WO2023169020A1 - 一种海缆铺设轮组间隙调节方法及系统 - Google Patents

一种海缆铺设轮组间隙调节方法及系统 Download PDF

Info

Publication number
WO2023169020A1
WO2023169020A1 PCT/CN2022/137594 CN2022137594W WO2023169020A1 WO 2023169020 A1 WO2023169020 A1 WO 2023169020A1 CN 2022137594 W CN2022137594 W CN 2022137594W WO 2023169020 A1 WO2023169020 A1 WO 2023169020A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
wheel
pressure
cable laying
submarine cable
Prior art date
Application number
PCT/CN2022/137594
Other languages
English (en)
French (fr)
Inventor
周正斌
顾卫
周烨琦
Original Assignee
中英海底系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中英海底系统有限公司 filed Critical 中英海底系统有限公司
Publication of WO2023169020A1 publication Critical patent/WO2023169020A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H51/00Forwarding filamentary material
    • B65H51/02Rotary devices, e.g. with helical forwarding surfaces
    • B65H51/04Rollers, pulleys, capstans, or intermeshing rotary elements
    • B65H51/08Rollers, pulleys, capstans, or intermeshing rotary elements arranged to operate in groups or in co-operation with other elements
    • B65H51/12Rollers, pulleys, capstans, or intermeshing rotary elements arranged to operate in groups or in co-operation with other elements in spaced relation to provide a series of independent forwarding surfaces around which material is passed or wound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H51/00Forwarding filamentary material
    • B65H51/02Rotary devices, e.g. with helical forwarding surfaces
    • B65H51/04Rollers, pulleys, capstans, or intermeshing rotary elements
    • B65H51/08Rollers, pulleys, capstans, or intermeshing rotary elements arranged to operate in groups or in co-operation with other elements
    • B65H51/10Rollers, pulleys, capstans, or intermeshing rotary elements arranged to operate in groups or in co-operation with other elements with opposed coacting surfaces, e.g. providing nips
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/06Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle
    • H02G1/10Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle in or under water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/20Sensing or detecting means using electric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/34Handled filamentary material electric cords or electric power cables

