WO2023169063A1 - 外转子永磁滚筒定子及其定子组件 - Google Patents

外转子永磁滚筒定子及其定子组件 Download PDF

Info

Publication number
WO2023169063A1
WO2023169063A1 PCT/CN2022/143692 CN2022143692W WO2023169063A1 WO 2023169063 A1 WO2023169063 A1 WO 2023169063A1 CN 2022143692 W CN2022143692 W CN 2022143692W WO 2023169063 A1 WO2023169063 A1 WO 2023169063A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
permanent magnet
outer rotor
rotor permanent
heat dissipation
Prior art date
Application number
PCT/CN2022/143692
Other languages
English (en)
French (fr)
Inventor
张春晖
黄小祥
左成
Original Assignee
江苏嘉轩智能工业科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏嘉轩智能工业科技股份有限公司 filed Critical 江苏嘉轩智能工业科技股份有限公司
Publication of WO2023169063A1 publication Critical patent/WO2023169063A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to the technical field of outer rotor drum stators, and in particular to an outer rotor permanent magnet drum stator and its stator assembly.
  • stator and the main shaft are welded together to form a structural part with an air duct. Therefore, the heat dissipation area is small, and the thermal resistance between the stator and the air duct is large.
  • the stator is then sleeved on the steel cylinder to form an air-cooling heat dissipation solution.
  • the disadvantages of this method are the large amount of welding, difficulty in processing, long processing cycle, and average heat dissipation effect.
  • the technical problem to be solved by the present invention is: in order to solve the problem that the existing stator and the main shaft are welded together to form a structural member with an air duct, and then the stator is sleeved on the steel cylinder to form an air-cooling heat dissipation solution, and the heat dissipation effect is average, we now provide An outer rotor permanent magnet roller stator and its stator assembly are disclosed.
  • an outer rotor permanent magnet roller stator which includes a stator core.
  • the outer peripheral wall of the stator core is provided with wire grooves.
  • the stator core is arranged along its axial direction.
  • a number of air ducts are provided, the air ducts are spirally distributed along the axial direction of the stator core, and heat dissipation fins are provided in the air ducts.
  • this solution has protruding heat dissipation fins in the air duct, and the air duct is spirally arranged along the axial direction, which increases the heat dissipation area of the stator core.
  • the spirally arranged air duct will accelerate the heat dissipation of the air duct.
  • the heat dissipation speed improves the heat dissipation efficiency of the stator core.
  • the heat dissipation fins are distributed in a spiral corresponding to the air duct along the axial direction of the stator core.
  • the contact area between the heat dissipation fins and the cold air is increased.
  • the air is guided and formed into a spiral, speeding up the flow rate of the air, and converting laminar flow into Turbulent flow greatly improves the heat dissipation effect.
  • stator core is formed by stacking several punched sheet groups on each other.
  • the stator core is formed by stacking punched sheets to facilitate the formation of the stator core. Actual working conditions require adjustment of the length of the stator core.
  • the punching sheet group includes at least two punching sheets that are superimposed on each other. At least one of the punching sheets in the punching sheet group is provided with a channel, and several superimposed punching sheets are provided with a channel.
  • the channels in the punching group rotate in the same direction and are connected with each other to form a spiral air duct on the stator core. Through the channels provided on the punched sheets, the channels of adjacent punched sheets are rotated and staggered at a certain angle to form a spiral cooling air duct.
  • At least one of the punching sheets in the punching sheet group is provided with an inner fin, the inner fin is arranged in the channel, and several stacked punching sheet groups
  • the inner fins rotate in the same direction and are staggered to form helically arranged heat dissipation fins on the stator core.
