WO2023168744A1 - 一种热水器及控制方法 - Google Patents

一种热水器及控制方法 Download PDF

Info

Publication number
WO2023168744A1
WO2023168744A1 PCT/CN2022/081607 CN2022081607W WO2023168744A1 WO 2023168744 A1 WO2023168744 A1 WO 2023168744A1 CN 2022081607 W CN2022081607 W CN 2022081607W WO 2023168744 A1 WO2023168744 A1 WO 2023168744A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
temperature
heating
pump
heat
Prior art date
Application number
PCT/CN2022/081607
Other languages
English (en)
French (fr)
Inventor
伍柏峰
Original Assignee
伍柏峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伍柏峰 filed Critical 伍柏峰
Publication of WO2023168744A1 publication Critical patent/WO2023168744A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters

Definitions

  • the invention belongs to the field of water heaters, particularly a water heater and a control method.
  • the present invention proposes a new solution.
  • a heating device By designing a heating device, it can be used alone as an instant water heater, and can also be combined with various heat storage devices to achieve no scale accumulation, 100% hot water output rate, pressureless inner tank, dual-mode instant heating speed, constant temperature water outlet, automatic cleaning, modularization and other goals, comprehensively solve almost all problems of electric water heaters; it can also be combined with a heat pump to realize the installation position Unrestricted, miniaturized, not restricted in any cold area, pressure-free liner, no scale accumulation, automatic cleaning, cost reduction and other goals, while inheriting all the advantages of heat pump water heaters, it comprehensively makes up for its shortcomings.
  • the present invention provides a new technical solution.
  • a water heater includes a control unit, a heating unit, a water flow detection unit, and a temperature sensor. It also includes a pump, a water flow adjustment switching device, a hot channel, a water suction channel, and a non-return device.
  • the non-return device is installed on the water suction channel.
  • the water flow adjustment switching device is used to adjust the size of the water flow and switch the water flow path.
  • the pump is installed on the hot channel or the water suction channel and is used to pump hot water, water outlet pressurization, and zero cold water circulation. or multiple items.
  • a circulation channel is also included.
  • the circulation channel shares the branch of a pump with the instantaneous heat channel or the water suction channel.
  • the pump is used to drive the water flow in the circulation channel.
  • the water flow adjustment switching device switches the circulation path to make all
  • the heating units are respectively connected with instant heating channels or circulation channels, and the circulation channels are used for at least one of circulating heating and automatic cleaning.
  • a heat storage device is also included.
  • the heat storage device includes an inner tank and an insulation layer.
  • the inner tank includes a water outlet of the inner tank and a circulation port of the inner tank.
  • the water inlet end of the water outlet of the inner tank is located inside.
  • the inner bladder further includes an exhaust port, through which the inner bladder is connected to the atmosphere.
  • the jet device also includes a jet device and a bypass channel.
  • the jet device includes a water inlet end, a water outlet end, and a suction end.
  • the jet device can be an independent component or can be integrated on other components.
  • the jet device is used To pump hot water in the heat storage device, one or more of the jet devices are connected in parallel, the bypass channel is connected in parallel with the jet channel of the jet device, and the pump is installed at the water outlet or suction end of the jet device. on the water channel.
  • a water level control unit is also included.
  • the water level control unit is composed of a water level sensing unit and a water filling mechanism.
  • the water level sensing unit detects the water level position.
  • the water filling mechanism is integrated on the water flow adjustment switching device or is a water filling mechanism. Individual solenoid or motor controlled valves.
  • the water level sensing unit includes a single-point water level sensing unit and a continuous water level sensing unit.
  • the single-point water level sensing unit uses electromagnetic, resistance, capacitance, mechanical waves, and electromagnetic wave related sensing elements to calibrate and double the continuous water level sensing unit.
  • the continuous water level sensing unit is composed of an eardrum device and a pressure sensor. The eardrum device converts the water level into pressure, and the pressure sensor converts the pressure into an electrical signal to calculate the water level.
  • the water flow adjustment switching device includes a stepper motor, a valve seat, a moving valve plate, and a fixed valve plate.
  • the valve seat, the fixed valve plate, and the moving valve are provided with corresponding holes, and the moving valve plate is rotated by the stepper motor.
  • the holes on the two valve plates are connected in different ways, so that each interface is connected, closed, and the opening size is adjusted according to the current working conditions, so as to realize instant heating, circulating heating, water filling or water filling heating, and temperature regulation of the outlet or filling water temperature.
  • the fixed valve piece corresponds to the corresponding hole on the valve seat one-to-one, and is connected to the corresponding pipeline of the water heater through the interface on the valve seat.
  • valve seat and the fixed valve plate include a cold water inlet, a hot water inlet, a water filling port, a jet port, and a bypass port;
  • the moving valve plate includes a cold water distribution groove, a circulation communication groove, and a water filling communication groove. It includes three working areas. Rotate the movable valve plate to connect the cold water distribution groove with the jet port and the bypass port, and the water heater is in a constant temperature water outlet state; rotate the movable valve plate to connect the circulation communication groove with the hot water inlet and water filling port of the fixed valve plate and close the cold water.
  • the water heater is in the circulating heating or automatic cleaning state, and the pump and heating unit can be started to circulate the heat storage device; rotating the movable valve plate causes the cold water communication tank to rotate at the bypass port and connects the water-filled communication tank to the hot water of the fixed valve piece.
  • the water heater is in the water filling state of the heat storage device.
  • the constant temperature can be adjusted by adjusting the water flow area of the relevant holes.
  • valve seat and the fixed valve plate include a cold water inlet, a hot water inlet, a water filling port, and a bypass port;
  • the movable valve plate includes a cold water distribution groove, a circulation communication groove, and a water filling communication groove.
  • the movable valve plate includes three In a working area, rotate the movable valve plate to connect the cold water distribution tank and the bypass port, and the water heater is in a constant temperature water outlet state; rotate the movable valve plate to connect the circulation communication tank to the hot water inlet and water filling port of the fixed valve plate and close the cold water Inlet, the water heater is in a circulating heating state, and the pump and heating unit can be started to perform cyclic heating of the heat storage device; rotating the movable valve plate causes the cold water communication groove to rotate at the bypass port and connect the water-filled communication groove to the hot water inlet of the fixed valve plate and the charging station. At the water inlet, the water heater is in the water filling state of the heat storage device. In the constant temperature water outlet and water filling state, the constant temperature can be adjusted by adjusting the water passing area of the relevant through hole.
  • an overflow protection device is also included.
  • the overflow protection device includes an expansion device, a valve, and a reset mechanism.
  • the water in the inner tank overflows, and the pressure generated by the height of the water column accumulated in the overflow water acts on the tank.
  • the eardrum device or overflowing water causes the material to absorb water and expand or chemically react with other substances to expand, pushing the valve to close, cutting off the water inlet to the water heater, and the reset mechanism is used to restore the water supply.
  • the shell, control unit, heating unit, pump, water flow adjustment switching device, water flow detection unit, and temperature sensor are assembled together to form an independent heating device, and the inner tank and insulation layer are assembled together to form an independent heat storage device.
  • the heating device includes corresponding interfaces that correspond one-to-one with the interfaces on the heat storage device.
  • the heating device and the heat storage device can be spliced together to form a whole or installed separately by pipeline connections.
  • it also includes a compressor, an evaporator, a condenser, and a throttling device.
  • the compressor, evaporator, condenser, and throttling device are combined to form a heat pump.
  • the control unit, a water flow detection unit, and a temperature sensor , water flow adjustment switching device, heating unit, and pump are combined to form an auxiliary heat device, and the heat pump and the auxiliary heat device are combined to form a new type of heat pump water heater.
  • a heat exchanger is also included, the heat exchanger is installed in the heat storage device, and the installation position of the heat exchanger is such that the tap water first passes through the heat exchanger and then flows through the heating unit.
  • a second heating unit is also included.
  • the second heating unit is installed in the inner tank and auxiliarily heats the heat storage medium in the inner tank.
  • a control method for a water heater includes the following steps: Step 1. Obtain the temperature, water volume, and water flow status information of the water heater; Step 2. Multiply the two parameters of the inner tank temperature and the inner tank water volume to obtain the product n; Step 3. Compare various temperature values, water volume and product n of the water heater with relevant preset values; Step 4. Control the working state of the actuator based on the comparison results and water flow status.
  • control methods also include:
  • Step 1 Compare the current temperature of the thermal storage device with the set temperature. If it is lower than the set temperature, the heat pump will start. Otherwise, the heat pump will stop and go to step 2.
  • Step 2. Is the outlet water flow switch started? If not, go to step 3; if yes, go to step 9; step 3. Is the water temperature t in the thermal storage device less than the minimum allowable temperature t1? If yes, perform step 4; if not, perform step 5; step 4, perform auxiliary heat cycle heating mode and return to step 1; step 5, is the product of water volume times water temperature greater than or equal to n1?
  • step 6 If not, proceed to step 6; if yes, proceed to step 7; step 6, execute auxiliary water filling heating mode, return to step 1; step 7, is the current water level less than the set water level? If yes, go to step 8. If not, go back to step 1.
  • Step 8. Go to water filling mode without auxiliary heat and go back to step 1.
  • Step 9. Is the water temperature t in the thermal storage device greater than or equal to the outlet water set temperature t2? If yes, go to step 10; if not, go to step 17; step 10. Is the product of the water volume times the water temperature in the thermal storage device greater than or equal to n2? If yes, go to step 16. If not, go to step 11. Step 11.
  • Step 13 For high-grade auxiliary heat water supply mode, go back to step 1. Step 14. For mid-range auxiliary heat water supply mode, go back to step 1. Step 15. For low-grade auxiliary heat water supply mode, go back to step 1. 1; Step 16, without auxiliary heat water supply mode, return to step 1; Step 17, whether the water temperature t in the thermal storage device is less than the outlet water set temperature t2-q1, if yes, go to step 13, if not, go to step 11.
  • a water heater and a control method developed by the present invention through the innovative design of a series of structures such as a water pump, a water flow adjustment switching device, a heating unit and a jet device, enable the heating device to be used alone as an instant water heater. It can be combined with a thermal storage device to pump and heat the water in the thermal storage device.
  • the thermal storage device can be a mobile bucket, a fixed water tank, a customized heating device, a heat pump, etc.
  • the thermal storage device can be integrated with the heating device.
  • the above thermal storage liner will no longer need to withstand tap water pressure and can be made into an open outlet type without being restricted by shape and material, and can achieve 100% Hot water output, no scale accumulation, automatic cleaning, instant hot and fast dual-mode, circulating heating or auxiliary heat, constant temperature water outlet, zero cold water circulation and many other effects, and has a simple structure and low cost, regardless of cost, performance, hygiene, It has huge advantages in terms of energy saving, convenience, and after-sales service, and is of great promotion significance.
  • Figure 1 is a schematic diagram of the appearance of the heating device.
  • Figure 2 is an exploded view of the heating device.
  • Figure 3 is an assembly diagram of the water flow adjustment and switching device.
  • Figure 4 is an exploded view of the water flow adjustment and switching device.
  • Figure 5 is a schematic diagram of the principle of the jet flow scheme.
  • Figure 6 is a schematic diagram of several jet flow schemes.
  • Figure 7 is a schematic diagram of a single-point water level sensing unit.
  • Figure 8 is a schematic diagram of the continuous water level sensing unit
  • Figure 9 is the module assembly and other schematic diagrams Figure 10 New heat pump solution one
  • Figure 15 is a schematic structural diagram of the pumping solution valve
  • Figure 16 is an exploded view of the water flow adjustment switching device of the pumping scheme.
  • Figure 17 is a schematic diagram of the second water flow adjustment switching device in the pumping scheme.
  • Figure 18 is a schematic diagram of several other structures of the pumping scheme.
  • Heating device 17a fixed valve plate 2 17b, moving valve plate 2 17c, rotating rod 17d, torsion spring 17e, rotating rod cover 17f, reset wheel 17g, lock A1, water level sensing interface one A2, water level sensing interface two A3, inner tank circulation port A4, inner tank water outlet A5, overflow protection interface A6, thermal conductive column 301, valve seat 302, fixed valve plate 303.
  • Moving valve plate 304. Stepper motor 305. Transmission parts 306.
  • Valve gland 307. Driven gear 308.
  • Driving gear 315 Suction end 316. Bypass channel 317.
  • This water heater excludes the heat storage device and heat pump, and other parts integrated in the manual are collectively referred to as the heating device; 2.
  • the inner tank is a component of the heat storage device.
  • the heat storage device includes an insulation layer, which may It also includes the outer shell, but in the instructions, both the inner tank and the thermal storage device refer to the water storage container.
  • the functions of this heating device include multiple or all of the following: 1. Instant heating, which directly heats the flowing water instantly. 2. Circulation heating, through water pump circulation, circulates and heats the water in the heat storage device. 3. Fill the thermal storage device with cold water or heated constant temperature water. 4. Automatic cleaning, cleaning the thermal storage device and heating pipes, including removing possible scale. 5.
  • Water level control the water level height in the thermal storage device can be controlled arbitrarily, including segmented water filling. 6. Constant temperature control: perform constant temperature control on the outlet water temperature and filling water temperature. 7.
  • Zero cold water circulation the cold water in the pipe can be eliminated through pipeline circulation.
  • To absorb water use a jet device or a pump to suck the water in the thermal storage device, so that the thermal storage device does not need to withstand tap water pressure, and the output rate of hot water from the bottom can reach 100% without scale accumulation.
  • the outlet water is pressurized.
  • the outlet water can be pressurized in places with low water pressure. 10. Modularization. Since the heat storage device does not require any wearing parts, the wearing parts can be integrated into a small part through modularization, making it easy to maintain.
  • This patent achieves the above effects at low cost through ingenious design, including but not limited to the above functions.
  • This heating device combined with a (water tank) heat storage device completely subverts the electric water heater; this heating device combined with a heat pump solves all the shortcomings of the heat pump and makes it applicable anywhere in the world.
  • Figures 1 to 8 are schematic diagrams of Embodiment 1. This embodiment is based on the suction effect of the jet device, and on this basis, other structures are innovatively designed.
  • FIG. 5 shows the principle of the water flow adjustment switching device in this embodiment.
  • 5-1 and 5-2 are structural schematic diagrams of the fixed valve plate and the movable valve plate.
  • the movable valve plate includes 5 ports, which are corresponding to the holes on the valve seat 301.
  • the moving valve plate includes 3 slots, which serve as connections.
  • the holes on the fixed valve plate are connected in different combinations to achieve various functions.
  • 5-3 to 5-6 are working status diagrams of the water heater in this embodiment, which are divided into three working areas: water filling area, constant temperature water outlet area, and circulating heating. As shown in 5-3, the valve plate, nozzle 308, and throat 309 are all assembled in the valve seat 301.
  • bypass channel 316 and the suction end 315 are also integrated on the valve seat to form a water flow adjustment switching device (in the actual product
  • the integration level is higher, as shown in Figure 4, including the inlet and outlet ends, the water flow switch 312 and other components are integrated on the valve seat 301).
  • the water outlet of the jet device and the bypass channel 316 is connected to the water inlet of the pump 5, and the water outlet of the pump is connected to the heating unit 4.
  • the water outlet of the heating unit is divided into two channels, one is connected to the water outlet of the water heater where the water flow switch 312 is located, and the other is through the 3d2 channel. Connect the 302c port of the fixed valve plate. According to information such as water flow, water level, temperature, working mode, etc., the moving valve plate rotates to different working areas, and the water pump 5 and the heating unit 4 work in a related manner to realize the function of the water heater.
  • the position of the moving valve in Figure 5-3 is in the water filling area of the water heater.
  • 3b1, 302a, 303a, 302e, 316, pump 5, heating unit 4, 3d2, 302c, 303c, and 302b are now connected together to form a water filling channel.
  • the amount of water is adjusted by adjusting the overlapping area of the port 303c of the moving valve plate and the port 302c of the fixed valve plate, thereby adjusting the water filling temperature.
  • 302b is connected to the inner tank through a pipe.
  • the bottom of the inner tank is generally made into a pot bottom shape or a slope, and the water flow is used to wash away the scale.
  • the water suction port of the inner tank is at the lowest position, and can be discharged in time when water is used. If the thermal storage device is not connected, when used as an instant water heater, the two ports 302c and 302b will not be connected; 5-4 and 5-5 are at the two extreme positions of the constant temperature water outlet area (in some occasions, such as winter The water temperature of the thermal storage device is low (but higher than tap water) and the water is eager to use. 5-5 is not the limit position. The cold water channel is completely closed. At this time, the water in the thermal storage device is pumped out from the suction end 315 by the pump 5.
  • 3b1, 302a, 303a, 302e or 302d, pump 5, heating unit 4, and water flow switch 312 are connected together to form an instant heating channel.
  • This channel is used when hot water is supplied to the outside.
  • the heating unit can be started to heat the flowing tap water or the mixed water between tap water and the heat storage device.
  • 5-4 is the maximum water volume position
  • 5-5 is the minimum water volume position (please note that the water passing through 302d must also pass through the nozzle 308.
  • the nozzle of the nozzle is very small (the aperture in this application generally does not exceed 2.5 mm).
  • the moving valve rotates between these two positions to adjust the flow of cold water and the amount of pumped hot water to achieve constant temperature.
  • the entrainment effect of the high-speed water flow causes it to generate negative pressure nearby, and the external atmospheric pressure presses water or air in through the suction end 315.
  • the water flow in the bypass channel 316 is large and has a certain water outlet damping
  • the outlet back pressure acts on the water outlet end of the throat 309, the suction force of the jet device is reduced or lost.
  • adjusting the flow rate of the nozzle can also adjust the ratio of hot water to cold water.
  • the cold water inlet 302a of the fixed valve plate is not connected to other holes, the water inlet to the water heater is cut off, and 302b and 302c are connected by the circulating communication groove 303b.
  • Starting the water pump and the heating unit can circulate and heat the heat storage medium in the heat storage device.
  • the pump 5 starts, and the water in the heat storage device enters from the suction end 315, is heated by the heating unit 4, enters 302c through the 3d2 branch, and flows back to the heat storage device through 302b, forming a circulating heating channel.
  • a branch 317 is added to the water outlet end of the jet device.
  • the purpose of this branch is to increase the area of the suction inlet, because the water flow from the suction end 315 has to pass through the throat 309, and the smaller diameter of the throat causes a larger Large water inlet resistance affects the amount of water, which makes the heating device have an impact in certain applications.
  • the water temperature in the heat pump liner is generally 55 degrees or below, and in order to save energy, it is generally not necessary to use the heating unit 4 for heating. , most of the water is extracted from the inner tank, and only a small amount of cold water needs to be mixed. At this time, the water inlet diameter needs to be increased to increase the water volume.
  • the water filling and circulating state may be caused by the tap water cutoff, water inlet closure, pipe blockage, motor out-of-step,
  • the water pump is damaged, etc., resulting in no water flowing through it even in this state.
  • Preventing dry burning can also be achieved by using a thermostat, but this is a passive protection. It is better to use active protection using water flow induction.
  • Figure 1 is an appearance view of this embodiment, which can be in various forms, including being integrated with a heat storage device in a shell. This appearance is only for the convenience of being combined with a heat storage device of a certain shape to form a harmonious whole.
  • Figure 2 is an exploded view of this embodiment, from which it can be seen that the actual product is composed of main components such as a water flow adjustment switching device 3, a heating unit 4, a pump 5, a continuous water level sensing unit 6, a control unit 7, and a single-point water level sensing unit 9. .
  • the structure in Figure 2 mainly considers the integral splicing with the heat storage device or the separate connection through pipelines, integrating all wearing parts together, so that there are no wearing parts in the heat storage device (generally considering the life span is less than 50 years or Everything that is prone to failure during this life period is considered vulnerable, except for the heat pump solution), so that the thermal storage device does not require maintenance throughout its life. If the thermal storage device contains a water level control device, such as a float control device. Or the heat storage device is a temporary device, such as a bucket, then the water level sensing unit in the structure of Figure 2 is not needed. In this case, a signal can be given through the water flow switch 312 in the water filling branch in Figure 5-4.
  • the heat storage device When there is a float water level control device, once the water is full, no more water can be filled in. At this time, the water flow switch senses that the water flow has stopped, and the water heater stops filling. If the heat storage device is a temporary bucket, the water heater can add water for a single time. Set the amount, the water flow switch can measure the amount of water flowing through, and stop filling when the set amount is reached.
  • FIGS 3 and 4 are assembly diagrams and exploded views of the water flow regulation and switching device.
  • the water flow regulation and switching device consists of a valve seat 301, a stepper motor 304, a driving gear 314, a driven gear 307, a fixed valve plate 302, It is composed of a moving valve plate 303, a transmission part 305, and a valve gland 306.
  • the water flow detection unit and the jet device are integrated on the valve seat 301.
  • the water flow switch 312 is installed on the water outlet end of the valve seat.
  • the nozzle 308 and the throat pipe 309 are assembled in the threaded interface on the left side of the figure.
  • the valve seat is also provided with a suction channel of the jet device.
  • the one-way valve 310 is assembled in the suction channel and is tightly sealed with the one-way valve gland 311. (All silicon sealing rings are not shown in this patent).
  • the threaded interface on the right side of the valve seat in the figure is connected to the water outlet of the heating unit.
  • the tact switch 18 is used to determine the zero point of the stepper motor. When the stepper motor rotates and the driven gear 307 presses the button of the tact switch, this is the zero point of the stepper motor.
  • FIG. 7 is the assembly and exploded view of the single-point water level sensing unit.
