WO2023169412A1 - 电控机械干式制动钳 - Google Patents

电控机械干式制动钳 Download PDF

Info

Publication number
WO2023169412A1
WO2023169412A1 PCT/CN2023/080057 CN2023080057W WO2023169412A1 WO 2023169412 A1 WO2023169412 A1 WO 2023169412A1 CN 2023080057 W CN2023080057 W CN 2023080057W WO 2023169412 A1 WO2023169412 A1 WO 2023169412A1
Authority
WO
WIPO (PCT)
Prior art keywords
nut
roller
brake caliper
cage
screw
Prior art date
Application number
PCT/CN2023/080057
Other languages
English (en)
French (fr)
Inventor
郭锋亮
朱元澄
闫光辉
Original Assignee
芜湖伯特利汽车安全系统股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芜湖伯特利汽车安全系统股份有限公司 filed Critical 芜湖伯特利汽车安全系统股份有限公司
Publication of WO2023169412A1 publication Critical patent/WO2023169412A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/04Bands, shoes or pads; Pivots or supporting members therefor
    • F16D65/092Bands, shoes or pads; Pivots or supporting members therefor for axially-engaging brakes, e.g. disc brakes
    • F16D65/095Pivots or supporting members therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position

Definitions

  • the present invention relates to the technical field of braking systems, and in particular to an electronically controlled mechanical dry brake caliper.
  • electronically controlled mechanical dry brake calipers generally include a linear drive mechanism, whose function is to convert the rotational motion of the drive motor and reduction mechanism into the linear motion of the connecting piece.
  • a linear drive mechanism whose function is to convert the rotational motion of the drive motor and reduction mechanism into the linear motion of the connecting piece.
  • One form is a planetary roller screw:
  • Standard planetary roller screw The screw and nut are matched by multiple threaded rollers. This structure has high requirements on the size and geometric tolerance of the parts. As long as the accuracy of the parts slightly exceeds the requirements, it will produce The planetary roller screw is jammed due to interference, which requires very high processing and assembly requirements. The manufacturing process is very precise, resulting in a high cost for the planetary roller screw.
  • Reverse planetary roller screw The structure and principle are roughly the same as the standard planetary roller screw. The difference is that the nut is used to transmit torque and rotational speed, and the screw is used to transmit axial force.
  • Circulating planetary roller screw The rollers are equipped with multiple sets of annular grooves. The distance between the grooves matches the thread. Each time the roller rotates, it will break away from the thread of the screw and fall into the inner groove of the nut. The rollers are then pushed to the initial axial position before rotation through the cams at both ends of the nut, and then the rollers enter the raceway of the screw and nut. During the process of entering the raceway, the roller ring groove needs to be aligned with the multiple teeth of the nut at the same time before it can enter the raceway. This has a great impact on the relationship between the cam and the nut. The processing and assembly requirements are very high, resulting in very high costs; at the same time, in a high-speed working environment, the multiple tooth butt engagement of the roller and the nut is difficult to complete.
  • Differential planetary roller screw The structure is simpler, can withstand higher loads under the same volume and weight, and has the advantages of higher input speed, smaller lead and larger reduction ratio.
  • the disadvantage is that the screw thread engagement area will cause sliding problems, making the transmission ratio unstable and causing serious wear under larger loads, resulting in loss of accuracy and low reliability.
  • Standard planetary roller screws, reverse roller screws, and recirculating roller screws are expensive and have limited production capacity, making them difficult to be widely used in the automotive industry.
  • the present invention provides an electronically controlled mechanical dry brake caliper, which includes a motor and a reduction mechanism, a planetary roller screw assembly and a brake caliper assembly.
  • the planetary roller screw assembly is installed on the brake caliper.
  • the motor and the reduction mechanism are directly or indirectly connected to the planetary roller screw assembly;
  • the planetary roller screw assembly includes a screw, a nut and a roller installed between the screw and the nut.
  • the roller is installed on the cage between the screw and the nut, and a torsion spring is installed between the cage and the nut; the cage and the nut are both equipped with matching anti-rotation bosses, and the torsion spring
  • the elastic force causes one side of the anti-rotation boss on the cage and the anti-rotation boss on the nut to fit together.
  • This fitting position is the initial position of the roller and cage; after any working cycle, Under unloaded conditions, the rollers and retaining The holder is in its initial position.
  • a further improvement is that: the roller is an annular grooved threaded roller; the roller is installed on a cage, and the cage limits the circumferential position of the roller and allows the roller to roll around in the cage.
  • the axis of the column itself rotates; within a single working cycle, the initial position of the nut relative to the screw and the initial position of the cage relative to the nut both move after a predetermined time.
  • the cage is composed of two annular parts and a connecting part b connecting the two annular parts; the annular part has uniformly distributed through holes; the roller is composed of an annular groove b, and an annular groove b is composed of cylindrical ends a on both sides of the cage.
  • the cylindrical end a and the through hole of the annular part of the cage are clearance fit with the shaft hole.
  • the length of the annular groove b is less than the shortest distance between the two annular parts of the cage.
  • the annular groove b A small spring is installed between the end face and the ring part of the cage, and the small spring is a wave spring.
  • a further improvement is that the nut includes an inner threaded portion a and a return portion b at the bottom end, the torsion spring is installed in the inner cavity of the return portion b of the nut, the number of the torsion spring is at least one, and the torsion spring It is a spring that provides torsion, and its shape is flat or cylindrical or conical.
  • a further improvement is that: the return part b of the nut is fixedly connected to the base; the end face of the base is circular or oval; the return part b and the base are connected through threaded connection or welding and riveting; the base abuts On the brake pad end face of the brake caliper assembly.
  • a further improvement is that the number of the anti-rotation bosses is at least one pair, and each pair of two is fixed on the inner wall of the end of the cage and the end of the nut by assembly or integral molding.
  • a further improvement is that the gap between the roller and the nut is smaller than the gap between the roller and the screw.
  • the gap between the screw and the roller makes the friction between the screw and the roller smaller than the friction between the nut and the roller under no-load conditions.
  • a further improvement is that the outer wall of the nut is provided with a guide part, which is a groove or a boss.
  • the guide part cooperates with the cylinder hole of the brake caliper assembly, and the nut is limited by the guide part in the circumferential direction, thereby ensuring that during the working process, The nut can only move in a straight line.
  • a further improvement is that the nut at least includes a cylindrical portion or a smooth transition portion, which cooperates with the rubber sealing ring of the brake caliper assembly to have a sealing effect and prevent foreign matter from entering.