  • At least one punching sheet in the punching sheet group is provided with inner fins, so that two adjacent groups of punching sheet groups may have inner fins arranged at intervals, or fins arranged continuously, and the fins are oriented toward the same direction.
  • the heat dissipation fins are rotated and misaligned at a certain angle in one direction to form a spiral arrangement.
  • the stator core was formed by welding.
  • the welding volume was large, the processing was difficult, and the processing cycle was long.
  • the punched pieces were formed by stamping. Through stamping and forming, the welding process is eliminated, the production cycle is reduced, and the material turnover rate is improved.
  • the air duct is a slot opened in the inner peripheral wall of the stator core.
  • the notches increase the contact area with cold air and improve the heat dissipation efficiency of the stator core.
  • a stator assembly includes the outer rotor permanent magnet drum stator as described above.
  • the two ends of the outer rotor permanent magnet drum stator are respectively equipped with bearing seat welding assemblies and bearing seats. Assemblies, the bearing seat welding assembly and the bearing seat assembly are respectively connected with both ends of the air duct.
  • a windshield cylinder is provided between the outer rotor permanent magnet drum stator and the bearing seat assembly.
  • the beneficial effects of the present invention are: when the outer rotor permanent magnet drum stator and its stator assembly of the present invention are used, the heat dissipation fins protrude in the air duct, and the air duct is spirally arranged along the axial direction, which increases the heat dissipation area of the stator core. , at the same time, the spirally arranged air duct will accelerate the heat dissipation speed of the air duct, also increase the ventilation volume of the air duct, improve the heat dissipation efficiency of the stator core, and avoid the existing stator and main shaft being welded together to form an air duct. Structural parts, and then the stator is placed on the steel cylinder to form an air-cooling heat dissipation solution, but the heat dissipation effect is average.
  • Figure 1 is a schematic three-dimensional structural diagram of the stator core in Embodiment 1 of the present invention.
  • Figure 2 is a partial enlarged view of A in Figure 1;
  • FIG. 3 is a front view of the stator core in Embodiment 1 of the present invention.
  • Figure 4 is a front view of the punched film in Embodiment 1 of the present invention.
  • Figure 5 is a top view of the punched sheet in Embodiment 1 of the present invention.
  • Figure 6 is a front view of the stator assembly in Embodiment 2 of the present invention.
  • Figure 7 is a left view of the stator assembly in Embodiment 2 of the present invention.
  • Figure 8 is a right view of the stator assembly in Embodiment 2 of the present invention.
  • Figure 9 is a schematic three-dimensional structural diagram of the stator assembly in Embodiment 2 of the present invention.
  • Fig. 10 is a cross-sectional view along line B-B in Fig. 8 .
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • an outer rotor permanent magnet drum stator includes a stator core 1.
  • the outer peripheral wall of the stator core 1 is provided with wire slots 2.
  • the stator core 1 is provided with openings along its axial direction.
  • the air ducts 3 are notches opened in the inner peripheral wall of the stator core 1.
  • the air ducts 3 can also be through holes opened in the stator core 1.
  • the air ducts 3 extend along the stator iron core.
  • the core 1 is spirally distributed in the axial direction, and the air duct 3 is provided with heat dissipation fins 4 .
  • the wires are evenly distributed along the circumference of the stator core 1, and the air ducts 3 are evenly distributed along the circumference of the stator core 1.
  • the heat dissipation fins 4 are distributed in a spiral corresponding to the air duct 3 along the axial direction of the stator core 1 .
  • the stator core 1 is formed by stacking several punched sheet groups on top of each other.
  • the punching sheet group consists of two punching sheets 5 superimposed on each other, and the punching sheets 5 are formed by stamping.
