WO2023169166A1 - 一种蔗糖脱色的方法及系统 - Google Patents

一种蔗糖脱色的方法及系统 Download PDF

Info

Publication number
WO2023169166A1
WO2023169166A1 PCT/CN2023/076190 CN2023076190W WO2023169166A1 WO 2023169166 A1 WO2023169166 A1 WO 2023169166A1 CN 2023076190 W CN2023076190 W CN 2023076190W WO 2023169166 A1 WO2023169166 A1 WO 2023169166A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin column
zone
regeneration
styrene
column
Prior art date
Application number
PCT/CN2023/076190
Other languages
English (en)
French (fr)
Inventor
张天惕
苏鑫
唐海静
高建国
王圣昶
Original Assignee
欧尚元智能装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧尚元智能装备有限公司 filed Critical 欧尚元智能装备有限公司
Publication of WO2023169166A1 publication Critical patent/WO2023169166A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B20/00Purification of sugar juices
    • C13B20/14Purification of sugar juices using ion-exchange materials
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B20/00Purification of sugar juices
    • C13B20/14Purification of sugar juices using ion-exchange materials
    • C13B20/146Purification of sugar juices using ion-exchange materials using only anionic ion-exchange material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/57Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for anionic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/60Cleaning or rinsing ion-exchange beds
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B20/00Purification of sugar juices
    • C13B20/14Purification of sugar juices using ion-exchange materials
    • C13B20/144Purification of sugar juices using ion-exchange materials using only cationic ion-exchange material
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • C13K13/002Xylose