Definitions

  • the present application relates to the technical field of submarine cable laying, and in particular to a submarine cable laying wheel set gap adjustment system and method.
  • Submarine cables are cables wrapped with insulating materials and laid on the seabed for telecommunications transmission. Submarine cables are divided into submarine communication cables and submarine power cables. Modern submarine cables use optical fibers as materials to transmit telephone and Internet signals.
  • the cable laying machine has multiple sets of traction rollers arranged in pairs.
  • the traction rollers include traction wheels and pressure rollers arranged in pairs up and down.
  • the traction wheels are driven by motors to rotate.
  • the rotation speed of the motor is controlled by a control module such as the traction wheel or other control module
  • the lifting height of the pressure wheel is controlled by a hydraulic device, thereby adjusting the gap between the traction wheel and the pressure wheel.
  • the inventor believes that when laying an ocean-going submarine cable, the repeater of the submarine cable needs to be launched into the water together with the submarine cable. This will cause the diameter of the submarine cable entering the cable laying machine to change. The change in diameter will cause the traction pressure wheel to change. The pressure acting on the submarine cable changes, which in turn causes the tension of the submarine cable to be launched into the water to change.
  • this application provides a method and system for adjusting the gap of submarine cable laying wheels.
  • this application provides a submarine cable laying wheel set gap adjustment method, which adopts the following technical solution:
  • a method for adjusting the gap of submarine cable laying wheels including:
  • the theoretical distance data is compared, and the pressure wheel position data is adjusted.
  • This application first based on the theoretical pressure data and the shape data of the submarine cable
  • the theoretical distance data of submarine cables of different diameters in each traction wheel set is calculated, and the wheel set gap is adjusted in real time based on this theoretical distance data.
  • the collected traction wheel speed data and the laid cable length data are used to obtain the position data of the submarine cable in each traction pressure wheel in the cable laying machine.
  • a feedforward can be formed for the pressure wheel.
  • Real-time control ensures that the pressure of each group of traction rollers of the cable laying machine on the submarine cable is always roughly consistent with the preset theoretical pressure, thereby better ensuring the consistency of the tension of submarine cables of different diameters in the cable laying machine.
  • the method also includes the following steps:
  • the actual speed value is integrated into the position data according to the preset update rules.
  • the time difference for the same submarine cable to enter the preceding traction rollers can be calculated based on the adjustment change values of each preceding traction roller. Based on the time difference combined with the fixed distance between each traction roller, the sea cable can be obtained
  • the actual speed value of the cable in the cable laying machine is theoretically consistent with the converted speed data of the traction wheel. However, based on the shaking environment of the cable laying ship in which the cable laying machine works, the actual speed value between the two If a deviation may occur between the two speeds, this application updates and fuses the two speed data when the deviation occurs, which not only improves the accuracy of the generated position data, but also provides the robustness of the control method.
  • the method also includes the following steps:
  • the pressure wheel position data of the subsequent pressure wheel is adjusted.
  • the pressure on the submarine cable in the traction pressure wheel can be controlled according to the distance between the pressure wheel and the traction wheel.
  • the traction wheel and the pressure wheel are both made of rubber, if the material and diameter of the submarine cable change to a certain extent, there will be some differences in the pressure of the traction pressure wheel. In order to eliminate this difference, there will be some differences.
  • Pressure error this application uses a pressure sensor to detect the pressure data, obtain the pressure difference, and adjust the pressure wheel position data based on this pressure difference, further improving the accuracy of control.
  • the obtaining and storing the submarine cable shape data to be deployed includes the following steps:
  • shape data corresponding to the model data is retrieved.
  • the model of the submarine cable entering the cable laying machine can be read in real time, and the corresponding shape data in the database can be read according to the model of the submarine cable, thereby facilitating subsequent methods to perform real-time control based on this shape data.
  • the shape data includes length data and diameter data.
  • the diameter data facilitates subsequent methods to adjust and control the pressure wheel based on this data
  • the length data facilitates subsequent methods to control the control time of the pressure wheel based on this data
  • the theoretical pressure data is set to be multiple, and each theoretical pressure data corresponds to a different tension value.
  • establishing and storing the theoretical pressure data of each traction roller during cabling includes:
  • the method also includes the following steps,
  • the tension on the submarine cable when the cable laying machine is laying is detected in real time, and compared with the set pressure value, the pressure difference is obtained, and the position of the pressure wheel is adjusted based on this pressure difference. , thereby further improving the accuracy of control.
  • adjusting the pressure wheel position data based on the shape data and the position data, comparing the theoretical distance data specifically includes:
  • this application provides a submarine cable laying wheel set gap adjustment system, including:
  • the acquisition module is used to collect the traction wheel speed data and the pressure wheel position data when the cable laying machine is laying the cable, collect the cable laying length data of the cable laying machine, collect the pressure data of each pressure wheel when the submarine cable is in the cable laying machine, and collect the data to be collected. Collect the model data of each section of submarine cable entering the cable laying machine and collect the actual tension value of the submarine cable;
  • a transmission module signal connected to the collection module, used to collect and transmit the detection data collected by the collection module;
  • a storage module that stores the shape data of the submarine cable to be laid, the theoretical pressure data, and the program data corresponding to a submarine cable laying wheel set gap adjustment method according to any one of the above methods;
  • a processing module signal connected to the transmission module and data connected to the storage module, receives the detection data, and based on the program data corresponding to the gap adjustment method for submarine cable laying wheel sets stored in the storage module, performs The above detection data is processed to generate a response control signal;
  • the execution module is connected to the processing module, receives and responds to the control signal, and is used to adjust the lifting device that controls the lifting of the pressure wheel.
  • the acquisition module collects various data of the cable laying machine and the submarine cable, and transmits the collected detection data to the processing module through the transmission module.
  • the processing module performs the detection data on the basis of the control method in the storage module. Analyze and process, and respond to corresponding control signals. Based on this control signal, the execution module adjusts the lifting device of the pressure wheel to complete the adjustment of the pressure on the submarine cable, thereby ensuring the consistency of the tension of submarine cables of different diameters in the cable laying machine.
  • the collection module includes:
  • a speed sensor is provided at the free end of the traction wheel motor and is used to detect the traction wheel speed data of the traction wheel motor;
  • the displacement sensor is set at the position of the pressure wheel and is used to detect the position data of the pressure wheel;
  • the counter is set at the exit position of the traction pressure wheel of the cable laying machine and is used to collect the data of the cable laying length of the cable laying machine;
  • a pressure sensor is provided between the pressure wheel and the lifting device, used to detect the pressure data of each pressure wheel when the submarine cable is located in the cable laying machine;
  • the image collector is set at the entrance of the traction roller of the cable laying machine and is used to collect model data of each section of submarine cable to be entered into the cable laying machine;
  • the tension sensor is installed between the cable laying machine and the installation machine to collect the actual tension value of the submarine cable.
  • the counter adopts a redundant design, and each redundant counter is electrically connected to the processing module.
  • the counters adopt a redundant design, and each redundant counter is electrically connected to the processing module.
  • the counter is used as a key measuring element to measure the length of the laid cable.
  • a redundant design is adopted, thereby enhancing the stability of the system.
  • This application first calculates the theoretical distance data of submarine cables of different diameters in each traction wheel set based on the theoretical pressure data and the shape data of the submarine cable, and adjusts the wheel set gap in real time based on this theoretical distance data. Then, the collected traction wheel speed data and the laid cable length data are used to obtain the position data of the submarine cable in each traction pressure wheel in the cable laying machine. Based on this position data and the shape data of the submarine cable, the pressure wheel can be adjusted in real time. , so that the pressure of each group of traction rollers of the cable laying machine on the submarine cable is always roughly consistent with the preset theoretical pressure, thereby better ensuring the consistency of the tension of submarine cables with different diameters in the cable laying machine;
  • the time difference for the same submarine cable to enter the preceding traction pressure rollers can be calculated. Based on the time difference combined with the fixed distance between each traction pressure roller, the time difference of the submarine cable in the cable laying process can be obtained.
  • the actual speed value in the machine is theoretically consistent with the converted speed data of the traction wheel.
  • there is a deviation between the two Apply to fuse two speed data at the same time, which not only improves the accuracy of the generated position data, but also provides the robustness of the control method;
  • the pressure on the submarine cable in the traction pressure wheel can be controlled by controlling the distance between the pressure wheel and the traction wheel.
  • the traction wheel and the pressure wheel are both made of rubber, if the material and diameter of the submarine cable change to a certain extent, there will be some differences in the pressure of the traction pressure wheel. In order to eliminate this difference, there will be some differences.
  • Pressure error this application uses a pressure sensor to detect the pressure data, obtain the pressure difference, and adjust the pressure wheel position data based on this pressure difference, further improving the accuracy of control.
  • Figure 1 is a schematic structural diagram of a cable distribution machine according to an embodiment of the present application.
  • Figure 2 is a feedforward control flow chart of a gap adjustment method for submarine cable laying wheel sets according to an embodiment of the present application.
  • Figure 3 is a speed feedback flow chart according to an embodiment of the present application.
  • Figure 4 is a pressure feedback flow chart according to the embodiment of the present application.
  • Figure 5 is a tension feedback flow chart according to the embodiment of the present application.
  • Figure 6 is a topological diagram of a submarine cable laying wheel set gap adjustment system according to an embodiment of the present application.
  • the embodiment of the present application discloses a method for adjusting the gap of a submarine cable laying wheel set, which is based on a cable laying machine that is slidably installed on the deck of a cable laying ship.
  • the cable laying machine is installed on the deck of the cable laying ship through a linear sliding bearing.
  • the cable laying machine includes a frame 1.
  • the frame 1 is provided with a plurality of sets of traction rollers 2 distributed along the length of the cable and arranged side by side.
  • the traction pressure wheel 2 includes a traction wheel 21 and a pressure wheel 22 arranged in pairs.
  • Each traction wheel 21 is driven by a motor 3, and each pressure wheel 22 is also controlled by a lifting device 4.
  • the motor 3 is selected as a reducer and a lifting device.
  • the pressure wheel 22 compresses the submarine cable, and the traction wheel 21 pulls the submarine cable to realize the cable laying operation.
  • the rotation speed of all the motors 3 must be controlled to be consistent.
