WO2023169597A1 - 一种硅基复合材料及其制备方法、锂电池的负极材料及其制备方法、锂电池 - Google Patents

一种硅基复合材料及其制备方法、锂电池的负极材料及其制备方法、锂电池 Download PDF

Info

Publication number
WO2023169597A1
WO2023169597A1 PCT/CN2023/087771 CN2023087771W WO2023169597A1 WO 2023169597 A1 WO2023169597 A1 WO 2023169597A1 CN 2023087771 W CN2023087771 W CN 2023087771W WO 2023169597 A1 WO2023169597 A1 WO 2023169597A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
based composite
preparation
tio
piezoelectric
Prior art date
Application number
PCT/CN2023/087771
Other languages
English (en)
French (fr)
Inventor
任玉荣
赵宏顺
Original Assignee
常州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州大学 filed Critical 常州大学
Publication of WO2023169597A1 publication Critical patent/WO2023169597A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of lithium batteries, and specifically relates to a silicon-based composite material and a preparation method thereof, a negative electrode material of a lithium battery and a preparation method thereof, and a lithium battery.
  • Secondary batteries are a typical representative of green electrochemical energy and play an increasingly important role in daily life.
  • lithium-ion batteries have been widely used in various portable electronic components, power vehicles, etc. due to their advantages such as low self-discharge, high energy density, and wide operating voltage window.
  • the negative electrode material of commercial lithium batteries is mainly graphite.
  • its theoretical specific capacity is 372mAh g-1, and the room for improvement is limited. Therefore, looking for high-specific capacity negative electrode materials that can replace graphite has become a research and development hotspot for lithium-ion batteries.
  • Silicon anodes have attracted widespread attention due to their low cost, higher theoretical specific capacity (4200mAh g -1 , Li 4.4 Si), and lower operating voltage (0.37V vs. Li/Li + ).
  • silicon-carbon alloys Si/C
  • Si/C due to its good mechanical properties and chemical stability, is more likely to meet the requirements of future new energy vehicles and portable wearable energy storage devices for high energy density, high power density and lightweight batteries.
  • practical applications are limited by shortcomings such as poor conductivity, slow reaction kinetics, and obvious volume effect (up to 300%).
  • the object of the present invention is to provide a silicon-based composite based on interface ferroelectric modification and piezoelectric effect.
  • the first object of the present invention is to provide a silicon-based composite material, including a blended material with a porous structure and a sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material coated on the surface of the blended material.
  • the blended material includes blended porous Si/C materials and multi-walled carbon nanotubes.
  • the silicon-based composite material includes:
  • the second object of the present invention is to provide a method for preparing silicon-based composite materials as described above, which is characterized in that it includes the following steps:
  • step S2 Mix the acidified multi-walled carbon nanotubes with the porous Si/C material obtained in step S1, and then perform ball milling for 5-8 hours to obtain the blended material;
  • step S3 Mix the sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material with the blended material obtained in step S2, and perform ball milling for 2-4 hours to obtain the silicon-based composite material Si/C@CNTs. @BNT.
  • step S3 the mass ratio of the sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material to the blended material is 1: (4-19).
  • step S2 the feeding mass ratio of the porous Si/C material and the multi-walled carbon nanotubes is (8-10):1.
  • the ball milling steps in steps S1, S2 and S3 need to be performed under an inert gas atmosphere; the preparation method also includes a sieving step after ball milling;
  • the ball-to-material ratio is (20-30):1
  • the rotation speed of the ball mill is 700-900 rpm.
  • the preparation method of the sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material includes the following steps: add bismuth nitrate pentahydrate, sodium nitrate and tetrabutyl titanate to NaOH and stir evenly. Conduct a hydrothermal reaction at 150-170°C for 40-60 hours to obtain sodium bismuth titanate powder, that is, the sodium bismuth titanate (Bi 0.5 Na0.5 ) TiO 3 piezoelectric material;
  • the molar ratio of the bismuth nitrate pentahydrate, sodium nitrate and tetrabutyl titanate is (1-2):(2-3):1.
  • the third object of the present invention is to provide a negative electrode material for a lithium battery, including a silicon-based composite material as described above or a silicon-based composite material prepared by the preparation method as described above.
  • it includes the following steps: dispersing the silicon-based composite material, conductive agent and adhesive in an aqueous solvent at a mass ratio of (7-9):1:1 to obtain a mixed dispersion, and dispersing the mixed dispersion. Coat on copper foil and dry to obtain an electrode sheet, which is the negative electrode material.
  • the fourth object of the present invention is to provide a lithium battery, including the negative electrode material as described above or the negative electrode material obtained by the preparation method as described above.
  • the preparation method of the present invention is simple and easy to operate, has low energy consumption and little pollution;
  • porous Si/C material as a matrix ensures the high specific capacity of the anode material.
  • the porous structure provides multi-path transmission channels for lithium ions and provides an effective buffer space for the volume expansion of silicon;
  • the conductive network composed of multi-walled carbon nanotubes CNTs is conducive to enhancing electron transfer, giving it excellent reaction kinetics; at the same time, the network structure composed of CNTs helps lithium ions maintain structural stability during the process of deintercalating lithium. Furthermore, the capacity remains high under high current and has high stability;
  • BNT sodium bismuth titanate
  • a local micro-electric field is formed in situ during the charge and discharge process, which can accelerate lithium ion transport;
  • BNT can utilize the mechanical stress generated by the volume effect of the alloying reaction to form a piezoelectric potential, which can regulate lithium ion transport.
  • this volume effect always accompanies the entire charge and discharge process, the external stimulation of the architectural material always exists, and the function will not fail, thereby maintaining good interface contact and more effectively promoting the interface lithium ion transport capability.
  • Figure 1 is an SEM image of the silicon-based composite material in Example 2;
  • Figure 2 is a cross-sectional morphology diagram of the silicon-based composite material in Example 2 tested using focused ion beam;
  • Figure 3 is a TEM image of the silicon-based composite material of Example 2.
  • Figure 4 is a comparison chart of the charge and discharge test results of the lithium batteries of Example 2 and Comparative Example 1;
  • Figure 5 is a schematic diagram of the surface coating structure of the lithium-ion battery negative electrode material with piezoelectric effect according to the present invention.
  • the invention provides a lithium battery, including a negative electrode material.
