20 ⁇ 20 cells.
  • 20 ⁇ Nb 2 ⁇ 10 ⁇ 6.
  • the input image generation process according to the present embodiment can generate input image 1 faster than the comparative example. In turn, it is possible to achieve the effects of improving calculation speed and reducing processing load.
  • the reading of the target range height data 3 for each component of the matrix regarding the input image 1 is performed by matrix processing using affine transformation. It can be done in parallel and efficiently. With reference to FIG. 10, reading of target range height data 3 by matrix processing using affine transformation will be described.
  • the coordinates of the position P1 can be expressed as (X0, Y0) on the input image 1 (hereinafter referred to as "reference coordinates").
  • the reference coordinates are points from -2/d to 2/d.
  • the coordinates (Xout, Yout) of the position P1 in the positional coordinate system are calculated by affine transformation.
  • the affine matrix M related to the affine transformation can be expressed by the following equation (1).
  • (xp, yp) are the coordinates of the center point P0 of the input image 1 in the positional coordinate system.
  • the target range height data 3 can be read for the components of the matrix related to the input image 1 corresponding to the position P1.
  • Matrix processing using such affine transformation can be performed independently for each component of the matrix related to input image 1. That is, the target range height data 3 for each of the matrix components related to the input image 1 can be read in parallel. By performing parallel processing for reading the target range height data 3 in this manner, it is possible to further speed up the input image generation processing according to the present embodiment.
  • the input image processing according to the comparative example it is possible to consider performing parallel processing on each of the components of the matrix regarding input image 1.
  • this method is not suitable for parallel processing because it is necessary to sequentially perform inside/outside determination for each of the plurality of structures Bj, and the processing load increases according to the number of structures Bj for which map data has been acquired.
  • matrix processing using the above-mentioned affine transformation is possible, and in this case, the process of reading the target range height data 3 is completed in several steps as described above. do.
  • the input image processing according to this embodiment can be configured to efficiently perform parallel processing by matrix processing using affine transformation.
  • FIG. 11 is a block diagram showing a configuration example of propagation characteristic estimation device 100 according to the present embodiment.
  • the propagation characteristic estimation device 100 includes one or more processors 103 (hereinafter simply referred to as "processors 103"), one or more storage devices 104 (hereinafter simply referred to as “storage devices 104"), a user interface 101, and It includes an I/O interface 102.
  • processors 103 hereinafter simply referred to as "processors 103”
  • storage devices 104" hereinafter simply referred to as "storage devices 104"
  • user interface 101 includes an I/O interface 102.
  • the processor 103 performs various information processing.
  • the processor 103 includes a CPU (Central Processing Unit).
  • the storage device 104 stores various information necessary for processing by the processor 103. Examples of the storage device 104 include volatile memory, nonvolatile memory, HDD (Hard Disk Drive), SSD (Solid State Drive), and the like.
  • the propagation characteristic estimation program 105 is a computer program executed by the processor 103.
  • the functions of the processor 103 are realized. That is, when the processor 103 executes the propagation characteristic estimation program 105, the functional configuration of the propagation characteristic estimation apparatus 100 shown in FIGS. 3 and 4 is realized.
  • the propagation characteristic estimation program 105 is stored in the storage device 104.
  • the propagation characteristic estimation program 105 may be recorded on a computer-readable recording medium.
  • the propagation characteristic estimation program 105 may be provided to the propagation characteristic estimation device 100 via a network.
  • the processor 103 may be realized using hardware such as an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • PLD Processor
  • FPGA Field Programmable Gate Array
  • the user interface 101 provides information to the user and also receives information input from the user.
  • User interface 101 includes an input device and a display device.
  • the I/O interface 102 is communicably connected to the data server 200.
  • the data server 200 manages at least information on the positions and heights of structures on a map as a map database 201.
  • the I/O interface 102 is configured to communicate with the data server 200 and acquire desired map data from the map database 201.
  • the processor 103 can obtain necessary information from the database via the I/O interface 102.
  • FIG. 11 can also be considered to show a propagation characteristic estimation system configured by the propagation characteristic estimation device 100 and the data server 200.
  • FIG. 12 is a flowchart summarizing the processing by the propagation characteristic estimation device 100 according to the present embodiment.
  • FIG. 12 shows processing related to learning of the estimation model.
  • step S400 the propagation characteristic estimation device 100 specifies the estimation target range 2 according to the set learning data, and acquires map data of each of the plurality of structures Bj included in the estimation target range 2 from the map database 201. .
  • step S401 the propagation characteristic estimation device 100 executes input image generation processing.
  • the propagation characteristic estimating device 100 estimates the propagation characteristic using the machine learning model. More specifically, the propagation characteristic estimation device 100 extracts the feature amount by inputting the input image 1 generated in step S401 to the CNN 131. Further, the propagation characteristic estimating device 100 estimates the propagation characteristic by inputting the feature amount and system parameters output from the CNN 131 to the FNN 132.
  • step S403 the propagation characteristic estimating device 100 calculates an estimation error by comparing the propagation characteristic estimation result with the received power given as the correct answer in the learning data.
  • step S404 the propagation characteristic estimating device 100 determines whether the estimation error has converged to a certain level or less. If the estimation error exceeds a certain level (step S404; No), the process proceeds to step S405.
  • step S405 the propagation characteristic estimating device 100 updates the parameters of the machine learning model so that the estimation error is reduced. After that, the process returns to step S401.
  • step S404 If the estimation error converges to a certain level or less (step S404; Yes), learning of the machine learning model is completed.
  • steps S400 to S402 are the same. However, in step S402, the propagation characteristic estimating device 100 estimates the propagation characteristic using the learned machine learning model. Then, the propagation characteristic estimating device 100 stores the estimation result of the propagation characteristic in the storage device 104. Further, the propagation characteristic estimating device 100 presents the estimation result of the propagation characteristic to the user via the user interface 101.
  • target range height data 3 is generated in input image processing. Then, the input image 1 is generated by reading a part of the target range height data 3 surrounding Rx for each of the one or more receiving stations given by the set learning data or estimation data. Thereby, input image 1 can be generated at high speed. In turn, it is possible to achieve the effects of improving calculation speed and reducing processing load.
  • the reading of the target range height data 3 for each matrix component related to the input image 1 can be processed in parallel by matrix processing using affine transformation.
  • the input image generation process according to this embodiment can be further speeded up.
  • Input image 2 Estimation target range 3 Target range height data 100
  • Propagation characteristic estimation device 101 User interface 102 I/O interface 103 Processor 104 Storage device 105
  • Propagation characteristic estimation program 110 Input image generation unit 120
  • System parameter generation unit 130 Model unit 131 CNN (feature extraction layer) 132 FNN (estimation layer) 140 Error calculation unit 150
  • Model update unit 160 Result output unit 200
  • Data server 201 Map database Bj Structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Image Analysis (AREA)

Abstract

無線通信システムにおける送信局と受信局との間の伝搬特性を推定する機械学習モデルの学習方法であって、地図データから学習データとして与えられる1又は複数の受信局位置の各々に応じて入力画像を生成する入力画像生成処理を実行することと、入力画像を機械学習モデルの入力として伝搬特性の推定結果についての出力を取得することと、機械学習モデルの出力に基づいて機械学習モデルのパラメータを更新することと、を含んでいる。ここで、入力画像生成処理は、伝搬特性の推定の対象となる推定対象範囲の構造物の高さの分布を与える対象範囲高さデータを生成する処理と、1又は複数の受信局位置の各々について、対象範囲高さデータの一部を読み込むことにより入力画像を生成する処理と、を含んでいる。

