WO2023167423A1 - 진동 저감부 및 이를 포함하는 변압기 - Google Patents

진동 저감부 및 이를 포함하는 변압기 Download PDF

Info

Publication number
WO2023167423A1
WO2023167423A1 PCT/KR2023/001057 KR2023001057W WO2023167423A1 WO 2023167423 A1 WO2023167423 A1 WO 2023167423A1 KR 2023001057 W KR2023001057 W KR 2023001057W WO 2023167423 A1 WO2023167423 A1 WO 2023167423A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
vibration
space
resonance
coupled
Prior art date
Application number
PCT/KR2023/001057
Other languages
English (en)
French (fr)
Inventor
김성언
Original Assignee
엘에스일렉트릭 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스일렉트릭 주식회사 filed Critical 엘에스일렉트릭 주식회사
Publication of WO2023167423A1 publication Critical patent/WO2023167423A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/33Arrangements for noise damping
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/125Transformers

Definitions

  • the present invention relates to a vibration reducing unit and a transformer including the same, and more particularly, to a vibration reducing unit capable of reducing vibration or noise generated during operation and radiated to the outside, and a transformer including the same.
  • a transformer collectively refers to a device that converts a value of AC voltage or AC current using electromagnetic induction.
  • the transformer includes a coil to which an alternating current is applied and an iron core around which the coil is wound.
  • a plurality of coils are provided, and each is wound around an iron core.
  • alternating current When alternating current is applied to any one coil, magnetic flux is formed in the iron core. As the magnetic flux changes, a current induced through electromagnetic induction passes through the other coil. The induced current has a current or voltage different from the applied alternating current and can be transmitted to an external load.
  • the iron core provided in the transformer is formed by stacking a plurality of iron plates. As the transformer operates, magnetostriction occurs in the iron core. Due to the magnetostrictive phenomenon, vibration and noise may be generated in the iron core. The generated vibration and noise may be transmitted to the outside and adversely affect the environment in which the transformer is disposed.
  • the generated vibration may be transmitted to other components of the transformer and other devices connected to the transformer. Accordingly, there is a concern that the coupling state between the components of the transformer and the coupling state between the transformer and other devices may become unstable.
  • Korean Patent Document No. 10-1530347 discloses an anti-vibration support device for a substation transformer. Specifically, an anti-vibration support device for a substation transformer capable of supporting a substation transformer, but absorbing vibration of the transformer itself and vibration due to an external influence transferred to the transformer to block the generated vibration is disclosed.
  • the anti-vibration support device disclosed in the prior literature can support only a transformer of a predetermined size and weight. That is, when the weight or size of the transformer is changed, the anti-vibration support device must be redesigned according to the increased weight or size. That is, the anti-vibration supporting device disclosed in the prior art supports only transformers of a predetermined size and weight, and is difficult to support transformers of other sizes and weights.
  • the anti-vibration support device disclosed in the prior art is formed to support the transformer from the lower side. Therefore, the height of the transformer and the anti-vibration support device is increased, and there is a limit that is difficult to accommodate in an existing substation.
  • Korean Patent Document No. 10-1661138 discloses an anti-vibration support device for a substation transformer. Specifically, an anti-vibration support device for absorbing vibration of a transformer by stacking a buffer block inside a box partially buried in the ground and coupling a transformer to the buffer block is disclosed.
  • the anti-vibration support device disclosed in the prior art document is buried in the ground, that is, underground. Therefore, when the transformer is disposed away from the ground, it is difficult to apply the anti-vibration support device according to the prior art document.
  • the anti-vibration support device disclosed in the prior art document is also configured to support the transformer from the lower side. Therefore, it is possible to absorb the vibration generated by the operation of the transformer from the lower side, but it is difficult to reduce the vibration radiated in the other direction.
  • the present invention is to solve the above problems, and an object of the present invention is to provide a vibration reducing unit having a structure capable of reducing vibration or noise radiated to the outside and a transformer including the same.
  • Another object of the present invention is to provide a vibration reducing unit having a structure capable of offsetting and reducing generated vibration or noise and a transformer including the same.
  • Another object of the present invention is to provide a vibration reducing unit having a structure capable of reducing various types of vibration or noise and a transformer including the same.
  • Another object of the present invention is to provide a vibration reducing unit having a structure capable of various structural modifications and a transformer including the same.
  • Another object of the present invention is to provide a vibration reducing unit having a structure capable of reducing radiated vibration or noise at various locations and a transformer including the same.
  • the first frame forming a part of the outer appearance; a second frame that forms another part of the exterior and is combined with the first frame; a resonance space formed inside the second frame to reduce transmitted vibration or noise by resonance; and a pipe member that is coupled to the first frame and communicates with the outside of the resonance space.
  • a vibration reducing unit may be provided that is formed through the first frame and includes a through hole communicating with the outside of the resonance space.
  • a plurality of through-holes are formed, and the plurality of through-holes are disposed to surround the pipe member, and the vibration reducing unit may be provided.
  • the extension length of the pipe member may be formed to be greater than or equal to the thickness of the first frame, so that one end of the pipe member in the extension direction protrudes from the first frame.
  • the one end of the pipe member may be provided with a vibration damping unit located in the resonance space.
  • the first frame is partitioned into a plurality of modules, a plurality of resonance spaces are formed, and the plurality of resonance spaces are arranged to overlap each other with the plurality of modules along the extension direction of the pipe member,
  • a vibration reducing unit may be provided.
  • a plurality of pipe members are provided, the plurality of pipe members are penetrated through the plurality of modules, and each end of the plurality of pipe members is respectively positioned in the plurality of resonance spaces.
  • a vibration damping unit may be provided that is formed through the first frame and includes a through hole that communicates the resonance space with the outside, and the through hole is formed in each of the plurality of modules.
  • a plurality of through-holes are formed in each of the plurality of modules, and the plurality of through-holes communicate with the plurality of resonance spaces, respectively, and a vibration reducing unit may be provided.
  • a vibration reducing unit may be provided that is located in the resonance space and includes a barrier rib partitioning the resonance space into a plurality of spaces.
  • the barrier rib may include a portion extending in one direction and another portion extending in another direction, and the one portion and the other portion intersect and extend at a predetermined angle, and a vibration reducing portion may be provided.
  • the conducting unit for being energized with an external power source and a load, transforming the power transmitted from the power source and providing it to the load; a housing including an accommodation space accommodating the conducting part and a wall part surrounding the accommodation space; and a vibration reducing unit accommodated in the accommodation space and coupled to the housing to reduce vibration or noise generated from the conducting unit, wherein the vibration reducing unit forms one side facing the conducting unit.
  • 1 frame a second frame coupled to the first frame and the wall portion, respectively; a resonance space formed inside the second frame to reduce transmitted vibration or noise by a resonance phenomenon; and a pipe member that is through-coupled to the first frame and communicates the resonance space and the accommodation space.
  • the vibration reducing unit may be provided with a transformer that is formed through the first frame and includes a plurality of through holes communicating between the resonance space and the accommodation space.
  • the resonant frequency of the vibration or noise generated in the resonant space is calculated by taking at least one of the extension length and cross-sectional area of the pipe member, the extension length and cross-sectional area of the through hole, and the volume of the resonant space as a factor, transformer may be provided.
  • the pipe member may be extended by a length equal to or greater than the thickness of the first frame, so that one end of the extension direction is located in the resonance space.
  • the vibration reducing unit and the transformer including the same can reduce vibration or noise radiated to the outside.
  • the vibration reducing unit is coupled to the wall portion of the housing.
  • the vibration reducing unit is accommodated in the accommodation space of the housing and coupled to the inner surface of the wall unit.
  • the vibration damping unit includes a first frame facing a conductive part serving as a vibration source or a noise source, and a second frame coupled to the first frame and the wall part, respectively.
  • a resonance space capable of canceling generated vibration or noise by using a resonance phenomenon is formed inside the second frame.
  • a pipe member is penetrated through the first frame, and a through hole is formed through the surface of the first frame to communicate the accommodation space and the resonance space.
  • vibration or noise generated from the conducting part can be canceled and reduced by the vibration reducing part and then radiated to the outside through the wall part. Accordingly, the generated vibration or noise can be radiated to the outside of the transformer after being reduced.
  • the vibration reduction unit and the transformer including the same can offset and reduce generated vibration or noise.
  • the vibration reducing unit is configured to reduce vibration or noise generated by using a resonance phenomenon. Vibration generated by the vibration damping unit may be determined by a pipe member provided in the vibration reducing unit, a shape of a through hole and a resonance space, and the like.
  • the vibration reducing unit may be designed according to a resonant frequency corresponding to the frequency of vibration or noise generated in the conducting unit.
  • the vibration reduction unit can reduce vibration or noise formed in the form of a wave by offsetting it. Accordingly, vibration or noise generated from the conducting portion can be more effectively reduced.
  • the vibration reducing unit and the transformer including the same can reduce various types of vibration or noise.
  • the resonance frequency of the vibration reducing unit may be adjusted by changing its structure.
  • the resonance frequency may be adjusted using factors such as the length and cross-sectional area of the pipe member of the vibration damping unit, the length and cross-sectional area of the through hole, and the volume of the resonance space.
  • the structure of the vibration reducing unit is changed to correspond to the frequency of vibration or noise generated in the conducting unit, so that generated vibration or noise can be effectively reduced.
  • the first frame constituting the vibration damping unit may be partitioned into a plurality of modules.
  • the resonance space formed inside the second frame may also be partitioned into a plurality of spaces by partition walls.
  • a plurality of partitioned modules and spaces may be configured to cancel vibrations or noises of different frequencies.
  • the vibration damping unit may be provided as a miniaturized module.
  • the miniaturized module can be formed with different sized pipe members, through holes and resonance spaces. Accordingly, the plurality of miniaturized modules can cancel vibrations or noises of different frequencies.
  • the vibration reducing unit and the transformer including the same can reduce radiated vibration or noise at various locations.
  • a plurality of vibration reducing units may be provided.
  • a plurality of vibration damping units may be coupled to a plurality of wall units surrounding the accommodating space, respectively. That is, the vibration reducing units may be disposed at different locations to reduce vibration or noise radiated from the conducting unit in various directions.
  • vibration or noise generated from the conductive part may be reduced at various locations and then transmitted to the outside of the transformer.
  • FIG. 1 is a perspective view showing a transformer according to an embodiment of the present invention.
  • FIG. 2 is a partially opened perspective view showing the inside of the transformer of FIG. 1;
  • FIG. 3 is a perspective view showing a state in which the vibration reducing unit according to an embodiment of the present invention is provided in the transformer of FIG. 1;
  • FIG. 4 is a perspective view illustrating the vibration reducing unit of FIG. 3 .
  • FIG. 5 is a use state diagram illustrating an example of an installation method of the vibration reducing unit of FIG. 3 .
  • FIG. 6 is a use state diagram illustrating another example of the installation method of the vibration damping unit of FIG. 3 .
  • FIG. 7 is a perspective view (a) and a side cross-sectional view (b) illustrating the transformer of FIG. 1 and a vibration reducing unit according to a modified example.
  • FIG. 8 is a perspective view (a) and a side cross-sectional view (b) illustrating a vibration reducing unit according to the transformer of FIG. 1 and another modified example.
  • FIG. 9 is a partially opened perspective view showing a state in which the vibration reducing unit according to another embodiment of the present invention is provided in the transformer of FIG. 1 .
  • FIG. 10 is a cross-sectional side view illustrating a transformer and a vibration reducing unit of FIG. 9 .
  • FIG. 11 is a cross-sectional side view illustrating the transformer of FIG. 9 and a vibration reducing unit according to a modified example.
  • FIG. 12 is a cross-sectional side view illustrating the transformer of FIG. 9 and a vibration reducing unit according to another modified example.
  • FIG. 13 is a cross-sectional side view illustrating the transformer of FIG. 9 and a vibration reducing unit according to another modified example.
  • FIG. 14 is a partially opened perspective view showing a state in which the vibration reducing unit according to another embodiment of the present invention is provided in the transformer of FIG. 1 .
  • FIG. 15 is a perspective view illustrating the vibration reducing unit of FIG. 14;
  • FIG. 16 is an exploded perspective view illustrating the vibration reducing unit of FIG. 14;
  • FIG. 17 is a perspective view (a) and a plan view (b) of another angle illustrating the vibration reducing unit of FIG. 14 .
  • FIG. 18 is a cross-sectional side view of the vibration reducing unit of FIG. 14;
  • FIG. 19 is a perspective view illustrating a modified example of the vibration reducing unit of FIG. 14;
  • FIG. 20 is a perspective view showing another modified example of the vibration reducing unit of FIG. 14;
  • Words and terms used in this specification and claims are not construed as limited in their ordinary or dictionary meanings, but in accordance with the principle that the inventors can define terms and concepts in order to best describe their inventions. It should be interpreted as a meaning and concept that corresponds to the technical idea.
  • conductive means that one or more members are connected to transmit current or electrical signals.
  • the current may be formed in a wired form by a wire member or the like or a wireless form such as Wi-Fi, Bluetooth, or RFID.
  • communication means that one or more members are fluidly connected to each other.
  • the communication may be formed by opening the insides of each member to each other or by other members such as conduits and pipes.
  • the transformer 10 according to an embodiment of the present invention is configured to reduce vibration or noise due to magnetostriction generated in the iron core member 210 during operation. This may be achieved by vibration reducing units 300, 400, and 500 according to various embodiments to be described later.
  • the transformer 10 is electrically connected to the outside.
  • the transformer 10 may receive current, which is a voltage adjustment target.
  • the transformer 10 may transfer the voltage-adjusted current to the outside.
  • the current may be alternating current (AC).
  • the transformer 10 includes a housing 100 and a conducting part 200 . Further referring to FIGS. 3 to 20 , the transformer 10 according to the illustrated embodiment includes vibration reducing units 300 , 400 , and 500 according to various embodiments.
  • the housing 100 forms the outer shape of the transformer 10 .
  • a space is formed inside the housing 100 to accommodate various components of the transformer 10 .
  • the space of the housing 100 is energized with the outside, and current, which is a target of voltage change, can be transmitted. Also, the transformed current may be transferred to the outside again.
  • the housing 100 forms the outer shape of the transformer 10 and may have any shape capable of mounting various components.
  • the housing 100 has a quadrangular cross-section in which an extension length in the left-right direction is longer than an extension length in the front-back direction, and has a rectangular column shape extending in the vertical direction.
  • the housing 100 includes a wall portion 110, an accommodation space 120, and a reinforcing rib 130. Further, referring to (a) of FIG. 5 , the housing 100 according to the illustrated embodiment further includes a filling space 140 .
  • the wall portion 110 forms an outer circumference of the housing 100 .
  • the wall portion 110 surrounds the space formed inside the housing 100, that is, the accommodation space 120 from the outside.
  • a plurality of wall parts 110 may be provided.
  • a plurality of wall parts 110 may form the outer circumference of the housing 100 at different positions.
  • the wall portion 110 includes a pair facing each other spaced apart in the vertical direction, another pair facing each other spaced apart in the left and right directions, and one wall portion located on the rear side. Each pair of wall parts 110 are disposed facing each other with the accommodation space 120 interposed therebetween.
  • the wall portion 110 forms an outer circumference of the housing 100 and may have an arbitrary shape capable of surrounding the accommodation space 120 .
  • the wall portion 110 has a rectangular cross section and is provided in a rectangular plate shape extending to a predetermined thickness.
  • the plurality of wall parts 110 may be continuous with each other at a predetermined angle. In the illustrated embodiment, among the plurality of wall parts 110, the wall parts 110 disposed adjacent to each other are vertically continuous with each other. The coupling method of the plurality of wall parts 110 may be changed according to the structure of the housing 100 .