  • the sensing unit includes a rubber pad 901, a water level sensing bracket 902, a water level sensing bracket cover 903, a power connection screw 904, and a power connection nut 905.
  • This structure adopts the method of resistance induction. When the water in the tank submerges the two power-connecting screws 904, the circuit is turned on. When the water drops below the two screws, the circuit is disconnected, and the control unit uses this to determine the water level in the tank. specific location. Of course, you can also use reed switches or Hall switches with floating magnets, capacitors, infrared and other methods to sense single-point water levels.
  • the water level sensing unit can also be installed in the heat storage device, but if the heating device and the heat storage device are not integrated as a whole, the best solution is that the heat storage device does not contain any wearing parts.
  • the water level sensing module is vulnerable. Although being installed in a thermal storage device is within the protection scope of this patent, it is not a preferred solution (non-preferred solutions are not shown in this patent).
  • the temperature sensor 14 is used to cooperate with the thermal conductive column A6 on the thermal storage device to sense the water temperature in the thermal storage device; the light touch switch 18 is used for module sensing. When the heating device B is installed on the thermal storage device, this switch is triggered. Of course, other triggering methods can also be used, such as magnetic induction.
  • the rubber gasket 901 is used to seal and cooperate with the relevant interfaces of the thermal storage device.
  • Figure 8 is the assembly and exploded view of the continuous water level sensing unit.
  • This structure uses an eardrum device to convert the water level height into pressure.
  • the pressure is equal to the pressure times the area. The larger the area of the eardrum, the higher the sensing accuracy.
  • the pressure sensor 601 adopts the sensor in the electronic scale, which is mature, accurate and cheap, and fully meets the measurement requirements of the water level in the inner tank.
  • the eardrum device is composed of an eardrum support 602, an eardrum 604, a thimble 605, and an eardrum gland 603.
  • the bottom of the liner of the thermal storage device is connected to the hollow pillar on the eardrum support with a pipe.
  • the water pressure acts on the eardrum, and the force generated by the eardrum acts on the thimble.
  • the thimble transmits the force to the pressure sensor 601, and the pressure sensor converts the pressure signal into an electrical signal for measurement.
  • Water level height Since the deformation of the tympanic membrane will offset part of the water pressure, the ejector pin exerts a certain pre-pressure on the pressure sensor during installation, and the position of this force is changed to zero through the software. At this time, since there is no gap between the ejector pin and the pressure sensor, when the tympanic membrane When the pressure changes, the eardrum will not deform in the force-applying direction of the thimble, so that the actual pressure changes can be accurately transmitted to the pressure sensor 601.
  • This type of pressure sensor will produce zero point drift due to plastic deformation, temperature, and humidity changes, so it is necessary to frequently calibrate the zero point.
  • This continuous water level sensing can also be done in other ways, such as using pressure displacement changes, such as ultrasonic distance measurement, etc. Continuous water level sensing is also not necessary. It only needs to be able to detect the highest and lowest water levels of the thermal storage device to meet the usage requirements. However, through continuous or multi-point sensing of the water level of the thermal storage device, the water level height can be adjusted according to the needs of use. For example, the water level of the thermal storage device does not need to be filled when there are few people.
  • FIG. 6 is a schematic diagram of several principles of using a jet device to absorb water.
  • the inner tank 15 is omitted.
  • the water flow passes through 3b1, water flow adjustment switching device 3, pump 5, heating unit 4, and 3d1 in order (the water flow passes through 3e, the suction end of the jet device 315, the pump 5, the heating unit 4, and 3d1 in order).
  • It is also a heating channel, but at this time the tap water inlet is closed and the water in the inner tank 15 is directly pumped). This channel will suck the water in the inner tank 15 from the 3e channel as needed; the water flow passes through 3b1 and the water flow adjustment switching device in turn. 3.
  • a water flow switch 312 is added to the outlet of the water filling port of the water flow adjustment switching device 3.
  • This water flow switch is not a necessary component.
  • a temperature sensor or temperature controller can be installed on the heating unit. When the heating unit exceeds a certain setting, Stop heating when the temperature is set.
  • another branch is added to the 3e channel in Figure 6-1.
  • the branch is equipped with a one-way valve 310. Its purpose is to increase the flow rate as mentioned above.
  • 6-2 also adds a water overflow protection device 17 to prevent the valve from being fixed in this position and filled with water due to a power outage when the machine is in a water-filling state, causing water overflow, or the inner tank being filled with water due to other reasons.
  • the principle of the overflow protection device is to use overflow water to close the water inlet valve.
  • the valve can add a trigger device.
  • the eardrum only needs to trigger the tab, and the valve is closed under the force of the spring, using small force to control large force.
  • the reset mechanism can be a pull rope or other methods, as long as the valve can be reopened, these The structure is quite simple and no introduction is needed.
  • the water flow adjustment switching device is decomposed into three parts 3a, 3b, and 3c. These three parts can use three independent components.
  • the function of 3c is only responsible for the opening and closing of waterway 3c1.
  • 3b is responsible for opening and closing the water channel 3b1, which can be two solenoid valves;
  • 3a is used to adjust the constant temperature, and
  • a thermostatic valve can be used, including a valve driven by a stepper motor or a mechanical valve driven by a thermal expansion element.
  • the water flow adjustment switching device composed of multiple components has a complex structure and many pipe joints.
  • the heating unit 4 is installed at the water inlet end of the jet device (including the tee-like components in Figure 6-3 as the jet device). This has the advantage of reducing the resistance at the water outlet end of the jet device, but it also brings The adverse effect is that when large scale scale falls off and is discharged from the heating unit, it is easy to block the valve and the nozzle of the jet device, and the structure of the valve will also be more complicated.
  • the suction end of the jet device uses a pressure control valve 26 as a check device. This valve uses the difference between the pressure at the suction end and atmospheric pressure to control the opening and closing of the valve.
  • the diaphragm When negative pressure is generated at the suction end 315, the diaphragm is at atmospheric pressure. Deformation occurs under the action of the valve, the circuit of the valve is connected, and the valve opens to pass water; if the pressure at the suction end is equal to or greater than the atmospheric pressure, and the diaphragm does not deform or deforms in the opposite direction, the pressure control valve 26 is closed, and the valve prevents the use of When the suction force generated by the jet device is not enough, tap water will flow back into the inner tank and cause overflow.
  • the valve opens under the control of the control unit and actively adds water; when the circulation is heated, the pump starts to generate negative pressure at the suction end, and the valve also opens to allow the water in the inner tank to flow out from here. .
  • the pressure control valve actually uses a differential pressure diaphragm structure to trigger an ordinary solenoid valve, which is quite simple.
  • this check device uses a one-way valve 310.
  • the one-way valve has a simple structure and low cost. Its only disadvantage is that it is not as good as the pressure control valve 26 in that it cannot fill the inner tank with water through the channel where the valve is located. .
  • the control idea of this heating device is based on the principle of water priority and comfort priority, and uses intelligent control as a means.
  • the water flow switch at the water outlet end of the water heater is activated, it proves that someone is using water.
  • the water heater is in the state of water filling, circulation, and cleaning, it must immediately return to the working state of constant temperature water outlet; when water is outlet at constant temperature to the outside, due to the heat generated by the water heater
  • the device can achieve temperature regulation by adjusting three parameters: power, tap water volume, and hot and cold water ratio (the tap water volume and hot and cold water ratio are designed through the valve so that they can be regarded as a variable).
  • More than one variable is not conducive to the Constant temperature control, so a variable can be fixed first through a special program.
  • the following method can be used: each time the machine is turned on to use hot water, first let the water flow adjustment switching device maximize the flow of tap water, set the power of heating unit 4 to the maximum, wait for N seconds, if If the actual outlet water temperature is lower than the set outlet water temperature, it is determined that the maximum power operation is required (in this way, the power parameter is fixed), and then the constant temperature water outlet is realized by adjusting the water volume and the ratio of hot and cold water; if the actual outlet water temperature in the previous step is greater than the set temperature, then reduce the power and wait N seconds until the actual outlet water temperature is equal to or less than the set outlet temperature.
  • the above method is actually to do a test by turning the water volume to the maximum position (since the water pressure, inlet water temperature, and outlet water temperature of each user are uncertain, so a test is done based on the real-time situation), and the water used for this time is tested. How much power does it work? Fix the power, and then you only need to adjust the water volume or the ratio of hot and cold water to one variable, making constant temperature control simple.
  • the above method of first testing and fixing a parameter for constant temperature control also has certain disadvantages. The test will take up a certain amount of time, making the constant temperature control time slow and affecting the experience.
  • the following method can be added to the above basis: power off and restart When using hot water for the first time after electricity, first use the above power test method to fix the maximum power. Then adjust the water volume and ratio to achieve constant temperature, and record the two parameters of power and stepper motor position (the stepper motor position, in addition to It can record the position value after the constant temperature has stabilized, or it can be simpler, record the position after N minutes of continuous water use). As long as the machine is not powered on, these two values will be used directly next time the water is used. If the constant temperature cannot be achieved, adjust it again. This method eliminates the need to go through the procedures of testing the power and adjusting the constant temperature every time water is used. Instead, it directly uses the previous experience.
  • the program makes the water heater give priority to ensuring that the water volume is as large as possible while ensuring the temperature, and then consider reducing the power later. For example, when the outlet water temperature exceeds the set temperature, the temperature may be reduced by reducing the power and increasing the water volume. At this time, Give priority to increasing the water volume, and only adjust the low power when the maximum temperature of the water volume is still high.
  • the pump 5 when the water outlet boosting function is not activated, pump 5 is only activated in circulating heating, automatic cleaning, and quick heating modes.
  • the so-called rapid heating mode is the mode when hot water in the thermal storage device needs to be used.
  • the purpose of starting the pump in this mode is to reduce the outlet resistance of the jet device and increase the water absorption effect, or when the tap water inlet is directly closed, the storage water is directly pumped. Hot water usage in thermal installations.
  • the pump 5 In the instant heating mode, when there is no water in the thermal storage device, the pump 5 will not start to prevent water mixed with a large amount of air from causing damage to the water pump, such as cavitation. only via the bypass channel), the pump does not start either.
  • the water level in the thermal storage device is lower than a certain value, even if the water temperature is lower than the set value, the circulating heating will not be started. This is also to prevent the pump from sucking in air.
  • This machine can also use intelligent mode to automatically set various parameters according to the inlet water temperature.
  • the inlet water temperature When the inlet water temperature is high, it will automatically set to the instant heating mode. In the instant heating mode, water will not be filled into the heat storage device, and the outlet water pressurization will not be started.
  • the pump does not start during function; when the inlet water temperature is low, it is automatically set to the quick heating mode, and the water temperature and water level in the heat storage device are automatically set.
  • the inlet water temperature sensor may be affected by factors such as indoor heating, the temperature in the water heater, or sunlight that causes the water temperature in a certain section to be high, resulting in misjudgment.
  • the indoor temperature is 30 degrees and the outdoor temperature is minus 20 degrees.
  • the machine determines that the inlet water temperature is 30 degrees.
  • Set to mid-range power in instant heat mode so that the water in the thermal storage unit is not heated, resulting in not enough hot water available when taking a shower. So, there must be a logic to avoid such situations.
  • the following methods can be used to achieve accurate inlet water temperature judgment: 1. Add a memory function to record the lowest inlet water temperature value or parameter used last time; 2. When starting the water flow, compare the current inlet water temperature with the recorded inlet water temperature value.
  • the parameter setting shall be based on the lower temperature value; 3. When the water flow is turned on, it will be compared every N seconds thereafter, and the parameters shall be set based on the lower temperature; 4. When the water flow switch is turned on continuously for N minutes, such as 3 minutes , reset the parameters with the current temperature value, and take the current temperature value to overwrite the previous recorded value; 5. After step 4, compare the current inlet water temperature and the recorded value once in N seconds, and the parameter setting shall be based on the lower temperature value. , and record the lower temperature value each time and overwrite the last recorded value.
  • the above method can accurately capture the actual value of the current water temperature, without being interfered by indoor temperature and other factors, and fully guarantee the hot water supply.
  • FIG. 9 is a schematic diagram of the second embodiment of this patent.
  • This embodiment adds a heat storage device A on the basis of the first embodiment.
  • the heating device B and the heat storage device A described in the first embodiment are combined into a dual-mode module. water heater.
  • 9-1 is a separation diagram of the two modules
  • 9-2 is an exploded diagram of thermal storage device A
  • 9-3 is a detailed diagram of the thermal storage device interface.
  • the two modules can be easily disassembled and assembled. Align the heating device B with the dovetail introduction groove of the thermal storage device A and press it directly.
  • the two modules are firmly buckled together under the action of the buckle 22 and the movable tab 11. As long as the ejection button is pressed, the heating device B will eject under the action of the ejection device 23 .
  • the inner tank 15 of the thermal storage device does not need to bear pressure. It can be made of any hot water-resistant sealing material such as PP blow molding, ceramics, and glass. In principle, the lifespan should be as long as possible, and Environmental protection and health.
  • the water connection holes between the thermal storage device and the heating device include water level sensing interface A1, water level sensing interface A2, inner tank circulation port A3, inner tank water outlet A4, and overflow protection interface A5. In fact, only one water level sensing interface is enough, but one interface may cause trapped air and cannot effectively sense water level changes. Of course, if the diameter of this interface is made larger or the two electrodes of the resistance sensing are extended closer to the inner tank, You can also have only one.
  • the water level sensing interface is not only used for single-point water level sensing, continuous water level sensing can also be connected to the inner tank pressure through this interface.
  • the water level sensing interface can be directly connected to the circulation path of the inner tank water outlet A4, but there are several disadvantages in connecting to this port: 1.
  • the position of this port is too low.
  • the ideal structure is to have its connection position in the inner tank. On the drain pipe, add a filter at the suction inlet, so that when there is a large volume of scale, it will be filled directly into the drain pipe without blocking the one-way valve, the impeller of the pump, and clogging the shower head. Such a low position is not suitable for minimum water levels and may cause the pump to suck in air. 2.
  • Thermal conductive column A5 should be made of materials with good thermal conductivity. It can transmit the temperature changes of the inner tank to the end in real time and perform certain insulation to prevent temperature loss along the way. The sensor in the heating device can measure the temperature in the inner tank through this thermal conductive column. Variety.
  • the heating device must extend beyond the temperature sensor. This extension may cause damage to the sensor during transportation and is not aesthetically pleasing. If a temperature sensor is installed on the thermal storage device and the two modules are connected with wires or contacts, although it is also a feasible method, this part may become a wearing part and cause the thermal storage device to require maintenance.
  • the buckle 22 is a conventional structure and needs no introduction.
  • the ejection device 23 uses spring force to push the heating device out of the buckle engagement range to facilitate the disassembly of the module.
  • the function of the heating device in this embodiment is the same as that in Embodiment 1, except that a heat storage device is added, and the interface and connection method of the two modules are shown, which will not be described again.
  • FIGs 10 to 14 are schematic diagrams of the structure and control method of the third embodiment.
  • This embodiment is a new type of heat pump water heater that combines the patented heating device with a heat pump. Since the current heat pump can only heat the water in the tank to 55 degrees, any higher temperature will cause the heat pump steam pressure to be too high. Therefore, the heat pump water heater can only make up for the insufficient hot water volume problem caused by insufficient temperature by increasing the volume. .
  • Such a large water tank affects its installation, making it difficult to install heat pumps in cities with small residential areas. At the same time, even rural users with large enough areas can only install them on balconies or rooftops, resulting in water heaters that are too far away from water points and require Zero cold water circulation, pipe heat loss wastes energy and provides a poor experience.
  • the heat pump heat exchanger will be frosted, resulting in low efficiency or even unusability.
  • electric heating may only be used.
  • winter is when the water heater consumes the most energy, resulting in a greater energy-saving effect of the heat pump.
  • heat pumps are actually almost unused in the north.
  • the surface temperature of the heat pump heat exchanger is enough to cause scale formation, as well as the deposition of impurities such as sediment, bleaching powder, algae, etc., causing a large amount of sludge to accumulate at the bottom of the heat pump water tank.
  • bacteria multiply in large quantities.
  • the only way is through silver ions to eliminate bacteria.
  • a condenser 25, an evaporator 27, a compressor 28, and a throttling device 29 are added to form the main components of the heat pump.
  • the exhaust device is not shown in the figure.
  • the air device is used to increase the air flow of the evaporator 27.
  • heat pump there are many other components, such as liquid storage device, gas-liquid separation device, etc.
  • heat pumps are all well-known technologies and there is no need to list them one by one. This patent only lists the most important representatives. sexual parts.
  • This patent uses the water flow adjustment switching device 3, the pump 5, and the heating unit 4 to form a heating device that can perform instant heating, circulating heating, and pumping hot water on the inner tank 15, so that the heat pump can use a micro-compressor, such as a compressor of about 150W.
  • the heating capacity of a compressor (can even be smaller) is about 550W.
  • a 150W compressor can raise 80 liters of water by 50 degrees after working for more than 9 hours. It operates 24 hours a day. Considering the heat dissipation of the inner tank, it can probably raise 180 liters of water by 50 degrees.
  • the heating device of the present invention is not added, such a heat pump can be used The experience will be very poor, and there will be no water available in many cases.
  • this solution is equivalent to a heat pump-assisted electric water heater.
  • electric heating is used. Tube heating or heat pump heating? If only a heat pump is used, how can such a slow heating speed guarantee water for the next person? Therefore, most of the time, electric heating pipes have to be used for heating, and they must be heated directly to 50 degrees, leaving no room for heating by the heat pump and failing to achieve a good energy-saving effect. Simply adding an electric heating tube to the inner tank will cause the same problems as the ordinary water storage type.
  • the water temperature of 25 degrees in the inner tank (this value is determined according to the power of the heating unit) flows through the heating unit 4 for secondary heating and can be used. It can accurately measure the current water volume and solve the problem of water storage. other problems that exist.
  • This embodiment actually integrates the heating device of Embodiment 1 and the subsequent Embodiment 4 into a heat pump water heater.
  • the basic idea of the control method is: experience first, energy saving first.
  • a control method is provided based on this embodiment. First, set a target: at any time, the water heater is guaranteed to be continuously used for 15 to 20 minutes at a flow rate of 4 liters and a temperature of 45 degrees (of course, this target can also be other values).
  • FIG 14 is a flow chart and logic diagram of the water heater control method in this embodiment.
  • Figure 14-1 is a flow chart, which gives the overall direction of the water heater control method.
  • FIG. 14-2 is a logic diagram of this embodiment. This logic diagram provides a set of specific control methods under the overall scheme of the flow chart. Here, each step in the logic diagram is introduced in detail:
  • t in S201 represents the current water temperature of the liner
  • t0 represents the set temperature of the liner
  • determine the condition t ⁇ t0 if yes, execute S202, and the heat pump starts heating; if no, execute S203.
  • the value of t0 will be set in a range, such as how many degrees below this value it will restart.
  • S204 is executed, which is water flow judgment to determine whether the user is using hot water. If so, S211 is executed; if not, S205 is executed. S205 determines whether the water temperature in the inner tank is less than t1.
  • t1 is actually the lowest temperature of the inner tank that needs to reach the appropriate outlet water temperature (for example, 45 degrees) under outlet electric auxiliary heating, such as 28 degrees.
  • n1 It is a preset or user-set value. This value represents the total amount of hot water output. If it is greater than n1 (it can also be equal to), for example, if n1 is 1680 (28 degrees * 60 degrees, electric auxiliary heating can provide 60 water at 45 degrees Celsius). When the temperature is higher, the water volume can be smaller to meet the usage requirements.
  • n1 depends on the product requirements. The lower the power of the heating unit 4, the greater the value; the higher the water requirement, the greater the value.
  • the auxiliary heat cycle heating mode is to enable the water flow adjustment switching device Adjust to the position of circulating heating, pump 5 starts, heating unit 4 works, and heats the water in the tank together with the heat pump.
  • the program After executing the above actions, the program returns to S201, and so on, and other subsequent statements return to S201, which is also a Meaning, it is executed from scratch.
  • the program not only has this function, but also has more functional modules.
  • the serial mode is used because the computing speed of the microcontroller is very fast. , it only takes more than ten milliseconds to execute all the programs, and this continuous cycle appears to humans to be happening at the same time.
  • the water flow regulating device switches to the water filling state, and controls the flow rate so that the water filling temperature is t1, (for example, 28 degrees, you can also is another value), return to execution S201.
  • S208 can also increase the water temperature, or increase the temperature and water volume at the same time, which is also within the protection scope of this patent.
  • S206 is judged to be yes, then execute S209 to see whether the actual water level of the current inner tank is lower than the set water level. If so, execute S210. If not, return to S201 (in the diagram, S220 is executed, but in fact it is equivalent to returning to S201. ).