Definitions

  • the invention relates to sucrose processing technology, and specifically relates to a method and system for decolorizing sucrose.
  • sucrose decolorization In the current sucrose refining production process using sugar cane as raw material, in order to increase the yield, the mother liquor separated by crystallization will be repeatedly returned to the saturation state for reuse, which will lead to the color value of the material before crystallization getting higher and higher, seriously affecting the color and luster quality of the crystallized product. .
  • sucrose decolorization generally uses activated carbon after filling, and performs decolorization and filtration to remove pigments.
  • repeated reuse makes the color value of the material higher, resulting in poor activated carbon decolorization, and the decolorization rate can only reach 50 -60%.
  • Even after decolorization by activated carbon the color value of the material is still as high as about 1200IU.
  • Some manufacturers also use fixed-bed resin for decolorization, but the amount of resin is large, the utilization rate is low, and the decolorization rate is not ideal.
  • the present invention adopts a multi-unit continuous decolorization process to perform two-stage decolorization and achieve better decolorization effect.
  • the invention provides a method for decolorizing sucrose, which includes the following steps:
  • Regeneration process Use regeneration liquid to regenerate the acrylic anionic resin column and styrene anionic resin column switched out in the backwash process.
  • the regeneration liquid is a mixed solution of NaCl and NaOH;
  • the acrylic anionic resin column and the styrene anionic resin column in the decolorization process, the water top sugar process, the backwash process, the regeneration process, and the elution process are switched in the order of the processes.
  • the acrylic anionic resin columns in the decolorization process, water top sugar process, backwashing process, regeneration process and elution process are arranged adjacently as acrylic anionic resin column units, and the styrene anionic resin columns are arranged adjacently as styrene
  • the anion-like resin column unit, the acrylic anion resin column unit and the styrene anion resin column unit in the water top sugar process, backwash process, regeneration process and elution process are arranged side by side, and the same type of resin columns are switched accordingly when switching.
  • the acrylic anion resin column of the previous process is switched to the acrylic anion resin column unit of the next process
  • the styrene anion resin column of the previous process is switched to the styrene anion resin column unit of the next process.
  • the acrylic anionic resin columns and styrene anionic resin columns in the decolorization process, water top sugar process, backwashing process, regeneration process and elution process are arranged at intervals. When switching, they are switched in sequence according to the process position of the resin column. Since the two resin columns are arranged at intervals, take the process of switching from the decolorization process to the water-top sugar process as an example.
  • the first column in the decolorization process is an acrylic anionic resin column. After the switch, the acrylic anionic resin column is switched to the water-top sugar process. Sugar process, and the adjacent styrene-based anionic resin column is switched to the first process position.
  • the styrene-based anionic resin column is switched to the water-top sugar process.
  • the backwash process can be one resin column. Or more than one resin column.
  • the type of resin column in each switching cycle is different.
  • the regeneration liquid only regenerates one resin column, and in the next switching cycle, the other resin column is regenerated.
  • the temperature of the sucrose solution in the decolorization process is 70-80°C, and the sucrose mass percentage concentration is 50-55%.
  • the regeneration solution is a mixed solution of a NaCl solution with a mass percentage concentration of 8-10% and a NaOH solution with a mass percentage concentration of 0.5-1.0%.
  • the effluent When the sucrose mass percentage concentration of the effluent from the water top sugar process is ⁇ 25%, the effluent is returned to the feed tank; when the sucrose mass percentage concentration of the effluent is ⁇ 25%, the effluent is returned to the sweet water tank.
  • the effluent from the leaching process is recycled when the sodium ion concentration is ⁇ 2%, and the sewage is treated when the sodium ion concentration is ⁇ 2%.
  • the invention provides a sucrose decolorization system, which includes:
  • Decolorization area including acrylic anionic resin column unit and styrene anionic resin column unit, acrylic anionic resin column unit The sub-resin column unit and the styrene anion resin column unit are connected in series.
  • the acrylic anion resin column unit includes a plurality of acrylic anion resin columns connected in parallel.
  • the styrene anion resin column unit includes a plurality of styrene anion resin columns connected in parallel.
  • Resin column, the inlet liquid in the decolorization area is sucrose solution;
  • Water top sugar zone including an acrylic anion resin column and a styrene anion resin column switched from the decolorization zone.
  • the inlet liquid in the water top sugar zone is water;
  • Backwash zone includes an acrylic anionic resin column and a styrene anionic resin column switched from the water top sugar zone.
  • the inlet liquid in the backwash zone is water;
  • Regeneration zone including an acrylic anionic resin column and a styrene anionic resin column switched from the backwash zone.
  • the inlet liquid in the regeneration zone is a mixed solution of NaCl and NaOH;
  • Elution area including an acrylic anionic resin column and a styrene anionic resin column switched out from the regeneration area.
  • the inlet liquid in the elution area is water;
  • the acrylic anion resin column and the styrene anion resin column in the decolorization zone, water top sugar zone, backwash zone, regeneration zone, and elution zone are switched according to the process sequence.
  • the acrylic anionic resin columns in the decolorization zone, water top sugar zone, backwash zone, regeneration zone and elution zone are arranged adjacently as acrylic anionic resin column units, and the styrene anionic resin columns are arranged adjacently as styrene
  • the anion-like resin column unit, the acrylic anion resin column unit and the styrene anion resin column unit in the water top sugar zone, backwash zone, regeneration zone and elution zone are arranged side by side, and the same type of resin columns are switched accordingly when switching.
  • the acrylic anion resin columns and styrene anion resin columns in the decolorization zone, water top sugar zone, backwash zone, regeneration zone and elution zone are arranged at intervals. When switching, they are switched in sequence according to the process station where the resin column is located. There are two or more resin columns in the decolorization zone, water top sugar zone, regeneration zone and elution zone, and each zone has two resin columns. When a resin column is installed in the backwash area, the type of resin column in the backwash area is changed according to the switching cycle interval.
  • the last resin column in the elution zone is connected in series with the same resin column in the regeneration zone.
  • the acrylic anionic resin column and styrene anionic resin column in the sucrose decolorization system are small columns with a diameter of 800mm-1400mm.
  • the column diameter range is large production grade.
  • the brine salt-containing waste liquid discharged from regeneration
  • the brine is recovered and reused after membrane filtration, saving more than 70% of the regeneration agent
  • Sweet water is used to wash the column in the sucrose decalcification process; the backwash water is reused in the sugar dissolving process, which greatly reduces the amount of sewage discharge.
  • the sucrose decolorization system has continuous feed in and out, continuous elution, and continuous regeneration, and can operate fully automatically without human operation.
  • Figure 1 is a schematic flow chart of the sucrose decolorization method of the present invention.
  • Figure 2 is a process flow diagram of the sucrose decolorization method of Example 1.
  • Figure 3 is a process flow diagram of the sucrose decolorization method in Example 2 (showing cycle 1).
  • Figure 4 is a process flow diagram of the sucrose decolorization method in Example 2 (showing cycle 2 after switching).
  • Figure 5 is a schematic structural diagram of the decolorization operation group of Comparative Example 2.
  • Figure 6 is a schematic structural diagram of the decolorization backup group of Comparative Example 2.
  • Figure 7 is the cycle discharge pH curve of Comparative Example 1 and Example 3.
  • Figure 8 is the cycle discharge color value curve of Comparative Example 1 and Example 3.
  • Figure 9 is the cycle discharge pH curve of Comparative Example 2 and Example 3.
  • Figure 10 is the cycle discharge color value curve of Comparative Example 2 and Example 3.
  • acrylic anionic resin column is abbreviated as acrylic
  • styrene anionic resin column is abbreviated as benzene
  • a method for decolorizing sucrose of the present invention includes the following steps:
  • Decolorization process After the sucrose solution with a mass percentage concentration of 50-55%, a temperature of 70-80°C, and a color value ⁇ 1200IU enters a plurality of parallel acrylic anion resin columns, the effluent enters a plurality of parallel styrene anion resin columns.
  • the resin column performs two-stage decolorization, with a flow rate of 3BV (3 times the resin volume); check whether the color value of the liquid is ⁇ 150IU; after decolorization reaches the decolorization discharge tank, the next process can be carried out;
  • Water-top sugar process Use water to top the acrylic anionic resin column and styrene anionic resin column switched from the decolorization process, and the top-out materials are recycled; when the sucrose mass percentage concentration of the effluent is ⁇ 25%, The effluent is returned to the decolorization feed tank; when the sucrose mass percentage concentration of the effluent is ⁇ 25%, the effluent is returned to the sweet water tank, and the sweet water in the sweet water tank can be used for the sucrose decalcification process;
  • Backwashing process Use water to backwash the acrylic anionic resin column and styrene anionic resin column switched out from the water-sugaring process; the backwash liquid can be recycled to the sugar-dissolving water tank for use in the sugar-dissolving process;
  • Regeneration process Use regeneration liquid to regenerate the acrylic anionic resin column and styrene anionic resin column switched out in the backwash process.
  • the regeneration liquid is a NaCl solution with a mass percentage concentration of 8-10% and a mass percentage concentration of 0.5-1.0 % NaOH solution; when the effluent sodium ion concentration of the regeneration process is ⁇ 2%, it is sent to the sewage neutralization tank for sewage treatment; when the sodium ion concentration is ⁇ 2%, it is recycled to the brine recovery tank;
  • Elution process Use water to elute the acrylic anionic resin column and styrene anionic resin column switched out in the regeneration process; when the sodium ion concentration of the effluent from the elution process is ⁇ 2%, it is recovered to the brine recovery tank, and the sodium ion concentration When ⁇ 2%, it enters the sewage neutralization tank for sewage treatment; the liquid in the brine recovery tank is membrane filtered and the filtrate can be returned to the regenerant tank, and the concentrated residue is treated as waste liquid;
  • the acrylic anionic resin column and the styrene anionic resin column in the decolorization process, the water top sugar process, the backwash process, the regeneration process, and the elution process are switched in the order of the processes.
  • Embodiment 1 A sucrose decolorization system, including:
  • Decolorization area includes an acrylic anionic resin column unit and a styrene anionic resin column unit.
  • the acrylic anionic resin column unit and the styrene anionic resin column unit are connected in series.
  • the acrylic anionic resin column unit includes multiple acrylics connected in parallel.
  • Anionic resin column, styrene-based anionic resin column unit includes multiple styrene-based anionic resin columns connected in parallel, and the inlet liquid in the decolorization area is sucrose solution;
  • Water top sugar zone including an acrylic anion resin column and a styrene anion resin column switched from the decolorization zone.
  • the inlet liquid in the water top sugar zone is water;
