WO2023170277A1 - Redox-flow-batterie - Google Patents

Redox-flow-batterie Download PDF

Info

Publication number
WO2023170277A1
WO2023170277A1 PCT/EP2023/056194 EP2023056194W WO2023170277A1 WO 2023170277 A1 WO2023170277 A1 WO 2023170277A1 EP 2023056194 W EP2023056194 W EP 2023056194W WO 2023170277 A1 WO2023170277 A1 WO 2023170277A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow battery
redox flow
electrolyte
cells
cell
Prior art date
Application number
PCT/EP2023/056194
Other languages
English (en)
French (fr)
Inventor
Mariella BENKENSTEIN
Marit KOCK
Original Assignee
Benkenstein Mariella
Kock Marit
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benkenstein Mariella, Kock Marit filed Critical Benkenstein Mariella
Publication of WO2023170277A1 publication Critical patent/WO2023170277A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/002Shape, form of a fuel cell
    • H01M8/004Cylindrical, tubular or wound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds

Definitions

  • the invention relates to a redox flow battery, preferably a rechargeable redox flow battery, in detail according to the independent claim.
  • the redox flow battery is a liquid battery and an embodiment of an accumulator. It stores electrical energy in chemical compounds, whereby the reactants are present in dissolved form in a solvent (electrolyte).
  • the two energy-storing electrolytes circulate in two separate circuits, between an electrochemical (galvanic) cell, which is divided into two separate half-cells that are separated by a membrane. The ion exchange of the two electrolytes takes place through the membrane.
  • the electrochemical cell the dissolved substances are chemically reduced or oxidized, releasing electrical energy so that the battery releases energy. If the battery is discharged, the process can be reversed by supplying energy so that the battery is charged again.
  • the present invention relates to such a generic redox flow battery.
  • the electrolyte In known redox flow batteries, the electrolyte consists, for example, of a salt dissolved in solvent. Either inorganic or organic acids are often used as solvents. In newer systems, such as polymer-based batteries, simple saline solutions can also be used. Redox pairs that can be used include vanadium (V) oxide (in the vanadium redox accumulator), sodium bromide (in the sodium bromide redox accumulator) or iron (IRFB) in combination with other chemical compounds. Compounds based on organic substances such as lignin or lignin sulfonate solutions are also possible. The disadvantage of this is that the materials used contain heavy or transition metals, which can lead to problems with the disposal of the battery.
  • Redox flow batteries with electrolytes based on organic acids have also become known.
  • organic acids such as hydrochloric acid or peroxodisulfuric acid and their salts.
  • Such substances have the disadvantage that they are comparatively dangerous and can attack or even decompose materials that come into contact with them, such as electrodes. This is also disadvantageous for the later disposal of the battery.
  • electrolytes based on organic quinones (quinone/hydroquinone) were introduced. Later, the two metals iron and zinc were discovered as redox couples, so that vanadium could be dispensed with.
  • the last two solutions mentioned have the advantage that the starting materials are significantly cheaper than vanadium and are easier to dispose of.
  • the object of the present invention to provide a redox flow battery that is improved over the prior art.
  • the redox flow battery should be able to be produced and operated using materials that are comparatively non-toxic to humans and the environment, easy to dispose of in an environmentally friendly manner and cost-effective.
  • the redox flow battery according to the invention can be used on a large scale as a storage medium for renewable energy sources, including at home as an energy storage device such as an accumulator.
  • the present invention relates to a redox flow battery, preferably a rechargeable redox flow battery, comprising at least one electrochemical cell consisting of a first and a second half cell, wherein the first half cell is assigned a first electrode which is supplied by a first electrolyte in the the first half cell can be flowed on or around, the second half cell being assigned a second electrode, which can be flowed on or around by a second electrolyte in the second half cell, as well as a separator between the two half cells in order to fluidically protect the first and second half cells Mixing the first and second electrolytes to separate them from each other, the first electrolyte preferably comprising water and oxygen and protons (H + ) are formed when the redox flow battery is charged and water is formed when the redox flow battery is discharged, and the second electrolyte Carbon dioxide is included and methanol is formed when the redox flow battery is charged and carbon dioxide and protons (H + ) are formed when the redox flow battery is discharge
  • the charging and discharging reactions of the redox flow battery according to the invention are based on the following reductions and oxidations: Load:
  • the principle of the redox flow battery according to the invention comprises a combination of two corresponding redox pairs or two half cells.
  • the oxidation reaction (III) takes place at the anode and the reduction reaction (IV) takes place at the cathode.
  • the first electrode can be a cathode
  • the first electrolyte can be a catholyte
  • the second electrode can be an anode and the second electrolyte can be an anolyte.
  • the first electrolyte can preferably comprise water, in particular exclusively water, with oxygen and protonone (H + ; herein also referred to as hydrogen) being formed during charging and, conversely, protons (hydrogen) and oxygen being converted back into water during discharging.
  • H + oxygen and protonone
  • hydrogen protons
  • oxygen hydrogen
  • the second electrolyte comprises CO2.
  • the second electrolyte preferably comprises, preferably consists of, water, in particular exclusively water, with carbon dioxide.
  • the carbon dioxide is at least partially dissolved in the water.
  • the second electrolyte consists of carbon dioxide, preferably gaseous CO2.
  • the following partial reaction takes place in the second half cell during charging and when discharging the following partial reaction instead of.
  • the greenhouse gas carbon dioxide can be used indirectly to store electrical energy. It can be collected directly from the atmosphere, e.g. through appropriate air filters, and fed into the electrolyte of the redox flow battery as a starting material. Carbon dioxide would thus be removed from the atmosphere and made available as energy storage for renewable energy generators such as wind or hydropower. The electrical energy stored in this way is then available for feeding into the grid on less productive days. In principle, it would also be conceivable to obtain carbon dioxide from other sources, e.g. from combustion reactions, such as flue gases, which are produced as production waste.
  • the invention also includes a redox flow battery, comprising at least one electrochemical cell made up of a first and a second half cell, wherein the first half cell is assigned a first electrode, which can be flowed on or around by a first electrolyte in the first half cell, and the second half cell is assigned a second electrode, which can be flowed on or around by a second electrolyte in the second half cell, and a separator between the two half cells in order to fluidly separate the first and second half cells from one another to prevent the first and second electrolytes from mixing , whereby the first electrolyte is in particular exclusively water, which is the case When charging the redox flow battery, it can be split into hydrogen (protons) and oxygen and is recombined into water when the redox flow battery is discharged and the second electrolyte is in particular exclusively water with carbon dioxide dissolved in it, so that the carbon dioxide when charging the redox flow battery Flow battery reacts to methanol in the course of a redox reaction and can
  • the two half cells or the two electrolytes are preferably free of the addition of a catalyst to accelerate the redox reaction, with the two electrolytes preferably also being free of other acids, in particular organic or inorganic acids or their salts.
  • the first half cell and/or the second half cell are free from the addition of a catalyst to accelerate the redox reaction.
  • the first electrolyte and/or the second electrolyte are free from the addition of a catalyst to accelerate the redox reaction, with the first electrolyte and/or the second electrolyte preferably also being free of other acids, in particular organic or inorganic acids or their salts are.
  • the redox flow battery has the advantage that the chemicals it works with (water and carbon dioxide) are inexpensive and, if released in small quantities, are non-toxic to humans and also have little impact on the environment.
  • catalysts and acids are provided in the electrolytes and/or half cells.
  • the two half cells or the two electrolytes can comprise a catalyst as an additive to accelerate the redox reaction, whereby the two electrolytes can preferably also include other acids, in particular organic or inorganic acids or their salts.
  • the first half cell and/or the second half cell comprise a catalyst for accelerating the redox reaction.
  • the first electrolyte and/or the second electrolyte comprise a catalyst for accelerating the redox reaction, wherein preferably the first electrolyte and/or the second electrolyte can also comprise further acids, in particular organic or inorganic acids or their salts.
