WO2023169311A1 - 电池功率处理方法、装置、电池管理系统、电池 - Google Patents
电池功率处理方法、装置、电池管理系统、电池 Download PDFInfo
- Publication number
- WO2023169311A1 WO2023169311A1 PCT/CN2023/079440 CN2023079440W WO2023169311A1 WO 2023169311 A1 WO2023169311 A1 WO 2023169311A1 CN 2023079440 W CN2023079440 W CN 2023079440W WO 2023169311 A1 WO2023169311 A1 WO 2023169311A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- battery
- management system
- map
- battery management
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M10/4257—Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00302—Overcharge protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00306—Overdischarge protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
- H02J7/007192—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
- H02J7/007194—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4278—Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
Definitions
- This application relates to the field of battery management technology, and in particular to a battery power processing method, device, battery management system and battery.
- BMS Battery Management System
- the embodiments of the present application at least partially improve the above problems and improve the accuracy and reliability of battery power.
- one technical solution adopted in the embodiment of the present application is to provide a battery power processing method, which includes: according to the battery temperature and battery state of charge, obtaining the available power spectrum through a preset table lookup method, and determining the The upper charging limit and the lower discharging limit corresponding to the available power map are used to obtain the adjusted available power map, the power adjustment mode of the battery management system is controlled according to the set first restriction condition and the second restriction condition, and the power adjustment mode is corrected according to the set first restriction condition and the second restriction condition.
- the adjusted available power map wherein the available power map includes a charge and discharge peak power meter and a charge and discharge continuous power meter.
- determining the upper charging limit and lower discharging limit corresponding to the available power map includes: obtaining peak voltage, peak current and cell temperature, limiting the upper charging limit in the available power map, and obtaining the number of battery cycles.
- flight mode and alarm conditions limit the lower limit of discharge in the available power spectrum.
- the charging upper limit includes safety Full protection, lower discharge limit is limited including abuse protection.
- controlling the power adjustment mode of the battery management system according to the set first restriction condition and the second restriction condition includes: setting the first restriction condition and the second restriction condition; when the battery management system satisfies When the first restriction condition is met, the battery management system is controlled to enter the power adjustment mode; when the battery management system meets the second restriction condition, the battery management system is controlled to exit the power adjustment mode, wherein the third One restriction condition includes the first temperature interval, peak power usage time, temperature rise control requirements, actual available power and the first heating power of the battery pack.
- the second restriction condition includes the second temperature interval, whether the battery management system is in Limited power mode and the second heating power of the battery pack.
- the battery management system when the battery management system meets the first restriction condition, the battery management system is controlled to enter the power regulation mode, and when the battery management system meets the second restriction condition, the battery management system is controlled to enter the power regulation mode.
- Exiting the power adjustment mode of the battery management system includes: determining whether the first restriction condition is met at the same time: whether the temperature is greater than the preset first temperature, whether the cumulative peak power usage time is greater than the allowed peak power usage time, and whether the actual discharge power is less than the discharge Whether the allowed continuous power and the actual heating power of the battery are greater than the preset first multiple of the maximum allowed heating power of the battery; if the first restriction conditions are met, the battery management system enters the power adjustment mode; otherwise, the battery management system Exit the power adjustment mode; determine whether the second limiting conditions are met at the same time: whether the temperature is less than the preset second temperature, whether the battery management system is in power limiting mode, and whether the actual heating power of the battery is greater than the maximum allowable heating power of the battery.
- a second multiple is
- modifying the adjusted available power map according to the power adjustment mode includes: when the battery management system exits the power adjustment mode, controlling the reported discharge peak power and the reported charging peak power of the battery. The power rises to the corresponding discharge peak power and charging peak power in the available power map at a preset first rate respectively; when the battery management system enters the power adjustment mode, it controls the reported discharge peak power and reported charging of the battery. The peak power decreases to the corresponding discharge continuous power and charging continuous power in the available power map at a preset second rate.
- the buffer value rate is designed according to the charging peak power and the discharging peak power, and the reporting The charging peak power and the reported discharge peak power approach the corresponding charging peak power and discharge peak power in the available power map at the buffer value rate.
- the buffer value rate ensures the smoothness of the battery power adjustment curve. , ensuring the smooth change of the battery's output power, and avoiding the poor stability of the operation of the device caused by rapid changes in the battery's output power in a short period of time.
- the method further includes: obtaining a load limit working condition map of the battery, and performing curve fitting on the load limit working condition map and the available power map to obtain a relationship between usage time and battery available power. map, and control the output power of the battery according to the relationship map.
- the load limit working condition map is a current and time map obtained by the equipment under extreme working conditions.
- a battery power processing device including: an available power map acquisition module, used to obtain a preset lookup table according to the battery temperature and battery state of charge.
- the method obtains the available power map; the first power adjustment module is used to determine the upper charging limit and the lower discharge limit corresponding to the available power map to obtain the adjusted available power map; the second power adjustment module is used to determine the upper limit of charging and the lower limit of discharge corresponding to the available power map; the second power adjustment module is used to determine according to the set third
- the first restriction condition and the second restriction condition control the power adjustment mode of the battery management system, and correct the adjusted available power map according to the power adjustment mode, wherein the available power map includes a charge and discharge peak power meter and a charge and discharge peak power meter. Continuous power meter.
- a third power adjustment module is also included.
- the third power adjustment module is used to obtain the load limit working condition map of the battery, and perform curve fitting between the load limit working condition map and the available power map, so as to A relationship map between usage time and battery available power is obtained, and the output power of the battery is controlled according to the relationship map.
- a battery management system including: at least one processor; and a memory communicatively connected with the at least one processor, the memory stores Instructions executable by the at least one processor, the instructions being executed by the at least one processor, so that the at least one processor can perform the battery power processing method as described above.
- a battery including a battery core and a battery management system as described above.
- the battery management system is used to manage the charging and charging of the battery core. Discharge.
- the non-volatile computer-readable storage medium stores computer-executable instructions.
- the battery management system is caused to execute the method as described above.
- a computer program product includes a computer program stored on a non-volatile computer-readable storage medium, the computer The program includes program instructions that, when executed by the electronic device, cause the battery management system to perform the method as described above.
- the battery power processing method, device, battery management system and battery can dynamically calculate the battery power output capability under different states of charge and temperature conditions, and can be combined with various functions of the entire machine.
- the battery power is systematically calibrated under working conditions, such as effectively limiting the upper limit of charging and the lower limit of discharge. In practical applications, battery abuse can be avoided and battery cells can be prevented from aging prematurely.
- the battery management system can be controlled to automatically enter and exit the battery power adjustment mode. Through this self-learning method of estimating battery power, an all-round understanding of the cell power output capability can improve the research and development of next-generation cells to improve power performance. . Finally, the battery power can be accurately estimated, ensuring sufficient power performance and ensuring the safety of the device.
- Figure 1 is a flow chart of a battery power processing method provided by an embodiment of the present application.
- Figure 2 is a table showing the relationship between battery power, temperature, time and battery state of charge provided by an embodiment of the present application
- Figure 3 is a schematic diagram of an available power spectrum provided by an embodiment of the present application.
- Figure 4 is a flow chart of a method for the battery management system to enter and exit the power adjustment mode to adjust the available power map provided by the embodiment of the present application;
- Figure 5 is a current change curve diagram of the battery's extreme working condition provided by the embodiment of the present application.
- Figure 6 is a current change curve diagram of a battery under normal working conditions provided by an embodiment of the present application.
- Figure 7 is a power diagram of the extreme working condition of the battery provided by the embodiment of the present application.
- Figure 8 is a graph showing the relationship between battery usage time and battery available power provided by an embodiment of the present application.
- FIG. 9 is a schematic structural diagram of a battery power processing device provided by an embodiment of the present application.
- Figure 10 is a schematic structural diagram of a battery management system provided by an embodiment of the present application.
- the battery power is usually estimated by formulating a battery power state (State of Power, SOP) current limit table based on the battery cell specifications.
- the current limit table is a corresponding table that limits the current of the battery cell during charging and discharging. Specifically, it can be a limit table. power during the charging and discharging process to protect the battery cells. Then, based on the current sampled cell voltage and temperature, the SOP current limit table is queried in real time to obtain the maximum charge and discharge current allowed by the current system, and reported to the whole machine in real time for charge and discharge current limit management; through the current battery
- the reasonable power usage range of the battery is given by the combination of factors such as state (such as voltage and internal resistance), environmental conditions (such as temperature) and input power requirements (such as user demand).
- embodiments of the present application provide a battery power processing method and device that can reasonably define a battery power meter based on the battery state of charge (State of Charge, SOC) and temperature.