  • Backwash zone includes an acrylic anionic resin column and a styrene anionic resin column switched from the water top sugar zone.
  • the inlet liquid in the backwash zone is water;
  • Regeneration zone including an acrylic anionic resin column and a styrene anionic resin column switched from the backwash zone.
  • the inlet liquid in the regeneration zone is a mixed solution of NaCl and NaOH;
  • Elution area including an acrylic anionic resin column and a styrene anionic resin column switched out from the regeneration area.
  • the inlet liquid in the elution area is water;
  • the acrylic anion resin column and the styrene anion resin column in the decolorization zone, water top sugar zone, backwash zone, regeneration zone, and elution zone are switched according to the process sequence.
  • the acrylic anion resin columns and styrene anion resin columns in the decolorization zone, water top sugar zone, backwash zone, regeneration zone, and elution zone are arranged separately to form independent acrylic anion resin column units and
  • the resin columns in the acrylic anionic resin column unit in the previous area and the styrene anionic resin column unit are switched to the next area at the same time.
  • the acrylic anion resin column unit and the styrene anion resin column unit in the water top sugar zone, backwash zone, regeneration zone, and elution zone are juxtaposed.
  • the backwash area has two resin columns, one of which is an acrylic anionic resin column and the other is a styrene anionic resin column.
  • the last acrylic anion resin column in the elution zone is connected in series with the first acrylic anion resin column in the regeneration zone; the last styrene anion resin column in the elution zone is connected with the first styrene anion resin column in the regeneration zone. Resin columns are connected in series.
  • the sucrose decolorization system in this embodiment can have a total of 1-20# acrylic anionic resin columns and 1-20# styrene anionic resin columns, with acrylic anionic resin columns and styrene anionic resin allocated to each zone.
  • the number of columns can be determined based on the amount of sucrose processed.
  • a sucrose decolorization system includes:
  • Decolorization area includes an acrylic anionic resin column unit and a styrene anionic resin column unit.
  • the acrylic anionic resin column unit and the styrene anionic resin column unit are connected in series.
  • the acrylic anionic resin column unit includes multiple acrylics connected in parallel.
  • Anionic resin column, styrene-based anionic resin column unit includes multiple styrenes connected in parallel Anion-like resin column, the inlet liquid in the decolorization area is sucrose solution;
  • Water top sugar zone including an acrylic anion resin column and a styrene anion resin column switched from the decolorization zone.
  • the inlet liquid in the water top sugar zone is water;
  • Backwash zone includes an acrylic anionic resin column and a styrene anionic resin column switched from the water top sugar zone.
  • the inlet liquid in the backwash zone is water;
  • Regeneration area including an acrylic anionic resin column and a styrene anionic resin column switched out from the backwash area.
  • the inlet liquid in the regeneration area is a mixed solution of NaCl and NaOH; it is a NaCl solution with a mass percentage concentration of 8-10% and mass A mixture of NaOH solution with a percentage concentration of 0.5-1.0%;
  • Elution area including an acrylic anionic resin column and a styrene anionic resin column switched out from the regeneration area.
  • the inlet liquid in the elution area is water;
  • the acrylic anion resin column and the styrene anion resin column in the decolorization zone, water top sugar zone, backwash zone, regeneration zone, and elution zone are switched according to the process sequence.
  • the acrylic anionic resin columns and styrene anionic resin columns in the decolorization zone, water top sugar zone, backwash zone, regeneration zone, and elution zone are arranged at intervals.
  • the acrylic anionic resin columns The column and the styrene anion resin column are switched to the next area in turn, switching one resin column at a time, as shown in Figure 3.
  • Column No. 4 in the decolorization area is an acrylic anion resin column
  • the adjacent column No. 5 is a styrene column.
  • Anion-like resin column, as shown in Figure 4 after switching, column No. 4 is switched to the water top sugar area, and column No. 5 is switched to the original column No. 4 process position. Each time a resin column is switched, a cycle is completed.
  • the water-top sugar area includes multiple resin columns connected in series.
  • the acrylic anionic resin columns and the styrene-based anionic resin columns are spaced and connected in series.
  • the water-top sugar area includes column No. 1 (styrene anion resin column).
  • No. 2 column (acrylic anion resin column) and No. 3 column (styrene anion resin column)
  • the three columns are connected in series, and water flows through No. 1 column, No. 2 column and No. 3 column in sequence.
  • the water top sugar area includes column No. 2 (acrylic anionic resin column), column No. 3 (styrene anionic resin column) and column No. 4 (acrylic anionic resin column).
  • Column No. 2 , Column 3 and Column 4 are also connected in series.
  • the backwash area includes a resin column.
  • the resin column in the backwash area is switched from the water top sugar area. Therefore, there are different types of resin columns in different cycles.
  • the resin column in the backwash area in cycle 1 is Column No. 20 (acrylic anionic resin column).
  • the resin column in the backwash area is column No. 1 (styrene anionic resin column).
  • the regeneration area includes multiple resin columns. Acrylic anion resin columns and styrene anion resin columns are arranged at intervals, and the same resin columns are connected in series. As shown in Figure 3, the regeneration area includes column 17 (styrene anion resin column), 18 Column No. 17 (acrylic anion resin column) and No. 19 column (styrene anion resin column), No. 17 column and No. 19 column are connected in series and regenerated. The liquid flows through column No. 17 and column No. 19 in sequence. After switching, as shown in Figure 4, the regeneration area includes column No. 18 (acrylic anionic resin column), column No. 19 (styrene anionic resin column) and column No. 20 (acrylic anionic resin column). Column No. 18 (acrylic anionic resin column) The anion-like resin column) and the No. 20 column (the acrylic anion resin column) are connected in series, and the regeneration solution flows through the No. 18 column and the No. 20 column in sequence.
  • the elution area includes multiple resin columns. Acrylic anionic resin columns and styrene anionic resin columns are arranged at intervals, and the same resin columns are connected in series. As shown in Figure 3, the elution area includes column No. 14 (acrylic anionic resin column), Column No. 15 (styrene anionic resin column) and Column No. 16 (acrylic anionic resin column), No. 14 column and No. 16 column are connected in series. Water flows through No. 14 column and No. 16 column in sequence. At the same time, No. 16 column It is connected in series with column No. 18 in the regeneration area. Column No. 16 and column No. 18 are the same type of column.
  • the elution includes column 15 (styrene anion resin column), column 16 (acrylic anion resin column) and column 17 (styrene anion resin column).
  • Column 17 ( Styrene-based anionic resin column) and No. 19 column (styrene-based anionic resin column) in the regeneration zone are connected in series.
  • Example 3 uses the system of Example 2 to decolorize sucrose (the amount of resin is at the pilot level, the same is 20 columns, 10 columns for each type)
  • the decolorization area is divided into first-level decolorization (an even-numbered column filled with acrylic anionic resin) and second-level decolorization (a single-numbered column filled with styrene anionic resin).
  • the decolorizing column is operated in a countercurrent manner ( Bottom in, top out), inject sucrose solution, feeding conditions: 6L/h, 70°C, Bx 55%, pH 8.51, color value 1165ICUMSA, enter the resin column in the direction of the arrow in the diagram, and the feeding volume is 30L. Collect the discharging material and check the pH and color value.
  • the adsorption resin used in the resin column is shown in Table 1.
  • Figure 3 shows the arrangement of the resin columns in cycle one. When column 4 shown in Figure 3 is saturated, it switches to the next cycle, that is, the arrangement of the resin columns shown in Figure 4. The following describes the material entry situation in other areas as shown in Figure 4. .
  • column No. 1 shown in Figure 4 is fed with water from the bottom, and water is discharged from the top to backwash the resin.
  • column string regeneration is used. Because the resin columns are filled with two different types of resin at intervals, the regeneration string columns are two adjacent odd-numbered columns and the odd-numbered columns are stringed together as a group for regeneration; two adjacent double-numbered columns are regenerated as a group. The string of poles is regenerated as another group; only one group is regenerated in each cycle, and the two groups are regenerated alternately in sequence.
  • inject 400 ml of a regeneration agent of a mixed solution of 10% NaCl and 0.5% NaOH from the top of column 18, discharge it from the bottom of column 18 and then string it to column 20, and discharge it from the bottom of column 20.
  • the decolorization system of the above-mentioned sucrose solution was repeatedly regenerated 20 times (20 cycles), and the pH value and color value of the sucrose solution discharged in the 1st, 5th, 10th, 15th and 20th cycles were detected.
  • the detection data are shown in Table 2;
  • the exchange performance analysis data of the resin after 20 cycles are shown in Table 3.
  • the resins in the odd and even numbered resin columns were both filled with styrene strong base anionic resin, and the sucrose solution was decolorized and purified using the same method as in Example 3.
  • the resin used in this comparative example is shown in Table 4 below.
  • the decolorization system of the above-mentioned sucrose solution was repeatedly regenerated 20 times (20 cycles).
  • the pH value and color value of the sucrose solution discharged in the 1st, 5th, 10th, 15th and 20th cycles were detected as in Example 3.
  • the detection data are shown in Table 5:
  • the analysis data of the exchange resin after 20 cycles are shown in Table 6.
  • Example 3 Comparative Example 1
  • the color value of Comparative Example 1 increased by approximately 56.8% compared to Example 3, and the increase was relatively large; the pH value decreased It is also larger than Example 3.
  • the changes in pH value and color value of Example 3 are more stable.
  • Example 3 can effectively suppress the decrease in the total exchange capacity of the styrenic anion resin.
  • the decrease in the resin exchange capacity of Comparative Example 1 is approximately 11.8% higher than that of Example 3.
  • the decolorization feeding method is the same as in Example 3, except that it only consists of two larger floating beds.
  • the material enters from the bottom of 1# in counter-current flow, passes through the resin layer and is discharged from the top, enters at the bottom of column 2#, and is discharged from the top after being adsorbed by the resin layer;
  • Example 3 multiple columns perform different processes at the same time.
  • Comparative Example 2 only one group of columns can perform decolorization, and another group of columns can perform other processes in sequence.
  • the resin used in this comparative example is shown in Table 7.
  • One cycle of the decolorization system of this comparative example is divided equally into 5 periods.
  • the pH value and color value of the discharged sucrose solution in different time periods are detected and repeated for 3 cycles.
  • the discharging data of these 5 periods can correspond to the pH value and color value of the sucrose solution discharging in the 1st, 5th, 10th, 15th and 20th cycles of Example 3 (For the convenience of corresponding to Embodiment 3, the cycle periods are directly written as 1, 5, 10, 15, and 20 cycles).
  • the detection data are shown in Table 7, Table 8, and Figures 9 and 10.
  • Example 3 According to the comparison of the resin amounts between the two, the amount of resin in Example 3 is saved by 50%; at the same time, because Example 3 uses a small column, the liquid inlet pressure in the column is small during water sugaring, elution, backwashing, and regeneration, and the pressure in the column is small. Evenly distributed, it can effectively save regenerant and water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Saccharide Compounds (AREA)