  • Organic substances, inorganic substances or combinations thereof can be used as catalysts.
  • bases preferably NaOH and/or KOH.
  • the first electrolyte preferably comprises a base, preferably NaOH and/or KOH.
  • the second electrolyte preferably comprises a base, preferably NaOH and/or KOH.
  • the second electrolyte consists of CO2, preferably gaseous CO2.
  • the redox flow battery can be assigned at least one first storage tank for the first electrolyte and at least one second storage tank for the second electrolyte as well as a plurality of first supply lines in order to supply the at least one first half cell with the first electrolyte and with a plurality of second supply lines in order to supply the at least one second half cell with the second electrolyte, the supply being carried out via a respective pump in order to convey the corresponding electrolytes stored in the separate storage tanks through the corresponding half cells.
  • the second storage tank can be assigned a gas connection for supplying carbon dioxide, which is connected via a line to an vent that extends into the second electrolyte, wherein a gas bottle for the carbon dioxide is preferably assigned to the second storage tank and is fluidly connected to the Gas connection is connected or connectable.
  • the carbon dioxide that can be supplied to the redox flow battery may have been taken from the atmosphere.
  • the two storage tanks can advantageously be pressurized via a connection for a gas, such as air or nitrogen. This allows the efficiency of the redox flow battery to be significantly increased.
  • the separator can be designed as a membrane, such as an ion-conducting, preferably cation-conducting membrane.
  • the membrane can have a thickness between 10 and 200 pm, preferably between 30 and 180 pm, particularly preferably between 120 and 150 pm and/or preferably a modulus of elasticity at 23 ° C and 50% relative humidity between 250 and 2,000 N/mm 2 , preferably between 350 and 1,750 N/mm 2 . This means that a comparatively long-lasting membrane can be specified.
  • the separator preferably has an electroosmotic permeability between 5.0 and 31 pl*cm 3 /h and preferably between 5.6 and 30.7 pl*cm 3 /h. This allows a particularly optimal ion or cation exchange to take place between the two electrolytes of the first and second half cells.
  • the osmotic potential corresponds to the work that must be done to pull a unit amount of water through a semi-permeable membrane from a soil solution. The measurement takes place, for example, in a concentration cell in the form of a galvanic cell. Charge separation occurs through the membrane and the transmembrane voltage results.
  • the first and/or second electrodes are preferably made of carbon, soot, graphite, carbon flakes, carbon paper, carbon fiber, carbon nanotubes, carbon nanofibers, graphene and/or glassy carbon, in particular in stick form. This means that a comparatively inexpensive, easily available and disposable material that is not harmful to the environment can be specified as an electrode.
  • the half cells can be filled with stick-shaped pellets in order to increase the surface area of the electrode.
  • the first and second electrodes can also be made from different materials.
  • the first electrode may be an anode
  • the first electrolyte may be an anolyte
  • the second electrode may be a cathode and the second electrolyte may be a catholyte.
  • the first electrode may be a cathode
  • the first electrolyte may be a catholyte
  • the second electrode may be an anode and the second electrolyte may be an anolyte
  • electrochemical cells that is to say at least two electrochemical cells, preferably at least three electrochemical cells, can be arranged one behind the other along their longitudinal extent in such a way that they form a stack of first and second half-cells arranged alternately next to one another, the first and second half-cells as Hollow bodies open on both sides, preferably in the manner of a tube - that can have a circular or polygonal cross section - are designed and are joined to one another in a non-positive, positive and/or material fit at their adjacent axial ends.
  • Such an arrangement is comparatively compact and also easily scalable in length.
  • such a structure enables a mechanically simple and therefore cost-effective construction of the redox flow battery.
  • the redox flow battery can be relatively easily disassembled into its individual parts and worn or damaged components can be easily replaced.
  • the two half cells are preferably designed identically and the hollow body of these two, which is open on both sides, has axial ends that are designed to be complementary, so that one end of the hollow body of the first half cell fits into the other, complementary end of the hollow body second half cell can be inserted and preferably non-positively and / or positively connected to it, in particular releasably.
  • a self-supporting construction of the redox flow battery is created without the individual half-cells stacked on top of each other having to be braced against each other, for example using tie rods.
  • the separator is arranged between the axial ends of two adjacent (immediately adjacent) first and second half cells and is preferably held by them, in particular held in a clamping manner, then in the event of wear or a defect it can also be easily removed and a new one reinstalled. If the separator is arranged in such a way that it extends within the radial boundary of the first or second half-cell, i.e. does not extend beyond its radial boundary, the separator is protected from the outside by the half-cells.
  • the internal volume of the first or second half cell is preferably at least 100 ml. It has been shown that the redox flow battery begins to work optimally with this amount. In principle, the volume can be scaled upwards, so that internal volumes of more than one liter, such as 1.5 liters and more, are also possible. One upper limit is, among other things, the statics of the structure in which the redox flow battery is housed.
  • the redox flow battery can be assigned a controller to regulate charging and discharging.
  • the half cells are preferably set up so that the temperature, the pH value and/or the pressure can be determined, preferably in real time.
  • the half cells preferably include sensors for determining temperature, pH and/or pressure. The determination can also be carried out at other points in the redox flow battery according to the invention.
  • the redox flow battery preferably includes a large number of sensors.
  • the redox flow battery can preferably be arranged on a frame, preferably a mobile frame. This makes it comparatively easy to maneuver, for example to inspect or replace individual components.
  • the present invention also relates to the use of carbon dioxide originating from the atmosphere, which can preferably be achieved by filtering and separating ambient air, for the electrolyte of the redox flow battery according to the invention.
  • FIG. 1 shows a schematic, spatial view of the redox flow battery according to a possible embodiment
  • FIG. 2 shows a schematic, spatial detail view of the stack of electrochemical cells of the redox flow battery according to a possible embodiment
  • FIG. 3 shows a schematic, spatial detailed view of the storage tanks of the redox flow battery from FIG. 1;
  • Fig. 4 is a top and side view of a possible embodiment of a half cell of the electrochemical cells of the redox flow battery.
  • FIG. 1 shows a possible embodiment of the redox flow battery 1 according to the invention in a schematic and therefore not to scale spatial view.
  • the redox flow battery 1 comprises a redox cell unit 2, with a plurality of electrochemical cells 10 - in the present case four in number - which each include a first and a second half cell 11, 12, so that in the present case eight half cells 11, 12 and thus four electrochemical cells 10 are shown.
  • the half cells 11, 12 are fluidly connected to a tank system 3 via a piping system 25. In principle, more or fewer than four electrochemical cells 10 could also be provided.
  • the tank system 3 includes two storage tanks 4, 5, which are provided for circulating one electrolyte through the first and second half cells 11, 12.
  • the storage tanks 4, 5 are each connected to a circuit 19, 20, each of which is assigned a separate pump 6, 7.
  • the first circuit 19 is provided for a first electrolyte, which flows through the majority of the first half cells 11, and the second circuit 20, which flows through the majority of the second half cells 12.
  • the first pump 6 conveys the electrolyte, which is liquid at room temperature, through the first circuit 19, so that the first electrolyte passes from the first storage tank 4 through the first half cells 11 and from here back into the first storage tank 4.
  • the circuits 19, 20 are fluidly separated from one another so that the electrolytes do not mix with one another.
  • one of the two storage tanks here the second storage tank 5, is assigned a gas connection 13 for supplying carbon dioxide.
  • the gas connection 13 is connected via a line 14 (shown here in dashed lines) to an vent 15 (shown here in dash-dotted lines) arranged in the second storage tank 5, which extends into the second electrolyte there.
  • the second storage tank 5 is assigned a gas bottle 16 or another gas storage device for the carbon dioxide, which is fluidly connected or connectable to the gas connection 13.
  • the two storage tanks 4, 5 can be pressurized via a connection 17 for a gas, such as air or nitrogen.