  • a plurality of wall parts 110 are arranged to surround the accommodation space 120 at a plurality of locations.
  • the plurality of wall parts 110 are disposed to surround the accommodation space 120 at front, rear, upper, lower, left and right sides, respectively.
  • the wall portion 110 is also provided on the front side, and may be disposed to surround the front side of the accommodation space 120 .
  • the wall portion 110 includes a first wall 111, a second wall 112, a third wall 113, a fourth wall 114 and a fifth wall 115.
  • the first wall 111 is provided with any one of the wall parts 110 .
  • the first wall 111 surrounds the accommodation space 120 from one side.
  • the first wall 111 is disposed on the front side, enclosing the accommodating space 120 on the front side.
  • the second wall 112 is provided with the other one of the wall parts 110 .
  • the second wall 112 surrounds the accommodating space 120 from the other side.
  • the second wall 112 is disposed on the left side, enclosing the accommodating space 120 on the left side.
  • the third wall 113 is provided with another one of the wall parts 110 .
  • the third wall 113 surrounds the accommodating space 120 on the other side.
  • the third wall 113 is disposed on the right side, enclosing the accommodating space 120 on the right side.
  • the third wall 113 faces the second wall 112 with the accommodating space 120 therebetween.
  • the fourth wall 114 is provided with another one of the wall parts 110 .
  • the fourth wall 114 encloses the accommodating space 120 on another side.
  • the fourth wall 114 is arranged on the rear side, enclosing the accommodating space 120 on the rear side.
  • the fourth wall 114 is disposed facing the first wall 111 with the accommodating space 120 therebetween.
  • a plurality of reinforcing ribs 130 are formed on at least one of the first wall 111 , the second wall 112 , the third wall 113 , and the fourth wall 114 .
  • reinforcing ribs 130 are formed on all of the first to fourth walls 111, 112, 113, and 114.
  • the reinforcing rib 130 extends in the vertical direction to reinforce the rigidity of the first to fourth walls 111, 112, 113, and 114.
  • the fifth wall 115 is provided with another one of the wall parts 110 .
  • the fifth wall 115 is disposed to cover the accommodating space 120 .
  • the fifth wall 115 is disposed on the upper side and surrounds the accommodation space 120 from the upper side.
  • the wall part 110 may include another wall surrounding the accommodation space 120 from the lower side.
  • the other wall may be disposed on the lower side to surround the receiving space 120 from the lower side.
  • the another wall is disposed facing the fifth wall 115 with the receiving space 120 therebetween.
  • vibration reducing units 300, 400, and 500 may be provided on one or more of the first to fourth walls 111, 112, 113, and 114. A detailed description thereof will be described later.
  • the accommodating space 120 is a space formed inside the housing 100 .
  • the accommodating space 120 accommodates various components of the transformer 10 .
  • the accommodating space 120 may accommodate the conducting unit 200 and the vibration reducing units 400 and 500 according to each exemplary embodiment.
  • the accommodation space 120 is a space formed surrounded by a plurality of wall parts 110 .
  • the accommodation space 120 is electrically connected to the outside.
  • the current subject to voltage transformation may be transferred to components accommodated in the accommodating space 120 .
  • the current boosted or stepped down by the conducting unit 200 may be transmitted to the outside.
  • the accommodating space 120 may partially accommodate a plurality of conductive wire members (not shown) extending from the outside.
  • the reinforcing rib 130 is coupled to the wall portion 110 to reinforce the rigidity of the wall portion 110 .
  • the reinforcing rib 130 extends in one direction in which the wall portion 110 extends, in the illustrated embodiment, in the vertical direction.
  • a plurality of reinforcing ribs 130 may be provided.
  • the plurality of reinforcing ribs 130 may be spaced apart from each other along different directions in which the wall portion 110 extends. In the embodiment shown in Figure 1, the reinforcing ribs 130 are disposed spaced apart from each other along the front-back direction.
  • Reinforcing ribs 130 may be formed in a plurality of locations. As described above, a plurality of wall parts 110 may be provided and disposed to surround the accommodation space 120 in various directions. Accordingly, the reinforcing ribs 130 may be formed for each of the plurality of wall parts 110 .
  • the reinforcing ribs 130 are formed on the first to fourth walls 111, 112, 113, and 114, respectively.
  • the reinforcing rib 130 may be coupled to the wall portion 110 and may have any shape capable of reinforcing the rigidity of the wall portion 110 .
  • the reinforcing rib 130 extends in the vertical direction and is provided in the form of a column having a predetermined thickness toward the outside.
  • the reinforcing rib 130 may include a plurality of parts extending in different directions. Referring to FIG. 5 , the reinforcing rib 130 includes a first reinforcing rib 131 and a second reinforcing rib 132 .
  • the first reinforcing rib 131 extends in one direction, up and down in the illustrated embodiment, to reinforce the rigidity of the wall portion 110 .
  • the first reinforcing rib 131 may extend in the height direction of the housing 100 .
  • a plurality of first reinforcing ribs 131 may be formed.
  • the plurality of first reinforcing ribs 131 may be spaced apart from each other in other directions. In the illustrated embodiment, the first reinforcing ribs 131 are spaced apart in the horizontal direction.
  • the plurality of first reinforcing ribs 131 provided on the first wall 111 and the fourth wall 114 are spaced apart in the left and right directions.
  • the plurality of first reinforcing ribs 131 provided on the second wall 112 and the third wall 113 are spaced apart in the front-back direction.
  • a space in which the plurality of first reinforcing ribs 131 are spaced apart may be defined as a filling space 140 .
  • the filling space 140 is filled with the sound absorbing member 320 of the vibration reducing unit 300 to be described later, so that vibration or noise generated from the conducting unit 200 can be reduced.
  • a second reinforcing rib 132 extends between the plurality of first reinforcing ribs 131 .
  • the second reinforcing rib 132 extends in the other direction, the horizontal direction in the illustrated embodiment, and is configured to reinforce the rigidity of the wall portion 110.
  • the second reinforcing rib 132 extends between the plurality of first reinforcing ribs 131 to reinforce the rigidity of the first reinforcing ribs 131 spaced apart from each other.
  • the second reinforcing rib 132 may extend in the cross-sectional direction of the housing 100 .
  • the second reinforcing ribs 132 extending from the first wall 111 and the fourth wall 114 may extend in left and right directions.
  • the second reinforcing ribs 132 extending from the second wall 112 and the third wall 113 may extend in the front-rear direction.
  • a plurality of second reinforcing ribs 132 may be formed.
  • a plurality of second reinforcing ribs 132 may be spaced apart from each other in one direction.
  • the second reinforcing ribs 132 are spaced apart from each other in the extending direction of the first reinforcing rib 131, that is, in the vertical direction.
  • a space in which the plurality of second reinforcing ribs 132 are spaced apart may also be defined as a filling space 140 .
  • the filling space 140 is filled with the sound absorbing member 320 of the vibration reducing unit 300 to be described later, so that vibration or noise generated from the conducting unit 200 can be reduced. A detailed description thereof will be described later.
  • the filling space 140 is a space formed between the plurality of reinforcing ribs 130 .
  • the filling space 140 is surrounded on both sides in the horizontal direction by a plurality of reinforcing ribs 130 .
  • the other side of the filling space 140 in the horizontal direction is surrounded by the wall portion 110, and each end in the vertical direction and the other side in the horizontal direction are surrounded by the cover member 310 of the vibration reducing unit 300. all.
  • a filling space 140 formed on the first wall 111 is shown.
  • the left and right sides of the filling space 140 are surrounded by the first reinforcing ribs 131 .
  • the rear side of the filling space 140 is surrounded by the first wall 111 , and the front, upper and lower sides of the filling space 140 are surrounded by the cover member 310 .
  • the filling space 140 may be partitioned into a plurality of small spaces.
  • the partition is formed by a plurality of reinforcing ribs (130). That is, referring to (a) of FIG. 5 , the filling space 140 is horizontally partitioned by a plurality of first reinforcing ribs 131 spaced apart from each other. In addition, the filling space 140 is vertically partitioned by a plurality of second reinforcing ribs 132 spaced apart from each other.
  • the plurality of spaces formed by partitioning the filling space 140 are not arbitrarily communicated by the reinforcing rib 130 .
  • the plurality of spaces may be communicated by a vibration reducing unit 300 according to an embodiment of the present invention to be described later.
  • the sound absorbing member 320 of the vibration reducing unit 300 may be accommodated in the filling space 140 .
  • the sound absorbing member 320 is configured to absorb vibration or noise generated in the conducting part 200 and transmitted to the wall part 110 . Accordingly, generated vibration or noise is not radiated to the outside. A detailed description thereof will be described later.
  • the conducting unit 200 boosts or steps down the current transferred from the outside. Thus, it can be said that the conductive unit 200 substantially performs the function of the transformer 10 .
  • the conductive part 200 is accommodated in the inner space of the housing 100, that is, the accommodation space 120. Since the accommodating space 120 is surrounded and defined by the plurality of wall parts 110, the conducting part 200 accommodated in the accommodating space 120 is also surrounded by the plurality of wall parts 110 and is not exposed to the outside.
  • the conducting part 200 is not damaged by the external environment of the transformer 10 .
  • a worker staying near the transformer 10 is physically separated from the conducting part 200, and a safety accident caused by a current flowing through the conducting part 200 can be prevented.
  • the conductive part 200 is electrically connected to the outside.
  • the conduction may be formed by a conducting wire member (not shown) that conducts the accommodation space 120 with the outside.
  • a process in which the introduced current is boosted or stepped down by the conducting unit 200 is a well-known technique, and thus a detailed description thereof will be omitted.
  • the conducting unit 200 includes an iron core member 210, a winding member 220 and a support frame 230.
  • the iron core member 210 forms the structure of the conducting part 200 .
  • a plurality of winding members 220 that are electrically connected to the outside are wound around the iron core member 210 .
  • magnetic flux is generated in the iron core member 210.
  • the generated magnetic flux generates an induced electromotive force in one or more other winding members 220 among the plurality of winding members 220 .
  • the iron core member 210 may be formed by stacking a plurality of plates. In one embodiment, the iron core member 210 is formed by stacking a plurality of plates having thicknesses in the front-back direction.
  • the plurality of plates constituting the iron core member 210 may be formed of any material capable of forming magnetic flux by current flowing through the winding member 220 .
  • the plate may be formed of a wrought iron material.
  • the iron core member 210 may be formed in any shape capable of forming magnetic flux by winding a plurality of winding members 220 .
  • the transformer 10 may include the vibration reducing unit 400 according to another embodiment to reduce vibration or noise generated from the iron core member 210 due to a magnetostrictive phenomenon. A detailed description thereof will be described later.
  • the winding member 220 is wound around the iron core member 210 .
  • the current energized in the winding member 220 generates magnetic flux in the iron core member 210, and the current is boosted or stepped down by the induced electromotive force by the generated magnetic flux and can be transmitted to the outside.
  • the winding member 220 is electrically connected to the outside.
  • a current to be boosted or stepped down may be delivered to the winding member 220 .
  • the boosted or stepped-down current may be transmitted to the outside.
  • the winding member 220 is wound around the iron core member 210 . Specifically, the winding member 220 is wound around a portion of the iron core member 210 extending in a height direction, in the illustrated embodiment, in a vertical direction.
  • the winding member 220 is accommodated in the iron core member 210 . Specifically, the winding member 220 is accommodated in a space surrounded by portions extending in the height direction.
  • a plurality of winding members 220 may be provided.
  • the plurality of winding members 220 may be spaced apart from each other and wound around the iron core member 210 at different positions.
  • three winding members 220 are provided and disposed spaced apart from each other.
  • the plurality of winding members 220 do not contact each other.
  • One winding member 220 of the plurality of winding members 220 may be energized to the outside and receive a current to be boosted or stepped down.
  • Another winding member 220 of the plurality of winding members 220 may be energized to the outside and transmit the boosted or stepped-down current to the outside.
  • the other winding member 220 may conduct a current induced by the current flowing through the one winding member 220. Also, the other winding member 220 may induce current in the other winding member 220 through the induced current.
  • the winding member 220 may be provided in any shape capable of generating an induced electromotive force by being wound around the iron core member 210 .
  • the winding member 220 has a circular cross-section in which a hollow is formed, and has a cylinder shape extending in the vertical direction.
  • the winding member 220 may be provided in any shape capable of conducting a current induced by a current energized in any one winding member 220 .
  • the winding member 220 may be provided as a coil.
  • the support frame 230 supports the iron core member 210 and the winding member 220 wound around the iron core member 210 .
  • the support frame 230 may be connected to the iron core member 210 and the housing 100 respectively.
  • the support frame 230 may be formed of a material with high rigidity.
  • the support frame 230 may be formed of an alloy material including iron (Fe).
  • the support frame 230 may be formed in a shape corresponding to the iron core member 210 .
  • the iron core member 210 is formed to have a rectangular cross section having a length in a left-right direction and a height in a vertical direction. Accordingly, the support frame 230 may also extend in the left and right directions.
  • the support frame 230 may be coupled to the iron core member 210 at a plurality of locations to support the iron core member 210 .
  • the support frame 230 surrounds the upper and lower ends of the iron core member 210 from the outside, respectively.
  • the transformer 10 includes an iron core member 210, a support frame 230, and a vibration reducing unit 400 connected to the housing 100, respectively.
  • the vibration reducing unit 400 additionally supports the iron core member 210 and the support frame 230, but is configured to reduce vibration or noise generated from the iron core member 210 and the support frame 230. A detailed description thereof will be described later.
  • a transformer 10 according to an embodiment of the present invention includes a vibration reducing unit 300 .
  • the vibration reducing unit 300 according to the present embodiment is provided in the housing 100 and is configured to reduce vibration or noise.
  • the vibration reducing unit 300 is coupled to the wall unit 110 of the housing 100 and is configured to absorb vibration or noise transmitted from the conducting unit 200 to the wall unit 110 . Accordingly, the amount of vibration or noise radiated to the outside of the transformer 10 can be reduced.
  • the vibration reducing unit 300 is coupled to the wall unit 110.
  • the vibration reducing unit 300 is illustrated as being provided on the first wall 111 on the front side.
  • the vibration reducing unit 300 may include a reinforcing rib 130 and a wall including a filling space 140 formed between the reinforcing ribs 130, that is, among the second to fourth walls 112, 113, and 114. It may be provided on one or more walls.
  • the vibration reducing unit 300 may be provided on one or more walls among a plurality of walls.
  • the vibration reducing unit 300 includes a cover member 310 , a sound absorbing member 320 , a communication hole 330 , a stopper member 340 and a protruding passage part 350 .
  • the communication hole 330 , the stopper 340 , and the protruding passage 350 may be provided in various embodiments of the vibration damping unit 300 .
  • the cover member 310 forms the outer shape of the vibration reducing unit 300 .
  • the cover member 310 seals the sound absorbing member 320 accommodated in the filling space 140 .
  • the cover member 310 fixes and supports the sound absorbing member 320 so that it is not leaked or exposed to the outside.
  • the cover member 310 is coupled to the wall portion 110. Specifically, the cover member 310 covers the filling space 140 formed in the wall portion 110 and is coupled to the outer surface of the reinforcing rib 130 . 3 to 5, the cover member 310 is coupled to the front side of the reinforcing rib 130 to cover the filling space 140 from the front side.
  • a plurality of cover members 310 may be provided.
  • the plurality of cover members 310 may be coupled to the plurality of wall parts 110, respectively.
  • four cover members 310 may be provided and coupled to the first to fourth walls 111, 112, 113, and 114, respectively.