Abstract

一种蔗糖脱色的方法及系统,该方法包括如下步骤:(1)脱色工序;(2)水顶糖工序;(3)反洗工序;(4)再生工序;(5)淋洗工序。蔗糖脱色系统包括脱色区、水顶糖区、反洗区、再生区、淋洗区。本发明的蔗糖脱色方法及系统,充分利用两种不同树脂的优点,达到了较好的脱色效果,经脱色后色值由脱色前的1200IU,降到150IU以下,脱色率高达85%以上,同时树脂利用率高,能节省树脂用量。

Description

一种蔗糖脱色的方法及系统 技术领域
本发明涉及蔗糖加工技术,具体涉及一种蔗糖脱色的方法及系统。
背景技术
目前以甘蔗为原料的蔗糖精炼生产过程中,为提高收率,结晶分离的母液会反复回至饱充前回用,进而导致结晶前物料色值越来越高,严重影响了结晶产品的色泽品质。传统生产工艺蔗糖脱色一般采用在饱充后加入活性炭,进行脱色过滤去除色素,但由于母液中色素高,反复回用使得物料色值较高,致使活性炭脱色效果不好,脱色率仅能达到50-60%,虽经活性炭脱色后,物料色值仍高达1200IU左右。也有厂家采用固定床树脂脱色,但树脂用量大,利用率低,脱色率也并不理想。
发明内容
本发明为了解决现有技术中蔗糖脱色效果不好的问题,采用多单元连续脱色工艺,进行两级脱色,达到了较好的脱色效果。
本发明提供一种蔗糖脱色的方法,包括如下工序:
(1)脱色工序:蔗糖溶液进入多根并联组成的丙烯酸类阴离子树脂柱后,出液进入多根并联组成的苯乙烯类阴离子树脂柱进行两级脱色;
(2)水顶糖工序:采用水对从脱色工序切换出来的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱进行水顶料,顶出来的物料进行回收;
(3)反洗工序:采用水对水顶糖工序切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱进行反洗;
(4)再生工序:采用再生液对反洗工序切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱进行再生,再生液为NaCl和NaOH混合溶液;
(5)淋洗工序:采用水对再生工序切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱进行淋洗;
脱色工序、水顶糖工序、反洗工序、再生工序、淋洗工序中的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱按工序顺序切换。
脱色工序、水顶糖工序、再生工序、淋洗工序中的树脂柱为两根或两根以上,反洗工序的树脂柱为一根或一根以上。
脱色工序、水顶糖工序、反洗工序、再生工序和淋洗工序中的丙烯酸类阴离子树脂柱之间相邻排列为丙烯酸类阴离子树脂柱单元,苯乙烯类阴离子树脂柱相邻排列为苯乙烯类阴离子树脂柱单元,水顶糖工序、反洗工序、再生工序和淋洗工序中的丙烯酸类阴离子树脂柱单元和苯乙烯类阴离子树脂柱单元并列设置,切换时同种树脂柱对应切换。即前一工序的丙烯酸类阴离子树脂柱切换到下一工序的丙烯酸类阴离子树脂柱单元中,前一工序的苯乙烯类阴离子树脂柱切换到下一工序的苯乙烯类阴离子树脂柱单元中。在这种设置中,脱色工序、水顶糖工序、反洗工序、再生工序和淋洗工序中的树脂柱为两根或两根以上,每个工序同时具有两种树脂柱。
脱色工序、水顶糖工序、反洗工序、再生工序和淋洗工序中的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱间隔排列,切换时按树脂柱所在工艺位顺序切换。由于两种树脂柱间隔排列,以脱色工序向水顶糖工序切换的过程为例,切换时脱色工序的第一根为丙烯酸类阴离子树脂柱,则切换后该丙烯酸类阴离子树脂柱切换到水顶糖工序,而相邻的苯乙烯类阴离子树脂柱切换到第一工艺位,再一次切换时,该苯乙烯类阴离子树脂柱切换到水顶糖工序。在这种设置中,脱色工序、水顶糖工序、再生工序和淋洗工序中的树脂柱为两根或两根以上,同时具有两种树脂柱,而反洗工序则可以为一根树脂柱或一根以上树脂柱,在只有一根树脂柱时,每个切换周期的树脂柱种类不同。
对于树脂柱间隔排列的设置,再生工序中,在一个切换周期中,再生液只对一种树脂柱进行再生,下一个切换周期时,对另一种树脂柱进行再生。
脱色工序中的蔗糖溶液的温度为70-80℃,蔗糖质量百分比浓度为50-55%。
再生液为质量百分比浓度为8-10%的NaCl溶液和质量百分比浓度为0.5-1.0%的NaOH溶液的混合溶液。
水顶糖工序的出液的蔗糖质量百分比浓度≥25%时,出液回进料罐;当出液的蔗糖质量百分比浓度<25%时,出液回甜水罐。
再生工序的出液钠离子浓度<2%时进行污水处理,钠离子浓度≥2%时回收。
淋洗工序的出液钠离子浓度≥2%时回收,钠离子浓度<2%时污水处理。
本发明提供一种蔗糖脱色系统,包括:
脱色区:包括丙烯酸类阴离子树脂柱单元和苯乙烯类阴离子树脂柱单元,丙烯酸类阴离 子树脂柱单元和苯乙烯类阴离子树脂柱单元串联连接,丙烯酸类阴离子树脂柱单元包括多根并联连接的丙烯酸类阴离子树脂柱,苯乙烯类阴离子树脂柱单元包括多根并联连接的苯乙烯类阴离子树脂柱,脱色区进液为蔗糖溶液;
水顶糖区:包括从脱色区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,水顶糖区的进液为水;
反洗区:包括从水顶糖区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,反洗区的进液为水;
再生区:包括从反洗区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,再生区的进液为NaCl和NaOH混合溶液;
淋洗区:包括从再生区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,淋洗区的进液为水;
脱色区、水顶糖区、反洗区、再生区、淋洗区中的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱按工序顺序切换。
脱色区、水顶糖区、再生区、淋洗区中的树脂柱为两根或两根以上,反洗区的树脂柱为一根或一根以上。
脱色区、水顶糖区、反洗区、再生区和淋洗区中的丙烯酸类阴离子树脂柱之间相邻排列为丙烯酸类阴离子树脂柱单元,苯乙烯类阴离子树脂柱相邻排列为苯乙烯类阴离子树脂柱单元,水顶糖区、反洗区、再生区和淋洗区的丙烯酸类阴离子树脂柱单元和苯乙烯类阴离子树脂柱单元并列设置,切换时同种树脂柱对应切换。脱色区、水顶糖区、反洗区、再生区和淋洗区中具有两根或两根以上树脂柱,每个区都具有两种树脂柱。
脱色区、水顶糖区、反洗区、再生区和淋洗区中的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱间隔排列,切换时按树脂柱所在工艺位顺序切换。脱色区、水顶糖区、再生区和淋洗区中具有两根或两根以上树脂柱,每个区都具有两种树脂柱。反洗区设置一根树脂柱时,则反洗区的树脂柱种类根据切换周期间隔变换。
在一个切换周期中,再生区只有一种树脂柱与再生液进液管连通,在下一个切换周期中,再生区的另一种树脂柱与再生液进液管连通。
淋洗区的最后一根树脂柱与再生区的同种树脂柱串联连接。
蔗糖脱色系统中的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱为小柱,柱直径为800mm-1400mm。该柱直径范围为大生产级别。
本发明取得了如下的有益效果:
1.树脂利用率高,节省树脂用量;
2.充分利用两种不同树脂的优点(丙烯酸系树脂的色素交换容量大;苯乙烯系树脂的色素吸附选择范围宽),达到了较好的脱色效果,经脱色后色值由脱色前的1200IU,降到150IU以下,脱色率高达85%以上;
3.实行串柱方式进行水顶糖、淋洗、再生,水耗和再生剂消耗低,用水节约50%以上;
4.再生时进行卤水(再生排出的含盐的废液)回收,经膜过滤处理后重复利用,节约再生剂70%以上;
5.淋洗和再生采用同类型树脂柱串柱处理,减少了相互之间的污染,提高了处理效果;
6.甜水用于蔗糖脱钙工序洗柱;反洗出水回用至溶糖工序,大大减少了污水的排放量。
7.蔗糖脱色系统连续进出料、连续洗脱、连续再生,能够全自动运行,无需人员操作。
附图说明
图1是本发明的蔗糖脱色方法的流程示意图。
图2是实施例1的蔗糖脱色方法的工艺流程图。
图3是实施例2的蔗糖脱色方法的工艺流程图(显示周期1)。
图4是实施例2的蔗糖脱色方法的工艺流程图(显示切换后周期2)。
图5是比较例2的脱色运行组的结构示意图。
图6是比较例2的脱色备用组的结构示意图。
图7是比较例1和实施例3周期出料pH曲线。
图8是比较例1和实施例3周期出料色值曲线。
图9是比较例2和实施例3周期出料pH曲线。
图10是比较例2和实施例3周期出料色值曲线。
图中丙烯酸类阴离子树脂柱简称为丙,苯乙烯类阴离子树脂柱简称为苯。
具体实施方式
下面将结合实施例和附图对本发明的实施方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。 基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的一种蔗糖脱色的方法,包括如下工序:
脱色工序:质量百分比浓度为50-55%,温度70-80℃,色值<1200IU的蔗糖溶液进入多根并联组成的丙烯酸类阴离子树脂柱后,出液进入多根并联组成的苯乙烯类阴离子树脂柱进行两级脱色,流量3BV(3倍树脂体积);检查出液的色值是否≤150IU;脱色到脱色出料罐后可进行下一道工序;
水顶糖工序:采用水对从脱色工序切换出来的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱进行水顶料,顶出来的物料进行回收;出液的蔗糖质量百分比浓度≥25%时,出液回脱色进料罐;当出液的蔗糖质量百分比浓度<25%时,出液回甜水罐,甜水罐中的甜水可用于蔗糖脱钙工序;
反洗工序:采用水对水顶糖工序切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱进行反洗;反洗出液可回收到溶糖水罐,用于溶糖工序;