  • the pressure of each pressure wheel 22 on the submarine cable also needs to be accurately controlled. In the actual experiment, the pressure The pressure that the wheel 22 needs to act on the submarine cable is normally distributed from the entrance to the exit of the cable laying machine.
  • a method for adjusting the gap of submarine cable laying wheels includes the following steps:
  • the shape data includes the diameter and length data of each model of cable.
  • the cable diameter range is between 12mm-400mm, as well as the diameter and length data of each model of repeater. Repeater The diameter is less than 400mm. Specifically, this step is divided into three sub-steps as follows:
  • S101 establish and store the model data and corresponding shape data of each section of the submarine cable. Such data can be queried and input through the product description of the line and repeater;
  • S102 collects the model data of each section of submarine cable to be entered into the cable laying machine in real time.
  • the model data can be pre-posted at the head end of each section of submarine cable with different diameters through labels, and feature matching can also be directly performed through diameter characteristics;
  • S103 According to the collected model data, retrieve the shape data corresponding to the model data, match and retrieve the corresponding shape data in the database according to the model data.
  • step S2 is executed to establish and store the theoretical pressure data of each traction roller 2 during cable laying.
  • the theoretical pressure data is set to multiple and each pressure value in the theoretical pressure data is normal from the entrance to the exit of the cable laying machine. Distribution, each theoretical pressure data corresponds to different tension values.
  • there are eight sets of theoretical pressure data which are the theoretical pressure data of each traction pressure roller 2 at a pulling force value of 20T in the retracting mode, the theoretical pressure data of each traction pressure roller 2 at a pulling force value of 10T in the retracting mode, The theoretical pressure data of each traction pressure roller 2 at a pulling force value of 4T in mode, the theoretical pressure data of each traction pressure wheel 2 at a pulling force value of 0.5T in reeling mode, and the theoretical pressure data of each traction pressing wheel 2 at a pulling force value of 20T in cable release mode Pressure data, theoretical pressure data of each traction pressure roller 2 at a tension value of 10T in the cable unwinding mode, theoretical pressure data of each traction pressure roller 2 at a tension value of 4T in the cable unwinding mode, and each traction pressure data at a tension value of 0.4T in the cable unwinding mode.
  • step S3 is executed.
  • the distance estimation algorithm is:
  • H is the theoretical distance between the pressing wheel 22 and the traction wheel 21
  • R is the diameter of the submarine cable in the shape data.
  • is the pressure exerted by the pressure wheel 22 on the submarine cable, and this data can be obtained from theoretical pressure data.
  • E is a proportionality constant, usually called elastic coefficient or Young's modulus. Different materials have their own fixed Young's modulus. In this embodiment, E is determined by the materials of the traction wheel 21 and the pressure wheel 22 .
  • ⁇ , ⁇ , and ⁇ are correction coefficients, all of which are fixed constants. Therefore, based on the theoretical pressure data and shape data, the theoretical distance data of each position of the submarine cable to be deployed when passing through each traction roller 2 can be obtained.
  • step S4 Based on this theoretical distance data, perform step S4 to collect the speed data of the traction wheel 21 and the position data of the pressure wheel 22 when the cable laying machine is laying cables, and collect the data of the cable length of the cable laying machine. Through this step, the status information of the cable laying machine is obtained. and the status information of the submarine cable in the cable laying machine.
  • step S5 is executed.
  • the position data of the submarine cable located in the cable laying machine is calculated and generated. This step is used to determine that the submarine cable is located in the cable laying machine.
  • the specific position of the submarine cable is convenient to determine the shape information corresponding to the submarine cable that is about to enter each traction roller 2.
  • step S6 is performed to compare the theoretical distance data based on the shape data and position data, and adjust the position data of the pressure wheel 22 .
  • this step includes the following three sub-steps:
  • step S601. Based on the position data obtained in step S5, obtain the shape data of the submarine cable between the traction rollers 2 in the cable laying machine;
  • step S602 based on the shape data of the submarine cable between each traction roller 2, search the theoretical distance data obtained in step S3, and obtain the theoretical distance H from each pressure roller 22 to the traction wheel 21;
  • S603 adjust the position data of the pressure wheel 22 of each pressure wheel 22 based on the theoretical distance H between each pressure wheel 22 and the traction wheel 21.
  • the specific adjustment rule is: if the distance between the pressure wheel 22 and the traction wheel 21 is greater than the theoretical distance H, Then reduce the distance between the pressure wheel 22 and the traction wheel 21, so that the pressure when the submarine cable enters the group of traction pressure wheels 2 is maintained at the theoretical pressure; if the distance between the pressure wheel 22 and the traction wheel 21 is less than the theoretical distance, Then increase the distance between the pressure pulley 22 and the traction pulley 21, and also keep the pressure of the submarine cable at the theoretical pressure when entering the group of traction pressure pulleys 2.
  • a submarine cable laying wheel set gap adjustment method further includes the following steps:
  • the actual speed value is integrated into the position data according to the preset update rule.
  • the above update rule is: when the actual speed value and the converted traction wheel 21 speed value are at a preset threshold value When the deviation between the actual speed value and the converted speed value of a certain traction wheel 21 exceeds the preset range value, the subsequent position data of the traction wheel 21 is determined by the actual speed value. Until the deviation between the converted speed value of the traction wheel 21 and the actual speed value returns to the preset threshold.
  • Steps S7, S8, and S9 are to prevent slipping between a certain traction wheel 21 and the submarine cable, causing deviations in the speed value converted by the traction wheel 21, and then updating the control of the subsequent traction wheel 21 through the actual speed value, thereby improving the Robustness and accuracy of control methods.
  • a submarine cable laying wheel set gap adjustment method also includes the following steps:
  • S12 adjust the position data of the pressure roller 22 of the subsequent pressure roller 22 according to the pressure difference of the previous pressure roller 22.
  • the pressure difference of the previous pressure roller 22 is a positive number, it means the pressure of the previous pressure roller 22.
  • the data is greater than the theoretical pressure data, and then the distance between the pressure wheel 22 and the traction wheel 21 is reduced when this section of submarine cable passes the subsequent traction pressure wheel 2; when the pressure difference of the previous pressure wheel 22 is a negative number, it means that the previous pressure wheel 22
  • the pressure data is less than the theoretical pressure data, and then when this section of submarine cable passes through the subsequent traction pressure wheel 2, the distance between the pressure wheel 22 and the traction wheel 21 is increased.
  • steps S10, S11, and S12 is helpful to eliminate the deviation of the theoretical distance H caused by different submarine cable materials, thereby improving the accuracy of control.
  • a submarine cable laying wheel set gap adjustment method also includes the following steps:
  • Steps S14, S15, and S16 are helpful to avoid deviations in the tension of the submarine cables laid before and after due to changes in seabed sea conditions during laying, thereby further improving the accuracy of control.
  • the embodiment of this application discloses a method for adjusting the gap of submarine cable laying wheel sets.
  • the implementation principle is: this application maintains the consistency of submarine cable tension when laying submarine cables of different diameters.
  • the position data of the pressure wheel 22 is feedforward controlled, so that when submarine cables of different diameters or even repeaters between submarine cables enter the cable laying machine, the pressure they receive will always remain relatively consistent, which is beneficial to Ensure the consistency of submarine cable tension when laying submarine cables of different diameters.
  • this application forms three types of feedback control through steps S7, S8, S9; S10, S11, S12; S14, S15, and S16, which further improves the accuracy of the control and increases the robustness of the control method.
  • this application provides a submarine cable laying wheel set gap adjustment system.
  • a submarine cable laying wheel set gap adjustment system includes a collection module 5 and a transmission module 6.
  • Storage module 8 processing module 7, execution module 9, input module and display module.
  • Collection module 5 includes:
  • Speed sensor 51 is selected as a rotation speed sensor, which is arranged at the free end of the motor 3 of the traction wheel 21, and is used to detect the traction speed data of the motor 3, so as to facilitate the acquisition of the laying speed of the submarine cable through the traction speed data;
  • Displacement sensor 52 the displacement sensor 52 is arranged at the position of the pressure wheel 22 and is used to detect the position data of the pressure wheel 22;
  • the counter 53 is arranged at the exit position of the traction roller 2 of the cable laying machine and is used to collect the data of the cable laying length of the cable laying machine.
  • the counter 53 adopts a redundant design. In this embodiment, the counter 53 adopts a double redundant design;
  • the pressure sensor 54 is arranged between the pressure wheel 22 and the lifting device 4, and is used to detect the pressure data of each pressure wheel 22 when the submarine cable is located in the cable laying machine;
  • the image collector 55 is an industrial camera, which is set at the entrance of the traction roller 2 of the cable laying machine, and is used to collect the model data of each section of the submarine cable to be entered into the cable laying machine;
  • the tension sensor 56 is arranged between the cable laying machine and the installation base, and is used to collect the actual tension value of the submarine cable.
  • the cable-laying machine is installed on the deck through linear bearings, so that the cable-laying machine can slide forward and backward.
  • the tension sensor 56 is set at one end of the cable-laying machine.
  • the end of the cable-laying machine away from the tension sensor 56 along its own sliding direction is provided with a hydraulic cylinder.
  • the cable machine is limited to ensure that the tension of the submarine cable can be accurately measured by a calibrated tension sensor 56.
  • the transmission module 6 is selected as a data transceiver, and its signal is connected to each sensor of the above-mentioned acquisition module 5, for collecting and remotely transmitting the detection data collected by each sensor.
  • the storage module 8 is configured as a memory that stores the shape data of the submarine cable to be laid, the theoretical pressure data, and the program data corresponding to the gap adjustment method of a submarine cable laying wheel set according to the above embodiment.
  • the processing module 7 is configured as a central processor, and its signal is connected to the transmission module 6 and its data is connected to the storage module 8. It receives the detection data and based on the program data corresponding to a submarine cable laying wheel set gap adjustment method stored in the storage module 8, The above detection data is processed to generate a response control signal.
  • the execution module 9 is configured as a hydraulic cylinder driver, is connected to the processing module 7 , receives and responds to the control signal, and is used to adjust the lifting device 4 that controls the lifting of the pressure wheel 22 .
  • the input module and the display module can use a touch screen, and the data is connected to the processing module 7 for obtaining the set tension value input by the user.
  • the display module signal is connected to the processing module 7 and is used to display the detection data collected by the collection module 5 .
  • the implementation principle of a submarine cable laying wheel set gap adjustment system in the embodiment of the present application is: the collection module 5 collects various data of the cable laying machine and the submarine cable, and transmits the collected detection data to the processing unit through the transmission module 6 Module 7, the processing module 7 analyzes and processes the detection data based on the control method in the storage module 8, and responds with corresponding control signals. Based on this control signal, the execution module 9 adjusts the lifting device 4 of the pressure wheel 22 to complete the adjustment of the pressure on the submarine cable, thereby ensuring the consistency of the tension of submarine cables of different diameters in the cable laying machine.

