WO2023168994A1 - 一种生成线圈模型的方法及装置 - Google Patents

一种生成线圈模型的方法及装置 Download PDF

Info

Publication number
WO2023168994A1
WO2023168994A1 PCT/CN2022/134636 CN2022134636W WO2023168994A1 WO 2023168994 A1 WO2023168994 A1 WO 2023168994A1 CN 2022134636 W CN2022134636 W CN 2022134636W WO 2023168994 A1 WO2023168994 A1 WO 2023168994A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
section
model
magnetic levitation
present application
Prior art date
Application number
PCT/CN2022/134636
Other languages
English (en)
French (fr)
Inventor
杨晶
邵南
刘洪涛
马慧慧
Original Assignee
中车长春轨道客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车长春轨道客车股份有限公司 filed Critical 中车长春轨道客车股份有限公司
Publication of WO2023168994A1 publication Critical patent/WO2023168994A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models

Definitions

  • the present application relates to the field of electromagnetics, and in particular to a method and device for generating a coil model.
  • maglev system the relative motion between the on-board coil and the magnetic levitation track coil is used to generate an induced magnetic field. Similar magnetic poles repel each other and opposite poles attract each other to form a levitation force, making the maglev train levitate.
  • the on-board superconducting magnets in maglev trains bear the combined force of attraction emitted from the upper part of the maglev track and repulsive force emitted from the lower part.
  • the component of the electromagnetic force in the vertical direction makes the vehicle levitate
  • the component in the transverse direction guides the vehicle
  • the component in the direction of motion provides magnetic resistance.
  • this application provides a method and device for generating a coil model to more accurately and conveniently reason about the electromagnetic force in the magnetic levitation system.
  • the embodiment of the present application provides a method for generating a coil model, including:
  • the first section and the second section are configured to be connected to a power source to obtain a coil model; the coil model is used to reason about the electromagnetic force of the magnetic levitation system.
  • the distance between the first section and the second section is twice the minimum mesh size of the coil model.
  • it also includes:
  • the resistance of the first coil is set to a resistance greater than 500 ⁇ .
  • configuring the first section and the second section to be connected to a power source includes:
  • the first section and the second section are configured in a circuit configuration to be connected to a power source.
  • it also includes:
  • the third section and the fifth section are set to be connected; the fourth section and the sixth section are set to be connected;
  • the resistance of the second coil and the third coil is set to the actual resistance of the magnetic levitation track coil.
  • the distance between the third section and the fourth section is twice the minimum grid size of the coil model; the distance between the fifth section and the sixth section is The distance is twice the minimum mesh size of the coil model.
  • setting the third section and the fifth section to be connected; arranging the fourth section and the sixth section to be connected include:
  • the third section and the fifth section are set to be connected in the circuit setting; the fourth section and the sixth section are set to be connected in the circuit setting.
  • the magnetic levitation track in the magnetic levitation system includes a plurality of the second coils and a plurality of the third coils, and the maglev train in the magnetic levitation system includes a plurality of the first coils.
  • embodiments of the present application also provide a device for generating a coil model, including:
  • the first building block builds the first coil
  • the first cutting module cuts the first coil perpendicular to the current direction to obtain the first cross-section and the second cross-section of the first coil;
  • the first setting module sets the first section and the second section to be connected to the power supply to obtain a coil model; the coil model is used to reason about the electromagnetic force of the magnetic levitation system.
  • it also includes:
  • a second building block for building the second coil and the third coil
  • the second cutting module is used to cut the second coil in the direction perpendicular to the current to obtain the third cross-section and the fourth cross-section of the second coil; to cut the third coil in the direction perpendicular to the current to obtain the third cross-section.
  • the second setting module is used to set the third section and the fifth section to be connected; to set the fourth section and the sixth section to be connected to obtain a coil model; the coil model is used for inference Electromagnetic force of magnetic levitation system.
  • Embodiments of the present application provide a method for generating a coil model, which includes: constructing a second coil and a third coil; cutting the second coil perpendicular to the current direction to obtain a third cross-section and a fourth cross-section of the second coil. Section; cut the third coil perpendicular to the current direction to obtain the fifth section and the sixth section of the third coil; set the third section and the fifth section to be connected; connect the fourth section The section and the sixth section are set to be connected to obtain a coil model; the coil model is used to reason about the electromagnetic force of the magnetic levitation system.
  • the method for generating a coil model provided by the embodiment of the present application connects the cross-sections of the second coil and the third coil respectively, so that the electromagnetic force generated by the two coils is similar to the "8" in the magnetic levitation system. word coil.
  • the embodiment of the present application can simulate the complex structure of the "8" coil in the actual magnetic levitation system through two basic circular coils. Therefore, the electromagnetic force of the magnetic levitation system derived from the coil model provided in the embodiment of the present application has better accuracy, the calculation process is simpler, and the calculation speed is faster.
  • Figure 1 is a flow chart of a method for generating a coil model provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of an "8" coil model provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a superconducting coil model provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a coil model provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a device for generating a coil model provided by an embodiment of the present application.