再生工序:采用再生液对反洗工序切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱进行再生,再生液为质量百分比浓度为8-10%的NaCl溶液和质量百分比浓度为0.5-1.0%的NaOH溶液的混合溶液;再生工序的出液钠离子浓度<2%时进污水中和罐进行污水处理,钠离子浓度≥2%时回收到卤水回收罐;
淋洗工序:采用水对再生工序切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱进行淋洗;淋洗工序的出液钠离子浓度≥2%时回收到卤水回收罐,钠离子浓度<2%时进污水中和罐污水处理;卤水回收罐中的液体经过膜过滤后滤液可回到再生剂罐,浓渣作为废液处理;
脱色工序、水顶糖工序、反洗工序、再生工序、淋洗工序中的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱按工序顺序切换。
实施例1一种蔗糖脱色系统,包括:
脱色区:包括丙烯酸类阴离子树脂柱单元和苯乙烯类阴离子树脂柱单元,丙烯酸类阴离子树脂柱单元和苯乙烯类阴离子树脂柱单元串联连接,丙烯酸类阴离子树脂柱单元包括多根并联连接的丙烯酸类阴离子树脂柱,苯乙烯类阴离子树脂柱单元包括多根并联连接的苯乙烯类阴离子树脂柱,脱色区进液为蔗糖溶液;
水顶糖区:包括从脱色区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,水顶糖区的进液为水;
反洗区:包括从水顶糖区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,反洗区的进液为水;
再生区:包括从反洗区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,再生区的进液为NaCl和NaOH混合溶液;
淋洗区:包括从再生区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,淋洗区的进液为水;
脱色区、水顶糖区、反洗区、再生区、淋洗区中的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱按工序顺序切换。
如图2所示,脱色区、水顶糖区、反洗区、再生区、淋洗区的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱分开排列,形成独立的丙烯酸类阴离子树脂柱单元和苯乙烯类阴离子树脂柱单元,连续切换时前一区的丙烯酸类阴离子树脂柱单元和苯乙烯类阴离子树脂柱单元中树脂柱同时向下一区切换。在水顶糖区、反洗区、再生区、淋洗区的丙烯酸类阴离子树脂柱单元和苯乙烯类阴离子树脂柱单元是并列的。
水顶糖区、再生区、淋洗区的丙烯酸类阴离子树脂柱单元中树脂柱为多根,且串联连接;苯乙烯类阴离子树脂柱单元中树脂柱为多根,且串联连接。反洗区则为两根树脂柱,其中一根为丙烯酸类阴离子树脂柱,另一根为苯乙烯类阴离子树脂柱。
淋洗区的最后一根丙烯酸类阴离子树脂柱与再生区的第一根丙烯酸类阴离子树脂柱串联;淋洗区的最后一根苯乙烯类阴离子树脂柱与再生区的第一根苯乙烯类阴离子树脂柱串联。
本实施例中的蔗糖脱色系统可总共有1-20#的丙烯酸类阴离子树脂柱和1-20#的苯乙烯类阴离子树脂柱,每个区分配的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱的数量可以根据蔗糖处理量确定。
实施例2一种蔗糖脱色系统,包括:
脱色区:包括丙烯酸类阴离子树脂柱单元和苯乙烯类阴离子树脂柱单元,丙烯酸类阴离子树脂柱单元和苯乙烯类阴离子树脂柱单元串联连接,丙烯酸类阴离子树脂柱单元包括多根并联连接的丙烯酸类阴离子树脂柱,苯乙烯类阴离子树脂柱单元包括多根并联连接的苯乙烯 类阴离子树脂柱,脱色区进液为蔗糖溶液;
水顶糖区:包括从脱色区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,水顶糖区的进液为水;
反洗区:包括从水顶糖区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,反洗区的进液为水;
再生区:包括从反洗区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,再生区的进液为NaCl和NaOH混合溶液;为质量百分比浓度为8-10%的NaCl溶液和质量百分比浓度为0.5-1.0%的NaOH溶液的混合液;
淋洗区:包括从再生区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,淋洗区的进液为水;
脱色区、水顶糖区、反洗区、再生区、淋洗区中的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱按工序顺序切换。
如图3、图4所示,脱色区、水顶糖区、反洗区、再生区、淋洗区的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱间隔排列,连续切换时丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱依次向下一区切换,每次切换一根树脂柱,如图3所示,脱色区4号柱为丙烯酸类阴离子树脂柱,相邻的5号柱为苯乙烯类阴离子树脂柱,切换后如图4所示,4号柱切换到了水顶糖区,5号柱切换到原4号柱工艺位。每切换一根树脂柱就完成一个周期。
水顶糖区包括多根串联的树脂柱,丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱间隔排列且串联,如图3所示水顶糖区包括1号柱(苯乙烯类阴离子树脂柱)、2号柱(丙烯酸类阴离子树脂柱)和3号柱(苯乙烯类阴离子树脂柱),3根柱串联,水从1号柱、2号柱和3号柱依次流过。切换后如图4所示,水顶糖区包括2号柱(丙烯酸类阴离子树脂柱)、3号柱(苯乙烯类阴离子树脂柱)和4号柱(丙烯酸类阴离子树脂柱),2号柱、3号柱和4号柱同样是串联连接。
反洗区包括一根树脂柱,反洗区的树脂柱由水顶糖区切换过来,因此在不同周期是不同种类的树脂柱,如图3所示,周期1时反洗区的树脂柱为20号柱(丙烯酸类阴离子树脂柱)。切换后如图4所示,反洗区的树脂柱为1号柱(苯乙烯类阴离子树脂柱)。
再生区包括多根树脂柱,丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱间隔排列,同种树脂柱串联,如图3所示再生区包括17号柱(苯乙烯类阴离子树脂柱)、18号柱(丙烯酸类阴离子树脂柱)和19号柱(苯乙烯类阴离子树脂柱),17号柱和19号柱串联,再生 液从17号柱、19号柱依次流过。切换后如图4所示,再生区包括18号柱(丙烯酸类阴离子树脂柱)、19号柱(苯乙烯类阴离子树脂柱)和20号柱(丙烯酸类阴离子树脂柱),18号柱(丙烯酸类阴离子树脂柱)和20号柱(丙烯酸类阴离子树脂柱)串联,再生液从18号柱、20号柱依次流过。
淋洗区包括多根树脂柱,丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱间隔排列,同种树脂柱串联,如图3所示淋洗区包括14号柱(丙烯酸类阴离子树脂柱)、15号柱(苯乙烯类阴离子树脂柱)和16号柱(丙烯酸类阴离子树脂柱),14号柱和16号柱串联,水从14号柱、16号柱依次流过,同时,16号柱与再生区的18号柱串联,16号柱和18号柱为同种柱。切换后如图4所示,淋洗包括15号柱(苯乙烯类阴离子树脂柱)、16号柱(丙烯酸类阴离子树脂柱)和17号柱(苯乙烯类阴离子树脂柱),17号柱(苯乙烯类阴离子树脂柱)和再生区的19号柱(苯乙烯类阴离子树脂柱)串联。
实施例3采用实施例2的系统进行蔗糖脱色(树脂量按小试级别,同样为20根柱子,每种柱子10根)
脱色区,分为一级脱色(以装填丙烯酸类阴离子树脂的双号柱)和二级脱色(以装填苯乙烯类阴离子树脂的单号柱),如图1所示脱色柱内以逆流方式(底部进,顶部出)注入蔗糖溶液,进料条件:6L/h、70℃、Bx 55%、pH 8.51、色值1165ICUMSA,按图示箭头方向进入树脂柱,进料量为30L。将出料收集检测pH和色值。树脂柱中使用的吸附树脂示于表1。图3为周期一树脂柱排列情况,当图3所示的4号柱饱和后切换到下一周期,即图4显示的树脂柱排列情况,下面以图4所示说明其它区的物料进入情况。
水顶糖区,如图4所示从2号柱顶部进入400ml纯水,如图4示一次串至3号柱、4号柱,从4号柱底部出水。经过多个周期的切换,4号柱会依次转至反洗区、再生区和淋洗区。
反洗区,图4所示的1号柱从底部进水,顶部出水对树脂进行反洗。
再生区,采用串柱再生,因为树脂柱间隔装填的是两种不同类型的树脂,所以再生串柱是相邻的两个单号柱串单号柱作为一组再生;两个相邻的双号柱串柱作为另一组再生;每个周期只再生一组,两组依次交替再生。如图4所示,从18号柱顶部注入浓度10%的NaCl、浓度0.5%NaOH混合溶液的再生剂400ml,18号柱底部排出后串至20号柱,由20号柱底部排出,前160ml排去污水中和罐,后240ml排至卤水回收罐。
淋洗区,1.慢淋洗,从15号柱顶注入纯水400ml,底部出水,依次串柱至17号、19号 柱,从19号柱底部排出,初200ml排至卤水回收罐,后400ml排至污水中和罐;2.快淋洗,从15号柱顶部注入纯水,底部排出,对柱内残留的氯化钠和氢氧化钠洗脱干净,排去污水中和罐。
将上述蔗糖溶液的脱色系统循环重复再生20次(20个周期),检测第1、5、10、15、20周期出料蔗糖溶液的pH值和色值,将检测数据示于表2;将循环20次后树脂的交换性能分析数据示于表3。
表1实施例3使用的树脂
表2实施例3各周期蔗糖溶液出料参数表
表3实施例3循环20次后树脂交换性能参数表
比较例1
将单双号树脂柱内的树脂均装填为苯乙烯类强碱阴离子树脂,用与实施例3相同的方法进行蔗糖溶液的脱色精制。将本比较例中使用的树脂示于下述表4。
脱色系统的水顶糖、反洗、再生、淋洗工序同实施例3。
将上述蔗糖溶液的脱色系统循环重复再生20次(20个周期),同实施例3检测第1、5、10、15、20周期出料蔗糖溶液的pH值和色值,将检测数据示于表5;将循环20次后交换树脂的分析数据示于表6。
表4比较例1使用的树脂