  • the preparation method of the negative electrode material includes the following steps: disperse the silicon-based composite material, the conductive agent and the binder in a water solvent at a mass ratio of (7-9):1:1 to obtain a mixed dispersion, and apply the mixed dispersion Cover it on copper foil and dry it to obtain the electrode sheet, which is the negative electrode material.
  • the silicon-based composite material of the present invention includes a blended material with a porous structure and a sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material coated on the surface of the blended material.
  • the blended material includes blended porous Si/ C materials and multi-walled carbon nanotubes.
  • silicon-based composite materials include: 5-20% sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material; 5-30% multi-walled carbon nanotubes; 65-90% porous Si/ C material.
  • This application uses porous Si/C material as the matrix to ensure the high specific capacity of the negative electrode material.
  • the porous structure provides multi-path transmission channels for lithium ions and provides an effective buffer space for the volume expansion of silicon; multi-walled carbon nanotubes
  • the conductive network composed of (CNTs) is conducive to enhancing electron transfer, giving it excellent reaction kinetics; at the same time, the network structure composed of CNTs helps lithium ions maintain structural stability during the process of deintercalating lithium, thereby increasing the capacity under large currents. Stays high and has high stability.
  • LTO Due to the ferroelectricity of LTO, a local micro-electric field is formed in situ during the charge and discharge process, which can accelerate the transport of lithium ions.
  • LTO can use the mechanical stress generated by the volume effect of the alloying reaction to form a piezoelectric potential, which can regulate lithium ions. transmission. And because this volume effect always accompanies the entire charge and discharge process, the external stimulus of the architectural material always exists, and the function will not fail, thus maintaining a good boundary. Surface contact can more effectively promote the interfacial lithium ion transport capacity.
  • This application also provides a method for preparing silicon-based composite materials, including the following steps:
  • step S2 Mix the acidified multi-walled carbon nanotubes with the porous Si/C material obtained in step S1, and then perform ball milling in an argon atmosphere for 5-8 hours (the ball-to-material ratio is (20-30): 1, ball-to-material ratio The rotating speed of the machine is 700-900rpm), and the blended material is obtained through sieving; among them, the feeding mass ratio of porous Si/C material and multi-walled carbon nanotubes is (8-10):1;
  • step S3 Mix the sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material with the blended material obtained in step S2, and conduct ball milling with a ball mill under argon gas separation for 2-4h (the ball-to-material ratio is (20- 30): 1, the rotation speed of the pellet machine is 700-900rpm), and after sieving, the silicon-based composite material Si/C@CNTs@BNT is obtained; among them, sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material and The mass ratio of the mixed materials is 1:(4-19).
  • the preparation method of sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material includes the following steps: add bismuth nitrate pentahydrate, sodium nitrate and tetrabutyl titanate to acetic acid respectively and stir evenly, at 150-170°C Carry out a hydrothermal reaction for 40-60 hours to obtain sodium bismuth titanate powder, that is, sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material.
  • the molar ratio of bismuth nitrate pentahydrate, sodium nitrate and tetrabutyl titanate is (1-2):(2-3):1.
  • the preparation method of sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material is the same, including the following steps:
  • Acidification treatment of multi-walled carbon nanotubes Mix sulfuric acid and nitric acid with a volume ratio of 3:1 to obtain mixed acid; use the above mixed acid to ultrasonically treat the carbon nanotubes for 1 hour, and then suction filtrate to obtain acidified multi-walled nanotubes. spare.
  • This embodiment provides a method for preparing silicon-based composite materials, which includes the following steps:
  • the Si/C material is ball milled in a ball mill under an argon atmosphere for 16 hours.
  • the ball-to-material ratio is 25:1 and the rotation speed is 800 rpm.
  • the product is collected through a sieve to obtain 90g of porous Si/C material for later use;
  • step S2 Mix 10g of acidified multi-walled carbon nanotubes with the porous Si/C material obtained in step S1 according to a mass ratio of 9:1, and then ball-mill under an argon atmosphere for 5 hours (the ball-to-material ratio is 25:1, ball-to-material ratio is 25:1.
  • the rotating speed of the material machine is 800 rpm), and the blended material Si/C@CNTs is obtained through sieving;
  • step S3 Mix 2g sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material and 38g blend material Si/C@CNTs obtained in step S2 according to a mass ratio of 1:19 (sodium bismuth titanate (Bi 0.5 Na 0.5 )TiO 3 piezoelectric material accounts for 5% of the mass percentage of the silicon-based composite material), conduct ball milling with a ball mill under argon gas separation for 3 hours (the ball-to-material ratio is 15:1, and the speed of the ball mill is 800 rpm). After sieving, the silicon-based composite material Si/C@CNTs@BNT-5% was obtained.
  • This embodiment also provides a lithium battery, including a negative electrode material, wherein the negative electrode material includes the silicon-based composite material as described above.
  • the preparation method and type of lithium battery are prepared by methods known in the art, and are not specifically limited in this application.
  • the preparation method of negative electrode material includes the following steps: dispersing the silicon-based composite material Si/C@CNTs@BNT, superconducting carbon and sodium carboxymethylcellulose prepared above in a mass ratio of 8:1:1 In the water solvent, a mixed dispersion is obtained, and then the mixed dispersion is coated on the foil and dried to obtain an electrode sheet, that is, the negative electrode material;
  • This embodiment provides a method for preparing silicon-based composite materials and a method for preparing negative electrode materials for lithium batteries, which is basically the same as Example 1.
  • the difference is that in step S3, 2g sodium bismuth titanate (Bi 0.5 Na 0.5 )TiO 3 piezoelectric material and 18g of the blend material obtained in the S2 step are mixed at a mass ratio of 1:9 (the mass percentage of sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material in the silicon-based composite material is 10%) , the silicon-based composite material Si/C@CNTs@BNT-10% was obtained.
  • This embodiment provides a method for preparing silicon-based composite materials and a method for preparing negative electrode materials for lithium batteries, which is basically the same as Example 1.
  • the difference is that in step S3, 2g sodium bismuth titanate (Bi 0.5 Na 0.5 )TiO 3 piezoelectric material and 11.3g of the blend material obtained in the S2 step are mixed at a mass ratio of 15:85 (the mass percentage of sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material in the silicon-based composite material is 15% ), the silicon-based composite material Si/C@CNTs@BNT-15% was obtained.