  • One of the punching sheets 5 in the punching sheet group is provided with a channel 6.
  • Several stacked channels 6 in the punching sheet group rotate in the same direction and are connected with each other to form a spirally arranged air channel 3 on the stator core 1.
  • at least one of the punching sheets 5 in the punching sheet group is provided with an inner fin 7, the inner fin 7 is arranged in the channel 6, and several stacked inner fins 7 in the punching sheet group are arranged along the same
  • the heat dissipation fins 4 are arranged in a staggered manner by rotation in one direction and form a spiral arrangement on the stator core 1 .
  • the air ducts 3 are set at intervals, that is, the punching sheets 5 with channels 6 and the punching sheets 5 without channels 6 are alternately superimposed.
  • the punching sheets 5 have channels 6, and the inner fins 7 are also set at intervals. , that is, punching sheets 5 with inner fins 7 and punching sheets 5 without fins are alternately superimposed, or each punching sheet 5 has an inner fin 7, and each layer of the inner fins 7 is connected to the front.
  • One layer is rotated by an angle, so that the punched sheets 5 with inner fins 7 and channels 6 and the punched sheets 5 without fins and channels 6 are alternately superimposed, which increases the heat dissipation area of the stator core 1 and improves the heat dissipation efficiency.
  • heat dissipation fins 4 are added to the inside of the stator core 1, and the punching sheet 5 is stamped and formed in one step, which reduces the welding process, adds heat dissipation fins 4, and eliminates the original Compared with the original solution, the thermal resistance generated by the cooperation between the stator core 1 and the steel cylinder is directly cooled, and the heat dissipation area is much larger than the original solution.
  • Embodiment 2 is an application of Embodiment 1, specifically: as shown in Figures 6-10, a stator assembly includes the outer rotor permanent magnet drum stator according to any one of claims 1-8, the outer rotor A bearing seat welding assembly 8 and a bearing seat assembly 9 are respectively installed at both ends of the permanent magnet drum stator. The bearing seat welding assembly 8 and the bearing seat assembly 9 are connected to both ends of the air duct 3 respectively.
  • a windshield cylinder 14 is provided between the stator core 1 and the bearing seat assembly 9 of the outer rotor permanent magnet drum stator.
  • the bearing seat welding assembly 8 includes a cylinder 10, a first bearing seat 11 and a wiring tube 12.
  • the wiring tube 12 is fixed on the bearing seat.
  • the cylinder 10 is fixedly connected to one end of the first bearing seat 11.
  • the first bearing seat 11 is provided with There is a first vent 13 connected with the cylinder 10.
  • the stator core 1 is sleeved on the cylinder 10.
  • the bearing seat assembly 9 includes a second bearing seat 15.
  • the second bearing seat 15 is provided with a second vent 16.
  • the cylinder 10 extends in the direction of the first bearing seat 11, that is, the first ventilation port 13 of the first bearing seat 11 and the cylinder 10 are connected with each other.
  • the first bearing seat 11 is fixed to the stator core through the windshield cylinder 14. 1 is away from the end of the second bearing seat 15, and the air duct 3 is located between the first vent 13 and the second vent 16.
  • the cooling air enters through the second vent 16 on the second bearing seat 15, and Passing between the windshield cylinder 14 and the cylinder 10, and then entering the air duct 3 of the stator core 1, the spirally arranged air duct 3 in the air duct 3 speeds up the flow rate of the air, and at the same time, the spirally arranged heat dissipation fins 4 also guides and accelerates the air, and then discharges it through the first vent 13 on the first bearing seat 11 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本发明涉及外转子滚筒定子技术领域,尤其是涉及一种外转子永磁滚筒定子及其定子组件,包括定子铁芯,所述定子铁芯的外周壁上设有线槽,所述定子铁芯上沿其轴向开设有若干风道,所述风道沿定子铁芯轴向呈螺旋分布,所述风道内设置有散热鳍片,本发明外转子永磁滚筒定子及其定子组件在使用时,在风道内凸出的散热鳍片,并且风道沿轴向为螺旋设置,增加了定子铁芯散热面积,同时螺旋设置的风道会加速风道的热量的散热速度,也提高了风道的通风量,提高定子铁芯的散热效率,避免了现有定子与主轴配合焊接在一起组成有风道的结构件,然后定子套在此钢筒上构成风冷散热方案,散热效果一般的问题。