  • the cover member 310 covers the reinforcing rib 130 and the sound absorbing member 320 accommodated in the filling space 140 from the outside and may be combined with the wall portion 110 .
  • the cover member 310 covers and combines the reinforcing rib 130 formed on the first wall 111 and the sound absorbing member 320 accommodated in the filling space 140 from the front, bottom and top sides. .
  • the cover member 310 may include a plurality of parts. A plurality of parts of the cover member 310 may be coupled to the wall portion 110 while covering the reinforcing rib 130, the filling space 140, and the sound absorbing member 320 accommodated in the filling space 140 at different positions. there is.
  • the cover member 310 includes a main cover 311 and a sub cover 312 .
  • the main cover 311 forms one part of a plurality of parts of the cover member 310 .
  • the main cover 311 covers the reinforcing rib 130, the filling space 140, and the sound absorbing member 320 accommodated in the filling space 140 along its thickness direction and is coupled to the wall portion 110.
  • the main cover 311 is coupled to the first wall 111 to cover the reinforcing rib 130 of the first wall 111, the filling space 140, and the sound absorbing member 320 accommodated therein from the front side. do.
  • the vibration reducing unit 300 may be provided on the second to fourth walls 112 , 113 , and 114 .
  • the main cover 311 covers the reinforcing rib 130, the filling space 140, and the sound absorbing member 320 accommodated therein on the left, right, and rear sides, respectively, and is coupled to the respective walls 112, 113, and 114.
  • the main cover 311 may be provided in a plate shape.
  • the main cover 311 has a cross section in which an extension length in the left and right directions is longer than an extension length in the up and down directions, and is provided in a polygonal plate shape having a thickness in the front and rear directions.
  • the shape of the main cover 311 may be changed according to the shape of the wall portion 110 and the shape and arrangement of the reinforcing rib 130 .
  • the main cover 311 is continuous with the sub cover 312 .
  • the sub cover 312 forms another part among a plurality of parts of the cover member 310 .
  • the sub cover 312 covers the reinforcing ribs 130, the filling space 140, and the sound absorbing member 320 accommodated in the filling space 140 along a direction different from the main cover 311 and is coupled to the wall portion 110. do.
  • a plurality of sub covers 312 may be provided.
  • a plurality of sub covers 312 may be combined with the wall portion 110 while covering the plurality of filling spaces 140 formed between the plurality of reinforcing ribs 131 , respectively.
  • the sub cover 312 may be provided in a plurality of pairs.
  • the plurality of pairs of sub covers 312 cover the reinforcing ribs 130, the filling space 140, and the sound absorbing member 320 accommodated in the filling space 140 at different locations and may be combined with the wall portion 110. there is.
  • the sub covers 312 are provided as a pair facing each other with the filling space 140 therebetween located on the upper and lower sides.
  • Seven sub-covers 312 located on the upper side are provided and disposed to cover the upper sides of the seven filling spaces 140 formed between the eight reinforcing ribs 130 (ie, the first reinforcing ribs 131), respectively. .
  • Seven sub covers 312 located on the lower side are also provided, and are disposed to cover the lower sides of the seven filling spaces 140, respectively.
  • the sub cover 312 is continuous with the main cover 311 .
  • the main cover 311 and the sub cover 312 may be continuous at a predetermined angle. In the embodiment shown in FIG. 5 , the sub cover 312 and the main cover 311 extend perpendicularly to each other.
  • the sound absorbing member 320 accommodated in the filling space 140 is not arbitrarily exposed to the outside. As a result, damage to the sound absorbing member 320 caused by the external environment can be prevented.
  • FIG. 5 a process of installing the vibration reducing unit 300 according to an embodiment to the wall unit 110 is illustrated.
  • the sound absorbing member 320 is accommodated in the filling space 140 .
  • the filling space 140 is partitioned into a plurality of small spaces by the plurality of first reinforcing ribs 131 and second reinforcing ribs 132 .
  • the sound absorbing member 320 may be accommodated in each of a plurality of partitioned small spaces.
  • the sub cover 312 covering the filling space 140 in its height direction, that is, the upper and lower sides, is pre-coupled. That is, in the above embodiment, the sub cover 312 may limit the extension distance of the filling space 140 in the upper and lower directions. Therefore, the amount of the sound absorbing member 320 to be filled in the filling space 140 can be accurately calculated, and work efficiency can be improved.
  • the main cover 311 covers the plurality of first reinforcing ribs 131, the second reinforcing ribs 132, the filling space 140 formed therebetween, and the sound absorbing member 320 accommodated therein, and is attached to the wall part 110. are combined
  • the rear side of the main cover 311 may be respectively coupled with the front side of the first reinforcing rib 131 and the second reinforcing rib 132, respectively.
  • the upper edge and the lower edge of the main cover 311 may be coupled to and continuous with the front edge of the sub cover 312 .
  • a fastening member for maintaining a coupled state between the main cover 311 and the wall portion 110 may be provided.
  • the fastening member (not shown) may be provided in the form of a screw member that is penetrated through the main cover 311 and the first reinforcing rib 131 .
  • the sound absorbing member 320 may be made of any material capable of receiving and absorbing external vibration or noise.
  • the sound absorbing member 320 may be formed of urethane foam.
  • the sound absorbing member 320 may be formed of a material such as styrofoam or rubber.
  • the sound absorbing member 320 is accommodated in the filling space 140 .
  • the sound absorbing member 320 may be filled in the filling space 140 by spraying.
  • the sound absorbing member 320 may be formed in a shape corresponding to the shape of the plurality of partitioned small spaces. In the above embodiment, the sound absorbing member 320 may be inserted and coupled to each of the plurality of small spaces.
  • the sound absorbing member 320 accommodated in the filling space 140 may be sealed to block any communication with the outside. That is, in the illustrated embodiment, the left and right directions of the sound absorbing member 320 accommodated are surrounded by the first reinforcing rib 131 . In addition, the up-down direction of the accommodated sound absorbing member 320 is surrounded by the sub cover 312, its front side is surrounded by the main cover 311, its rear side is surrounded by the wall portion 110, the first wall 111 in the illustrated embodiment. ) is surrounded by
  • the vibration reducing unit 300 is configured to fill the filling space 140 formed between the reinforcing ribs 130 already provided in the wall unit 110 with the sound absorbing member 320 .
  • the filled sound absorbing member 320 may absorb vibration or noise transmitted from the conductive part 200 . Accordingly, the amount of vibration or noise radiated to the outside of the transformer 10 can be reduced.
  • the filling space 140 is already formed in the wall part 110 . Therefore, excessive design changes are not required to be provided with the vibration reducing unit 300 according to the present embodiment, and workability can be improved.
  • the vibration reducing unit 300 further includes a communication hole 330 and a stopper member 340 .
  • the sound absorbing member 320 may be filled. Since the structure and function of the cover member 310 are the same as those of the cover member 310 according to the above-described embodiment, overlapping descriptions will be omitted.
  • the sound absorbing member 320 may be formed of a material that is flexible and can be hardened after a predetermined period of time. That is, in this modified example, it may be assumed that the sound absorbing member 320 is made of urethane foam.
  • the communication hole 330 communicates the outside with the filling space 140 that is enclosed and sealed by the cover member 310 .
  • the communication hole 330 is formed through the cover member 310 and functions as a passage through which the sound absorbing member 320 is injected.
  • the communication hole 330 is formed through the sub cover 312 located on the upper side.
  • the communication hole 330 may also be formed through the sub cover 312 located on the lower side.
  • a plurality of communication holes 330 may be formed.
  • a plurality of communication holes 330 may be formed through each of the plurality of sub covers 312 .
  • a total of seven communication holes 330 are formed in each of the seven sub covers 312 .
  • the operator may inject the sound absorbing member 320 by penetrating the communication hole 330 and inserting a gun or the like into the filling space 140 and spraying the sound absorbing member 320 .
  • the vibration reducing unit 300 When the injection of the sound absorbing member 320 is completed, the communication hole 330 must be closed to prevent any exposure of the sound absorbing member 320 .
  • the vibration reducing unit 300 according to the modified example includes a stopper member 340 .
  • the stopper member 340 is inserted into and coupled to the communication hole 330 to close the communication hole 330 . Any communication between the filling space 140 and the sound absorbing member 320 accommodated in the filling space 140 and the outside is blocked by the stopper member 340 .
  • a plurality of stopper members 340 may be provided.
  • the plurality of stopper members 340 may be inserted into and coupled to the plurality of communication holes 330 , respectively.
  • seven stopper members 340 are provided and inserted into the seven communication holes 330 respectively.
  • the stopper member 340 is formed by continuously forming a plurality of cylinders having different cross-sectional areas in the height direction.
  • the shape of the stopper member 340 may be changed according to the shape of the communication hole 330 .
  • the stopper member 340 is also provided as many as the number of communication holes 330 formed in the lower sub cover 312. This may be configured to block each communication hole 330.
  • the cover member 310 may be first coupled to the wall unit 110 and then the sound absorbing member 320 may be filled. At this time, the operator injects the sound absorbing member 320 into the filling space 140 using a member such as a gun, and then closes the communication hole 330 using a stopper member 340 to easily reduce vibration reduction unit 300. can be installed.
  • FIG. 7 another modified example of the vibration reducing unit 300 according to the present embodiment is shown.
  • the sound absorbing member 320 may be filled. Since the structure and function of the cover member 310 are the same as those of the cover member 310 according to the above-described embodiment, overlapping descriptions will be omitted.
  • the sound absorbing member 320 may be formed of a material that is flexible and can be hardened after a predetermined period of time. That is, in this modified example, it may be assumed that the sound absorbing member 320 is made of urethane foam.
  • the main cover 311 is disposed spaced apart from the first reinforcing rib 131 in its thickness direction, in the front-rear direction in the illustrated embodiment.
  • the thickness of the first reinforcing rib 131 is the first distance d1
  • the thickness of the filled sound absorbing member 320 is the second distance d2 and the main cover 311 ) and the longest distance between the wall portion 110 may be defined as the third distance d3.
  • the difference between the second distance d2 and the first distance d1 may be understood as a distance between the main cover 311 and the first reinforcing rib 131.
  • the difference between the third distance d3 and the second distance d2 may be understood as the thickness of the main cover 311 .
  • the main cover 311 and the first reinforcing rib 131 face each other, that is, between the rear side of the main cover 311 and the front side of the first reinforcing rib 131 in the illustrated embodiment.
  • a predetermined space is formed. It will be understood that the predetermined space has a width equal to the difference between the first distance d1 and the second distance d2 between the main cover 311 and the first reinforcing rib 131 .
  • the plurality of small spaces in which the filling space 140 is partitioned by the plurality of reinforcing ribs 130 may communicate with each other through the predetermined space. Accordingly, in the vibration reducing unit 300 according to the present modified example, even when a single number of communication holes (not shown) are formed, the sound absorbing member 320 injected into any one small space through the communication hole (not shown) ) can flow to another small space.
  • the manufacturing process of the vibration reducing unit 300 and the manufacturing process of coupling the vibration reducing unit 300 to the wall unit 110 can be simplified.
  • the vibration damping unit 300 further includes a protruding passage part 350 .
  • the sound absorbing member 320 may be filled. Since the structure and function of the cover member 310 are the same as those of the cover member 310 according to the above-described embodiment, overlapping descriptions will be omitted.
  • the sound absorbing member 320 may be formed of a material that is flexible and can be hardened after a predetermined period of time. That is, in this modified example, it may be assumed that the sound absorbing member 320 is made of urethane foam.
  • the main cover 311 is disposed adjacent to the first reinforcing rib 131 . In one embodiment, the main cover 311 may be placed in contact with the first reinforcing rib 131 .
  • the main cover 311 is provided with a protrusion passage portion 350 .
  • the protruding passage part 350 protrudes outward from the main cover 311 and extends along one extension direction of the main cover 311 .
  • the protrusion passage portion 350 protrudes toward one side opposite to the wall portion 110, that is, toward the front side.
  • the protrusion passage part 350 extends in one extending direction of the main cover 311, in the left and right directions in the illustrated embodiment.
  • An inner surface of the protruding flow path portion 350 that is, a surface facing the wall portion 110 may be recessed. That is, the inner side of the protruding flow path portion 350 is formed as a recessed space on the surface of the main cover 311 facing the wall portion 110 . Accordingly, the protruding flow path portion 350 may function as a flow path extending along the left and right directions of the main cover 311 .
  • the protruding passage part 350 may communicate with a plurality of small spaces formed by partitioning the filling space 140 , respectively. That is, each end of the protruding passage 350 in the extending direction may be in communication with a small space formed at the outermost side. In the illustrated embodiment, the left end of the protruding passage part 350 may communicate with a small space located at the leftmost side. A right end of the protruding flow passage 350 may communicate with a small space positioned at the rightmost side.
  • the sound absorbing member 320 injected into any one of the plurality of small spaces may flow into other small spaces through the protruding passage part 350 . Accordingly, even when a single number of communication holes (not shown) are formed in the vibration damping unit 300, the sound absorbing member 320 injected into one small space through the communication hole (not shown) is inserted into another small space. It can flow into a small space.
  • the protruding passage portion 350 is formed singly. Alternatively, a plurality of protruding passage portions 350 may be formed and spaced apart from each other in the height direction of the main cover 311 .
  • the thickness of the main cover 311 may be defined as a first thickness t1
  • the protruding length of the protruding channel portion 350 may be defined as a second thickness t2 . That is, it will be understood that the second thickness t2 is the vertical distance between the inner surface of the main cover 311 and the outer end of the protruding passage part 350 .
  • the second thickness t2 may be formed to be greater than or equal to the first thickness t1.
  • the difference between the second thickness t2 and the first thickness t1 may be defined as a thickness of a space communicating with a plurality of small spaces. As described above, the plurality of small spaces partitioned through the space, that is, the space formed inside the protruding channel portion 350 communicate with each other so that the sound absorbing member 320 can flow.
  • the plurality of small spaces in which the filling space 140 is partitioned by the plurality of reinforcing ribs 130 may be communicated with each other by the protruding passage part 350 . Accordingly, in the vibration reducing unit 300 according to the present modified example, even when a single number of communication holes (not shown) are formed, the sound absorbing member 320 injected into any one small space through the communication hole (not shown) ) can flow to another small space.
  • the manufacturing process of the vibration reducing unit 300 and the manufacturing process of coupling the vibration reducing unit 300 to the wall unit 110 can be simplified.
  • a transformer 10 according to another embodiment of the present invention includes a vibration reducing unit 400 .
  • the vibration reducing unit 400 according to the present embodiment is coupled to the housing 100 and the conducting unit 200 to reduce vibration or noise.
  • the vibration reducing unit 400 is coupled to the iron core member 210 or the support frame 230 to reduce vibration or noise generated from the conducting unit 200 .
  • the vibration reducing unit 400 is configured to minimize the amount of vibration or noise transmitted to the wall unit 110 generated by being coupled with the wall unit 110 of the housing 100 . Accordingly, the amount of vibration or noise radiated to the outside of the transformer 10 can be reduced.
  • the vibration reducing unit 400 is coupled to the wall unit 110. At this time, the vibration reducing unit 400 may be coupled to the wall unit 110 along a direction different from the extending direction of the iron core member 210 . In the embodiment shown in FIG. 9 , the iron core member 210 extends in the left and right directions. Accordingly, the vibration reducing unit 400 may extend in a direction different from the above direction, in the forward and backward directions in the illustrated embodiment.
  • the front side end of the vibration reducing unit 400 is coupled to the first wall 111 located on the front side.
  • the rear side end of the vibration reducing unit 400 is coupled to the fourth wall 114 located on the rear side.