  • the relative motion between the on-board coil and the magnetic levitation track coil is used to generate an induced magnetic field. Similar magnetic poles repel each other and opposite poles attract each other to form a levitation force, making the maglev train levitate.
  • the on-board superconducting magnet in the maglev train bears the interaction force of the figure-8 coil installed on the magnetic levitation track, which includes the attraction force emitted by the upper part of the figure-8 coil and the repulsive force emitted by the lower part.
  • the component of the electromagnetic force in the vertical direction makes the vehicle levitate
  • the component in the transverse direction guides the vehicle
  • the component in the direction of motion provides magnetic resistance.
  • Embodiments of the present application provide a method for generating a coil model, which includes: constructing a second coil and a third coil; cutting the second coil perpendicular to the current direction to obtain a third cross-section and a fourth cross-section of the second coil. Section; cut the third coil perpendicular to the current direction to obtain the fifth section and the sixth section of the third coil; set the third section and the fifth section to be connected; connect the fourth section The section and the sixth section are set to be connected to obtain a coil model; the coil model is used to reason about the electromagnetic force of the magnetic levitation system.
  • the method for generating a coil model provided by the embodiment of the present application simulates the "8" coil in the magnetic levitation system through the second coil and the third coil.
  • the simulation accuracy of the "8" coil in the magnetic levitation system is better. Therefore, the calculation process of using the coil model provided by the embodiment of the present application to infer the electromagnetic force of the magnetic levitation system is relatively simple, the calculation speed is fast, and the accuracy of the inferred electromagnetic force is good.
  • Figure 1 is a flow chart of a method for generating a coil model provided by an embodiment of the present application.
  • the method for generating a coil model includes:
  • S102 Cut the second coil along the direction perpendicular to the current to obtain the third and fourth sections of the second coil; cut the third coil perpendicular to the direction of the current to obtain the fifth and sixth sections of the third coil.
  • S103 Set the third section and the fifth section as connections; set the fourth section and the sixth section as connections to obtain a coil model; the coil model is used to reason about the electromagnetic force of the magnetic levitation system.
  • setting the third section and the fifth section to be connected; setting the fourth section and the sixth section to be connected includes: setting the third section and the fifth section to be in the circuit settings Connected; set the fourth section and the sixth section to be connected in the circuit settings.
  • simulation software such as COMSOL
  • the method provided by the embodiment of the present application also includes: setting the resistance of the second coil and the third coil to the actual resistance of the "8" coil in the magnetic levitation track coil.
  • the embodiments of the present application do not limit the specific shapes of the second coil and the third coil. The specific shapes of the second coil and the third coil can be set according to the "8" figure coil they simulate.
  • the method for generating a coil model connects the cross-sections of the second coil and the third coil respectively, so that the electromagnetic force generated by the two coils is similar to the "8" coil in the magnetic levitation system.
  • the embodiment of the present application simulates the complex "8" figure coil in the actual magnetic levitation system through the circuit setting of the coil, so that the accuracy of the electromagnetic force calculated through the model is better.
  • the structure of the two basic coils is relatively simple, and the calculation process of using this model to reason about the electromagnetic force is relatively simple and the calculation speed is relatively fast. Therefore, the electromagnetic force of the magnetic levitation system derived from the coil model provided in the embodiment of the present application has better accuracy, the calculation process is simpler, and the calculation speed is faster.
  • Figure 2 is a schematic diagram of a figure-8 coil model provided by an embodiment of the present application.
  • the coil model provided by the embodiment of the present application includes a second coil 100 and a third coil 200 .
  • the second coil is cut into a third section A and a fourth section B
  • the third coil is cut into a fifth section A' and a sixth section B'.
  • the third section A and the fifth section A’ are connected; the fourth section B and the sixth section B’ are connected.
  • the distance between the third section and the fourth section is twice the minimum grid size of the coil model; the distance between the fifth section and the sixth section is the minimum grid size of the coil model. twice. It should be noted that when the distance between the third section (fifth section) and the fourth section (sixth section) is twice the minimum grid size of the coil model, the coil model simulates the shape of the "8" coil. The degree of simulation is high and the calculation process is relatively simple. If the distance between the third section (fifth section) and the fourth section (sixth section) is too large, the coil model cannot well simulate the "8" coil in the magnetic levitation system.
  • the grid in the coil model will be increased, making the calculation process There will be a problem of computational divergence, which will slow down the calculation of electromagnetic forces.
  • the "8" coils in the maglev system are usually laid on the maglev track, and superconducting coils are also installed on both sides of the maglev train.
  • the force between the superconducting coil and the figure-8 coil causes the maglev train to levitate off the ground.
  • embodiments of the present application also simulate and model the superconducting coils on both sides of the maglev train.
  • the method for generating a coil model also includes: constructing a first coil; cutting the first coil in a direction perpendicular to the current to obtain a first cross-section and a second cross-section of the first coil; and converting the first cross-section and the second cross-section Set to connect to mains.