- the battery power meter includes a battery Peak power meter and battery continuous power meter.
- the battery power in the battery peak power meter and battery continuous power meter can be adjusted to limit the upper limit power of charging and the lower limit power of discharge.
- the upper limit power of charging is when overcharge occurs.
- the power when the phenomenon occurs that is, the power generated when the charging process is continued when it is fully charged.
- the lower limit of discharge power is the power when the over-discharge phenomenon occurs, that is, when the remaining power reaches the preset remaining power value, the power is continued.
- the BMS can automatically choose to enter or exit the power adjustment mode.
- the battery power limit value is obtained at different times.
- the limit value can be obtained by querying the relationship between battery power, temperature, time and battery state of charge as shown in Figure 2.
- the battery power processing method and device provided by the embodiments of the present application can output reasonable and accurate battery power for battery use under different working conditions.
- the battery power processing method provided by the embodiment of the present application may specifically include the following steps:
- Step S101 According to the battery temperature and battery state of charge, obtain an available power map through a preset table lookup method.
- the available power map includes a charge and discharge peak power table and a charge and discharge continuous power table.
- the preset table lookup method may be a linear interpolation method or other methods.
- the charge and discharge peak power meter corresponds to the charge and discharge peak power.
- the charge and discharge peak power is the power output in the form of pulses.
- the charge and discharge continuous power meter corresponds to the charge and discharge continuous power.
- the charge and discharge continuous power is always The output power, such as continuous output for 10 seconds, 30 seconds, etc.
- the peak power of charge and discharge and the continuous power of charge and discharge can be expressed in different tables, or they can be integrated into one table.
- the data of the charge and discharge peak power meter and the charge and discharge continuous power meter reflect the ultimate capacity of the device battery cell
- the data in the charge and discharge peak power meter and the charge and discharge continuous power meter are from Including but not limited to: test data in experiments and monitoring data of actual working conditions. For example, set the discharge temperature range to -30°C to 65°C, the charging temperature range to -15°C to 55°C, obtain the peak discharge power within a period of 10 seconds (or 5 seconds, or 2 seconds), and obtain the peak discharge power within a period of at least 30 seconds.
- the continuous discharge power is obtained within a period of seconds (or 60 seconds), the battery state-of-charge interval is 5% or 10%, the temperature interval is 5°C or 10°C, and the battery state-of-charge interval is 5% or 10% % means that the test data is obtained every 5% or 10% change in the battery's state of charge relative to the full state of charge.
- the temperature interval of 5°C or 10°C means that the temperature of the battery cell under test rises or drops by 5°C or 10°C.
- the table shown in Figure 2 represents a table in which the test duration is the first duration. If the test duration is the second duration, and the second duration is not equal to the first duration, in this case, different
- the table in Figure 2 is shown, in which, except for the test duration, other variables can be the same in different tables. No table representation is added here. Figure 2 is only used as an example.
- the charging and discharging peak power and the charging and discharging continuous power duration collected for different types of unmanned aerial vehicles are different, for example, logistics type unmanned aerial vehicles
- the machine collects the continuous discharge power for at least 30 minutes
- the consumer type drone collects the continuous discharge power for at least 10 minutes
- the agricultural type drone collects the discharge power for at least 10 minutes, ensuring that the collected data can cover different types of drones.
- the power corresponding to SOC and temperature in Figure 2 can be used to represent the power corresponding to different power collection durations.
- the points corresponding to 30% ⁇ SOC ⁇ 40% and 10 ⁇ t ⁇ 50 can be used to represent Measuring power for 5 seconds can also be used to mean measuring power for 60 seconds.
- the power corresponding to SOC and temperature t in Figure 2 can be one or more depending on the detection time. That is, Figure 2 only indicates that the test duration lasts until the first The first test power of the test duration. When the test duration continues to the second test duration, its corresponding second test power can be reflected in other tables, because as the test duration increases and the temperature changes, the test power also changes. Corresponding changes will occur.
- the table data in Figure 2 can be processed by a linear interpolation method to obtain the available power spectrum as shown in Figure 3.
- the horizontal axis represents the charging and discharging time of the battery
- the vertical axis represents the power of the battery.
- the charging power of logistics-type drones is about 50 kilowatts.
- the discharge power is about 100 kilowatts
- the charging power of consumer drones is about 50 watts
- the discharge power is about 100 watts.
- Figure 3 shows the available power map of high-rate discharge drones, such as high-voltage logistics drones. aircraft, manned type UAV or agricultural type UAV.
- high-rate discharge drones such as high-voltage logistics drones. aircraft, manned type UAV or agricultural type UAV.
- the blank part in Figure 3 indicates that the battery will reach the number of cycles.
- the power cannot be output at the limit.
- the charge and discharge peak power and charge and discharge continuous power are obtained through linear interpolation, the collected temperatures of multiple sensors can be obtained respectively, the maximum temperature is taken from the multiple collected temperatures, and the charge and discharge peak power is obtained by looking up the maximum temperature table. and charging and discharging continuous power.
- the charging and discharging peak power and the charging and discharging continuous power can respectively correspond to multiple tables, and the search is performed according to their respective corresponding tables.
- Step S102 Obtain the peak voltage, peak current and cell temperature to limit the upper limit of charging in the available power map; obtain the number of battery cycles, flight mode and alarm conditions to limit the lower limit of discharge in the available power map.
- the upper limit of charging includes safety protection
- the lower limit of discharge includes abuse protection
- the protection of the battery power of the device includes the security protection and the abuse protection.
- the security protection and the abuse protection not only utilize the data collected by the battery management system, but also utilize the data collected by other systems and/or modules in the device.
- the data is power-related data, such as voltage, current, temperature, resistance, etc.
- the device may be a drone device.
- the safety protection includes but is not limited to: peak voltage protection, peak current protection and battery core temperature protection, that is, the operating voltage of the battery of the device cannot exceed the peak voltage of the battery, and the operating current of the battery of the device cannot exceed the peak voltage of the battery.
- the peak current of the battery cannot be exceeded, and the operating temperature of the battery of the device cannot exceed the cell temperature range of the battery. because of the stated In actual operation, when the operating voltage of the device's battery exceeds the peak voltage, or the operating current exceeds the peak current, or the operating temperature exceeds the cell temperature range, the probability of the battery experiencing abnormal conditions such as performance degradation and damage will increase. Therefore, safety protection needs to further limit the charging peak power and charging continuous power of the battery of the device in the charging state.
- the abuse protection includes but is not limited to: current limit protection and uneven temperature distribution protection, that is, the discharge current of the battery during operation cannot exceed the current limit to reduce damage to other circuit system parts of the drone.
- the battery may undergo abnormal conditions such as performance degradation and damage when its overall temperature distribution is uneven. Therefore, abuse protection requires further restrictions on the peak discharge power and continuous discharge power of the battery in the discharge state.
- the limitations on the charging and discharging peak power and the charging and discharging continuous power of the battery also include but are not limited to: battery cycle protection, flight mode protection and alarm situation protection.
- the battery cycle protection is to shallow charge and discharge the battery of the device when the current number of charge and discharge cycles of the device's battery reaches the preset first number of cycles but does not exceed the preset maximum number of total cycles to reduce discharge. For the high-rate discharge behavior in the final stage, high-rate discharge does not occur in the blank area of the schematic diagram of the available power spectrum shown in Figure 3.
- Multiple cycle times can also be set based on the historical records of the test data and monitoring data, thereby using a progressive method to limit the maximum available power allowed by the battery, thereby limiting the peak discharge power and continuous discharge power of the battery.
- the flight mode protection is to further limit the peak discharge power and continuous discharge power of the battery when the device is in different flight mode requirements. For example, in a certain flight mode of the drone, it is required that the peak discharge power is less than 16 seconds, the temperature rise is less than 0.6°C per minute, and the battery power change rate is less than 5kw/100ms. The peak discharge power and continuous discharge power of the battery are limited.
- the alarm situation protection means that after an alarm situation occurs in the device, the peak discharge power and continuous discharge power of the battery of the device need to be limited.
- the drone's battery fails and is allowed to fly, the drone will fly at a low speed of 5km/h, or when the drone failure worsens, the drone's speed will be limited to 0km/h. In this case, it is necessary to limit the peak discharge power and continuous discharge power of the battery of the drone.
- Step S103 Set the first restriction condition and the second restriction condition.
- the first restriction condition includes the first temperature interval, peak power usage time, temperature rise control requirement, and actual available power. and the first heating power of the battery pack
- the second restriction condition includes a second temperature interval, whether the battery management system is in a power limited mode and the second heating power of the battery pack; when the battery management system satisfies the first
- the battery management system enters the power adjustment mode.