  • This embodiment provides a method for preparing silicon-based composite materials and a method for preparing negative electrode materials for lithium batteries, which is basically the same as Example 1.
  • the difference is that in step S3, 2g sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material and 8 g of the blend material obtained in the S2 step are mixed at a mass ratio of 2:8 (the mass percentage of sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material in the silicon-based composite material is 20%) , the silicon-based composite material Si/C@CNTs@BNT-20% was obtained.
  • This embodiment provides a method for preparing silicon-based composite materials and a method for preparing negative electrode materials for lithium batteries, which is basically the same as Example 1.
  • the difference is that in step S2, 80g of the porous Si/C material obtained in step S1 is the same as that in Example 1. 10g multi-walled carbon nanotubes were mixed at a mass ratio of 8:1.
  • This embodiment provides a method for preparing silicon-based composite materials and a method for preparing negative electrode materials for lithium batteries, which is basically the same as Example 1.
  • the difference is that in step S2, 90g of the porous Si/C material obtained in step S1 is the same as that in Example 1. 9g of multi-walled carbon nanotubes were mixed at a mass ratio of 10:1.
  • This comparative example provides a preparation method of composite electrode material, which includes the following steps:
  • the Si/C material is ball milled in a ball mill under an argon atmosphere for 16 hours.
  • the ball-to-material ratio is 25:1 and the rotation speed is 800 rpm.
  • the product is collected through a sieve to obtain 90g of porous Si/C material for later use;
  • step S2 Mix 10g of acidified multi-walled carbon nanotubes with the porous Si/C material obtained in step S1 according to a mass ratio of 9:1, and then ball-mill under an argon atmosphere for 5 hours (the ball-to-material ratio is 25:1, ball-to-material ratio is 25:1.
  • the rotating speed of the material machine is 800 rpm), and the blended material Si/C@CNTs is obtained through sieving.
  • This embodiment also provides a lithium battery, including a negative electrode material, wherein the negative electrode material includes the silicon-based composite material as described above.
  • the lithium battery is prepared by methods known in the art, and is not specifically limited in this application.
  • the preparation method of negative electrode material includes the following steps: dispersing the blend material Si/C@CNTs, superconducting carbon and sodium carboxymethyl cellulose prepared above in a water solvent according to a mass ratio of 8:1:1 , a mixed dispersion is obtained, and then the mixed dispersion is coated on the foil and dried to obtain the electrode sheet, that is, the negative electrode material;
  • This comparative example provides a method for preparing silicon-based composite materials and a method for preparing negative electrode materials for lithium batteries, which is basically the same as Example 1. The difference is that there is no ball milling process in steps S1, S2 and S3.
  • This comparative example provides a method for preparing silicon-based composite materials and a method for preparing negative electrode materials for lithium batteries, which is basically the same as Example 1.
  • the difference is that in step S3, 2g sodium bismuth titanate (Bi 0.5 Na 0.5 )
  • the TiO 3 piezoelectric material is mixed with 65g of the blend material obtained in the S2 step.
  • the mass percentage of sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material in the silicon-based composite material is 3%)
  • This comparative example provides a method for preparing silicon-based composite materials and a method for preparing negative electrode materials for lithium batteries, which is basically the same as Example 1.
  • the difference is that in step S3, 2g sodium bismuth titanate (Bi 0.5 Na 0.5 )
  • the TiO 3 piezoelectric material is mixed with 6g of the blend material obtained in the S2 step.
  • the mass percentage of sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material in the silicon-based composite material is 25%)
  • the lithium batteries prepared in Examples 1-6 and Comparative Examples 1-2 were subjected to charge and discharge experiments on the Xinwei battery testing system using constant current charge and discharge test standards. The results obtained are as follows:
  • FIGS 1-4 are all diagrams of Embodiment 2:
  • FIG 3 shows the TEM image of silicon-based composite material at high resolution.
  • the internal atomic arrangement of the BNT material can be clearly observed, indicating that the crystal structure of sodium bismuth titanate (Bi 0.5 Na 0.5 ) TiO 3 piezoelectric material (BNT) has not been destroyed after ball milling.
  • the interplanar spacing shown in the figure is 0.235nm, which corresponds to the (110) crystal plane of the BNT material.
  • the area sandwiched by the yellow solid line is CNTs.
  • Figure 4 shows that the charge and discharge test results show that Si/C@CNTs@BNT-10% can still maintain a reversible specific capacity of 780.9mAh g -1 after 100 cycles, with a capacity retention rate of 85.70%. In comparison, it was found that the capacity of the Si/C@CNTs electrode in Comparative Example 1 declined rapidly after 50 cycles, and the capacity retention rate was only 50.09%.
  • FIG. 5 is a schematic diagram of the surface coating structure of the lithium-ion battery negative electrode material with piezoelectric effect.
  • A represents the state before discharge, the upper layer is the BNT piezoelectric modification layer, and the lower layer represents the Si/C negative electrode composite material layer;
  • B represents the state during the discharge process, in which the embedded small balls represent lithium ions.
  • the lithium ions The negative electrode material is embedded in the electrolyte, and as the volume effect occurs (the lower part becomes wider), the piezoelectric coating layer (upper part) is squeezed, and a piezoelectric potential is generated in the coating layer (arrow in the lower layer), and the pressure The direction of the potential is downward, which is the same as the diffusion direction of lithium ions;
  • C represents the state of the end of discharge.
  • the BNT piezoelectric modification layer itself may have a tendency to prevent the piezoelectric effect from disappearing, forming a reverse piezoelectric electric field.
  • This electric field just promotes the rapid migration of lithium ions out of the negative electrode. spread toward the positive electrode.
  • the volume effect gradually decreases (the lower part becomes smaller and smaller), and the pressure on the piezoelectric coating layer decreases, corresponding to the decrease in the internal piezoelectric potential, but the direction is still upward, which is consistent with the diffusion direction of lithium ions and the direction of the external electric field. ;F indicates that the discharge is completed.
  • the piezoelectric coating layer BNT provides power for the reversible deintercalation of lithium ions during the discharge process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种硅基复合材料,包括具有多孔结构的共混材料、包覆在共混材料表面的钛酸铋钠(Bi0.5Na0.5)TiO3压电材料,共混材料包括共混的多孔Si/C材料和多壁碳纳米管。本发明硅基复合材料,基于界面铁电修饰和压电效应,多孔结构为锂离子提供了多路径的传输通道,并且为硅的体积膨胀提供了有效的缓冲空间,多壁碳纳米管CNTs构成的导电网络有利于增强电子转移,使其具有优异的反应动力学;同时,CNTs构成的网络结构有助于锂离子在脱嵌锂过程中保持结构稳定,进而在大电流下容量保持较高,并且具有很高的稳定性。钛酸铋钠(Bi0.5Na0.5)TiO3压电材料架构材料的外部刺激一直存在,功能不会失效,从而维持良好的界面接触,更加有效的促进界面锂离子输运能力。