Description

外转子永磁滚筒定子及其定子组件 技术领域
本发明涉及外转子滚筒定子技术领域,尤其是涉及一种外转子永磁滚筒定子及其定子组件。
背景技术
现采用定子与主轴配合焊接在一起组成有风道的结构件,因此散热面积小,定子与风道导热热阻较大,然后定子套在此钢筒上构成风冷散热方案。此方法不足之处在与焊接量大,加工难度大,加工周期长,散热效果一般。
发明内容
本发明要解决的技术问题是:为了解决现有定子与主轴配合焊接在一起组成有风道的结构件,然后定子套在此钢筒上构成风冷散热方案,散热效果一般的问题,现提供了一种外转子永磁滚筒定子及其定子组件。
本发明解决其技术问题所采用的技术方案是:一种外转子永磁滚筒定子,包括定子铁芯,所述定子铁芯的外周壁上设有线槽,所述定子铁芯上沿其轴向开设有若干风道,所述风道沿定子铁芯轴向呈螺旋分布,所述风道内设置有散热鳍片。相比于现有技术,本方案在风道内凸出的散热鳍片,并且风道沿轴向为螺旋设置,增加了定子铁芯散热面积,同时螺旋设置的风道会加速风道的热量的散热速度,提高定子铁芯的散热效率。
为了提高散热效率,进一步地,所述散热鳍片沿定子铁芯轴向呈与风道相对应的螺旋分布。通过将散热鳍片设置呈与风道相匹配的螺旋状,增加散热鳍 片与冷空气的接触面积,同时也会对空气进行导流并形成螺旋,加快空气的流速,并将层流转换为紊流,大大提升散热效果。
为了方便制造,进一步地,所述定子铁芯通过若干冲片组相互叠加而成。通过冲片叠加形成定子铁芯,便于对定子铁芯的造成,实际工况需求调整定子铁芯的长度。
为了更好对定子铁芯的造成,进一步地,所述冲片组包括至少两个相互叠加的冲片组成,所述冲片组中的至少其中一个冲片上设置有通道,若干叠加的所述冲片组中的通道沿同一个方向旋转并相互连通形成定子铁芯上螺旋设置的风道。通过在冲片上设置的通道,并且相邻冲片的通道旋转并错开一定角度形成螺旋的散热风道。
为了便于根据使用情况在设置散热鳍片,进一步地,所述冲片组中的至少其中一个冲片上设置有内翅片,所述内翅片设置在通道内,若干叠加的所述冲片组中的内翅片沿同一个方向旋转错开设置并形成定子铁芯上螺旋设置的散热鳍片。通过所述冲片组中的至少一个冲片上设置有内翅片,这样使得相邻两组冲片组上可以是间隔分布设置的内翅片,或者连续设置的翅片,并且翅片向同一个方向呈一定角度旋转错位形成螺旋设置的散热鳍片。
之前定子铁芯是通过焊接而成,其焊接量大,加工难度大,加工周期长,进一步地,所述冲片通过冲压成型。通过冲压成型,取消了焊接工序,降低了生产周期,提升了材料周转率。
为了提高定子铁芯的散热效率,进一步地,所述风道为开设在定子铁芯内周壁的槽口。槽口增加了与冷空气的接触面积,提高定子铁芯的散热效率。
外转子永磁滚筒定子的具体应用,进一步地,一种定子组件,包括如上述的外转子永磁滚筒定子,所述外转子永磁滚筒定子的两端分别安装有轴承座焊 接组件和轴承座组件,所述轴承座焊接组件和轴承座组件分别与风道的两端连通。
进一步地,所述外转子永磁滚筒定子与轴承座组件之间设置有挡风缸筒。
本发明的有益效果是:本发明外转子永磁滚筒定子及其定子组件在使用时,在风道内凸出的散热鳍片,并且风道沿轴向为螺旋设置,增加了定子铁芯散热面积,同时螺旋设置的风道会加速风道的热量的散热速度,也提高了风道的通风量,提高定子铁芯的散热效率,避免了现有定子与主轴配合焊接在一起组成有风道的结构件,然后定子套在此钢筒上构成风冷散热方案,散热效果一般的问题。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的实施例1中定子铁芯的三维结构示意图;
图2是图1中A的局部放大图;
图3是本发明实施例1中定子铁芯的主视图;
图4是本发明实施例1中冲片的主视图;
图5是本发明实施例1中冲片的俯视图;
图6是本发明实施例2中定子组件的主视图;
图7是本发明实施例2中定子组件的左视图;
图8是本发明实施例2中定子组件的右视图;