- the battery management system meets the second restriction condition, the battery management system exits the power adjustment mode.
- the battery management system can automatically enter and exit the power adjustment mode by setting the above-mentioned first restriction condition and the second restriction condition.
- the available power map is adjusted, and the buffer value rate is also designed to handle the rise and fall of battery power, so that the peak power of the battery and the continuous power of the battery can be smoothly switched.
- the method for the battery management system to enter and exit the power adjustment mode to adjust the available power map may include the following steps:
- Step S201 Determine whether the first restriction conditions are met at the same time: whether the temperature is greater than the preset first temperature (for example, 45°C), whether the cumulative peak power usage time is greater than the allowed peak power usage time (for example, 300 seconds), and whether the actual discharge power is It is less than the allowable continuous power of discharge and whether the actual heating power of the battery is greater than the preset first multiple (for example, 1.1) of the maximum allowable heating power of the battery.
- the actual heating power of the battery is the first heating power of the battery pack.
- the maximum allowable heating power of the battery means that when the actual heating power of the battery is equal to or exceeds the maximum allowable heating power of the battery, the battery stops charging or discharging so that the actual heating power of the battery no longer rises or falls, so that the battery The actual heating power is less than the maximum allowed heating power of the battery.
- step S204 is executed.
- the battery management system enters the power adjustment mode, that is, the following step S202 is performed.
- Step S202 Control the reported discharge peak power and the reported charging peak power of the battery to respectively decrease to the corresponding discharge continuous power and charging continuous power in the available power map at a preset second rate (for example, 1kw/100ms).
- the reported discharge peak power represents the value of the discharge peak power sent by the battery to the flight control system or battery management system
- the reported charging peak power represents the charging peak value sent by the battery to the flight control system or battery management system. power value.
- Step S203 Determine whether the second restriction condition is met at the same time: whether the temperature is smaller than a predetermined Assume a second temperature (for example, 35°C), whether the battery management system is in power limiting mode, and whether the actual heating power of the battery is greater than a preset second multiple (for example, 0.9) of the maximum allowable heating power of the battery.
- the actual heating power of the battery is the second heating power of the battery pack.
- the battery management system exits the power adjustment mode, that is, executes the following step S204.
- Step S204 The battery management system exits the power adjustment mode, and controls the reported discharge peak power and reported charging peak power of the battery to rise to corresponding values in the available power map at a preset first rate (for example, 1kw/100ms).
- Discharge peak power and charging peak power include discharge peak power and charging peak power (ie feedback power).
- the discharge peak power and the charging peak power can be adjusted within the set temperature interval. Specifically, some calibration quantities can be set as trigger conditions.
- the battery management system first calculates the reported discharge peak power and the reported charging peak power, When the power is adjusted, the reported discharge peak power and the reported charging peak power will be tracked to the current table lookup value according to the power meter and through a certain buffering rate.
- the actual heating power of the battery is the heating power of the battery minus the cooling power of the battery coolant.
- the first restriction condition may also include: the temperature rise is less than a preset temperature rise (for example, 0.6°C/min).
- a buffer value rate is designed according to the charging peak power and the discharging peak power, and the reported charging peak power and the reported discharging peak power are sent to the available buffer value at the buffering value rate.
- the corresponding charging peak power and discharging peak power in the power map are close to each other.
- the buffer value rate ensures the smoothness of the battery power adjustment curve, ensures the smooth change of the battery output power, and avoids the output of the battery. Rapid changes in power in a short period of time have a poor stability impact on the operation of the equipment.
- Step S104 Obtain the load limit working condition map of the battery, perform curve fitting on the load limit working condition map and the available power map, obtain a relationship map between usage time and battery available power, and use the relationship map according to the relationship map Control the output power of the battery.
- the load limit working condition map is the equipment operating under extreme working conditions (such as drone speed rising, The spectrum of current and time obtained under conditions such as rapid drop, etc.) can be calculated based on the current change curve under extreme operating conditions.
- the sources of data for the current curve under extreme operating conditions include but are not limited to: test data in experiments. and monitoring data of actual working conditions.
- the experimental conditions for the current change curve of the extreme working condition shown in Figure 5 are: the battery is fully loaded, the ambient temperature is 30°C, the battery state of charge is between 35% and 85%, and the current is 10 times the current After discharging and continuing the discharge time for 1 minute, continue discharging with the current current and continuing the discharge time for 4 minutes.
- This process repeats the experiment 4 times to simulate the repeated take-off and landing process of the UAV.
- the experimental conditions for the current change curve of the battery under normal working conditions as shown in Figure 6 are: the battery is fully loaded, the ambient temperature is 30°C, the battery state of charge is between 15% and 100%, and the current is continued at 6 times the current Discharge for 200 seconds, then continue to discharge at 8 times the current current for 60 seconds, then continue to discharge at 3 times the current current for 200 seconds, maintain 1 times the current current for 3000 seconds, discharge at 0.8 times the current current for 200 seconds, and finally continue to discharge at 4 times the current current. Discharge for 300 seconds. This process is tested once to simulate the normal take-off and landing process of the UAV.
- the battery can ensure the power of the UAV under extreme working conditions to meet the power requirements under normal working conditions, that is, the power of the battery can meet the normal working conditions without Will exceed the power under extreme working conditions.
- the load power of the battery is calculated based on the current change curve of the extreme working condition, and a load extreme working condition diagram of the battery similar to Figure 7 is obtained.
- the horizontal axis of Figure 7 represents time
- the vertical axis of Figure 7 represents the power of the battery.
- the horizontal axis of FIG. 8 represents the working time of the battery
- the vertical axis of FIG. 8 represents the available power of the battery.
- the load of the battery under extreme working conditions is not the same, that is, the diagrams in Figure 7 obtained by different types of UAVs are not necessarily the same.
- the final curve is obtained after curve fitting.
- the relationship between operating time and available battery power is not necessarily the same.
- Different experimental methods and experimental prerequisites will also have an impact on the final relationship map, but the impact can be detected during the actual operation of the drone by collecting the battery. The collected data is input as new experimental data. This algorithm eliminates the influence and obtains a spectrum that is closer to the actual available power of the battery.
- the battery operating input power of the device can be controlled according to the relationship map, so that the battery operates within the range defined by the relationship map.
- the battery power processing method provided by the embodiment of the present application can dynamically calculate the battery power output capability under different state of charge and temperature conditions, and can comprehensively calibrate the battery power system in combination with various working conditions of the whole machine, such as charging upper limit and The lower discharge limit is effectively limited, which can avoid battery abuse and premature aging of cells in practical applications.
- the battery management system can be controlled to automatically enter and exit the battery power adjustment mode. Through this self-learning method of estimating battery power, it can fully understand the power output capacity of the battery core, accurately estimate the battery power, and ensure sufficient power. performance and ensure the safety of the device.
- the battery power processing device 30 includes: an available power map acquisition module 31, a first power adjustment module 32, a second power adjustment module 33 and a third Power conditioning module 34.
- the available power spectrum acquisition module 31 is used to obtain the available power spectrum through a preset table lookup method according to the battery temperature and battery state of charge.
- the first power adjustment module 32 is used to determine the upper charging limit and the lower discharging limit corresponding to the available power map to obtain an adjusted available power map.
- the second power adjustment module 33 is configured to control the power adjustment mode of the battery management system according to the set first restriction condition and the second restriction condition, and modify the adjusted available power map according to the power adjustment mode.
- the third power adjustment module 34 is used to obtain the load limit working condition map of the battery, perform curve fitting on the load limit working condition map and the available power map, to obtain a relationship map between usage time and battery available power, and The output power of the battery is controlled according to the relationship map.
- the above-mentioned battery power processing device can execute the battery power processing method provided by the embodiments of the present application, and has functional modules and beneficial effects corresponding to the execution method.
- the battery power processing method provided in the embodiment of the present application.
- the battery management system 40 includes:
- One or more processors 41 and memories 42 are taken as an example.
- the processor 41 and the memory 42 may be connected through a bus or other means.
- the connection through a bus is taken as an example.
- the memory 42 can be used to store non-volatile software programs, non-volatile computer executable programs and modules, such as the program corresponding to the battery power processing method in the embodiment of the present application. Instructions/modules (e.g., each module shown in Figure 9).
- the processor 41 executes various functional applications and data processing of the battery management system by running non-volatile software programs, instructions and modules stored in the memory 42, that is, implementing the battery power processing method of the above method embodiment.
- the one or more modules are stored in the memory 42, and when executed by the one or more processors 41, perform the battery power processing method in any of the above method embodiments, for example, perform the above-described Figure 1
- the battery management system 40 provided by the embodiment of the present application may also include: a control module, a display module, a wireless communication module, a collection module, electrical equipment, etc.