  • Figure 3 is a schematic diagram of a superconducting coil model provided by an embodiment of the present application.
  • the superconducting coil model provided by the embodiment of the present application includes a first coil 300 .
  • the first coil 300 is cut into a first section C and a second section D.
  • the first section C and the second section D are respectively configured to be connected to the power supply in the circuit setting.
  • the embodiment of the present application does not limit the specific shape of the first coil 300.
  • the specific shape of the first coil can be set according to the superconducting coil it simulates.
  • the distance between the first section and the second section in the first coil can also be the minimum grid size of the coil model. twice.
  • the resistance R of the first coil can be set to a huge resistance.
  • the resistance R can be much larger than other impedances connected in series in the line, but smaller than the air impedance, for example, 500 ⁇ or more.
  • the resistance R of the first coil can be related to the number of coil turns Nc in the model. Specifically, the resistance of the first coil can be proportional to the square of the number of coil turns Nc 2 .
  • the first coil is a superconducting coil with very low resistance.
  • the electronics of the first coil provided in the embodiment of the present application is set to a very low resistance, the low resistance causes sensitivity to calculation errors, and the small error voltage in the model will be reflected as a large voltage on the first coil. Current fluctuations. Therefore, in the embodiment of the present application, a high resistance value and a high power supply voltage are simultaneously set on the first coil, which not only simulates the current in the superconducting coil, but also stabilizes the current in the first coil.
  • MMF the magnetomotive force of the first coil.
  • the first coil is a resistanceless superconducting coil, and the current in the coil is a constant value.
  • the first coil in the embodiment of the present application has a large resistance and a large current, so that even if the circuit has other resistances, the shunting effect of the other resistances is very small and can be ignored, so Constant current flow in a superconducting coil is simulated.
  • a metal shell layer can also be provided on the first coil, and the thickness and conductivity of the metal shell layer can be set according to the actual situation, thereby simulating the metal on the superconducting coil in the magnetic levitation system. shell layer. Through the shell layer near the first coil, the current of the metal shell layer in the magnetic levitation system and the electromagnetic force experienced by the superconducting magnet can be calculated.
  • FIG 4 is a schematic diagram of a coil model provided by an embodiment of the present application.
  • the coil model provided by the embodiment of the present application includes an "8" coil layer composed of the second coil 100 and the third coil 200 , and a superconducting coil layer composed of the first coil 300 .
  • the coil model in the embodiment of the present application includes multiple second coils 100 and multiple third coils 200, where the second coils 100 are connected to their corresponding third coils 200 through cross sections to form an "8" coil.
  • the arrangement of multiple "8" coils simulates the figure-8 coils installed on the magnetic levitation track in the magnetic levitation system.
  • the coil model also includes a plurality of first coils 300. The plurality of first coils are arranged on the "8" coil to simulate the superconducting coils of the maglev train in the maglev system.
  • the method for generating a coil model connects the cross-sections of the second coil and the third coil respectively, so that the electromagnetic force generated by the two coils is similar to that in the magnetic levitation system.
  • the "8"-shaped coil, so the second coil and the third coil provided in the embodiment of the present application simulate the "8"-shaped coil, and have a relatively simple structure.
  • by setting the resistance and voltage of the first coil to larger values a stable current is maintained in the first coil, thereby simulating the superconducting coil in the magnetic levitation system. It can be seen from this that the electromagnetic force of the magnetic levitation system derived from the coil model inference provided by the embodiment of the present application has better accuracy, the calculation process is relatively simple, and the calculation speed is relatively fast.
  • embodiments of the present application also provide a device for generating a coil model.
  • FIG. 5 is a schematic diagram of a device for generating a coil model provided by an embodiment of the present application.
  • the device for generating a coil model includes:
  • Building module 501 used to build the second coil and the third coil
  • the cutting module 502 is used to cut the second coil perpendicular to the direction of the current to obtain the third and fourth sections of the second coil; to cut the third coil perpendicular to the direction of the current to obtain the fifth and sixth sections of the third coil. cross section;
  • the setting module 503 is used to set the third section and the fifth section to be connected; to set the fourth section and the sixth section to be connected to obtain a coil model; the coil model is used to reason about the electromagnetic force of the magnetic levitation system.
  • the device for generating a coil model provided by the embodiment of the present application connects the cross-sections of the second coil and the third coil respectively, so that the electromagnetic force generated by the two coils is similar to the "8" figure in the magnetic levitation system. Coil.
  • the embodiment of the present application can simulate the complex structure of the "8" coil in the actual magnetic levitation system through two basic circular coils. Therefore, the electromagnetic force of the magnetic levitation system derived from the coil model provided in the embodiment of the present application has better accuracy, the calculation process is simpler, and the calculation speed is faster.
  • the computer software product can be stored in a storage medium, such as ROM/RAM, disk , optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network communication device such as a media gateway, etc.) to execute the various embodiments or certain parts of the embodiments of this application. method.
  • a computer device which can be a personal computer, a server, or a network communication device such as a media gateway, etc.