图9是本发明实施例2中定子组件的三维结构示意图;
图10是图8中B-B剖视图。
图中:1、定子铁芯,2、线槽,3、风道,4、散热鳍片,5、冲片,6、通道,7、内翅片,8、轴承座焊接组件,9、轴承座组件,10、圆筒,11、第一轴承座,12、接线管,13、第一通风口,14、挡风缸筒,15、第二轴承座,16、第二通风口。
具体实施方式
本发明下面结合实施例作进一步详述:
本发明不局限于下列具体实施方式,本领域一般技术人员根据本发明公开的内容,可以采用其他多种具体实施方式实施本发明的,或者凡是采用本发明的设计结构和思路,做简单变化或更改的,都落入本发明的保护范围。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本发明中的具体含义。
实施例1
如图1-5所示,一种外转子永磁滚筒定子,包括定子铁芯1,所述定子铁芯1的外周壁上设有线槽2,所述定子铁芯1上沿其轴向开设有若干风道3,所述风道3为开设在定子铁芯1内周壁的槽口,当然风道3也可以是开设在定子铁芯1上的通孔,所述风道3沿定子铁芯1轴向呈螺旋分布,所述风道3内设置有散热鳍片4。线材沿定子铁芯1圆周均匀分布,同时风道3沿定子铁芯1圆周均匀分布。
所述散热鳍片4沿定子铁芯1轴向呈与风道3相对应的螺旋分布。
所述定子铁芯1通过若干冲片组相互叠加而成。
所述冲片组包括两个相互叠加的冲片5组成,所述冲片5通过冲压成型,
所述冲片组中的其中一个冲片5上设置有通道6,若干叠加的所述冲片组中的通道6沿同一个方向旋转并相互连通形成定子铁芯1上螺旋设置的风道3,所述冲片组中的至少其中一个冲片5上设置有内翅片7,所述内翅片7设置在通道6内,若干叠加的所述冲片组中的内翅片7沿同一个方向旋转错开设置并形成定子铁芯1上螺旋设置的散热鳍片4。此处风道3为间距设置,也就是有通道6的冲片5和无通道6的冲片5交替叠加,也可以是冲片5上都有通道6,同时内翅片7也为间隔设置,也就是有内翅片7的冲片5和无翅片的冲片5交替叠加,也可以是每一个冲片5上都有内翅片7,并且内翅片7的每一层与前一层旋转一 个角度,这样有内翅片7、有通道6的冲片5和无翅片、无通道6的冲片5交替叠加,增加了定子铁芯1的散热面积,提高了散热效率。
上述外转子永磁滚筒定子及其定子组件在使用时,定子铁芯1内侧增加散热鳍片4,冲片5为一次冲压成型,减少了焊接的工序,增加散热鳍片4散热,取消了原定子铁芯1与钢筒之间配合产生的热阻,对比原方案是直接冷却,且散热面积比原来大很多。
实施例2
实施例2为实施例1的应用,具体为:如图6-10所示,一种定子组件,包括如权利要求1-8任一项所述的外转子永磁滚筒定子,所述外转子永磁滚筒定子的两端分别安装有轴承座焊接组件8和轴承座组件9,所述轴承座焊接组件8和轴承座组件9分别与风道3的两端连通。
所述外转子永磁滚筒定子的定子铁芯1与轴承座组件9之间设置有挡风缸筒14。轴承座焊接组件8包括圆筒10、第一轴承座11和接线管12,接线管12固定在轴承座上,圆筒10固定连接在第一轴承座11的一端,第一轴承座11上设置有第一通风口13并与圆筒10连通,定子铁芯1套设在圆筒10上,轴承座组件9包括第二轴承座15,第二轴承座15上设置有第二通风口16,圆筒10向第一轴承座11方向延伸,也就是第一轴承座11的第一通风口13与圆筒10之间相互连通,第一轴承座11通过挡风缸筒14固定在定子铁芯1远离第二轴承座15的一端,风道3位于第一通风口13和第二通风口16之间,在冷却时,冷却空气通过第二轴承座15上的第二通风口16进入,并通过挡风缸筒14和圆筒10之间,然后再进入至定子铁芯1的风道3,风道3内的螺旋设置的风道3加快了空气的流速,同时螺旋设置的散热鳍片4也对空气进行导流并加速,然后再通过第一轴承座11上的第一通风口13排出。
上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (9)