  • the vibration reducing unit 400 is coupled to the iron core member 210 and the support frame 230 of the conducting unit 200 . That is, in the embodiment shown in FIG. 10 , the vibration reducing unit 400 includes a part positioned between the iron core member 210 and the support frame 230 and another part coupled to the support frame 230 .
  • a plurality of vibration reducing units 400 may be provided.
  • the plurality of vibration reducing units 400 may be spaced apart from each other along the extension direction of the iron core member 210 .
  • the vibration reducing unit 400 is a total of six, including three located on the upper side and spaced apart from each other in the front-back direction, and three located on the lower side and spaced apart from each other in the front-back direction. dogs are provided
  • the number and arrangement of vibration reducing units 400 may be changed.
  • the vibration reducing unit 400 includes an iron core support member 410, a transmission member 420, a housing coupling member 430, and an elastic member 440.
  • the iron core support member 410 is coupled to the iron core member 210 and the support frame 230 to reduce vibration or noise generated from the iron core member 210 .
  • the iron core support member 410 is positioned between the iron core member 210 and the support frame 230 .
  • the iron core support member 410 is coupled to the iron core member 210 and the support frame 230, respectively, and provided in any form capable of reducing vibration or noise transmitted from the iron core member 210 to the support frame 230. It can be.
  • the iron core support member 410 may be formed of cork or rubber material.
  • the iron core support member 410 covers a part of the outer side of the iron core member 210, that is, the upper outer circumference of the iron core member 210 located on the upper side and the lower outer circumference of the iron core member 210 located on the lower side. placed around the Alternatively, the iron core support member 410 may be disposed to surround the iron core member 210 in the width direction, in the illustrated embodiment, in the front and rear directions as well.
  • the iron core support member 410 is surrounded by the support frame 230 .
  • the iron core support member 410 is formed so that its front and rear sides are surrounded by the support frame 230 .
  • a plurality of iron core supporting members 410 may be provided.
  • the plurality of iron core support members 410 may be coupled to the iron core member 210 and the support frame 230 at different locations. In the embodiment shown in FIGS. 10 to 13 , the iron core support member 410 is positioned adjacent to the upper and lower sides of the iron core member 210, respectively.
  • the iron core support member 410 is coupled to the transmission member 420 through the support frame 230 .
  • the transmission member 420 transmits vibration or noise transmitted from the iron core member 210 to the support frame 230 .
  • the transmission member 420 may absorb vibration or noise of a predetermined size and reduce vibration or noise transmitted to the housing 100 .
  • Transmission member 420 is coupled to the wall portion 110 and the support frame 230, respectively. Transmission member 420 is continuous between the wall portion 110 and the support frame 230. As will be described later, the housing coupling member 430 is provided in the wall portion 110, and the transmission member 420 can be said to be coupled to the support frame 230 and the housing coupling member 430, respectively.
  • the transmission member 420 extends in the width direction of the iron core member 210, in the front-rear direction in the illustrated embodiment.
  • One end of the transmission member 420 in the extension direction is coupled to the housing coupling member 430 provided on the wall portion 110 .
  • the other end of the extension direction of the transmission member 420 is coupled to the support frame 230 .
  • the transmission member 420 may be formed as a rigid body.
  • the transmission member 420 may transmit vibration or noise transmitted from the iron core member 210 and the support frame 230 to the wall portion 110 of the housing 100 .
  • a plurality of delivery members 420 may be provided.
  • the plurality of transmission members 420 may be coupled to the support frame 230 and the housing coupling member 430 at different positions.
  • the transmission member 420 is positioned adjacent to the upper and lower sides of the iron core member 210, respectively.
  • Transmission member 420 may be combined with a single support frame 230 at different positions. That is, the support frame 230 may be coupled to the transmission member 420 at a plurality of points.
  • the transmission member 420 includes a first transmission member 421 positioned on the front side of the support frame 230 and a second transmission member 422 positioned on the rear side thereof. .
  • the first transmission member 421 connects one side of the support frame 230 and one wall portion 110 .
  • the first transmission member 421 is coupled to the first coupling member 431 coupled to the front side of the support frame 230 and the first wall 111, respectively.
  • the first transmission member 421 extends between the front side of the support frame 230 and the first coupling member 431 .
  • the first transmission member 421 extends in the front-back direction, its front end is engaged with the first coupling member 431, and its rear end is the front side of the support frame 230.
  • the second transmission member 422 connects the other side of the support frame 230 and the other wall part 110 .
  • the second transmission member 422 is coupled to the rear side of the support frame 230 and the second coupling member 432 coupled to the fourth wall 114, respectively.
  • the second transmission member 422 extends between the rear side of the support frame 230 and the second coupling member 432 .
  • the second transmission member 422 extends in the front-back direction, its front end is engaged with the rear side of the support frame 230, and its rear end is coupled to the second coupling member 432.
  • the first transmission member 421 and the second transmission member 422 are disposed to face each other with the conducting part 200 interposed therebetween.
  • Vibration or noise transmitted through the transmission member 420 is transmitted to the housing coupling member 430 .
  • the housing coupling member 430 is configured to reduce vibration or noise transmitted through the transmission member 420 . Vibration or noise transmitted to the housing 100, specifically, the wall portion 110, may be minimized by the housing coupling member 430. Accordingly, vibration or noise radiated from the wall portion 110 to the outside of the transformer 10 may also be reduced.
  • the housing coupling member 430 is coupled to the housing 100 . Specifically, the housing coupling member 430 is coupled to the inner surface of the wall portion 110 . The housing coupling member 430 is accommodated in the accommodation space 120 of the housing 100 and is not exposed to the outside.
  • a plurality of housing coupling members 430 may be provided.
  • a plurality of housing coupling members 430 may be coupled to inner surfaces of different wall parts 110 .
  • the housing coupling member 430 is coupled to the first wall 111 located on the front side and the fourth wall 114 located on the rear side, respectively.
  • a plurality of housing coupling members 430 may be disposed spaced apart along different directions in which the iron core member 210 extends. In the embodiment shown in FIGS. 10 to 13 , the housing coupling members 430 are spaced apart from each other on upper and lower sides in the vertical direction.
  • the housing coupling member 430 disposed on the upper side is coupled to the transmission member 420 disposed on the upper side, and the housing coupling member 430 disposed on the lower side is coupled to the transmission member 420 located on the lower side.
  • the housing coupling member 430 may be formed of any material capable of reducing vibration or noise transmitted from the transmission member 420 .
  • the housing coupling member 430 may be formed of urethane foam, cork or rubber material.
  • the housing coupling member 430 may be coupled to the wall portion 110 and the transmission member 420, respectively, and may have any shape capable of reducing transmitted vibration or noise.
  • the housing coupling member 430 is coupled to the wall portion 110 and the transmission member 420 and has a polygonal column shape including a pair of surfaces disposed facing each other.
  • the housing coupling member 430 includes a first coupling member 431 and a second coupling member 432 .
  • the first coupling member 431 is positioned on one side with respect to the conducting part 200 . In the illustrated embodiment, the first coupling member 431 is positioned biased toward the front side. The first coupling member 431 is coupled to the first wall 111 located on the front side and the first transmission member 421 located biasedly on the front side, respectively.
  • the second coupling member 432 is located on the other side with respect to the conducting part 200 .
  • the second coupling member 432 is disposed to face the first coupling member 431 with the conductive part 200 interposed therebetween.
  • the second coupling member 432 is positioned towards the rear side.
  • the second coupling member 432 is coupled with the fourth wall 114 located on the rear side and the second transmission member 422 located biasedly on the rear side, respectively.
  • vibration or noise generated from the conducting unit 200 is primarily reduced by the iron core support member 410, and then through the transmission member 420 to the housing coupling member ( 430).
  • the transmitted vibration or noise is again reduced by the housing coupling member 430 and then transmitted to the wall portion 110 . Accordingly, an amount of vibration or noise generated from the conducting unit 200 radiated to the outside of the transformer 10 may be reduced.
  • the vibration reducing unit 400 further includes an elastic member 440 .
  • the support frame 230 and the housing coupling member 430 may be connected by a plurality of members. That is, in this modified example, the support frame 230 and the housing coupling member 430 are connected by the transmission member 420 and the elastic member 440 .
  • the structure and function of the iron core support member 410 and the housing coupling member 430 are the same as those of the above-described embodiment, and thus, overlapping descriptions will be omitted.
  • the elastic member 440 is positioned between the support frame 230 and the transmission member 420 or between the transmission member 420 and the housing coupling member 430 . In the illustrated embodiment, the elastic member 440 is positioned between the transmission member 420 and the housing coupling member 430.
  • the elastic member 440 extends between the transmission member 420 and the housing coupling member 430 .
  • One end of the elastic member 440 in the extending direction may be coupled to the transmission member 420 and the other end may be coupled to the housing coupling member 430 .
  • the elastic member 440 is deformed by a predetermined amount and may be provided in any shape capable of reducing applied vibration or noise. That is, the elastic member 440 may be formed to have a predetermined elasticity. In the illustrated embodiment, the elastic member 440 is provided as a coil spring.
  • the elastic member 440 may be coupled to the transmission member 420 and the housing coupling member 430 at a plurality of locations. In the illustrated embodiment, the elastic member 440 is positioned adjacent to the upper and lower sides of the iron core member 210, respectively.
  • a plurality of elastic members 440 may be provided.
  • a plurality of elastic members 440 may be configured to support a single support frame 230 in different directions.
  • the elastic member 440 includes a first elastic member 441 located on the front side and a second elastic member 442 located on the rear side. The first elastic member 441 and the second elastic member 442 are disposed to face each other with the conductive part 200 interposed therebetween.
  • the first elastic member 441 is coupled to the first transmission member 421 and the first coupling member 431 located on the front side, respectively.
  • the first elastic member 441 extends between the first transmission member 421 and the first coupling member 431 .
  • One end of the extension direction of the first elastic member 441, in the illustrated embodiment, the front side end is coupled to the first coupling member 431.
  • the other end of the extension direction of the first elastic member 441, in the illustrated embodiment, the rear side end is coupled to the first transmission member 421.
  • the first elastic member 441 elastically supports the support frame 230 and the first transmission member 421 . Vibration or noise generated from the conductive part 200 may be reduced by the first elastic member 441 and transmitted to the first transmission member 421 .
  • the first elastic member 441 is deformed in its extension direction, that is, in the left-right direction, and can reduce vibration or noise. That is, the first elastic member 441 may function as a damper in the forward and backward directions.
  • the second elastic member 442 is coupled with the second transmission member 422 and the second coupling member 432 located on the rear side, respectively.
  • the second elastic member 442 extends between the second transmission member 422 and the second coupling member 432 .
  • One end of the extension direction of the second elastic member 442, in the illustrated embodiment, the front side end is coupled to the second transmission member 422.
  • the other end of the extension direction of the second elastic member 442, in the illustrated embodiment, the rear side end is coupled to the second coupling member 432.
  • the second elastic member 442 elastically supports the support frame 230 and the second transmission member 422 . Vibration or noise generated from the conductive part 200 may be reduced by the second elastic member 442 and transmitted to the second transmission member 422 .
  • the second elastic member 442 is deformed in its extension direction, that is, in the left-right direction, and can reduce vibration or noise. That is, the second elastic member 442 may function as a damper in the forward and backward directions.
  • vibration or noise generated from the conducting unit 200 is primarily reduced by the iron core supporting member 410, transmitted through the elastic member 440, and reduced again. and can be transferred to the housing coupling member 430.
  • the transmitted vibration or noise is again reduced by the housing coupling member 430 and then transmitted to the wall portion 110 . Accordingly, an amount of vibration or noise generated from the conducting unit 200 radiated to the outside of the transformer 10 may be reduced.
  • the vibration reducing unit 400 further includes an elastic member 440 .
  • the support frame 230 and the housing coupling member 430 may be connected by an elastic member 440 . That is, in this modified example, the transmission member 420 is not separately provided and the support frame 230 and the housing coupling member 430 are connected only by the elastic member 440 .
  • the structure and function of the iron core support member 410 and the housing coupling member 430 are the same as those of the above-described embodiment, and thus, overlapping descriptions will be omitted.
  • the elastic member 440 is positioned between the support frame 230 and the housing coupling member 430 .
  • the elastic member 440 extends between the support frame 230 and the housing coupling member 430 .
  • One end of the elastic member 440 in the extending direction may be coupled to the support frame 230 and the other end may be coupled to the housing coupling member 430 .
  • the elastic member 440 is deformed by a predetermined amount and may be provided in any shape capable of reducing applied vibration or noise. That is, the elastic member 440 may be formed to have a predetermined elasticity. In the illustrated embodiment, the elastic member 440 is provided as a coil spring.
  • the elastic member 440 may be coupled to the support frame 230 and the housing coupling member 430 at a plurality of positions. In the illustrated embodiment, the elastic member 440 is positioned adjacent to the upper and lower sides of the iron core member 210, respectively.
  • a plurality of elastic members 440 may be provided.
  • a plurality of elastic members 440 may be configured to support a single support frame 230 in different directions.
  • the elastic member 440 includes a first elastic member 441 located on the front side and a second elastic member 442 located on the rear side. The first elastic member 441 and the second elastic member 442 are disposed to face each other with the conductive part 200 interposed therebetween.
  • the first elastic member 441 is coupled to the front side of the support frame 230 and the first coupling member 431 , respectively.
  • the first elastic member 441 extends between the support frame 230 and the first coupling member 431 .
  • One end of the extension direction of the first elastic member 441, in the illustrated embodiment, the front side end is coupled to the first coupling member 431.
  • the other end of the extension direction of the first elastic member 441, in the illustrated embodiment, the rear side end is coupled to the support frame 230.
  • the first elastic member 441 elastically supports the support frame 230 and the first coupling member 431 . Vibration or noise generated from the conductive part 200 may be reduced by the first elastic member 441 and transmitted to the first coupling member 431 .
  • the first elastic member 441 is deformed in its extension direction, that is, in the left-right direction, and can reduce vibration or noise. That is, the first elastic member 441 may function as a damper in the forward and backward directions.
  • the second elastic member 442 is coupled to the support frame 230 and the second coupling member 432 located on the rear side, respectively.
  • the second elastic member 442 extends between the support frame 230 and the second coupling member 432 .
  • One end of the extension direction of the second elastic member 442, in the illustrated embodiment, the front side end is coupled to the support frame 230.
  • the other end of the extension direction of the second elastic member 442, in the illustrated embodiment, the rear side end is coupled to the second coupling member 432.
  • the second elastic member 442 elastically supports the support frame 230 and the second coupling member 432 . Vibration or noise generated from the conductive part 200 may be reduced by the second elastic member 442 and transmitted to the second coupling member 432 .
  • the second elastic member 442 is deformed in its extension direction, that is, in the left-right direction, and can reduce vibration or noise. That is, the second elastic member 442 may function as a damper in the forward and backward directions.
  • vibration or noise generated from the conducting unit 200 is primarily reduced by the iron core support member 410, transmitted through the elastic member 440, and reduced again. and can be transferred to the housing coupling member 430.
  • the transmitted vibration or noise is again reduced by the housing coupling member 430 and then transmitted to the wall portion 110 . Accordingly, an amount of vibration or noise generated from the conducting unit 200 radiated to the outside of the transformer 10 may be reduced.
  • the vibration reducing unit 400 further includes an elastic member 440 .
  • the support frame 230 and the wall portion 110 may be connected by an elastic member 440 . That is, in this modified example, the transmission member 420 and the housing coupling member 430 are not separately provided, and the support frame 230 and the wall portion 110 are connected only by the elastic member 440 .