Description

学習方法、伝搬特性推定方法、伝搬特性推定装置、伝搬特性推定システム、伝搬特性推定プログラム
 本発明は、無線通信システムにおける送信局と受信局との間の伝搬特性を推定する技術に関する。
 無線通信システムにおける送信局(Transmitter:Tx)と受信局(Receiver:Rx)との間の伝搬特性(伝搬損失)を推定する技術が知られている。例えば、特許文献1及び特許文献2は、そのような伝搬特性推定技術を開示している。
 特に、特許文献2は、機械学習モデルを利用して伝搬特性を推定する技術を開示している。より詳細には、Rx周辺の建物高さの分布を表す画像が用意される。その画像(入力画像)を畳み込みニューラルネットワーク(CNN: Convolutional Neural Network)の入力とすることによって入力画像の特徴量が抽出される。そして、抽出された特徴量を全結合ニューラルネットワーク(FNN: Fully-connected Neural Network)に入力することにより、伝搬特性が推定される。同様に機械学習モデルの学習は、入力画像を機械学習モデルへの入力として、推定結果を最適化するように行われる。
国際公開第2021/064999号 特開2019-122008号公報
 上述の通り、Rx周辺の建物高さの分布を表す入力画像を機械学習モデルの入力とすることによって伝搬特性を推定する技術が知られている。ここで、Rx周辺の建物高さの分布を表す入力画像を、地図上の建物の位置及び高さの情報を含む地図データからRxの位置に応じて生成することが考えられている。これにより、伝搬特性の推定の際にRxの位置を入力とすれば良いという利点がある。また機械学習モデルの学習の際には、Rxの位置を学習データとして与えれば良い。しかしながら、従来、地図データから入力画像を生成する際に処理量が膨大となる課題がある。
 本開示の1つの目的は、地図データから高速に入力画像を生成することができる技術を提供することにある。
 第1の観点は、無線通信システムにおける送信局と受信局との間の伝搬特性を推定する機械学習モデルの学習方法に関連する。
 ここで、機械学習モデルは、前記受信局の周囲の構造物の高さの分布を与える入力画像を入力として特徴量を抽出する特徴抽出層と、少なくとも前記特徴量を入力として前記伝搬特性を推定する推定層と、を含んでいる。
 第1の観点に係る学習方法は、1又は複数の受信局位置を含む学習データを設定することと、地図上の前記構造物の情報を含む地図データから前記1又は複数の受信局位置の各々に応じて前記入力画像を生成する入力画像生成処理を実行することと、前記入力画像生成処理で生成された前記入力画像を前記特徴抽出層の入力として前記機械学習モデルの出力を取得することと、前記機械学習モデルの出力に基づいて、前記機械学習モデルのパラメータを更新することを含んでいる。ここで、前記入力画像生成処理は、前記学習データに基づいて、前記伝搬特性の推定の対象となる地図上の推定対象範囲を特定する処理と、前記地図データから前記推定対象範囲の前記構造物の高さの分布を与える対象範囲高さデータを生成する処理と、前記1又は複数の受信局位置の各々について、前記対象範囲高さデータの一部を読み込むことにより前記入力画像を生成する読み込み処理と、を含んでいる
 第2の観点は、無線通信システムにおける送信局と受信局との間の伝搬特性を推定する伝搬特性推定方法に関連する。
 第2の観点に係る伝搬特性推定方法は、1又は複数の受信局位置を含む推定データを設定することと、地図上の構造物の情報を含む地図データから前記1又は複数の受信局位置の各々に応じて前記受信局の周囲の前記構造物の高さの分布を与える入力画像を生成する入力画像生成処理を実行することと、前記入力画像を機械学習モデルに入力することによって前記伝搬特性を推定することと、を含んでいる。ここで、前記機械学習モデルは、前記入力画像を入力として特徴量を抽出する特徴抽出層と、少なくとも前記特徴量を入力として前記伝搬特性を推定する推定層と、を含んでいる。また、前記入力画像生成処理は、前記推定データに基づいて、前記伝搬特性の推定の対象となる地図上の推定対象範囲を特定する処理と、前記地図データから前記推定対象範囲の前記構造物の高さの分布を与える対象範囲高さデータを生成する処理と、前記1又は複数の重心局位置の各々について、前記対象範囲高さデータの一部を読み込むことにより前記入力画像を生成する読み込み処理と、を含んでいる。
 第3の観点は、無線通信システムにおける送信局と受信局との間の伝搬特性を推定する伝搬特性推定装置に関連する。
 第3の観点に係る伝搬特性推定装置は、1又は複数の受信局位置を含む推定データを取得する処理と、地図上の構造物の情報を含む地図データから前記1又は複数の受信局位置の各々に応じて前記受信局の周囲の構造物の高さの分布を与える入力画像を生成する入力画像生成処理と、前記入力画像を機械学習モデルに入力することによって前記伝搬特性を推定する処理と、を実行するように構成されている。ここで、前記機械学習モデルは、前記入力画像を入力として特徴量を抽出する特徴抽出層と、少なくとも前記特徴量を入力として前記伝搬特性を推定する推定層と、を含んでいる。また、前記入力画像生成処理は、前記推定データに基づいて、前記伝搬特性の推定の対象となる地図上の推定対象範囲を特定する処理と、前記地図データから前記推定対象範囲の前記構造物の高さの分布を与える対象範囲高さデータを生成する処理と、前記1又は複数の受信局位置の各々について、前記対象範囲高さデータの一部を読み込むことにより前記入力画像を生成する処理と、を含んでいる。
 第4の観点は、無線通信システムにおける送信局と受信局との間の伝搬特性を推定する伝搬特性推定システムに関連する。
 第4の観点に係る伝搬特性推定システムは、1又は複数のプロセッサと、地図上の構造物の情報を含む地図データを地図データベースとして管理するデータサーバと、を備えている。
 前記1又は複数のプロセッサは、1又は複数の受信局位置を含む推定データを取得する処理と、前記地図データから前記1又は複数の受信局位置の各々に応じて前記受信局の周囲の構造物の高さの分布を与える入力画像を生成する入力画像生成処理と、前記入力画像を機械学習モデルに入力することによって前記伝搬特性を推定する処理と、を実行するように構成されている。ここで、前記機械学習モデルは、前記入力画像を入力として特徴量を抽出する特徴抽出層と、少なくとも前記特徴抽出層を入力として前記伝搬特性を推定する推定層と、を含んでいる。また、前記入力画像生成処理は、前記推定データに基づいて、前記伝搬特性の推定の対象となる地図上の推定対象範囲を特定する処理と、前記地図データから前記推定対象範囲の前記構造物の高さの分布を与える対象範囲高さデータを生成する処理と、前記1又は複数の受信局位置の各々について、前記対象範囲高さデータの一部を読み込むことにより前記入力画像を生成する処理と、を含んでいる。
 第5の観点は、無線通信システムにおける送信局と受信局との間の伝搬特性を推定する伝搬特性推定プログラムに関連する。
 第5の観点に係る伝搬特性推定プログラムは、1又は複数の受信局位置を含む推定データを取得する処理と、地図上の構造物の情報を含む地図データから前記1又は複数の受信局位置の各々に応じて前記受信局の周囲の前記構造物の高さの分布を与える入力画像を生成する入力画像生成処理と、前記入力画像を機械学習モデルに入力することによって前記伝搬特性を推定する処理と、をコンピュータに実行させる。ここで、前記機械学習モデルは、前記入力画像を入力として特徴量を抽出する特徴抽出層と、少なくとも前記特徴量を入力として前記伝搬特性を推定する推定層と、を含んでいる。また、前記入力画像生成処理は、前記推定データに基づいて、前記伝搬特性の推定の対象となる地図上の推定対象範囲を特定する処理と、前記地図データから前記推定対象範囲の前記構造物の高さの分布を与える対象範囲高さデータを生成する処理と、前記1又は複数の受信局位置の各々について、前記対象範囲高さデータの一部を読み込むことにより前記入力画像を生成する処理と、を含んでいる。