  • S210 is in the water filling mode without auxiliary heat. At this time, the heating unit 4 does not work and the pump 5 does not start.
  • the above is a control method for the heat pump and heating device when it is determined in S204 that no one is using water.
  • S211 is executed to compare whether the current inner tank temperature t is greater than or equal to the outlet water set temperature t2. If it is determined to be no, the inner tank temperature is lower than the outlet water set temperature, and the heating unit 4 is inevitably required for auxiliary heating. If yes, whether to use auxiliary heating or not will also need to consider the amount of water in the inner tank.
  • S213 is executed. In this statement, it will be judged how much the inner tank temperature is smaller than the water outlet setting temperature, and the working mode of the actuator is determined based on the smaller degree.
  • S215 is similar to S212. It judges whether the product of water volume times water temperature is greater than n3. The value of n3 is smaller than n2. For example, it can be set to 2300 liters. When the judgment is yes, execute S217, low-grade auxiliary heat water supply mode. In this mode, the heating unit 4 When the water heater discharges water, only low-level power auxiliary heat is used. This is because the thermal energy reserve in the inner tank is almost close to the amount that does not require auxiliary heat. Only low-level auxiliary heat is needed to supply water. Return to S201.
  • S218 is executed to determine whether the product of the water volume times the water temperature is greater than n4.
  • the value of n4 is one level lower. For example, it can be set to 1900 degrees.
  • S218 is determined to be yes, S219 is executed and the mid-range auxiliary is used. In the hot water supply mode, the heating unit 4 adopts mid-range heating and returns to S201.
  • S216 is executed, the high-grade auxiliary heat water supply mode is adopted, the heating unit 4 adopts high-grade heating, and the process returns to S201. Then follow S213, which is executed when S211 is judged to be negative.
  • the inner tank water temperature is lower than the outlet water set temperature, so electric auxiliary heat must be used for heating, but we have to further determine how much lower than the outlet water set temperature. , decide how much power to use for heating.
  • the temperature change is not Smoothly, and if the water flow adjustment switching device is used to adjust the water output of the inner tank, two variables will appear. In the case of two variables, it is difficult to adjust the constant temperature, and one parameter must be fixed first.
  • the power of the heating unit is divided into high, medium and low above. This is just an example. It can be divided into more sections or not. You can also fix the parameter of water volume first, and use a thyristor to steplessly adjust the power of the heating unit 4 to achieve constant temperature. , but the method of using thyristor has disadvantages. For example, although the inner tank temperature is high, the water volume is small. When the product of water volume times water temperature is less than n4, high-end heating should be used. Of course, using high-end heating will greatly exceed the set outlet water temperature. , so you need to add more cold water at this time to extend the use time.
  • the heating unit may use very low power, or may not heat at all.
  • This embodiment only introduces one of the more preferred solutions. Based on this structure and this control method, people in the industry can easily come up with more unique control logics.
  • the above control method allows this extremely small-power heat pump water heater to quickly provide enough hot water at any time, perfectly balancing energy saving and experience, and maximizing the energy saving effect for home use.
  • the water tank is about 100 liters, the actual energy-saving effect is similar to or higher than that of a large-volume and high-power heat pump water heater.
  • a heat pump with too much power requires an outdoor unit to avoid frost. As a result, it cannot be used in winter or is completely equivalent to an electric heater.
  • traditional heat pumps are too large, they are generally installed far away from water points, resulting in a large amount of hot water being wasted in the pipelines each time they are used, and large heat dissipation losses along the way.
  • FIG 11 adds a 3d3 branch and a solenoid valve 30 on the basis of Figure 10 and the schematic diagram of the heating device in Embodiment 1.
  • This branch is used to connect the return pipe (the so-called return pipe is added in addition to cold and hot water for zero cold water circulation.
  • the third pipe outside the pipe). Since the heat storage devices of this patent are all open-type inner tanks, if there is no 3d3 branch, the hot water in the inner tank cannot be extracted during zero cold water circulation, and the water flowing through can only be heated instantly through the heating unit 4.
  • instant heating requires at least 12KW to increase a large amount of water to a suitable temperature. Obviously, such a large power cannot be widely used unless there is three-phase electricity.
  • a 3d3 zero cold water circulation pipeline is added.
  • the solenoid valve 30 is opened, the pump 5 is turned on, the hot water is extracted from the inner tank 15, and flows into the external hot water pipeline through 3d1.
  • the cold water in the pipeline passes through the return pipe, 3d3 flows back into the inner tank.
  • the water flow adjustment switching device has closed the tap water inlet, so that the tap water will not flow into the inner tank.
  • FIG. 12 has two significant differences from all the embodiments of this patent.
  • a second heating unit 31 is added to the inner tank 15.
  • the second heating unit is used to heat the water in the inner tank as an auxiliary heating device of the heat pump. Because of the heating unit 2, there is no circulating heating loop, and the water-filling branch does not need to be heated by the heating unit 4. It can be filled with cold water directly through the 3f branch connected to the water flow switching device 3.
  • the water pump 5 is only used to pressurize the water outlet, pump hot water from the inner tank, and circulate zero cold water. It does not have the functions of circulating heating and automatic cleaning that other structures in this patent have.
  • the control method of this structure is: when the water flow switch is not activated and the heat pump requires electric auxiliary heating, the heating unit 2 31 assists in heating the water stored in the inner tank; when the water flow switch is activated (hot water is being used), when the water outlet requires electricity During auxiliary heating, the heating unit 4 assists in heating the water.
  • This method not only adds one more heating unit, but also requires two sets of thermal protection devices and relays or thyristors. It also requires a lot more electrical terminals. Not only is the cost higher, it will also increase the failure rate several times.
  • FIG 13 shows the split installation scheme of the main unit.
  • the condenser 25 is installed in a container outside the water tank 15. The purpose of this is to facilitate the integration of the heat pump and the heating device into one module.
  • This method can also be used in Figures 10 to 12, but since the compressor and other components are still slightly larger and have better quality stability, they are generally assembled directly together with the inner tank in the outer shell to form a whole. Since the electronic part, water pump and heating device can be smaller in size and lighter in weight, it is more appropriate to integrate them into one module. Assembling the heating device and other parts in the shell is also within the scope of protection of this patent.
  • a heat exchanger 19 is also installed in the inner tank 15 of Figure 13. The purpose of the heat exchanger is to meet the needs of zero cold water circulation.
  • the heating unit 4 can use a steel cup heater, a heating film heater (including a thick film heater and a quartz heater), Electromagnetic heaters, etc.
  • This patent does not limit the structural form of the heating unit 4. This is because in this embodiment, when the heating unit 4 circulates heating and fills the inner tank with water, the water temperature is not high.
  • the water temperature for filling the inner tank or circulating heating generally does not need to exceed 40 degrees.
  • the heating temperature of the external water supply Generally, it does not exceed 48 degrees, and this heating unit hardly needs to participate in heating. It is only used to solve some problems of insufficient water volume.
  • the structure and control method of this embodiment make almost all use heat pump heating, so there is no need to worry about steel
  • the cup heater is scaled.
  • steel cup heaters are slowly replaced by cast aluminum heaters due to scaling problems. This is because when the water is turned off, the heat stored in the electric heating tube increases the water in the steel cup to a higher temperature, which may reaches 80 degrees, resulting in rapid scaling.
  • the structure of this patent will not face this problem.
  • the heating unit stops heating, if it is in a water-filled state, first turn off the heating unit and then turn off the water, and it will naturally be cooled by the subsequent cold water; if it is in a circulating heating or external water supply heating state, When stopped, let the water flow adjustment switching device rotate to the water-filling state to pass cold water (in fact, according to the actual control method, it has to be filled with water after use).
  • the heating unit will not produce scale at high temperatures like instantaneous water heaters. Of course, since the surface temperature of the condenser of the heating unit and heat pump is often high, generally reaching 100 degrees or above, no matter how low the temperature of the heating water is, scale will still be generated on the surface, but the scale will be generated very slowly.
  • the machine controls the water level to just submerge the condenser (since the inner tank is not pressure-bearing, the water level in the inner tank can be controlled arbitrarily).
  • the power of the heat pump in this patent is extremely low, and the surface area of the condenser is also proportionally smaller. It can be directly bent into a U-shaped tube and placed at the bottom of the inner tank.
  • the heating device can include the heat pump system.
  • the heating device of this embodiment only integrates the components of the heating device in the first and second embodiments.
  • the control unit adds the control of the heat pump and is also integrated.
  • a heat pump power interface and a cable interface are added to the heating unit to connect to the heat pump host assembled with the heat storage device.
  • FIGs 15 to 18 are schematic diagrams of Embodiment 4 of this patent.
  • This embodiment does not have the jet device of Embodiment 1.
  • the pump 5 is directly used to suck the hot water in the heat storage device.
  • the first way is that the pump is subjected to high temperature for a long time, and when the outlet pressure is greater than the pump head, there is no water flow through the pump, which will cause overheating.
  • the water entering the pump in the second way has been mixed with hot and cold water, and the water temperature is low, which is good for the life and performance of the pump. Therefore, the second installation method of the pump is more ideal when a jet device is not used. Compared with the situation with a jet device, the water flow rate of this solution is slightly smaller, and the adjustment of the ratio of hot and cold water is not as stable as the jet solution. However, this solution is also a practical solution and can be used not only in ordinary electric water heaters, but also in In the heat pump water heater of Embodiment 3.
  • Figure 15 is a schematic diagram of the structure of a valve in which the water inlet end of the pump is directly connected to the heat storage device and the cooperation of the two valve plates.
  • Figure 15-1 is the fixed valve plate.
  • 302a and 302a1 are the cold water inlets. These two ports are on the back.
  • 302b is the water filling port, which is connected to the inner tank 15, and fills the inner tank with water
  • 302f is the circulation port, which is also connected to the inner tank, and when the circulation is heated, the water flows back to the inner tank from this port
  • 302g is the water suction port, which is connected to the pump and is used to suck hot water from the inner tank
  • 302h and 302i are the heater interfaces, which are connected to both ends of the heating unit 4 respectively.
  • 302h is also connected to the water heater.
  • Figure 15-2 shows the moving valve plate.
  • 303d is the heater communication slot.
  • This slot allows the heating unit to choose to connect the two cold water inlets and the circulation port of the fixed valve plate.
  • the two slots 303b and 303b1 are also connected to each other and are circulation communication slots. This name is not appropriate. These two ports have many functions, which will be explained in detail below.
  • the valve is in the position of circulating heating.
  • the fixed valve plate connects 302g of the moving valve plate with 302h (because 303b and 303b1 of the fixed valve plate are connected to each other on the back, and the front is sealed with the fixed valve plate. mating surface), 302i connects to 302f, forming a circulation path for the inner tank 15, pump 5, 302g, 302h, heating unit 4, 302i, 302f, and the inner tank.
  • the water flow path is: tap water inlet, 302a, 302i, heating unit 4, water heater outlet.
  • the tap water is heated by the heating unit and then flows out.
  • the temperature is adjusted by adjusting the power of the heating unit 4 and the water outlet area of 302a. If it is an instant heating module , then while reducing the water outlet area of 302a, the outlet area of 302g is also increased.
  • the hot water in the inner tank is pumped out under the action of the pump 4, increasing the outlet water temperature.
  • Figure 15-5 shows the position with the highest constant temperature outlet water.
  • 303d only connects a small area of 302a and 302a1. At this time, the flow of cold water is very small, and 303b completely covers 302g. If it is in the quick heating mode, the inner tank will heat up. The flow rate of the water pump is the largest. The hot water in the inner tank passes through the pump 5, flows through 302g and 302h, mixes with the water heated by the heating unit 4, and then flows out from the water outlet of the water heater. In the instant heating mode, the temperature is raised by simply turning down the tap water, and will not be assisted by the hot water in the inner tank. In the instant hot mode, the water in the inner tank will not be circulated and heated, nor will the water in the inner tank be heated.
  • FIG 15-6 shows the water-filled state.
  • the circulation path is: tap water enters through 302a1, 302i, heating unit 4, 302h, 302b, and inner tank.
  • the reason why water can flow from 302h to 302b is because 303b and 303b1 are on the back. Connected.
  • the picture shows the position with the lowest water temperature when the water is filled.
  • the water inlet area of 302a1 and the flow area of 302b can be adjusted by rotating the moving valve plate to adjust the water filling temperature.
  • it is generally considered to heat the filling water temperature directly to the inner tank. Set the temperature, otherwise a pump must be used to circulate the heated inner tank, which increases the burden on the pump.
  • the structure of the valve in Figure 15 has a one-way valve on the 302g port to prevent tap water from flowing into the inner tank.
  • This structure uses the pump to directly suck the high-temperature water in the inner tank, which is not conducive to the life and quality stability of the pump. If used for implementation In the heat pump water heater in Example 3, this effect is smaller because the water temperature in the heat pump liner is low. For electric water heaters, you can reduce the water temperature by increasing the inner tank volume. This also protects the heating unit and makes it less likely to scale.
  • Figure 16 is an exploded view of the water flow regulation switching device using the valve shown in Figure 15.
  • This structure is generally similar to the structure in Figure 4. Due to the different structure of the valve, the hole connecting the valve seat 301 and the heat storage device has changed, such as It can be seen from this exploded view that the installation position of the one-way valve 310 is at the bottom of the valve seat, which corresponds to the 302g hole of the fixed valve plate.
  • This part 317 is not only used to hold down the one-way valve, but also at the same time with the valve seat.
  • the water filling port 302b is connected, and this piece connects 302g and 302b to the water outlet end of the pump 5 at the same time.
  • the reason why the water filling port 302b is connected to the water outlet of the pump and not directly connected to the heat storage device is to eliminate the air in the pump.
  • the pump in this structure is completely different from that in Embodiment 1.
  • tap water also passes through the pump. , will not be filled with air. This structure is very likely. If there is air in the pump, the centrifugal pump will lose suction (of course, you don’t have to worry about similar diaphragm pumps, but that type of pump has many shortcomings). Therefore, the water filling port allows the water to pass through the pump first and then enter the inner tank, so that the air can be discharged in time. Another advantage is that an interface is eliminated and the structure is more compact.
  • the execution part of the overflow protection consists of a fixed valve plate 17a, a moving valve plate 17b, a rotating rod 17c, a torsion spring 17d, and a rotating rod cover 17e.
  • reset wheel 17f, lock 17g, and the expansion mechanism of the force applying part is not shown.
  • the principle of this mechanism is that by rotating the reset wheel 17f, the rotating rod 17c is driven, and the rotating rod drives the moving valve plate 17b, so that the two valve plates are opened and tap water can pass through. During this rotation, the elastic force of the torsion spring 17d needs to be overcome.
  • the lock 17g After reaching the position, the lock 17g will be stuck on the rotating rod cover 17e under the force of a small spring (the spring is not shown).
  • the torsion spring always has a turning force to close the valve. , but it cannot rotate due to the action of the lock.
  • the expansion device presses the lock to trip, and the valve closes under the action of the torsion spring, cutting off the water inflow to the water heater.
  • the reset wheel 17f is rotated through a pull cord or other mechanism, the valve returns to the open state, and the water heater resumes water supply.
  • the overflow protection device also has a simpler mechanism. It does not need to use two valve plates as shown in the figure. It can be directly sealed with a cylindrical structure, and the force of the tap water itself can be used to complete the self-locking seal. This patent is limited to the space of this patent. The specific introduction is an extremely simple structure.
  • Figure 17 is another valve structure that uses a pump to absorb water.
  • the installation method of the pump in this structure is better than that in Figure 15.
  • the water passing through the pump has been mixed with hot and cold water, and can also completely suck out the water in the thermal storage device. water (when the tap water inlet is completely closed), when the water in the thermal storage device is completely pumped, it is usually due to the low temperature of the water in the thermal storage device.
  • the installation method of the heating unit in this picture is also different from that in Figure 15.
  • the heating unit in Figure 15 discharges water at a constant temperature to the outside, the heating unit cannot heat the water coming out of the heat storage device. Only when the circulation heating is performed and the water flow direction is reversed, the heating unit can Heating the water in the thermal storage device. Therefore, when the water temperature in the inner tank in Figure 15 is low, for example, below 28 degrees, it is impossible to increase the outlet water temperature through heating by the heating unit, but in Figure 17 it is possible.
  • Figure 17-1 is a schematic diagram of the fixed valve plate
  • Figure 17-2 is a schematic diagram of the movable valve plate.
  • the difference between this valve and Figure 5 is that there is no jet port 302d, so the interface function will not be repeated.
  • Figure 17-3 is in a water-filled state. Same as Embodiment 1, the water-filled temperature can be adjusted by adjusting the cross-sectional area of 302c.
  • 17-4 is at the position where the constant temperature outlet tap water inflow flow is maximum.
  • port 315 is equipped with a one-way valve or other check device, tap water cannot enter the heat storage device from here. If the pump is started, although the pump creates a certain degree of vacuum at the inlet, as long as the inlet water pressure is not too small, port 315 will still be in a positive pressure state when the valve is in this position, and the heat storage device will still be unable to provide hot water to the outside. By rotating the movable valve piece, the water flow cross-section of 302e is reduced. When the tap water is limited to a small enough size, the suction force of the pump forms a negative pressure (less than one atmospheric pressure) at the suction port 315.
  • the hot water in the thermal storage device is no longer It is sucked into the mouth, mixed with cold water, passes through the pump, and then flows out through the heating unit 4.
  • the overlapping area of port 303a and port 302e is already very small.
  • water is mainly absorbed from the heat storage device.
  • the opening size can also be designed so that the cold water can be completely closed in the constant temperature water outlet state.
  • water can only be pumped from the thermal storage device.
  • Figure 17-6 is in the cycle heating state. In this state, the tap water inlet has been cut off, and the water in the thermal storage device is pumped out from port 315. After being heated by the heating unit 4, it enters the 3d2 branch, and then flows through 302c and 302b. Return to the thermal storage unit.
  • Figure 18 is a schematic diagram of other structural forms of pump water suction, as shown in Figure 18-1, which is actually the structural diagram of Figure 17, and is different from Figure 6-1 in Embodiment 1 except that the jet device is missing (the corresponding valves are also less jet port), no further introduction will be given.
  • 18-2 is a schematic structural diagram of Figure 16.
  • the valve of this structure uses the valve of Figure 15 or uses three separate valves as shown in the figure to realize the function of the water flow adjustment switching device.
  • 3b is a reversing device that allows the heating unit to connect to the 3b1 or 3b2 branches respectively.
  • 3a is actually used to adjust the flow, including tap water or the size of the inner tank water.
  • 3c is actually only responsible for 3c1.
  • Branch circuit opening and closing As shown in the picture, the inner tank is actually filled with water. Because it is connected to the water inlet and the 3c1 branch, there is no further introduction in this picture.
  • the heating unit 4 is placed at the water inlet end of the pump, which can reduce the outlet resistance of the pump and increase the flow rate. Only the flow energy paths of its three modes are introduced.
  • 3b is disconnected from 3b1, the water heater is in the state of circulating heating or automatic cleaning, 3a is connected to the inner tank, pump 5 is started, and the water flow path is: inner tank 15, 3e , pump 5, branch 3d2, heating units 4, 3a, water flow switch, inner tank 15.
  • 3a When in the circulating heating state, the heating unit and the pump work. When in the automatic cleaning state, the pump works intermittently, and the heating unit may or may not work. Work.
  • 3b and 3b1 are connected, 3a has two states. One is connected to the inner tank and the water outlet of the water heater at the same time. The water heater is in a water-filled state, and the water flows through 3b1, 3b, heating units 4, and 3a before entering the inner tank 15. When 3a is only connected to the water outlet end of the water heater, the water heater is in a constant temperature water outlet state.
  • the water flow adjustment and switching status in Figure 18-4 is divided into three parts: 3a, 3b, and 3c. In this figure, the water inlet end of pump 5 is directly connected to the inner tank.
  • 3a only controls the inlet water flow, and does not control the part of the pump that sucks the inner tank. There is no control over the hot water.
  • Its three-state circulation paths are as follows. When circulating heating, 3b is connected to 3b2, and the water flow path is the inner tank, pump 5, 3a, heating unit 4, 3b, 3b2, and the inner tank. In water filling mode, 3b is connected to 3b1, 3c is connected to 3c1, and the water flow path is 3b1, 3b, heating unit 4, 3a, 3c, 3c1, and the inner tank.
  • the state shown in the figure is the constant temperature water outlet state, 3b is connected to 3b1, 3c is disconnected from 3c1, the water flow path is 3b1, 3b, heating unit 4, 3a, 3c, water outlet end of the water heater.
  • the instant heating mode there is also a pump 5 from the inner tank The extracted hot water is mixed with this waterway.
  • the heating unit 4 in the above embodiments can be any heating method, and the structure can be a single-flow or double-flow heater.
  • the double-flow refers to instantaneous heating and circulating heating.
  • the water flow in the heating unit is different. channel (for example, two heat exchange tubes are made in a cast aluminum heater, one for instant heating and one for circulating heating), while a single flow channel means that instant heating and circulating heating flow through the same channel. Since a single flow channel is a simpler and more practical structure, the structure of the valve in this patent is suitable for a single flow channel heater. It only needs to adjust the structure of the valve to use a double flow channel heater.
  • the double flow channel structure is also suitable for the scope of protection of this patent. Alternatively, using two sets of heating units to realize instant heating and circulating heating respectively is also within the scope of protection of this patent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种热水器及控制方法。一种热水器,包括控制单元(7)、发热单元(4)、水流检测单元、温度传感器(14),还包括泵(5)、水流调节切换装置(3)、即热通道(3d1)、吸水通道、止逆装置,所述止逆装置安装在吸水通道上,所述水流调节切换装置(3)用于调节水流大小、切换水流路径中的至少一项,所述泵(5)安装在即热通道(3d1)或吸水通道上,用于抽吸热水、出水增压、零冷水循环中的一项或多项。一种热水器的控制方法,包括以下步骤:获取热水器的温度、水量、水流状态信息;把内胆温度与内胆水量两个参数相乘得积n;把热水器的各项温度值、水量以及积n与相关预设值进行比较;根据比较结果及水流状态控制执行元件的工作状态。