Abstract

一种生成线圈模型的方法及装置,该方法包括:构建第二线圈和第三线圈;沿垂直于电流方向切割第二线圈,得到第二线圈的第三断面和第四断面;沿垂直于电流方向切割第三线圈,得到第三线圈的第五断面和第六断面;将第三断面和第五断面设置为连接;将第四断面和第六断面设置为连接,得到线圈模型;线圈模型用于推理磁悬浮系统的电磁力。

Description

一种生成线圈模型的方法及装置
本申请要求于2022年03月11日递交中国国家知识产权局、申请号为202210252653.3,发明名称为“一种生成线圈模型的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电磁领域,尤其涉及一种生成线圈模型的方法及装置。
背景技术
磁悬浮系统中利用车载线圈与磁悬浮轨道线圈之间相对运动产生感应磁场,磁极之间同性相斥、异性相吸形成悬浮力,使得磁悬浮列车悬浮。具体地,磁悬浮列车中的车载超导磁体承受磁悬浮轨道上部发出的吸引力和下部发出的排斥力的共同作用力。其中电磁力在垂直方向的分力使车辆悬浮,在横向方向的分力使车辆导向,运动方向的分力提供磁阻。
目前,磁悬浮系统中电磁力计算通常基于电路悬浮数值计算方法,计算精度较低,计算速度较慢。因此,本领域急需一种可以更为精确且更为简便地推理磁悬浮系统中的电磁力的线圈模型。
发明内容
为了解决上述技术问题,本申请提供了一种生成线圈模型的方法及装置,用于更为精确且更为方便地推理磁悬浮系统中的电磁力。
为了实现上述目的,本申请实施例提供的技术方案如下:
本申请实施例提供了一种生成线圈模型的方法,包括:
构建第一线圈;
沿垂直于电流方向切割所述第一线圈,得到所述第一线圈的第一断面和第二断面;
将所述第一断面和所述第二断面设置为与电源连接,得到线圈模型;所述线圈模型用于推理磁悬浮系统的电磁力。
作为一种可能的实施方式,所述第一断面和所述第二断面之间的距离为所述线圈模型的最小网格尺寸的两倍。
作为一种可能的实施方式,还包括:
将所述第一线圈的电阻设置为大于500Ω的电阻。
作为一种可能的实施方式,所述将所述第一断面和所述第二断面设置为与电源连接,包括:
将所述第一断面和所述第二断面在电路设置中设置为与电源连接。
作为一种可能的实施方式,还包括:
构建第二线圈和第三线圈;
沿垂直于电流方向切割所述第二线圈,得到所述第二线圈的第三断面和第四断面;沿垂直于电流方向切割所述第三线圈,得到所述第三线圈的第五断面和第六断面;
将所述第三断面和所述第五断面设置为连接;将所述第四断面和所述第六断面设置为连接;
将所述第二线圈和所述第三线圈的电阻设置为磁悬浮轨道线圈的实际电阻。
作为一种可能的实施方式,所述第三断面和所述第四断面之间的距离为所述线圈模型的最小网格尺寸的两倍;所述第五断面和所述第六断面之间的距离为所述线圈模型的最小网格尺寸的两倍。
作为一种可能的实施方式,所述将所述第三断面和所述第五断面设置为连接;将所述第四断面和所述第六断面设置为连接,包括:
将所述第三断面和所述第五断面在电路设置中设置为相连;将所述第四断面和所述第 六断面在电路设置中设置为相连。
作为一种可能的实施方式,所述磁悬浮系统中的磁悬浮轨道包含多个所述第二线圈和多个所述第三线圈,所述磁悬浮系统中的磁悬浮列车包含多个所述第一线圈。
根据上述的生成线圈模型的方法,本申请实施例还提供了一种生成线圈模型的装置,包括:
第一构建模块,构建第一线圈;
第一切割模块,沿垂直于电流方向切割所述第一线圈,得到所述第一线圈的第一断面和第二断面;
第一设置模块,将所述第一断面和所述第二断面设置为与电源连接,得到线圈模型;所述线圈模型用于推理磁悬浮系统的电磁力。
作为一种可能的实施方式,还包括:
第二构建模块,用于构建第二线圈和第三线圈;
第二切割模块,用于沿垂直于电流方向切割所述第二线圈,得到所述第二线圈的第三断面和第四断面;沿垂直于电流方向切割所述第三线圈,得到所述第三线圈的第五断面和第六断面;
第二设置模块,用于将所述第三断面和所述第五断面设置为连接;将所述第四断面和所述第六断面设置为连接,得到线圈模型;所述线圈模型用于推理磁悬浮系统的电磁力。
通过上述技术方案可知,本申请具有以下有益效果:
本申请实施例提供了一种生成线圈模型的方法,包括:构建第二线圈和第三线圈;沿垂直于电流方向切割所述第二线圈,得到所述第二线圈的第三断面和第四断面;沿垂直于电流方向切割所述第三线圈,得到所述第三线圈的第五断面和第六断面;将所述第三断面和所述第五断面设置为连接;将所述第四断面和所述第六断面设置为连接,得到线圈模型;所述线圈模型用于推理磁悬浮系统的电磁力。