  • a further improvement is that a sealing cover is installed between the cylinder bore end surface of the brake caliper assembly and the nut.
  • the clamping phase includes:
  • Idle stroke stage This stage requires the planetary roller screw to work and push the brake pads, thereby eliminating the gap between the brake pads and the brake disc.
  • the gap between the roller and the nut is smaller than the gap between the roller and the screw. Therefore, during this process, the friction torque between the screw and the roller is smaller than the torque provided by the torsion spring, so the friction between the roller and the nut There is no relative movement between the screws, and the screw makes sliding motion on the rollers.
  • the advantage of this is that under the same load conditions, the rolling motion relative to the idle stroke reduces the working stroke of the nut, shortens the length of the nut, and thereby reduces the cost of the nut. It is worth explaining that at this stage, since the axial force is zero, whether it is sliding friction or rolling friction, the friction force is very small and the difference is very small.
  • Load stage After the axial clearance is eliminated, the brake pad and the caliper body begin to deform. The reaction force of the deformation is applied to the planetary roller screw. The friction torque between the screw and the roller gradually becomes greater than the elastic force of the torsion spring. , at this time the roller performs rolling motion between the screw and the nut.
  • the working principle is the same as that of the circulating planetary roller screw. It also has high transmission efficiency and high load-bearing capacity. Not only that, because the nut is removed The grooves and cams make the movement more consistent, can adapt to high speeds, and meet the response time requirements of the braking system.
  • the stroke in the braking system is limited. As long as the stroke that the torsion spring can be compressed is greater than the stroke of the braking system, the requirements can be met.
  • Unloading stage Since the friction torque between the roller and the screw is greater than the torque generated by the torsion spring under axial load, the planetary roller screw has high inverse efficiency due to rolling friction and can achieve rapid unloading.
  • the electronically controlled mechanical dry brake caliper has the following characteristics:
  • the screw and the nut are matched by multiple rollers with annular grooves. Each time the rollers rotate, they will break away from the thread of the screw, fall into the inner groove of the nut, and then pass through the nut. Cams at both ends push the rollers to their initial axial position before rotation, and then the rollers enter the raceway again. In the process of entering the raceway, multiple teeth of the roller ring groove and the nut are required. Only after they are aligned at the same time can they enter the raceway. In a high-speed working environment, it will be more difficult for the rollers to enter the raceway. This requires very high processing and assembly requirements for the cam and nut, resulting in very high costs.
  • the solution of the present invention removes the cams at both ends of the nut and the grooves on the sides of the nut, and it is no longer necessary for the roller to be aligned with multiple teeth of the nut at the same time before entering the raceway. Instead, the solution uses a torsion spring to return the position, and the anti-rotation boss determines the initial position.
  • the manufacturing technology of the torsion spring and boss is mature and low-cost, thus ensuring a significant reduction in cost.
  • the planetary roller screw in the present invention also inherits the advantages of the circulating planetary roller screw, and can achieve a very small lead, for example, a lead of 1mm, which can reduce the torque that needs to be input, thereby reducing the need for input.
  • the requirements for the strength of the gear mechanism are conducive to reducing the size of the motor and reduction mechanism, thereby reducing the overall volume and cost.
  • the present invention uses sliding friction during the idle stroke, theoretically the transmission efficiency is low. However, during the idle stroke, it is only used to eliminate gaps or the output axial force is very small. The output power is equal to the output axial force and the axial movement distance. product, so the output power can be considered to be infinitely small. When calculating the overall transmission efficiency, this part accounts for a small proportion and does not affect the response speed. Only during the load stage does a large amount of output power need to be output. At this time, the working mode of the present invention is rolling element transmission, and the transmission efficiency is consistent with that of the planetary roller screw. Therefore, the use of sliding friction in the idle stroke does not affect the overall transmission efficiency. , thereby achieving overall high transmission efficiency. In addition, the invention works in the same way as the circulating planetary roller screw, and has a load-bearing capacity that cannot be surpassed by the ball screw.
  • the roller ring groove can adjust itself to the position that matches the raceway:
  • the roller is composed of an annular groove and cylindrical ends on both sides of the annular groove.
  • the cage consists of two ring parts and a connecting part connecting the two ring parts.
  • the ring part has a through hole.
  • the cylindrical end of the roller and the through hole of the ring part of the cage serve as the axis. Hole clearance fit.
  • the length of the roller annular groove is less than the shortest distance between the two annular parts of the cage, that is, the roller has space for axial movement within the cage.
  • a small wave-shaped spring is installed between the end surface of the roller annular groove and the annular part of the cage, so that the roller and cage can maintain a relatively fixed position without external interference.
  • Figure 1 is a schematic structural diagram of an electronically controlled mechanical dry brake caliper of the present invention.
  • Figure 2 is a schematic structural diagram of the planetary roller screw assembly of the present invention.
  • Figure 3 is an expanded schematic view of the planetary roller screw assembly of the present invention.
  • Component label description 1-screw, 2-nut, 2a-threaded part, 2b-return part, 3-roller, 3a-cylindrical end, 3b-annular groove, 4-anti-rotation mechanism, 4a-first anti-rotation boss, 4b-second anti-rotation boss, 5-cage, 5a-first annular part, 5b-connection part, 5c-th
  • Two ring parts 6-small spring, 7-guide part, 8-torsion spring, 9-base, 10-planetary roller screw assembly, 11-brake caliper assembly, 12-guide screw, 13-sealing ring, 14-Sealing cover.
  • this embodiment provides an electronically controlled mechanical dry brake caliper, which includes a motor and a reduction mechanism, a planetary roller screw assembly 10 and a brake caliper assembly 11 .
  • the planetary roller screw assembly 10 is installed in the cylinder bore of the brake caliper assembly 11 .
  • the output end of the motor is directly connected to the input end of the planetary roller screw assembly 10; or indirectly connected through the deceleration and torque increasing mechanism, the power output by the motor and the deceleration mechanism is transmitted to the planetary roller screw assembly 10, and the planetary roller screw
  • the input end of the rod assembly 10 can be a screw or a nut. In this case, the screw is the input end and the nut is the output end.
  • the nut 2 of the planetary roller screw assembly 10 cooperates with the output component of the brake caliper assembly 11, and the output component is the brake pad. That is, the nut 2 of the planetary roller screw 10 directly cooperates with the brake pad of the brake caliper assembly. , canceling the piston design of the traditional hydraulic braking system.