 本発明によれば、入力画像生成処理において対象範囲高さデータが生成される。そして、学習データ又は推定データで与えられる1又は複数の受信局の各々について、対象範囲高さデータの一部を読み込むことにより入力画像が生成される。これにより、高速に入力画像を生成することができる。延いては、計算速度の向上や処理負荷の低減の効果を奏することができる。
本実施形態に係る伝搬特性推定装置において利用される機械学習モデルの概要について説明するための概念図である。 入力画像に係る行列データについて説明するための概念図である。 本実施形態に係る伝搬特性推定装置の学習段階における機能構成例を示すブロック図である。 本実施形態に係る伝搬特性推定装置の推定段階における機能構成例を示すブロック図である。 比較例に係る入力画像生成処理の概要を説明するための概念図である。 比較例に係る入力画像生成処理において1つの入力画像を生成する際に実行される処理を示すフローチャートである。 本実施形態に係る入力画像生成処理の概要を説明するための概念図である。 本実施形態に係る入力画像生成処理において対象範囲高さデータを生成する際に実行される処理を示すフローチャートである。 本実施形態に係る入力画像生成処理において1つの入力画像を生成する際に実行される処理を示すフローチャートである。 アフィン変換を用いた行列処理による対象範囲高さデータの読み込みについて説明するための概念図である。 本実施の形態に係る伝搬特性推定装置の構成例を示すブロック図である。 本実施の形態に係る伝搬特性推定装置による処理を要約的に示すフローチャートである。
 添付図面を参照して、本発明の実施の形態を説明する。
 無線通信システムにおける送信局(Transmitter:Tx)と受信局(Receiver:Rx)との間の伝搬特性(伝搬損失)の推定について考える。例えば、送信局は基地局(BS: Base Station)であり、受信局は移動局(MS: Mobile Station)である。
 1.概要
 本実施形態に係る伝搬特性推定装置の概要について説明する。本実施形態に係る伝搬特性推定装置は、畳み込みニューラルネットワーク(CNN: Convolutional Neural Network)に基づく機械学習モデルを利用して伝搬特性推定が行われる。図1は、本実施形態に係る伝搬特性推定装置において利用される機械学習モデルの概要について説明するための概念図である。周知の通り、CNNは、画像から特徴量を自動的に抽出することができる有用なツールである。CNNは、畳み込み層とプーリング層とが繰り返し配置された構造を有する。CNNは、「特徴抽出層」と言い換えることもできる。
 CNNの後段には、全結合ニューラルネットワーク(FNN: Fully-connected Neural Network)が配置されている。FNNは、少なくともCNNによって抽出された特徴量を入力として伝搬損失Lを出力する。FNNは、伝搬特性についての「推定層」と言い換えることもできる。なお、FNNは、CNNによって抽出された特徴量と共に、無線通信システムに関するシステムパラメータを入力とするように構成されていても良い。システムパラメータとして、送信電波の周波数、Txのアンテナ高さ、Rxのアンテナ高さ、等が例示される。
 本実施形態に係る伝搬特性推定では、建物等の構造物の高さの分布を与える上方視画像(例えば、高さに応じた彩色が与えられている)が、CNNへの入力画像1(機械学習モデルの入力)として用いられる。上方視画像は、上方から見た2次元画像であり、俯瞰画像と言うこともできる。特にRx周辺の電波伝搬を考慮するために、入力画像1として、Rxの周囲の所定範囲における構造物の高さの分布を与える画像が用いられる。ここで、所定範囲は、例えば、Rxを中心とした矩形上の範囲である。本実施形態に係る伝搬特性推定では、このような入力画像1がCNNに入力され、入力画像1の特徴量が抽出される。
 ここで、Rxの周囲の構造物の高さを与える入力画像1は、一般に、行列データとして管理される。この場合、行列の各成分がRxの周囲の所定範囲における各位置に対応し、各成分の値が、対応する位置の構造物の高さを与える。ここで、行列の各成分と対応する各位置は、例えば、Rxの周囲の所定範囲をグリッドで分割したときの1つのセルである。
 図2を参照して、入力画像1を行列データとして管理する場合の例について説明する。図2に示す例では、入力画像1は、Rxの周囲の矩形上の範囲である。また、入力画像1で与えられる範囲には、構造物B1及び構造物B2が含まれている。ここで、構造物B1及び構造物B2の範囲が実線で示されている。
 図2では、入力画像1で与えられる範囲がグリッドで分割された様子を示している。このようにグリッドで分割することで、各々のセルの位置を行列の各成分と対応させることができる。例えば、図2に示す例において、入力画像1の左上端のセルの位置を行列の1行1列の成分(以下、行列のm行n列の成分を「(m,n)成分」と表す。)と対応させて、図面下方向のセルの位置を行番号で、図面右方向のセルの位置を列番号で特定するように対応させる。この場合、位置P1は、(3,3)成分に、位置P2は、(5,4)成分に、位置P3は、(6,5)成分にそれぞれ対応する。
 そして、セルの位置が構造物の範囲に含まれるとき、そのセルの位置に対応する行列の成分に構造物の高さを代入することで、入力画像1を行列データとして管理することができる。例えば、位置P1は、構造物B1に含まれるため、行列の(3,3)成分には構造物B1の高さが代入される。また位置P3は、構造物B2に含まれるため、行列の(6,5)成分には構造物B2の高さが代入される。一方で、位置P2は、いずれの構造物にも含まれないため、代入が行われない。
 以下の説明において、入力画像1は、このような行列データで管理されるものとする。ただし、行列データは、演算処理や機械学習モデルへの入力に際して、配列データとして与えられても良い。
 2.機能構成例
 以下、図3及び図4を参照して本実施形態に係る伝搬特性推定装置100の機能構成例について説明する。
 まず図3を参照して、学習段階における伝搬特性推定装置100の機能構成例について説明する。学習段階における伝搬特性推定装置100は、機能ブロックとして、入力画像生成部110、システムパラメータ生成部120、モデル部130、誤差計算部140、及びモデル更新部150を含んでいる。またモデル部130は、機械学習モデルとして、CNN131及びFNN132を含んでいる。
 学習段階では、まず学習データが設定される。学習データは、伝搬特性を推定する対象となる1又は複数のRxの位置(受信局位置)を少なくとも含んでいる。また学習データは、学習データに対する機械学習モデルの出力結果を評価するためのデータ(入力に対して正解とするデータ)を含んでいる。例えば、Txの送信電力、Rxの受信電力、伝搬損失等を含んでいる。これらは、実測値やレイトレースによるシミュレーションデータで得られた値を用いることができる。その他、システムパラメータとなる学習データとして、Txの位置、送信電波の周波数、Txのアンテナ高さ、Rxのアンテナ高さ等が設定されていても良い。なお、学習データは、機械学習モデルの学習状態や汎化性能を評価するためのテストデータやハイパーパラメータを調整するための検証データを同様に含んでいて良い。
 入力画像生成部110は、学習データで与えられる1又は複数の受信局位置の各々に応じて地図データから入力画像1を生成する処理(以下、「入力画像生成処理」とも称する。)を実行する。ここで、入力画像生成部110は、地図データとして、特定の範囲を指定して地図上の構造物の位置及び高さの情報を取得する。ここで、地図データは、地図上の構造物の位置及び高さの情報を管理する地図データベースから取得することができる。入力画像生成部110において生成された入力画像1は、CNN131の入力となる。
 本実施形態に係る伝搬特性推定装置100は、入力画像生成処理に特徴を有している。本実施形態に係る伝搬特性推定装置100において実行される入力画像生成処理の詳細については後述する。
 システムパラメータ生成部120は、学習データに基づいて、FNN132の入力となるシステムパラメータを生成する処理を実行する。つまり、システムパラメータに係る学習データを、FNN132の入力となるように変換する処理を実行する。例えば、学習データを配列データに変換する処理を実行する。なお、FNN132の入力としてシステムパラメータを与えない場合は、システムパラメータ生成部120が機能ブロックとして含まれないように構成されていて良い。