Landscapes

  • Electric Cable Installation (AREA)

Abstract

本申请涉及一种海缆铺设轮组间隙调节方法及系统,涉及海底缆线铺设技术领域,其包括,获取并存储待布海缆形状数据;建立并存储布缆时各牵引压轮的理论压力数据;根据理论压力数据与形状数据,基于预设的距离估计算法,生成待布海缆各位置经过各牵引压轮时的理论距离数据;采集布缆机布缆时牵引轮速度数据以及压轮位置数据,采集布缆机已布缆长度数据;根据牵引轮速度数据与已布缆长度数据,计算并生成海缆位于布缆机中的位置数据;基于形状数据与位置数据,对比理论距离数据,调节压轮位置数据。本申请具有更好的保证不同直径海缆在布缆机中张力一致性的效果。

Description

一种海缆铺设轮组间隙调节方法及系统 技术领域
本申请涉及海底缆线铺设技术领域,尤其是涉及一种海缆铺设轮组间隙调节系统及方法。
背景技术
海缆是用绝缘材料包裹的电缆,铺设在海底,用于电信传输。海底电缆分海底通信电缆和海底电力电缆。现代的海底电缆都是使用光纤作为材料,传输电话和互联网信号。
在海缆进行深海铺设时,需要用到布缆机,布缆机上有成对设置的多组牵引压轮,牵引压轮包括上下成对设置的牵引轮与压轮,牵引轮由电机驱动转动,电机由或等控制模块控制转速,压轮由液压装置控制其升降高度,进而调节牵引轮与压轮之间的间隙。为了保证海缆在铺设下水前的张力保持一致、避免海缆下水后出现弯曲现象,每对牵引压轮的转速及压力都经过了精确的计算和调节。
针对上述相关技术,发明人认为,在远洋海缆铺设时,海缆的中继器需要随同海缆一同下水,这样就使得进入布缆机的海缆直径发生变化,直径变化会造成牵引压轮作用在海缆上的压力产生变化,进而使得海缆下水的张力发生改变。
发明内容
为了更好的保证不同直径海缆在布缆机中张力的一致性,本申请提供一种海缆铺设轮组间隙调节方法及系统。
第一方面,本申请提供的一种海缆铺设轮组间隙调节方法,采用如下的技术方案:
一种海缆铺设轮组间隙调节方法,包括,
获取并存储待布海缆形状数据;
建立并存储布缆时各牵引压轮的理论压力数据;
根据所述理论压力数据与所述形状数据,基于预设的距离估计算法,生成所述待布海缆各位置经过各牵引压轮时的理论距离数据;
采集布缆机布缆时牵引轮速度数据以及压轮位置数据,采集布缆机已布缆长度数据;
根据所述牵引轮速度数据与所述已布缆长度数据,计算并生成海缆位于布缆机中的位置数据;
基于所述形状数据与所述位置数据,对比所述理论距离数据,调节所述压轮位置数据。
通过采用上述技术方案,为保证海缆的张力保持一致,需要使布缆机各组牵引压轮对海缆的压力与预设的理论压力始终保证大体一致,在海缆直径始终保持不变时,仅需将各组压轮调整至与牵引轮合适距离即可。但在针对不同直径海缆进行布缆时,压轮需要根据海缆直径进行实时调整才能确保牵引压轮对海缆的压力与理论压力相同,本申请首先根据理论压力数据与海缆的形状数据计算得到不同直径的海缆在各牵引轮组中的理论距离数据,根据此理论距离数据对轮组间隙进行实时调节。接着利用采集到的牵引轮速度数据与已布缆的长度数据得到在布缆机中各牵引压轮中海缆的位置数据,基于此位置数据与海缆的形状数据即可对压轮形成前馈实时控制,从而使布缆机各组牵引压轮对海缆的压力与预设的理论压力始终保证大体一致,进而更好的保证了不同直径海缆在布缆机中张力的一致性。
可选的,方法还包括如下步骤,
计算前序各所述压轮位置数据的调整变化值;
根据前序各所述调整变化值计算并生成布缆机中缆线的实际速度值;
以及,调整后续所述压轮位置数据时,将所述实际速度值根据预设的更新规则融合入所述位置数据。
通过采用上述技术方案,根据各前序压轮的调整变化值可计算得到同一处海缆进入前序各牵引压轮中的时间差,根据时间差结合各牵引压轮之间的固定距离,可得到海缆在布缆机中的实际速度值,该实际速度值理论上是与经换算后的牵引轮的速度数据保持一致的,但基于布缆机所工作的布缆船晃动环境,使得两者之间可能发生偏差的,本申请在发生偏差时对两速度数据进行更新融合,既提高了生成的位置数据的精确性,又提供了该控制方法的鲁棒性。
可选的,方法还包括如下步骤,
采集海缆位于布缆机中时各压轮的压力数据;
计算前序压轮的压力数据与所述理论压力数据的之间的压力差值;
以及,根据前序压轮的所述压力差值,调整后续压轮的所述压轮位置数据。
通过采用上述技术方案,理论上根据控制压轮与牵引轮之间的距离即可控制牵引压轮件中海缆受到的压力。但在实际使用过程中,由于牵引轮与压轮均由橡胶材质制成,若海缆的材质和直径存在一定的变化,自身受到牵引压轮的压力也会存在些许差别,为消除该差别带来的压力误差,本申请使用压力传感器对压力数据进行检测,得到压力差值,根据此压力差值对压轮位置数据进行调整,进一步提高了控制的精确性。
可选的,所述获取并存储待布海缆形状数据包括如下步骤,
建立并存储海缆各段型号数据与对应的形状数据;
实时采集待进入布缆机各段海缆的型号数据;
根据采集到的所述型号数据,调取与所述型号数据相对应的形状数据。
通过采用上述技术方案,实时读取进入布缆机的海缆型号,根据该段海缆型号读取数据库内对应的形状数据,从而便于后续方法根据此形状数据进行实时控制。
可选的,所述形状数据包括长度数据和直径数据。
通过采用上述技术方案,直径数据便于后续方法根据此数据对压轮进行调节控制,长度数据便于后续方法根据此数据控制压轮的控制时间。
可选的,所述理论压力数据设置为多个,各所述理论压力数据对应不同的张力值。
通过采用上述技术方案,布缆时海缆不同的张力值对应的理论压力值时不同的,本申请根据布缆时不同的张力要求建立对应的理论压力值,从而便于该方法适用于不同张力海缆的布缆作业。
可选的,所述建立并存储布缆时各牵引压轮的理论压力数据,包括,
获取用户输入的设定张力值;
基于所述设定张力值,生成该设定张力值所对应的理论压力数据。
通过采用上述技术方案,便于布缆机在进行布缆操作前根据输入放入设定张力值读取对应的理论压力数据,从而便于后续对压力位置数据进行合适的控制。
方法还包括如下步骤,
采集布缆时海缆受到的实际张力值;
计算所述实际张力值与所述设定张力值之间的张力差值;
以及,基于所述张力差值,调整所述压轮位置数据。
通过采用上述技术方案,对布缆机布缆时海缆受到的张力进行实时检测,并与设定的设定压力值进行比较,获得压力差值,基于此压力差值对压轮位置进行调整,从而进一步提高了控制的精确性。
可选的,所述基于所述形状数据与所述位置数据,对比所述理论距离数据,调节所述压轮位置数据,具体包括,
基于所述位置数据,获取海缆位于布缆机中各牵引压轮之间海缆的形状数据;
基于各所述牵引压轮之间海缆的形状数据,查找所述理论距离数据,得到各压轮到牵引轮的理论距离;
基于各所述压轮到牵引轮的理论距离,调整各压轮的压轮位置数据。
通过采用上述技术方案,具体公开了基于形状数据、位置数据控制压轮位置数据的方法。
第二方面,本申请提供了一种海缆铺设轮组间隙调节系统,包括,
采集模块,用于采集布缆机布缆时牵引轮速度数据以及压轮位置数据,采集布缆机已布缆长度数据,采集海缆位于布缆机中时各压轮的压力数据,采集待进入布缆机各段海缆的型号数据以及采集海缆受到的实际张力值;
传输模块,信号连接于所述采集模块,用于收集并传输所述采集模块采集到的检测数据;
存储模块,存储有待布海缆形状数据、理论压力数据以及存储有上述方法中任意一项所述的一种海缆铺设轮组间隙调节方法对应的程序数据;