  • the brake caliper assembly 11, the motor and the reduction mechanism are made by traditional techniques.
  • Figures 2 and 3 are schematic structural diagrams of the planetary roller screw assembly in this implementation case.
  • the planetary roller screw assembly includes a screw 1, a nut 2 and a roller 3 installed between the screw 1 and the threaded part 2a of the nut 2.
  • the annular groove 3b of the roller 3 and the threaded part 2a of the nut 2 are The gap is smaller than the gap between the annular groove 3b of roller 3 and the thread of screw 1, so that under no-load conditions, the friction between screw 1 and roller 2 is smaller than the friction between nut 2 and roller 3, so that If sliding occurs, it must be between the screw 1 and roller 3.
  • the two ends of roller 3 are cylindrical ends 3a, and the cylindrical ends are optical shafts.
  • the middle of roller 3 is an annular groove 3b.
  • the annular groove 3b is composed of multiple annular closed grooves. The distance between adjacent annular closed grooves is the same as the lead screw.
  • the thread pitch of 1 and nut 2 match.
  • the roller 3 is installed on the cage 5.
  • the cage 5 is composed of a first annular part 5a, a second annular part 5c and a connecting part 5b connecting the first annular part 5a and the second annular part 5c.
  • the cage 5 5 is made in one piece or assembled from parts.
  • the outer walls of the first annular portion 5a and the second annular portion 5c of the cage 5 are provided with annular grooves, and the connecting portion 5b can be rolled outside the first annular portion 5a and the second annular portion 5c.
  • the wall ring groove is then fixed by laser welding.
  • the first annular portion 5a and the second annular portion 5c have a plurality of evenly distributed through holes. The number of through holes is consistent with the number of rollers 3.
  • the through holes between the cylindrical end 3a of the roller 3 and the annular portion of the cage 5 are:
  • the shaft hole has a clearance fit, and the roller 3 can rotate freely around the axis of the roller 3 in the cage 5 .
  • the length of the annular groove 3b of the roller 3 is less than the shortest distance between the first annular portion 5a and the second annular portion 5c, that is, the roller 3 has space for axial movement in the cage 5, and at the same time, the roller 3
  • a small spring 6 is installed between the end surface of the annular groove 3b and the annular part of the cage 5.
  • the small spring can be a wave spring. Its function is to enable the roller 3 and the cage 5 to maintain the relative position. The damping effect provided by the wave spring is sufficient. It is small and does not affect the rotation of roller 3.
  • the planetary roller screw assembly 10 is provided with an anti-rotation mechanism 4.
  • the anti-rotation mechanism 4 is a pair of first anti-rotation bosses 4a and second anti-rotation bosses 4b that cooperate with each other.
  • the first anti-rotation boss 4a is provided
  • the inner wall surface of the nut 2 is assembled and connected with or integrally formed.
  • the second anti-rotation boss 4b is provided on the end surface of the cage 5 and is assembled and connected with or integrally formed.
  • the first anti-rotation boss 4a and the second anti-rotation boss 4b are mutually connected.
  • the position of contact fit is the initial position of cage 5 and roller 3.
  • the nut 2 includes a threaded portion 2a with internal threads and a return portion 2b with an inner cavity.
  • the return portion 2b is located at the opposite end of the first anti-rotation boss 4a of the nut 2.
  • the return portion 2b and the base 9 are threaded connection, the end face of the base 9 is designed to be circular, and the base 9 serves as the output end of the planetary roller screw assembly 10 to cooperate with the brake pad.
  • a torsion spring 8 is installed in the cavity. Both ends of the torsion spring 8 are provided with bosses. One boss extends toward the direction of the rotation center of the torsion spring 8 and is fixed with the cage 5 by welding. The other boss It extends away from the rotation center of the torsion spring 8 and is fixed with the nut 2 by welding.
  • the cross section of the torsion spring 8 is cylindrical, and the number is one.
  • the torsion spring 8 When the cage 5 and the roller 3 are in the initial position, the torsion spring 8 is also in a state of no elastic deformation or small elastic deformation, that is, the state of the torsion spring 8 tends to push the cage 5 back to the initial position with the nut 2 status.
  • a guide portion 7 is provided on the outer wall of the nut 2.
  • the guide portion 7 is a groove or a boss.
  • the guide portion 7 matches the cylinder hole of the brake caliper assembly 11.
  • the guide portion 7 is a groove on the outside of the nut 2.
  • the brake The inner wall of the cylinder hole of the clamp assembly 11 is provided with a threaded hole.
  • the anti-rotation screw passes through the threaded through hole and extends into the guide groove of the nut 2. The rotation of the nut 2 in the circumferential direction is limited by the anti-rotation screw and can only move in a straight line. sports.
  • the nut 2 at least includes a cylindrical portion or a smooth transition portion, which cooperates with the rubber sealing ring 13 of the brake caliper assembly and has a sealing effect.
  • a sealing cover is provided between the cylinder bore end of the brake caliper assembly 11 and the nut 2 14. Prevent foreign objects from entering.
  • the braking force generation process of the electronically controlled mechanical dry brake caliper the motor and the reduction mechanism operate, the rotational motion of the motor and the reduction mechanism is transmitted to the planetary roller screw assembly 10, the screw 1 rotates in the first direction, and the screw 1 rotates in the first direction.
  • the thread surface is in surface contact with the annular groove 3b of the roller 3, and several rollers 3 share the load transmitted from the screw 1. Since the gap between roller 3 and screw 1 is larger than the gap between roller 3 and nut 2, the friction between screw 1 and roller 3 is smaller than the friction between nut 2 and roller 3. This means When the friction between roller 3 and screw 1 is small enough, the resistance to rotation provided by torsion spring 8 to cage 5 will be greater than that of screw 1.
  • roller 3 and cage 5 Because of the friction between roller 3 and roller 3, the position of roller 3 and cage 5 relative to nut 2 will not change. Roller 3, cage 5 and nut 2 will move in the direction of the brake pad as a whole.
  • the space between column 3 and screw 1 is equivalent to a sliding screw pair.
  • annular groove 3b of column 3 as well as the annular groove 3b of roller 3 and the thread of nut 2, are converted into longitudinal movements of nut 2, cage 5 and roller 3, which are equivalent to planetary roller screws.
  • Nut 2 continues to push the base. 9 and brake pads to clamp the brake disc to obtain braking force. Due to rolling friction, the friction coefficient is low and the transmission efficiency is high. Under the same conditions, faster linear drive speed and higher output force can be obtained.
  • the braking force release process of the electromechanical dry brake caliper the screw 1 rotates in the second direction, and the second direction is opposite to the first direction.
  • roller 3 is still squeezed by the screw 1 and nut 2.
  • the relative motion between the screw 1 and the nut 2 is generated by the rolling of roller 3. Due to rolling friction, the friction coefficient is low and the transmission efficiency is low. High, under the same conditions, the clamping force can be eliminated in a shorter time and rapid release is achieved.
  • the torsion spring 8 is always in a compressed state. After the braking force disappears, the torsion spring still has the elastic force to return by itself.