  • the structure and function of the iron core support member 410 and the housing coupling member 430 are the same as those of the above-described embodiment, and thus, overlapping descriptions will be omitted.
  • the elastic member 440 is positioned between the support frame 230 and the wall portion 110 .
  • the elastic member 440 extends between the support frame 230 and the wall portion 110 .
  • One end of the elastic member 440 in the extending direction may be coupled to the support frame 230 and the other end may be coupled to the wall portion 110 .
  • the elastic member 440 is deformed by a predetermined amount and may be provided in any shape capable of reducing applied vibration or noise. That is, the elastic member 440 may be formed to have a predetermined elasticity. In the illustrated embodiment, the elastic member 440 is provided as a coil spring.
  • the elastic member 440 may be coupled to the support frame 230 and the wall portion 110 at a plurality of locations. In the illustrated embodiment, the elastic member 440 is positioned adjacent to the upper and lower sides of the iron core member 210, respectively.
  • a plurality of elastic members 440 may be provided.
  • a plurality of elastic members 440 may be configured to support a single support frame 230 in different directions.
  • the elastic member 440 includes a first elastic member 441 located on the front side and a second elastic member 442 located on the rear side. The first elastic member 441 and the second elastic member 442 are disposed to face each other with the conductive part 200 interposed therebetween.
  • the first elastic member 441 is coupled to the first wall 111 and the first coupling member 431 located on the front side, respectively.
  • the first elastic member 441 extends between the first wall 111 and the first coupling member 431 .
  • One end of the extension direction of the first elastic member 441, in the illustrated embodiment, the front side end is coupled to the first wall 111.
  • the other end of the extension direction of the first elastic member 441, in the illustrated embodiment, the rear side end is coupled to the support frame 230.
  • the first elastic member 441 elastically supports the support frame 230 and the first wall 111 . Vibration or noise generated from the conductive part 200 may be reduced by the first elastic member 441 and transmitted to the first wall 111 .
  • the first elastic member 441 is deformed in its extension direction, that is, in the left-right direction, and can reduce vibration or noise. That is, the first elastic member 441 may function as a damper in the forward and backward directions.
  • the second elastic member 442 is coupled to the support frame 230 and the fourth wall 114 located on the rear side, respectively.
  • the second elastic member 442 extends between the support frame 230 and the fourth wall 114 .
  • One end of the extension direction of the second elastic member 442, in the illustrated embodiment, the front side end is coupled to the support frame 230.
  • the other end of the extension direction of the second elastic member 442, the rear side end in the illustrated embodiment is coupled to the fourth wall (114).
  • the second elastic member 442 elastically supports the support frame 230 and the fourth wall 114 . Vibration or noise generated from the conductive part 200 may be reduced by the second elastic member 442 and transmitted to the fourth wall 114 .
  • the second elastic member 442 is deformed in its extension direction, that is, in the left-right direction, and can reduce vibration or noise. That is, the second elastic member 442 may function as a damper in the forward and backward directions.
  • vibration or noise generated from the conducting unit 200 is primarily reduced by the iron core support member 410, transmitted through the elastic member 440, and reduced again. And it can be delivered to the wall portion (110). Accordingly, an amount of vibration or noise generated from the conducting unit 200 radiated to the outside of the transformer 10 may be reduced.
  • a transformer 10 according to another embodiment of the present invention includes a vibration reducing unit 500 .
  • the vibration reducing unit 500 according to the present embodiment is coupled to the housing 100 and is configured to reduce transmitted vibration or noise.
  • the vibration reducing unit 500 is coupled to the wall unit 110 of the housing 100 to reduce vibration or noise generated in the conducting unit 200 and transmitted to the housing 100 .
  • the vibration reducing unit 500 is accommodated in the accommodation space 120 and coupled to the inner surface of the wall unit 110 .
  • a plurality of vibration reducing units 500 may be provided, and may be provided on one or more of the first to fifth walls 111 , 112 , 113 , 114 , and 115 surrounding the accommodation space 120 .
  • the vibration reducing unit 500 may also be provided on a lower wall (not shown).
  • the vibration reducing unit 500 is coupled to the inner surface of the second wall 112 located on the left side.
  • the vibration reducing unit 500 does not directly contact the conducting unit 200 . That is, the vibration reducing unit 500 is configured to reduce vibration or noise transmitted by using a fluid in the accommodation space 120, for example, air, as a medium. In one embodiment, the vibration reducing unit 500 may reduce vibration or noise generated by using a resonance phenomenon. In the above embodiment, the vibration reducing unit 500 may be defined as a resonator.
  • the vibration reducing unit 500 includes a first frame 510, a second frame 520, a pipe member 530, a through hole 540, a resonance space 550, and a partition wall 560. do.
  • the first frame 510 forms a part of the outer shape of the vibration reducing unit 500 .
  • the first frame 510 is combined with the second frame 520 to form the outer shape of the vibration reducing unit 500 .
  • the first frame 510 may be detachably coupled to the second frame 520 in the height direction of the vibration reducing unit 500, in the vertical direction in the illustrated embodiment.
  • the first frame 510 is located above the second frame 520 and covers the resonance space 550 formed inside the second frame 520 . Accordingly, the first frame 510 may be defined as a cover of the vibration reducing unit 500 .
  • the first frame 510 is a portion where the vibration reducing unit 500 is exposed to the accommodating space 120 .
  • the first frame 510 is a portion of the vibration reducing unit 500 facing the accommodation space 120 .
  • the first frame 510 is positioned facing the conducting part 200 .
  • the first frame 510 is disposed to face the wall portion 110 with the second frame 520 therebetween.
  • a pipe member 530 is penetrated into the first frame 510 .
  • the pipe member 530 may extend from the inside of the first frame 510 in the thickness direction of the first frame 510 and in the vertical direction in the embodiment shown in FIG. 15 .
  • a through hole 540 is formed through the inside of the first frame 510 .
  • the aperture 540 is positioned adjacent to the pipe member 530 and is configured to damp vibration or noise transmitted along with the pipe member 530 .
  • the first frame 510 may be divided into a plurality of regions.
  • the first frame 510 may be formed by a plurality of modules M.
  • the plurality of modules M are provided three each in the front and rear directions and the left and right directions, so that a total of nine modules M may form the first frame 510 .
  • the first frame 510 may have an arbitrary shape in which the pipe member 530 is penetrated and the through hole 540 is formed therein, and the second frame 520 can be coupled thereto.
  • the first frame 510 has a rectangular cross section and is formed in a plate shape having a vertical thickness.
  • the first frame 510 includes a first face 511 and a second face 512 .
  • the first surface 511 forms one surface of the first frame 510 facing the conductive part 200, an upper surface in the illustrated embodiment.
  • the first surface 511 is a portion of the first frame 510 exposed to the accommodating space 120 .
  • a second surface 512 is formed to face the first surface 511 .
  • the second surface 512 forms the other surface opposite to the conducting part 200 among the surfaces of the first frame 510, the lower surface in the illustrated embodiment.
  • the second surface 512 is a surface of the first frame 510 that is not exposed to the accommodation space 120 .
  • the second surface 512 may be defined as a surface facing the second frame 520 among the surfaces of the first frame 510 .
  • the first surface 511 and the second surface 512 may be spaced apart from each other by a predetermined distance.
  • the length of the through hole 540 may be determined according to the distance between the first surface 511 and the second surface 512 . As will be described later, the frequency of vibration or noise that can be offset through a resonance phenomenon can be adjusted according to the length of the through hole 540 .
  • the frequency of vibration or noise that can be offset by the through hole 540 can be adjusted by adjusting the thickness of the first frame 510 . A detailed description thereof will be described later.
  • the second frame 520 forms another part of the outer shape of the vibration reducing unit 500 .
  • the second frame 520 is combined with the first frame 510 to form the outer shape of the vibration reducing unit 500 .
  • the second frame 520 may be detachably coupled to the first frame 510 in the height direction of the vibration damping unit 500, or in the vertical direction in the illustrated embodiment.
  • the second frame 520 is located below the first frame 510 . Accordingly, the second frame 520 may be defined as the body of the vibration reducing unit 500 .
  • the second frame 520 is a part where the vibration reducing unit 500 is coupled to the wall unit 110 .
  • the second frame 520 is a portion of the vibration damping unit 500 facing the wall unit 110 .
  • the second frame 520 is positioned opposite to the conducting part 200 .
  • the second frame 520 is disposed to face the conductive part 200 with the first frame 510 interposed therebetween.
  • a plurality of resonance spaces 550 for reducing transmitted vibration or noise and partition walls 560 partitioning the plurality of resonance spaces 550 are disposed inside the second frame 520.
  • the plurality of partitioned resonance spaces 550 may overlap the plurality of modules M forming the first frame 510 and the stacking direction thereof in the vertical direction in the illustrated embodiment. That is, a single number of modules M may be disposed overlapping with a single number of resonance spaces 550 .
  • the second frame 520 may have an arbitrary shape capable of reducing transmitted vibration or noise by accommodating the resonance space 550 and the barrier rib 560 therein.
  • the second frame 520 has a rectangular column shape with a rectangular cross section and a vertical thickness. The shape of the second frame 520 may be changed according to the shape of the first frame 510 .
  • the second frame 520 includes a frame outer circumference 521 , a frame face 522 and a fastening hole 523 .
  • the outer circumference of the frame 521 forms the outer periphery of the second frame 520 .
  • the outer circumference of the frame 521 surrounds the plurality of resonance spaces 550 from the outside.
  • the frame outer circumference 521 may be formed in a shape corresponding to the second frame 520 .
  • the second frame 520 has a rectangular pillar shape, and the frame outer circumference 521 may have a rectangular cross section.
  • the outer circumference of the frame 521 may match the outer circumference of the first frame 510 . That is, the outer circumference of the first frame 510 and the outer circumference of the frame 521 may be disposed on the same surface along the outer circumference.
  • Frame periphery 521 is continuous with frame face 522 .
  • Frame face 522 forms one face of second frame 520 , the lower face in the illustrated embodiment.
  • Frame face 522 is disposed facing first frame 510 with resonance space 550 therebetween.
  • Frame face 522 surrounds resonant space 550 from the other side, in the illustrated embodiment, from the lower side.
  • the frame surface 522 is a portion where the second frame 520 is coupled to the housing 100 . That is, the frame surface 522 is coupled to the wall portion 110 . To this end, the outer side of the frame surface 522 may be formed in the same shape as the inner surface of the wall portion 110 .
  • a fastening hole 523 is formed through the inside of the frame surface 522 .
  • the fastening hole 523 is a space through which a fastening member (not shown) for coupling the second frame 520 to the wall portion 110 passes.
  • the fastening hole 523 is formed through the inside of the frame surface 522 .
  • a plurality of fastening holes 523 may be formed.
  • a plurality of fastening holes 523 may be disposed at different positions of the frame surface 522 .
  • four fastening holes 523 are provided.
  • the four fastening holes 523 are positioned adjacent to each corner of the frame face 522 having a rectangular cross section.
  • the four fastening holes 523 are located inside the outer circumference of the frame 521, so that fastening members (not shown) coupled to the fastening holes 523 are not exposed to the outside. Therefore, disturbance of vibration or noise transmitted to the vibration reducing unit 500 is minimized, and thus, the vibration reducing unit 500 can effectively reduce vibration or noise of a predetermined frequency.
  • the fastening hole 523 may be aligned with a plurality of through holes (not shown) formed in the wall portion 110 .
  • the fastening hole 523 and the through hole (not shown) may be formed to have the same central axis.
  • the pipe member 530 substantially serves to reduce the vibration or noise of the vibration reducing unit 500 . Vibration or noise generated from the conducting part 200 passes through the inside of the pipe member 530 and proceeds to the resonance space 550, whereby it can be reduced by a resonance phenomenon.
  • the pipe member 530 is coupled to the first frame 510 . Specifically, the pipe member 530 may be through-coupled to the inside of the first frame 510 .
  • the pipe member 530 may be extended by a predetermined length.
  • the extension length of the pipe member 530 may be greater than the thickness of the first frame 510, that is, the distance between the first surface 511 and the second surface 512. Accordingly, at least one of end portions of the pipe member 530 in the extension direction may protrude in the thickness direction of the first frame 510 .
  • the lower end of the pipe member 530 protrudes in the thickness direction of the first frame 510 .
  • the end of the pipe member 530 is accommodated in the resonance space 550 .
  • the upper end of the pipe member 530 may protrude in the thickness direction of the first frame 510 .
  • the end of the pipe member 530 may be located in the accommodating space 120 .
  • both the upper end and the lower end of the pipe member 530 may protrude in the thickness direction of the first frame 510 .
  • the upper end of the pipe member 530 is accommodated in the accommodating space 120 and the lower end is accommodated in the resonance space 550 .
  • a plurality of pipe members 530 may be provided.
  • a plurality of pipe members 530 may be respectively disposed in a plurality of modules M partitioning the first frame 510 .
  • nine pipe members 530 are provided and disposed in the nine modules M, respectively.
  • each end of the plurality of pipe members 530 may be positioned in the plurality of resonance spaces 550 , respectively.
  • the pipe member 530 may be disposed at any position inside the module M.
  • pipe member 530 is disposed at the center of module M.
  • the center of the pipe member 530 and the center of the module M may be disposed on the same axis.
  • a hollow is formed inside the pipe member 530 .
  • the hollow may communicate with the accommodation space 120 and the resonance space 550 to function as a passage through which vibration or noise may proceed.
  • the pipe member 530 is formed to have a predetermined cross section.
  • the pipe member 530 has a circular cross section, and is formed to have a ring shape cross section through which a hollow is formed.
  • the extension length of the pipe member 530 and the cross-sectional area of the hollow may act as factors for the resonance frequency generated by the vibration damping unit 500 . A detailed description thereof will be described later.
  • the through hole 540 substantially serves to reduce vibration or noise by the vibration reducing unit 500 . Vibration or noise generated in the conducting unit 200 passes through the through hole 540 and proceeds to the resonance space 550, and can be reduced by a resonance phenomenon.
  • the through hole 540 is formed in the first frame 510 . Specifically, the through hole 540 is formed through the inside of the first frame 510 in the thickness direction of the first frame 510 . In the illustrated embodiment, the through hole 540 is formed through in the vertical direction.
  • the extension length of the through hole 540 may be determined according to the thickness of the first frame 510 .
  • the through hole 540 may extend as long as the first surface 511 and the second surface 512 are spaced apart from each other.
  • a plurality of through holes 540 may be formed.
  • the plurality of through holes 540 may be respectively disposed in the plurality of modules M partitioning the first frame 510 .
  • the plurality of through holes 540 may be arranged to radially surround the pipe member 530 from the outside.
  • each module M In the embodiment shown in FIGS. 15 to 18 , eight through holes 540 are formed for each module M, and are arranged to surround the pipe member 530 disposed at the center in eight directions. In the above embodiment, a total of seventy-two through holes 540 are provided.
  • the plurality of modules M are disposed to cover the plurality of resonance spaces 550, respectively. Accordingly, the eight through holes 540 formed in any one module M communicate with the same resonance space 550 . In addition, through holes 540 respectively formed in different modules M communicate with different resonant spaces 550, respectively.
  • the number of through holes 540 may vary. In the embodiment shown in FIG. 19 , through holes 540 formed in each module M are provided in two pairs facing each other along the oblique direction. In the above embodiment, four through holes 540 are formed in each module M.
  • the through hole 540 is formed to have a predetermined cross section.
  • the through hole 540 has a circular cross section and is a hollow shape extending in the thickness direction of the first frame 510 .
  • the extension length and cross-sectional area of the through hole 540 may act as a factor of the resonant frequency generated by the vibration reducing unit 500 . A detailed description thereof will be described later.