处理模块,信号连接于所述传输模块并数据连接于所述存储模块,接收所述检测数据,基于存储模块内存储的所述的一种海缆铺设轮组间隙调节方法对应的程序数据,对上述检测数据进行处理,生成响应的控制信号;
执行模块,控制连接于所述处理模块,接收并响应所述控制信号,用于对控制压轮升降的升降装置进行调节。
通过采用上述技术方案,采集模块对布缆机以及海缆的各种数据进行采集,并通过传输模块将采集到的检测数据传输至处理模块,处理模块基于存储模块内的控制方法对检测数据进行分析处理,响应出相应的控制信号。基于此控制信号,执行模块对压轮的升降装置进行调节,从而完成对海缆受到的压力的调节,进而保证不同直径海缆在布缆机中张力的一致性。
可选的,所述采集模块包括,
速度传感器,设置于牵引轮电机自由端,用于检测牵引轮电机的牵引轮速度数据;
位移传感器,设置与压轮位置处,用于检测压轮位置数据;
计数器,设置在布缆机牵引压轮的出口位置处,用于采集布缆机已布缆长度数据;
压力传感器,设置在压轮与升降装置之间,用于检测海缆位于布缆机中时各压轮的压力数据;
图像采集器,设置在布缆机牵引压轮的入口位置处,用于采集待进入布缆机各段海缆的型号数据;
张力传感器,设置在布缆机与安装机台之间,用于采集海缆受到的实际张力值。
通过采用上述技术方案,便于对布缆机以及海缆的各种数据进行采集。
可选的,所述计数器采用冗余设计,各冗余所述计数器均电连接于所述处理模块。
通过采用上述技术方案,所述计数器采用冗余设计,各冗余所述计数器均电连接于所述处理模块。
通过采用上述技术方案,计数器作为测量已布缆长度的关键测量元件,为防止系统因一个计数器出现故障影响系统运行,故采用冗余设计,从而增强了系统的稳定性。
综上所述,本申请包括以下至少一种有益技术效果:
1.本申请首先根据理论压力数据与海缆的形状数据计算得到不同直径的海缆在各牵引轮组中的理论距离数据,根据此理论距离数据对轮组间隙进行实时调节。接着利用采集到的牵引轮速度数据与已布缆的长度数据得到在布缆机中各牵引压轮中海缆的位置数据,基于此位置数据与海缆的形状数据即可对压轮进行实时调整,从而使布缆机各组牵引压轮对海缆的压力与预设的理论压力始终保证大体一致,进而更好的保证了不同直径海缆在布缆机中张力的一致性;
2.根据各前序压轮的调整变化值可计算得到同一处海缆进入前序各牵引压轮中的时间差,根据时间差结合各牵引压轮之间的固定距离,可得到海缆在布缆机中的实际速度值,该实际速度值理论上是与经换算后的牵引轮的速度数据保持一致的,但基于布缆机所工作的布缆船晃动环境,两者是存在偏差的,本申请同时对两速度数据进行融合,既提高了生成的位置数据的精确性,又提供了该控制方法的鲁棒性;
3.理论上根据控制压轮与牵引轮之间的距离即可控制牵引压轮件中海缆受到的压力。但在实际使用过程中,由于牵引轮与压轮均由橡胶材质制成,若海缆的材质和直径存在一定的变化,自身受到牵引压轮的压力也会存在些许差别,为消除该差别带来的压力误差,本申请使用压力传感器对压力数据进行检测,得到压力差值,根据此压力差值对压轮位置数据进行调整,进一步提高了控制的精确性。
附图说明
图1是本申请实施例布缆机的结构示意图。
图2是本申请实施例一种海缆铺设轮组间隙调节方法前馈控制流程图。
图3是本申请实施例速度反馈流程图。
图4是本申请实施例压力反馈流程图。
图5是本申请实施例张力反馈流程图。
图6是本申请实施例一种海缆铺设轮组间隙调节系统的拓扑图。
附图标记说明:1、机架;2、牵引压轮;21、牵引轮;22、压轮;3、电机;4、升降装置;5、采集模块;51、速度传感器;52、位移传感器;53、计数器;54、压力传感器;55、图像采集器;56、张力传感器;6、传输模块;7、处理模块;8、存储模块;9、执行模块。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例中所述的方法步骤,其执行顺序可以按照具体实施方式中所述的顺序执行,也可以根据实际需要,在能够解决技术问题的前提下,调整各步骤的执行顺序,在此不一一列举。
以下结合附图1-6对本申请作进一步详细说明。
本申请实施例公开一种海缆铺设轮组间隙调节方法,基于一个滑动安装于布缆船甲板上的布缆机,布缆机通过线性滑动轴承安装在布缆船甲板上。参照图1,布缆机包括机架1,机架1上设置有多组沿海缆长度方向分布且并列排布的牵引压轮2。牵引压轮2包括成对设置的牵引轮21与压轮22,各牵引轮21均由一电机3驱动,各压轮22也均由一升降装置4控制,电机3选用为减速机,升降装置4选用为液压缸。压轮22对海缆进行压紧,牵引轮21对海缆进行牵引,从而实现布缆操作。在布缆时,为保证布缆时海缆所受到的张力保持一致,必须控制所有电机3转速保持一致,同时各压轮22对海缆的压力也需进行精确控制,在实际实验中,压轮22需要作用在海缆上的压力大小从布缆机入口至出口方向上呈正态分布。
参照图1和图2,一种海缆铺设轮组间隙调节方法,包括如下步骤
S1,获取并存储待布海缆形状数据,该形状数据包括各型号缆线直径与长度数据,缆线直径范围在12mm-400mm之间,以及各型号中继器直径与长度数据,中继器直径小于400mm。具体的,该步骤分为如下三个子步骤,
S101,建立并存储海缆各段型号数据与对应的形状数据,此类数据可通过线路以及中继器的产品说明中进行查询并输入;
S102,实时采集待进入布缆机各段海缆的型号数据,型号数据可通过标签预先张贴 在直径不同的各段海缆首端位置处,也可通过直径特征直接进行特征匹配;
S103,根据采集到的型号数据,调取与型号数据相对应的形状数据,根据型号数据在数据库内匹配并调取相对应的形状数据。
同时,执行步骤S2,建立并存储布缆时各牵引压轮2的理论压力数据,该理论压力数据设置为多个且理论压力数据内各压力值从布缆机入口至出口方向上呈正态分布,各理论压力数据对应不同的张力值。在本实施例中,理论压力数据共有八组,分别为收揽模式下20T拉力值时各牵引压轮2的理论压力数据、收揽模式下10T拉力值时各牵引压轮2的理论压力数据、收揽模式下4T拉力值时各牵引压轮2的理论压力数据、收揽模式下0.5T拉力值时各牵引压轮2的理论压力数据,以及放缆模式下20T拉力值时各牵引压轮2的理论压力数据、放缆模式下10T拉力值时各牵引压轮2的理论压力数据、放缆模式下4T拉力值时各牵引压轮2的理论压力数据、放缆模式下0.4T拉力值时各牵引压轮2的理论压力数据。
在建立完不同模式下不同拉力值时各牵引压轮2的理论压力数据的数据库之后,在进行布缆时,先根据牵引压轮2的转动方向判断此时布缆机处于收揽模式还是放缆模式,再获取用户输入的设定张力值,从而确定该设定张力值所对应的理论压力数据。
基于上述用户输入的设定张力值所对应的理论压力数据,执行步骤S3,根据理论压力数据与形状数据,基于预设的距离估计算法,生成待布海缆各位置经过各牵引压轮2时的理论距离数据;具体的,距离估计算法为:
Figure PCTCN2022137594-appb-000001
其中,H为压轮22与牵引轮21之间的理论距离,R为形状数据中海缆的直径。σ为压轮22作用在海缆上的压力,该数据可由理论压力数据获得。E为比例常数,通常称为弹性系数或扬氏模量,不同的材料有其固定的扬氏模量,在本实施例中,E由牵引轮21与压轮22的材质决定。此外α,β,γ为修正系数,均为固定常数。从而基于理论压力数据与形状数据,即可获得待布海缆各位置经过各牵引压轮2时的理论距离数据。