Description

一种硅基复合材料及其制备方法、锂电池的负极材料及其制备方法、锂电池 技术领域
本发明属于锂电池领域,具体涉及一种硅基复合材料及其制备方法、锂电池的负极材料及其制备方法、锂电池。
背景技术
二次电池是绿色电化学能源的典型代表,在日常生活中起着愈发重要的作用。在各种二次电池中,锂离子电池凭借其低自放电、较高的能量密度及较宽的工作电压窗口等优点,已大规模应用于各种便携式电子元器件、动力汽车等中。目前,商业化锂电池的负极材料以石墨为主,然而其理论比容量为372mAh g-1,提升空间有限,因此,寻找可替代石墨的高比容量负极材料成为锂离子电池的研发热点。
硅负极因其低廉的成本,更高的理论比容量(4200mAh g-1,Li4.4Si),较低的工作电压(0.37V vs.Li/Li+)而受到广泛关注,其中硅碳合金(Si/C)因其良好的机械性能和化学稳定性,因此更容易满足未来新能源汽车和便携式穿戴储能设备对于电池高能量密度、高功率密度和轻量化的要求。但实际应用却受制于导电性差、反应动力学缓慢和体积效应明显(最高可达300%)等缺点。
为了解决以上问题,需要研发出一种硅基复合材料及其制备方法、锂电池的负极材料及其制备方法、锂电池。
发明内容
鉴于此,本发明的目的是提供一种基于界面铁电修饰和压电效应的硅基复 合材料及其制备方法、锂电池的负极材料及其制备方法、锂电池。
本发明的第一个目的在于提供一种硅基复合材料,包括具有多孔结构的共混材料、包覆在所述共混材料表面的钛酸铋钠(Bi0.5Na0.5)TiO3压电材料,所述共混材料包括共混的多孔Si/C材料和多壁碳纳米管。
具体的,按照质量分数计,所述硅基复合材料中,包括:
钛酸铋钠(Bi0.5Na0.5)TiO3压电材料    5-20%;
多壁碳纳米管                      5-30%;
多孔Si/C材料                      65-90%。
本发明的第二个目的在于提供一种如上所述硅基复合材料的制备方法,其特征在于,包括如下步骤:
S1、将Si/C材料用球磨机进行球磨12-16h,得到所述多孔Si/C材料,备用;
S2、将经过酸化处理的多壁碳纳米管与步骤S1得到的所述多孔Si/C材料混合,再进行球磨5-8h,得到所述共混材料;
S3、将所述钛酸铋钠(Bi0.5Na0.5)TiO3压电材料与S2步骤得到的所述共混材料混合,进行球磨2-4h,得到所述硅基复合材料Si/C@CNTs@BNT。
具体的,步骤S3中,所述钛酸铋钠(Bi0.5Na0.5)TiO3压电材料占所述与所述共混材料的投料质量比为1:(4-19)。
具体的,步骤S2中,所述多孔Si/C材料与所述多壁碳纳米管的投料质量比为(8-10):1。
具体的,步骤S1、S2和S3中的球磨步骤,需要在惰性气体氛围下进行;所述制备方法在球磨后还包括过筛的步骤;
优选地,步骤S1、S2和S3中的球磨步骤中,球料比为(20-30):1,球料机的转速为700-900rpm。
具体的,所述钛酸铋钠(Bi0.5Na0.5)TiO3压电材料的制备方法包括如下步骤:以五水硝酸铋、硝酸钠和钛酸四丁酯,分别加入NaOH中搅拌均匀,在 150-170℃下进行水热反应40-60h,得到钛酸铋钠粉末,即所述钛酸铋钠(Bi0.5Na0.5)TiO3压电材料;
优选地,所述五水硝酸铋、硝酸钠和钛酸四丁酯的投料摩尔比为(1-2):(2-3):1。
本发明的第三个目的在于提供一种锂电池的负极材料,包括如上所述硅基复合材料或如上所述制备方法制备得到的硅基复合材料。
具体的,包括如下步骤:将所述硅基复合材料、导电剂和粘结剂按照质量比为(7-9):1:1分散在水溶剂中得到混合分散液,将所述混合分散液涂覆在铜箔上,干燥得到电极片,即所述负极材料。
本发明的第四个目的在于提供一种锂电池,包括如上所述负极材料或如上所述制备方法得到的负极材料。
本发明克服了现有技术中,具有如下优点:
(1)本发明的制备方法简单易操作,能耗较低,污染小;
(2)多孔Si/C材料作为基体确保了该负极材料的高比容量,多孔结构为锂离子提供了多路径的传输通道,并且为硅的体积膨胀提供了有效的缓冲空间;
(3)多壁碳纳米管CNTs构成的导电网络有利于增强电子转移,使其具有优异的反应动力学;同时,CNTs构成的网络结构有助于锂离子在脱嵌锂过程中保持结构稳定,进而在大电流下容量保持较高,并且具有很高的稳定性;
(4)一方面,由于钛酸铋钠(Bi0.5Na0.5)TiO3压电材料(BNT)优秀的铁电性,在充放电过程中原位形成局部微电场,可加速锂离子传输;另一方面,BNT可以利用合金化反应的体积效应产生的机械应力形成压电势,可调控锂离子传输。且因为这种体积效应一直伴随在整个充放电过程中,因此该架构材料的外部刺激一直存在,功能不会失效,从而维持良好的界面接触,更加有效的促进界面锂离子输运能力。
说明书附图
附图1为实施例2中硅基复合材料的SEM图;
附图2为利用聚焦离子束测试实施例2中硅基复合材料的横截面形貌图;
附图3为实施例2硅基复合材料的TEM图;
附图4为实施例2与对比例1锂电池的充放电测试结果的对比图;
附图5为本发明具有压电效应的锂离子电池负极材料表面包覆结构的示意图。
具体实施方式
本发明提供一种锂电池,包括负极材料。负极材料的制备方法,包括如下步骤:将硅基复合材料、导电剂和粘结剂按照质量比为(7-9):1:1分散在水溶剂中得到混合分散液,将混合分散液涂覆在铜箔上,干燥得到电极片,即负极材料。