  • the resonance space 550 is a space in which vibration or noise propagated through the pipe member 530 or the through hole 540 is offset. Vibration or noise propagated to the resonance space 550 may be reduced by a resonance phenomenon. Accordingly, the magnitude of vibration or noise radiated to the outside of the housing 100 coupled with the vibration reducing unit 500 may also be reduced.
  • the resonance space 550 is a space formed inside the second frame 520 .
  • the resonance space 550 is surrounded by the first frame 510 , the frame periphery 521 and the frame face 522 .
  • the outer periphery of the resonance space 550 in the horizontal direction is surrounded by the outer periphery of the frame 521 .
  • the lower side of the resonance space 550 is surrounded by the frame surface 522 , and the upper side of the resonance space 550 is surrounded by the first frame 510 .
  • the resonance space 550 communicates with the accommodation space 120 . Specifically, the resonance space 550 communicates with the accommodation space 120 through the pipe member 530 and the through hole 540 . Vibration or noise generated in the conductive part 200 may pass through the pipe member 530 or the through hole 540 and proceed to the resonance space 550 .
  • the resonance space 550 may have a predetermined volume.
  • the volume of the resonance space 550, together with the shape of the pipe member 530 and the through hole 540, is used as a factor for determining the formed resonance frequency. A detailed description thereof will be described later.
  • the resonance space 550 may be partitioned into a plurality of small spaces.
  • the plurality of partitioned small spaces may communicate with the pipe member 530 and the through hole 540 provided in each module M, respectively.
  • the division may be achieved by a plurality of barrier ribs 560 .
  • the resonance space 550 is partitioned into a total of nine small spaces, three each in the forward and backward directions and the left and right directions. Nine small spaces may be covered by nine modules M, respectively.
  • the resonance space 550 may be a space divided into a plurality of spaces partitioned by the barrier rib 560 . That is, each of the plurality of partitioned small spaces may be defined as the resonance space 55 . According to the above definition, it will be understood that nine resonance spaces 550 are formed in the illustrated embodiment.
  • Resonant space 550 may be of any shape capable of damping propagated vibration or noise.
  • the resonance space 550 is a square columnar space having a rectangular cross section and a vertical height.
  • the shape of the resonance space 550 may be changed according to the shapes of the second frame 520 and the barrier rib 560 .
  • the barrier rib 560 divides the resonance space 550 into a plurality of small spaces.
  • the barrier rib 560 is located in the resonance space 550 .
  • the barrier rib 560 is formed to have a predetermined height.
  • the upper end of the barrier rib 560 may be positioned on the same plane as the upper end of the outer circumference of the frame 521 . In the above embodiment, when the first frame 510 and the second frame 520 are coupled, communication between the plurality of partitioned small spaces may be blocked.
  • a plurality of barrier ribs 560 may be provided.
  • the plurality of barrier ribs 560 may be spaced apart from each other and may extend in one direction or the other direction.
  • a total of four barrier ribs 560 are provided, including one pair extending in the front-rear direction and spaced apart from each other, and another pair extending in the left-right direction and spaced apart from each other.
  • the pair of barrier ribs 560 and the other pair of barrier ribs 560 may intersect at a predetermined angle.
  • the predetermined angle may be a right angle.
  • the shape of the resonance space 550 communicating with the pipe member 530 and the through hole 540 provided in each module M or each partitioned space may be modified. Accordingly, a resonant frequency generated by the vibration reducing unit 500 may be adjusted.
  • the vibration reducing unit 500 is provided with a plurality of modules M physically spaced apart from each other.
  • Each module M may have a single pipe member 530 and a plurality of through holes 540, respectively.
  • the number of modules M coupled to the housing 100 may be adjusted according to the frequency of vibration or noise generated from the conducting part 200 . Accordingly, generated vibration or noise can be more effectively reduced.
  • the resonant frequency according to the shape of the pipe member 530 and the resonant space 550 may be derived by the following [Equation 1].
  • Equation 1 f 1 is the resonance frequency, v is the speed of vibration or noise, A 1 is the cross-sectional area of the hollow formed inside the pipe member 530, V 1 is the volume of the resonance space 550, and l 1 is It is the extension length of the pipe member 530.
  • the resonance frequency according to the shape of the through hole 540 and the resonance space 550 may be derived by [Equation 2] below.
  • Equation 2 f 2 is the resonance frequency, v is the speed of vibration or noise, A 2 is the cross-sectional area of the through hole 540, V 2 is the volume of the resonance space 550, and l 2 is the pipe member 530 is the extension length.
  • vibration or noise of various frequencies may be reduced by appropriately synthesizing f 1 and f 2 , or vibration or noise of a specific frequency may be intensively reduced.
  • the vibration reducing unit 500 may reduce vibration or noise of various frequencies by changing the shapes of the pipe member 530, the through hole 540, and the resonance space 550. Accordingly, vibration or noise radiated to the outside through the housing 100 coupled with the vibration reducing unit 500 may also be reduced.
  • the aforementioned pipe member 530, through hole 540, and resonance space 550 may be formed to have different shapes.
  • the pipe member 530, the through hole 540, and the resonance space 550 may have different shapes for each module M.
  • the plurality of modules M constituting the vibration reducing unit 500 are configured to cancel different types of vibration or noise. Accordingly, even when vibration or noise of various frequencies is generated from the conducting unit 200, it can be reduced by the vibration reducing unit 500 and then radiated to the outside.
  • vibration reducing units 300, 400, and 500 according to each embodiment of the present invention described above may be provided. This is because the vibration reducing units 300 , 400 , and 500 according to each embodiment are coupled to the housing 100 or the conducting unit 200 at different positions.
  • vibration reducing units 300 , 400 , and 500 are provided, it will be understood that vibration or noise generated from the conducting unit 200 can be most effectively reduced.
  • wall part 111 first wall
  • first reinforcing rib 132 second reinforcing rib
  • iron core member 220 winding member
  • cover member 311 main cover
  • sub cover 320 sound absorbing member
  • protruding passage part 400 vibration reducing part
  • first transmission member 422 second transmission member
  • housing coupling member 431 first coupling member
  • first elastic member 442 second elastic member
  • vibration reduction unit 510 first frame

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Regulation Of General Use Transformers (AREA)

Abstract

진동 저감부 및 이를 포함하는 변압기가 개시된다. 본 발명의 일 측면에 따른 진동 저감부는 외형의 일 부분을 형성하는 제1 프레임; 외형의 타 부분을 형성하며, 상기 제1 프레임과 결합되는 제2 프레임; 상기 제2 프레임의 내부에 형성되어, 전달된 진동 또는 소음을 공진 현상(resonance)에 의해 저감시키는 공명 공간; 및 상기 제1 프레임에 관통 결합되어, 상기 공명 공간과 외부를 연통하는 파이프 부재를 포함할 수 있다.

Description

진동 저감부 및 이를 포함하는 변압기
본 발명은 진동 저감부 및 이를 포함하는 변압기에 관한 것으로, 보다 상세하게는, 작동시 발생되어 외부로 방사되는 진동 또는 소음을 저감할 수 있는 진동 저감부 및 이를 포함하는 변압기에 관한 것이다.
변압기는 전자기 유도를 이용하여 교류 전압 또는 교류 전류의 값을 변환하는 장치를 통칭한다. 변압기는 외부와 통전되어, 교류 전류를 인가받는 코일 및 코일이 권취되는 철심을 포함한다. 코일은 복수 개 구비되어, 각각 철심에 권취된다.
어느 하나의 코일에 교류 전류가 인가되면, 철심에는 자속(magnetic flux)이 형성된다. 자속의 변화에 따라, 다른 하나의 코일에는 전자기 유도를 통해 유도된 전류가 통전된다. 유도된 전류는 인가된 교류 전류와 다른 전류 또는 전압을 갖게 되어, 외부의 부하로 전달될 수 있다.
변압기에 구비되는 철심은 복수 개의 철판 등이 적층되어 형성된다. 변압기가 작동됨에 따라, 철심에는 자왜 현상이 발생된다. 상기 자왜 현상에 의해 철심에서는 진동 및 소음 등이 발생될 수 있다. 발생된 진동 및 소음은 외부로 전달되어, 변압기가 배치된 환경에 악영향을 미칠 수 있다.
구체적으로, 발생된 진동은 변압기의 다른 구성 요소 및 변압기와 연결된 다른 장치에 전달될 수 있다. 이에 따라, 변압기의 구성 요소 간의 결합 상태 및 변압기와 다른 장치의 결합 상태가 불안정해질 우려가 있다.
이에, 변압기가 작동시 발생되는 진동 또는 소음을 저감하기 위한 기술들이 소개된 바 있다.
한국등록특허문헌 제10-1530347호는 변전소 변압기의 방진 지지장치를 개시한다. 구체적으로, 변전소 변압기를 지지하되, 변압기의 자체 진동과 변압기로 전가되는 외부 영향에 의한 진동을 흡수하여 발생된 진동을 차단할 수 있는 변전소 변압기의 방진 지지 장치를 개시한다.
그런데, 상기 선행문헌이 개시하는 방진 지지장치는 기 설정된 크기, 무게의 변압기만을 지지할 수 있다. 즉, 변압기의 무게 또는 크기가 변경될 경우, 상기 방진 지지장치는 증가된 무게 또는 크기에 따라 재설계되어야 한다. 즉, 상기 선행문헌이 개시하는 방진 지지장치는 기 설정된 크기, 무게의 변압기만을 지지할 뿐, 다른 크기, 무게의 변압기를 지지하기 어렵다.
또한, 상기 선행문헌이 개시하는 방진 지지장치는 하측에서 변압기를 지지하게 형성된다. 따라서, 변압기 및 방진 지지장치의 높이가 증가되어, 기존에 설치된 변전소에 수용되기 어려운 한계가 있다.
한국등록특허문헌 제10-1661138호는 변전소 변압기의 방진 지지장치를 개시한다. 구체적으로, 지중에 부분적으로 매설된 박스 내부에 완충블록을 적층하고, 변압기를 완충블록에 결합시켜 변압기의 진동을 흡수하기 위한 방진 지지장치를 개시한다.
그런데, 상기 선행문헌이 개시하는 방진 지지장치는 지중, 즉 지하에 매설됨을 전제한다. 따라서, 변압기가 지면과 이격되어 배치되는 경우 상기 선행문헌에 따른 방진 지지 장치가 적용되기 어렵다.
또한, 상기 선행문헌이 개시하는 방진 지지장치 역시 하측에서 변압기를 지지하게 구성된다. 따라서, 변압기의 작동에 따라 발생되는 진동을 하측에서 흡수할 수 있되, 다른 방향으로 방사되는 진동을 저감하기는 어렵다.
한국등록특허문헌 제10-1530347호 (2015.06.29.)
한국등록특허문헌 제10-1661138호 (2016.10.10.)
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 목적은 외부로 방사되는 진동 또는 소음을 저감할 수 있는 구조의 진동 저감부 및 이를 포함하는 변압기를 제공하는 것이다.
본 발명의 다른 목적은 발생된 진동 또는 소음을 상쇄하여 저감할 수 있는 구조의 진동 저감부 및 이를 포함하는 변압기를 제공하는 것이다.
본 발명의 또 다른 목적은 다양한 형태의 진동 또는 소음을 저감할 수 있는 구조의 진동 저감부 및 이를 포함하는 변압기를 제공하는 것이다.
본 발명의 또 다른 목적은 구조의 다양한 변형이 가능한 구조의 진동 저감부 및 이를 포함하는 변압기를 제공하는 것이다.
본 발명의 또 다른 목적은 방사되는 진동 또는 소음을 여러 위치에서 저감할 수 있는 구조의 진동 저감부 및 이를 포함하는 변압기를 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 측면에 따르면, 외형의 일 부분을 형성하는 제1 프레임; 외형의 타 부분을 형성하며, 상기 제1 프레임과 결합되는 제2 프레임; 상기 제2 프레임의 내부에 형성되어, 전달된 진동 또는 소음을 공진 현상(resonance)에 의해 저감시키는 공명 공간; 및 상기 제1 프레임에 관통 결합되어, 상기 공명 공간과 외부를 연통하는 파이프 부재를 포함하는, 진동 저감부가 제공된다.
이때, 상기 제1 프레임에 관통 형성되어, 상기 공명 공간과 외부를 연통하는 통공을 포함하는, 진동 저감부가 제공될 수 있다.
또한, 상기 통공은 복수 개 형성되어, 복수 개의 상기 통공은 상기 파이프 부재를 둘러싸게 배치되는, 진동 저감부가 제공될 수 있다.
이때, 상기 파이프 부재의 연장 길이는 상기 제1 프레임의 두께 이상으로 형성되어, 상기 파이프 부재의 연장 방향의 일 단부는 상기 제1 프레임에서 돌출되게 위치되는, 진동 저감부가 제공될 수 있다.
또한, 상기 파이프 부재의 상기 일 단부는 상기 공명 공간에 위치되는, 진동 저감부가 제공될 수 있다.
이때, 상기 제1 프레임은 복수 개의 모듈로 구획되고, 상기 공명 공간은 복수 개 형성되어, 복수 개의 상기 공명 공간은 상기 파이프 부재의 연장 방향을 따라, 상기 복수 개의 상기 모듈과 각각 겹쳐지게 배치되는, 진동 저감부가 제공될 수 있다.
또한, 상기 파이프 부재는 복수 개 구비되어, 복수 개의 상기 파이프 부재는 복수 개의 상기 모듈에 각각 관통되고, 복수 개의 상기 파이프 부재의 각 단부는 복수 개의 상기 공명 공간에 각각 위치되는, 진동 저감부가 제공될 수 있다.
이때, 상기 제1 프레임에 관통 형성되어, 상기 공명 공간과 외부를 연통하는 통공을 포함하며, 상기 통공은, 복수 개의 상기 모듈에 각각 형성되는, 진동 저감부가 제공될 수 있다.
또한, 복수 개의 상기 모듈에는 복수 개의 통공이 각각 형성되고, 복수 개의 상기 통공은, 복수 개의 상기 공명 공간과 각각 연통되는, 진동 저감부가 제공될 수 있다.
이때, 상기 공명 공간에 위치되어, 상기 공명 공간을 복수 개의 공간으로 구획하는 격벽을 포함하는, 진동 저감부가 제공될 수 있다.
또한, 상기 격벽은 일 방향으로 연장되는 일 부분 및 타 방향으로 연장되는 다른 부분을 포함하며, 상기 일 부분 및 상기 타 부분은 소정의 각도를 이루며 교차되며 연장되는, 진동 저감부가 제공될 수 있다.
또한, 본 발명의 일 측면에 따르면, 외부의 전원 및 부하와 통전되어, 상기 전원에서 전달된 전력을 변압하여 상기 부하에 제공하는 통전부; 상기 통전부를 수용하는 수용 공간 및 상기 수용 공간을 둘러싸는 벽체부를 포함하는 하우징; 및 상기 수용 공간에 수용되며, 상기 하우징에 각각 결합되어, 상기 통전부에서 발생된 진동 또는 소음을 저감하게 구성되는 진동 저감부를 포함하며, 상기 진동 저감부는, 상기 통전부를 향하는 일측을 형성하는 제1 프레임; 상기 제1 프레임 및 상기 벽체부와 각각 결합되는 제2 프레임; 상기 제2 프레임의 내부에 형성되어, 전달된 진동 또는 소음을 공진 현상에 의해 저감시키는 공명 공간; 및 상기 제1 프레임에 관통 결합되어, 상기 공명 공간과 상기 수용 공간을 연통하는 파이프 부재를 포함하는, 변압기가 제공된다.