- the battery management system 40 can be used to intelligently manage and maintain each battery unit, prevent overcharge and overdischarge of the battery, monitor the status of the battery, and extend the service life of the battery.
- the battery management system 40 executes the battery power processing method through the processor 41, and can dynamically calculate the battery power output capability under different states of charge and temperature conditions, and can perform battery power processing in combination with various working conditions of the entire machine.
- the system is comprehensively calibrated, such as effectively limiting the upper limit of charging and lower limit of discharge. In practical applications, battery abuse can be avoided and battery cells can be prevented from aging prematurely.
- the battery management system can be controlled to automatically enter and exit the battery power adjustment mode. Through this self-learning method of estimating battery power, an all-round understanding of the cell power output capability can improve the research and development of next-generation cells to improve power performance. . Finally, the battery power can be accurately estimated, ensuring sufficient power performance and ensuring the safety of the device.
- An embodiment of the present application also provides a battery, which includes a battery core and a battery management system as described above.
- the battery management system is used to manage the charging and discharging of the battery core. During the charging and discharging process, the power of the battery can be effectively processed and controlled based on the above battery power processing method.
- An embodiment of the present application also provides an electrical device, which includes a load and the above-mentioned battery, where the battery is used to power the load.
- Embodiments of the present application provide a non-volatile computer-readable storage medium.
- the computer-readable storage medium stores computer-executable instructions.
- the computer-executable instructions are executed by one or more processors.
- a processor 41 can enable the above one or more processors to execute the battery power processing method in any of the above method embodiments.
- Embodiments of the present application provide a computer program product.
- the computer program product includes a computer program stored on a non-volatile computer-readable storage medium.
- the computer program includes program instructions. When the program instructions are described When the battery management system is executed, the battery management system is enabled to execute the battery power processing method in any of the above method embodiments.
- each embodiment can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
- the program can be stored in a computer-readable storage medium, and the program can be stored in a computer-readable storage medium.
- the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
本申请涉及电池管理技术领域,公开了一种电池功率处理方法、装置、电池管理系统以及电池。该方法根据电池温度和电池荷电状态,通过预设查表方法获取可用功率图谱;确定所述可用功率图谱对应的充电上限和放电下限,以获得调整后的可用功率图谱;根据设定的第一限制条件和第二限制条件控制电池管理系统的功率调节模式,并根据所述功率调节模式修正所述调整后的可用功率图谱。本申请可以全方位摸底电芯功率输出能力,对下一代电芯提升功率性能的研发有改善作用,还可以精准的估算出电池功率,可保证足够的动力性能,确保设备的安全性。
Description
本申请涉及电池管理技术领域,特别涉及一种电池功率处理方法、装置、电池管理系统以及电池。
目前通过电池管理系统(Battery Management System,BMS)对电池功率进行监控和调节,以保证电池和电池的使用设备的动力输出效果和安全性。获得准确的电池功率关系着BMS的可靠性与电池使用设备的安全性,获得精确的电池功率也能避免电池在使用过程中造成过充或者过放问题,影响电池的使用寿命。因此,获得合适且准确的电池功率具有重要意义。
发明内容
本申请实施方式至少部分改善了上述问题,提高了电池功率的准确性和可靠性。
为解决上述技术问题,本申请实施方式采用的一个技术方案是:提供一种电池功率处理方法,包括:根据电池温度和电池荷电状态,通过预设查表方法获取可用功率图谱,确定所述可用功率图谱对应的充电上限和放电下限,以获得调整后的可用功率图谱,根据设定的第一限制条件和第二限制条件控制电池管理系统的功率调节模式,并根据所述功率调节模式修正所述调整后的可用功率图谱,其中,所述可用功率图谱包括充放电峰值功率表和充放电持续功率表。
在一些实施例中,所述确定所述可用功率图谱对应的充电上限和放电下限包括:获取峰值电压、峰值电流和电芯温度对所述可用功率图谱中的充电上限进行限制,获取电池循环次数、飞行模式和告警情况对所述可用功率图谱中的放电下限进行限制。所述充电上限进行限制包括安
全保护,放电下限进行限制包括滥用保护。
在一些实施例中,所述根据设定的第一限制条件和第二限制条件控制电池管理系统的功率调节模式包括:设定第一限制条件和第二限制条件;在所述电池管理系统满足所述第一限制条件时,控制所述电池管理系统进入功率调节模式,在所述电池管理系统满足所述第二限制条件时,控制所述电池管理系统退出功率调节模式,其中,所述第一限制条件包括第一温度区间、峰值功率使用时间、温升控制要求、实际可用功率和电池包的第一发热功率,所述第二限制条件包括第二温度区间、所述电池管理系统是否处于限功率模式和电池包的第二发热功率。
在一些实施例中,所述在所述电池管理系统满足所述第一限制条件时,控制所述电池管理系统进入功率调节模式,在所述电池管理系统满足所述第二限制条件时,控制所述电池管理系统退出功率调节模式包括:判断是否同时满足所述第一限制条件:温度是否大于预设第一温度、累计峰值功率使用时间是否大于允许峰值功率使用时间、放电实际功率是否小于放电允许持续功率、电池实际发热功率是否大于电池允许最大发热功率的预设第一倍数;若所述第一限制条件都满足,则所述电池管理系统进入功率调节模式,否则,所述电池管理系统退出功率调节模式;判断是否同时满足所述第二限制条件:温度是否小于预设第二温度、所述电池管理系统是否处于限功率模式、电池实际发热功率是否大于所述电池允许最大发热功率的预设第二倍数;若所述第二限制条件都满足,则所述电池管理系统退出功率调节模式,否则,所述电池管理系统进入功率调节模式。