本发明硅基复合材料,包括具有多孔结构的共混材料、包覆在共混材料表面的钛酸铋钠(Bi0.5Na0.5)TiO3压电材料,共混材料包括共混的多孔Si/C材料和多壁碳纳米管。按照质量分数计,硅基复合材料中,包括:5-20%钛酸铋钠(Bi0.5Na0.5)TiO3压电材料;5-30%多壁碳纳米管;65-90%多孔Si/C材料。
本申请以多孔Si/C材料作为基体确保了负极材料的高比容量,多孔结构为锂离子提供了多路径的传输通道,并且为硅的体积膨胀提供了有效的缓冲空间;多壁碳纳米管(CNTs)构成的导电网络有利于增强电子转移,使其具有优异的反应动力学;同时,CNTs构成的网络结构有助于锂离子在脱嵌锂过程中保持结构稳定,进而在大电流下容量保持较高,并且具有很高的稳定性。
由于LTO的铁电性,在充放电过程中原位形成局部微电场,可加速锂离子传输;另一方面,LTO可以利用合金化反应的体积效应产生的机械应力形成压电势,可调控锂离子传输。且因为这种体积效应一直伴随在整个充放电过程中,因此该架构材料的外部刺激一直存在,功能不会失效,从而维持良好的界 面接触,更加有效的促进界面锂离子输运能力。
本申请还提供一种硅基复合材料的制备方法,包括如下步骤:
S1、将Si/C材料用球磨机在氩气气氛下进行球磨12-16h(球料比为(20-30):1,球料机的转速为700-900rpm),过筛得到多孔Si/C材料,备用;
S2、将经过酸化处理的多壁碳纳米管与步骤S1得到的多孔Si/C材料混合,再在氩气气氛下进行球磨5-8h(球料比为(20-30):1,球料机的转速为700-900rpm),过筛得到共混材料;其中,多孔Si/C材料与多壁碳纳米管的投料质量比为(8-10):1;
S3、将钛酸铋钠(Bi0.5Na0.5)TiO3压电材料与S2步骤得到的共混材料混合,进行在氩气分分下用球磨机进行球磨2-4h(球料比为(20-30):1,球料机的转速为700-900rpm),过筛后得到硅基复合材料Si/C@CNTs@BNT;其中,钛酸铋钠(Bi0.5Na0.5)TiO3压电材料与共混材料的投料质量比为1:(4-19)。
钛酸铋钠(Bi0.5Na0.5)TiO3压电材料的制备方法包括如下步骤:以五水硝酸铋、硝酸钠和钛酸四丁酯,分别加入乙酸中搅拌均匀,在150-170℃下进行水热反应40-60h,得到钛酸铋钠粉末,即钛酸铋钠(Bi0.5Na0.5)TiO3压电材料。其中,五水硝酸铋、硝酸钠和钛酸四丁酯的投料摩尔比为(1-2):(2-3):1。
下面结合具体实施例对本发明做进一步详细的说明,但本发明并不限于以下实施例。实施例中采用的实施条件可以根据具体使用的不同要求做进一步调整,未注明的实施条件为本行业中的常规条件。
以下各实施例中,钛酸铋钠(Bi0.5Na0.5)TiO3压电材料和多壁碳纳米管的制备及预处理过程如下:
1、钛酸铋钠(Bi0.5Na0.5)TiO3压电材料的制备方法相同,包括如下步骤:
(1)将5.82g Bi(NO3)3·5H2O溶解在60ml去离子水中并搅拌15分钟,得到Bi(NO3)3·5H2O溶液;
(2)将8.16ml Ti(OC4H9)4溶液逐滴加入Bi(NO3)3·5H2O溶液中,得到混合溶液;
(3)将10ml浓度为12M的NaOH添加到混合溶液中继续搅拌30min,并在150℃下保温反应24h。最后,使用去离子水为溶剂离心收集沉淀,并冷冻干燥72小时,得到钛酸铋钠Na0.5Bi0.5TiO3(BNT)粉末,即钛酸铋钠(Bi0.5Na0.5)TiO3压电材料,备用。
2、多壁碳纳米管的酸化处理:将体积比为3:1的硫酸和硝酸混合,得到混酸;将碳纳米管利用上述混酸进行超声处理1h,抽滤得到酸化后的多壁纳米管,备用。
实施例1
本实施例提供一种硅基复合材料的制备方法,它包括以下步骤:
S1、将Si/C材料在氩气气氛下用球磨机进行球磨16h,球料比为25:1,转速为800rpm,球磨后过筛收集产物,得到90g多孔Si/C材料,备用;
S2、将经过酸化处理的10g多壁碳纳米管与步骤S1得到的多孔Si/C材料按照质量比9:1混合,再在氩气气氛下进行球磨5h(球料比为25:1,球料机的转速为800rpm),过筛得到共混材料Si/C@CNTs;
S3、将2g钛酸铋钠(Bi0.5Na0.5)TiO3压电材料与38g S2步骤得到的共混材料Si/C@CNTs按照质量比1:19混合(钛酸铋钠(Bi0.5Na0.5)TiO3压电材料占硅基复合材料的质量百分比为5%),进行在氩气分分下用球磨机进行球磨3h(球料比为15:1,球料机的转速为800rpm),过筛后得到硅基复合材料Si/C@CNTs@BNT-5%。
本实施例还提供一种锂电池,包括负极材料,其中负极材料包括如上所述硅基复合材料。锂电池的制备方法及类型采用本领域的公知方法进行制备,本申请中并不做具体限定。
以下以一种举例进行说明:
(1)负极材料的制备方法,包括如下步骤:将上述制备得到的硅基复合材料Si/C@CNTs@BNT、超导炭和羧甲基纤维素钠按照质量比为8:1:1分散在水溶剂中,得到混合分散液,再将混合分散液涂覆在箔上,干燥得到电极片,即负极材料;
(2)将上述负极材料用作工作电极,高纯锂片用作对电极,以Celgard 2400作为隔膜,电解液为1M LiPF6溶解在碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/碳酸甲乙酯(EMC)(1:1:1vol)以及添加了10wt%的氟代碳酸乙烯酯(FEC),在装有高纯氩气(99.999%)的手套箱(H2O<0.01ppm,O2<0.01ppm)中的组装成2032型纽扣电池,即得到锂电池。
本申请中锂电池的充放电实验在新威电池测试系统上进行。
实施例2