  • the two storage tanks 4, 5 are connected or can be connected via the connection 17 to gas-carrying lines (shown in dashed lines) and a corresponding gas bottle 18 or a corresponding gas storage.
  • Fig. 3 the tank system 3 is shown without the other components of Fig. 1.
  • the gas bottle 18 is connected there to a common gas line, which connects the two storage tanks 4, 5 with the interposition of two shut-off valves.
  • pressure can be generated on the liquid surface of the electrolytes stored in the storage tanks 4, 5 by means of the gas, so that the redox flow battery 1 can work more efficiently and in particular the separators 36 can be protected.
  • the storage tanks 4, 5 shown in Fig. 3 are connected as follows to the circuits 19, 20, by means of which the half cells 11, 12 can be supplied with the corresponding electrolyte:
  • the first electrolyte comes out of the first storage tank 4 via a first outlet 21 via the first circuit 19 (Fig. 1) to the first half cells 11 and from there via the first pump 6 and via the first inlet 22 back into the first storage tank 4.
  • first and second half cells 11, 12 which can be pressurized using the gas, such as nitrogen.
  • the pressure can be adjusted between 0-8 bar, preferably between 0.1 and 8 bar and even more preferably between 0.5 and 7 bar.
  • Fig. 2 shows a schematic, spatial detailed view of the stack of electrochemical cells of the redox flow battery according to a possible embodiment, as could be used, for example, in Fig. 1.
  • Several electrochemical cells 10, each consisting of a first and second half cell 11, 12, are arranged one behind the other along their longitudinal extent. These are arranged in such a way that they form a stack of first and second half cells 11, 12 arranged alternately next to one another.
  • the piping system 25 includes a plurality of first and second supply lines for supplying electrolyte to and discharging it from the individual half cells 11, 12.
  • a first supply line 26 is provided, which is connected to the first outlet 21 (FIG. 3) of the first storage tank 4 is fluidically connected and from which several lines branch off to the individual first inlets 28 of the first half cells 11.
  • Shut-off valves for adjusting or shutting off the flow of first electrolyte for each individual half cell 11 are provided in these branch lines.
  • the first half cells 11 are fluidly connected in parallel with respect to the first electrolyte.
  • the first electrolyte subsequently arrives via first outlets 29 from the individual first half cells 11, which open into a first discharge line 27, and via the latter, which in turn is fluidly connected to the first inlet 22 (FIG. 3) of the first storage tank 4, back into the storage tank 4.
  • the second half cells 12 are supplied with the second electrolyte from the second storage tank 5 via the piping system 25, more precisely via the second supply lines shown: This comes from the second outlet 23 (Fig. 3) of the second storage tank 5, via a second feed line 30 to the second inlets 32 of the second half cells 12 and via their second outlets 33, a second discharge line 31 fluidly connected to these, in turn via the second inlet 24 (Fig 3) of the second storage tank 5 back into this.
  • the second half cells 12 are fluidly connected in parallel with respect to the second electrolyte.
  • Each of the first and second half cells 11 can be assigned at least one electrode, namely a first electrode 34 and a second electrode 35.
  • the first and second electrodes 34, 35 function as opposite, i.e. differently charged, electrodes, i.e. alternately as an anode or cathode.
  • the electrodes 34, 35 can be made of carbon or its derivatives, such as graphite, etc.
  • FIGS. 1 and 2 show a top and side view of a possible embodiment of a first or second half cell 11 of the electrochemical cells 10 of the redox flow battery 1. Such an embodiment could be used in the illustrations in FIGS. 1 and 2. For the sake of clarity, the electrodes 34, 35 are not shown.
  • the first and second half cells 11, 12 are designed as hollow bodies open on both sides, preferably in the manner of a circular tube. Cross-sections that deviate from this, such as polygonal cross-sections, are of course possible.
  • the half cells 11, 12 can be joined to one another in a non-positive, positive and/or material-locking manner at their adjacent axial ends.
  • the hollow body of these two half cells 11, 12, which is open on both sides, can each have complementary axial ends in such a way that one end of the hollow body of the first half cell 11 can be inserted into the other, complementary end of the hollow body of the second half cell 12 and preferably by force and/or can be positively connected to this, in particular releasably.
  • Both half cells 11, 12 can be designed identically for the sake of simplicity.
  • a separator 36 is arranged between the axial ends of two adjacent first and second half cells 11, 12 and is preferably held by these, in particular in a clamping manner. To protect it, the separator 36 can extend within the radial boundary of the first or second half cell 11, 12, i.e. not extend beyond its radial boundary.
  • electrode rods 37 such as graphite rods and active filter carbon, can be arranged to increase the surface area of the electrodes 34, 35.
  • the redox flow battery 1 is assigned a controller 8 housed in a control cabinet.
  • the control 8 is used to regulate the charging and discharging of the rechargeable redox flow battery 1. All of the components mentioned are, as shown, mounted on a preferably rollable frame 9, such as a trolley, so that they can be moved or moved together with this, but this is for The functionality of the redox flow battery 1 is not crucial, so one could be dispensed with.
  • Power electrics and sensors for checking the power supply to the measuring devices, frequency converters for pump control, power supply for the pumps 5, 6, and measured values (T, pH) including electrical wiring to the corresponding sensors and the pumps can also be installed in the control 8. Temperature measurements of the first and second half cells 11, 12 as well as the first and second storage tanks 4, 5, as well as pH value meters (e.g. in the cathode circuit) and/or pressure indicators in the first and second circuits can be carried out.
  • the two storage tanks 4, 5 are preferably filled exclusively with water.
  • the second storage tank 5 is supplied with carbon dioxide from the gas bottle 16 (FIG. 1) via the vent 15 under pressure to dissolve it.
  • the storage tanks 4, 5 of the redox flow battery 1 are pressurized to an operating pressure between, for example, 0.1 and 8 bar via the gas from the gas bottle 18 and the pumps 6, 7 are used accordingly to circulate the first and second electrolytes the first and second half cells 11, 12 started.
  • the first electrolyte now flows into the plurality of first half cells 11.
  • the second electrolyte flows into the second half cells 12.
  • At the transition from the first half cells 11 to the second half cells 12, where the separator 36 is arranged are the first and second half cells 11 , 12 initially fluidically separated from each other to prevent mixing of the first and second electrolytes.
  • the redox flow battery 1 If the redox flow battery 1 is now charged, so that, for example, electrical voltage is applied to the first and second electrodes 34, 35 of the first and second half cells 11, 12 through which the corresponding electrolytes flow, the first becomes in the course of a redox reaction Electrolyte (for example exclusively water) within the electrochemical cells 10, here for example within the first half cells 11, split into hydrogen (protons) and oxygen.
  • Electrolyte for example exclusively water
  • the redox flow battery 1 is discharged, i.e. when electrical energy is removed from the redox flow battery 1 between the first and second electrodes 34, 35, the water is recombined again.
  • the second electrolyte in particular exclusively water with carbon dioxide dissolved in it
  • methanol in the course of a redox reaction.
  • the redox flow battery 1 is discharged, it is broken down again into carbon dioxide and hydrogen (protons). This results in a rechargeable redox flow battery 1 as a result of the reversible redox reactions.
  • a redox flow battery can be specified which is improved over the redox flow batteries known from the prior art.
  • this can be produced and operated using materials that are comparatively non-toxic to humans and the environment, easy to dispose of in an environmentally friendly manner, and cost-effective.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung betrifft eine Redox-Flow-Batterie (1), umfassend mindestens eine elektrochemische Zelle aus einer ersten und einer zweiten Halbzelle, wobei der ersten Halbzelle (11, 12) eine erste Elektrode zugeordnet ist, die von einem ersten Elektrolyt in der ersten Halbzelle (11, 12) an- oder umströmbar ist, wobei der zweiten Halbzelle (11, 12) eine zweite Elektrode zugeordnet ist, die von einem zweiten Elektrolyt in der zweiten Halbzelle (11, 12) an- oder umströmbar ist, sowie einem Separator (36) zwischen den beiden Halbzellen (11, 12), um die ersten und zweiten Halbzellen (11, 12) fluidisch gegen ein Vermischen der ersten und zweiten Elektrolyten voneinander zu trennen, wobei das erste Elektrolyt vorzugsweise Wasser umfasst und beim Laden der Redox-Flow-Batterie (1) Sauerstoff und Protonen (H+) entstehen und beim Entladen der Redox-Flow-Batterie (1) Wasser entsteht, und das zweite Elektrolyt Kohlenstoffdioxid umfasst und beim Laden der Redox-Flow-Batterie (1) Methanol entsteht und beim Entladen der Redox-Flow-Batterie (1) Kohlenstoffdioxid und Protonen (H+) entstehen.