 モデル部130は、入力画像生成部110で生成された入力画像1とシステムパラメータ生成部120で生成されたシステムパラメータを入力として、伝搬特性の推定結果を出力する。より詳細には、CNN131が入力画像1を入力として特徴量を抽出し、FNN132がCNN131の出力の特徴量とシステムパラメータを入力として伝搬特性の推定結果を出力する。ここで、CNN131及びFNN132は、本実施形態に係る伝搬特性推定装置100を適用する環境に応じて好適な構成が採用されて良い。
 誤差計算部140は、モデル部130から出力される推定結果を取得する。そして、誤差計算部140は、学習データを参照して、モデル部130による推定誤差を算出する。例えば、モデル部130が推定結果として伝搬損失を出力するとき、誤差計算部140は、推定された伝搬損失から計算される受信電力と学習データにおいて正解とするデータとして与えられる受信電力との差に基づいて、推定誤差を算出する。あるいは、誤差計算部140は、所定の損失関数の値を推定誤差として算出する。
 モデル更新部150は、推定誤差が一定レベル以下に収束するまで、モデル部130に含まれる機械学習モデルのパラメータを更新する。典型的には、モデル更新部150は、誤差逆伝播法を用いた勾配降下法により推定誤差が小さくなるように機械学習モデルのパラメータを更新する。機械学習モデルのパラメータとして、CNN131に係るフィルタパラメータやバイアス値、FNN132に係る重みパラメータやバイアス値が例示される。
 次に図4を参照して、伝搬特性の推定段階における伝搬特性推定装置100の機能構成例について説明する。伝搬特性の推定段階における伝搬特性推定装置100は、機能ブロックとして、入力画像生成部110、システムパラメータ生成部120、モデル部130、及び結果出力部160を含んでいる。
 伝搬特性の推定段階では、まず推定データが設定される。推定データは、伝搬特性の推定の対象となるデータを与える。一般に、推定データは、学習段階において学習データとして与えられたデータ(ただし、入力に対して正解とするデータを除く)と同様の内容についてのデータである。つまり、推定データは、伝搬特性を推定する対象となる1又は複数の受信局位置を少なくとも含んでいる。また推定データは、システムパラメータとなるデータを含んでいても良い。
 入力画像生成部110及びシステムパラメータ生成部120は、学習段階における機能ブロックと同一である。モデル部130は学習段階を通して学習済みである。学習済みのモデル部130は、入力画像生成部110で生成された入力画像1とシステムパラメータ生成部120で生成されたシステムパラメータを入力として、伝搬特性の推定結果を出力する。結果出力部160は、モデル部130から出力された推定結果のデータを記憶装置に格納したり、ユーザに提示したりする。
 3.入力画像生成処理
 本実施形態に係る伝搬特性推定装置100は、入力画像生成部110において実行される入力画像生成処理に特徴を有している。以下、本実施形態に係る伝搬特性推定装置100において実行される入力画像生成処理の詳細について説明する。
 まず比較例として、従来の入力画像生成処理について説明する。図5は、比較例に係る入力画像生成処理の概要を説明するための概念図である。
 比較例に係る入力画像生成処理では、まず図5の(A)に示すような伝搬特性の推定の対象となる地図上の範囲2(以下、「推定対象範囲2」とも称する。)を特定する。推定対象範囲2は、設定された学習データ又は推定データに基づいて特定される。例えば、学習データ又は推定データとして与えられる1又は複数の送信局位置及び1又は複数の受信局位置を含む範囲が推定対象範囲2として特定される。
 推定対象範囲2には、図5の(A)に示されるように、複数の構造物Bj(j=1,2,・・・,Nb)が含まれることが想定される。ここで、符号の添え字jは、複数の構造物それぞれを区別して示すために与えている。従って、Nbは整数であり、推定対象範囲2に含まれる構造物Bjの数を示す。
 次に比較例に係る入力画像生成処理では、推定対象範囲2に含まれる複数の構造物Bjそれぞれの地図データ(位置及び高さの情報を含む)を取得する。つまり、複数の構造物BjそれぞれについてのNb個の地図データが取得される。
 そして比較例に係る入力画像生成処理では、学習データ又は推定データとして与えられる1又は複数の受信局位置の各々に応じて、次のように入力画像1を生成する。いま図5の(B)に示されるように、セルの位置Piに対応する行列の成分について考える。ここで、符号の添え字i(i=1,2,・・・,N)は、セルの位置それぞれを区別して示すために与えている。また、Nは入力画像1で表されるセルの総数、延いては行列の成分の数を示す。このとき、比較例に係る入力画像生成処理では、複数の構造物Bj(j=1,2,・・・,Nb)それぞれに対して、セルの位置Piが構造物Bjの範囲に含まれるか否かの判定(以下、「内外判定」とも称する。)が行われる。そして、セルの位置Piが構造物Bjの範囲に含まれるとき、セルの位置Piに対応する行列の成分に構造物Bjの高さを代入する。
 このため、比較例に係る入力画像生成処理では、1つの入力画像1を生成するためには、セルの位置Pi(i=1,2,・・・,N)それぞれに対応する行列の成分のすべてについて、複数の構造物Bj(j=1,2,・・・,Nb)に対する内外判定が行うことが必要となる。つまり、1つの入力画像1を生成するために、最大でN×Nbの探索点数が必要となる。
 図6に、比較例に係る入力画像生成処理において1つの入力画像1を生成する際に実行される処理を示す。図6に示すフローチャートは、例えば、ある受信局位置に応じて入力画像1を生成する場合に開始する。そして、学習データ又は推定データとして与えられる1又は複数の受信局位置の各々について繰り返し実行される。図6を参照して、比較例に係る入力画像生成処理の具体的な処理について説明する。
 まずステップS100において、代入の対象とする行列の成分の初期化を行い、ステップS101において、内外判定の対象とする構造物Bjの初期化を行う。そして、ステップS102において、内外判定を行う。
 内外判定の結果が肯定であるとき(ステップS102;Yes)、代入の対象とした行列の成分に内外判定の対象とした構造物Bjの高さを代入して(ステップS103)、処理はステップS106に進む。内外判定の結果が否定であるとき(ステップS102;No)、処理はステップS104に進む。
 ステップS104では、地図データを取得した複数の構造物Bjのすべてについて内外判定が行われたか否かが判定される。複数の構造物Bjのすべてについてまだ内外判定が行われていない場合(ステップS104;Yes)、jのインクリメントを実施し(ステップS105)、再度内外判定(ステップS102)を行う。複数の構造物Bjのすべてについて内外判定が行われている場合(ステップS104;No)、処理はステップS106に進む。
 ステップS106において、行列の成分のすべてについて複数の構造物Bjに対する内外判定が行われたか否かが判定される。行列の成分のすべてについて未だ複数の構造物Bjに対する内外判定が行われていない場合(ステップS106;Yes)、iのインクリメントを実施し(ステップS107)、再度ステップS101に戻り処理を繰り返す。行列の成分のすべてについて複数の構造物Bjに対する内外判定が行われた場合(ステップS106;No)、1つの入力画像1の生成処理を終了する。
 図6を参照することによっても、比較例に係る入力画像生成処理では、1つの入力画像1を生成するために、最大でN×Nbの探索点数が必要となることがわかる。特に、1又は複数の受信局位置の各々について入力画像1を生成する場合は、さらに探索点数が膨大となる。例えば、推定対象範囲2を入力画像1と同様にグリッドで分割したときのセルの点数がNpであるとして、推定対象範囲2のセルの位置それぞれに受信局位置が与えられる場合を考える。この場合、Np個の入力画像1を生成することとなるため、探索点数は、最大でNp×N×Nbとなる。ここで、構造物Bjの分布が推定対象範囲2で均一であると仮定して、Nb=(1/α)・Npとすると(αは分布の密度を示す定数)、探索点数は、(1/α)・N×Np^2となる。つまり、推定対象範囲2が拡大すると、探索点数が二乗のオーダーで増大してしまうこととなる。探索点数の増大は、計算速度の低下や処理負荷の増大の要因となる。時々刻々と変化する電波環境のもとで、伝搬特性の推定に多くの時間を要することは望ましくない。また、処理負荷の高さは、コスト面や実用性から望ましくない。