Abstract

一种电控机械干式制动钳,行星滚柱丝杠组件(10)安装在制动钳组件(11)的缸孔内,电机及减速机构与行星滚柱丝杠组件(10)直接或间接的连接;行星滚柱丝杠组件(10)包括丝杠(1)、螺母(2)及安装在丝杠(1)与螺母(2)之间的滚柱(3),滚柱(3)安装在位于丝杠(1)与螺母(2)之间的保持架(5)上,保持架(5)与螺母(2)之间安装有扭簧(8);保持架(5)上和螺母(2)上均设置有相互匹配的防转凸台(4a、4b),通过扭簧(8)的弹力使保持架(5)上的第二防转凸台(4b)与螺母(2)上的第一防转凸台(4a)的各有一个侧边贴合在一起,该贴合位置为滚柱(3)和保持架(5)的初始位置。

Description

电控机械干式制动钳 技术领域
本发明涉及制动系统技术领域,尤其涉及一种电控机械干式制动钳。
背景技术
现有技术中,电控机械干式制动钳一般包括直线驱动机构,其作用是将驱动电机及减速机构的旋转运动转化为连接件的直线运动,其中一种形式是行星滚柱丝杠:
现有技术中的行星滚柱丝杠一般分为以下几种:
标准式行星滚柱丝杠:丝杠与螺母之间通过多个带有螺纹的滚柱配合,该结构对于零部件的尺寸和几何公差要求很高,只要零部件精度稍微超出要求,就会产生干涉而卡死,从而对加工要求和装配要求都很高,生产制造过程非常精密,导致该行星滚柱丝杠的成本很高。
反向式行星滚柱丝杠:结构、原理与标准式行星滚柱丝杠大致相同,区别在于利用螺母传递扭矩和转速,丝杠传递轴向力。
循环式行星滚柱丝杠:滚柱设置有多组环形沟槽,沟槽之间的距离与螺纹相匹配,滚柱每转一圈,会脱离丝杠的螺纹,落入螺母内槽中,再通过螺母两端的凸轮将滚柱推到转动之前的轴向初始位置,然后滚柱再进入丝杠和螺母的滚道。在进入滚道的过程中,需要滚柱环槽与螺母的多个齿同时对准后,才能进入滚道,这就对凸轮和螺母的 加工和装配要求非常高,导致成本非常高;同时在高速工作环境下,滚柱和螺母的多个齿对接啮合很难完成。
差动式行星滚柱丝杠:结构更为简洁,在相同体积和重量下可以承受更高的载荷,并且具有更高的输入转速、更小的导程和更大的减速比等优点。缺点是丝杠螺纹啮合区域会产生滑动的问题,使传动比不稳,在较大载荷下磨损严重,导致精度丧失、可靠性不高。
综上所述,现有技术中的行星滚柱丝杠存在两种情况:
(1)标准式行星滚柱丝杠、反向式滚柱丝杠、循环式滚柱丝杠成本昂贵,产能受限,难以广泛的在汽车行业使用。
(2)差动式行星滚柱丝杠在较大载荷下存在寿命和可靠性的问题,也很难应用到汽车安全系统的产品。
发明内容
为解决上述问题,本发明提供一种电控机械干式制动钳,包括电机及减速机构、行星滚柱丝杠组件和制动钳组件,所述行星滚柱丝杠组件安装在制动钳组件的缸孔内,所述电机及减速机构与行星滚柱丝杠组件直接或间接的连接;所述行星滚柱丝杠组件包括丝杠、螺母及安装在丝杠与螺母之间的滚柱,滚柱安装在位于丝杠与螺母之间的保持架上,保持架与螺母之间安装有扭簧;所述保持架上和螺母上均设置有相互匹配的防转凸台,通过扭簧的弹力使保持架上的防转凸台与螺母上的防转凸台的各有一个侧边贴合在一起,该贴合位置为滚柱和保持架的初始位置;在任意工作循环后,在非负载条件下,滚柱和保 持架都处于初始位置。
进一步改进在于:所述滚柱为环形槽螺纹滚柱;所述滚柱安装在保持架上,所述保持架对滚柱的周向位置进行限位,并且允许滚柱在保持架内绕滚柱自身轴线旋转;单次工作循环内,螺母相对于丝杠的初始位置、所述保持架相对于螺母的初始位置在预定时间后均发生移动。
进一步改进在于:所述保持架由两个圆环部,及连接两个圆环部的连接部b组成;圆环部具有均布的通孔;所述滚柱由环形槽b、及环形槽b两侧的圆柱端a组成,圆柱端a与保持架圆环部的通孔为轴孔间隙配合,环形槽b的长度小于保持架的两个圆环部之间的最短距离,环形槽b的端面与保持架圆环部之间安装有小弹簧,小弹簧为波形弹簧。
进一步改进在于:所述螺母包括有内侧的螺纹部a以及底端的回位部b,所述扭簧安装在螺母的回位部b内腔中,所述扭簧的数量至少为一个,扭簧为提供扭力的弹簧,其形状为平面型或圆柱型或锥型。
进一步改进在于:所述螺母的回位部b与底座固定连接;所述底座的端面为圆形或椭圆形;回位部b与底座通过螺纹连接或焊接过铆接进行连接;所述底座抵靠在制动钳组件的制动片端面。
进一步改进在于:所述防转凸台的数量至少为一对,每对为两个通过装配或一体式成型的方式固定在保持架端部和螺母端部的内壁上。
进一步改进在于:所述滚柱与螺母之间的间隙小于滚柱与丝杠之 间的间隙,使得空载条件下,丝杠与滚柱的摩擦力相对于螺母与滚柱的摩擦力更小。
进一步改进在于:所述螺母外壁面设置导向部,导向部为凹槽或凸台,导向部与制动钳组件的缸孔配合,螺母在圆周方向被导向部限定,从而保证在工作过程中,螺母只能进行直线运动。
进一步改进在于:所述螺母至少包含一段圆柱部分或圆滑过渡部分,该部分与制动钳组件的橡胶的密封圈配合,具有密封作用,防止异物进入。
进一步改进在于:所述制动钳组件的缸孔端面与螺母之间安装有密封罩。
电机及减速机构的正转和反转动作,经过行星滚柱丝杠组件将旋转运动转化为制动片的平移运动,实现制动钳的夹紧和释放动作。正常的工作循环:
夹紧阶段,包含:
空行程阶段:该阶段需要行星滚柱丝杠工作,推动制动片,从而消除制动片和制动盘的间隙。所述滚柱与螺母之间的间隙小于滚柱与丝杠之间的间隙,因而在该过程中,丝杠和滚柱之间的摩擦力矩小于扭簧提供的力矩,则滚柱和螺母之间没有相对动作,丝杠在滚柱上做滑动运动。这样的好处是:同样负载条件下,相对于空行程做滚动运动,减小了螺母的工作行程,可将螺母长度缩短,从而降低了螺母的成本。值得说明的这个阶段由于轴向力为零,无论是滑动摩擦还是滚动摩擦,摩擦力都很小,差别很小。
负载阶段:轴向间隙被消除后,制动片和卡钳的钳体开始变形,变形的反作用力到行星滚柱丝杠上,丝杠和滚柱之间的摩擦力矩逐渐大于扭簧的弹性力,这时滚柱在丝杠和螺母之间做滚动运动,工作原理和循环式行星滚柱丝杠一致,同时具备很高的传动效率,和很高的承载能力,不仅如此,因为去掉螺母上的凹槽和凸轮,运动更具有连贯性,可以适应高转速,满足制动系统的响应时间的要求。
在负载阶段,在制动系统中行程有限的,只要扭簧能够被压缩的行程大于制动系统的行程就可以满足要求。
释放阶段,包含:
卸载阶段:由于滚柱与丝杠在轴向载荷下,摩擦力矩大于扭簧产生的力矩,行星滚柱丝杠由于是滚动摩擦,逆效率高,可以做到快速的卸载。
当轴向载荷消除后,摩擦力矩小于扭簧产生的力矩,这时在扭簧弹力的作用下,滚柱和保持架回到初始位置。如果丝杠继续向释放方向旋转,摩擦力矩远远小于防转机构产生的力矩,依然做滑动摩擦,相当于滑动丝杠。
本发明的有益效果:该电控机械干式制动钳具有如下特点:
一、对行星滚柱丝杠组件的加工要求降低,从而降低成本:
对于循环式行星滚柱丝杠,丝杠与螺母之间通过多个具有环槽的滚柱配合,滚柱每转一圈,会脱离丝杠的螺纹,落入螺母内槽中,再通过螺母两端的凸轮将滚柱推到转动之前的轴向初始位置,然后滚柱再次进入滚道。在进入滚道的过程中,需要滚柱环槽与螺母的多个齿 同时对准后,才能进入滚道,在高转速工作环境下,滚柱将更难进入滚道,这就对凸轮和螺母的加工和装配要求非常高,导致成本非常高。本发明的方案去掉了螺母两端的凸轮和螺母侧边的凹槽,不再需要滚柱的与螺母的多个齿同时对准后,才能进入滚道。取而代之的方案使用扭簧回位,由防转凸台配合确定初始位置,扭簧和凸台的制造技术成熟,成本低,从而保证了成本大幅度降低。
其次,本发明中的行星滚柱丝杠同样继承了循环式行星滚柱丝杠的优点,可做到导程很小,例如导程为1mm,这样能够减少需要输入的扭矩,从而减轻了对齿轮机构强度的要求,有利于减少电机和减速机构的体积,从而减少了整体的体积和成本。
二、能够兼顾系统的高承载能力和高传动效率:
本发明虽然在空行程是滑动摩擦,理论上传动效率低,但由于空行程时,只用于消除间隙或输出的轴向力很小,输出功率等于输出的轴向力与轴向移动距离的乘积,因此可以认为输出的功率是无限小,在计算整体传动效率时,该部分占比很小,也不影响响应速度。只有在负载阶段,才需要输出大量的输出功率,而这时本发明的工作方式是滚动体传动,传动效率与行星滚柱丝杠一致,所以在空行程采用滑动摩擦并不影响整体的传动效率,从而做到了整体的高传动效率。另外本发明与循环式行星滚柱丝杠工作方式一样,具备滚珠丝杠无法超越的承载能力。
三、滚柱环槽能够自行调整至与滚道配合的位置:
本发明中,滚柱由环形槽、及环形槽两侧的圆柱端组成,滚柱被 装配在保持架上,保持架由两个圆环部,及连接两个圆环部的连接部组成,圆环部具有通孔,滚柱的圆柱端与保持架圆环部的通孔为轴孔间隙配合。特别的,滚柱环形槽的长度小于保持架的两个圆环部之间的最短距离,即滚柱在保持架内具有轴向窜动的空间。同时在滚柱环形槽的端面与保持架圆环部之间安装波形的小弹簧,使得滚柱与保持架在无外力干涉下,能够保持相对固定的位置。在行星滚柱丝杠装配时,由于滚柱在保持架内具有一定的轴向移动距离,使得滚柱的环槽能够调整至与丝杠或螺母的螺纹槽配合的位置。
附图说明
图1为本发明电控机械干式制动钳的结构示意图。
图2为本发明行星滚柱丝杠组件的结构示意图。
图3为本发明行星滚柱丝杠组件的展开示意图。
元件标号说明:
1-丝杠,2-螺母,2a-螺纹部,2b-回位部,3-滚柱,3a-圆柱端,
3b-环形槽,4-防转机构,4a-第一防转凸台,4b-第二防转凸台,5-保持架,5a-第一圆环部,5b-连接部,5c-第二圆环部,6-小弹簧,7-导向部,8-扭簧,9-底座,10-行星滚柱丝杠组件,11-制动钳组件,12-导向螺钉,13-密封圈,14-密封罩。
具体实施方式
为了加深对本发明的理解,下面将结合实施例对本发明作进一步 详述,该实施例仅用于解释本发明,并不构成对本发明保护范围的限定。
如图1所示,本实施例提供一种电控机械干式制动钳,包括电机及减速机构、行星滚柱丝杠组件10和制动钳组件11。行星滚柱丝杠组件10安装在制动钳组件11的缸孔内。电机的输出端与行星滚柱丝杠组件10的输入端直接连接;或通过减速增扭机构间接的连接,将电机及减速机构输出的动力传递至行星滚柱丝杠组件10,行星滚柱丝杠组件10的输入端可以为丝杠或螺母,本案例以丝杠为输入端,螺母为输出端。行星滚柱丝杠组件10的螺母2与制动钳组件11的输出部件配合,输出部件为制动片,即,行星滚柱丝杠10的螺母2直接与制动钳组件的制动片配合,取消了传统液压制动系统的活塞设计。制动钳组件11和电机及减速机构由传统工艺制成。
如图2和图3所示,图2和图3为本实施案例中行星滚柱丝杠组件的结构示意图。
行星滚柱丝杠组件包括丝杠1、螺母2及安装在丝杠1与螺母2的螺纹部2a之间的滚柱3,滚柱3的环形槽3b与螺母2的螺纹部2a之间的间隙小于滚柱3的环形槽3b与丝杠1螺纹之间的间隙,使得空载条件下,丝杠1与滚柱2的摩擦力相对于螺母2与滚柱3的摩擦力更小,这样如果出现滑动,必然是丝杠1与滚柱3之间的滑动。滚柱3两端为圆柱端3a,圆柱端为光轴,滚柱3中间为环形槽3b,环形槽3b由多个环形闭合凹槽组成,相邻环形闭合凹槽之间的距离与丝杠1和螺母2的螺纹螺距匹配。