由此可知,本申请实施例提供的生成线圈模型的方法,通过分别将第二线圈的断面和第三线圈的断面连接,从而使得两个线圈产生的电磁力类似于磁悬浮系统中的“8”字线圈。如此,本申请实施例可以通过两个基本的圆形线圈,模拟实际磁悬浮系统中结构复杂的“8”字线圈。因此本申请实施例提供的线圈模型推理得到的磁悬浮系统的电磁力的精度较好,且计算过程较为简单,计算速度较快。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种生成线圈模型的方法流程图;
图2为本申请实施例提供的一种“8”字线圈模型示意图;
图3为本申请实施例提供的一种超导线圈模型示意图;
图4为本申请实施例提供的一种线圈模型的示意图;
图5为本申请实施例提供的一种生成线圈模型的装置示意图。
具体实施方式
为了帮助更好地理解本申请实施例提供的方案,在介绍本申请实施例提供的方法之前,先介绍本申请实施例方案的应用的场景。
磁悬浮系统中利用车载线圈与磁悬浮轨道线圈之间相对运动产生感应磁场,磁极之间同性相斥、异性相吸形成悬浮力,使得磁悬浮列车悬浮。具体地,磁悬浮列车中的车载超导磁体承受安装在磁悬浮轨道8字线圈相互作用力,其包含8字线圈上部发出的吸引力和 下部发出的排斥力。其中电磁力在垂直方向的分力使车辆悬浮,在横向方向的分力使车辆导向,运动方向的分力提供磁阻。
目前,磁悬浮系统中电磁力计算通常基于电路悬浮数值计算方法,计算精度较低,计算速度较慢。因此,本领域急需一种可以更为精确且更为简便地推理磁悬浮系统中的电磁力的线圈模型。
本申请实施例提供了一种生成线圈模型的方法,包括:构建第二线圈和第三线圈;沿垂直于电流方向切割所述第二线圈,得到所述第二线圈的第三断面和第四断面;沿垂直于电流方向切割所述第三线圈,得到所述第三线圈的第五断面和第六断面;将所述第三断面和所述第五断面设置为连接;将所述第四断面和所述第六断面设置为连接,得到线圈模型;所述线圈模型用于推理磁悬浮系统的电磁力。
由此可知,本申请实施例提供的生成线圈模型的方法,通过第二线圈和第三线圈模拟磁悬浮系统中的“8”字线圈。第二线圈和第三线圈在结构较为简单的前提下,对于磁悬浮系统中的“8”字线圈的仿真精度较好。因此利用本申请实施例提供的线圈模型推理磁悬浮系统的电磁力的计算过程较为简单,计算速度较快,且推理得到的电磁力的精度较好。
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请实施例作进一步详细的说明。
参见图1,该图为本申请实施例提供的一种生成线圈模型的方法流程图。
如图1所示,本申请实施例提供的生成线圈模型的方法,包括:
S101:构建第二线圈和第三线圈。
S102:沿垂直于电流方向切割第二线圈,得到第二线圈的第三断面和第四断面;沿垂直于电流方向切割第三线圈,得到第三线圈的第五断面和第六断面。
S103:将第三断面和第五断面设置为连接;将第四断面和第六断面设置为连接,得到线圈模型;线圈模型用于推理磁悬浮系统的电磁力。
需要说明的是,本申请实施例中将第三断面和第五断面设置为连接;将第四断面和第六断面设置为连接,包括:将第三断面和第五断面在电路设置中设置为相连;将第四断面和第六断面在电路设置中设置为相连。在生成线圈模型的过程中,可以利用仿真软件,例如COMSOL对线圈中的断面进行电路设置,从而使得闭环线圈可以模拟“8”字形线圈所产生的电磁力。作为一种可能的实施方式,本申请实施例提供的方法还包括:将第二线圈和第三线圈的电阻设置为磁悬浮轨道线圈中“8”字线圈的实际电阻。需要说明的是,本申请实施例并不限定第二线圈和第三线圈的具体形状,第二线圈和第三线圈的具体形状可以根据其模拟的“8”字线圈进行设置。
本申请实施例提供的生成线圈模型的方法,通过分别将第二线圈的断面和第三线圈的断面连接,从而使得两个线圈产生的电磁力类似于磁悬浮系统中的“8”字线圈。一方面本申请实施例通过线圈的电路设置模拟实际磁悬浮系统中结构复杂的“8”字线圈,使得通过该模型计算得到的电磁力精度较好。另一方面两个基本的线圈的结构较为简单,利用该模型推理得到电磁力的计算过程较为简单,计算速度较快。因此本申请实施例提供的线圈模型推理得到的磁悬浮系统的电磁力的精度较好,且计算过程较为简单,计算速度较快。
为了更好地理解本申请实施例提供的生成线圈模型的方法,下面将结合线圈的示意图来进行介绍。
参见图2,该图为本申请实施例提供的一种“8”字线圈模型示意图。
如图2所示,本申请实施例提供的线圈模型包括第二线圈100和第三线圈200。第二线圈被切割出第三断面A和第四断面B,第三线圈被切割出第五断面A’和第六断面B’。其中,第三断面A和第五断面A’连接;第四断面B和第六断面B’连接。