 本実施形態に係る入力画像生成処理は、比較例に対して、高速に入力画像1を生成することができる。以下、本実施形態に係る入力画像生成処理について説明する。図7は、本実施形態に係る入力画像生成処理の概要を説明するための概念図である。
 まず比較例と同様に、本実施形態に係る入力画像生成処理では、図7の(A)に示すような推定対象範囲2を特定する。次に本実施形態に係る入力画像生成処理では、推定対象範囲2の構造物Bjの高さの分布を与える対象範囲高さデータ3を生成する。対象範囲高さデータ3は、入力画像1と同様に、行列データで管理することができる。つまり、推定対象範囲2をグリッドで分割して、各々のセルの位置Qk(k=1,2,・・・,Np)を行列の各成分と対応させる。そして、行列の各成分の値を対応する各々のセルの位置Qkにおける構造物の高さとする。ただし、対象範囲高さデータ3に係るグリッドサイズは、入力画像1に係るグリッドサイズと異なるように与えられても良い。
 図7の(B)を参照して、本実施形態に係る入力画像生成処理における対象範囲高さデータ3の生成について説明する。まず推定対象範囲2に含まれる複数の構造物Bjそれぞれの地図データ(位置及び高さの情報を含む)を取得する。次に、複数の構造物Bjそれぞれの地図データを順次参照して、構造物Bjの範囲に含まれるセルの位置Qkと対応する行列の成分に構造物Bjの高さが代入される。これにより、複数の構造物Bjすべての地図データについて参照が行われることで、対象範囲高さデータ3の生成が完了する。特にこのような生成では、ある1つの構造物Bjを参照して行われる代入処理における探索点数は、地図データにおいてその構造物Bjの範囲を示す位置情報の最小座標から最大座標までの探索で十分である。従って、一般に複数の構造物Bjそれぞれが互いに干渉しないことを考慮すれば、対象範囲高さデータ3の生成を完了するまでの探索点数は、最大でNpの定数倍程度であると考えることができる。
 図8に、本実施形態に係る入力画像生成処理において対象範囲高さデータ3を生成する際に実行される処理を示す。図8を参照して、対象範囲高さデータ3を生成する際に実行される具体的な処理について説明する。
 まずステップS200において、参照の対象とする構造物Bjの初期化を行う。ステップS200の後、処理はステップS201に進む。
 ステップS201では、構造物Bjの範囲に含まれるセルの位置Qkと対応する行列の成分に構造物Bjの高さを代入する。ステップS201の後、処理はステップS202に進む。
 ステップS202において、地図データを取得した複数の構造物Bjのすべてについて参照が行われたか否かが判定される。複数の構造物Bjのすべてについて未だ参照が行われていない場合(ステップS202;Yes)、jのインクリメントを実施し(ステップS203)、再度ステップS201に戻り処理を繰り返す。複数の構造物Bjのすべてについて参照が行われた場合(ステップS202;No)、処理は終了する。
 このようにして、対象範囲高さデータ3の生成を行った後、本実施形態に係る入力画像生成処理では、対象範囲高さデータ3の一部を読み込むことにより、入力画像1を生成する(図7の(B)を参照)。これは、受信局位置及び入力画像1の範囲(Rxの周囲のとする範囲)を指定すれば行うことができる。
 図9に、本実施形態に係る入力画像生成処理において1つの入力画像1を生成する際に実行される処理を示す。図9に示すフローチャートは、例えば、ある受信局位置に応じて入力画像1を生成する場合に開始する。図9を参照して、本実施形態に係る入力画像生成処理において1つの入力画像1を生成する際に実行される具体的な処理について説明する。
 まずステップS300において、代入の対象とする行列の成分の初期化を行う。ステップS300の後、処理はステップS301に進む。
 ステップS301(読み込み処理)では、代入の対象とする行列の成分に対応する位置の対象範囲高さデータ3の読み込みを行う。ステップS301の後、処理はステップS302に進む。
 ステップS302において、行列の成分のすべてについて対象範囲高さデータ3の読み込みが行われたか否かが判定される。行列の成分のすべてについて未だ対象範囲高さデータ3の読み込みが行われていない場合(ステップS302;Yes)、iのインクリメントを実施し(ステップS303)、再度ステップS301に戻り処理を繰り返す。行列の成分のすべてについて対象範囲高さデータ3の読み込みが行われた場合(ステップS302;No)、1つの入力画像1の生成処理を終了する。
 このように、本実施形態に係る入力画像生成処理において、1つの入力画像1の生成が完了するまでの探索点数は、Nとなる。ここで、本実施形態に係る入力画像生成処理では、設定された学習データ又は推定データで与えられる複数の受信局位置の各々に応じて入力画像1を生成する場合であっても、同一の対象範囲高さデータ3の一部を読み込むことで入力画像1を生成することができる。つまり、対象範囲高さデータ3の生成は、設定された学習データ又は推定データに対して一度行えば十分である。
 以上説明したことから、本実施形態に係る入力画像生成処理において、推定対象範囲2のセルの位置それぞれに受信局位置が与えられる場合を考えると、探索点数は、最大でNp×N+β・Npとなる(βは定数)。一般に、β<<Nであることを考慮すれば、探索点数はおよそNp×Nとなり、比較例に対して1/Nb倍となる。
 このことを具体的な事例で考える。いま推定対象範囲2を1000m×1000mの範囲とする。また構造物Bjの分布は推定対象範囲2で均一で100m四方あたり50とし、構造物Bjの範囲は平均で10m四方とする。また構造物Bjの地図データにおける位置情報が0.5m毎のグリッドで与えられているとする。また入力画像1及び推定対象範囲2のグリッドを1m毎に与えることとし、入力画像1に係る行列のサイズを64×64とする。このとき、Nb=5000、Np=1×10^6、N=4096となる。従って、比較例に係る入力画像生成処理において探索点数は、最大でNp×N×Nb=2.048×10^13となる。
 一方で、構造物Bjの範囲が20×20のセルで構成されることから、本実施形態に係る入力画像生成処理において対象範囲高さデータ3の生成を完了するまでの探索点数は、20×20×Nb=2×10^6となる。そして、本実施形態に係る入力画像生成処理において、入力画像1の生成が完了するまでの探索点数は、最大でNp×N=4.096×10^9となる。これは、対象範囲高さデータ3の生成を完了するまでの探索点数よりもはるかに大きい。従って、本実施形態に係る入力画像生成処理において探索点数は、最大でおよそNp×N=4.096×10^9となり、比較例に対しておよそ1/Nb倍となる。
 このように、本実施形態に係る入力画像生成処理は、比較例に対して、高速に入力画像1を生成することができる。延いては、計算速度の向上や処理負荷の低減の効果を奏することができる。
 さらに、本実施形態に係る入力画像生成処理において、入力画像1に係る行列の成分の各々についての対象範囲高さデータ3の読み込み(図9のステップS301)は、アフィン変換を用いた行列処理により並列にかつ効率的に行うことができる。図10を参照して、アフィン変換を用いた行列処理による対象範囲高さデータ3の読み込みについて説明する。
 いま図10の(A)に示す位置P1に対応する入力画像1に係る行列の成分について対象範囲高さデータ3の読み込みを行うことを考える。ここで、位置P1の座標は、入力画像1上の座標(以下、「基準座標」と称する。)で(X0,Y0)で表せるとする。基準座標は、-2/dから2/dの点である。