本实施例提供一种硅基复合材料的制备方法,锂电池负极材料的制备方法,其与实施例1基本相同,不同之处在于,步骤S3中,将2g钛酸铋钠(Bi0.5Na0.5)TiO3压电材料与18g S2步骤得到的共混材料按照质量比1:9混合(钛酸铋钠(Bi0.5Na0.5)TiO3压电材料占硅基复合材料的质量百分比为10%),得到硅基复合材料Si/C@CNTs@BNT-10%。
实施例3
本实施例提供一种硅基复合材料的制备方法,锂电池负极材料的制备方法,其与实施例1基本相同,不同之处在于,步骤S3中,将2g钛酸铋钠(Bi0.5Na0.5)TiO3压电材料与11.3g S2步骤得到的共混材料按照质量比15:85混合(钛酸铋钠(Bi0.5Na0.5)TiO3压电材料占硅基复合材料的质量百分比为15%),得到硅基复合材料Si/C@CNTs@BNT-15%。
实施例4
本实施例提供一种硅基复合材料的制备方法,锂电池负极材料的制备方法,其与实施例1基本相同,不同之处在于,步骤S3中,将2g钛酸铋钠(Bi0.5Na0.5)TiO3压电材料与8g S2步骤得到的共混材料按照质量比2:8混合(钛酸铋钠(Bi0.5Na0.5)TiO3压电材料占硅基复合材料的质量百分比为20%),得到硅基复合材料Si/C@CNTs@BNT-20%。
实施例5
本实施例提供一种硅基复合材料的制备方法,锂电池负极材料的制备方法,其与实施例1基本相同,不同之处在于,步骤S2中,80g步骤S1得到的多孔Si/C材料与10g多壁碳纳米管按照质量比8:1混合。
实施例6
本实施例提供一种硅基复合材料的制备方法,锂电池负极材料的制备方法,其与实施例1基本相同,不同之处在于,步骤S2中,90g步骤S1得到的多孔Si/C材料与9g多壁碳纳米管按照质量比10:1混合。
对比例1
本对比例提供一种复合电极材料的制备方法,它包括以下步骤:
S1、将Si/C材料在氩气气氛下用球磨机进行球磨16h,球料比为25:1,转速为800rpm,球磨后过筛收集产物,得到90g多孔Si/C材料,备用;
S2、将经过酸化处理的10g多壁碳纳米管与步骤S1得到的多孔Si/C材料按照质量比9:1混合,再在氩气气氛下进行球磨5h(球料比为25:1,球料机的转速为800rpm),过筛得到共混材料Si/C@CNTs。
本实施例还提供一种锂电池,包括负极材料,其中负极材料包括如上所述硅基复合材料。锂电池的制备方法采用本领域的公知方法进行制备,本申请中并不做具体限定。
(1)负极材料的制备方法,包括如下步骤:将上述制备得到的共混材料Si/C@CNTs、超导炭和羧甲基纤维素钠按照质量比为8:1:1分散在水溶剂中,得到混合分散液,再将混合分散液涂覆在箔上,干燥得到电极片,即负极材料;
(2)将上述负极材料用作工作电极,高纯锂片用作对电极,以Celgard 2400作为隔膜,电解液为1M LiPF6溶解在碳酸乙烯酯(EC)/碳酸二甲酯(DMC)/碳酸甲乙酯(EMC)(1:1:1vol)以及添加了10wt%的氟代碳酸乙烯酯(FEC),在装有高纯氩气(99.999%)的手套箱(H2O<0.01ppm,O2<0.01ppm)中的组装成2032型纽扣电池,即得到锂电池。
本申请中锂电池的充放电实验在新威电池测试系统上进行。
对比例2
本对比例提供一种硅基复合材料的制备方法,锂电池负极材料的制备方法,其与实施例1基本相同,不同之处在于,步骤S1、S2和S3中均没有球磨的过程。
对比例3
本对比例提供一种硅基复合材料的制备方法,锂电池负极材料的制备方法,其与实施例1基本相同,不同之处在于,步骤S3中,2g钛酸铋钠(Bi0.5Na0.5)TiO3压电材料与65g S2步骤得到的共混材料混合。(钛酸铋钠(Bi0.5Na0.5)TiO3压电材料占硅基复合材料的质量百分比为3%)
对比例4
本对比例提供一种硅基复合材料的制备方法,锂电池负极材料的制备方法,其与实施例1基本相同,不同之处在于,步骤S3中,2g钛酸铋钠(Bi0.5Na0.5)TiO3压电材料与6g S2步骤得到的共混材料混合。(钛酸铋钠(Bi0.5Na0.5)TiO3压电材料占硅基复合材料的质量百分比为25%)
将上述实施例1-6及对比例1-2制备得到的锂电池采用恒电流充放电的测试标准在新威电池测试系统上进行充放电实验,得到的结果如下:
图1-4均为实施例2的图:
如图1的SEM所示,可以清晰地看到钛酸铋钠(Bi0.5Na0.5)TiO3压电材料紧紧包覆在多孔Si/C材料上;从图1所示硅基复合材料的SEM图中仅能够获得表面和边缘等有限的结构信息,但是硅基复合材料Si/C@CNTs@BNT-10%的内部结构还不明晰,有待进一步表征。
为了深入研究硅基复合材料Si/C@CNTs@BNT-10%内部结构信息,通过聚焦离子束(FIB)对其的横截面形貌进行了分析,结合SEM来精细表征材料内部的形貌和微观结构。从图2中可以清晰地看到,大量的多壁碳纳米管(CNTs)均匀地分布在材料的表面,相互缠绕交织,同时部分CNTs楔入硅碳之间的空隙中并向内部延伸,这主要归因于CNTs的柔韧性。此外,通过切面可以明显 观察到该复合材料呈马蜂窝结构,内部具有大量的空隙。这种多孔结构有利于调节在充放电过程中硅碳充放电过程的体积变化。
图3为硅基复合材料在高分辨率下的TEM图。可清晰观察到BNT材料的内部原子排布,说明球磨后钛酸铋钠(Bi0.5Na0.5)TiO3压电材料(BNT)的晶体结构并未遭到破坏。经测量,图中所示的晶面间距为0.235nm,对应BNT材料的(110)晶面。黄色实线所夹区域为CNTs。图4充放电测试结果显示,Si/C@CNTs@BNT-10%在循环100圈之后,依然可以保持780.9mAh g-1的可逆比容量,容量保持率为85.70%。与之对比发现,对比例1中的Si/C@CNTs电极在经过50个循环后,容量快速衰减,容量保持率仅为50.09%。