基于此理论距离数据,执行步骤S4,采集布缆机布缆时牵引轮21速度数据以及压轮22位置数据,采集布缆机已布缆长度数据,通过此步骤,获取布缆机的状态信息与布缆机中海缆的状态信息。
根据采集到的检测数据,执行步骤S5,根据牵引轮21速度数据与已布缆长度数据,计算并生成海缆位于布缆机中的位置数据,此步骤用于确定海缆位于布缆机中的具体位 置,从而便于确定即将进入各牵引压轮2中海缆对应的形状信息。
接着执行步骤S6,基于形状数据与位置数据,对比理论距离数据,调节压轮22位置数据。具体的,该步骤包括以下三个子步骤:
S601,基于步骤S5中得到的位置数据,获取海缆位于布缆机中各牵引压轮2之间海缆的形状数据;
S602,基于各牵引压轮2之间海缆的形状数据,查找步骤S3中得到的理论距离数据,得到各压轮22到牵引轮21的理论距离H;
S603,基于各压轮22到牵引轮21的理论距离H,调整各压轮22的压轮22位置数据,具体调节规则为:若压轮22与牵引轮21之间的距离大于理论距离H,则减小压轮22与牵引轮21之间的距离,已使得海缆进入该组牵引压轮2时的压力保持在理论压力;若压轮22与牵引轮21之间的距离小于理论距离,则增大压轮22与牵引轮21之间的距离,同样使海缆进入该组牵引压轮2时的压力保持在理论压力。
进一步的,由于上述距离估计算法中E假定的是牵引轮21组与海缆接触时,只有牵引轮21组表面发生弹性形变,而海缆则是刚性,不发生形变,从而使得理论距离H与实际距离存在一定的偏差。同时基于布缆船的工作平台位于较为颠簸的布缆船上之一特殊工作场景,本申请在控制轮组间隙时进一步提供了以下修正偏差的控制方法。
参照图1和图3,一种海缆铺设轮组间隙调节方法进一步包括如下步骤:
S7,计算前序各压轮22位置数据的调整变化值。
S8,根据前序各调整变化值计算并生成布缆机中缆线的实际速度值。
S9,调整后续压轮22位置数据时,将实际速度值根据预设的更新规则融合入位置数据,上述更新规则为:当实际速度值与换算后的牵引轮21速度值在一预设的阈值内保持一致时,位置数据保持不变;当实际速度值与换算后的某一牵引轮21速度值的偏差超过预设的范围值时,该牵引轮21后续的位置数据由实际速度值确定,直至该换算后的牵引轮21速度值与实际速度值的偏差回归至预设的阈值内。
步骤S7、S8、S9是为了防止某一牵引轮21与海缆之间发生打滑现象,通过牵引轮21换算的速度值产生偏差,进而通过实际速度值更新后续牵引轮21的控制,从而提高了控制方法的鲁棒性与精确性。
进一步的,参照图1和图4,一种海缆铺设轮组间隙调节方法还包括如下步骤:
S10,采集海缆位于布缆机中时各压轮22的压力数据。
S11,计算前序压轮22的压力数据与理论压力数据的之间的压力差值。
S12,根据前序压轮22的压力差值,调整后续压轮22的所述压轮22位置数据,当前序压轮22的压力差值为正数时,意为前序压轮22的压力数据大于理论压力数据,进而该段海缆经过后续牵引压轮2时减小压轮22与牵引轮21的距离;当前序压轮22的压力差值为负数时,意为前序压轮22的压力数据小于理论压力数据,进而该段海缆经过后续牵引压轮2时增大压轮22与牵引轮21的距离。
步骤S10、S11、S12的存在有利于消除不同海缆材质导致的理论距离H的偏差,从而提高了控制的精确性。
进一步的,参照图1和图5,一种海缆铺设轮组间隙调节方法还包括如下步骤:
S13,采集布缆时海缆受到的实际张力值。
S14,计算所述实际张力值与所述设定张力值之间的张力差值。
S15,基于所述张力差值,调整所述压轮22位置数据,当张力差值的为正数时,意为实际张力值大于设定的张力值,进而增大各压轮22与牵引轮21之间的距离;当张力差值为负数时,意为实际张力值小于设定的张力值,进而减小各压轮22与牵引轮21之间的距离。
步骤S14、S15、S16有利于避免在铺设时海底海况发生变化造成前后铺设的海缆张力产生偏差,从而进一步提高了控制的精确性。
本申请实施例公开一种海缆铺设轮组间隙调节方法的实施原理为:本申请为保持不同直径海缆铺设时海缆张力的前后一致性,通过采集与建立的数据,根据预设的距离估计算法,预测各直径海缆在牵引压轮2中的理论距离数据。再基于此理论距离数据对压轮22位置数据进行前馈控制,从而使得不同直径海缆甚至海缆之间的中继器进入布缆机中时,受到的压力始终保持相对一致,从而有利于保证不同直径海缆铺设时海缆张力的前后一致性。同时,本申请通过步骤S7、S8、S9;S10、S11、S12;S14、S15、S16形成三种反馈控制,进一步提高了控制的精确性的同时,增加了该控制方法的鲁棒性。
基于上述一种海缆铺设轮组间隙调节方法,本申请提供了一种海缆铺设轮组间隙调节系统。
参照图1和图6,一种海缆铺设轮组间隙调节系统,包括采集模块5,传输模块6。存储模块8、处理模块7、执行模块9、输入模块以及显示模块。
采集模块5包括:
速度传感器51,速度传感器51选用为转速传感器,设置在牵引轮21电机3自由端,用于检测电机3的牵引速度数据,从而便于通过该牵引速度数据获取海缆的布缆速 度;
位移传感器52,位移传感器52设置在压轮22位置处,用于检测压轮22位置数据;
计数器53,设置在布缆机牵引压轮2的出口位置处,用于采集布缆机已布缆长度数据,计数器53采用冗余设计,在本实施例中,计数器53采用双冗余设计;
压力传感器54,设置在压轮22与升降装置4之间,用于检测海缆位于布缆机中时各压轮22的压力数据;
图像采集器55,选用为工业相机,设置在布缆机牵引压轮2的入口位置处,用于采集待进入布缆机各段海缆的型号数据;
张力传感器56,设置在布缆机与安装基台之间,用于采集海缆受到的实际张力值。布缆机通过线性轴承安装在甲板上,使布缆机可以前后滑动,张力传感器56设置在布缆机的一端,布缆机沿自身滑动方向远离张力传感器56的一端设置有液压油缸,对布缆机进行限位,从而保证海缆的张力可以通过一个校准过的张力传感器56精确测量。
传输模块6在本实施例中选用为数据收发器,信号连接于上述采集模块5的各传感器,用于收集并远程传输各传感器采集到的检测数据。
存储模块8设置为存储器,存储有待布海缆形状数据、理论压力数据以及存储有上述实施例的一种海缆铺设轮组间隙调节方法对应的程序数据。
处理模块7,设置为中央处理器,信号连接于传输模块6并数据连接于存储模块8,接收检测数据,基于存储模块8内存储的一种海缆铺设轮组间隙调节方法对应的程序数据,对上述检测数据进行处理,生成响应的控制信号。
执行模块9设置为液压缸驱动器,控制连接于处理模块7,接收并响应控制信号,用于对控制压轮22升降的升降装置4进行调节。
输入模块与显示模块可采用触摸屏,数据连接于处理模块7,用于获取用户输入的设定张力值。显示模块信号连接于处理模块7,用于显示采集模块5采集到的检测数据。
本申请实施例一种海缆铺设轮组间隙调节系统的实施原理为:采集模块5对布缆机以及海缆的各种数据进行采集,并通过传输模块6将采集到的检测数据传输至处理模块7,处理模块7基于存储模块8内的控制方法对检测数据进行分析处理,响应出相应的控制信号。基于此控制信号,执行模块9对压轮22的升降装置4进行调节,从而完成对海缆受到的压力的调节,进而保证不同直径海缆在布缆机中张力的一致性。
以上均为本申请的较佳实施例,并非依此限制本申请的保护范围,故:凡依本申请的结构、形状、原理所做的等效变化,均应涵盖于本申请的保护范围之内。