Description

一种热水器及控制方法 技术领域
本发明属于热水器领域,特别是一种热水器及控制方法。
背景技术
传统热水器还存在诸多问题,比如储水式体积大、加热慢、结水垢、长期保温费电、内胆腐蚀、发热器结垢爆管等等缺点;而电即热式则又功率太大、冬天水量太小;后来发展出来的速热式结合两者的优点做了一个折中,却也同时存在两者的缺点,尤其是容量小导致水垢影响更为严重,同时水量也不够使用;在普通速热式的基础上以发展出双模速热,这样使得单次出水量更多,也更为节能,但结构复杂故障多,同时结水垢、内胆腐蚀漏水、水量不足等问题同样存在;热泵热水器体积大、价格高、结水垢、加热慢、天气寒冷的地区不适用、住宅面积小安装受限、安装位置远离用水终端管路浪费热水。燃气热水器由于碳排放问题在近几十年内会慢慢淘汰,节有效果也不如热泵。综上所述,热水器有进一步改良的必要。
技术问题
为了解决这一系列的问题,本发明提出一种新的方案,通过设计一种发热装置,即可单独做为即热热水器使用,又可与各种蓄热装置结合,实现不积水垢、100%热水输出率、无压内胆、即热速度热双模、恒温出水、自动清洗、模块化等目标,全面解决电热水器的几乎全部问题;又可以使之与热泵结合,实现安装位置不受限、小型化、任意寒冷的地区不受限、无压内胆、不积水垢、自动清洗、降低成本等目标,在继承热泵热水器所有优势的同时,全面补足其短板。
技术解决方案
为解决现有热水器技术的不足,本发明提供了一种新的技术方案。
本发明的目的是通过下面技术解决方案解决的:
一种热水器,包括控制单元、发热单元、水流检测单元、温度传感器,还包括泵、水流调节切换装置、即热通道、吸水通道、止逆装置,所述止逆装置安装在吸水通道上,所述水流调节切换装置用于调节水流大小、切换水流路径中的至少一项,所述泵安装在即热通道或吸水通道上,用于抽吸热水、出水增压、零冷水循环中的一项或多项。
可选地,还包括循环通道,所述循环通道与即热通道或吸水通道共用泵所在的支路,所述泵用于驱动循环通道的水流,所述水流调节切换装置通过切换流通路径使所述发热单元分别与即热通道或循环通道连通,所述循环通道用于循环加热、自动清洗中的至少一项。
可选地,还包括蓄热装置,所述蓄热装置包括内胆、保温层,所述内胆包括内胆出水口、内胆循环口,所述内胆出水口的进水端设在内胆底部,所述内胆还包括排气口,所述内胆通过排气口与大气连通。
可选地,还包括射流装置、旁路通道,所述射流装置包括进水端、出水端、吸入端,所述射流装置可以是独立的部件也可集成在其它部件上,所述射流装置用于抽吸蓄热装置中的热水,所述射流装置为一个或多个并联,所述旁路通道与所述射流装置的射流通道并联,所述泵安装在射流装置的出水端或吸入端的水流通道上。
可选地,还包括水位控制单元,所述水位控制单元由水位感应单元和充水机构组成,所述水位感应单元检测水位位置,所述充水机构集成在所述水流调节切换装置上或者为单独的电磁阀或电机控制的阀。
进一步地,水位感应单元包括单点水位感应单元和连续水位感应单元,所述单点水位感应单元采用电磁、电阻、电容、机械波、电磁波的相关感应元件,用于给连续水位感应单元校准及双重水位保护,所述连续水位感应单元由鼓膜装置、压力传感器组成,所述鼓膜装置把水位高度转化为压力大小,压力传感器把压力大小转化为电信号计算出水位高度。
进一步地,水流调节切换装置包括步进电机、阀座、动阀片、定阀片,所述阀座、定阀片、动阀上设有相应的孔道,通过步进电机旋转动阀片,使两块阀片上的孔道按不同方式连通,使各接口按当前工况连通、关闭、调节开口大小,实现即热加热、循环加热、充水或充水加热、对出水或充水温度调温、自动清洗中的一项或多项,所述定阀片与阀座上的相应孔道一一对应,通过阀座上的接口与热水器相应管路连接。
进一步地,阀座与定阀片包括冷水进口、热水进口、充水口、射流口、旁路口;所述动阀片包括冷水分配槽、循环连通槽、充水连通槽,所述动阀片包括三个工作区间,旋转动阀片使冷水分配槽与射流口及旁路口连通,热水器处于恒温出水状态;旋转动阀片使循环连通槽连通定阀片的热水进口与充水口并关闭冷水进口,热水器处于循环加热或自动清洗状态,可启动泵和发热单元对蓄热装置进行循环加热;旋转动阀片使冷水连通槽在旁路口旋转并使充水连通槽连通定阀片的热水进口与充水口,热水器处于对蓄热装置的充水状态,在恒温出水及充水状态可通过调节相关孔道的通水面积进行恒温调节。
可选地,阀座与定阀片包括冷水进口、热水进口、充水口、旁路口;所述动阀片包括冷水分配槽、循环连通槽、充水连通槽,所述动阀片包括三个工作区间,旋转动阀片使冷水分配槽与旁路口连通并不使和连通,热水器处于恒温出水状态;旋转动阀片使循环连通槽连通定阀片的热水进口与充水口并关闭冷水进口,热水器处于循环加热状态,可启动泵和发热单元对蓄热装置进行循环加热;旋转动阀片使冷水连通槽在旁路口旋转并使充水连通槽连通定阀片的热水进口与充水口,热水器处于对蓄热装置的充水状态,在恒温出水及充水状态可通过调节相关通孔的过水面积进行恒温调整。
可选地,还包括溢水保护装置,所述溢水保护装置包括膨胀装置、阀、复位机构,当内胆水位过高时,内胆的水溢出,利用溢出水积存的水柱高度产生的压强作用于鼓膜装置或溢出水使材料吸水膨胀或与其它物质产生化学反应膨胀,推动阀关闭,切断热水器进水,复位机构用于恢复供水。
可选地,外壳、控制单元、发热单元、泵、水流调节切换装置、水流检测单元、温度传感器装配在一起构成独立的发热装置,所述内胆、保温层装配在一起构成独立的蓄热装置;所述发热装置包含相应的接口与所述蓄热装置上接口一一对应,所述发热装置与所述蓄热装置可拼接在一起构成一个整体或由管路连接分体安装。
可选地,还包括压缩机、蒸发器、冷凝器、节流装置,所述压缩机、蒸发器、冷凝器、节流装置组合在一起构成热泵,所述控制单元、水流检测单元、温度传感器、水流调节切换装置、发热单元、泵组合在一起构成辅热装置,所述热泵与所述辅热装置结合在一起构成一种新型热泵热水器。
可选地,还包括换热器,所述换热器安装在蓄热装置中,所述换热器的安装位置使得自来水先通过换热器再流经发热单元。
可选地,还包括发热单元二,所述发热单元二装配在内胆中,对内胆中的蓄热介质进行辅助加热。
一种热水器的控制方法,所述控制方法包括以下步骤:步聚1、获取热水器的温度、水量、水流状态信息;步骤2、把内胆温度与内胆水量两个参数相乘得积n;步骤3、把热水器的各项温度值、水量以及积n与相关预设值进行比较;步骤4、根据比较结果及水流状态控制执行元件的工作状态。
进一步地,其控制方法还包括:
     步骤1、比较蓄热装置的当前温度与设置温度,如低于设置温度,热泵启动,反之热泵停止,执行步骤2;步骤2、出水水流开关是否启动?若否,执行步骤3;若是,执行步骤9;步骤3、蓄热装置中水温t是否小于最小许用温度t1?若是,执行步骤4;若否,执行步骤5;步骤4、执行辅热循环加热模式,回到步骤1;步骤5、水量乘水温的积是否大于等于n1?若否,执行步骤6;若是,执行步骤7;步骤6、执行辅热充水加热模式,回步骤1;步骤7、当前水位是否小于设置水位?若是,执行步骤8,若否,回步骤1;步骤8、执行无辅热充水模式,回步骤1;步骤9、蓄热装置中水温t是否大于等于出水设置温度t2?若是,执行步骤10;如否,执行步骤17;步骤10、蓄热装置中的水量乘水温的积是否大于等于n2?若是,执行步骤16,若否,执行步骤11;步骤11、蓄热装置中的水量乘水温的积是否大于等于n3?若是,执行步骤15,若否,执行步骤12;步骤12、蓄热装置中的水量乘水温的积是否大于等于n4?若是,执行步骤14,若否,执行步骤13;步骤13、高档辅热供水模式,回步骤1;步骤14、中档辅热供水模式,回步骤1;步骤15、低档辅热供水模式,回步骤1;步骤16、无辅热供水模式,回步骤1;步骤17、蓄热装置中水温t是否小于出水设置温度t2-q1,若是,执行步骤13,若否,执行步骤11。
有益效果
本发明开发的一种热水器及控制方法,通过对水泵、水流调节切换装置、发热单元以及射流装置等一系列结构的创新设计,使得本发热装置既可以单独做为一台即热热水器使用,又可以与蓄热装置结合,抽吸及加热蓄热装置中的水,此蓄热装置可以是移动的水桶、固定的水箱、定制的发热装置、热泵等,蓄热装置可与本发热装置整体、模块整体式、模块分体式等各种结合方式,与本技术配合之后,以上蓄热内胆都将不再需要承受自来水压,可做成出口敞开式,不受形状材料限制,并实现100%热水输出、不积水垢、自动清洗、即热速热双模、循环加热或辅热、恒温出水、零冷水循环等众多效果,且结构简单,成本低廉,无论从成本、性能、卫生、节能、便利、售后等方面都具有巨大优势,极具推广意义。
附图说明
[根据细则91更正 29.03.2022]
图1是发热装置外观示意图 图2是发热装置爆炸图 图3是水流调节切换装置装配图 图4是水流调节切换装置爆炸图 图5是射流方案原理示意图 图6是几种射流方案示意图
图7是单点水位感应单元示意图    图8是连续水位感应单元示意图
图9是模块组装及其它示意图      图10新型热泵方案一
图11新型热泵方案二             图12新型热泵方案三
图13新型热泵方案四             图14控制方法流程图及逻辑图
图15是泵吸方案阀的结构示意图
图16是泵吸方案水流调节切换装置爆炸图
图17是泵吸方案第二种水流调节切换装置示意图  
图18是泵吸方案另外几种结构示意图
图中:1、前壳  2、后盖  3、水流调节切换装置  4、发热单元  5、泵  6、连续水位感应单元  7、控制单元 8、面板 9、单点水位感应单元 10、电路板支架  11、滑动卡舌 12、热保护装置  13、电源线  14、温度传感器 15、内胆 16、排气管  17、溢水保护装置  18、轻触开关  19、换热器  20、内胆前壳 21、内胆后壳  22、卡扣  23、推块  24、热泵主机  25、冷凝器  26、压力控制阀  27、蒸发器  28、压缩机  29、节流装置 30、电磁阀  31、发热单元二  32、排气口  A、蓄热装置  B、发热装置17a、定阀片二  17b、动阀片二  17c、旋杆  17d、扭簧  17e、旋杆盖  17f、复位轮   17g、锁扣  A1、水位感应接口一  A2、水位感应接口二  A3、内胆循环口   A4、内胆出水口  A5、溢水保护接口  A6、导热柱 301、阀座  302、定阀片  303、动阀片  304、步进电机  305、传动件  306、阀压盖  307、从动齿轮  308、射嘴  309、喉管  310、单向阀  311、单向阀压盖  312、水流开关   313、水流开关压盖   314、主动齿轮  315、吸入端  316、旁路通道  317、连通件  302a、冷水进口  302b、充水口  302c、热水进口  302d、射流口  302e、旁路口  302f、循环口  302g、吸水口  302h、发热单元接口二  302i、发热单元接口一  303a、冷水分配槽  303b、循环连通槽  303c、充水连通槽  303d、发热单元连通槽
本发明的最佳实施方式
需要说明的是,在不冲突的前提下,本申请中的实施例及实施例中的特征可以相互组合,任何通过本专利能轻易想到的方案都在本专利的保护范围。下面结合附图和实施例对本发明作进一步说明。
总体说明,约定:1、本热水器除去蓄热装置以及热泵,其它零件集成在说明书中统称为发热装置;2、内胆是蓄热装置中的一个部件,比如蓄热装置包括了保温层,可能还包括外壳,但在说明书中,内胆与蓄热装置两种说法都指的是蓄水容器。本发热装置功能包含以下多项或全部:1、即热加热,直接对流过的水即时加热。2、循环加热,通过水泵循环,对蓄热装置中的水进行循环加热。3、充水,对蓄热装置进行充冷水,或充加热过的恒温水。4、自动清洗,对蓄热装置以及加热管路进行清洗,包括去除可能存在的水垢。5、水位控制,可以任意控制蓄热装置中的水位高度,包括分段式充水。6、恒温控制,对出水水温及充水温度进行恒温控制。7、零冷水循环,可通过管路循环排除管中的冷水。8、吸水,利用射流装置或泵抽吸蓄热装置中的水,使得蓄热装置无需承受自来水压,也使得可以底部出热水输出率达到100%以及不积水垢。9、出水增压,在水压小的地方可以对出水进行增压。10、模块化,由于蓄热装置中无须任何易损件,可通过模块化把易损部件都集成到一个小部件中,使之便于维修。本专利通过巧妙的设计用低成本实现以上效果,包括但不限于以上功能。本发热装置结合(水箱)蓄热装置,对电热水器实现全面颠覆;本发热装置结合热泵,解决了热泵所有的短板,且使之在全球任何地方都适用。
实施例一
图1至图8是实施例一的示意图,本实施例是利用射流装置的抽吸效果为基础,在此基础上对其它结构经进了创新设计。
图5展示了本实施例水流调节切换装置的原理,5-1和5-2是定阀片与动阀片的结构示意图,动阀片包括5个口,与阀座301上相应位置的孔一一对应;动阀片包括3个槽,起到连通作用,通过旋转此阀片使定阀片上的孔按不同的组合方式连通,实现各种功能。5-3至5-6为本实施例热水器的工作状态图,分为三个工作区:充水区、恒温出水区、循环加热。如5-3所示,阀片以及射嘴308、喉管309都装配在阀座301中,同时旁路通道316及吸入端315也集成在阀座上构成水流调节切换装置(在实际产品中集成度更高,如图4所示,包括进、出水端以及水流开关312以及其它一些部件都集成的阀座301上)。射流装置以及旁路通道316出水端连接泵5的入水端,泵的出水端连接发热单元4,发热单元的出水端分为两路,一路连接水流开关312所在的热水器出水端,一路通过3d2通道连接定阀片的302c口。根据水流、水位、温度、工作模式等信息,动阀片旋转到不同的工作区,水泵5及发热单元4以相关方式工作实现热水器的功能。