图5是具有压电效应的锂离子电池负极材料表面包覆结构的示意图。A代表放电前的状态,上层为BNT压电修饰层,下层表示Si/C负极复合材料层;B代表放电过程中的状态,其中内嵌的小球代表锂离子,当放电开始,锂离子从电解液中嵌入负极材料,并且伴随着体积效应的发生(下层部分变宽),对压电包覆层(上层部分)产生挤压,包覆层内产生压电势(下层中箭头),压电势的方向向下,与锂离子的扩散方向相同;C代表放电结束的状态,当放电结束时,负极材料中的锂离子全部嵌入,同时体积效应最显著(下层部分最大),此时BNT压电修饰层受到向上的机械应力最大,对应于此时的包覆层内部压电势最大,此时的压电势方向与锂离子扩散方向相同,极大促进了锂离子的扩散迁移;另一方面,E代表充电状态,当充电开始,锂离子开始通过负极材料(上层部分)向压电包覆层(下层部分)脱出,并且Si/C负极体积逐渐恢复到原来的尺寸,作用在BNT上的机械应力逐渐减小。但是外力的逐渐消失并不意味着压电效应的消失,BNT压电修饰层自身可能会存在阻止压电效应消失的趋势,形成反向压电电场,该电场正好促进锂离子快速迁移出负极,向正极扩散。体积效应逐步减小(下层部分越来越小),对于压电包覆层的压力减小,对应于内部压电势减小,但方向仍然向上,与锂离子的扩散方向以及外加电场方向一致;F表示放电完成,放电结束时,大部分锂离子回到正极(上层部分 中有大部分的小球),仍有部分无法回来,对应于负极材料无法回到原始位置,与最开始相比仍有一些膨胀(上层部分略大于B的上层部分),仍然对包覆层(下层部分)有压力,对应于此时的压电势最小,方向与锂离子扩散方向以及外加电场方向一致。因此可以说明压电包覆层BNT在放电过程中为锂离子的可逆脱嵌提供了动力。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种硅基复合材料,其特征在于:包括具有多孔结构的共混材料、包覆在所述共混材料表面的钛酸铋钠(Bi0.5Na0.5)TiO3压电材料,所述共混材料包括共混的多孔Si/C材料和多壁碳纳米管。
  2. 根据权利要求1所述硅基复合材料,其特征在于,按照质量分数计,所述硅基复合材料中,包括:
    钛酸铋钠(Bi0.5Na0.5)TiO3压电材料    5-20%;
    多壁碳纳米管                      5-30%;
    多孔Si/C材料                     65-90%。
  3. 一种如权利要求1-2中任一所述硅基复合材料的制备方法,其特征在于,包括如下步骤:
    S1、将Si/C材料用球磨机进行球磨12-16h,得到所述多孔Si/C材料,备用;
    S2、将经过酸化处理的多壁碳纳米管与步骤S1得到的所述多孔Si/C材料混合,再进行球磨5-8h,得到所述共混材料;
    S3、将所述钛酸铋钠(Bi0.5Na0.5)TiO3压电材料与S2步骤得到的所述共混材料混合,进行球磨2-4h,得到所述硅基复合材料Si/C@CNTs@BNT。
  4. 根据权利要求3所述硅基复合材料的制备方法,其特征在于:步骤S3中,所述钛酸铋钠(Bi0.5Na0.5)TiO3压电材料占所述与所述共混材料的投料质量比为1:(4-19)。
  5. 根据权利要求3所述硅基复合材料的制备方法,其特征在于:步骤S2中,所述多孔Si/C材料与所述多壁碳纳米管的投料质量比为(8-10):1。
  6. 根据权利要求3所述硅基复合材料的制备方法,其特征在于:步骤S1、S2和S3中的球磨步骤,需要在惰性气体氛围下进行;所述制备方法在球磨后还包括过筛的步骤;
    优选地,步骤S1、S2和S3中的球磨步骤中,球料比为(20-30):1,球料机 的转速为700-900rpm。
  7. 根据权利要求3所述硅基复合材料的制备方法,其特征在于,所述钛酸铋钠(Bi0.5Na0.5)TiO3压电材料的制备方法包括如下步骤:以五水硝酸铋、硝酸钠和钛酸四丁酯,分别加入NaOH中搅拌均匀,在150-170℃下进行水热反应40-60h,得到钛酸铋钠粉末,即所述钛酸铋钠(Bi0.5Na0.5)TiO3压电材料;
    优选地,所述五水硝酸铋、硝酸钠和钛酸四丁酯的投料摩尔比为(1-2):(2-3):1。
  8. 一种锂电池的负极材料,其特征在于:包括如权利要求1-2任一所述硅基复合材料或如权利要求3-7中任一所述制备方法制备得到的硅基复合材料。
  9. 一种如权利要求8所述负极材料的制备方法,其特征在于,包括如下步骤:将所述硅基复合材料、导电剂和粘结剂按照质量比为(7-9):1:1分散在水溶剂中得到混合分散液,将所述混合分散液涂覆在铜箔上,干燥得到电极片,即所述负极材料。
  10. 一种锂电池,其特征在于:包括如权利要求8所述负极材料或如权利要求9所述制备方法得到的负极材料。
PCT/CN2023/087771 2022-05-07 2023-04-12 一种硅基复合材料及其制备方法、锂电池的负极材料及其制备方法、锂电池 WO2023169597A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210492168.3 2022-05-07
CN202210492168.3A CN115036471A (zh) 2022-05-07 2022-05-07 一种硅基复合材料及其制备方法、锂电池的负极材料及其制备方法、锂电池