Claims (14)

  1. 一种海缆铺设轮组间隙调节方法,其特征在于:包括,
    获取并存储待布海缆形状数据;
    建立并存储布缆时各牵引压轮(2)的理论压力数据;
    根据所述理论压力数据与所述形状数据,基于预设的距离估计算法,生成待布海缆各位置经过各牵引压轮(2)时的理论距离数据;
    采集布缆机布缆时牵引轮(21)速度数据以及压轮(22)位置数据,采集布缆机已布缆长度数据;
    根据所述牵引轮(21)速度数据与所述已布缆长度数据,计算并生成海缆位于布缆机中的位置数据;
    基于所述形状数据与所述位置数据,对比所述理论距离数据,调节所述压轮(22)位置数据。
  2. 根据权利要求1所述的一种海缆铺设轮组间隙调节方法,其特征在于:方法还包括如下步骤,
    计算前序各所述压轮(22)位置数据的调整变化值;
    根据前序各所述调整变化值计算并生成布缆机中缆线的实际速度值;
    以及,调整后续所述压轮(22)位置数据时,将所述实际速度值根据预设的更新规则融合入所述位置数据。
  3. 根据权利要求1所述的一种海缆铺设轮组间隙调节方法,其特征在于:方法还包括如下步骤,
    采集海缆位于布缆机中时各压轮(22)的压力数据;
    计算前序压轮(22)的压力数据与所述理论压力数据的之间的压力差值;
    以及,根据前序压轮(22)的所述压力差值,调整后续压轮(22)的所述压轮(22)位置数据。
  4. 根据权利要求1所述的一种海缆铺设轮组间隙调节方法,其特征在于:所述获取并存储待布海缆形状数据包括如下步骤,
    建立并存储海缆各段型号数据与对应的形状数据;
    实时采集待进入布缆机各段海缆的型号数据;
    根据采集到的所述型号数据,调取与所述型号数据相对应的形状数据。
  5. 根据权利要求4所述的一种海缆铺设轮组间隙调节方法,其特征在于:所述形状数据包括长度数据和直径数据。
  6. 根据权利要求1所述的一种海缆铺设轮组间隙调节方法,其特征在于:所述理论压力数据设置为多个,各所述理论压力数据对应不同的张力值。
  7. 根据权利要求6所述的一种海缆铺设轮组间隙调节方法,其特征在于:所述建立并存储布缆时各牵引压轮(2)的理论压力数据,包括,
    获取用户输入的设定张力值;
    基于所述设定张力值,生成该设定张力值所对应的理论压力数据。
  8. 根据权利要求7所述的一种海缆铺设轮组间隙调节方法,其特征在于:方法还包括如下步骤,
    采集布缆时海缆受到的实际张力值;
    计算所述实际张力值与所述设定张力值之间的张力差值;
    以及,基于所述张力差值,调整所述压轮(22)位置数据。
  9. 根据权利要求1所述的一种海缆铺设轮组间隙调节方法,其特征在 于:所述基于所述形状数据与所述位置数据,对比所述理论距离数据,调节所述压轮(22)位置数据,具体包括,
    基于所述位置数据,获取海缆位于布缆机中各牵引压轮(2)之间海缆的形状数据;
    基于各所述牵引压轮(2)之间海缆的形状数据,查找所述理论距离数据,得到各压轮(22)到牵引轮(21)的理论距离;
    基于各所述压轮(22)到牵引轮(21)的理论距离,调整各压轮(22)的压轮(22)位置数据。
  10. 一种海缆铺设轮组间隙调节系统,其特征在于:包括,
    采集模块(5),用于采集布缆机布缆时牵引轮(21)速度数据以及压轮(22)位置数据,采集布缆机已布缆长度数据,采集海缆位于布缆机中时各压轮(22)的压力数据,采集待进入布缆机各段海缆的型号数据以及采集海缆受到的实际张力值;
    传输模块(6),信号连接于所述采集模块(5),用于收集并传输所述采集模块(5)采集到的检测数据;
    存储模块(8),存储有待布海缆形状数据、理论压力数据以及存储有如权利要求1-9任意一项所述的一种海缆铺设轮组间隙调节方法对应的计算机程序;
    处理模块(7),信号连接于所述传输模块(6)并数据连接于所述存储模块(8),接收所述检测数据,基于存储模块(8)内存储的所述的一种海缆铺设轮组间隙调节方法对应的计算机程序,对上述检测数据进行处理,生成响应的控制信号;
    执行模块(9),控制连接于所述处理模块(7),接收并响应所述控制信号,用于对控制压轮(22)升降的升降装置(4)进行调节。
  11. 根据权利要求10所述的一种海缆铺设轮组间隙调节系统,其特征在于:所述采集模块(5)包括,
    速度传感器(51),设置于牵引轮(21)电机(3)自由端,用于检测牵引轮(21)电机(3)的牵引轮(21)速度数据;
    位移传感器(52),设置与压轮(22)位置处,用于检测压轮(22)位置数据;
    计数器(53),设置在布缆机牵引压轮(2)的出口位置处,用于采集布缆机已布缆长度数据;
    压力传感器(54),设置在压轮(22)与升降装置(4)之间,用于检测海缆位于布缆机中时各压轮(22)的压力数据;
    图像采集器(55),设置在布缆机牵引压轮(2)的入口位置处,用于采集待进入布缆机各段海缆的型号数据;
    张力传感器(56),设置在布缆机与安装基台之间,用于采集海缆受到的实际张力值。
  12. 根据权利要求11所述的一种海缆铺设轮组间隙调节系统,其特征在于:所述计数器(53)采用冗余设计,各冗余所述计数器(53)均电连接于所述处理模块(7)。
  13. 根据权利要求10所述的一种海缆铺设轮组间隙调节系统,其特征在于:系统还包括输入模块,所述输入模块数据连接于所述处理模块(7),用于获取用户输入的设定张力值。
  14. 根据权利要求10所述的一种海缆铺设轮组间隙调节系统,其特征在于:系统还包括显示模块,所述显示模块信号连接于所述处理模块(7),用于显示所述采集模块(5)采集到的检测数据。
PCT/CN2022/137594 2022-03-09 2022-12-08 一种海缆铺设轮组间隙调节方法及系统 WO2023169020A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210230011.3 2022-03-09
CN202210230011.3A CN114524324B (zh) 2022-03-09 2022-03-09 一种海缆铺设轮组间隙调节方法及系统