Description

Redox-Flow-Batterie
Beschreibung
Die Erfindung betrifft eine Redox-Flow-Batterie, bevorzugt eine wiederaufladbare Redox-Flow- Batterie, im Einzelnen gemäß dem unabhängigen Anspruch.
Die Grundlagen für die Redox-Flow-Batterie wurden im 20. Jahrhundert erarbeitet. Die Redox- Flow-Batterie ist eine Flüssigbatterie und eine Ausführungsform eines Akkumulators. Sie speichert elektrische Energie in chemischen Verbindungen, wobei die Reaktionspartner in einem Lösungsmittel (Elektrolyt) in gelöster Form vorliegen. Die zwei energiespeichernden Elektrolyte zirkulieren dabei in zwei getrennten Kreisläufen, zwischen einer elektrochemischen (galvanischen) Zelle, die in zwei voneinander getrennte Halbzellen unterteilt ist, die mittels einer Membran getrennt sind. Durch die Membran erfolgt der lonenaustausch der beiden Elektrolyte. In der elektrochemischen Zelle werden dabei die gelösten Stoffe chemisch reduziert bzw. oxidiert, wobei elektrische Energie frei wird, sodass die Batterie Energie abgibt. Ist die Batterie entladen, kann durch Zuführen von Energie der Prozess umgekehrt werden, sodass die Batterie wieder geladen wird.
Die vorliegende Erfindung betrifft eine derartige gattungsgemäße Redox-Flow-Batterie.
Der Elektrolyt besteht bei bekannten Redox-Flow-Batterien z.B. aus einem in Lösungsmittel gelösten Salz. Als Lösungsmittel werden häufig entweder anorganische oder organische Säuren verwendet. In neueren Systemen, wie der polymerbasierten Batterie, können auch simple Kochsalzlösungen eingesetzt werden. Als verwendbare Redoxpaare kommen unter anderem Vanadium(V)-oxid (im Vanadium-Redox-Akkumulator), Natriumbromid (im Natriumbromid-Redox-Akkumulator) oder auch Eisen (IRFB) in Kombination mit weiteren chemischen Verbindungen zur Anwendung. Es kommen auch Verbindungen auf Basis organischer Stoffe wie Lignin, bzw. Ligninsulfonat-Lösungen in Frage. Nachteilig hieran ist, dass die verwendeten Stoffe Schwer- oder Übergangsmetalle enthalten, was zu Problemen in der Entsorgung der Batterie führen kann.
Auch sind Redox-Flow-Batterien mit Elektrolyten auf Grundlage von organischen Säuren, wie Salzsäure oder Peroxodischwefelsäure und deren Salze, bekannt geworden. Derartige Stoffe haben den Nachteil, dass sie vergleichsweise gefährlich sind und damit in Kontakt tretende Materialien, wie z.B. Elektroden angreifen oder gar zersetzen können. Auch ist dies für die spätere Entsorgung der Batterie nachteilig. Zur Verbesserung der Umweltverträglichkeit derartiger Redox-Flow-Zellen wurden Elektrolyte auf Basis von organischen Chinonen (Chinon/Hydrochinon) vorgestellt. Später wurden die beiden Metalle Eisen und Zink als Redoxpaare entdeckt, sodass auf Vanadium verzichtet werden konnte. Die letzten beiden genannten Lösungen haben den Vorteil, dass die Startmaterialien deutlich günstiger als das Vanadium sind und sich leichter entsorgen lassen.
Es ist daher die Aufgabe der vorliegenden Erfindung eine Redox-Flow-Batterie anzugeben, die gegenüber dem Stand der Technik verbessert ist. Insbesondere soll die Redox-Flow- Batterie mit für den Menschen und die Umwelt vergleichsweise ungiftigen, leicht und umweltverträglich entsorgbaren und kostengünstigen Materialien herstellbar und betreibbar sein.
Die Aufgabe wird durch eine Redox-Flow-Batterie nach dem unabhängigen Anspruch gelöst. Die abhängigen Ansprüche beschreiben dabei besonders zweckmäßige Ausführungsformen der Erfindung.
Die erfindungsgemäße Redox-Flow-Batterie kann im großen Maßstab als Speichermedium für erneuerbare Energiequellen, auch zu Hause als Energiespeicher, wie Akkumulator verwendet werden.
Die vorliegende Erfindung betrifft eine Redox-Flow-Batterie, bevorzugt eine wiederaufladbare Redox-Flow-Batterie, umfassend mindestens eine elektrochemische Zelle aus einer ersten und einer zweiten Halbzelle, wobei der ersten Halbzelle eine erste Elektrode zugeordnet ist, die von einem ersten Elektrolyt in der ersten Halbzelle an- oder umströmbar ist, wobei der zweiten Halbzelle eine zweite Elektrode zugeordnet ist, die von einem zweiten Elektrolyt in der zweiten Halbzelle an- oder umströmbar ist, sowie einem Separator zwischen den beiden Halbzellen, um die ersten und zweiten Halbzellen fluidisch gegen ein Vermischen der ersten und zweiten Elektrolyten voneinander zu trennen, wobei das erste Elektrolyt vorzugsweise Wasser umfasst und beim Laden der Redox-Flow-Batterie Sauerstoff und Protonen (H+) entstehen und beim Entladen der Redox-Flow-Batterie Wasser entsteht, und das zweite Elektrolyt Kohlenstoffdioxid umfasst und beim Laden der Redox-Flow-Batterie Methanol entsteht und beim Entladen der Redox-Flow-Batterie Kohlenstoffdioxid und Protonen (H+) entstehen.
Den Lade- und Entladereaktionen der erfindungsgemäßen Redox-Flow-Batterie liegen die folgenden Reduktionen und Oxidationen zu Grunde: Laden:
Figure imgf000005_0001
Entladen:
Figure imgf000005_0002
Es ist für den Fachmann klar und eindeutig wie die Stöchiometrie ggf. anzupassen ist.
Sofern im Rahmen der vorliegenden Erfindung, insbesondere in Bezug auf das Laden bzw. Entladen, von Wasserstoff gesprochen wird, so ist hierunter im Sinne der Erfindung regelmäßig die Generierung von Protonen, auch als H+ bezeichnet, zu verstehen. Dies ist dem Fachmann bekannt und klar.
Das Prinzip der erfindungsgemäßen Redox-Flow-Batterie umfasst eine Kombination von zwei korrespondierenden Redoxpaaren bzw. zwei Halbzellen. Beim Entladen findet an der Anode die Oxidationsreaktion (III) und an der Kathode die Reduktionsreaktion (IV) statt.
Dabei kann die erste Elektrode eine Kathode, das erste Elektrolyt ein Katholyt sein, und die zweite Elektrode eine Anode und das zweite Elektrolyt ein Anolyt sein.
Erfindungsgemäß kann das erste Elektrolyt vorzugsweise Wasser, insbesondere ausschließlich Wasser, umfassen, wobei beim Laden Sauerstoff und Protonon (H+; vorliegend auch als Wasserstoff bezeichnet) entstehen und beim Entladen umgekehrt Protonen (Wasserstoff) und Sauerstoff wieder zu Wasser umgesetzt werden. Demnach findet in der ersten Halbzelle beim Laden die folgende Teilreaktion:
Figure imgf000005_0003
und beim Entladen die folgende Teilreaktion statt:
Figure imgf000005_0004
Erfindungsgemäß umfasst das zweite Elektrolyt CO2. Vorzugsweise umfasst, bevorzugt besteht aus, das zweite Elektrolyt Wasser, insbesondere ausschließlich Wasser, mit Kohlenstoffdioxid. Das Kohlenstoffdioxid ist zumindest teilweise im Wasser gelöst.
Gemäß einer bevorzugten Ausführungsform besteht das zweite Elektrolyt aus Kohlenstoffdioxid, vorzugsweise gasförmigem CO2.
Beim Laden werden Kohlenstoffdioxid und Protonen (H+) zu Methanol und Wasser umgesetzt und beim Entladen Methanol und Wasser wieder in Kohlenstoffdioxid und Protonen (H+) aufgespalten.
Demnach findet in der zweiten Halbzelle beim Laden die folgende Teilreaktion
Figure imgf000006_0001
und beim Entladen die folgende Teilreaktion
Figure imgf000006_0002
statt.
Mittels der erfindungsgemäßen Redox-Flow-Batterie kann das Treibhausgas Kohlenstoffdioxid indirekt zur Speicherung elektrischer Energie verwendet werden. Es kann direkt aus der Atmosphäre, z.B. durch entsprechende Luftfilter gewonnen, gesammelt und als Ausgangsstoff dem Elektrolyten der Redox-Flow-Batterie zugeführt werden. Somit würde der Atmosphäre Kohlenstoffdioxid entzogen und als Energiespeicher für Generatoren für erneuerbare Energien, wie Wind- oder Wasserkraft zur Verfügung gestellt werden. Die so gespeicherte elektrische Energie steht dann an weniger ertragreichen Tagen zum Einspeisen in das Netz zur Verfügung. Grundsätzlich wäre es auch denkbar Kohlenstoffdioxid aus anderen Quellen zu beziehen, z.B. aus Verbrennungsreaktionen, wie zum Beispiel Rauchgase, die als Produktionsabfälle entstehen.
Die Erfindung umfasst auch eine Redox-Flow-Batterie, umfassend mindestens eine elektrochemische Zelle aus einer ersten und einer zweiten Halbzelle, wobei der ersten Halbzelle eine erste Elektrode zugeordnet ist, die von einem ersten Elektrolyt in der ersten Halbzelle an- oder umströmbar ist, und der zweiten Halbzelle eine zweite Elektrode zugeordnet ist, die von einem zweiten Elektrolyt in der zweiten Halbzelle an- oder umströmbar ist, sowie einem Separator zwischen den beiden Halbzellen, um die ersten und zweiten Halbzellen fluidisch gegen ein Vermischen der ersten und zweiten Elektrolyten voneinander zu trennen, wobei das erste Elektrolyt insbesondere ausschließlich Wasser ist, das beim Laden der Redox-Flow-Batterie in Wasserstoff (Protonen) und Sauerstoff aufspaltbar ist und beim Entladen der Redox-Flow-Batterie wieder zu Wasser rekombiniert und das zweite Elektrolyt insbesondere ausschließlich Wasser mit darin gelöstem Kohlenstoffdioxid ist, sodass das Kohlenstoffdioxid beim Laden der Redox-Flow-Batterie im Zuge einer Redoxreaktion zu Methanol reagiert und beim Entladen der Redox-Flow-Batterie wieder zu Kohlenstoffdioxid und Wasserstoff (Protonen) aufspaltbar ist.