作为一种可能的实施方式,第三断面和第四断面之间的距离为线圈模型的最小网格尺 寸的两倍;第五断面和第六断面之间的距离为线圈模型的最小网格尺寸的两倍。需要说明的是,在第三断面(第五断面)和第四断面(第六断面)之间的距离为线圈模型的最小网格尺寸的两倍时,该线圈模型模拟“8”字线圈的模拟程度高,且计算过程较为简单。如果第三断面(第五断面)和第四断面(第六断面)之间的距离过大,则该线圈模型不能够很好地模拟磁悬浮系统中的“8”字线圈。而如果第三断面(第五断面)和第四断面(第六断面)之间的距离小于线圈模型的最小网格尺寸的两倍时,则会增加线圈模型中的网格,使得计算的过程中将出现计算发散的问题,从而使得计算电磁力的速度变慢。
需要说明的是,磁悬浮系统中的“8”字线圈通常铺设在磁悬浮轨道上,而在磁悬浮列车的两侧,还设置有超导线圈。超导线圈和“8”字线圈之间的作用力使得磁悬浮列车脱离地面悬浮。为了推理磁悬浮系统中的电磁力,本申请实施例还对磁悬浮列车两侧的超导线圈进行了仿真建模。
本申请实施例提供的生成线圈模型的方法还包括:构建第一线圈;沿垂直于电流方向切割第一线圈,得到第一线圈的第一断面和第二断面;将第一断面和第二断面设置为与电源连接。
参见图3,该图为本申请实施例提供的一种超导线圈模型示意图。
如图3所示,本申请实施例提供的超导线圈模型,包括第一线圈300。第一线圈300被切割出第一断面C和第二断面D。第一断面C和第二断面D分别在电路设置中设置为与电源连接。需要说明的是,本申请实施例并不限定第一线圈300的具体形状,第一线圈的具体形状可以根据其模拟的超导线圈进行设置。
为了使得超导线圈模型的模拟程度高,且根据超导线圈模型计算电磁力的过程较为简单,第一线圈中的第一断面和第二断面之间的距离也可以为线圈模型最小网格尺寸的两倍。需要特别说明的是,本申请实施例中第一线圈的电阻R可以设置为一个巨大的电阻,该电阻R可以远大于线路中串联的其他阻抗,但小于空气阻抗,例如500Ω以上。在实际的应用中,第一线圈的电阻R可以与模型中的线圈匝数Nc相关,具体地第一线圈的电阻可以与线圈匝数的平方Nc 2成比例。
应该理解,在实际的磁悬浮系统中,第一线圈为一个电阻很低的超导线圈。但如果将本申请实施例提供的第一线圈的电子设置为一个很低的电阻,由于低电阻造成了对计算误差的敏感,模型中的小误差电压会在第一线圈上体现为很大的电流波动。因此,本申请实施例在第一线圈上同时设定了高阻值和高电源电压,模拟了超导线圈中电流的同时,还稳定了第一线圈中的电流。
相应地,第一线圈所连接的电源的电压可以为V=R*MMF/N c,MMF为第一线圈的磁动势。如此,可以保证模型线圈的电流和匝数的乘积N cV/R=MMF。在实际中第一线圈为一个无电阻的超导线圈,线圈内的电流为一个恒定的值。为了模拟超导线圈,本申请实施例中的第一线圈上的很大的电阻,和一个很大的电流,这样即使电路有其他电阻,其他电阻起的分流作用很小,可以忽略不计,如此模拟了超导线圈中的恒流电流。
作为一种可能的实施方式,还可以在第一线圈上设置金属壳体层,并对该金属壳体层根据实际的情况设置厚度和电导率,从而模拟在磁悬浮系统中超导线圈上的金属壳体层。通过第一线圈附近的壳体层可以计算得到磁悬浮系统中金属壳体层的电流,和超导磁体所受的电磁力等。
参见图4,该图为本申请实施例提供的一种线圈模型的示意图。
如图4所示,本申请实施例提供的线圈模型包括由第二线圈100和第三线圈200组成的“8”字线圈层,和由第一线圈300组成的超导线圈层。
具体地,本申请实施例中的线圈模型包括多个第二线圈100和多个第三线圈200,其中第二线圈100通过断面分别与其对应的第三线圈200连接组成“8”字线圈。多个“8” 字线圈排列模拟了磁悬浮系统中的安装在磁悬浮轨道上的8字线圈。该线圈模型还包括多个第一线圈300,多个第一线圈在“8”字线圈上排列模拟了磁悬浮系统中的磁悬浮列车的超导线圈。
综上所述,本申请实施例提供的生成线圈模型的方法,一方面通过分别将第二线圈的断面和第三线圈的断面连接,从而使得两个线圈产生的电磁力类似于磁悬浮系统中的“8”字线圈,如此本申请实施例提供的第二线圈和第三线圈在模拟“8”字线圈的基础上,结构也较为简单。另一方面,通过将第一线圈的电阻和电压都设置为较大的值,从而使得第一线圈中保存稳定的电流,从而模拟磁悬浮系统中的超导线圈。由此可知,本申请实施例提供的线圈模型推理得到的磁悬浮系统的电磁力的精度较好,且计算过程较为简单,计算速度较快。
根据上述实施例提供的生成线圈模型的方法,本申请实施例还提供了一种生成线圈模型的装置。
参见图5,该图为本申请实施例提供的一种生成线圈模型的装置示意图。
如图5所示,本申请实施例提供的生成线圈模型的装置包括:
构建模块501,用于构建第二线圈和第三线圈;
切割模块502,用于沿垂直于电流方向切割第二线圈,得到第二线圈的第三断面和第四断面;沿垂直于电流方向切割第三线圈,得到第三线圈的第五断面和第六断面;
设置模块503,用于将第三断面和第五断面设置为连接;将第四断面和第六断面设置为连接,得到线圈模型;线圈模型用于推理磁悬浮系统的电磁力。