5-3图动阀片的位置处于热水器的充水区,3b1、302a、303a、302e、316、泵5、发热单元4、3d2、302c、303c、302b此时连通在一起构成充水通道,通过调整动阀片303c口与定阀片302c口的重合面积调节水量,从而调节充水温度,302b通过管道连通内胆,内胆底部一般做成锅底状或斜面,利用水流冲刷使水垢移到最低处,内胆吸水口处于最低的位置,在用水时可以及时排除出。如果没有连接蓄热装置,当做即热热水器使用时,302c与302b这两个口不会被连通;5-4和5-5是处于恒温出水区两个极限位置(在某些场合,比如冬天蓄热装置水温低(但高于自来水)而又急于要用水,5-5也不是极限位置,冷水通道完全关闭才是极限,此时蓄热装置中的水从吸入端315被泵5抽出,经发热单元4加热后使用。)3b1、302a、303a、302e或302d、泵5、发热单元4、水流开关312此时连通在一起构成即热加热通道,此通道是当向外供热水时,发热单元可启动给流经的自来水或自来水与蓄热装置中的混合水加热。根据动阀片的303a与定阀片302e及302d的重合面积可以看出,5-4为水量最大位置,5-5为水量最小位置(请注意经过302d的水还必须通过射嘴308,射嘴的喷嘴很小,在此应用中孔径一般不超过2.5毫米),恒温出水时动阀片在这两个位置之间旋转,调节冷水流量和抽吸热水量实现恒温。当水流通过射嘴308时,高速水流的挟带作用使之在附近产生负压,外界大气压把水或空气通过吸入端315压入,当旁路通道316的水流较大且有一定的出水阻尼时,其出口背压作用于喉管309的出水端,使得射流装置吸力减小或失去吸力,同时,当关闭了旁路通道,调节喷嘴的流量也可调节抽吸热水与冷水的比例。当即热模式时,一般考虑泵5不工作,由于发热装置出水连接了各种管道、阀门、花洒等阻力元件,此出口阻力会较大的影响射流装置的吸力,所以泵不启动时,吸力较弱,符合实际要求,在使用即热时,蓄热装置中不加水,无水可抽,如抽吸太多空气也影响体验,抽吸少量空气混入水中则会提高用水体验和清洗效果;图5-6为循环加热状态,循环加热位置也用于清洗模式,此时定阀片冷水进口302a不与其它孔连通,热水器进水被切断,302b与302c被循环连通槽303b连通,此时启动水泵与发热单元可以对蓄热装置中的蓄热介质循环加热。当阀处于此位置时,泵5启动,蓄热装置中的水从吸入端315进入,经过发热单元4加热后经3d2支路进入302c,通过302b流回蓄热装置中,构成循环加热通道。在5-6中,射流装置的出水端还增加了317支路,此支路上的目的是增大吸入口的面积,因为吸入端315的水流要经过喉管309,喉管口径较小造成较大进水阻力影响水量,使得本发热装置在某此应用场合会有影响,比如当装配在热泵上时,热泵内胆水温一般为55度或以下,且为了节能一般不必使用发热单元4来加热,大部分水是从内胆中抽出,只需混入少量的冷水,此时需要增大进水口径提高水量。另外,当循环加热或者自动清洗时,也需要更大的水量以增大冲刷效果。当然,通过对射流装置的合理设计以及增大水泵的水量都可以起到一样的效果,此支路只是提供一种补充方案。317支路上还设有单向阀310,单向阀的方向只允许从蓄热装置中抽水,吸入端315也需要此类止逆装置,如果没有此类装置,则当此通道处于正压(大于大气压强)时,水会从此处流出,导致溢水。在3d2支路上还增加了水流开关312,这样当发热装置处于充水或循环加热状态时防止干烧,充水及循环状态可能会由于自来水停水、进水关闭、管道堵塞、电机失步、水泵损坏等等造成虽处于此状态则无水流通过。防干烧也可采用温控器实现,但这属于被动保护,不如利用水流感应的主动保护。
图1是本实施例的外观图,可以是各种形式,包括与蓄热装置集成在一个外壳中,此外观只是为便于与某个外形的蓄热装置拼合构成一个和谐的整体。图2是本实施例的爆炸图,从中可以看出实际产品由水流调节切换装置3、发热单元4、泵5、连续水位感应单元6、控制单元7、单点水位感应单元9等主要部件组成。图2的结构主要考虑到与蓄热装置整体拼接或通过管路分体连接,把所有易损件都集成在一起,使得蓄热装置中没有任何易损件(一般考虑寿命低于50年或在此寿命期容易故障都视为易损,热泵方案除外),以便实现蓄热装置在整个寿命不需要维护。如果蓄热装置中包含了水位控制装置,比如浮球控制装置。或者蓄热装置为临时装置,比如水桶,则图2结构中的水位感应单元可以不需要,此时可以通过图5-4中充水支路中的水流开关312给出信号,当蓄热装置中有浮球水位控制装置时,水满之后就无法再往里充水,此时水流开关感应到水流停止,热水器停止充水;如蓄热装置为临时的水桶,则热水器可以对单次加水的量进行设置,水流开关可以计量流过的水量,达到设置的量后停止充水。
图3与图4为水流调节切换装置的装配图和爆炸图,如图所示,水流调节切换装置由阀座301、步进电机304、主动齿轮314、从动齿轮307、定阀片302、动阀片303、传动件305、阀压盖306组成。水流检测单元以及射流装置都集成在阀座301上,如水流开关312装配在阀座的出水端。射嘴308及喉管309装配图示左边的螺纹接口内,阀座在此处还设有射流装置的吸入通道,单向阀310装配在吸入通道内,用单向阀压盖311压紧密封(本专利中所有硅密封圈没有画出),装配射流装置的螺纹接口内部有三条通道:一条进冷水的通道连通定阀片的302a;一条通道连通定阀片302d,此通道内安装射嘴与喉管构成射流装置(当然如果通过在阀座上直接用模具形成这两个零件的结构,则可省去这两个零件);一条通道连通定阀片的302e,此为旁路通道。图示阀座右边的螺纹接口连接发热单元出水端,这个接口内也有两条通道,一条连通水流开关312所在的出水端,一条连通定阀片的302c。轻触开关18用于确定步进电机的零点,当步进电机旋转使从动齿轮307按下轻触开关的按钮时,此处为步进电机的零点。
图7是单点水位感应单元的装配与爆炸图,如图7所示,该感应单元包括了胶垫901、水位感应支架902、水位感应支架盖903、接电螺丝904、接电螺帽905、温度传感器14、轻触开关18。本结构采用了电阻感应的方式,当胆中的水淹没两个接电螺丝904时,电路被导通,当水降到两个螺丝以下时,电路断开,控制单元以此判断胆中水位的具体位置。当然,也可以采用干簧管或霍尔开关配合浮磁以及电容、红外线等方式来感应单点水位。水位感应单元也可以装配在蓄热装置中,但如果发热装置与蓄热装置不做成一个整体,蓄热装置中不包含任何易损件才是最佳方案,水位感应模块是易损的,装在蓄热装置中虽在本专利的保护范围,但非优选方案(在本专利中非优方案都没有示出)。温度传感器14用于与蓄热装置上的导热柱A6配合,感应蓄热装置中的水温;轻触开关18用于模块感应,当发热装置B被安装到蓄热装置时,此开关被触发,当然也可以采用别的触发方式,比如采用磁感应。胶垫901用于与蓄热装置的相关接口密封配合。
图8是连续水位感应单元的装配及爆炸图,本结构采用鼓膜装置把水位高度转化为压力大小,压力等于压强乘面积,鼓膜的面积越大,感应精度就越高。压力传感器601采用电子秤中的传感器,成熟、精确、廉价,完全满足内胆中水位的测量要求。鼓膜装置由鼓膜支架602、鼓膜604、顶针605、鼓膜压盖603组成。蓄热装置的内胆底部用管道连接鼓膜支架上的空心柱子,水压作用于鼓膜,鼓膜产生的力作用于顶针,顶针把力传递给压力传感器601,压力传感器把压力信号转化为电信号测出水位高度。由于鼓膜形变会抵消部分水压,所以在安装时使顶针在压力传感器上施加一定的预压力,通过软件把这力的位置改为零点,此时由于顶针与压力传感器之间没有空隙,当鼓膜压力变化时,鼓膜在顶针的施力方向不会有形变,这样就能精确的把真实压力变化传递给压力传感器601。此类压力传感器都会由于塑性变形、温度、湿度变化而产生零点漂移,所在需要经常校准零点,利用上述的单点水位感应单元为基准对其进行校准,当单点水位感应单元状态变化一次时,连续水位感应单元以此为基准进行校准。这种连续水位感应也可以是别的方式,比如利用压力位移变化,比如超声测距等方式。连续水位感应也是非必要的,只需能检测蓄热装置的最高与最低水位即可达到使用要求。但对蓄热装置的水位进行连续或多点感应,就可以根据使用需要调节其水位高度,比如人少时蓄热装置的水可以不加满。
图6是采用射流装置吸水方案的几种原理示意简图,为了节省图纸空间,把内胆15采用了省略画法。如6-1所示,水流依次通过3b1、水流调节切换装置3、泵5、发热单元4、3d1为即热通道(水流依次通过3e、射流装置吸入端315、泵5、发热单元4、3d1也是一条加热通道,只不过此时关闭了自来水进水,直接抽内胆15的水使用),此通道根据需要会从3e通道抽吸内胆15的水;水流依次通过3b1、水流调节切换装置3、泵5、发热单元4、3d2以及与3连接的水流开关312为充水通道,自来水可以从此通道充入内胆15中,可以直接充入冷水或经过加热的水,还可以直接把水加热到内胆设置温度再充入内胆中;内胆的水依次通过3e、射流装置吸入端、泵5、发热单元4、3d2以及与3连接的水流开关312为循环加热通道,此时进水已经被切断,内胆的水在泵的作用下循环加热到设置温度,自动清洗的通道也是此通道。6-1在水流调节切换装置3充水口的出水流道上增加了水流开关312,此水流开关也非必须的部件,比如可以在发热单元上安装温度传感器或温度控制器,当发热单元超过某设定温度就停止加热。图6-2所示,在6-1图的3e通道上增加了另一条支路,支路上装配有单向阀310,其目的如前所述是为增大流量。6-2还增加了溢水保护装置17,防止当机器正处于充水状态时,停电导致阀固定在此位置一直充水导致溢水,或由于其它原因引起的内胆满出溢水。溢水保护装置的原理是利用溢出的水关闭进水阀,它有多种实现方式,比如利用橡胶膨胀条或其它遇水膨胀材料,当水流到上面时产生膨胀,利用膨胀产生的力关闭进水阀门;或者增加排气管16,其底部连接鼓膜装置,并使排气管的通孔面积及入口面积远大于其出水口面积,当水位过高从入口进入时,出水慢于进水,排气管很快被充满,利用这个水柱高度的压强作用于鼓膜装置转化为较大的推力关闭阀门。如果鼓膜的面积小,产生的压力较小,则阀可以增加触发装置,鼓膜只需要触发卡舌,阀在弹簧力下关闭,利用小力控制大力。当阀关闭之后,没有进水补充,排气管中的水流完,压力消失,此时可以通过复位机构恢复供水,复位机构可以是拉绳或其它方式,只要能把阀重新打开即可,这些结构都是相当简单的,不多做介绍。当然,如果是为防止停电导致漏水,还可以在水路前端增加常闭的电磁阀,没有电时其自动关闭,不过此种方式成本增加且故障率高,不如机械的方式可靠,且机械结构还可防止别的异常导致的溢水问题。图6-3所示,水流调节切换装置在图中分解为3a、3b、3c这三个部分,这三个部分可以采用三个独立的部件,比如3c的功能只是负责水路3c1的通断,3b则负责3b1这水道的通断,可以是两个电磁阀;3a用于调节恒温,可以使用恒温阀,包括步机电机驱动的阀或热膨胀元件驱动的机械阀。使用多个部件组成水流调节切换装置结构复杂,管道接头多,不如实施例一把所有功能集成在一起的方式,但也做为防御性的方案包含在本专利中。图6-4把发热单元4安装在射流装置(包括6-3图中类似三通的部件为射流装置)的进水端,这样的好处是减小了射流装置的出水端阻力,但带来的不利影响是当发热单元中有块状水垢脱落排出时,容易堵塞阀以及射流装置的射嘴,另外阀的结构也将更复杂。6-4射流装置的吸入端用压力控制阀26充当止逆装置,此阀利用吸入端压强与大气压强的差来控制阀的开与关,当吸入端315产生负压时,膜片在大气压的作用下产生形变,接通此阀的电路,阀打开通水;如吸入端的压力等于或大于大气压,膜片不变形或往相反的方向形变,则压力控制阀26关闭,此阀防止在使用时射流装置产生的吸力不够时,导致自来水倒流入内胆中导致溢水。但是,当内胆中需要充水时,此阀在控制单元的控制下打开主动加水;当循环加热时,泵启动在吸入端产生负压,此阀也打开使内胆中的水从此处流出。压力控制阀其实就是利用一个压差膜片结构去触发一个普通的电磁阀,相当简单。在此前的图示中,此止逆装置都采用单向阀310,单向阀结构简单,成本低廉,唯一比不上压力控制阀26的地方在于,不能通过阀所在的通道向内胆充水。在6-4中,当换向阀3b连通3b2时,热水器处于循环加热或清洗状态,此时水流调节切换装置的3a关闭,泵5启动,内胆15中的水通过压力控制阀26、3d2支路、发热单元4、3b2再流加内胆中。非循环加热及清洗状态,换向阀3b都连通3b1。当换向阀3b都连通3b1时,可通过压力控制阀26所在的支路向内胆中充水,也可向外供水。
本发热装置的控制思路以用水优先、舒适优先为原则,以智能控制为手段。当热水器出水端的水流开关启动,证明有人在用水,此时热水器如正处于充水、循环、清洗状态时,都要立即回到恒温出水的工作状态中;当向外恒温出水时,由于本发热装置可通过调节功率、自来水水量、冷热水配比三个参数来实现调温(自来水水量与冷热水配比通过阀的设计使得其可被视为一个变量),变量多于一不利于恒温控制,所以可通过特别的程序先固定一个变量,可以采用如下方法:每次开机使用热水,首先让水流调节切换装置使自来水流量最大,发热单元4功率设置为最大,等待N秒,若实际出水温度小于设定出水温度,则判定需要采用最大功率工作(这样就把功率这一个参数固定下来了),后续通过调节水量大小和冷热水比例来实现恒温出水;若上一步实际出水温度大于设定温度,则降低功率,等待N秒后直到实际出水温度等于或小于设定出水温度,此功率固定为此次使用的功率,后续通过调节水量大小和冷热水比例来实现恒温出水。以上方法其实就是先把水量开到最大的位置做一个测试(由于每个用户的水压、进水温度、出水温度都不确定,所以根据实时情况做一个测试),测试出本次用水该使用多大功率工作,把该功率固定下来,后续就只需调整水量或冷热水配比这一个变量,使得恒温控制变得简单。上述恒温控制先测试固定一个参数的方法也有一定的缺点,测试中会占用一定的时间,使得恒温控制时间慢,影响体验,为解决这个矛盾,可以在上述基础上增加如下方法:断电重启上电后第一次用热水先采用上述的功率测试方法把最大功率固定下来,后续通过调整水量及配比实现恒温,记录功率以及步进电机位置这两个参数(步进电机的位置,除了可记录恒温稳定后的位置值,还可以简单一点,记录连续用水N分钟后所在的位置),只要机器不断电,下次用水直接采用这两个值,若不能实现恒温,再行调整。此方法就不必每次用水都走一遍测试功率、调节恒温的程序,而是直接利用了上次的经验,一般来说,在同一季节,这样的方式都是相当准确的,就算有偏差也不会差太多。当然,还可以结合进水的温度来做决策。用水优先策略,除了上述任何工作状态只要外界一用水就回到恒温出水状态外,还包含另外的内涵:其一,当内胆水位与温度都没有达到预设值时,优先通过循环加热把温度提升到预设值,然后再向内胆中加水(这样的目的是让用户有热水可用);其二,向内胆中加水时,通过调节流量直接加热到内胆设置温度或分段加水,而不是直接加满让其慢慢加热。至于舒适优先,则程序使得热水器优先保证温度的情况下水量尽可能大,后面才考虑调小功率,比如当出水温度超过设置温度时,可能通过调小功率以及加大水量来降低温度,此时优先调大水量,只有当水量最大温度还高时,才调小功率。关于泵的控制,在不启动出水增压功能时,泵5只在循环加热、自动清洗、速热模式时启动。所谓的速热模式,就是需要利用蓄热装置中热水时的模式,此模式启动泵的目的是减小射流装置的出口阻力,增大吸水效果,或者当直接关闭自来水进水,直接抽取蓄热装置中的热水使用。在速热模式时,当蓄热装置没有水时,泵5也不启动,防止混入大量空气的水给水泵带来损坏,比如气蚀,当阀的位置还没有水流经过射流装置喷嘴时(水流只通过旁路通道),泵也不启动。当蓄热装置中水位低于某一个值,即使水温低于设定值,也不启动循环加热,这也是为了防止泵吸入空气。
本机器还可采用智能模式根据进水温度自动设置各项参数,当进水温度较高,自动设置为即热模式,即热模式时不往蓄热装置中充水,在不启动出水增压功能时也不启动泵;当进水温度低时,自动设置为速热模式,并且自动设置蓄热装置中的水温及水位。智能模式存在一个问题:进水温度传感器可能会受到室内暖气、热水器中的温度、太阳照射导致某段水温偏高等因素,从而造成误判。如果根据进水温度适时调整,则会出现过山车似的大变化,比如北方冬天室内温度30度,室外零下20度,假设用户开启一下龙头用热水,此时机器判断进水温度为30度,设置为即热模式中档功率,从而不加热蓄热装置中的水,从而导致当洗澡时没有足够的热水可用。所以,必须有一种逻辑避免此类情况。可采用如下方法实现准确的进水温度判断:1、增加记忆功能,记录上次使用最低进水温度值或参数;2、当启动水流时,比较当前进水温度和记录的进水温度值,参数设置以较低的温度值为准;3、在水流开启动时,此后每过N秒比较一次,以较低温度为准设置参数;4、当水流开关连续接通N分钟,比如3分钟,以当前温度值重新设置参数,并取当前温度值覆盖之前的记录值;5、在第4步之后,N秒对比一次当前进水温度与记录值,参数设置以较低的温度值为准,并每次记录较低温度值并覆盖上一次的记录值。以上的方法能准确的抓取当前水温的实际值,不受室内温度及其它因素的干扰,充分保障热水供应。