Bevorzugt sind die beiden Halbzellen oder die beiden Elektrolyte frei von dem Zusatz eines Katalysators zur Beschleunigung der Redoxreaktion, wobei bevorzugt die beiden Elektrolyte auch frei von weiteren Säuren, insbesondere organischen oder anorganischen Säuren oder deren Salze sind.
Gemäß einer bevorzugten Ausführungsform sind die erste Halbzelle und/oder die zweite Halbzelle frei von dem Zusatz eines Katalysators zur Beschleunigung der Redoxreaktion.
Gemäß einer weiteren bevorzugten Ausführungsform sind der erste Elektrolyt und/oder der zweite Elektrolyt frei von dem Zusatz eines Katalysators zur Beschleunigung der Redoxreaktion, wobei bevorzugt der erste Elektrolyt und/oder der zweite Elektrolyt auch frei von weiteren Säuren, insbesondere organischen oder anorganischen Säuren oder deren Salze sind.
Wenn davon die Rede ist, dass die Redox-Flow-Batterie bzw. deren Elektrolyte frei von dem Zusatz eines Katalysators zur Beschleunigung der Redoxreaktion sind, dann ist damit gemeint, dass auf die gezielte Zugabe solcher Stoffe verzichtet wird. Die Redox-Flow-Batterie hat damit den Vorteil, dass die Chemikalien, mit denen sie arbeitet (Wasser und Kohlenstoffdioxid) kostengünstig sind und bei einem Austritt in geringen Mengen für den Menschen ungiftig und auch wenig belastend für die Umwelt sind.
Gemäß einer anderen bevorzugten Ausführungsform sind Katalysatoren und Säuren in den Elektrolyten und/oder Halbzellen vorgesehen. So können die beiden Halbzellen oder die beiden Elektrolyte einen Katalysator als Zusatz zur Beschleunigung der Redoxreaktion umfassen, wobei bevorzugt die beiden Elektrolyte auch weitere Säuren, insbesondere organische oder anorganische Säuren oder deren Salze, umfassen können.
Gemäß einer weiteren bevorzugten Ausführungsform umfassen die erste Halbzelle und/oder die zweite Halbzelle einen Katalysator zur Beschleunigung der Redoxreaktion. Gemäß einer weiteren bevorzugten Ausführungsform umfassen der erste Elektrolyt und/oder der zweite Elektrolyt einen Katalysator zur Beschleunigung der Redoxreaktion, wobei bevorzugt der erste Elektrolyt und/oder der zweite Elektrolyt auch weitere Säuren, insbesondere organische oder anorganische Säuren oder deren Salze, umfassen können.
Als Katalysator können organische Substanzen, anorganische Substanzen oder Kombinationen hieraus verwendet werden.
Gemäß einer weiteren bevorzugten Ausführungsform sind Basen, vorzugsweise NaOH und/oder KOH vorgesehen.
Vorzugsweise umfasst der erste Elektrolyt eine Base, bevorzugt NaOH und/oder KOH.
Vorzugsweise umfasst der zweite Elektrolyt eine Base, bevorzugt NaOH und/oder KOH.
Gemäß einer bevorzugten Ausführungsform besteht der zweite Elektrolyt aus CO2, vorzugsweise gasförmigem CO2.
Dabei kann der Redox-Flow-Batterie mindestens ein erster Lagertank für das erste Elektrolyt und mindestens ein zweiter Lagertank für das zweite Elektrolyt sowie eine Mehrzahl von ersten Versorgungsleitungen zugeordnet sein, um die mindestens eine erste Halbzelle mit dem erstem Elektrolyt zu versorgen und mit einer Mehrzahl von zweiten Versorgungsleitungen, um die mindestens eine zweite Halbzelle mit dem zweiten Elektrolyt zu versorgen, wobei die Versorgung über jeweils eine Pumpe erfolgt, um die entsprechenden, in den separaten Lagertanks gelagerten Elektrolyten jeweils durch die entsprechenden Halbzellen zu fördern.
Weiterhin kann dem zweiten Lagertank ein Gasanschluss für das Zuführen von Kohlenstoffdioxid zugeordnet sein, der über eine Leitung an einen Ausströmer, der in den zweiten Elektrolyten hineinreicht, angeschlossen ist, wobei bevorzugt dem zweiten Lagertank eine Gasflasche für das Kohlenstoffdioxid zugeordnet ist, die fluidisch mit dem Gasanschluss verbunden oder verbindbar ist. Das der Redox-Flow-Batterie so zuführbare Kohlenstoffdioxid kann aus der Atmosphäre entnommen worden sein.
Mit Vorteil sind die beiden Lagertanks über einen Anschluss für ein Gas, wie Luft oder Stickstoff druckbeaufschlagbar. Hierdurch kann die Effizienz der Redox-Flow-Batterie deutlich erhöht werden. Dabei kann der Separator als Membran, wie eine ionenleitende, bevorzugt kationenleitende Membran ausgeführt sein. Die Membran kann eine Dicke zwischen 10 und 200 pm, bevorzugt zwischen 30 und 180 pm, besonders bevorzugt zwischen 120 und 150 pm und/oder bevorzugt ein Elastizitätsmodul bei 23 °C und 50% relativer Feuchte zwischen 250 und 2.000 N/mm2, bevorzugt zwischen 350 und 1.750 N/mm2, aufweisen. So kann eine vergleichsweise langlebige Membran angegeben werden.
Bevorzugt weist der Separator eine elektroosmotische Permeabilität zwischen 5,0 und 31 pl*cm3/h und bevorzugt zwischen 5,6 und 30,7 pl*cm3/h auf. Hierdurch kann ein besonders optimaler Ionen- bzw. Kationenaustausch zwischen den beiden Elektrolyten der ersten und zweiten Halbzellen erfolgen. Dabei entspricht das osmotische Potential der Arbeit, die geleistet werden muss, um eine Einheitsmenge an Wasser durch eine semipermeable Membran aus einer Bodenlösung zu ziehen. Die Messung geschieht beispielsweise in einer Konzentrationszelle in Form einer galvanischen Zelle. Durch die Membran erfolgt eine Ladungstrennung und es resultiert die Transmembranspannung.
Bevorzugt sind die erste und/oder zweite Elektrode aus Kohlenstoff, Ruß, Graphit, Kohlenstoffflocken, Kohlenstoffpapier, Kohlenstofffaser, Kohlenstoffnanoröhren, Kohlenstoffnanofasern, Graphen und/oder glasartigem Kohlenstoff, insbesondere in Stiftform, hergestellt. Damit kann ein vergleichsweise kostengünstiger, leicht verfügbarer und entsorgbarer sowie nicht umweltschädlicher Werkstoff als Elektrode angegeben werden. Die Halbzellen können zusätzlich zu der Elektrode mit in Stiftform vorliegenden Pellets gefüllt sein, um die Oberfläche der Elektrode zu vergrößern.
Die erste und zweite Elektrode können auch aus unterschiedlichen Materialien hergestellt sein.
Die erste Elektrode kann eine Anode, das erste Elektrolyt ein Anolyt sein, und die zweite Elektrode kann eine Kathode und der zweite Elektrolyt ein Katholyt sein.
Gemäß einer anderen Ausführungsform kann die erste Elektrode eine Kathode, das erste Elektrolyt ein Katholyt sein, und die zweite Elektrode eine Anode und das zweite Elektrolyt ein Anolyt sein.
Mit Vorteil können mehrere elektrochemische Zellen, das heißt mindestens zwei elektrochemische Zellen, vorzugsweise mindestens drei elektrochemische Zellen, entlang deren Längserstreckung hintereinander angeordnet sein, derart, dass sie einen Stapel aus abwechselnd aneinander gereihten ersten und zweiten Halbzellen bilden, wobei die ersten und zweiten Halbzellen als beidseitig offene Hohlkörper, bevorzugt nach Art eines Rohres - das einen kreisrunden oder polygonalen Querschnitt aufweisen kann - ausgeführt sind und an ihren aneinandergrenzenden axialen Enden miteinander kraft-, form-, und/oder stoffschlüssig miteinander gefügt sind. Eine solche Anordnung ist vergleichsweise kompakt und zudem in Ihrer Länge gut skalierbar. Weiterhin ermöglicht ein solcher Aufbau eine mechanisch einfache und somit kostengünstige Konstruktion der Redox-Flow-Batterie. Die Redox-Flow-Batterie kann vergleichsweise einfach in ihre Einzelteile zerlegt und somit verschlissene oder beschädigte Komponenten einfach ausgetauscht werden.
Die genannten Vorteile werden auch dadurch umgesetzt, dass die beiden Halbzellen bevorzugt identisch ausgeführt sind und der beidseitig offene Hohlkörper dieser beiden jeweils derart komplementär ausgeführte axiale Enden aufweist, sodass das eine Ende des Hohlkörpers der ersten Halbzelle in das andere, komplementär ausgeführte Ende des Hohlkörpers der zweiten Halbzelle einführbar und bevorzugt kraft- und/oder formschlüssig mit diesem, insbesondere lösbar verbindbar ist. Auf diese Weise entsteht eine selbsttragende Konstruktion der Redox-Flow-Batterie, ohne dass die einzelnen übereinander gestapelten Halbzellen gegeneinander z.B. durch Zuganker verspannt werden müssen.