滚柱3安装在保持架5上,保持架5由第一圆环部5a、第二圆环部5c及连接第一圆环部5a和第二圆环部5c的连接部5b组成,保持架5为一体制成或由零件装配形成。本案例中,保持架5的第一圆环部5a和第二圆环部5c外壁面设置有环槽,连接部5b可卷制在第一圆环部5a和第二圆环部5c的外壁面环槽中,再用激光焊接固定。第一圆环部5a和第二圆环部5c具有多个均匀分布的通孔,通孔数量与滚柱3数量一致,滚柱3的圆柱端3a与保持架5圆环部的通孔为轴孔间隙配合,滚柱3在保持架5内能够绕滚柱3的轴线自由旋转。滚柱3环形槽3b的长度小于第一圆环部5a和第二圆环部5c之间的最短距离,即滚柱3在保持架5内具有轴向窜动的空间,同时在滚柱3环形槽3b的端面与保持架5圆环部之间安装小弹簧6,该小弹簧可以为波形弹簧,作用是使得滚柱3与保持架5能够保持相对位置,该波形弹簧提供的阻尼作用足够小,并不影响到滚柱3的旋转运动。
行星滚柱丝杠组件10内设置有防转机构4,防转机构4为一对相互配合的第一防转凸台4a和第二防转凸台4b,其中第一防转凸台4a设置在螺母2的内壁面与其装配连接或一体成型,第二防转凸台4b设置在保持架5的端面与其装配连接或一体成型,第一防转凸台4a与第二防转凸台4b相互接触配合的位置,即为保持架5与滚柱3的初始位置。螺母2包括具有内螺纹的螺纹部2a和具有内腔的回位部2b组成,回位部2b位于螺母2的第一防转凸台4a的相对另一端,回位部2b与底座9通过螺纹连接,底座9的端面设计为圆形,底座9作为行星滚柱丝杠组件10的输出端与制动片配合。回位部2b的内 腔中安装有扭簧8,扭簧8的两个端部均设置有凸台,其中一个凸台朝向扭簧8旋转中心的方向延伸,并与保持架5通过焊接方式固定,另一个凸台朝远离扭簧8旋转中心方向延伸,并与螺母2通过焊接方式固定。扭簧8截面为圆柱型,数量为一个。当保持架5与滚柱3处于初始位置时,扭簧8也处于无弹性形变或小弹性形变的状态,即,扭簧8的状态是趋向于将保持架5推回与螺母2的初始位置的状态。
螺母2外壁设置导向部7,导向部7为凹槽或凸台,导向部7与制动钳组件11的缸孔配合,本案例中,导向部7为螺母2外侧的凹槽,同时制动钳组件11的缸孔内壁设置有螺纹孔,防转螺钉穿过该螺纹通孔,伸入螺母2的导向凹槽内,螺母2在圆周方向上的转动被防转螺钉限定,只能进行直线运动。
螺母2至少包含一段圆柱部分或圆滑过渡部分,该部分与制动钳组件的橡胶的密封圈13配合,具有密封作用,制动钳组件11的缸孔端部与螺母2之间设置有密封罩14,防止异物进入。
工作过程:
电控机械干式制动钳的制动力产生过程:电机及减速机构运转,电机及减速机构的旋转运动传递至行星滚柱丝杠组件10,丝杠1沿第一方向旋转,丝杠1的螺纹面与滚柱3的环形槽3b面接触,若干个滚柱3分担从丝杠1传递来的负载。由于滚柱3与丝杠1之间的间隙要大于滚柱3与螺母之2间的间隙,丝杠1与滚柱3的摩擦力相对于螺母2与滚柱3的摩擦力更小,这时滚柱3与丝杠1之间的摩擦力足够小,此时扭簧8提供给保持架5的抵抗旋转的力,会大于丝杠1 与滚柱3之间的摩擦力,因此滚柱3和保持架5相对于螺母2的位置不会发生改变,滚柱3、保持架5及螺母2会整体朝着制动片方向移动,滚柱3与丝杠1之间相当于滑动丝杠副。
当制动片接触到制动盘之后,系统开始产生制动力,制动力的反作用力传递回行星滚柱丝杠组件10。当螺母2受到的轴向力开始增加,丝杠1与滚柱3之间的轴向力同样增加,当达到预定轴向力后,滚柱3和保持架5会克服扭簧8提供的抵抗旋转的力,滚柱3开始一边绕丝杠1轴线转动,一边在保持架5内自转,扭簧8被压缩并发生弹性形变,此时丝杠1传递的扭矩将通过丝杠1螺纹与滚柱3的环形槽3b,以及滚柱3的环形槽3b与螺母2螺纹,转化为螺母2、保持架5及滚柱3各自的纵向移动,相当于行星滚柱丝杠,螺母2继续推动底座9和制动片,从而夹紧制动盘以获得制动力,由于是滚动摩擦,摩擦系数低,传动效率高,同样条件下,可以得到更快的直线驱动的速度和更高的输出力。
电控机械干式制动钳的制动力释放过程:丝杠1沿第二方向旋转,第二方向与第一方向相反。在释放过程初期,滚柱3依旧受丝杠1和螺母2的挤压,丝杠1与螺母2的相对运动是通过滚柱3的滚动产生的,由于是滚动摩擦,摩擦系数低,传动效率高,同样条件下,可以更短的时间消除夹紧力,做到了快速释放。扭簧8始终处于被压缩状态,制动力消失后,扭簧依然具有自行回位的弹性力,在扭簧8的弹性力作用下,保持架5及滚柱3会自行在滚道中运动,直至回到初始位置,即保持架5的第二防转凸台4b与螺母2的第一防转凸台 4a相互接触配合的位置,如果继续向释放方向旋转,丝杠2和滚柱3之间的摩擦力矩小于两个凸台配合产生的力矩,依然是滑动。至此完成一次工作循环,并为下一次工作循环做好准备。
以上案例仅针对于从丝杠输入扭矩和转速,由螺母输出压力的情况,若从螺母输入扭矩和转速,由丝杠输出压力,其设计与上述案例相反。
以上结合附图对本发明进行了示例性描述。显然,本发明具体实现并不受上述方式的限制。只要是采用了本发明的方法构思和技术方案进行的各种非实质性的改进;或未经改进,将本发明的上述构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。