Publications (1)

Publication Number Publication Date
WO2023169597A1 true WO2023169597A1 (zh) 2023-09-14

Family

ID=83119343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087771 WO2023169597A1 (zh) 2022-05-07 2023-04-12 一种硅基复合材料及其制备方法、锂电池的负极材料及其制备方法、锂电池

Country Status (2)

Country Link
CN (1) CN115036471A (zh)
WO (1) WO2023169597A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036471A (zh) * 2022-05-07 2022-09-09 常州大学 一种硅基复合材料及其制备方法、锂电池的负极材料及其制备方法、锂电池
CN117727938B (zh) * 2024-02-07 2024-04-19 湖南先钠科技有限公司 一种可用于快充的钠离子电池正极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049416A (ja) * 2012-09-04 2014-03-17 Nissan Motor Co Ltd 非水電解質二次電池
CN105489853A (zh) * 2014-10-02 2016-04-13 三星电子株式会社 复合负极活性材料及其制备方法、负极和锂二次电池
CN106711461A (zh) * 2016-12-28 2017-05-24 中天储能科技有限公司 一种球形多孔硅碳复合材料及其制备方法与用途
CN109553127A (zh) * 2018-12-29 2019-04-02 陕西科技大学 一种水热法制备的钛酸铋钠纳米线及其制备方法
CN110137466A (zh) * 2019-05-14 2019-08-16 北京科技大学 锂离子电池硅碳-碳纳米管复合微球负极材料的制备方法
CN114243011A (zh) * 2020-09-09 2022-03-25 华为技术有限公司 用于电池负极的压电材料及其制备方法
CN115036471A (zh) * 2022-05-07 2022-09-09 常州大学 一种硅基复合材料及其制备方法、锂电池的负极材料及其制备方法、锂电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049416A (ja) * 2012-09-04 2014-03-17 Nissan Motor Co Ltd 非水電解質二次電池
CN105489853A (zh) * 2014-10-02 2016-04-13 三星电子株式会社 复合负极活性材料及其制备方法、负极和锂二次电池
CN106711461A (zh) * 2016-12-28 2017-05-24 中天储能科技有限公司 一种球形多孔硅碳复合材料及其制备方法与用途
CN109553127A (zh) * 2018-12-29 2019-04-02 陕西科技大学 一种水热法制备的钛酸铋钠纳米线及其制备方法
CN110137466A (zh) * 2019-05-14 2019-08-16 北京科技大学 锂离子电池硅碳-碳纳米管复合微球负极材料的制备方法
CN114243011A (zh) * 2020-09-09 2022-03-25 华为技术有限公司 用于电池负极的压电材料及其制备方法
CN115036471A (zh) * 2022-05-07 2022-09-09 常州大学 一种硅基复合材料及其制备方法、锂电池的负极材料及其制备方法、锂电池

Also Published As

Publication number Publication date
CN115036471A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
US10847789B2 (en) Negative electrode material for secondary battery, method for preparing the same, and battery containing the same
WO2023169597A1 (zh) 一种硅基复合材料及其制备方法、锂电池的负极材料及其制备方法、锂电池
WO2017031885A1 (zh) 一种锂电池负极浆料的制备方法
Yang et al. Simple synthesis of Si/Sn@ CG anodes with enhanced electrochemical properties for Li-ion batteries
CN108539147B (zh) 一种锂离子电池负极材料SiO@Al@C的制备方法及应用
CN110112408B (zh) 一种石墨烯-硅复合材料及其制备方法、电极材料及电池
CN108011085B (zh) 一种锂硫电池正极材料、其制备方法及其应用
WO2022121281A1 (zh) 一种自填充包覆硅基复合材料、其制备方法及其应用
CN111564612B (zh) 一种高导热导电性锂电正极材料及其制备方法
CN110416522B (zh) 一种含锂复合负极材料、其制备方法和其在锂二次电池中的应用
WO2023083147A1 (zh) 一种负极活性材料及含有该负极活性材料的负极片和锂离子电池
CN111129428A (zh) 一种多层正极片电极结构及其制备方法、正负极电池结构
CN114497549B (zh) 电化学制备正极补锂材料的方法和补锂材料及补锂浆料
CN112736232A (zh) 硅碳复合材料及其制备方法、负极片和锂离子二次电池
CN112151760A (zh) 一种硅基负极复合材料和锂二次电池
CN109686941B (zh) 一种制备锂离子动力电池用硅碳负极材料的方法
WO2022121280A1 (zh) 一种类石榴结构硅基复合材料、其制备方法及其应用
CN113184898B (zh) 一种二氧化锡-碳核壳纳米球复合材料、其制备方法及应用
CN108598458B (zh) 一种氮掺杂钛酸锂复合材料及其制备方法与锂离子电池
CN113728471B (zh) 负极材料、负极极片、电化学装置和电子装置
CN110931746B (zh) 一种硅-锡-石墨烯复合物电极材料及其制备方法和应用
CN114105133A (zh) 一种石墨-硅/硅氧化物-碳复合材料及其制备方法和应用
Hu Commercial carbon anode material surface-modified by spinel lithium titanate for fast lithium-ion interaction
Li et al. Improved electrochemical performance of carbon-coated LiFeBO3 nanoparticles for lithium-ion batteries
CN115020638B (zh) 一种锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766173

Country of ref document: EP

Kind code of ref document: A1