 次に、アフィン変換により位置P1の位置座標系(図10の(B)に示すx軸及びy軸で規定される座標系)での座標(Xout,Yout)を算出する。このとき、入力画像1が推定対象範囲2に対して方位角θだけ回転している場合も考慮すれば、アフィン変換に係るアフィン行列Mは、以下の式(1)で表すことができる。ここで、(xp,yp)は、入力画像1の中心点P0の位置座標系での座標である。
Figure JPOXMLDOC01-appb-M000001
 従って、位置P1の位置座標系での座標(Xout,Yout)は、以下の式(2)で計算することができる。
Figure JPOXMLDOC01-appb-M000002
 次に、位置P1に対応する対象範囲高さデータ3を参照する座標系(u,v)(以下、「画像座標系」とも称する。)への変換を、以下の式(3)で計算することができる。ここで、(Xin,Yin)は推定対象範囲2の構造物Bjの座標、doutは入力画像1と対象範囲高さデータ3のグリッドの分解能の差である。
Figure JPOXMLDOC01-appb-M000003
 そして、画像座標系での座標により対象範囲高さデータ3を参照することで、位置P1に対応する入力画像1に係る行列の成分について対象範囲高さデータ3の読み込みを行うことができる。
 このようなアフィン変換を用いた行列処理は、入力画像1に係る行列の成分の各々について独立に行うことができる。つまり、入力画像1に係る行列の成分の各々についての対象範囲高さデータ3の読み込みを並列に行うことができる。このように対象範囲高さデータ3の読み込みについて並列処理を行うことで、本実施形態に係る入力画像生成処理は、さらなる高速化を図ることが可能である。
 なお比較例に係る入力画像処理においても、入力画像1に係る行列の成分の各々について並列処理を行うことを考えることはできる。しかしながら、複数の構造物Bjの各々について順次内外判定を行うことが必要となり地図データを取得した構造物Bjの数に応じて処理負荷が増大してしまうため並列処理に適していない。一方で、本実施形態に係る入力画像処理では、上述したアフィン変換を用いた行列処理が可能であり、この場合上述するように数回のステップで対象範囲高さデータ3の読み込みの処理が完了する。このように、本実施形態に係る入力画像処理では、アフィン変換を用いた行列処理により並列処理を効率的に行うように構成することができるのである。
 4.伝搬特性推定装置の構成例
 図11は、本実施の形態に係る伝搬特性推定装置100の構成例を示すブロック図である。伝搬特性推定装置100は、1又は複数のプロセッサ103(以下、単に「プロセッサ103」と呼ぶ)、1又は複数の記憶装置104(以下、単に「記憶装置104」と呼ぶ)、ユーザインタフェース101、及びI/Oインタフェース102を含んでいる。
 プロセッサ103は、各種情報処理を行う。例えば、プロセッサ103は、CPU(Central Processing Unit)を含んでいる。記憶装置104は、プロセッサ103による処理に必要な各種情報を格納する。記憶装置104としては、揮発性メモリ、不揮発性メモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)、等が例示される。
 伝搬特性推定プログラム105は、プロセッサ103によって実行されるコンピュータプログラムである。プロセッサ103が伝搬特性推定プログラム105を実行することにより、プロセッサ103(伝搬特性推定装置100)の機能が実現される。すなわち、プロセッサ103が伝搬特性推定プログラム105を実行することにより、図3及び図4で示された伝搬特性推定装置100の機能構成が実現される。伝搬特性推定プログラム105は、記憶装置104に格納される。伝搬特性推定プログラム105は、コンピュータ読み取り可能な記録媒体に記録されてもよい。伝搬特性推定プログラム105は、ネットワーク経由で伝搬特性推定装置100に提供されてもよい。
 プロセッサ103は、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。
 ユーザインタフェース101は、ユーザに情報を提供し、また、ユーザからの情報入力を受け付ける。ユーザインタフェース101は、入力装置及び表示装置を含んでいる。
 I/Oインタフェース102は、データサーバ200と通信可能に接続される。データサーバ200は、少なくとも地図上の構造物の位置及び高さの情報を地図データベース201として管理している。そして、I/Oインタフェース102は、データサーバ200と通信し、地図データベース201から所望の地図データを取得することができるように構成されている。プロセッサ103は、I/Oインタフェース102を介して、必要な情報をデータベースから取得することができる。
 なお、図11は、伝搬特性推定装置100とデータサーバ200とにより構成された伝搬特性推定システムを示していると考えることもできる。
 図12は、本実施の形態に係る伝搬特性推定装置100による処理を要約的に示すフローチャートである。特に、図12は、推定モデルの学習に関連する処理を示している。
 ステップS400において、伝搬特性推定装置100は、設定された学習データに応じて推定対象範囲2を特定し、地図データベース201から推定対象範囲2に含まれる複数の構造物Bjそれぞれの地図データを取得する。
 ステップS401において、伝搬特性推定装置100は、入力画像生成処理を実行する。
 ステップS402において、伝搬特性推定装置100は、機械学習モデルを用いて伝搬特性を推定する。より詳細には、伝搬特性推定装置100は、ステップS401において生成した入力画像1をCNN131に入力することによって特徴量を抽出する。さらに、伝搬特性推定装置100は、CNN131の出力の特徴量とシステムパラメータをFNN132に入力することによって伝搬特性を推定する。
 ステップS403において、伝搬特性推定装置100は、伝搬特性の推定結果と学習データにおいて正解として与えられる受信電力とを対比することによって推定誤差を算出する。
 ステップS404において、伝搬特性推定装置100は、推定誤差が一定レベル以下に収束したか判定する。推定誤差が一定レベルを超えている場合(ステップS404;No)、処理は、ステップS405に進む。
 ステップS405において、伝搬特性推定装置100は、推定誤差が減るように機械学習モデルのパラメータを更新する。その後、処理は、ステップS401に戻る。
 推定誤差が一定レベル以下に収束した場合(ステップS404;Yes)、機械学習モデルの学習は完了する。
 伝搬特性推定段階では、ステップS400~S402は同様である。但し、ステップS402において、伝搬特性推定装置100は、学習済みの機械学習モデルを用いて伝搬特性を推定する。そして、伝搬特性推定装置100は、伝搬特性の推定結果を記憶装置104に格納する。また、伝搬特性推定装置100は、伝搬特性の推定結果をユーザインタフェース101を介してユーザに提示する。
 5.効果
 以上説明したように、本実施形態によれば、入力画像処理において対象範囲高さデータ3が生成される。そして、設定される学習データ又は推定データで与えられる1又は複数の受信局の各々について、Rxの周囲となる対象範囲高さデータ3の一部を読み込むことにより入力画像1が生成される。これにより、高速に入力画像1を生成することができる。延いては、計算速度の向上や処理負荷の低減の効果を奏することができる。
 さらに、本実施形態によれば、入力画像1に係る行列の成分の各々についての対象範囲高さデータ3の読み込みについて、アフィン変換を用いた行列処理により並列処理が可能である。これにより、本実施形態に係る入力画像生成処理は、さらなる高速化を図ることが可能である。
1   入力画像
2   推定対象範囲
3   対象範囲高さデータ
100 伝搬特性推定装置
101 ユーザインタフェース
102 I/Oインタフェース
103 プロセッサ
104 記憶装置
105 伝搬特性推定プログラム
110 入力画像生成部
120 システムパラメータ生成部
130 モデル部
131 CNN(特徴抽出層)
132 FNN(推定層)
140 誤差計算部
150 モデル更新部
160 結果出力部
200 データサーバ
201 地図データベース
Bj  構造物