이때, 상기 진동 저감부는, 상기 제1 프레임에 관통 형성되어, 상기 공명 공간과 상기 수용 공간을 연통하는 복수 개의 통공을 포함하는, 변압기가 제공될 수 있다.
또한, 상기 공명 공간에서 발생되는 진동 또는 소음의 공명 주파수는, 상기 파이프 부재의 연장 길이 및 단면적, 상기 통공의 연장 길이 및 단면적 및 상기 공명 공간의 부피 중 어느 하나 이상을 인자로 하여 연산되는, 변압기가 제공될 수 있다.
이때, 상기 파이프 부재는, 상기 제1 프레임의 두께 이상의 길이만큼 연장되어, 그 연장 방향의 일 단부가 상기 공명 공간에 위치되는, 변압기가 제공될 수 있다.
상기의 구성에 따라, 본 발명의 실시 예에 따른 진동 저감부 및 이를 포함하는 변압기는 외부로 방사되는 진동 또는 소음을 저감할 수 있다.
먼저, 진동 저감부는 하우징의 벽체부에 결합된다. 진동 저감부는 하우징의 수용 공간에 수용되어, 벽체부의 내면에 결합된다. 진동 저감부는 진동원 또는 소음원으로 작용되는 통전부를 향하는 제1 프레임 및 제1 프레임과 벽체부에 각각 결합되는 제2 프레임을 포함한다.
제2 프레임의 내부에는 발생된 진동 또는 소음을 공명 현상을 이용하여 상쇄할 수 있는 공명 공간이 형성된다. 제1 프레임에는 파이프 부재가 관통 결합되고, 제1 프레임의 면에는 통공이 관통 형성되어 수용 공간과 공명 공간을 연통한다.
따라서, 통전부에서 발생된 진동 또는 소음은 진동 저감부에 의해 상쇄, 저감된 후 벽체부를 통해 외부로 방사될 수 있다. 이에 따라, 발생된 진동 또는 소음이 저감된 후 변압기의 외부로 방사될 수 있다.
또한, 상기의 구성에 따라, 본 발명의 실시 예에 따른 진동 저감부 및 이를 포함하는 변압기는 발생된 진동 또는 소음을 상쇄하여 저감할 수 있다.
진동 저감부는 공명 현상을 이용하여 발생된 진동 또는 소음을 저감하게 구성된다. 진동 저감부에 의해 생성되는 진동은 진동 저감부에 구비되는 파이프 부재, 통공 및 공명 공간의 형상 등에 의해 결정될 수 있다. 진동 저감부는 통전부에서 발생되는 진동 또는 소음의 주파수에 대응되는 공진 주파수에 따라 설계될 수 있다.
따라서, 진동 저감부는 파동의 형태로 형성되는 진동 또는 소음을 상쇄시켜 저감할 수 있다. 이에 따라, 통전부에서 발생된 진동 또는 소음이 더욱 효과적으로 저감될 수 있다.
또한, 상기의 구성에 따라, 본 발명의 실시 예에 따른 진동 저감부 및 이를 포함하는 변압기는 다양한 형태의 진동 또는 소음을 저감할 수 있다.
상술한 바와 같이, 진동 저감부는 그 구조의 변경을 통해 공명 주파수가 조정될 수 있다. 예를 들어, 공명 주파수는 진동 저감부의 파이프 부재의 길이 및 단면적, 통공의 길이 및 단면적 및 공명 공간의 부피 등을 인자로 하여 조정될 수 있다.
따라서, 통전부에서 발생되는 진동 또는 소음의 주파수에 대응되게 진동 저감부의 구조가 변경되어, 발생된 진동 또는 소음이 효과적으로 저감될 수 있다.
또한, 상기의 구성에 따라, 본 발명의 실시 예에 따른 진동 저감부 및 이를 포함하는 변압기는 구조의 다양한 변형이 가능하다.
진동 저감부를 구성하는 제1 프레임은 복수 개의 모듈로 구획될 수 있다. 또한, 제2 프레임의 내부에 형성된 공명 공간 또한 격벽에 의해 복수 개의 공간으로 구획될 수 있다. 구획된 복수 개의 모듈 및 공간은 서로 다른 주파수의 진동 또는 소음을 상쇄하게 구성될 수 있다.
일 실시 예에서, 진동 저감부는 소형화된 모듈로 구비될 수 있다. 소형화된 모듈은 서로 다른 크기의 파이프 부재, 통공 및 공명 공간을 갖게 형성될 수 있다. 이에 따라, 복수 개의 소형화된 모듈은 서로 다른 주파수의 진동 또는 소음을 상쇄할 수 있다.
따라서, 발생되는 진동 또는 소음의 형태에 따라, 진동 저감부 및 이를 포함하는 변압기의 다양한 변경이 가능하다.
또한, 상기의 구성에 따라, 본 발명의 실시 예에 따른 진동 저감부 및 이를 포함하는 변압기는 방사되는 진동 또는 소음을 여러 위치에서 저감할 수 있다.
일 실시 예에서, 진동 저감부는 복수 개 구비될 수 있다. 복수 개의 진동 저감부는 수용 공간을 둘러싸는 복수 개의 벽체부에 각각 결합될 수 있다. 즉, 진동 저감부는 서로 다른 위치에 배치되어, 통전부에서 다양한 방향으로 방사되는 진동 또는 소음을 저감할 수 있다.
이에 따라, 통전부에서 발생되는 진동 또는 소음이 다양한 위치에서 저감된 후 변압기의 외부로 전달될 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 실시 예에 따른 변압기를 도시하는 사시도이다.
도 2는 도 1의 변압기의 내부를 도시하는 부분 개방 사시도이다.
도 3는 도 1의 변압기에 본 발명의 일 실시 예에 따른 진동 저감부가 구비된 상태를 도시하는 사시도이다.
도 4는 도 3의 진동 저감부를 도시하는 사시도이다.
도 5는 도 3의 진동 저감부의 설치 방법의 일 예를 도시하는 사용 상태도이다.
도 6은 도 3의 진동 저감부의 설치 방법의 다른 예를 도시하는 사용 상태도이다.
도 7은 도 1의 변압기 및 변형 예에 따른 진동 저감부를 도시하는 사시도(a) 및 측단면도(b)이다.
도 8은 도 1의 변압기 및 다른 변형 예에 따른 진동 저감부를 도시하는 사시도(a) 및 측단면도(b)이다.
도 9는 도 1의 변압기에 본 발명의 다른 실시 예에 따른 진동 저감부가 구비된 상태를 도시하는 부분 개방 사시도이다.
도 10은 도 9의 변압기 및 진동 저감부를 도시하는 측단면도이다.
도 11은 도 9의 변압기 및 변형 예에 따른 진동 저감부를 도시하는 측단면도이다.
도 12는 도 9의 변압기 및 다른 변형 예에 따른 진동 저감부를 도시하는 측단면도이다.
도 13은 도 9의 변압기 및 또다른 변형 예에 따른 진동 저감부를 도시하는 측단면도이다.
도 14는 도 1의 변압기에 본 발명의 또다른 실시 예에 따른 진동 저감부가 구비된 상태를 도시하는 부분 개방 사시도이다.
도 15는 도 14의 진동 저감부를 도시하는 사시도이다.
도 16은 도 14의 진동 저감부를 도시하는 분리 사시도이다.
도 17은 도 14의 진동 저감부를 도시하는 다른 각도의 사시도(a) 및 평면도(b)이다.
도 18은 도 14의 진동 저감부를 도시하는 측단면도이다.
도 19는 도 14의 진동 저감부의 변형 예를 도시하는 사시도이다.
도 20은 도 14의 진동 저감부의 다른 변형 예를 도시하는 사시도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 본 발명을 명확하게 설명하기 위해서 도면에서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
본 명세서 및 청구범위에 사용된 단어와 용어는 통상적이거나 사전적인 의미로 한정 해석되지 않고, 자신의 발명을 최선의 방법으로 설명하기 위해 발명자가 용어와 개념을 정의할 수 있는 원칙에 따라 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
그러므로 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 바람직한 일 실시 예에 해당하고, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로 해당 구성은 본 발명의 출원 시점에서 이를 대체할 다양한 균등물과 변형 예가 있을 수 있다.
이하의 설명에서는 본 발명의 특징을 명확하게 하기 위해, 일부 구성 요소들에 대한 설명이 생략될 수 있다.
1. 용어의 정의
이하의 설명에서 사용되는 "통전"이라는 용어는 하나 이상의 부재가 전류 또는 전기적 신호를 전달 가능하게 연결됨을 의미한다. 일 실시 예에서, 통전은 도선 부재 등에 의한 유선의 형태 또는 Wi-Fi, 블루투스, RFID 등의 무선의 형태로 형성될 수 있다.
이하의 설명에서 사용되는 "연통"이라는 용어는 하나 이상의 부재가 서로 유체 소통 가능하게 연결됨을 의미한다. 일 실시 예에서, 연통은 각 부재의 내부가 서로 개방되어 형성되거나, 관로, 파이프 등 다른 부재에 의해 형성될 수 있다.
이하의 설명에서 사용되는 "상측", "하측", "좌측", "우측", "전방 측" 및 "후방 측"이라는 용어는 첨부된 도면에 걸쳐 도시된 좌표계를 참조하여 이해될 것이다.
2. 본 발명의 실시 예에 따른 변압기(10)의 구성의 설명
도 1 내지 도 3을 참조하면, 본 발명의 실시 예에 따른 변압기(10)가 도시된다. 본 발명의 실시 예에 따른 변압기(10)는 작동시 철심 부재(210)에서 발생되는 자왜 현상(magnetostriction)에 의한 진동 또는 소음을 저감할 수 있게 구성된다. 이는 후술될 다양한 실시 예에 따른 진동 저감부(300, 400, 500)에 의해 달성될 수 있다.
변압기(10)는 외부와 통전 가능하게 연결된다. 변압기(10)는 전압의 조정 대상인 전류를 전달받을 수 있다. 변압기(10)는 전압이 조정된 전류를 외부로 전달할 수 있다. 일 실시 예에서, 상기 전류는 교류 전류(Alternating Current, AC)일 수 있다.
변압기(10)의 작동 원리는 잘 알려진 기술이므로, 이에 대한 상세한 설명은 생략하기로 한다.
도 1 내지 도 2에 도시된 실시 예에서, 변압기(10)는 하우징(100) 및 통전부(200)를 포함한다. 또한, 도 3 내지 도 20을 더 참조하면, 도시된 실시 예에 따른 변압기(10)는 다양한 실시 예에 따른 진동 저감부(300, 400, 500)를 포함한다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 변압기(10)의 구성을 설명하되, 각 실시 예에 따른 진동 저감부(300, 400, 500)는 별항으로 설명한다.
하우징(100)은 변압기(10)의 외형을 형성한다. 하우징(100)의 내부에는 공간이 형성되어, 변압기(10)의 다양한 구성 요소가 수용될 수 있다. 하우징(100)의 상기 공간은 외부와 통전되어, 변압의 대상인 전류가 전달될 수 있다. 또한, 변압된 전류는 외부로 다시 전달될 수 있다.
하우징(100)은 변압기(10)의 외형을 형성하며 다양한 구성 요소를 실장할 수 있는 임의의 형상일 수 있다. 도시된 실시 예에서, 하우징(100)은 좌우 방향의 연장 길이가 전후 방향의 연장 길이보다 긴 사각형의 단면을 갖고, 상하 방향으로 연장 형성된 사각기둥 형상이다.
도시된 실시 예에서, 하우징(100)은 벽체부(110), 수용 공간(120) 보강 리브(130)를 포함한다. 또한, 도 5의 (a)를 더 참조하면, 도시된 실시 예에 따른 하우징(100)은 충진 공간(140)을 더 포함한다.
벽체부(110)는 하우징(100)의 외주를 형성한다. 벽체부(110)는 하우징(100)의 내부에 형성된 공간, 즉 수용 공간(120)을 외측에서 둘러싼다.
벽체부(110)는 복수 개 구비될 수 있다. 복수 개의 벽체부(110)는 서로 다른 위치에서 하우징(100)의 외주를 형성할 수 있다. 도시된 실시 예에서, 벽체부(110)는 상하 방향으로 서로 이격되어 마주하는 한 쌍, 좌우 방향으로 이격되어 서로 마주하는 다른 한 쌍 및 후방 측에 위치되는 한 개의 벽체부를 포함한다. 상기 각 쌍의 벽체부(110)는 수용 공간(120)을 사이에 두고 마주하게 배치된다.
벽체부(110)는 하우징(100)의 외주를 형성하며 수용 공간(120)을 둘러쌀 수 있는 임의의 형상일 수 있다. 도시된 실시 예에서, 벽체부(110)는 사각형의 단면을 갖고 소정의 두께로 연장 형성되는 사각판형으로 구비된다.
복수 개의 벽체부(110)는 서로 소정의 각도를 이루며 연속될 수 있다. 도시된 실시 예에서, 복수 개의 벽체부(110) 중 서로 인접하게 배치되는 벽체부(110)는 서로 수직하게 연속된다. 복수 개의 벽체부(110)의 결합 방식은 하우징(100)의 구조에 따라 변경될 수 있다.
복수 개의 벽체부(110)는 수용 공간(120)을 복수 개의 위치에서 둘러싸게 배치된다. 도시된 실시 예에서, 복수 개의 벽체부(110)는 수용 공간(120)을 전방 측, 후방 측, 상측, 하측, 좌측 및 우측에서 각각 둘러싸게 배치된다. 상술한 바와 같이, 전방 측에도 벽체부(110)가 구비되어, 수용 공간(120)의 전방 측을 둘러싸게 배치될 수 있다.
도시된 실시 예에서, 벽체부(110)는 제1 벽(111), 제2 벽(112), 제3 벽(113), 제4 벽(114) 및 제5 벽(115)을 포함한다.
제1 벽(111)은 벽체부(110) 중 어느 하나로 구비된다. 제1 벽(111)은 수용 공간(120)을 일측에서 둘러싼다. 도시된 실시 예에서, 제1 벽(111)은 전방 측에 배치되어, 수용 공간(120)을 전방 측에서 둘러싼다.
제2 벽(112)은 벽체부(110) 중 다른 하나로 구비된다. 제2 벽(112)은 수용 공간(120)을 타측에서 둘러싼다. 도시된 실시 예에서, 제2 벽(112)은 좌측에 배치되어, 수용 공간(120)을 좌측에서 둘러싼다.
제3 벽(113)은 벽체부(110) 중 또다른 하나로 구비된다. 제3 벽(113)은 수용 공간(120)을 다른 타측에서 둘러싼다. 도시된 실시 예에서, 제3 벽(113)은 우측에 배치되어, 수용 공간(120)을 우측에서 둘러싼다. 제3 벽(113)은 수용 공간(120)을 사이에 두고 제2 벽(112)과 마주하게 배치된다.
제4 벽(114)은 벽체부(110) 중 또다른 하나로 구비된다. 제4 벽(114)은 수용 공간(120)을 또다른 타측에서 둘러싼다. 도시된 실시 예에서, 제4 벽(114)은 후방 측에 배치되어, 수용 공간(120)을 후방 측에서 둘러싼다. 제4 벽(114)은 수용 공간(120)을 사이에 두고 제1 벽(111)과 마주하게 배치된다.
제1 벽(111), 제2 벽(112), 제3 벽(113) 및 제4 벽(114) 중 어느 하나 이상의 벽에는 복수 개의 보강 리브(130)가 형성된다. 도시된 실시 예에서, 제1 내지 제4 벽(111, 112, 113, 114) 모두에 보강 리브(130)가 형성된다. 보강 리브(130)는 상하 방향으로 연장되어 제1 내지 제4 벽(111, 112, 113, 114)의 강성을 보강하게 구성된다.