Publications (1)

Publication Number Publication Date
WO2023169020A1 true WO2023169020A1 (zh) 2023-09-14

Family

ID=81626659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137594 WO2023169020A1 (zh) 2022-03-09 2022-12-08 一种海缆铺设轮组间隙调节方法及系统

Country Status (2)

Country Link
CN (1) CN114524324B (zh)
WO (1) WO2023169020A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524324B (zh) * 2022-03-09 2023-10-03 中英海底系统有限公司 一种海缆铺设轮组间隙调节方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715068A (en) * 1970-08-28 1973-02-06 Post Office Apparatus for the laying or recovery of cables
GB1338178A (en) * 1971-12-10 1973-11-21 Inst Francais Du Petrole Device for maintaining a flexible line under a substantially constant tensile stress
CN104671140A (zh) * 2013-11-28 2015-06-03 中国科学院沈阳自动化研究所 基于plc的布缆船吊放拖曳控制方法
CN107947032A (zh) * 2017-11-24 2018-04-20 上海市基础工程集团有限公司 用于轮式布缆机的夹紧装置
US20200255257A1 (en) * 2019-02-08 2020-08-13 Tesmec S.P.A. Cable recovery machine
CN111668764A (zh) * 2020-07-13 2020-09-15 华电重工股份有限公司 海底电缆敷设装置的控制方法及控制系统
CN114524324A (zh) * 2022-03-09 2022-05-24 中英海底系统有限公司 一种海缆铺设轮组间隙调节方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691694B2 (ja) * 1986-08-29 1994-11-14 三菱電線工業株式会社 海底ケ−ブルの布設方法
CN107673115A (zh) * 2016-08-02 2018-02-09 合肥神马科技集团有限公司 一种缆管牵引机
CN206323077U (zh) * 2016-12-20 2017-07-11 大唐国信滨海海上风力发电有限公司 海缆布缆机
CN109687353B (zh) * 2018-11-13 2024-02-09 南通市海洋水建工程有限公司 一种高质高效的海缆铺设系统及其铺设方法
CN111478231B (zh) * 2020-04-22 2021-06-29 中天科技海缆股份有限公司 海缆同步敷设装置及方法
CN111675018B (zh) * 2020-06-11 2021-12-14 广州恒泰电力工程有限公司 一种用于电力工程施工的线缆敷设装置及其使用方法
CN112520503A (zh) * 2020-12-11 2021-03-19 中石化石油工程技术服务有限公司 一种海缆敷缆船电缆转盘及布缆机控制装置
CN215047636U (zh) * 2021-04-29 2021-12-07 天津天易海上工程有限公司 一种海上线缆辅助铺设装置
CN113173454A (zh) * 2021-05-21 2021-07-27 湖南天剑海洋工程设备有限公司 一种线缆牵引装置
CN113213252B (zh) * 2021-06-04 2023-02-10 广东电网有限责任公司 一种电缆施放装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715068A (en) * 1970-08-28 1973-02-06 Post Office Apparatus for the laying or recovery of cables
GB1338178A (en) * 1971-12-10 1973-11-21 Inst Francais Du Petrole Device for maintaining a flexible line under a substantially constant tensile stress
CN104671140A (zh) * 2013-11-28 2015-06-03 中国科学院沈阳自动化研究所 基于plc的布缆船吊放拖曳控制方法
CN107947032A (zh) * 2017-11-24 2018-04-20 上海市基础工程集团有限公司 用于轮式布缆机的夹紧装置
US20200255257A1 (en) * 2019-02-08 2020-08-13 Tesmec S.P.A. Cable recovery machine
CN111668764A (zh) * 2020-07-13 2020-09-15 华电重工股份有限公司 海底电缆敷设装置的控制方法及控制系统
CN114524324A (zh) * 2022-03-09 2022-05-24 中英海底系统有限公司 一种海缆铺设轮组间隙调节方法及系统

Also Published As

Publication number Publication date
CN114524324B (zh) 2023-10-03
CN114524324A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2023169020A1 (zh) 一种海缆铺设轮组间隙调节方法及系统
US9389130B2 (en) Assembly, system and method for cable tension measurement
CN204508356U (zh) 一种张力控制装置及自动卷绕机
CN109867154B (zh) 一种三驱动涂布卷绕设备鲁棒控制方法
CN107479601A (zh) 一种用于rov脐带缆绞车的自动收放缆监控系统及方法
WO2019052117A1 (zh) 一种用于柔性材料卷对卷加工过程张力预测的误差流方法
US6363297B1 (en) Method and circuit for predicting and regulating a paper winding parameter in a paper winding device
CN114104978B (zh) 双卷扬同步控制方法、装置、作业机械、设备及介质
CN115774399A (zh) 权重实时优化液压爬模爬升同步控制系统、方法
US11887750B2 (en) Apparatus and method for processing a plurality of electrical wires
CN114212619A (zh) 确定卷径的方法、装置、存储介质及收放卷设备
CN106925625A (zh) 一种热轧带钢卷取机卷筒的自动标定方法
CN106289762B (zh) 一种输送带压陷阻力试验台装置及其试验方法
CN114394493B (zh) 爬行器线缆盘同步收放线的控制方法、系统、设备及装置
CN115520700A (zh) 一种多轴多传感器融合的张力稳定方法及装置
JP2008304399A (ja) 撚線の残留トーション測定装置並びにそれを備えた撚線機および撚線の巻取り機
CN114919079A (zh) 基于图像识别的评估双轮铣工作状态的方法及系统
KR101008443B1 (ko) 워크롤의 마찰계수 측정방법
EP1231097A1 (en) Method to regulate the tension for stretching machines and relative apparatus
CN116835398B (zh) 系留线缆的收放控制方法、收放控制装置及飞行器组件
JP2022500649A (ja) 魚の重量及び長さの測定装置及びその方法
CN207549264U (zh) Bopp生产线第一测厚装置
CN113996671B (zh) 助卷辊辊缝标定方法、装置、设备及存储介质
KR101482467B1 (ko) 열간 압연 라인의 스트립 권취장치 및 스트립 권취방법
CN220766003U (zh) 一种弹性卷带的缓存装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930642

Country of ref document: EP

Kind code of ref document: A1