由此可知,本申请实施例提供的生成线圈模型的装置通过分别将第二线圈的断面和第三线圈的断面连接,从而使得两个线圈产生的电磁力类似于磁悬浮系统中的“8”字线圈。如此,本申请实施例可以通过两个基本的圆形线圈,模拟实际磁悬浮系统中结构复杂的“8”字线圈。因此本申请实施例提供的线圈模型推理得到的磁悬浮系统的电磁力的精度较好,且计算过程较为简单,计算速度较快。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到上述实施例方法中的全部或部分步骤可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者诸如媒体网关等网络通信设备,等等)执行本申请各个实施例或者实施例的某些部分所述的方法。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法而言,由于其与实施例公开的系统相对应,所以描述的比较简单,相关之处参见系统部分说明即可。
还需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种生成线圈模型的方法,其特征在于,包括:
    构建第一线圈;
    沿垂直于电流方向切割所述第一线圈,得到所述第一线圈的第一断面和第二断面;
    将所述第一断面和所述第二断面设置为与电源连接,得到线圈模型;所述线圈模型用于推理磁悬浮系统的电磁力。
  2. 根据权利要求1所述的方法,其特征在于,所述第一断面和所述第二断面之间的距离为所述线圈模型的最小网格尺寸的两倍。
  3. 根据权利要求1所述的方法,其特征在于,还包括:
    将所述第一线圈的电阻设置为大于500Ω的电阻。
  4. 根据权利要求1所述的方法,其特征在于,所述将所述第一断面和所述第二断面设置为与电源连接,包括:
    将所述第一断面和所述第二断面在电路设置中设置为与电源连接。
  5. 根据权利要求1所述的方法,其特征在于,还包括:
    构建第二线圈和第三线圈;
    沿垂直于电流方向切割所述第二线圈,得到所述第二线圈的第三断面和第四断面;沿垂直于电流方向切割所述第三线圈,得到所述第三线圈的第五断面和第六断面;
    将所述第三断面和所述第五断面设置为连接;将所述第四断面和所述第六断面设置为连接;
    将所述第二线圈和所述第三线圈的电阻设置为磁悬浮轨道线圈的实际电阻。
  6. 根据权利要求5所述的方法,其特征在于,所述第三断面和所述第四断面之间的距离为所述线圈模型的最小网格尺寸的两倍;所述第五断面和所述第六断面之间的距离为所述线圈模型的最小网格尺寸的两倍。
  7. 根据权利要求5所述的方法,其特征在于,所述将所述第三断面和所述第五断面设置为连接;将所述第四断面和所述第六断面设置为连接,包括:
    将所述第三断面和所述第五断面在电路设置中设置为相连;将所述第四断面和所述第六断面在电路设置中设置为相连。
  8. 根据权利要求5所述的方法,其特征在于,所述磁悬浮系统中的磁悬浮轨道包含多个所述第二线圈和多个所述第三线圈,所述磁悬浮系统中的磁悬浮列车包含多个所述第一线圈。
  9. 一种生成线圈模型的装置,其特征在于,包括:
    第一构建模块,构建第一线圈;
    第一切割模块,沿垂直于电流方向切割所述第一线圈,得到所述第一线圈的第一断面和第二断面;
    第一设置模块,将所述第一断面和所述第二断面设置为与电源连接,得到线圈模型;所述线圈模型用于推理磁悬浮系统的电磁力。
  10. 根据权利要求9所述的装置,其特征在于,还包括:
    第二构建模块,用于构建第二线圈和第三线圈;
    第二切割模块,用于沿垂直于电流方向切割所述第二线圈,得到所述第二线圈的第三断面和第四断面;沿垂直于电流方向切割所述第三线圈,得到所述第三线圈的第五断面和第六断面;
    第二设置模块,用于将所述第三断面和所述第五断面设置为连接;将所述第四断面和所述第六断面设置为连接,得到线圈模型;所述线圈模型用于推理磁悬浮系统的电磁力。
PCT/CN2022/134636 2022-03-11 2022-11-28 一种生成线圈模型的方法及装置 WO2023168994A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210252653.3A CN114528611A (zh) 2022-03-11 2022-03-11 一种生成线圈模型的方法及装置
CN202210252653.3 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023168994A1 true WO2023168994A1 (zh) 2023-09-14