Claims (15)

  1. 一种电控机械干式制动钳,包括电机及减速机构、行星滚柱丝杠组件(10)和制动钳组件(11),所述行星滚柱丝杠组件(10)安装在制动钳组件(11)的缸孔内,所述电机及减速机构与行星滚柱丝杠组件(10)直接或间接的连接;其特征在于:
    所述行星滚柱丝杠组件(10)包括丝杠(1)、螺母(2)及安装在丝杠(1)与螺母(2)之间的滚柱(3),滚柱(3)安装在位于丝杠(1)与螺母(2)之间的保持架(5)上,保持架(5)与螺母(2)之间安装有扭簧(8);
    所述螺母(2)上设有第一防转凸台(4a),所述保持架(5)上设有与所述第一防转凸台(4a)相匹配的第二防转凸台(4b),通过扭簧(8)的弹力使保持架(5)上的第二防转凸台(4b)与螺母(2)上的第一防转凸台(4a)的各有一个侧边贴合在一起,该贴合位置为滚柱(3)和保持架(5)的初始位置;
    在任意工作循环后,在非负载条件下,滚柱(3)和保持架(5)都处于初始位置。
  2. 如权利要求1所述电控机械干式制动钳,其特征在于:所述第一防转凸台(4a)设于所述螺母(2)的内壁上,所述第二防转凸台(4b)设于所述保持架(5)的端面。
  3. 如权利要求2所述电控机械干式制动钳,其特征在于:所述第一防转凸台(4a)与所述螺母(2)一体成型,所述第二防转凸台(4b)与所述保持架(5)一体成型。
  4. 如权利要求1所述电控机械干式制动钳,其特征在于:单次工作循环内,螺母(2)相对于丝杠(1)的初始位置、所述保持架(5)相对于螺母(2)的初始位置在预定时间后均发生移动。
  5. 如权利要求1所述电控机械干式制动钳,其特征在于:所述保持架(5)对滚柱(3)的周向位置进行限位,并且允许滚柱(3)在保持架(5)内绕滚柱自身轴线旋转。
  6. 如权利要求5所述电控机械干式制动钳,其特征在于:所述保持架(5)由两个圆环部,及连接两个圆环部的连接部(5b)组成;圆环部具有均布的通孔。
  7. 如权利要求6所述电控机械干式制动钳,其特征在于:所述滚柱(3)为环形槽螺纹滚柱,所述滚柱(3)由环形槽(3b)、及环形槽(3b)两侧的圆柱端(3a)组成,圆柱端(3a)与保持架(5)圆环部的通孔为轴孔间隙配合,环形槽(3b)的长度小于保持架(5)的两个圆环部之间的最短距离。
  8. 如权利要求7所述电控机械干式制动钳,其特征在于:所述环形槽(3b)的端面与保持架(5)圆环部之间安装有小弹簧(6)。
  9. 如权利要求1所述电控机械干式制动钳,其特征在于:所述螺母(2)包括有内侧的螺纹部(2a)以及底端的回位部(2b),所述扭簧(8)安装在螺母的回位部(2b)内腔中,所述扭簧的数量至少为一个,扭簧(8)为提供扭力的弹簧。
  10. 如权利要求9所述电控机械干式制动钳,其特征在于:所述螺母(2)的回位部(2b)与底座(9)固定连接;所述底座(9)的端面 为圆形或椭圆形;回位部(2b)与底座(9)通过螺纹连接或焊接过铆接进行连接;所述底座(9)抵靠在制动钳组件的制动片(11)端面。
  11. 如权利要求9所述电控机械干式制动钳,其特征在于:所述扭簧(8)的形状为平面型或圆柱型或锥型。
  12. 如权利要求1所述电控机械干式制动钳,其特征在于:所述滚柱(3)与螺母(2)之间的间隙小于滚柱(3)与丝杠(1)之间的间隙,使得空载条件下,丝杠(1)与滚柱(3)的摩擦力相对于螺母(2)与滚柱(3)的摩擦力更小。
  13. 如权利要求1所述电控机械干式制动钳,其特征在于:所述螺母(2)外壁面设置导向部(7),导向部(7)为凹槽或凸台,导向部(7)与制动钳组件(11)的缸孔配合,螺母(2)在圆周方向被导向部(7)限定,从而保证在工作过程中,螺母(2)只能进行直线运动。
  14. 如权利要求1所述电控机械干式制动钳,其特征在于:所述螺母(2)至少包含一段圆柱部分或圆滑过渡部分,该部分与制动钳组件(11)的橡胶的密封圈(13)配合进行密封防止异物进入。
  15. 如权利要求1所述电控机械干式制动钳,其特征在于:所述制动钳组件(11)的缸孔端面与螺母之间安装有密封罩(14)。
PCT/CN2023/080057 2022-03-07 2023-03-07 电控机械干式制动钳 WO2023169412A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210216420.8 2022-03-07
CN202210216420.8A CN116771822A (zh) 2022-03-07 2022-03-07 电控机械干式制动钳