在一些实施例中,所述根据所述功率调节模式修正所述调整后的可用功率图谱包括:当所述电池管理系统退出功率调节模式时,控制所述电池的上报放电峰值功率和上报充电峰值功率分别以预设第一速率上升至所述可用功率图谱中对应的放电峰值功率和充电峰值功率;当所述电池管理系统进入功率调节模式时,控制所述电池的上报放电峰值功率和上报充电峰值功率分别以预设第二速率下降至所述可用功率图谱中对应的放电持续功率和充电持续功率。其中,所述功率调节的过程中,根据所述充电峰值功率和所述放电峰值功率设计缓冲值速率,所述上报
充电峰值功率和所述上报放电峰值功率以所述缓冲值速率向所述可用功率图谱中对应的充电峰值功率和放电峰值功率逼近,所述缓冲值速率保证了所述电池功率调节曲线的平滑性,保证了所述电池输出功率的平滑性变化,避免了所述电池的输出功率在短时间快速变化对所述设备的运行产生稳定性差的影响。
在一些实施例中,所述方法还包括:获取电池的负载极限工况图谱,将所述负载极限工况图谱与所述可用功率图谱进行曲线拟合,以获得使用时间和电池可用功率的关系图谱,并根据所述关系图谱控制所述电池的输出功率。其中,所述负载极限工况图谱是设备在极限工况下获得的电流与时间的图谱。
为解决上述技术问题,本申请实施方式采用的另一个技术方案是:提供一种电池功率处理装置,包括:可用功率图谱获取模块,用于根据电池温度和电池荷电状态,通过预设查表方法获取可用功率图谱;第一功率调节模块,用于确定所述可用功率图谱对应的充电上限和放电下限,以获得调整后的可用功率图谱;第二功率调节模块,用于根据设定的第一限制条件和第二限制条件控制电池管理系统的功率调节模式,并根据所述功率调节模式修正所述调整后的可用功率图谱,其中,所述可用功率图谱包括充放电峰值功率表和充放电持续功率表。
在一些实施例中,还包括第三功率调节模块,第三功率调节模块用于获取电池的负载极限工况图谱,将所述负载极限工况图谱与所述可用功率图谱进行曲线拟合,以获得使用时间和电池可用功率的关系图谱,并根据所述关系图谱控制所述电池的输出功率。
为解决上述技术问题,本申请实施方式采用的又一个技术方案是:提供一种电池管理系统,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的电池功率处理方法。
为解决上述技术问题,本申请实施方式采用的还一个技术方案是:提供一种电池,包括电芯和如上所述的电池管理系统,所述电池管理系统用于管理所述电芯的充电和放电。
为解决上述技术问题,本申请实施方式采用的再一个技术方案是:提供一种非易失性计算机可读存储介质,所述非易失性计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被电池管理系统执行时,使所述电池管理系统执行如上所述的方法。
为解决上述技术问题,本申请实施方式采用的又再一个技术方案是:一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被电子设备执行时,使所述电池管理系统执行如上所述的方法。
区别于相关技术的情况,本申请实施例提供的电池功率处理方法、装置、电池管理系统和电池,能够动态计算出不同荷电状态和温度条件下的电池功率输出能力,可以结合整机各种工况对电池功率进行系统全面标定,比如对充电上限和放电下限进行有效限制,实际应用中可以避免电池滥用,避免电芯提前老化。可以控制电池管理系统自动进入电池功率调节模式和退出电池功率调节模式,通过这种自学习估算电池功率方法,全方位摸底电芯功率输出能力,对下一代电芯提升功率性能的研发有改善作用。最后,可以精准的估算出电池功率,可保证足够的动力性能,确保设备的安全性。
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例提供的电池功率处理方法的流程图;
图2是本申请实施例提供的一种电池功率与温度、时间及电池荷电状态的关系表格;
图3是本申请实施例提供的一种可用功率图谱的示意图;
图4是本申请实施例提供的电池管理系统进入和退出功率调节模式对所述可用功率图谱进行调整的方法的流程图;
图5是本申请实施例提供的电池极限工况的电流变化曲线图;
图6是本申请实施例提供的电池正常工况的电流变化曲线图;
图7是本申请实施例提供的电池的极限工况的功率图谱;
图8是本申请实施例提供的电池使用时间和电池可用功率的关系图谱;
图9是本申请实施例提供了一种电池功率处理装置的结构示意图;
图10是本申请实施例提供的一种电池管理系统的结构示意图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,如果不冲突,本申请实施例中的各个特征可以相互组合,均在本申请的保护范围之内。另外,虽然在装置示意图中进行了功能模块的划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置示意图中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
电池功率的估计通常是根据电芯规格书,制定电池功率状态(State of Power,SOP)限流表,所述限流表是限制充放电过程中电芯的电流的对应表,具体可以是限制充放电过程中的功率,以对电芯进行保护。然后根据当前采样得到的电芯电压、温度,通过实时查询该SOP限流表,获取当前系统允许的最大充、放电电流,并实时上报至整机,进行充放电限流管理;通过电池当前的状态(比如电压和内阻等),环境状况(比如温度)及输入功率要求(比如用户需求)等因素的综合而给定电池合理的功率使用区间。对于当前这种电池功率处理方式,在根据电芯规格书制定SOP限流表时,存在电池实验数据不全的问题,导致制定的SOP
限流表的数据不全,如果不同场景下出现了超额功率时,导致限制整机功率等问题。另外,整机在复杂工况下运行时,可能会造成电池包温度过高,进而导致器件接触电阻大、发热严重,导致烧毁高压连接器件,而当前的电池功率处理方式并不能很好的解决该问题。
因此,为改善上述问题,本申请实施例提供了一种电池功率处理方法和装置,能够基于电池荷电状态(State of Charge,SOC)和温度合理定义出电池功率表,该电池功率表包括电池峰值功率表和电池持续功率表。通过考虑设备系统故障、滥用、超负荷等情况,对该电池峰值功率表和电池持续功率表中的电池功率进行调整,可以限制充电上限功率和放电下限功率,所述充电上限功率是发生过充现象时的功率,即在已经充满电的情况下继续进行充电过程时所产生的功率,所述放电下限功率是发生过放现象时的功率,即在剩余电量达到预设剩余电量值时继续进行放电过程时所产生的功率。通过设定温度区间和设置电池的电压、电流、温度、充放电时间等参数的极限值,以此使BMS能自动选择进入功率调节模式或退出功率调节模式。在进入功率调节模式或退出功率调节模式这个过程中,获取不同时刻电池功率限值,其中,所述限值可通过查询如图2所示的电池功率与温度、时间及电池荷电状态的关系表格获得;计算第一时刻获取的第一限值与第二时刻获取的第二限值之间的差值,并将所述差值作为电池功率变化的缓冲值;设计所述缓冲值对应的速率来处理电池功率的升降,从而使得电池峰值功率和电池持续功率能够平滑切换。由此,本申请实施例提供的电池功率处理方法和装置能够在不同的工况下输出合理且准确的电池功率供电池使用。
如图1所示,本申请实施例提供的电池功率处理方法具体可以包括以下步骤:
步骤S101:根据电池温度和电池荷电状态,通过预设查表方法获取可用功率图谱,所述可用功率图谱包括充放电峰值功率表和充放电持续功率表。
其中,所述预设查表方法可以是线性插值方法等其他方法。充放电峰值功率表对应充放电峰值功率,充放电峰值功率是以脉冲形式输出的功率,充放电持续功率表对应充放电持续功率,充放电持续功率是一直
输出的功率,比如持续输出10秒,30秒等。充放电峰值功率和充放电持续功率可以分别用不同的表进行表示,也可以整合在一个表中。
其中,所述充放电峰值功率表和所述充放电持续功率表的数据反应的是设备电池电芯的极限能力,所述充放电峰值功率表和所述充放电持续功率表中的数据的来源包括但不限于:实验中的测试数据和实际工况的监测数据。例如,设定放电温度区间为-30℃至65℃、充电温度区间为-15℃至55℃、在10秒(或5秒或2秒)的时间段内获取峰值放电功率、在超过至少30秒(或60秒)的时间段内获取持续放电功率、电池荷电状态的间隔为5%或10%、温度间隔为5℃或10℃,所述电池荷电状态的间隔为5%或10%表示电池的荷电状态相对满荷电状态每变化5%或10%时获取一次测试数据,所述温度间隔为5℃或10℃表示被测试电池电芯的温度上升或下降5℃或10℃时获取一次测试数据。然后在不同电池荷电状态和不同温度条件下进行测试,得到类似如图2所示的充放电峰值功率和充放电持续功率分别与温度、时间及电池荷电状态(SOC)的关系表格数据。需要说明的是,图2所示的表格表示的是测试时长为第一时长的表格,若测试时长为第二时长,所述第二时长不等于所述第一时长,此时可通过不同于图2的表格进行表示,其中,不同的表格中除了测试时长不一样其他变量可以一样,在此不再增加表格表示,图2仅作为一种示例。其中,在将本申请的电池功率处理方法应用于无人机设备时,采集不同类型的无人机的所述充放电峰值功率和所述充放电持续功率的持续时间不同,例如物流类型无人机采集至少30分钟的持续放电功率,消费类型无人机采集至少10分钟的持续放电功率,农业类型无人机采集至少10分钟的放电功率,保证得到的采集数据能够覆盖不同种类无人机各自的应用场景,因此,图2中SOC与温度对应的功率可以用于表示不同的功率采集时长对应的功率,比如,30%<SOC≤40%和10<t≤50对应的点可以用于表示测5秒功率,也可以用于表示测60秒功率等,图2中的SOC与温度t对应的功率可以根据检测时间的不同是一个或多个,即图2仅表示测试时长持续到第一测试长时的第一测试功率,在测试时长持续到第二测试时长时,其对应的第二测试功率可体现在其他表格中,因为随着测试时长的增加和温度的变化,测试功率也
会产生相应变化。