Wird der Separator jeweils zwischen den axialen Enden zweier benachbarter (unmittelbar aneinandergrenzender) erster und zweiter Halbzellen angeordnet und bevorzugt von diesen gehalten, insbesondere klemmend gehalten, so kann auch dieser im Falle einer Abnutzung oder eines Defekts einfach aus- und ein neuer wieder eingebaut werden. Wird der Separator derart angeordnet, dass er sich innerhalb der Radialbegrenzung der ersten oder zweiten Halbzelle erstreckt, also nicht über deren Radialbegrenzung hinausreicht, so wird der Separator nach außen hin von den Halbzellen geschützt.
Bevorzugt beträgt das Innenvolumen der ersten oder zweiten Halbzelle mindestens 100 ml. Es hat sich gezeigt, dass die Redox-Flow-Batterie mit dieser Menge anfängt optimal zu arbeiten. Grundsätzlich ist das Volumen nach oben hin skalierbar, sodass auch Innenvolumina von größer einem Liter, wie z.B. 1 ,5 Liter und mehr möglich sind. Eine Grenze nach oben stellt u.a. die Statik des Bauwerks, in dem die Redox-Flow-Batterie untergebracht wird, dar.
Für den sicheren Betrieb kann der Redox-Flow-Batterie eine Steuerung zur Regelung des Ladens und Entladens zugeordnet sein.
Vorzugsweise sind die Halbzellen so eingerichtet, dass die Temperatur, der pH-Wert und/oder der Druck, bevorzugt in Echtzeit, ermittelt werden können. Vorzugsweise umfassen die Halbzellen Sensoren für die Ermittlung von Temperatur, pH-Wert und/oder Druck. Die Ermittlung kann auch an andere Stellen der erfindungsgemäßen Redox-Flow-Batterie erfolgen. Vorzugsweise umfasst die Redox-Flow-Batterie eine Vielzahl an Sensoren.
Bevorzugt kann die Redox-Flow-Batterie auf einem Gestell, bevorzugt einem fahrbaren Gestell angeordnet sein. So ist diese vergleichsweise einfach manövrierbar, um z.B. einzelne Komponenten davon zu inspizieren oder auszutauschen.
Die vorliegende Erfindung betrifft auch die Verwendung von aus der Atmosphäre stammendem Kohlenstoffdioxid, welches bevorzugt durch Filtern und Abscheiden von Umgebungsluft erzielbar ist, für den Elektrolyt der erfindungsgemäßen Redox-Flow-Batterie.
Die Vorteile der Erfindung sollen nun anhand eines bevorzugten Ausführungsbeispiels und der Figuren näher dargestellt werden.
Es zeigen:
Fig. 1 eine schematische, räumliche Ansicht auf die Redox-Flow-Batterie gemäß einer möglichen Ausführungsform;
Fig. 2 eine schematische, räumliche Detailansicht des Stapels von elektrochemischen Zellen der Redox-Flow-Batterie gemäß einer möglichen Ausführungsform;
Fig. 3 eine schematische, räumliche Detailansicht der Lagertanks der Redox-Flow- Batterie aus Fig. 1 ;
Fig. 4 eine Drauf- und Seitenansicht auf eine mögliche Ausführungsform einer Halbzelle der elektrochemischen Zellen der Redox-Flow-Batterie.
In Fig. 1 ist in einer schematischen und daher unmaßstäblichen, räumlichen Ansicht eine mögliche Ausführungsform der erfindungsgemäßen Redox-Flow-Batterie 1 gezeigt.
Die Redox-Flow-Batterie 1 umfasst eine Redox-Zellen-Einheit 2, mit einer Mehrzahl von elektrochemischen Zellen 10 - vorliegend vier an der Zahl - welche jeweils eine erste und eine zweite Halbzelle 11 , 12 umfassen, sodass vorliegend acht Halbzellen 11 , 12 und damit vier elektrochemische Zellen 10 dargestellt sind. Die Halbzellen 11 , 12 sind über ein Verrohrungssystem 25 fluidisch mit einem Tanksystem 3 verbunden. Grundsätzlich könnten auch mehr oder weniger als vier elektrochemische Zellen 10 vorgesehen sein. Das Tanksystem 3 umfasst zwei Lagertanks 4, 5, welche zur Umwälzung jeweils eines Elektrolyts durch die ersten und zweiten Halbzellen 11 , 12 vorgesehen sind. Die Lagertanks 4, 5 sind je an einem Kreislauf 19, 20, wovon jedem eine separate Pumpe 6, 7 zugeordnet ist, angeschlossen. Dabei ist der erste Kreislauf 19 für ein erstes Elektrolyt, das die Mehrzahl der ersten Halbzellen 11 durchströmt, und der zweite Kreislauf 20, der die Mehrzahl der zweiten Halbzellen 12 durchströmt, vorgesehen. Die erste Pumpe 6 fördert das bei Raumtemperatur flüssige Elektrolyt jeweils durch den ersten Kreislauf 19, sodass das erste Elektrolyt aus dem ersten Lagertank 4 durch die ersten Halbzellen 11 und hieraus wiederum zurück in den ersten Lagertank 4 gelangt. Gleiches gilt analog für das zweite Elektrolyt, das im zweiten Kreislauf 20 mittels der zweiten Pumpe 7 aus dem zweiten Lagertank 5 in die zweiten Halbzellen 12 und aus diesen hinaus wieder in den zweiten Lagertank 5 gelangt. Die Kreisläufe 19, 20 sind fluidisch voneinander getrennt, sodass sich die Elektrolyte nicht miteinander vermischen.
Wie in Fig. 1 gezeigt, ist einem der beiden Lagertanks, hier dem zweiten Lagertank 5, ein Gasanschluss 13 für das Zuführen von Kohlenstoffdioxid zugeordnet. Der Gasanschluss 13 ist über eine Leitung 14 (hier gestrichelt dargestellt) an einen im zweiten Lagertank 5 angeordneten Ausströmer 15 (hier strichpunktiert dargestellt), der dort in den zweiten Elektrolyt hineinreicht, angeschlossen. Dabei ist dem zweiten Lagertank 5 eine Gasflasche 16 oder ein sonstiger Gasspeicher für das Kohlenstoffdioxid zugeordnet, welche/welcher fluidisch mit dem Gasanschluss 13 verbunden oder verbindbar ist. Die beiden Lagertanks 4, 5 können über einen Anschluss 17 für ein Gas, wie Luft oder Stickstoff druckbeaufschlagbar sein. Dazu sind vorliegend die beiden Lagertanks 4, 5 über den Anschluss 17 an gasführende Leitungen (gestrichelt dargestellt) und eine entsprechende Gasflasche 18 oder einen entsprechenden Gasspeicher verbunden oder verbindbar.
In Fig. 3 ist das Tanksystem 3 ohne die weiteren Komponenten der Fig. 1 gezeigt. In Abwandlung zur Fig. 1 ist die Gasflasche 18 dort an eine gemeinsame Gasleitung angeschlossen, welche die beiden Lagertanks 4, 5 unter Zwischenschaltung zweier Absperrventile miteinander verbindet. So kann, analog zur Fig. 1 mittels des Gases Druck auf die Flüssigkeitsoberfläche der in den Lagertanks 4, 5 gespeicherten Elektrolyte erzeugt werden, sodass die Redox-Flow-Batterie 1 effizienter arbeiten kann und insbesondere die Separatoren 36 geschützt werden können.
Die in Fig. 3 dargestellten Lagertanks 4, 5 sind wie folgt an die Kreisläufe 19, 20, mittels denen die Halbzellen 11 , 12 mit dem entsprechenden Elektrolyt versorgbar sind, angeschlossen: Über einen ersten Auslass 21 gelangt das erste Elektrolyt aus dem ersten Lagertank 4 über den ersten Kreislauf 19 (Fig. 1 ) zu ersten Halbzellen 11 und von dort über die erste Pumpe 6 und über den ersten Einlass 22 wieder zurück in den ersten Lagertank 4. Entsprechend strömt das zweite Elektrolyt mithilfe der zweiten Pumpe 7 aus dem zweiten Auslass 23 des zweiten Lagertanks 5, von dort wiederum zu den zweiten Halbzellen 12, durch diese hindurch und über den zweiten Einlass 24 wieder in den zweiten Lagertank 5 hinein.
Mit der erfindungsgemäßen Redox-Flow-Batterie 1 entstehen somit zwei separat voneinander getrennte Systeme (Kathoden- und Anodensystem) aus ersten und zweiten Halbzellen 11 , 12, welche mithilfe des Gases, wie Stickstoff, unter Druck gesetzt werden können.
Gemäß einer Ausführungsform ist dabei der Druck zwischen 0-8 bar, vorzugsweise zwischen 0,1 und 8 bar und noch bevorzugter zwischen 0,5 und 7 bar einstellbar.
Fig. 2 zeigt eine schematische, räumliche Detailansicht des Stapels von elektrochemischen Zellen der Redox-Flow-Batterie gemäß einer möglichen Ausführungsform, wie sie z.B. in Fig. 1 Verwendung finden könnte. Dabei sind mehrere elektrochemische Zellen 10, die je aus einer ersten und zweiten Halbzelle 11 , 12 bestehen, entlang deren Längserstreckung hintereinander angeordnet. Diese sind so angeordnet, dass sie einen Stapel aus abwechselnd aneinander gereihten ersten und zweiten Halbzellen 11 , 12 bilden.
Mittels des gezeigten Verrohrungssystems 25 sind die einzelnen ersten und zweiten Halbzellen zur Durchströmung mit den Elektrolyten an das Tanksystem 3 (Fig. 1 ) angeschlossen. Das Verrohrungssystem 25 umfasst eine Vielzahl von ersten und zweiten Versorgungsleitungen zum Zuführen von Elektrolyt zu und zum Abführen desselben aus den einzelnen Halbzellen 11 , 12. Dazu ist eine erste Zuführleitung 26 vorgesehen, die mit dem ersten Auslass 21 (Fig. 3) des ersten Lagertanks 4 fluidisch verbunden ist und von der mehrere Leitungen zu den einzelnen ersten Einlässen 28 der ersten Halbzellen 11 abzweigen. In diesen Abzweigleitungen sind Absperrventile zur Einstellung oder zum Abschließen des Durchflusses an erstem Elektrolyt für jede einzelne Halbzelle 11 vorgesehen. Wie man sieht, sind also vorliegend die ersten Halbzellen 11 hinsichtlich des ersten Elektrolyts fluidisch parallel zusammengeschaltet.