Publications (1)

Publication Number Publication Date
WO2023169412A1 true WO2023169412A1 (zh) 2023-09-14

Family

ID=87936002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080057 WO2023169412A1 (zh) 2022-03-07 2023-03-07 电控机械干式制动钳

Country Status (2)

Country Link
CN (1) CN116771822A (zh)
WO (1) WO2023169412A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110907A (ja) * 1998-10-05 2000-04-18 Toyota Motor Corp 遊星ローラねじおよびそれを備えたブレーキ装置
CN207178539U (zh) * 2017-06-22 2018-04-03 芜湖伯特利汽车安全系统股份有限公司 适于车辆电子机械式制动系统的电卡钳
DE102019109166A1 (de) * 2019-04-08 2020-06-10 Schaeffler Technologies AG & Co. KG Planetenwälzgetriebe
JP2021049879A (ja) * 2019-09-25 2021-04-01 日立Astemo株式会社 ディスクブレーキ
CN217130157U (zh) * 2022-03-07 2022-08-05 芜湖伯特利汽车安全系统股份有限公司 电控机械干式制动钳

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110907A (ja) * 1998-10-05 2000-04-18 Toyota Motor Corp 遊星ローラねじおよびそれを備えたブレーキ装置
CN207178539U (zh) * 2017-06-22 2018-04-03 芜湖伯特利汽车安全系统股份有限公司 适于车辆电子机械式制动系统的电卡钳
DE102019109166A1 (de) * 2019-04-08 2020-06-10 Schaeffler Technologies AG & Co. KG Planetenwälzgetriebe
JP2021049879A (ja) * 2019-09-25 2021-04-01 日立Astemo株式会社 ディスクブレーキ
CN217130157U (zh) * 2022-03-07 2022-08-05 芜湖伯特利汽车安全系统股份有限公司 电控机械干式制动钳

Also Published As

Publication number Publication date
CN116771822A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
JP4103619B2 (ja) 車両用ブレーキ装置
CN107448520A (zh) 一种电子机械线控制动器
KR20090057057A (ko) 전기기계 구동식 주차 브레이크를 갖는 결합식 차량 브레이크와 회전 운동을 병진 운동으로 전환시키는 기어
WO2014017609A1 (ja) 電動式ディスクブレーキ装置
CN112443635A (zh) 用于滚珠丝杠的分段弹簧
CN112606810B (zh) 一种带驻车功能的双电机控制液压制动器
EP3263415A1 (en) Linear motion mechanism
CN217130157U (zh) 电控机械干式制动钳
CN115520170A (zh) 电子机械制动装置、车辆
WO2023169412A1 (zh) 电控机械干式制动钳
CN112413007B (zh) 盘式制动器和车辆
CN219082128U (zh) 电子驻车制动钳、电子驻车制动器以及车辆
CN212407487U (zh) 丝杠传动机构
CN113883196A (zh) 用于车辆的线控制动执行装置
CN212407397U (zh) 用于车辆的线控制动执行装置
CN113883245A (zh) 丝杠传动机构
CN110966320B (zh) 用于车辆的制动器及车辆
CN111412234A (zh) 一种电子刹车/驻车机构
CN217761817U (zh) 一种制动卡钳
WO2023169413A1 (zh) 一种直线驱动机构
CN219413336U (zh) 双电机电子驻车制动钳以及电子驻车制动器
JP5226604B2 (ja) 電動式ディスクブレーキ装置
CN108006185B (zh) 直线和/或旋转运动执行机构
KR101898254B1 (ko) 이중구조의 Fail-Safe 기능을 갖는 철도차량용 전기기계식 제동엑츄에이터
CN215883624U (zh) 一种用于车辆主动制动的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765990

Country of ref document: EP

Kind code of ref document: A1