可以通过线性插值方法处理图2中的表格数据,从而得到如图3所示的所述可用功率图谱,在图3中横轴表示所述电池的充放电时间,纵轴表示所述电池的功率,功率大于零时表示所述电池正在充电,功率小于零时表示所述电池正在放电,不同类型的无人机的功率范围也不完全相同,例如物流类型无人机充电功率在50千瓦左右,放电功率在100千瓦左右,消费类型无人机充电功率在50瓦左右,放电功率在100瓦左右,图3表示的是大倍率放电类型的无人机的可用功率图谱,例如高压物流类型无人机、载人类型无人机或农业类型无人机。其中,所述电池在实际应用过程中随着充放电循环次数的增加会导致所述电池的性能逐渐下降,甚至是最终无法输出功率,即图3中的空白部分表示所述电池在达到循环次数的极限时候无法输出功率。其中,通过线性插值方式获取充放电峰值功率和充放电持续功率时,可以分别获取多个传感器的采集温度,从多个所述采集温度中取最大温度,通过最大温度查表得到充放电峰值功率和充放电持续功率。在查表过程中,充放电峰值功率和充放电持续功率可以分别各自对应多个表,根据其各自对应的表进行查找。
步骤S102:获取峰值电压、峰值电流和电芯温度对所述可用功率图谱中的充电上限进行限制;获取电池循环次数、飞行模式和告警情况对所述可用功率图谱中的放电下限进行限制。
本申请实施例中,所述充电上限进行限制包括安全保护,放电下限进行限制包括滥用保护。对于设备的电池功率的保护包括所述安全保护和所述滥用保护,所述安全保护和所述滥用保护不仅利用了电池管理系统采集的数据,还利用了设备中其他系统和/或模块采集到的数据,该数据是与功率相关的数据,比如电压、电流、温度、电阻等。
其中,所述设备可以是无人机设备。
其中,所述安全保护包括但不限于:峰值电压保护、峰值电流保护和电芯温度保护,即所述设备的电池的工作电压不能超过所述电池的峰值电压,所述设备的电池的工作电流不能超过所述电池的峰值电流,所述设备的电池的工作温度不能超过所述电池的电芯温度范围。因为所述
设备的电池在实际工作中出现工作电压超过峰值电压,或工作电流超过峰值电流,或工作温度超过电芯温度范围的情况时,将增大所述电池出现性能退化、损坏等异常情况的概率,因此,安全保护需要对充电状态下的所述设备的电池的充电峰值功率和充电持续功率进行进一步的限制。
其中,所述滥用保护包括但不限于:电流限值保护和温度分布不均匀保护,即所述电池在工作时的放电电流不能超过电流限制,减少对无人机的其他电路系统部分造成损坏。所述电池在自身整体温度分布不均匀的情况下会发生性能退化和损坏等异常情况,所以滥用保护需要对放电状态下的所述电池的放电峰值功率和放电持续功率进行进一步限制。
其中,对于所述电池的充放电峰值功率和所述充放电持续功率的限制还包括但不限于:电池循环次数保护、飞行模式保护和告警情况保护。所述电池循环次数保护是在所述设备的电池当前充放电循环次数达到预设第一循环次数但不超过预设总循环最大次数时,对所述设备的电池进行浅充浅放,减少放电末期的大倍率放电行为,在图3所示的可用功率图谱的示意图的空白区域不进行大倍率放电。还可根据所述测试数据和监测数据的历史记录设置多个循环次数,从而采用渐进式的方法限制所述电池允许的最大可用功率,进而限制所述电池的放电峰值功率和放电持续功率。所述飞行模式保护是在所述设备处于不同的飞行模式要求下,对所述电池的放电峰值功率和放电持续功率进一步限制。例如,无人机的某一飞行模式下,要求允许放电峰值功率小于16秒、温度升高小于0.6℃每分钟和所述电池功率变化速率小于5kw/100ms等限制条件对所述无人机的电池的放电峰值功率和放电持续功率进行限制。所述告警情况保护是所述设备发生告警情况后,需要对所述设备的电池的放电峰值功率和放电持续功率进行限制。例如,无人机的电池出现故障且允许飞行时,所述无人机会进入低速5km/h的速度飞行,或者在无人机故障加重时限制所述无人机的速度为0km/h,此时则需要对所述无人机的电池的放电峰值功率和放电持续功率进行限制。
步骤S103:设定第一限制条件和第二限制条件,所述第一限制条件包括第一温度区间、峰值功率使用时间、温升控制要求、实际可用功率
和电池包的第一发热功率,所述第二限制条件包括第二温度区间、所述电池管理系统是否处于限功率模式和电池包的第二发热功率;在所述电池管理系统满足所述第一限制条件时,所述电池管理系统进入功率调节模式,在所述电池管理系统满足所述第二限制条件时,所述电池管理系统退出功率调节模式。
在本申请实施例中,还通过设定上述第一限制条件和第二限制条件,使电池管理系统能够自动进入功率调节模式和退出功率调节模式。在这个过程中,对所述可用功率图谱进行调整,并且还设计缓冲值速率来处理电池功率的升降,从而使得电池峰值功率和电池持续功率能够平滑切换。具体地,如图4所示,所述电池管理系统进入和退出功率调节模式对所述可用功率图谱进行调整的方法可以包括如下步骤:
步骤S201:判断是否同时满足所述第一限制条件:温度是否大于预设第一温度(例如45℃)、累计峰值功率使用时间是否大于允许峰值功率使用时间(例如300秒)、放电实际功率是否小于放电允许持续功率、电池实际发热功率是否大于电池允许最大发热功率的预设第一倍数(例如1.1)。所述电池实际发热功率即上述电池包的第一发热功率。所述电池允许最大发热功率是指在电池的实际发热功率等于或大于超过所述电池允许最大发热功率时,所述电池停止充电或放电以使电池的实际发热功率不再上升或下降,使得电池的实际发热功率小于所述电池允许最大发热功率的功率。
若不同时满足上述第一限制条件,则执行下述步骤S204。
若同时满足上述第一限制条件,则所述电池管理系统进入功率调节模式,即执行下述步骤S202。
步骤S202:控制所述电池的上报放电峰值功率和上报充电峰值功率分别以预设第二速率(例如1kw/100ms)下降到所述可用功率图谱中对应的放电持续功率和充电持续功率。
其中,所述上报放电峰值功率表示所述电池发送至飞行控制系统或电池管理系统的放电峰值功率的值,所述上报充电峰值功率表示所述电池发送至飞行控制系统或电池管理系统的充电峰值功率的值。
步骤S203:判断是否同时满足所述第二限制条件:温度是否小于预
设第二温度(例如35℃)、所述电池管理系统是否处于限功率模式、电池实际发热功率是否大于所述电池允许最大发热功率的预设第二倍数(例如0.9)。其中,所述电池实际发热功率即上述电池包的第二发热功率。
若同时满足上述第二限制条件,则所述电池管理系统退出功率调节模式,即执行下述步骤S204。
若不同时满足上述第二限制条件,则继续进行功率调节直至同时满足所述第二限制条件时退出功率调节模式。
步骤S204:所述电池管理系统退出功率调节模式,控制所述电池的上报放电峰值功率和上报充电峰值功率分别以预设第一速率(例如1kw/100ms)上升到所述可用功率图谱中对应的放电峰值功率和充电峰值功率。其中,放电模式有放电峰值功率和充电峰值功率(即回馈功率)。可以在设定的温度区间调整放电峰值功率和充电峰值功率,具体地,可以设定一些标定量作为触发条件,比如,电池管理系统先计算所述上报放电峰值功率和所述上报充电峰值功率,当进行功率调整时,会根据功率表并通过一定的缓冲速率将所述上报放电峰值功率和所述上报充电峰值功率跟踪到当前查表的值。其中,所述电池实际发热功率为所述电池的发热功率减去电池冷却液制冷功率。
其中,所述第一限制条件还可以包括:温度升高小于预设温升(例如0.6℃/min)。
其中,所述功率调节的过程中,根据所述充电峰值功率和所述放电峰值功率设计缓冲值速率,所述上报充电峰值功率和所述上报放电峰值功率以所述缓冲值速率向所述可用功率图谱中对应的充电峰值功率和放电峰值功率逼近,所述缓冲值速率保证了所述电池功率调节曲线的平滑性,保证了所述电池输出功率的平滑性变化,避免了所述电池的输出功率在短时间快速变化对所述设备的运行产生稳定性差的影响。
步骤S104:获取所述电池的负载极限工况图谱,将所述负载极限工况图谱与所述可用功率图谱进行曲线拟合,得到使用时间和电池可用功率的关系图谱,并根据所述关系图谱控制所述电池的输出功率。
其中,所述负载极限工况图谱是设备在极限工况(比如无人机速升、
速降等)下获得的电流与时间的图谱,其可以根据极限工况的电流变化曲线图计算得到,所述极限工况的电流曲线图的数据的来源包括但不限于:实验中的测试数据和实际工况的监测数据。例如,如图5所示的极限工况的电流变化曲线图的实验条件是:所述电池满载,环境温度为30℃,电池荷电状态在35%至85%之间,以10倍当前电流放电且持续放电时间1分钟后,以当前电流持续放电且持续放电时间4分钟,该过程重复实验4次,模拟无人机在重复的起飞降落过程。如图6所示的电池正常工况的电流变化曲线图的实验条件是:所述电池满载,环境温度为30℃,电池荷电状态在15%至100%之间,以6倍当前电流持续放电200秒,然后以8倍当前电流持续放电60秒,再以3倍当前电流持续放电200秒,当前1倍电流保持3000秒,以当前0.8倍电流放电200秒,最后以4倍当前电流持续放电300秒,该过程实验1次,模拟无人机在正常的起飞飞行降落过程。通过图5和图6的比较可知所述电池保证无人机极限工况下的功率即可满足正常工况下的功率要求,即所述电池的功率可以在满足正常工况的情况下又不会超过极限工况下的功率。其中,图5和图6的横轴表示所述电池的工作时间,图5和图6的纵轴表示所述电池的输出电流值,其中,C为电流的单位放电倍数,10C=100A。需要说明的是,上述实验条件的参数设置与具体应用时的实际工况相关,可以根据具体的应用工况做出参数调整。
其中,在所述极限工况的电流变化曲线图基础上计算所述电池的负载功率,得到类似图7的所述电池的负载极限工况图谱。其中,图7的横轴表示时间,图7的纵轴表示所述电池的功率。将所述负载极限工况图谱与所述可用功率图谱进行曲线拟合,得到类似图8的工作时间和电池可用功率的关系图谱,即完成所述设备的电池可用功率的预测。其中,图8的横轴表示所述电池的工作时间,图8的纵轴表示所述电池的可用功率。对于不同类型的无人机,所述电池的极限工况下的负载并不相同,即不同类型的无人机得到的图7的图谱不一定相同,与此同时进行曲线拟合之后得到最终的工作时间和电池可用功率的关系图谱也不一定相同。对于不同的实验方法和实验前提条件也会对最终的所述关系图谱产生影响,但所述影响可以通过采集所述电池在无人机的实际运行过程中
的数据并以采集的数据作为新的实验数据输入本算法对所述影响进行消除,得到更加接近所述电池实际可用功率的图谱。
在本申请实施例中,可以根据所述关系图谱对设备的电池工作输入功率进行控制,以使电池工作在所述关系图谱限定的范围内。
本申请实施例提供的电池功率处理方法,能够动态计算出不同荷电状态和温度条件下的电池功率输出能力,可以结合整机各种工况对电池功率进行系统全面标定,比如对充电上限和放电下限进行有效限制,实际应用中可以避免电池滥用,避免电芯提前老化。可以控制电池管理系统自动进入电池功率调节模式和退出电池功率调节模式,通过这种自学习估算电池功率方法,全方位摸底电芯功率输出能力,可以精准的估算出电池功率,可保证足够的动力性能,确保设备的安全性。