  1. 一种外转子永磁滚筒定子,其特征在于:包括定子铁芯(1),所述定子铁芯(1)的外周壁上设有线槽(2),所述定子铁芯(1)上沿其轴向开设有若干风道(3),所述风道(3)沿定子铁芯(1)轴向呈螺旋分布,所述风道(3)内设置有散热鳍片(4)。
  2. 根据权利要求1所述的外转子永磁滚筒定子,其特征在于:所述散热鳍片(4)沿定子铁芯(1)轴向呈与风道(3)相对应的螺旋分布。
  3. 根据权利要求2所述的外转子永磁滚筒定子,其特征在于:所述定子铁芯(1)通过若干冲片组相互叠加而成。
  4. 根据权利要求3所述的外转子永磁滚筒定子,其特征在于:所述冲片组包括至少两个相互叠加的冲片(5)组成,所述冲片组中的至少其中一个冲片(5)上设置有通道(6),若干叠加的所述冲片组中的通道(6)沿同一个方向旋转并相互连通形成定子铁芯(1)上螺旋设置的风道(3)。
  5. 根据权利要求4所述的外转子永磁滚筒定子,其特征在于:所述冲片组中的至少其中一个冲片(5)上设置有内翅片(7),所述内翅片(7)设置在通道(6)内,若干叠加的所述冲片组中的内翅片(7)沿同一个方向旋转错开设置并形成定子铁芯(1)上螺旋设置的散热鳍片(4)。
  6. 根据权利要求4或5所述的外转子永磁滚筒定子,其特征在于:所述冲片(5)通过冲压成型。
  7. 根据权利要求1所述的外转子永磁滚筒定子,其特征在于:所述风道(3)为开设在定子铁芯(1)内周壁的槽口。
  8. 一种定子组件,其特征在于:包括如权利要求1-7任一项所述的外转子永磁滚筒定子,所述外转子永磁滚筒定子的两端分别安装有轴承座焊接组件(8)和轴承座组件(9),所述轴承座焊接组件(8)和轴承座组件(9)分别与风道 (3)的两端连通。
  9. 根据权利要求8所述的外转子永磁滚筒定子,其特征在于:所述外转子永磁滚筒定子与轴承座组件(9)之间设置有挡风缸筒(14)。
PCT/CN2022/143692 2022-05-20 2022-12-30 外转子永磁滚筒定子及其定子组件 WO2023169063A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210549177.1A CN114844255A (zh) 2022-05-20 2022-05-20 外转子永磁滚筒定子及其定子组件
CN202210549177.1 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023169063A1 true WO2023169063A1 (zh) 2023-09-14

Family

ID=82569067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143692 WO2023169063A1 (zh) 2022-05-20 2022-12-30 外转子永磁滚筒定子及其定子组件

Country Status (2)