Claims (7)

  1.  無線通信システムにおける送信局と受信局との間の伝搬特性を推定する機械学習モデルの学習方法であって、
     前記機械学習モデルは、前記受信局の周囲の構造物の高さの分布を与える入力画像を入力として特徴量を抽出する特徴抽出層と、少なくとも前記特徴量を入力として前記伝搬特性を推定する推定層と、を含み、
     前記学習方法は、
      1又は複数の受信局位置を含む学習データを設定することと、
      地図上の前記構造物の情報を含む地図データから前記1又は複数の受信局位置の各々に応じて前記入力画像を生成する入力画像生成処理を実行することと、
      前記入力画像生成処理で生成された前記入力画像を前記特徴抽出層の入力として前記機械学習モデルの出力を取得することと、
      前記機械学習モデルの出力に基づいて、前記機械学習モデルのパラメータを更新することと、を含み、
     前記入力画像生成処理は、
      前記学習データに基づいて、前記伝搬特性の推定の対象となる地図上の推定対象範囲を特定する処理と、
      前記地図データから前記推定対象範囲の前記構造物の高さの分布を与える対象範囲高さデータを生成する処理と、
      前記1又は複数の受信局位置の各々について、前記対象範囲高さデータの一部を読み込むことにより前記入力画像を生成する読み込み処理と、を含む
     ことを特徴とする学習方法。
  2.  請求項1に記載の学習方法であって、
     前記読み込み処理は、前記受信局の周囲の位置それぞれについての前記対象範囲高さデータの読み込みを行列処理により並列に行うことを含む
     ことを特徴とする学習方法。
  3.  無線通信システムにおける送信局と受信局との間の伝搬特性を推定する伝搬特性推定方法であって、
     1又は複数の受信局位置を含む推定データを設定することと、
     地図上の構造物の情報を含む地図データから前記1又は複数の受信局位置の各々に応じて前記受信局の周囲の前記構造物の高さの分布を与える入力画像を生成する入力画像生成処理を実行することと、
     前記入力画像を機械学習モデルに入力することによって前記伝搬特性を推定することと、を含み、
     前記機械学習モデルは、前記入力画像を入力として特徴量を抽出する特徴抽出層と、少なくとも前記特徴量を入力として前記伝搬特性を推定する推定層と、を含み、
     前記入力画像生成処理は、
      前記推定データに基づいて、前記伝搬特性の推定の対象となる地図上の推定対象範囲を特定する処理と、
      前記地図データから前記推定対象範囲の前記構造物の高さの分布を与える対象範囲高さデータを生成する処理と、
      前記1又は複数の受信局位置の各々について、前記対象範囲高さデータの一部を読み込むことにより前記入力画像を生成する読み込み処理と、を含む
     ことを特徴とする伝搬特性推定方法。
  4.  請求項3に記載の伝搬特性推定方法であって、
     前記読み込み処理は、前記受信局の周囲の位置それぞれについての前記対象範囲高さデータの読み込みを行列処理により並列に行うことを含む
     ことを特徴とする伝搬特性推定方法。
  5.  無線通信システムにおける送信局と受信局との間の伝搬特性を推定する伝搬特性推定装置であって、
     1又は複数の受信局位置を含む推定データを取得する処理と、
     地図上の構造物の情報を含む地図データから前記1又は複数の受信局位置の各々に応じて前記受信局の周囲の構造物の高さの分布を与える入力画像を生成する入力画像生成処理と、
     前記入力画像を機械学習モデルに入力することによって前記伝搬特性を推定する処理と、を実行するように構成され、
     前記機械学習モデルは、前記入力画像を入力として特徴量を抽出する特徴抽出層と、少なくとも前記特徴量を入力として前記伝搬特性を推定する推定層と、を含み、
     前記入力画像生成処理は、
      前記推定データに基づいて、前記伝搬特性の推定の対象となる地図上の推定対象範囲を特定する処理と、
      前記地図データから前記推定対象範囲の前記構造物の高さの分布を与える対象範囲高さデータを生成する処理と、
      前記1又は複数の受信局位置の各々について、前記対象範囲高さデータの一部を読み込むことにより前記入力画像を生成する処理と、を含む
     ことを特徴とする伝搬特性推定装置。
  6.  無線通信システムにおける送信局と受信局との間の伝搬特性を推定する伝搬特性推定システムであって、
     1又は複数のプロセッサと、
     地図上の構造物の情報を含む地図データを地図データベースとして管理するデータサーバと、
     を備え、
     前記1又は複数のプロセッサは、
      1又は複数の受信局位置を含む推定データを取得する処理と、
      前記地図データから前記1又は複数の受信局位置の各々に応じて前記受信局の周囲の構造物の高さの分布を与える入力画像を生成する入力画像生成処理と、
      前記入力画像を機械学習モデルに入力することによって前記伝搬特性を推定する処理と、を実行するように構成され、
     前記機械学習モデルは、前記入力画像を入力として特徴量を抽出する特徴抽出層と、少なくとも前記特徴量を入力として前記伝搬特性を推定する推定層と、を含み、
     前記入力画像生成処理は、
      前記推定データに基づいて、前記伝搬特性の推定の対象となる地図上の推定対象範囲を特定する処理と、
      前記地図データから前記推定対象範囲の前記構造物の高さの分布を与える対象範囲高さデータを生成する処理と、
      前記1又は複数の受信局位置の各々について、前記対象範囲高さデータの一部を読み込むことにより前記入力画像を生成する処理と、を含む
     ことを特徴とする伝搬特性推定システム。
  7.  無線通信システムにおける送信局と受信局との間の伝搬特性を推定する伝搬特性推定プログラムであって、
     1又は複数の受信局位置を含む推定データを取得する処理と、
     地図上の構造物の情報を含む地図データから前記1又は複数の受信局位置の各々に応じて前記受信局の周囲の前記構造物の高さの分布を与える入力画像を生成する入力画像生成処理と、
     前記入力画像を機械学習モデルに入力することによって前記伝搬特性を推定する処理と、をコンピュータに実行させ、
     前記機械学習モデルは、前記入力画像を入力として特徴量を抽出する特徴抽出層と、少なくとも前記特徴量を入力として前記伝搬特性を推定する推定層と、を含み、
     前記入力画像生成処理は、
      前記推定データに基づいて、前記伝搬特性の推定の対象となる地図上の推定対象範囲を特定する処理と、
      前記地図データから前記推定対象範囲の前記構造物の高さの分布を与える対象範囲高さデータを生成する処理と、
      前記1又は複数の受信局位置の各々について、前記対象範囲高さデータの一部を読み込むことにより前記入力画像を生成する処理と、を含む
     ことを特徴とする伝搬特性推定プログラム。
PCT/JP2022/009810 2022-03-07 2022-03-07 学習方法、伝搬特性推定方法、伝搬特性推定装置、伝搬特性推定システム、伝搬特性推定プログラム WO2023170762A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/009810 WO2023170762A1 (ja) 2022-03-07 2022-03-07 学習方法、伝搬特性推定方法、伝搬特性推定装置、伝搬特性推定システム、伝搬特性推定プログラム
JP2024505679A JPWO2023170762A1 (ja) 2022-03-07 2022-03-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009810 WO2023170762A1 (ja) 2022-03-07 2022-03-07 学習方法、伝搬特性推定方法、伝搬特性推定装置、伝搬特性推定システム、伝搬特性推定プログラム