表5比较例1各周期蔗糖溶液出料参数表
表6比较例1循环20次后树脂交换性能参数表
实施例3与比较例1比较结果可见图7、图8,循环脱色20个周期后,比较例1较实施例3色值升高了约56.8%,升高幅度较大;pH值的降低幅度也大于实施例3。实施例3的pH值和色值的变化更为平稳。
根据表3、6的结果可知,双号柱内丙烯酸类阴离子交换树脂作为一级脱色柱,能够有效的吸附大分子色素,不易被色素等污染,从而能够避免作为二级脱色的单号柱内苯乙烯类阴离子树脂被快速污染。实施例3和比较例1相比,能够有效抑制苯乙烯类阴离子树脂的总交换容量的降低,比较例1树脂交换容量与实施例3相比降幅高出约11.8%。
比较例2(小试级别)
采用浮动床离交两级脱色的方式,一用一备共4个柱子组成,1#柱装填丙烯酸强碱阴离子树脂,2#柱装填苯乙烯强碱阴离子树脂,1#柱和2#柱串联走料进行两级脱色;3#柱和4#柱同1#、2#柱,作为再生和备用柱。具体工艺方式见图5、6所示。
脱色:脱色进料方式同实施例3,只是仅有2个较大体积的浮动床组成。物料由1#底部逆流进入,经过树脂层从顶部排出串至2#柱底部进入,经过树脂层吸附后从顶部排出;
1#、2#树脂柱吸附饱和后转入水顶料、反洗、再生、淋洗工序,同时3#柱和4#柱进入脱色工序直至3#柱和4#柱也吸附饱和,此为一个循环周期。
实施例3多根柱子同时执行不同工序,比较例2只能由一组柱子执行脱色,另一组柱子依次执行其它工序。
将本比较例使用的树脂示于表7,将本比较例的脱色系统一个循环周期平分为5个时段,对不同时间段的出料蔗糖溶液的pH值和色值进行检测,重复3个周期并取平均值,这5个时段的出料数据可对应于实施例3第1、5、10、15、20周期出料蔗糖溶液的pH值和色值 (为了方便与实施例3对应,循环周期直接写为1、5、10、15、20周期),检测数据示于表7、表8,以及图9、图10。
表7比较例2使用的树脂
表8比较例2各周期蔗糖溶液出料参数表
根据表7、表8与表1和2的比较,及曲线图9、10可知,比较例2周期出料的检测指标比实施例3明显改变幅度较大,pH和色值没有实施例3平稳,出料检测指标改变幅度大,对品质有明显影响,比较例2的出料品质低于实施例3。
根据两者的树脂量比较,实施例3的树脂量节约50%;同时由于实施例3采用小柱,水顶糖、淋洗、反洗、再生时进液在柱内压力小,在柱内分布均匀,能够有效节约再生剂和水。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (4)