Das erste Elektrolyt gelangt in der Folge über erste Auslässe 29 aus den einzelnen ersten Halbzellen 11 , die in eine erste Abführleitung 27 münden, und über letztgenannte, die wiederum mit dem ersten Einlass 22 (Fig. 3) des ersten Lagertanks 4 fluidisch verbunden ist, zurück in den Lagertank 4.
Entsprechend zu den ersten Halbzellen 11 , werden die zweiten Halbzellen 12 über das Verrohrungssystem 25, genauer gesagt über die dargestellten zweiten Versorgungsleitungen mit dem zweiten Elektrolyten aus dem zweiten Lagertank 5 versorgt: Dieses gelangt aus dem zweiten Auslass 23 (Fig. 3) des zweiten Lagertanks 5, über eine zweite Zuführleitung 30 zu den zweiten Einlässen 32 der zweiten Halbzellen 12 und über deren zweite Auslässe 33, eine mit diesen fluidisch verbundene zweite Abführleitung 31 wiederum über den zweiten Einlass 24 (Fig. 3) des zweiten Lagertanks 5 in diesen zurück. Auch hier sind die zweiten Halbzellen 12 hinsichtlich des zweiten Elektrolyts fluidisch parallel zusammengeschaltet.
Grundsätzlich wäre es möglich, die Halbzellen 11 , 12 auch in der entgegengesetzten Richtung, eben beschrieben, zu durchströmen, so würde dann das zweite Elektrolyt vom zweiten Einlass 24 austreten, durch die zweiten Halbzellen 12 strömen und wieder über den zweiten Auslass 23 in den zweiten Lagertank 5 gelangen. Analog würde dann das erste Elektrolyt über den ersten Einlass 22 austretend die ersten Halbzellen 11 durchströmen, um dann über den ersten Auslass 21 wieder in den ersten Lagertank 4 zu gelangen.
Jeder der ersten und zweiten Halbzellen 11 , kann mindestens eine Elektrode, nämlich eine erste Elektrode 34 und eine zweite Elektrode 35 zugeordnet sein. Je nachdem, ob die Redox- Flow-Batterie geladen oder entladen wird, fungieren die ersten und zweiten Elektroden 34, 35 als gegensätzliche, also unterschiedlich geladene Elektroden, also wechselweise als Anode oder Kathode. Die Elektroden 34, 35 können aus Kohlenstoff oder dessen Derivaten, wie Graphit etc., hergestellt sein.
Fig. 4 zeigt in einer Drauf- und Seitenansicht eine mögliche Ausführungsform einer ersten oder zweiten Halbzelle 11 der elektrochemischen Zellen 10 der Redox-Flow-Batterie 1. Eine solche könnte in den Darstellungen der Fig. 1 und 2 Einsatz finden. Dabei sind der Übersichtlichkeit halber die Elektroden 34, 35 nicht dargestellt.
Vorliegend sind die ersten und zweiten Halbzellen 11 , 12 als beidseitig offene Hohlkörper, bevorzugt nach Art eines kreisförmigen Rohres ausgeführt. Davon abweichende Querschnitte, z.B. polygonale Querschnitte sind selbstverständlich möglich. Die Halbzellen 11 , 12 können an ihren aneinandergrenzenden axialen Enden miteinander kraft-, form-, und/oder stoffschlüssig gefügt sein. Der beidseitig offene Hohlkörper dieser beiden Halbzellen 11 , 12 kann jeweils derart komplementär ausgeführte axiale Enden aufweisen, dass das eine Ende des Hohlkörpers der ersten Halbzelle 11 in das andere, komplementär ausgeführte Ende des Hohlkörpers der zweiten Halbzelle 12 einführbar und bevorzugt kraft- und/oder formschlüssig mit diesem, insbesondere lösbar verbindbar ist. So entsteht eine selbsttragende Konstruktion der Redox-Flow-Batterie 1. Dies ist jedoch für deren Funktionsweise nicht zwingend erforderlich. Beide Halbzellen 11 , 12 können der Einfachheit halber identisch ausgeführt sein. Dabei ist jeweils zwischen den axialen Enden zweier benachbarter erster und zweiter Halbzellen 11 , 12 ein Separator 36 angeordnet und bevorzugt von diesen, insbesondere klemmend gehalten. Zu dessen Schutz kann der Separator 36 sich innerhalb der Radialbegrenzung der ersten oder zweiten Halbzelle 11 , 12 erstrecken, also nicht über deren Radialbegrenzung hinausreichen. Innerhalb der ersten und zweiten Halbzellen 11 , 12, also innerhalb deren Hohlkörper, können Elektrodenstäbe 37, wie z.B. Graphitstäbe sowie Aktivfilterkohle zur Oberflächenvergrößerung der Elektroden 34, 35 angeordnet sein.
Wie in der Fig. 1 gezeigt, ist der Redox-Flow-Batterie 1 eine in einem Schaltschrank untergebrachte Steuerung 8 zugeordnet. Die Steuerung 8 dient zur Regelung des Ladens und Entladens der wiederaufladbaren Redox-Flow-Batterie 1. All die genannten Komponenten sind, wie dargestellt, auf einem bevorzugt rollbaren Gestell 9, wie einem Rollwagen zusammen mit diesem bewegbar bzw. verfahrbar montiert, was jedoch für die Funktionsweise der Redox- Flow-Batterie 1 nicht entscheidend ist, sodass auf einen solchen auch verzichtet werden könnte. In der Steuerung 8 können auch Leistungselektrik und Sensorik zum Überprüfen der Spannungsversorgung der Messgeräte, Frequenzumformer zur Pumpenregelung, Leistungsversorgung der Pumpen 5, 6, und Messwerte (T, pH) samt Elektroverkabelung zu den entsprechenden Sensoren und den Pumpen verbaut sein. So können Temperaturmessungen der ersten und zweiten Halbzellen 11 , 12 sowie der ersten und zweiten Lagertanks 4, 5, wie auch pH-Wert-Messer (z.B. im Kathodenkreislauf) und/oder Druckanzeiger im ersten und zweiten Kreislauf erfolgen.
Zum Betrieb der Redox-Flow-Batterie 1 werden die beiden Lagertanks 4, 5 bevorzugt ausschließlich mit Wasser befüllt. Dem zweiten Lagertank 5 wird im Betrieb der Redox-Flow- Batterie 1 über den Ausströmer 15 Kohlenstoffdioxid aus der Gasflasche 16 (Fig. 1 ) zu dessen Lösung unter Druck zugeführt. Zugleich werden die Lagertanks 4, 5 der Redox-Flow-Batterie 1 über das Gas aus der Gasflasche 18 auf einen Betriebsdruck zwischen z.B. 0,1 und 8 bar unter Druck gesetzt sowie die Pumpen 6, 7 zur Umwälzung der ersten und zweiten Elektrolyten entsprechend durch die ersten und zweiten Halbzellen 11 , 12 in Gang gesetzt. Das erste Elektrolyt strömt nun in die Vielzahl von ersten Halbzellen 11. Gleichzeitig strömt das zweite Elektrolyt in die zweiten Halbzellen 12. Am Übergang der ersten Halbzellen 11 zu den zweiten Halbzellen 12, wo der Separator 36 angeordnet ist, sind die ersten und zweiten Halbzellen 11 , 12 zunächst fluidisch gegen ein Vermischen der ersten und zweiten Elektrolyten voneinander getrennt.
Wird die Redox-Flow-Batterie 1 nun geladen, sodass z.B. elektrische Spannung an die ersten und zweiten Elektroden 34, 35 der ersten und zweiten von den entsprechenden Elektrolyten durchströmten Halbzellen 11 , 12 angelegt wird, wird im Zuge einer Redoxreaktion das erste Elektrolyt (z.B. ausschließlich Wasser) innerhalb der elektrochemischen Zellen 10, hier z.B. innerhalb der ersten Halbzellen 11 , in Wasserstoff (Protonen) und Sauerstoff aufgespalten. Hingegen wird beim Entladen der Redox-Flow-Batterie 1 , wenn also elektrische Energie zwischen den ersten und zweiten Elektroden 34, 35 aus der Redox-Flow-Batterie 1 entnommen wird, das Wasser wieder rekombiniert.
Beim Laden der Redox-Flow-Batterie 1 wird das zweite Elektrolyt (insbesondere ausschließlich Wasser mit darin gelöstem Kohlenstoffdioxid) im Zuge einer Redoxreaktion zu Methanol umgesetzt. Hingegen wird wiederum beim Entladen der Redox-Flow-Batterie 1 dieses wieder zu Kohlenstoffdioxid und Wasserstoff (Protonen) aufgespalten. Somit ergibt sich infolge der umkehrbaren Redoxreaktionen eine wiederaufladbare Redox-Flow-Batterie 1.
Mit der Erfindung kann eine Redox-Flow-Batterie angegeben werden, die gegenüber den aus dem Stand der Technik bekannten Redox-Flow-Batterien verbessert ist. Insbesondere kann diese mit für den Menschen und die Umwelt vergleichsweise ungiftigen, leicht und umweltverträglich entsorgbaren und kostengünstigen Materialien herstellbar und betreibbar sein.
Bezugszeichen
1 Redox-Flow-Battene
2 Redox-Zellen-Einheit
3 Tanksystem
4 erster Lagertank
5 zweiter Lagertank
6 erste Pumpe
7 zweite Pumpe
8 Steuerung
9 Gestell
10 elektrochemische Zelle
11 erste Halbzelle
12 zweite Halbzelle
13 Gasanschluss
14 Leitung
15 Ausströmer
16 Gasflasche
17 Anschluss
18 Gasflasche
19 erster Kreislauf
20 zweiter Kreislauf
21 erster Auslass
22 erster Einlass
23 zweiter Auslass
24 zweiter Einlass
25 Verrohrungssystem
26 erste Zuführleitung
27 erste Abführleitung
28 erster Einlass
29 erster Auslass
30 zweite Zuführleitung
31 zweite Abführleitung
32 zweiter Einlass
33 zweiter Auslass
34 erste Elektrode
35 zweite Elektrode
36 Separator
37 Elektrodenstab