实施例二
图9是本专利实施例二的示意图,本实施例是在实施例一的基础上增加了蓄热装置A,实施例一中所述的发热装置B与蓄热装置A组合成一台双模模块热水器。9-1是两模块分离图,9-2是蓄热装置A的爆炸图,9-3是蓄热装置接口细节图。两模块可以方便的拆装,发热装置B对准蓄热装置A的燕尾导入槽后,直接压按,两模块在卡扣22和活动卡舌11的作用下牢牢扣合在一起。只要按一下弹出按键,发热装置B在顶出装置23的作用下弹出。蓄热装置内胆15中没有安装任何易损部件,内胆无需承压,可以采用PP吹塑、陶瓷、玻璃等任何耐热水的密封材料制作,原则上要尽可能使其寿命长,并环保卫生。蓄热装置与发热装置进行水路连接的孔包括水位感应接口一A1、水位感应接口二A2、内胆循环口A3、内胆出水口A4、溢水保护接口A5。水位感应接口其实只要一个也可以,但一个接口有可能导致困气使得不能有效的感应到水位变化,当然,如果把这个接口直径弄大一些或者把电阻感应的两个电极延伸出来靠近内胆,则也可以只要一个。水位感应接口不仅用于单点水位的感应,连续水位感应也可由这个接口连通内胆压力。当然,其实水位感应接口可以直接连接在内胆出水口A4的流通路径上,但连接在这个口上有几个缺点:1、此口的位置太低,理想结构是让它的连接位置处于内胆的排水管上,在吸入口加一个滤网,这样当有较大体积的水垢,直接满入到排水管中,而不会卡住单向阀、泵的叶轮以及堵塞花洒。这么低的位置用于最低水位不合适,可能导致泵吸入空气。2、由于此口截面积有限,当水流动时导致的压力变化会影响连续水位感应数值的准确性。内胆循环口、出水口、溢水保护接口的作用在实施例一中已经有详细介绍,故不多述。以上接口只需要承受内胆水位产生的极小压力,故非常有利于密封,只需软胶轻轻压合即不漏水。导热柱A5要使用导热性能良好的材料,可以把内胆的温度变化实时传递到末端,并进行一定的保温,防止沿途温度损失,发热装置中的传感器通过此导热柱可测量内胆中的温度变化。如果没有此导热柱,发热装置就必须延伸出温度传感器,这种延伸的方式可能导致传感器在搬运过程中损坏,而且也不美观。如果在蓄热装置上安装温度传感器,两模块之间用线或触点连接,虽然也是可行的方式,但此零件可能成为易损件导致蓄热装置需要维护。卡扣22这是常规结构,无须介绍。顶出装置23利用弹簧力把发热装置顶出卡扣卡合的范围,方便模块的拆卸。本实施例发热装置的功能与实施例一一样,只是增加了蓄热装置,以及展示了两模块配合的接口及连接方式,不再赘述。
实施例三
图10至图14是本实施例三的结构及控制方法示意图,本实施例是利用本专利的发热装置与热泵结合的一种新型热泵热水器。由于目前利用热泵只能把内胆中的水加热到55度,温度再高就会导致热泵蒸气压力过高,所以热泵热水器只能通过把容积加大弥补温度不足导致的热水量不够的问题。如此大的水箱影响了其安装,导致住宅面积较小的城市不利于安装热泵,同时,就算是面积足够大的农村用户也只能安装在阳台或楼顶,导致热水器距离用水点太远,需要零冷水循环,管路热损浪费能量且体验不佳。另外,在冬天如果温度过低,热泵换热器结霜,导致效率低下,甚至无法使用,冬天可能就只能采用电加热,然而冬天才是热水器耗能最大的时候,导致热泵的节能效果大打折扣,其实在北方热泵是基本无人使用的。热泵换热器表面温度足以导致结水垢,还有泥沙、漂白粉、藻类等杂质的沉积,使得热泵水箱底部会积大量的污泥,而且由于水温低,导致细菌大量繁殖,目前只能通过银离子来除菌。通过把本专利的发热装置集成在热泵热水器中,在保证热泵原有节能效果的同时,可实现小型化、无安装条件限制、不受气候影响、不积水垢、无压内胆、100%热水输出、多模便利、恒温出水、热水无限等等优点,完全消除了热泵热水器的短板,使其应用场合不再受任何限制。
如图10所示,在实施例一的基础上增加了冷凝器25、蒸发器27、压缩机28、节流装置29构成了热泵的主要部件,排风装置在图示中没有画出,排风装置用于增加蒸发器27的空气流量。做为热泵,还有其它很多部件,比如储液装置、气液分离装置等等,热泵作为成熟商用的产品,这些都是公知技术,无需一一列出,本专利只列举出最为重要的代表性部件。本专利利用水流调节切换装置3、泵5、发热单元4组成可对内胆15进行即热加热、循环加热、抽吸热水的发热装置,使得热泵可以采用微型压缩机,比如150W左右的压缩机(甚至可更小),其制热量大概为550W左右,这么小的功率的压缩机,蒸发器与冷凝器都将很小,使得可以把这些装置装配在一个较小的空间,而不必需要一台大的室外主机。150W压缩机工作9个多小时可以把80升的水提升50度,一天24小时运作,考虑内胆散热,大概可以把180升水提升50度,如果没有增加本发明的发热装置,这样的热泵使用体验会很差,很多时候将无水可用,虽然也可以通过在内胆中增加电热管,但这种方案相当于一台热泵辅助的电热水器,当一个人洗澡用掉一部分水时,采用电热管加热还是热泵加热?如果只使用热泵,这么慢的加热速度如何保证下一个人的用水?所以大多数时候不得不采用电热管加热,且必须直接加热到50度,使得热泵没了加热的空间,起不到好的节能效果。仅在内胆中增加电热管的方式还将产生与普通储水式一样的问题。当使用本技术后,内胆25度(此值根据发热单元的功率而定)的水温流经发热单元4进行二次加热后即可使用,且能精确测量当前水量,并解决了储水式存在的其它问题。
本实施例其实就是把实施例一与后续的实施例四的发热装置集成到热泵热水器上来,为了尽可能的精简示意图,每一个实施例中的图都力求加入一点新的结构,尽量避免在每个实施例的示意图中重复,图10的结构上无需多说,关键在于此实施例的控制方法,其控制方法的基本思想是:体验优先、节能优先。基于本实施例提供一种控制方法,首先,设定一个目标:任何时候,热水器保证在4升的流量45度的温度可连续使用15至20分钟(当然这个目标也可以是别的数值),如果当蓄热装置中的热水储备不满足这个要求时,采用最快的速度的加热方式满足此要求(所谓最快的方式就是热泵与辅热装置一起加热)。说明书中使用具体的数据利于理解,并假设了发热单元4的功率为5KW,以此为基础,结合本实施例的结构,给出本热水器的控制方法。图14为本实施例热水器控制方法的流程图和逻辑图,图14-1为流程图,它给出了本热水器的控制方法的总体方向,根据水温、水位(水量其实是等于水位乘截面积,也就是体积)、水量与水温的积(这个参数代表了蓄热装置中的能量有多少)、水流状态(也就是是否有人在用水,一旦有人用水,无论处于循环加热、充水加热,都要立即回到恒温供水的状态来),来控制执行元件的工作状态,比如热泵、水流调节切换装置、泵、发热单元等。像水量、以及水量与水温的积、充水速度、水位控制等这类技术特征都是此类技术所特有,由于可以带来巨大的可控性及有益效果。图14-2为本实施例的的逻辑图,本逻辑图是在流程图的总体方案下给出一套具体的控制方法,在此详细的介绍逻辑图中的各个步骤:
S201中的t表示内胆当前水温,t0表示内胆设置温度,判断t<t0这个条件,如果是,执行S202,热泵启动加热;如果为否,执行S203。为防止执泵频繁启动,t0这个值会设一个区间,比如低于这个值几度才重新启动。接下来执行S204,为水流判断,判断用户是否在使用热水,若是,则执行S211;若否,则执行S205。S205判断内胆中水温是否小于t1,t1实际上是在出水电辅热下要达到合适出水温(比如45)的内胆最低温度,比如28度,若是,执行S207;若否,执行S206。进入S206,则代表当前内胆的温度是达到了在电辅热情况下提供适用热水的,此时再判断水量(升)乘水温(摄氏度)的值,计算内胆中热能有多少,n1是预设或由用户设置的值,此值代表热水输出的总量,如果大于n1(当也可以有等于),比如设n1为1680(28度*60度,经过电辅热可以提供60升45度的水)。当温度越高时,水量可以越少一些,也能满足使用要求,而当温度越低时,水量则要多一些才能满足使用要求,如果温度低于S205中的值,则在合适的流量下,内胆中再多的水也不能提供温度合适的热水,但在前面的步骤已经排除了这个情况,所以此步骤只要考虑总热量值的多少。n1的值设为多少,这都要根据产品要求而定,发热单元4的功率越低,此值越大;用水要求更高,此值也越大。当S205判断为是时,证明胆中的水温太低,出水温度在辅热下也达不到,所以先要把这些水加热到t1,执行S207,辅热循环加热模式是使水流调节切换装置调节到循环加热的位置,泵5启动,发热单元4工作,与热泵一起加热内胆中的水,执行以上动作后,程序又回到S201,如此循环,后续其它语句说回到S201,也是一个意思,即从头开始执行,在实际的产品中,程序不只是这一功能,还有更多的功能模块,对于电器类产品,程序不复杂都是采用串行模式,由于单片机的运算速度非常快,执行完所有程序只需要十几毫秒,这样不断的循环在人看来就如同同时发生的一样。当S206判断为否,证明内胆中的热量储备不足,如果此时有人要洗澡就不能有好的体验,可以通过提高水温以及增加水量的方式,提高水温不是优先方案,因为它有两个缺点:1、水温高会使发热单元4容易结水垢;2、用电辅热提高内胆水温会使热泵可加热空间变小,换热效率降低或达到一定温度后无法加热。所以最好是充合适温度的水。于是执行S208的辅热充水模式,用辅热加持使之尽快达到洗浴热能储备,水流调节切装置切换到充水状态,并控制流量大小使充水温度为t1,(比如28度,也可以是别的值),返回执行S201。S208也可通过提高水温,或同时提高温度及水量的方式,也在本专利的保护范围。当S206判断为是,则执行S209,看当前内胆的实际水位是否低于设置水位,若是,则执行S210,若否,则返回S201(示意图中是执行S220,其实与返回S201是等效的)。S210为无辅热充水模式,此时发热单元4不工作,泵5不启动,只是单纯的向内胆中加水,利用热泵加热胆中的水,在这种模式下,也需要控制充水的速度,防止加水过快使得内胆中温度低于t1(比如28度),那样在内胆热能储备足够的情况下还得启动电辅热,就算是电辅热也需要时间,导致当用户使用时达不到合适的温度。所以可以通过调小进水或分段加水的方式,使胆中的水以不低于t1的温度慢慢涨上来。
以上是在S204中判断无人用水时热泵与发热装置的一种控制方法。当判断有人用水时,执行S211,比较当前内胆温度t是否大于等于出水设置温度t2,如果判断为否,则内胆温度都低于出水设定温度,则必然需要发热单元4进行辅热。如果为是,进不进行辅热则还要考虑内胆中水量有多少的问题。当S211判断为否,执行S213,在此语句中会判断内胆温度比出水设置温度小了多少,根据小的程度来决定执行元件的工作方式。当S211判断为是(现在已经知道内胆温度是高于出水设置温度,但水量够不够一次合适的洗浴呢?),则执行S212,判断水量乘水温的积是否大于n2,n2的值考察不使用电辅热可提供多少热水,比如程序可以把n2设置为2700升度,相当于45度乘60升,当大于等于此值时,判断为是,执行S214,使用无辅热供水模式,用热水时发热单元4不工作,通过调节冷热水配比实现恒温出水,返回S201。如果小于n2,判断为否,执行S215。S215和S212类似,判断水量乘水温的积是否大于n3,n3的值比n2小,比如可以设置为2300升度,当判断为是时,执行S217,低档辅热供水模式,此模式发热单元4在热水器出水时只采用低档功率辅热,这是因为内胆中的热能储备已经快接近无需辅热的量了,只需要低档辅热供水即可,返回S201。当S215判断为否,则执行S218,判断水量乘水温的积是否大于n4,n4的数值更低一级,比如可设置为1900升度,当S218判断为是时,则执行S219,使用中档辅热供水模式,发热单元4采用中档加热,返回S201。当S218判断为否时,执行S216,采用高档辅热供水模式,发热单元4采用高档加热,返回S201。再接S211判断为否时执行的S213,进入此步骤,则证明内胆水温是低于出水设置温度的,所以必须要用电辅热加热,但我们还要进一步判断究竟比出水设置温度小多少,才决定采用多大的功率加热,当然,也可以根据出水温度通过可控硅直接调发热单元的功率实现恒温,但是,如果不是采用的可控硅控制,而是几组继电器,则温度变化不是平滑的,而且,如果使水流调节切换装置调内胆出水量,则会出现两个变量,两个变量的情况是很难对恒温进行调整的,必须要先固定一个参数。在S213中,判断内胆温度t是否小于出水设置温度t2减q1,q1可以根据实际使用情况设置一个合理的值,比如说设置8,如果判断为是,则证明内胆温度比出水设置温度小了8度或以上,在此种情况下,执行S216,采用高档辅热供水模式,发热单元4采用高档加热,返回S201。如果S213判断为否,则证明没有小8度那么多,此时则执行S215来判断内胆储存的热能有多少,进入前面一样的逻辑判断中。请注意这个8度也是经过实际考虑的,比如考虑了低档功率为2KW,在2KW下,水量开到4升,温升7度。
以上把发热单元的功率分为高中低,只是一个示例,还可以更多分段或不分段,还可以先固定好水量这个参数,采用可控硅对发热单元4进行无级调功实现恒温,但采用可控硅的方式有个缺点,比如虽然内胆温度高,但水量少,当水量乘水温的积还小于n4,本来要用高档加热,采用高档加热当然会大大超过设置出水温度了,所以此时要多配冷水,延长了使用时间。如果采用可控硅控制,水温高水量少的情况则发热单元可能采用的很低功率,或根本不加热。本实施例只是介绍了其中一种较优选的方案,基于本结构以及本控制方法,业内人士都可以轻易的想出更多独特的控制逻辑。
以上的控制方式可以使得这种极小功率的热泵热水器,在任何时候都能迅速的提供足够的热水,完美的兼顾了节能与体验,并且最大限度的把节能效果发挥到极致,在家庭使用场合,如果水箱在100升左右,此实际节能效果与大容积高功率的热泵热水器差不多或更高,因为本专利的小体积的热水器是安装在室内,功率太大的热泵需要室外机,结霜导致在冬天无法使用或完全相当于一台电热。且由于传统的热泵体积太大,安装位置一般离用水点都较远,导致每次使用管路中浪费大量热水以及沿途散热损失都较大。另外,在北半球或南半球的高纬度地区,传统热泵不适用,但本专利可实现一体的小体积热泵,安装在室内,完全不受影响。而且由于热泵的功率小,所借用室内的热能对室内温度完全没有影响,就算不借用,也通过墙壁散热损失了,相当于在没有影响供暖的情况下取了一些本来要损失的热能储存了起来。关于热水器中的水量,则是通过水位高度乘截面积得出,内胆的截面积是确定的,只要知道水位高度就知道水量,本专利的连续水位感应功能使得可适时计算出内胆水量。
图11在图10以及实施例一发热装置示意图的基础上增加了3d3支路及电磁阀30,此支路用于连接回水管(所谓的回水管就是为了零冷水循环加的除了冷、热水管之外的第三条管)。由于本专利的蓄热装置都是内胆敞开式,如果没有3d3支路,零冷水循环时内胆中的热水没法抽出,只能通过发热单元4对流经的水进行即热加热,在冬天进水温度低时,即热起码要12KW才能实现把较大水量加到合适温度,显然这么大的功率不能普及使用,除非有三相电的地方,所以当发热单元4的功率较低时,往往需要循环两遍,如果功率才3KW左右,往往要循环三四遍才能达到合适温度,这是完全不适用的。所以增加3d3零冷水循环管路,当需要循环时,电磁阀30打开,泵5开启,从内胆15中抽出热水,经3d1流入外部热水管路,管路中的冷水经回水管、3d3流回内胆中,在零冷水循环中,水流调节切换装置把自来水进水已经关闭,这样自来水才不会流入内胆中。当不处于零冷水循环时,阀30关闭,自来水不能从此处进入内胆中。发热装置的这个结构也可以用于实施例一中,本专利的示意图以及各实施例的特征都是可以互相调换或结合使用的,限于专利文件的篇幅,不可能把所有可能的结合方式都示出来,只能示出几种代表性方案。