  1. 一种蔗糖脱色的方法,其特征在于,包括如下工序:
    (1)脱色工序:蔗糖溶液进入多根并联组成的丙烯酸类阴离子树脂柱后,出液进入多根并联组成的苯乙烯类阴离子树脂柱进行两级脱色,脱色工序中的蔗糖溶液的温度为70-80℃,蔗糖质量百分比浓度为50-55%;
    (2)水顶糖工序:采用水对从脱色工序切换出来的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱进行水顶料;
    (3)反洗工序:采用水对水顶糖工序切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱进行反洗;
    (4)再生工序:采用再生液对反洗工序切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱进行再生,再生液为质量百分比浓度为8-10%的NaCl溶液和质量百分比浓度为0.5-1.0%的NaOH溶液的混合溶液;
    (5)淋洗工序:采用水对再生工序切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱进行淋洗;
    脱色工序、水顶糖工序、反洗工序、再生工序、淋洗工序中的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱顺序切换;
    脱色工序、水顶糖工序、反洗工序、再生工序和淋洗工序中的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱间隔排列,切换时按树脂柱所在工艺位顺序切换,每次切换一根树脂柱;
    淋洗工序和再生工序采用同类型树脂柱串柱处理。
  2. 根据权利要求1所述的蔗糖脱色的方法,其特征在于,再生工序中,在一个切换周期中,再生液只对一种树脂柱进行再生,下一个切换周期时,对另一种树脂柱进行再生。
  3. 一种蔗糖脱色系统,其特征在于,包括:
    脱色区:包括丙烯酸类阴离子树脂柱单元和苯乙烯类阴离子树脂柱单元,丙烯酸类阴离子树脂柱单元和苯乙烯类阴离子树脂柱单元串联连接,丙烯酸类阴离子树脂柱单元包括多根并联连接的丙烯酸类阴离子树脂柱,苯乙烯类阴离子树脂柱单元包括多根并联连接的苯乙烯类阴离子树脂柱,脱色区进液为蔗糖溶液,蔗糖溶液的温度为70-80℃,蔗糖质量百分比浓度为50-55%;
    水顶糖区:包括从脱色区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,水顶糖区的进液为水;
    反洗区:包括从水顶糖区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,反洗区的进液为水;
    再生区:包括从反洗区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,再生液为质量百分比浓度为8-10%的NaCl溶液和质量百分比浓度为0.5-1.0%的NaOH溶液的混合溶液;
    淋洗区:包括从再生区切换出的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱,淋洗区的进液为水;
    脱色区、水顶糖区、反洗区、再生区、淋洗区中的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱按工序顺序切换;
    脱色区、水顶糖区、反洗区、再生区和淋洗区中的丙烯酸类阴离子树脂柱和苯乙烯类阴离子树脂柱间隔排列,切换时按树脂柱所在工艺位顺序切换,每次切换一根树脂柱;
    淋洗区和再生区采用同类型树脂柱串柱处理。
  4. 根据权利要求3所述的蔗糖脱色系统,其特征在于,在一个切换周期中,再生区只有一种树脂柱与再生液进液管连通,在下一个切换周期中,再生区的另一种树脂柱与再生液进液管连通,同时,淋洗区的最后一根树脂柱与再生区的同种树脂柱串联连通。
PCT/CN2023/076190 2022-03-10 2023-02-15 一种蔗糖脱色的方法及系统 WO2023169166A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210240595.2A CN114606348A (zh) 2022-03-10 2022-03-10 一种蔗糖脱色的方法及系统
CN202210240595.2 2022-03-10
CN202210745626.X 2022-06-29
CN202210745626.XA CN114807456B (zh) 2022-03-10 2022-06-29 一种蔗糖脱色的方法及系统