Claims

Patentansprüche
1. Redox-Flow-Batterie (1 ), umfassend mindestens eine elektrochemische Zelle aus einer ersten und einer zweiten Halbzelle, wobei der ersten Halbzelle (11 , 12) eine erste Elektrode zugeordnet ist, die von einem ersten Elektrolyt in der ersten Halbzelle (11 , 12) an- oder umströmbar ist, wobei der zweiten Halbzelle (11 , 12) eine zweite Elektrode zugeordnet ist, die von einem zweiten Elektrolyt in der zweiten Halbzelle (11 , 12) an- oder umströmbar ist, sowie einem Separator (36) zwischen den beiden Halbzellen (11 , 12), um die ersten und zweiten Halbzellen (11 , 12) fluidisch gegen ein Vermischen der ersten und zweiten Elektrolyten voneinander zu trennen, wobei das erste Elektrolyt vorzugsweise Wasser umfasst und beim Laden der Redox-Flow-Batterie (1) Sauerstoff und Protonen (H+) entstehen und beim Entladen der Redox-Flow-Batterie (1) Wasser entsteht, und das zweite Elektrolyt Kohlenstoffdioxid umfasst und beim Laden der Redox-Flow-Batterie (1 ) Methanol entsteht und beim Entladen der Redox-Flow-Batterie (1) Kohlenstoffdioxid und Protonen (H+) entstehen.
2. Redox-Flow-Batterie (1) nach Anspruch 1 , dadurch gekennzeichnet, dass die beiden Halbzellen oder die beiden Elektrolyte frei von dem Zusatz eines Katalysators zur Beschleunigung der Redoxreaktion sind, wobei bevorzugt die beiden Elektrolyte auch frei von weiteren Säuren, insbesondere organischen oder anorganischen Säuren oder deren Salze sind, oder dass die beiden Halbzellen und/oder die beiden Elektrolyte einen Katalysator als Zusatz zur Beschleunigung der Redoxreaktion umfassen, wobei bevorzugt die beiden Elektrolyte auch weitere Säuren, insbesondere organische oder anorganische Säuren oder deren Salze umfassen.
3. Redox-Flow-Batterie (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Redox-Flow-Batterie (1 ) mindestens ein erster Lagertank (4) für das erste Elektrolyt und mindestens ein zweiter Lagertank (5) für das zweite Elektrolyt sowie eine Mehrzahl von ersten Versorgungsleitungen (26, 27) zugeordnet ist, um die mindestens eine erste Halbzelle (11 , 12) mit dem erstem Elektrolyt zu versorgen und mit einer Mehrzahl von zweiten Versorgungsleitungen (30, 31), um die mindestens eine zweite Halbzelle (11 , 12) mit dem zweiten Elektrolyt zu versorgen, wobei die Versorgung über jeweils eine Pumpe (6, 7) erfolgt, um die in den Lagertanks (4, 5) gelagerten entsprechenden Elektrolyten jeweils durch die entsprechenden Halbzellen (11 , 12) zu fördern.
4. Redox-Flow-Batterie (1 ) nach Anspruch 3, dadurch gekennzeichnet, dass dem zweiten Lagertank (5) ein Gasanschluss (13) für das Zuführen von Kohlenstoffdioxid zugeordnet ist, der über eine Leitung (14) an einen Ausströmer (15), der in den zweiten Elektrolyt hineinreicht, angeschlossen ist, wobei bevorzugt dem zweiten Lagertank (5) eine Gasflasche (16) für das Kohlenstoffdioxid zugeordnet ist, die fluidisch mit dem Gasanschluss (13) verbunden oder verbindbar ist. Redox-Flow-Batterie (1 ) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die beiden Lagertanks (4, 5) über einen Anschluss (17) für ein Gas, wie Luft oder Stickstoff, druckbeaufschlagbar sind. Redox-Flow-Batterie (1 ) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Separator (36) als Membran, wie eine ionenleitende, bevorzugt kationenleitende Membran, ausgeführt ist. Redox-Flow-Batterie (1 ) nach Anspruch 6, dadurch gekennzeichnet, dass die Membran eine Dicke zwischen 10 und 200 pm, bevorzugt zwischen 30 und 180 pm, besonders bevorzugt zwischen 120 und 150 pm und/oder bevorzugt ein Elastizitätsmodul bei 23 °C und 50% relativer Feuchte zwischen 250 und 2.000 N/mm2 ausweist. Redox-Flow-Batterie (1 ) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Separator (36) eine elektroosmotische Permeabilität zwischen 5,0 und 31 pl*cm3/h und bevorzugt zwischen 5,6 und 30,7 pl*cm3/h aufweist; und/oder dass die erste und/oder zweite Elektrode (34, 35) aus Kohlenstoff, Ruß, Graphit, Kohlenstoffflocken, Kohlenstoffpapier, Kohlenstofffaser, Kohlenstoffnanoröhren, Kohlenstoffnanofasern, Graphen und/oder glasartigem Kohlenstoff, insbesondere in Stiftform hergestellt ist. Redox-Flow-Batterie (1 ) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die erste Elektrode eine Anode, das erste Elektrolyt ein Anolyt ist und die zweite Elektrode eine Kathode und das zweite Elektrolyt ein Katholyt ist; oder dass die erste Elektrode eine Kathode, das erste Elektrolyt ein Katholyt ist und die zweite Elektrode eine Anode und das zweite Elektrolyt ein Anolyt ist. Redox-Flow-Batterie (1 ) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass mehrere elektrochemische Zellen (10) entlang deren Längserstreckung hintereinander angeordnet sind, derart, dass sie einen Stapel aus abwechselnd aneinander gereihten ersten und zweiten Halbzellen (11 , 12) bilden, wobei die ersten und zweiten Halbzellen als beidseitig offene Hohlkörper, bevorzugt nach Art eines Rohres ausgeführt sind und an ihren aneinandergrenzenden axialen Enden miteinander kraft-, form-, und/oder stoffschlüssig miteinander gefügt sind. Redox-Flow-Batterie (1 ) nach Anspruch 10, dadurch gekennzeichnet, dass die beiden Halbzellen identisch ausgeführt sind und der beidseitig offene Hohlkörper dieser beiden jeweils derart komplementär ausgeführte axiale Enden aufweist, dass das eine Ende des Hohlkörpers der ersten Halbzelle (11 ) in das andere, komplementär ausgeführte Ende des Hohlkörpers der zweiten Halbzelle (12) einführbar und bevorzugt kraft- und/oder formschlüssig mit diesem, insbesondere lösbar verbindbar ist. Redox-Flow-Batterie (1 ) nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass das Innenvolumen der ersten oder zweiten Halbzelle (11 , 12) mindestens 100 ml beträgt. Redox-Flow-Batterie (1 ) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Separator (36) jeweils zwischen den axialen Enden zweier benachbarter erster und zweiter Halbzellen angeordnet und bevorzugt von diesen gehalten, insbesondere klemmend gehalten ist; und/oder dass der Separator (36) sich innerhalb der Radialbegrenzung der ersten oder zweiten Halbzelle (11 , 12) erstreckt, also nicht über deren Radialbegrenzung hinausreicht. Redox-Flow-Batterie (1 ) nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Redox-Flow-Batterie (1 ) eine Steuerung (8) zur Regelung des Ladens und Entladens zugeordnet ist; und/oder dass die Redox-Flow-Batterie (1 ) auf einem Gestell (9), bevorzugt einem fahrbaren Gestell angeordnet ist.
PCT/EP2023/056194 2022-03-11 2023-03-10 Redox-flow-batterie WO2023170277A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022105793.3 2022-03-11
DE102022105793 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023170277A1 true WO2023170277A1 (de) 2023-09-14

Family

ID=85571240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/056194 WO2023170277A1 (de) 2022-03-11 2023-03-10 Redox-flow-batterie

Country Status (1)

Country Link
WO (1) WO2023170277A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012159818A1 (en) * 2011-04-11 2012-11-29 Antecy B.V. Self-contained solar-powered energy supply and storage system
DE102011122010A1 (de) * 2011-12-23 2013-06-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Redox-Flow-Batterie mit außenliegender Versorgungsleitung und/oder Entsorgungsleitung
EP3320576A1 (de) * 2015-07-08 2018-05-16 Elod Lajos Gyenge Redox-durchflussbatterie mit redoxpaar auf kohlenstoffdioxidbasis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012159818A1 (en) * 2011-04-11 2012-11-29 Antecy B.V. Self-contained solar-powered energy supply and storage system
DE102011122010A1 (de) * 2011-12-23 2013-06-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Redox-Flow-Batterie mit außenliegender Versorgungsleitung und/oder Entsorgungsleitung
EP3320576A1 (de) * 2015-07-08 2018-05-16 Elod Lajos Gyenge Redox-durchflussbatterie mit redoxpaar auf kohlenstoffdioxidbasis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HORI: "Electrochemical CO2 Reduction on Metal Electrodes", MODERN ASPECTS OF ELECTROCHEMISTRY,, vol. 42, 1 January 2008 (2008-01-01), pages 89 - 189, XP009153038 *

Similar Documents

Publication Publication Date Title
EP3138139B1 (de) Metall-luft-batterie
EP2893586B1 (de) Elektrochemische zelle vom durchflusstyp
DE102012016317A1 (de) Redox-Flow-Zelle zur Speicherung elektrischer Energie
EP3489394A1 (de) Elektrolyseanlage zur niederdruck-pem-elektrolyse
EP3642392A1 (de) Co2-electrolyseur
WO2015165707A1 (de) Anode und elektrolyt für eine metall-luft-batterie
EP2732500B1 (de) Luftatmende brennstoffzelle und zellstapel für die oxidation von ionen mit sauerstoff
EP2371023A1 (de) Verfahren und vorrichtung zum austragen verbrauchter und zum teil explosionsfähiger betriebsmedien einer brennstoffzelle
WO2023170277A1 (de) Redox-flow-batterie
EP2886681A1 (de) Elektrochemische Elektrolysezelle für die Wasserelektrolyse sowie Verfahren zum Betreiben derselben
DE102007001976A1 (de) Vorrichtung zur Umwandlung, Speicherung und Abgabe von Energie
EP4288588A1 (de) Verfahren zur behandlung von prozessfluiden und filtervorrichtung zum durchführen des verfahrens
WO2010054937A1 (de) Brennstoffzellensystem mit energieeffizientem reaktandenrecycling
DE112005002020B4 (de) Brennstoffzellensystem
DE102018121669A1 (de) Reversible Brennstoffzelleneinheit und eine reversible Brennstoffzelle
DE102015224178B4 (de) Redox-Brennstoffzellensystem
WO2020126118A1 (de) Elektrolyseur zur kohlenstoffdioxidreduktion
DE102014103554A1 (de) Verfahren und Vorrichtung zur Gewinnung von Stickstoff aus Luft
EP4127269B1 (de) Verfahren und vorrichtung zur synthese von ammoniak
DE102016122196A1 (de) Gasdiffusionsschicht und Verfahren zu deren Herstellung, sowie Brennstoffzelle
EP4269658A1 (de) Verfahren zum betreiben einer elektrolyseanlage hinsichtlich des wassermanagements und elektrolyseanlage
WO2008049448A1 (de) Versorgungssystem für einen brennstoffzellenstapel
EP4342013A1 (de) Behandlung wasserstoffhaltiger und sauerstoffhaltiger restgase von brennstoffzellen
WO2022199909A1 (de) Osmoseverfahren und vorrichtung zur durchführung eines solchen verfahrens
DE102006004395A1 (de) Brennstoffzellensystem, Verfahren zum Betreiben eines Brennstoffzellensystems und Computerprogrammprodukt zum Ausführen des Verfahrens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23710755

Country of ref document: EP

Kind code of ref document: A1