图12与本专利所有实施例有两个显著的不同之处,在内胆15中增加了发热单元二31,利用本发热单元二加热内胆中的水,做为热泵的辅热装置。由于有了发热单元二,所以循环加热回路就没有了,充水支路也不需要经过发热单元4加热,直接通过与水流调切换装置3连接的3f支路充冷水即可。而水泵5的作用只用于出水增压、抽吸内胆热水、零冷水循环,没了本专利中其它结构所具备的循环加热、自动清洗功能。此结构的控制方法是:当水流开关没有启动,当热泵需要电辅热时,由发热单元二31辅助加热内胆中的存水;当水流开关启动(在使用热水),当出水需要电辅热时,由发热单元4辅助加热出水。此种方式不仅多了一个发热单元,还使得热保护装置以及继电器或可控硅需要两套,接电端子更是增加很多,不仅成本更高,还将导致故障率几倍的提升。仅作为本专利的一个保护性方案,因为热泵热水器采用此种结构,也同样解决了传统热泵方案的很多问题,比如体积太大安装受限,天气太冷冬天无法使用等问题。本结构同样适用于本专利的其它实施例。
图13展示的是主机分体安装的方案,图中冷凝器25安装在水箱15之外的容器中,这样的目的是方便把热泵与发热装置也集成在一个模块中。在图10~图12中也可以采用这种方式,但由于压缩机等部件还是稍大,而且质量稳定性也较好,所以一般直接与内胆一起装配在外壳中构成一个整体,对于易损的电子部分、水泵以及发热装置,由于体积可以做到较小,重量也轻,集成为一个模块是比较合适的,把发热装置与其它部分全部装配在外壳中,也在本专利的保护范围。图13的内胆15中还安装有换热器19,换热器的目的是为了零冷水循环的需要,前面有说过由于敞开式内胆,零冷水循环不得不采用图11中的结构,增加了电磁阀与接口,图13的方案则利用冷水先通过换热器19吸收内胆水温预热,再通过发热单元4加热,达到适用温度。在热泵热水器中,从节能方面考虑,图11的结构做零冷水循环是更好的方案,因为胆中的水一般情况是由热泵加热,能效很高,而图13必须要由普通的电热加热,但图11需要加水管,但图13则只要冷热水管未端加一个单向阀即可回水,不需要对用户的水路进行改造。
本专利中关于热水器的任意结构形式都可以与本实施例的热泵结合,与热泵结合之后,发热单元4可以使用钢杯发热器、发热膜发热器(包括厚膜发热器及石英发热器)、电磁发热器等,本专利中并没有限制发热单元4的结构形式。这是因为在本实施例中,发热单元4循环加热以及往内胆充水时,水温都不高,向内胆充水或循环加热的水温一般都不必超过40度,向外供水的加热温度一般也不超过48度,而且此发热单元几乎不需参与加热,只用于解决某些突发水量不够的问题,本实施例的结构及控制方式使得几乎都在采用热泵加热,所以不担心钢杯发热器结水垢。在即热热水器中,钢杯发热器就由于结垢问题被铸铝发热器慢慢取代,这是由于当关停水时,电热管蓄的热量把钢杯中的水加到了较高温度,可能达到80度,从而导致结垢速度快。本专利的结构则不会面临这个问题,在发热单元加热停止时,如果处于充水状态,先关发热单元再关水就自然被后续的冷水冷却;如处于循环加热或对外供水的加热状态,则在停止时,让水流调节切换装置旋到充水状态过一下冷水(其实根据实际控制方式,用完后本来就要充水),发热单元不会像即热热水器一样高温产生水垢。当然,由于发热单元以及热泵的冷凝器表面温度往往会较高,一般可以达到100度或以上,所以无论加热水温多低,还是会有水垢产生在表面,只是水垢产生的速度会非常缓慢。在本专利中,此缓慢结垢问题也得到了解决,进入清洗模式,机器控制水位刚好浸没冷凝器(由于内胆不承压,内胆中的水位可以任意控制),通过排水口用针管或从内胆上开设的孔洞注入白醋,稍稍加温后通过泵间断循环,对整个热水器内胆热水管路以及发热单元、冷凝器进行全面清洗除垢。本专利的热泵功率极低,冷凝器表面积也按比例做到较小,可直接弯成U形管置入内胆的底部,所以清洗时内胆中的水量很少,加的白醋也少,一次清洗最多一瓶白醋,水质差的地方一年进行一次就行,水质好的地方几年一次也行。清洗用户自己就可完成,无需专业清洗维护。传统热水器以及热泵热水器,无法使用此类清洗方式,这是因为内胆无法像本专利的热水器一样任意调节水位,如果清洗要么需要大量的白醋或者无法加入,如果通过关闭进水把水排空到合适位置,也不好把握水位高度,操作太麻烦,只好让专业人员清洗。
本专利也可以做成模块式,相比实施例一与实施例二,发热装置可以把热泵系统都包含进去,但考虑到热泵系统本身体积稍大,重量较重,且压缩机寿命长稳定性好,为了发热发热装置便于维修更换的初衷考虑,本实施例的发热装置只把实施例一与实施例二中发热装置的部件集成进去为优选,控制单元增加了热泵的控制,也一并集成在一起,发热单元上增加热泵电源接口以及排线的接口,与蓄热装置装配在一起的热泵主机连接。当然把本专利的发热装置与热泵系统集成在一起也是可行方案。
实施例四
图15至图18是本专利实施例四的示意图,本实施例没有实施一的射流装置,直接利用泵5抽吸蓄热装置中的热水,泵5的安装方式有两种:1、泵的进水口直接连接水箱,出水口连接自来水通道;2、冷热水温合后的通道连接泵的进水口。第一种方式存在泵长期承受高温,且当出口压强大于泵的扬程时,泵中没有水流通过会导致过热。第2种方式进入泵的水已经冷热混合,水温低,对泵的寿命及性能都有好处。所以当不采用射流装置时,泵的第二种安装方式会更理想。与有射流装置的情况对比,此种方案的水流量稍小,冷热水比例的调节没有射流方案稳定,但此方案也是切实可行的方案,不仅可以用在普通的电热水器中,也可以用于实施例三的热泵热水器中。
图15为泵的进水端直接连接蓄热装置的一种阀的结构及两块阀片配合的示意图,图15-1为定阀片,302a和302a1为冷水进口,这两个口在背面是连通的,连接自来水进水;302b为充水口,此口连通内胆15,给内胆充水;302f为循环口,此口也连接内胆,当循环加热时水从此口流回内胆中;302g为吸水口,此口连接泵,用于从内胆中抽吸热水;302h和302i为发热器接口,这两个接口分别连接发热单元4的两端,同时,302h还连接热水器出水端。图15-2为动阀片,303d为发热器连通槽,此槽使发热单元选择连通定阀片的两个冷水进口和循环口;303b及303b1两个槽也互相连通,为循环连通槽,此名字并不贴切,这两个口的功能很多,接下来详细说明。如图15-3所示,阀正处于循环加热的位置,定阀片使动阀片的302g连通302h(因为定阀片的303b及303b1是在背面互相连通的,正面是与定阀片密封配合的面),302i连通302f,构成内胆15、泵5、302g、302h、发热单元4、302i、302f、内胆的流通路径,水被泵从内胆中抽出,经发热单元加热后又回到内胆中,此时冷水进口被切断,如处于此状态有人用水,流出的是由泵抽出的高温热水,当水流开关感应到水流,应该使泵立即停止工作,防止用户烫伤,阀快速回到恒温出水的位置。图15-4为恒温出水(包括即热与速度热)温度最低的位置,此处303d完全覆盖302a,冷水流量最大,而303b几乎才刚与302g口接触,内胆中热水出不来,所以无论是处于即热还是速热时,此处温度都是最低的。水流路径为:自来水进水、302a、302i、发热单元4、热水器出水端,自来水流被发热单元加热后流出,通过调节发热单元4的功率和302a的出水面积来调节温度,如果是速热模块,则在调小302a出水面积的同时也增大了302g的出口面积,内胆的热水在泵4的作用下泵出,提高出水温度。图15-5为恒温出水温度最高的位置,303d只连接了302a及302a1很小的面积,此时冷水的流量很小,而303b完全覆盖了302g,此时如果是速热模式,内胆热水泵出的流量最大,内胆热水通过泵5,流经302g和302h,与经过发热单元4加热的水混合后从热水器出水端流出。即热模式状态,则只是通过单纯的关小自来水使温度升高,并不会得到内胆热水的辅助,即热模式时也不会循环加热内胆中的水,也不会往内胆充水,内胆中也无热水可用。图15-6为充水状态,流通路径为:自来水进水经302a1、302i、发热单元4、302h、302b、内胆,之所以水能从302h流到302b,就因为303b与303b1在背面是连通的。图示为充水状态水温最低的位置,可通过旋转动阀片调节302a1的进水面积以及302b的流通面积调节充水温度,为了保护泵,一般考虑把充水的温度直接加热到内胆的设定温度,否则必须使用泵来循环加热内胆,增加了泵的负担。
图15的阀的结构,在302g口上有单向阀,防止自来水从此处流入内胆,此结构使用泵直接抽吸内胆的高温水,不利于泵的寿命和质量稳定性,如果用于实施例三的热泵热水器中,则此影响较小,因为热泵内胆中的水温低。对于电热水器,则可以通过加大内胆容积降低水温,这样做同时还保护了发热单元,使之不易结水垢。
图16为采用了图15所示阀的水流调节切换装置爆炸图,本结构总体上与图4的结构大体类似,由于阀的结构不同,阀座301与蓄热装置连接的孔有变化,比如能从此爆炸图中看出单向阀310的安装位置处于阀座的底部,其对应的是定阀片的302g孔,317这个零件不仅用于压住单向阀,还同时与阀座上的充水口302b连通,这个件把302g、302b同时连接到泵5的出水端。之所以充水口302b要连接到泵的出水端而不直接连接到蓄热装置,目的就是排除泵中的空气,此结构中的泵与实施例一中完全不同,实施例一中自来水也通过泵,不会产生被空气充满的情况,此结构则极有可能,如果一旦泵中有空气,离心泵就会失去吸力(当然类似隔膜泵之内的就不担心,但那类泵很多缺点),所以充水口让水流先通过泵再进入内胆,就能及时排出空气。另外的好处就是省去了一个接口,结构更加紧凑。在本爆炸图中,还增加了溢水保护装置17的一种具体方案,本溢水保护的执行部分由定阀片二17a、动阀片二17b、旋杆17c、扭簧17d、旋杆盖17e、复位轮17f、锁扣17g组成,而施力部分的膨胀机构则没有画出。本机构的原理是,通过旋转复位轮17f带动旋杆17c,旋杆带动动阀片17b,使两块阀片打开,自来水可以通过,在此旋转的过程中,需要克服扭簧17d的弹力,达到位置后锁扣17g会在一个小弹簧(弹簧没有画出)的力的作用下卡在旋杆盖17e上,当阀处于通水的状态时,扭簧一直有一个使阀关闭的回旋力,但由于在锁扣的作用下没办法回旋。当发生内胆溢水事故时,膨胀装置会顶按锁扣使之脱扣,阀在扭簧的作用下关闭,切断热水器的进水。当膨胀机构的压力解除后,通过拉绳或别的机构旋转复位轮17f,阀又恢复到开启状态,热水器恢复供水。溢水保护装置还有更为简单的机构,不需要采用如图的两个阀片,可以直接用一个圆柱的结构密封,且可利用自来水本身的力完成自锁密封,本专利仅于篇幅不做具体介绍,都是极为简单的结构。
图17是另一种采用泵吸水的阀的结构,此结构中泵的安装方式比图15的更好,经过泵的水是已经经过了冷热混合,也可以完全抽吸蓄热装置中的水(把自来水进水完全关闭时),完全抽吸蓄热装置的水时,一般都是由于蓄热装置中水温较低时。此图发热单元的安装方式与图15也不同,图15的发热单元在对外恒温出水时,发热单元无法加热蓄热装置出来的水,只有当循环加热时,水的流向反过来,发热单元才能加热蓄热装置中的水。所以当图15的内胆水温较低时,比如低于28度,则没法通过发热单元加热提高出水水温,而图17则可以。
图17-1是定阀片的示意图,图17-2是动阀片的示意图,此阀与图5的区别就在于没有了射流口302d,所以关于接口功能就不重复说。图17-3处于充水状态,与实施例一相同,可通过调节302c的截面积来调节充水温度。17-4处于恒温出水自来水进水流量最大的位置,当泵5不启动时,由于热水器的管路与用水终端的阻力,吸入端315的位置必然处于正压,蓄热装置的水无法输出,由于315口上装有单向阀或其它止逆装置,自来水也无法从此处进入蓄热装置中。如果泵启动,虽然泵在入口制造了一定的真空度,但只要进水压力不是太小,阀处于此位置时315口还将入于正压状态,蓄热装置还是无法向外提供热水。通过旋转动阀片调小302e的通水截面,当自来水小被限制到足够小后,泵的吸力在吸入口315处形成负压(小于一个大气压),此时蓄热装置中的热水从此口被吸入,与冷水混合后经过泵再经过发热单元4流出。图17-5所示,303a口与302e重合面积已经很小,此状态时主要都是从蓄热装置中吸水,还可以通过开口尺寸的设计使得恒温出水状态时冷水也能完全关闭,此时便只能从蓄热装置中抽水了。图17-6正处于循环加热状态,此状态时自来水进水已经被切断,蓄热装置中的水从315口被抽出,经过发热单元4加热后进入3d2支路,再流经302c和302b后回到蓄热装置中。
图18为泵吸水的其它结构形式示意图,如图18-1所示,其实就是图17的结构简图,且与实施例一中的6-1图只是少了射流装置(对应的阀也少了射流口),不多做介绍。18-2是图16的结构简图,此结构的阀则采用图15的阀或者如图示中的使用三个分立的阀来实出水流调节切换装置的功能,通过实施例一的介绍,本图无需多做介绍,比如3b是一个换向装置,可使发热单元分别连通3b1或3b2支路,而3a其实就是用于调流量,包括自来水或内胆出水大小,3c其实就只负责3c1支路的通断。如图示中的状态其实就正处于内胆充水的状态,因为连通了进水,也连通了3c1支路,此图也不多做介绍。图18-3所示,发热单元4置于泵的进水端,这样有利用减小泵的出口阻力,增大流量。只介绍它的三个模式的流能路径,如图所示3b与3b1断开,热水器处于循环加热或自动清洗的状态,3a连通内胆,泵5启动,水流路径为:内胆15、3e、泵5、3d2支路、发热单元4、3a、水流开关、内胆15,当处于循环加热状态时,发热单元与泵工作,自动清洗状态时,泵间断工作,发热单元可能工作也可能不工作。当3b与3b1接通时,3a有两种状态,一种是与内胆和热水器出水端同时连通,热水器处于充水状态,水流经过3b1、3b、发热单元4、3a再进入内胆15。当3a只连通热水器出水端时,热水器处于恒温出水状态。图18-4的水流调节与切换状态分为三个部分:3a、3b、3c,此图的泵5进水端直接连接内胆,3a只控制进水流量,对泵抽吸内胆的那一路热水没有控制。它的三种状态的流通路径如下,循环加热时,3b连通3b2,水流路径为内胆、泵5、3a、发热单元4、3b、3b2、内胆。充水模式时3b连通3b1,3c连通3c1,水流路径为3b1、3b、发热单元4、3a、3c、3c1、内胆。图示状态为恒温出水状态,3b连通3b1,3c断开3c1,水流路径为3b1、3b、发热单元4、3a、3c、热水器出水端,同时,速热模式时还有从内胆经过泵5抽出来的热水混合这一条水路。
上述几个实施例中的发热单元4,可以是任意发热方式,结构上可以是单流道或者双流道的发热器,双流道指的是即热加热与循环加热在发热单元中水流流过不同的通道(比如在铸铝发热器中做两条换热管,一条用于即热加热,一条用于循环加热),而单流道指即热加热与循环加热是流过同一通道。由于单流道是更为简单及实用的结构,本专利中阀的结构适用于单流道发热器,只需要对阀的结构进行调整即可采用双流道的发热器,双流道的结构也在本专利的保护范围。或者,利用两组发热单元来分别实现即热加热与循环加热,也在本专利的保护范围。
 上述几个实施例并不能穷尽所有的结构与方法,上述所有方案的组合以及任何通过本发明能轻易想到的方案,均在本专利的保护范围内。