Publications (1)

Publication Number Publication Date
WO2023169166A1 true WO2023169166A1 (zh) 2023-09-14

Family

ID=81863518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076190 WO2023169166A1 (zh) 2022-03-10 2023-02-15 一种蔗糖脱色的方法及系统

Country Status (3)

Country Link
CN (2) CN114606348A (zh)
LU (1) LU505449B1 (zh)
WO (1) WO2023169166A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117599860A (zh) * 2024-01-23 2024-02-27 欧尚元智能装备有限公司 一种头孢脱色系统及工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114606348A (zh) * 2022-03-10 2022-06-10 欧尚元(天津)有限公司 一种蔗糖脱色的方法及系统
CN117583038B (zh) * 2024-01-18 2024-04-12 欧尚元智能装备有限公司 一种蔗糖脱钙方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1817195A (zh) * 2006-03-15 2006-08-16 浙江大学 一种菊芋浸提液的脱色方法
CN105765084A (zh) * 2014-02-25 2016-07-13 奥加诺株式会社 蔗糖溶液的精制方法和精制装置
CN112062796A (zh) * 2020-10-30 2020-12-11 石药集团圣雪葡萄糖有限责任公司 一种基于连续离子交换装置的阿卡波糖连续脱盐中和生产方法
CN114606348A (zh) * 2022-03-10 2022-06-10 欧尚元(天津)有限公司 一种蔗糖脱色的方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102031315B (zh) * 2010-11-30 2013-08-07 华南理工大学 制糖脱色脱钙树脂的再生方法及再生废液的回用方法
CN209138051U (zh) * 2018-11-13 2019-07-23 赛普特环保技术(厦门)有限公司 一种用于木糖除杂的移动树脂柱系统
CN109225355B (zh) * 2018-11-13 2023-11-14 赛普特环保技术(厦门)有限公司 一种脱除无机盐的连续离子交换工艺及所采用的系统
CN111254230B (zh) * 2020-03-04 2022-04-12 德兰梅勒(北京)分离技术股份有限公司 一种精致糖脱色处理装置及脱色、反洗、再生和清洗工艺
CN112619713A (zh) * 2020-12-30 2021-04-09 保龄宝生物股份有限公司 一种生产功能性低聚糖的离子交换系统及其使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1817195A (zh) * 2006-03-15 2006-08-16 浙江大学 一种菊芋浸提液的脱色方法
CN105765084A (zh) * 2014-02-25 2016-07-13 奥加诺株式会社 蔗糖溶液的精制方法和精制装置
CN112062796A (zh) * 2020-10-30 2020-12-11 石药集团圣雪葡萄糖有限责任公司 一种基于连续离子交换装置的阿卡波糖连续脱盐中和生产方法
CN114606348A (zh) * 2022-03-10 2022-06-10 欧尚元(天津)有限公司 一种蔗糖脱色的方法及系统
CN114807456A (zh) * 2022-03-10 2022-07-29 欧尚元(天津)有限公司 一种蔗糖脱色的方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117599860A (zh) * 2024-01-23 2024-02-27 欧尚元智能装备有限公司 一种头孢脱色系统及工艺
CN117599860B (zh) * 2024-01-23 2024-03-26 欧尚元智能装备有限公司 一种头孢脱色系统及工艺

Also Published As

Publication number Publication date
LU505449A1 (en) 2023-12-11
CN114606348A (zh) 2022-06-10
CN114807456B (zh) 2023-01-13
LU505449B1 (en) 2024-03-11
CN114807456A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2023169166A1 (zh) 一种蔗糖脱色的方法及系统
EP2552562B1 (en) Separation process
CN101548023A (zh) 糖清汁的处理
PL111348B1 (en) Method for manufacturing crystalline xylitol
CN112593017A (zh) 一种用于甜菜制糖糖分高效分离方法
JP6265750B2 (ja) 蔗糖溶液の精製方法および精製装置
CN102659567B (zh) 一种连续脱除含柠檬酸溶液中的阴离子的方法
CN114606349A (zh) 一种甜菜糖稀汁软化方法
US2388195A (en) Process for purification of sugar juices and the like
KR20010062380A (ko) 혼상식(混床式) 당액 정제장치 및 그의 재생법
CN114699801B (zh) 一种用于红乳酸纯化的阀阵式连续离交系统
US2528047A (en) Recovery of glutamic compounds from glutamine contained in an impure solution thereof
CN112480276B (zh) 一种高透光性抗性糊精的节能环保生产工艺
US4336140A (en) Water purification process
JPH0577400B2 (zh)
JPH01244000A (ja) 甜菜糖液を処理する方法
CN102659564A (zh) 从乳酸生产的废水中提取乳酸的方法
WO2019111490A1 (ja) 糖液の精製方法及び糖液精製装置
CN114702379B (zh) 一种红乳酸纯化方法
US2640849A (en) Recovery of aconitic acid from molasses
CN117583038B (zh) 一种蔗糖脱钙方法及系统
JP3638624B2 (ja) 混床式ショ糖液精製装置の再生法
US2640850A (en) Recovery of aconitic acid from molasses
CN114272960A (zh) 一种阀阵式多单元连续离交提纯木糖的方法及装置
CN117327844A (zh) 蔗糖精炼的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765744

Country of ref document: EP

Kind code of ref document: A1