Country Link
CN (1) CN114844255A (zh)
WO (1) WO2023169063A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114844255A (zh) * 2022-05-20 2022-08-02 江苏嘉轩智能工业科技股份有限公司 外转子永磁滚筒定子及其定子组件
CN116633046B (zh) * 2023-07-20 2023-10-03 西门子(天津)传动设备有限责任公司 定子及电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184657A (ja) * 1998-12-11 2000-06-30 Mitsui Miike Mach Co Ltd かご形電動機
CN104518583A (zh) * 2013-09-27 2015-04-15 北京明诚技术开发有限公司 采用紊流散热通风道的电机定子铁芯
CN108110914A (zh) * 2018-01-25 2018-06-01 博远机电(嘉兴)有限公司 定子铁心及电机
CN209217921U (zh) * 2018-12-24 2019-08-06 深圳德至高科技有限公司 自散热无刷直流电机
CN111313580A (zh) * 2020-05-13 2020-06-19 江苏嘉轩智能工业科技股份有限公司 一种永磁直驱滚筒
CN111697716A (zh) * 2020-06-12 2020-09-22 西安中车永电捷力风能有限公司 定子冲片及其定子铁芯、双馈风力发电机
CN114844255A (zh) * 2022-05-20 2022-08-02 江苏嘉轩智能工业科技股份有限公司 外转子永磁滚筒定子及其定子组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184657A (ja) * 1998-12-11 2000-06-30 Mitsui Miike Mach Co Ltd かご形電動機
CN104518583A (zh) * 2013-09-27 2015-04-15 北京明诚技术开发有限公司 采用紊流散热通风道的电机定子铁芯
CN108110914A (zh) * 2018-01-25 2018-06-01 博远机电(嘉兴)有限公司 定子铁心及电机
CN209217921U (zh) * 2018-12-24 2019-08-06 深圳德至高科技有限公司 自散热无刷直流电机
CN111313580A (zh) * 2020-05-13 2020-06-19 江苏嘉轩智能工业科技股份有限公司 一种永磁直驱滚筒
CN111697716A (zh) * 2020-06-12 2020-09-22 西安中车永电捷力风能有限公司 定子冲片及其定子铁芯、双馈风力发电机
CN114844255A (zh) * 2022-05-20 2022-08-02 江苏嘉轩智能工业科技股份有限公司 外转子永磁滚筒定子及其定子组件

Also Published As

Publication number Publication date
CN114844255A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2023169063A1 (zh) 外转子永磁滚筒定子及其定子组件
US8304941B2 (en) Arrangement and method for cooling an electrical machine
WO2016201877A1 (zh) 电机径向通风冷却结构
CN203352307U (zh) 一种电机定子铁心的结构及电机定子的冷却装置
CN203104215U (zh) 一种适用多种冷却方式的电机
US20160141921A1 (en) Helical heat exchanger for electric motors
JP6059906B2 (ja) アキシャルギャップ型回転電機
JP2009127937A (ja) 熱交換器
CN103280903A (zh) 一种电机定子铁心的结构及冷却方法
JP2017166757A (ja) 熱交換器及び空気調和装置
WO2023165249A1 (zh) 矿用隔爆型三相永磁同步滚筒
CN212695852U (zh) 驱动电机、具有该驱动电机的驱动系统和车辆
CN113937919A (zh) 定子冷却结构、驱动电机和新能源汽车
CN104578649B (zh) 一种具有弧形导风板的轴向分段式电机转子
US20210075274A1 (en) Stack of laminations for a stator having cooling channels
CN111313580A (zh) 一种永磁直驱滚筒
CN201750240U (zh) 具有导热套筒的水套式水冷电机
CN111697716A (zh) 定子冲片及其定子铁芯、双馈风力发电机
CN216056519U (zh) 定子冷却结构、驱动电机和新能源汽车
CN213879402U (zh) 油冷定子、电机、电驱动桥和汽车
CN110207256B (zh) 空调室内机及空调
CN213185796U (zh) 用于车辆的驱动电机、驱动系统和车辆
CN113708546A (zh) 横置车载电机自然风冷风道结构
CN210468932U (zh) 一种转子冲片风路结构
JP2004254438A (ja) 全閉外扇形回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930682

Country of ref document: EP

Kind code of ref document: A1