Claims (16)

  1. 一种热水器,包括控制单元(7)、发热单元(4)、水流检测单元、温度传感器(14),其特征在于:还包括泵(5)、水流调节切换装置(3)、即热通道、吸水通道、止逆装置,所述止逆装置安装在吸水通道上,所述水流调节切换装置用于调节水流大小、切换水流路径中的至少一项,所述泵安装在即热通道或吸水通道上,用于抽吸热水、出水增压、零冷水循环中的一项或多项。
  2. 根据权利要求1所述的一种热水器,其特征在于:还包括循环通道,所述循环通道与即热通道或吸水通道共用泵所在的支路,所述泵用于驱动循环通道的水流,所述水流调节切换装置通过切换流通路径使所述发热单。
  3. 根据权利要求1所述的一种热水器,其特征在于:还包括蓄热装置(A),所述蓄热装置包括内胆(15)、保温层,所述内胆包括内胆出水口(A4)、内胆循环口(A3),所述内胆出水口的进水端设在内胆底部,所述内胆还包括排气口,所述内胆通过排气口与大气连通。
  4. 根据权利要求1所述的一种热水器,其特征在于:还包括射流装置、旁路通道(316),所述射流装置包括进水端、出水端、吸入端(315),所述射流装置可以是独立的部件或集成在其它部件上,所述射流装置用于抽吸蓄热装置(A)中的热水,所述射流装置为一个或多个并联,所述旁路通道与所述射流装置的射流通道并联,所述泵(5)安装在射流装置的出水端或吸入端的水流通道上。
  5. 根据权利要求1所述的一种热水器,其特征在于:还包括水位控制单元,所述水位控制单元由水位感应单元和充水机构组成,所述水位感应单元检测水位位置,所述充水机构集成在所述水流调节切换装置(3)上或者是单独的电磁阀或电机控制的阀。
  6. 根据权利要求5所述的一种热水器,其特征在于:所述水位感应单元包括单点水位感应单元(9)和连续水位感应单元(6),所述单点水位感应单元采用电磁、电阻、电容、机械波、电磁波的相关感应元件,用于给连续水位感应单元校准及双重水位保护,所述连续水位感应单元由鼓膜装置、压力传感器(601)组成,所述鼓膜装置把水位高度转化为压力大小,压力传感器把压力大小转化为电信号计算出水位高度。
  7. 根据权利要求1所述的一种热水器,其特征在于:所述水流调节切换装置包括步进电机(304)、阀座(301)、动阀片(303)、定阀片(302),所述阀座、定阀片、动阀上设有相应的孔道,通过步进电机旋转动阀片,使两块阀片上的孔道按不同方式连通,使各接口按当前工况连通、关闭、调节开口大小,实现即热加热、循环加热、充水或充水加热、对出水或充水温度调温、自动清洗中的一项或多项,所述定阀片与阀座上的相应孔道一一对应,通过阀座上的接口与热水器相应管路连接。
  8. 根据权利要求7所述的一种热水器,其特征在于:所述阀座与定阀片包括冷水进口(302a)、热水进口(302c)、充水口(302b)、射流口(302d)、旁路口(302e);所述动阀片包括冷水分配槽(303a)、循环连通槽(303b)、充水连通槽(303c),所述动阀片包括三个工作区间,旋转动阀片使冷水分配槽与射流口及旁路口连通,热水器处于恒温出水状态;旋转动阀片使循环连通槽连通定阀片的热水进口(302c)与充水口(302b)并关闭冷水进口,热水器处于循环加热或自动清洗状态,可启动泵和发热单元对蓄热装置进行循环加热;旋转动阀片使冷水连通槽在旁路口旋转并使充水连通槽连通定阀片的热水进口与充水口,热水器处于对蓄热装置的充水状态,在恒温出水及充水状态可通过调节相关孔道的通水面积进行恒温调节。
  9. 根据权利要求7所述的一种热水器,其特征在于:所述阀座与定阀片包括冷水进口(302a)、热水进口(302c)、充水口(302b)、旁路口(302e);所述动阀片包括冷水分配槽(303a)、循环连通槽(303b)、充水连通槽(303c),所述动阀片包括三个工作区间,旋转动阀片使冷水分配槽与旁路口连通并不使302b和302c连通,热水器处于恒温出水状态;旋转动阀片使循环连通槽连通定阀片的热水进口(302c)与充水口(302b)并关闭冷水进口,热水器处于循环加热状态,可启动泵和发热单元对蓄热装置进行循环加热;旋转动阀片使冷水连通槽在旁路口旋转并使充水连通槽连通定阀片的热水进口与充水口,热水器处于对蓄热装置的充水状态,在恒温出水及充水状态可通过调节相关通孔的过水面积进行恒温调整。
  10. 根据权利要求1所述的一种热水器,其特征在于:还包括溢水保护装置,所述溢水保护装置包括膨胀装置、阀、复位机构,当内胆水位过高时,内胆的水溢出,利用溢出水积存的水柱高度产生的压强作用于鼓膜装置或溢出水使材料吸水膨胀或与其它物质产生化学反应膨胀,推动阀关闭,切断热水器进水,复位机构用于恢复供水。
  11. 根据权利要求1至10任意一项所述的一种热水器,其特征在于:所述外壳、控制单元(7)、发热单元(4)、泵(5)、水流调节切换装置(3)、水流检测单元、温度传感器(14)装配在一起构成发热装置(B),所述内胆(19)、保温层装配在一起构成蓄热装置(A);所述发热装置包含相应的接口与所述蓄热装置上接口一一对应,所述发热装置与所述蓄热装置可拼接在一起构成一个整体或由管路连接分体安装。
  12. 根据权利要求1至10任意一项所述的一种热水器,其特征在于:还包括压缩机(28)、蒸发器(27)、冷凝器(25)、节流装置(29),所述压缩机、蒸发器、冷凝器、节流装置组合在一起构成热泵,所述控制单元、水流检测单元、温度传感器、水流调节切换装置(3)、发热单元(4)、泵(5)组合在一起构成辅热装置,所述热泵与所述辅热装置结合在一起构成一种新型热泵热水器。
  13. 根据权利要求12所述的一种热水器,其特征在于:还包括换热器(19),所述换热器安装在蓄热装置中,所述换热器的安装位置使得自来水先通过换热器再流经发热单元(4)。
  14. 根据权利要求12所述的一种热水器,其特征在于:还包括发热单元二(31),所述发热单元二装配在内胆(15)中,对内胆中的蓄热介质进行辅助加热。
  15. 一种热水器的控制方法,其特征在于,所述控制方法包括以下步骤:
    步聚1、获取热水器的温度、水量、水流状态信息;
    步骤2、把内胆温度与内胆水量两个参数相乘得积n;
    步骤3、把热水器的各项温度值、水量以及积n与相关预设值进行比较;
         步骤4、根据比较结果及水流状态控制执行元件的工作状态。
  16. 根据权利要求15所述的一种热水器的控制方法,其控制方法还包括:
         步骤1、比较蓄热装置的当前温度与设置温度,如低于设置温度,热泵启动,反之热泵停止,执行步骤2;
         步骤2、出水水流开关是否启动?若否,执行步骤3;若是,执行步骤9;
    步骤3、蓄热装置中水温t是否小于最小许用温度t1?若是,执行步骤4;若否,执行步骤5;
    步骤4、执行辅热循环加热模式,回到步骤1;
    步骤5、水量乘水温的积是否大于等于n1?若否,执行步骤6;若是,执行步骤7;
    步骤6、执行辅热充水加热模式,回步骤1;
    步骤7、当前水位是否小于设置水位?若是,执行步骤8,若否,回步骤1;
    步骤8、执行无辅热充水模式,回步骤1;
    步骤9、蓄热装置中水温t是否大于等于出水设置温度t2?若是,执行步骤10;如否,执行步骤17;
    步骤10、蓄热装置中的水量乘水温的积是否大于等于n2?若是,执行步骤16,若否,执行步骤11;
    步骤11、蓄热装置中的水量乘水温的积是否大于等于n3?若是,执行步骤15,若否,执行步骤12;
    步骤12、蓄热装置中的水量乘水温的积是否大于等于n4?若是,执行步骤14,若否,执行步骤13;
    步骤13、高档辅热供水模式,回步骤1;
    步骤14、中档辅热供水模式,回步骤1;
    步骤15、低档辅热供水模式,回步骤1;
    步骤16、无辅热供水模式,回步骤1;
         步骤17、蓄热装置中水温t是否小于出水设置温度t2-q1,若是,执行步骤13,若否,执行步骤11。
PCT/CN2022/081607 2022-03-07 2022-03-18 一种热水器及控制方法 WO2023168744A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210221989.3A CN114484871A (zh) 2022-03-07 2022-03-07 一种热水器及控制方法
CN202210221989.3 2022-03-07

Publications (1)

Publication Number Publication Date
WO2023168744A1 true WO2023168744A1 (zh) 2023-09-14

Family

ID=81486116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081607 WO2023168744A1 (zh) 2022-03-07 2022-03-18 一种热水器及控制方法

Country Status (2)

Country Link
CN (1) CN114484871A (zh)
WO (1) WO2023168744A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185271A (ja) * 2001-12-17 2003-07-03 Matsushita Electric Ind Co Ltd 温水器
JP2007051829A (ja) * 2005-08-18 2007-03-01 Corona Corp 蓄熱式給湯装置
CN201028784Y (zh) * 2007-02-03 2008-02-27 珠海格力电器股份有限公司 即热和蓄热功能相结合的热泵热水系统
CN105526709A (zh) * 2014-09-28 2016-04-27 青岛经济技术开发区海尔热水器有限公司 一种热水器的辅助热泵装置及控制方法
CN106766227A (zh) * 2017-02-14 2017-05-31 广东万家乐燃气具有限公司 一种热水器智能恒温循环装置
CN111197867A (zh) * 2018-11-20 2020-05-26 芜湖美的厨卫电器制造有限公司 热水器的控制方法及热水器
CN111207509A (zh) * 2020-03-02 2020-05-29 伍柏峰 一种泵循环热水器
CN112902434A (zh) * 2021-04-02 2021-06-04 伍柏峰 一种活水多模恒温热水器
CN113028642A (zh) * 2021-04-23 2021-06-25 伍柏峰 一种防垢节能恒温热水器
CN113531887A (zh) * 2021-08-20 2021-10-22 伍柏峰 一种高效智能自清洁热水器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185271A (ja) * 2001-12-17 2003-07-03 Matsushita Electric Ind Co Ltd 温水器
JP2007051829A (ja) * 2005-08-18 2007-03-01 Corona Corp 蓄熱式給湯装置
CN201028784Y (zh) * 2007-02-03 2008-02-27 珠海格力电器股份有限公司 即热和蓄热功能相结合的热泵热水系统
CN105526709A (zh) * 2014-09-28 2016-04-27 青岛经济技术开发区海尔热水器有限公司 一种热水器的辅助热泵装置及控制方法
CN106766227A (zh) * 2017-02-14 2017-05-31 广东万家乐燃气具有限公司 一种热水器智能恒温循环装置
CN111197867A (zh) * 2018-11-20 2020-05-26 芜湖美的厨卫电器制造有限公司 热水器的控制方法及热水器
CN111207509A (zh) * 2020-03-02 2020-05-29 伍柏峰 一种泵循环热水器
CN112902434A (zh) * 2021-04-02 2021-06-04 伍柏峰 一种活水多模恒温热水器
CN113028642A (zh) * 2021-04-23 2021-06-25 伍柏峰 一种防垢节能恒温热水器
CN113531887A (zh) * 2021-08-20 2021-10-22 伍柏峰 一种高效智能自清洁热水器

Also Published As

Publication number Publication date
CN114484871A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
CN111536573B (zh) 一种太阳能热水装置及其控制方法
CN104101106A (zh) 一种直热式双源热泵热水机及其控制方法
JP5462009B2 (ja) 太陽熱給湯システム
CN111207509A (zh) 一种泵循环热水器
CN112902434A (zh) 一种活水多模恒温热水器
CN201149382Y (zh) 热水器节水装置
JP2001153458A (ja) 給湯装置
WO2023168744A1 (zh) 一种热水器及控制方法
CN201262474Y (zh) 水流脉冲控制热水器
CN1837711B (zh) 分体式太阳能热水器
CN219674472U (zh) 一种热水器
CN204006660U (zh) 一种直热式双源热泵热水机
CN114264071B (zh) 一种空气能和太阳能一体化热水及供暖装置
CN109737482A (zh) 一种谷电时段蓄热供暖系统及方法
CN202008187U (zh) 太阳能、空气源及燃气互补使用的供热供暖系统
CN2830961Y (zh) 智能电热水器
CN102620431A (zh) 一种适用于各型热水器的节水装置
CN200940964Y (zh) 太阳能热水器冷热水循环转换器
CN111121271A (zh) 一种基于热水恒温的室内混合电力控制系统
CN211820759U (zh) 一种具有热能回收功能的水路温控阀
CN115183311B (zh) 一种高效利用太阳能的三水箱生活热水系统及其控制方法
CN2890761Y (zh) 太阳能自动供水排空阀
CN211695370U (zh) 一种泵循环热水器
CN218787348U (zh) 一种用于供热管网水力平衡的装置
CN101324353A (zh) 太阳能供热水系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930379

Country of ref document: EP

Kind code of ref document: A1