如图9所示,本申请实施例提供了一种电池功率处理装置,该电池功率处理装置30包括:可用功率图谱获取模块31、第一功率调节模块32、第二功率调节模块33和第三功率调节模块34。
可用功率图谱获取模块31,用于根据电池温度和电池荷电状态,通过预设查表方法获取可用功率图谱。
第一功率调节模块32,用于确定所述可用功率图谱对应的充电上限和放电下限,以获得调整后的可用功率图谱。
第二功率调节模块33,用于根据设定的第一限制条件和第二限制条件控制电池管理系统的功率调节模式,并根据所述功率调节模式修正所述调整后的可用功率图谱。
第三功率调节模块34,用于获取电池的负载极限工况图谱,将所述负载极限工况图谱与所述可用功率图谱进行曲线拟合,以获得使用时间和电池可用功率的关系图谱,并根据所述关系图谱控制所述电池的输出功率。
需要说明的是,上述电池功率处理装置可执行本申请实施例所提供的电池功率处理方法,具备执行方法相应的功能模块和有益效果。未在本电池功率处理装置实施例详尽描述的技术细节,可参见本申请实施例所提供的电池功率处理方法。
如图10所示,本申请实施例提供了一种电池管理系统,该电池管理系统40包括:
一个或多个处理器41以及存储器42,图10中以一个处理器41为例。
处理器41和存储器42可以通过总线或者其他方式连接,图10中以通过总线连接为例。
存储器42作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的电池功率处理方法对应的程序指令/模块(例如,附图9所示的各个模块)。处理器41通过运行存储在存储器42中的非易失性软件程序、指令以及模块,从而执行所述电池管理系统的各种功能应用以及数据处理,即实现上述方法实施例电池功率处理方法。
所述一个或者多个模块存储在所述存储器42中,当被所述一个或者多个处理器41执行时,执行上述任意方法实施例中的电池功率处理方法,例如,执行以上描述的图1中的方法步骤,实现图9中的模块的功能。
本申请实施例提供的电池管理系统40还可以包括:控制模组、显示模组、无线通信模组、采集模组以及电气设备等。该电池管理系统40可以用于智能化管理和维护各个电池单元,防止电池出现过充电和过放电,监控电池的状态以及延长电池的使用寿命。
所述电池管理系统40通过所述处理器41执行所述电池功率处理方法,能够动态计算出不同荷电状态和温度条件下的电池功率输出能力,可以结合整机各种工况对电池功率进行系统全面标定,比如对充电上限和放电下限进行有效限制,实际应用中可以避免电池滥用,避免电芯提前老化。可以控制电池管理系统自动进入电池功率调节模式和退出电池功率调节模式,通过这种自学习估算电池功率方法,全方位摸底电芯功率输出能力,对下一代电芯提升功率性能的研发有改善作用。最后,可以精准的估算出电池功率,可保证足够的动力性能,确保设备的安全性。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的
功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请实施例还提供了一种电池,该电池包括电芯,以及如上所述的电池管理系统,该电池管理系统用于管理所述电芯的充电和放电。在充电和放电的过程中,可基于上述电池功率处理方法对所述电池的功率进行有效处理和控制。
本申请实施例还提供了一种用电装置,该用电装置包括负载,以及上述电池,所述电池用于为所述负载供电。
本申请实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图10中的一个处理器41,可使得上述一个或多个处理器可执行上述任意方法实施例中的电池功率处理方法。
本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被所述电池管理系统执行时,使所述电池管理系统能够执行上述任意方法实施例中的电池功率处理方法。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,
或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
Claims (12)
- 一种电池功率处理方法,其特征在于,包括:根据电池温度和电池荷电状态,通过预设查表方法获取可用功率图谱;确定所述可用功率图谱对应的充电上限和放电下限,以获得调整后的可用功率图谱;根据设定的第一限制条件和第二限制条件控制电池管理系统的功率调节模式,并根据所述功率调节模式修正所述调整后的可用功率图谱。
- 根据权利要求1所述的电池功率处理方法,其特征在于,所述确定所述可用功率图谱对应的充电上限和放电下限包括:获取峰值电压、峰值电流和电芯温度对所述可用功率图谱中的充电上限进行限制;获取电池循环次数、飞行模式和告警情况对所述可用功率图谱中的放电下限进行限制。
- 根据权利要求1所述的电池功率处理方法,其特征在于,所述根据设定的第一限制条件和第二限制条件控制电池管理系统的功率调节模式包括:设定第一限制条件和第二限制条件;在所述电池管理系统满足所述第一限制条件时,控制所述电池管理系统进入功率调节模式,在所述电池管理系统满足所述第二限制条件时,控制所述电池管理系统退出功率调节模式。
- 根据权利要求3所述的电池功率处理方法,其特征在于,所述在所述电池管理系统满足所述第一限制条件时,控制所述电池管理系统进入功率调节模式,在所述电池管理系统满足所述第二限制条件时,控制所述电池管理系统退出功率调节模式包括:判断是否同时满足所述第一限制条件:温度是否大于预设第一温度、累计峰值功率使用时间是否大于允许峰值功率使用时间、放电实际功率是否小于放电允许持续功率、电池实际发热功率是否大于电池允许 最大发热功率的预设第一倍数;若所述第一限制条件都满足,则所述电池管理系统进入功率调节模式,否则,所述电池管理系统退出功率调节模式;判断是否同时满足所述第二限制条件:温度是否小于预设第二温度、所述电池管理系统是否处于限功率模式、电池实际发热功率是否大于所述电池允许最大发热功率的预设第二倍数;若所述第二限制条件都满足,则所述电池管理系统退出功率调节模式,否则,所述电池管理系统进入功率调节模式。
- 根据权利要求4所述的电池功率处理方法,其特征在于,所述根据所述功率调节模式修正所述调整后的可用功率图谱包括:当所述电池管理系统退出功率调节模式时,控制所述电池的上报放电峰值功率和上报充电峰值功率分别以预设第一速率上升至所述可用功率图谱中对应的放电峰值功率和充电峰值功率;当所述电池管理系统进入功率调节模式时,控制所述电池的上报放电峰值功率和上报充电峰值功率分别以预设第二速率下降至所述可用功率图谱中对应的放电持续功率和充电持续功率。
- 根据权利要求1至5任一项所述的电池功率处理方法,其特征在于,所述方法还包括:获取电池的负载极限工况图谱,将所述负载极限工况图谱与所述可用功率图谱进行曲线拟合,以获得使用时间和电池可用功率的关系图谱,并根据所述关系图谱控制所述电池的输出功率。
- 一种电池功率处理装置,其特征在于,包括:可用功率图谱获取模块,用于根据电池温度和电池荷电状态,通过预设查表方法获取可用功率图谱;第一功率调节模块,用于确定所述可用功率图谱对应的充电上限和放电下限,以获得调整后的可用功率图谱;第二功率调节模块,用于根据设定的第一限制条件和第二限制条件控制电池管理系统的功率调节模式,并根据所述功率调节模式修正所述调整后的可用功率图谱。
- 根据权利要求7所述的电池功率处理装置,其特征在于,还包 括:第三功率调节模块,用于获取电池的负载极限工况图谱,将所述负载极限工况图谱与所述可用功率图谱进行曲线拟合,以获得使用时间和电池可用功率的关系图谱,并根据所述关系图谱控制所述电池的输出功率。
- 一种电池管理系统,其特征在于,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1至6任一项所述的方法。
- 一种电池,其特征在于,包括电芯和如权利要求9所述的电池管理系统,所述电池管理系统用于管理所述电芯的充电和放电。
- 一种非易失性计算机可读存储介质,其特征在于,所述非易失性计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被电池管理系统执行时,使所述电池管理系统执行权利要求1至6任一项所述的方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被电子设备执行时,使所述电池管理系统执行权利要求1-6任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210224975.7 | 2022-03-09 | ||
CN202210224975.7A CN114614118B (zh) | 2022-03-09 | 2022-03-09 | 电池功率处理方法、装置和电池管理系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023169311A1 true WO2023169311A1 (zh) | 2023-09-14 |
Family
ID=81861856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/079440 WO2023169311A1 (zh) | 2022-03-09 | 2023-03-03 | 电池功率处理方法、装置、电池管理系统、电池 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114614118B (zh) |
WO (1) | WO2023169311A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117811147A (zh) * | 2023-12-29 | 2024-04-02 | 青岛海发环保产业控股有限公司 | 基于温度数据的串联储能系统均衡调控方法及系统 |
CN118226285A (zh) * | 2024-05-24 | 2024-06-21 | 合肥力高动力科技有限公司 | 一种基于工况习惯的动力电池sop修正方法 |