Family

ID=81626498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134636 WO2023168994A1 (zh) 2022-03-11 2022-11-28 一种生成线圈模型的方法及装置

Country Status (2)

Country Link
CN (1) CN114528611A (zh)
WO (1) WO2023168994A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114510843A (zh) * 2022-03-11 2022-05-17 中车长春轨道客车股份有限公司 一种生成线圈模型的方法及装置
CN114528611A (zh) * 2022-03-11 2022-05-24 中车长春轨道客车股份有限公司 一种生成线圈模型的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343940A (ja) * 2003-05-19 2004-12-02 Mitsubishi Electric Corp 磁気浮上式鉄道用地上コイル装置
JP2010125974A (ja) * 2008-11-27 2010-06-10 Railway Technical Res Inst 鉄道車両用非接触給電システム
CN109992891A (zh) * 2019-04-02 2019-07-09 武汉大学 一种磁悬浮运动执行器磁力模型构建方法
CN110069865A (zh) * 2019-04-25 2019-07-30 江苏利得尔电机有限公司 一种计算8字线圈悬浮系统电磁力的数值方法
CN114528611A (zh) * 2022-03-11 2022-05-24 中车长春轨道客车股份有限公司 一种生成线圈模型的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343940A (ja) * 2003-05-19 2004-12-02 Mitsubishi Electric Corp 磁気浮上式鉄道用地上コイル装置
JP2010125974A (ja) * 2008-11-27 2010-06-10 Railway Technical Res Inst 鉄道車両用非接触給電システム
CN109992891A (zh) * 2019-04-02 2019-07-09 武汉大学 一种磁悬浮运动执行器磁力模型构建方法
CN110069865A (zh) * 2019-04-25 2019-07-30 江苏利得尔电机有限公司 一种计算8字线圈悬浮系统电磁力的数值方法
CN114528611A (zh) * 2022-03-11 2022-05-24 中车长春轨道客车股份有限公司 一种生成线圈模型的方法及装置

Also Published As

Publication number Publication date
CN114528611A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2023168994A1 (zh) 一种生成线圈模型的方法及装置
WO2023168995A1 (zh) 一种生成线圈模型的方法及装置
Guo et al. Graph theory based topology design and energy routing control of the energy internet
CN106777827A (zh) 一种机电‑电磁混合仿真方法及系统
CN109145362A (zh) 一种电网建模方法及系统
Cao et al. Real‐time cyber− physical system co‐simulation testbed for microgrids control
Liu et al. Design of LCC HVDC wide‐area emergency power support control based on adaptive dynamic surface control
Siddikov et al. Modelling of transducers of nonsymmetrical signals of electrical nets
Zhang et al. Intelligent frequency control strategy based on reinforcement learning of multi-objective collaborative reward function
Ramadan et al. Optimal gain scheduling of VSC‐HVDC system sliding mode control via artificial bee colony and mine blast algorithms
Li et al. Design principle of a 16‐pole 18‐slot two‐sectional modular permanent magnet linear synchronous motor with optimisation of its end tooth
WO2023103248A1 (zh) 一种设备自动调试的方法、装置、设备、系统及存储介质
Wang et al. New optimization design method for a double secondary linear motor based on R-DNN modeling method and MCS optimization algorithm
Chen et al. Multi‐conductor model for AC railway train simulation
Tao et al. Pole‐to‐ground fault current estimation in symmetrical monopole high‐voltage direct current grid considering modular multilevel converter control
CN104217252A (zh) 基于遗传算法的输电网潮流图自动布局优化算法及系统
CN109888817A (zh) 对光伏电站和数据中心进行位置部署和容量规划方法
Yassami et al. Model predictive control scheme for coordinated voltage control of power systems at the presence of volatile wind power generation
Ma et al. Power system energy stability region based on dynamic damping theory
CN109783855A (zh) 一种基于上流无网格方法的换流变空间电荷的计算方法
CN104268795B (zh) 一种配电网存量图模数据交互优化方法
Shahbazi Ayat et al. 3D computation of no‐load magnetic flux density in slotless axial‐flux permanent‐magnet synchronous machines using conformal mapping
Liu et al. Exploring innovative development strategies for safety education in the context of big data and the Internet of things
Du et al. Multi‐state unified calculation model of rail potential and stray current in DC railway systems
Liu et al. Analysis of HDT control systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930617

Country of ref document: EP

Kind code of ref document: A1