Publications (1)

Publication Number Publication Date
WO2023170762A1 true WO2023170762A1 (ja) 2023-09-14

Family

ID=87936260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009810 WO2023170762A1 (ja) 2022-03-07 2022-03-07 学習方法、伝搬特性推定方法、伝搬特性推定装置、伝搬特性推定システム、伝搬特性推定プログラム

Country Status (2)

Country Link
JP (1) JPWO2023170762A1 (ja)
WO (1) WO2023170762A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019122008A (ja) * 2018-01-11 2019-07-22 株式会社Nttドコモ 電波伝搬推定装置、電波伝搬推定方法、及び、電波伝搬推定プログラム
EP3687210A1 (en) * 2017-12-05 2020-07-29 Huawei Technologies Co., Ltd. Path loss prediction method and apparatus
WO2022038758A1 (ja) * 2020-08-21 2022-02-24 三菱電機株式会社 電波伝搬推定装置、及び地図情報抽出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3687210A1 (en) * 2017-12-05 2020-07-29 Huawei Technologies Co., Ltd. Path loss prediction method and apparatus
JP2019122008A (ja) * 2018-01-11 2019-07-22 株式会社Nttドコモ 電波伝搬推定装置、電波伝搬推定方法、及び、電波伝搬推定プログラム
WO2022038758A1 (ja) * 2020-08-21 2022-02-24 三菱電機株式会社 電波伝搬推定装置、及び地図情報抽出方法

Also Published As

Publication number Publication date
JPWO2023170762A1 (ja) 2023-09-14

Similar Documents

Publication Publication Date Title
US10948896B2 (en) Penalty function on design variables for designing variables for designing cost beneficially additive manufacturable structures
CN111327377B (zh) 场强预测方法、装置、设备及存储介质
CN114493050B (zh) 多维度融合的新能源功率并联预测方法和装置
CN108665089B (zh) 一种用于选址问题的鲁棒优化模型求解方法
WO2022083527A1 (zh) 确定逻辑核布局的方法、模型训练方法、电子设备、介质
CN116155412A (zh) 无线信道评估方法及系统
CN112632818A (zh) 高阶梯度光滑无网格方法、系统、介质、计算机设备
CN114139448B (zh) 海基观测网站位布局优化的方法、系统、介质、终端及应用
Li et al. UAV trajectory optimization for spectrum cartography: A PPO approach
WO2023170762A1 (ja) 学習方法、伝搬特性推定方法、伝搬特性推定装置、伝搬特性推定システム、伝搬特性推定プログラム
CN104635206B (zh) 一种无线定位的方法及装置
CN116736219A (zh) 基于改进粒子群算法的无源tdoa-fdoa联合定位优化布站方法
CN114329855A (zh) 一种无线视觉传感网络的传感器布局优化与快速部署方法
CN117113544A (zh) 一种带罩阵列天线的和、差波束优化方法
WO2023127106A1 (ja) 伝搬特性推定方法、伝搬特性推定装置、及び伝搬特性推定プログラム
CN114217154A (zh) 一种动态分布式平台电磁干扰问题的精确分析方法
CN114491408A (zh) 设备放置的评估
CN110060347B (zh) 一种球面坐标系统下生成等值线的方法
US20240046146A1 (en) Method for teaching an electronic computing device, a computer program product, a computer-readable storage medium as well as an electronic computing device
CN111787608A (zh) 一种锚节点布设方法及装置
Qiu et al. IRDM: A generative diffusion model for indoor radio map interpolation
JP2023118355A (ja) 通信品質予測モデル更新装置、通信品質予測モデル更新方法、および、通信品質予測モデル更新プログラム
CN112689291B (zh) 蜂窝网络小区负荷均衡评估方法、装置及设备
Koo et al. Optimal dynamic vibration absorber design for minimizing the band-averaged input power using the residue theorem
CN112948756B (zh) 一种阵列辐射方向图的激励值求解方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024505679

Country of ref document: JP