CN118712543A (zh) * | 2024-08-28 | 2024-09-27 | 北京凌禾科技有限公司 | 废旧电池放电管理方法及装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114614118B (zh) * | 2022-03-09 | 2024-02-27 | 东莞新能安科技有限公司 | 电池功率处理方法、装置和电池管理系统 |
CN117811168B (zh) * | 2024-02-28 | 2024-05-17 | 双一力(宁波)电池有限公司 | 电池功率限制方法、装置、管理系统、设备及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106451682A (zh) * | 2016-12-05 | 2017-02-22 | 潍柴动力股份有限公司 | 一种基于电池安全电压的电池功率限制保护方法及系统 |
CN110736929A (zh) * | 2019-11-06 | 2020-01-31 | 新石器慧通(北京)科技有限公司 | 一种电池能力计算方法及装置 |
CN112485685A (zh) * | 2020-11-30 | 2021-03-12 | 海马汽车有限公司 | 功率承受能力参数确定方法、装置及电子设备 |
CN113547953A (zh) * | 2020-04-02 | 2021-10-26 | 威马智慧出行科技(上海)有限公司 | 电池的控制方法、装置、电子设备及计算机可读存储介质 |
CN114142112A (zh) * | 2020-09-04 | 2022-03-04 | 北京海博思创科技股份有限公司 | 电池系统的控制方法、装置、设备以及存储介质 |
CN114614118A (zh) * | 2022-03-09 | 2022-06-10 | 东莞新能安科技有限公司 | 电池功率处理方法、装置和电池管理系统 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105244947B (zh) * | 2015-10-14 | 2017-12-12 | 奇瑞汽车股份有限公司 | 一种电动汽车电池充放电功率保护方法 |
CN108162968A (zh) * | 2016-12-05 | 2018-06-15 | 郑州宇通客车股份有限公司 | 功率输出控制方法及装置、功率回馈控制方法及装置 |
CN107102271A (zh) * | 2017-05-25 | 2017-08-29 | 宁德时代新能源科技股份有限公司 | 电池组峰值功率的估算方法、装置和系统 |
CN110967637B (zh) * | 2019-06-24 | 2020-12-29 | 宁德时代新能源科技股份有限公司 | 电池的许用功率估算方法、装置、系统和存储介质 |
CN111123124B (zh) * | 2019-12-31 | 2022-03-08 | 中创新航科技股份有限公司 | 一种电池系统的功率状态的确定方法及装置 |
CN112078382A (zh) * | 2020-09-18 | 2020-12-15 | 北京牛电科技有限责任公司 | 电动车功率控制方法、电动车及计算机可读存储介质 |
CN113659680A (zh) * | 2021-08-18 | 2021-11-16 | 东软睿驰汽车技术(沈阳)有限公司 | 电池充放电功率的控制方法、装置和电子设备 |
-
2022
- 2022-03-09 CN CN202210224975.7A patent/CN114614118B/zh active Active
-
2023
- 2023-03-03 WO PCT/CN2023/079440 patent/WO2023169311A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106451682A (zh) * | 2016-12-05 | 2017-02-22 | 潍柴动力股份有限公司 | 一种基于电池安全电压的电池功率限制保护方法及系统 |
CN110736929A (zh) * | 2019-11-06 | 2020-01-31 | 新石器慧通(北京)科技有限公司 | 一种电池能力计算方法及装置 |
CN113547953A (zh) * | 2020-04-02 | 2021-10-26 | 威马智慧出行科技(上海)有限公司 | 电池的控制方法、装置、电子设备及计算机可读存储介质 |
CN114142112A (zh) * | 2020-09-04 | 2022-03-04 | 北京海博思创科技股份有限公司 | 电池系统的控制方法、装置、设备以及存储介质 |
CN112485685A (zh) * | 2020-11-30 | 2021-03-12 | 海马汽车有限公司 | 功率承受能力参数确定方法、装置及电子设备 |
CN114614118A (zh) * | 2022-03-09 | 2022-06-10 | 东莞新能安科技有限公司 | 电池功率处理方法、装置和电池管理系统 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117811147A (zh) * | 2023-12-29 | 2024-04-02 | 青岛海发环保产业控股有限公司 | 基于温度数据的串联储能系统均衡调控方法及系统 |
CN118226285A (zh) * | 2024-05-24 | 2024-06-21 | 合肥力高动力科技有限公司 | 一种基于工况习惯的动力电池sop修正方法 |
CN118712543A (zh) * | 2024-08-28 | 2024-09-27 | 北京凌禾科技有限公司 | 废旧电池放电管理方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114614118B (zh) | 2024-02-27 |
CN114614118A (zh) | 2022-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023169311A1 (zh) | 电池功率处理方法、装置、电池管理系统、电池 | |
US11415635B2 (en) | Determining battery DC impedance | |
KR102066703B1 (ko) | 배터리 관리 장치 및 방법 | |
KR101998069B1 (ko) | 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전과 최대방전을 수행하기 위한 방법 및 그 장치 | |
Vaideeswaran et al. | Battery management systems for electric vehicles using lithium ion batteries | |
CN103023111B (zh) | 一种用于均衡电池组的方法和系统 | |
US10873201B2 (en) | Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same | |
CN109416390A (zh) | 电池管理装置及其方法 | |
JP2019219193A (ja) | 蓄電池の充放電曲線推定装置および充放電曲線推定方法 | |
US10355498B2 (en) | Response to detection of an overdischarge event in a series connected battery element | |
CN110927592B (zh) | 一种电池峰值功率的估计方法及装置 | |
WO2016006462A1 (ja) | 電池制御装置 | |
US20220236329A1 (en) | Battery control apparatus | |
CN116834608A (zh) | 一种电池充放电控制方法、系统、计算机设备及存储介质 | |
CN118198600A (zh) | 一种电池加热控制方法、装置、终端及存储介质 | |
Darwish et al. | Review of battery management systems | |
EP4105669A1 (en) | Method for calculating battery degradation degree and apparatus for calculating battery degradation degree | |
CN104578286A (zh) | 锂电池组的主动均衡方法 | |
CN116707096A (zh) | 一种锂电池充电方法及其充电装置 | |
US20230022874A1 (en) | Apparatus, method and computer program for updating current pattern for quick charge | |
CN116348332A (zh) | 使用组合的恒定电流和恒定电压充电对电池进行快速充电的系统和方法 | |
KR20220037047A (ko) | 배터리 팩 및 배터리 팩의 제어방법 | |
WO2024000145A1 (zh) | 电池soh检测方法、装置、设备及存储介质 | |
Ristiana et al. | Energy optimized of an electric vehicle battery management system to improve storage lifetime | |
EP4181347A1 (en) | Battery management system and method for a bucking and discharging to battery based on a safety of battery storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23765889 Country of ref document: EP Kind code of ref document: A1 |