제5 벽(115)은 벽체부(110) 중 또다른 하나로 구비된다. 제5 벽(115)은 수용 공간(120)을 덮게 배치된다. 도시된 실시 예에서, 제5 벽(115)은 상측에 배치되어, 수용 공간(120)을 상측에서 둘러싼다.
도시되지는 않았으나, 벽체부(110)는 수용 공간(120)을 하측에서 둘러싸는 또다른 벽을 포함할 수 있다. 상기 또다른 벽은 하측에 배치되어, 수용 공간(120)을 하측에서 둘러쌀 수 있다. 상기 실시 예에서, 상기 또다른 벽은 수용 공간(120)을 사이에 두고 제5 벽(115)을 마주하게 배치된다.
한편, 본 발명의 각 실시 예에 따른 진동 저감부(300, 400, 500)는 제1 내지 제4 벽(111, 112, 113, 114) 중 어느 하나 이상의 벽에 구비될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
수용 공간(120)은 하우징(100)의 내부에 형성된 공간이다. 수용 공간(120)은 변압기(10)의 다양한 구성 요소를 수용한다. 일 실시 예에서, 수용 공간(120)은 통전부(200) 및 각 실시 예에 따른 진동 저감부(400, 500)를 수용할 수 있다. 수용 공간(120)은 복수 개의 벽체부(110)에 둘러싸여 형성된 공간이다.
수용 공간(120)은 외부와 통전된다. 변압의 대상이 되는 전류는 수용 공간(120)에 수용된 구성 요소에 전달될 수 있다. 또한, 통전부(200)에 의해 승압 또는 강압된 전류는 외부로 전달될 수 있다. 이를 위해, 수용 공간(120)은 외부에서 연장되는 복수 개의 도선 부재(미도시)가 부분적으로 수용될 수 있다.
보강 리브(130)는 벽체부(110)에 결합되어, 벽체부(110)의 강성을 보강한다. 보강 리브(130)는 벽체부(110)가 연장되는 일 방향, 도시된 실시 예에서 상하 방향으로 연장 형성된다.
보강 리브(130)는 복수 개 구비될 수 있다. 복수 개의 보강 리브(130)는 벽체부(110)가 연장되는 다른 방향을 따라 서로 이격되어 배치될 수 있다. 도 1에 도시된 실시 예에서, 보강 리브(130)는 전후 방향을 따라 서로 이격되게 배치된다.
보강 리브(130)는 복수 개의 위치에 형성될 수 있다. 상술한 바와 같이, 벽체부(110)는 복수 개 구비되어 다양한 방향에서 수용 공간(120)을 둘러싸게 배치될 수 있다. 이에, 보강 리브(130)는 복수 개의 벽체부(110)마다 형성될 수 있다.
도시된 실시 예에서, 보강 리브(130)는 제1 내지 제4 벽(111, 112, 113, 114)에 각각 형성된다.
보강 리브(130)는 벽체부(110)에 결합되어 벽체부(110)의 강성을 보강할 수 있는 임의의 형상일 수 있다. 도시된 실시 예에서, 보강 리브(130)는 상하 방향으로 연장 형성되고, 외측을 향해 소정의 두께를 갖는 컬럼(column) 형태로 구비된다.
보강 리브(130)는 서로 다른 방향으로 연장되는 복수 개의 부분을 포함할 수 있다. 도 5를 참조하면, 보강 리브(130)는 제1 보강 리브(131) 및 제2 보강 리브(132)를 포함한다.
제1 보강 리브(131)는 일 방향, 도시된 실시 예에서 상하 방향으로 연장 형성되어 벽체부(110)의 강성을 보강하게 구성된다. 제1 보강 리브(131)는 하우징(100)의 높이 방향으로 연장 형성될 수 있다.
제1 보강 리브(131)는 복수 개 형성될 수 있다. 복수 개의 제1 보강 리브(131)는 타 방향으로 서로 이격되게 배치될 수 있다. 도시된 실시 예에서, 제1 보강 리브(131)는 수평 방향으로 이격되게 배치된다.
즉, 제1 벽(111) 및 제4 벽(114)에 구비되는 복수 개의 제1 보강 리브(131)는 좌우 방향으로 이격되어 배치된다. 또한, 제2 벽(112) 및 제3 벽(113)에 구비되는 복수 개의 제1 보강 리브(131)는 전후 방향으로 이격되어 배치된다.
복수 개의 제1 보강 리브(131)가 이격되어 형성되는 공간은 충진 공간(140)으로 정의될 수 있다. 상기 충진 공간(140)에는 후술될 진동 저감부(300)의 흡음 부재(320)가 충진되어, 통전부(200)에서 발생된 진동 또는 소음이 저감될 수 있다.
복수 개의 제1 보강 리브(131) 사이에서 제2 보강 리브(132)가 연장된다.
제2 보강 리브(132)는 타 방향, 도시된 실시 예에서 수평 방향으로 연장 형성되어 벽체부(110)의 강성을 보강하게 구성된다. 또한, 제2 보강 리브(132)는 복수 개의 제1 보강 리브(131) 사이에서 연장되어, 서로 이격된 제1 보강 리브(131)의 강성 또한 보강하게 구성된다.
제2 보강 리브(132)는 하우징(100)의 단면 방향으로 연장 형성될 수 있다. 도시된 실시 예에서, 제1 벽(111) 및 제4 벽(114)에서 연장되는 제2 보강 리브(132)는 좌우 방향으로 연장될 수 있다. 또한, 제2 벽(112) 및 제3 벽(113)에서 연장되는 제2 보강 리브(132)는 전후 방향으로 연장될 수 있다.
제2 보강 리브(132)는 복수 개 형성될 수 있다. 복수 개의 제2 보강 리브(132)는 상기 일 방향으로 이격되게 배치될 수 있다. 도시된 실시 예에서, 제2 보강 리브(132)는 제1 보강 리브(131)의 연장 방향, 즉 상하 방향으로 이격되게 배치된다.
복수 개의 제2 보강 리브(132)가 이격되어 형성되는 공간 또한 충진 공간(140)으로 정의될 수 있다. 상기 충진 공간(140)에는 후술될 진동 저감부(300)의 흡음 부재(320)가 충진되어, 통전부(200)에서 발생된 진동 또는 소음이 저감될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
충진 공간(140)은 복수 개의 보강 리브(130) 사이에 형성된 공간이다. 충진 공간(140)은 복수 개의 보강 리브(130)에 의해 수평 방향의 양측이 둘러싸인다. 또한, 충진 공간(140)은 벽체부(110)에 의해 수평 방향의 타측이 둘러싸이며, 진동 저감부(300)의 커버 부재(310)에 의해 상하 방향의 각 단부 및 수평 방향의 다른 타측이 둘러싸인다.
도 5를 참조하면, 제1 벽(111)에 형성된 충진 공간(140)이 도시된다. 도시된 실시 예에서, 충진 공간(140)의 좌측 및 우측은 제1 보강 리브(131)에 둘러싸인다. 충진 공간(140)의 후방 측은 제1 벽(111)에 둘러싸이며, 충진 공간(140)의 전방 측, 상측 및 하측은 커버 부재(310)에 의해 둘러싸인다.
충진 공간(140)은 복수 개의 소공간으로 구획될 수 있다. 상기 구획은 복수 개의 보강 리브(130)에 의해 형성된다. 즉, 도 5의 (a)를 참조하면, 충진 공간(140)은 서로 이격 배치되는 복수 개의 제1 보강 리브(131)에 의해 수평 방향으로 구획된다. 또한, 충진 공간(140)은 서로 이격 배치되는 복수 개의 제2 보강 리브(132)에 의해 수직 방향으로 구획된다.
충진 공간(140)이 구획되어 형성된 복수 개의 공간은 보강 리브(130)에 의해 임의 연통되지 않는다. 다만, 상기 복수 개의 공간은 후술될 본 발명의 일 실시 예에 따른 진동 저감부(300)에 의해 연통될 수 있다.
충진 공간(140)에는 진동 저감부(300)의 흡음 부재(320)가 수용될 수 있다. 흡음 부재(320)는 통전부(200)에서 발생되어 벽체부(110)로 전달된 진동 또는 소음을 흡수하게 구성된다. 이에 따라, 발생된 진동 또는 소음이 외부로 방사되지 않게 된다. 이에 대한 상세한 설명은 후술하기로 한다.
통전부(200)는 외부에서 전달된 전류를 승압 또는 강압한다. 이에, 통전부(200)는 변압기(10)의 기능을 실질적으로 수행한다고 할 수 있을 것이다.
통전부(200)는 하우징(100)의 내부 공간, 즉 수용 공간(120)에 수용된다. 수용 공간(120)은 복수 개의 벽체부(110)에 의해 둘러싸여 정의되는 바, 수용 공간(120)에 수용된 통전부(200) 또한 복수 개의 벽체부(110)에 둘러싸여 외부에 임의 노출되지 않는다.
따라서, 통전부(200)는 변압기(10) 외부의 환경에 의해 손상되지 않게 된다. 또한, 변압기(10) 근처에 체류되는 작업자는 통전부(200)와 물리적으로 이격되어, 통전부(200)에 통전되는 전류에 의한 안전 사고가 방지될 수 있다.
통전부(200)는 외부와 통전된다. 상기 통전은 수용 공간(120)을 외부와 통전하는 도선 부재(미도시) 등에 의해 형성될 수 있다. 유입된 전류가 통전부(200)에 의해 승압 또는 강압되는 과정은 잘 알려진 기술이므로 상세한 설명은 생략하기로 한다.
도시된 실시 예에서, 통전부(200)는 철심 부재(210), 권선 부재(220) 및 지지 프레임(230)을 포함한다.
철심 부재(210)는 통전부(200)의 구조를 형성한다. 철심 부재(210)에는 외부와 통전되는 복수 개의 권선 부재(220)가 권취된다. 복수 개의 권선 부재(220) 중 어느 하나 이상의 권선 부재(220)에 전류가 인가되면, 철심 부재(210)에는 자속(magnetic flux)이 발생된다. 발생된 자속은 복수 개의 권선 부재(220) 중 다른 하나 이상의 권선 부재(220)에 유도 기전력을 발생시킨다.
철심 부재(210)는 복수 개의 플레이트가 적층되어 형성될 수 있다. 일 실시 예에서, 철심 부재(210)는 전후 방향의 두께를 갖는 복수 개의 플레이트가 적층되어 형성된다.
철심 부재(210)를 구성하는 복수 개의 플레이트는 권선 부재(220)에 통전되는 전류에 의한 자속을 형성할 수 있는 임의의 소재로 형성될 수 있다. 일 실시 예에서, 플레이트는 연철(wrought iron) 소재로 형성될 수 있다.
철심 부재(210)는 복수 개의 권선 부재(220)가 권취되어 자속을 형성할 수 있는 임의의 형태로 형성될 수 있다.
본 발명의 실시 예에 따른 변압기(10)는 다른 실시 예에 따른 진동 저감부(400)를 포함하여, 철심 부재(210)에서 발생된, 자왜 현상에 의한 진동 또는 소음을 저감할 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
권선 부재(220)는 철심 부재(210)에 권취된다. 권선 부재(220)에 통전된 전류는 철심 부재(210)에 자속을 발생시키고, 발생된 자속에 의한 유도 기전력에 의해 전류가 승압 또는 강압되어 외부로 전달될 수 있다.
권선 부재(220)는 외부와 통전된다. 승압 또는 강압 대상인 전류는 권선 부재(220)에 전달될 수 있다. 승압 또는 강압된 전류는 외부로 전달될 수 있다.
권선 부재(220)는 철심 부재(210)에 권취된다. 구체적으로, 권선 부재(220)는 철심 부재(210)의 부분 중 높이 방향, 도시된 실시 예에서, 상하 방향으로 연장 형성된 부분에 권취된다.
권선 부재(220)는 철심 부재(210)에 수용된다. 구체적으로, 권선 부재(220)는 상기 높이 방향으로 연장 형성된 부분 사이에 둘러싸이는 공간에 수용된다.
권선 부재(220)는 복수 개 구비될 수 있다. 복수 개의 권선 부재(220)는 서로 이격 배치되어, 서로 다른 위치에서 철심 부재(210)에 권취될 수 있다.
도시된 실시 예에서, 권선 부재(220)는 세 개 구비되어, 서로 이격되어 배치된다. 복수 개의 권선 부재(220)는 서로 접촉되지 않는다.
복수 개의 권선 부재(220) 중 어느 하나의 권선 부재(220)는 외부와 통전되어, 승압 또는 강압 대상인 전류를 전달받을 수 있다. 복수 개의 권선 부재(220) 중 다른 하나의 권선 부재(220)는 외부와 통전되어, 승압 또는 강압된 전류를 외부로 전달할 수 있다.
복수 개의 권선 부재(220) 중 나머지 하나의 권선 부재(220)는 상기 어느 하나의 권선 부재(220)에 통전되는 전류에 의해 유도된 전류가 통전될 수 있다. 또한, 상기 나머지 하나의 권선 부재(220)는 유도된 전류를 통해 상기 다른 하나의 권선 부재(220)에 전류를 유도할 수 있다.
권선 부재(220)는 철심 부재(210)에 권취되어 유도 기전력을 생성할 수 있는 임의의 형태로 구비될 수 있다. 도시된 실시 예에서, 권선 부재(220)는 내부에 중공이 형성된 원형의 단면을 갖고, 상하 방향으로 연장 형성된 실린더(cylinder) 형상이다.
권선 부재(220)는 어느 하나의 권선 부재(220)에 통전된 전류에 의해 유도된 전류가 통전될 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 권선 부재(220)는 코일(coil)로 구비될 수 있다.
지지 프레임(230)은 철심 부재(210) 및 철심 부재(210)에 권취된 권선 부재(220)를 지지한다. 지지 프레임(230)은 철심 부재(210) 및 하우징(100)과 각각 연결될 수 있다.
지지 프레임(230)은 고강성의 소재로 형성될 수 있다. 일 실시 예에서, 지지 프레임(230)은 철(Fe)을 포함한 합금 소재로 형성될 수 있다.
지지 프레임(230)은 철심 부재(210)에 상응하는 형상으로 형성될 수 있다. 도시된 실시 예에서, 철심 부재(210)는 좌우 방향의 길이를 갖고 상하 방향의 높이를 갖는 사각형의 단면을 갖게 형성된다. 이에 따라, 지지 프레임(230) 또한 좌우 방향으로 연장 형성될 수 있다.
지지 프레임(230)은 복수 개의 위치에서 철심 부재(210)와 결합되어, 철심 부재(210)를 지지할 수 있다. 도시된 실시 예에서, 지지 프레임(230)은 철심 부재(210)의 상측 단부 및 하측 단부를 각각 외측에서 둘러싸게 형성된다.
후술될 바와 같이, 본 발명의 실시 예에 따른 변압기(10)는 철심 부재(210) 및 지지 프레임(230) 및 하우징(100)과 각각 연결되는 진동 저감부(400)를 포함한다. 진동 저감부(400)는 철심 부재(210) 및 지지 프레임(230)을 추가적으로 지지하되, 철심 부재(210) 및 지지 프레임(230)에서 발생된 진동 또는 소음을 저감하게 구성된다. 이에 대한 상세한 설명은 후술하기로 한다.
3. 본 발명의 일 실시 예에 따른 진동 저감부(300)의 설명
도 3 내지 도 8을 참조하면, 본 발명의 실시 예에 따른 변압기(10)는 진동 저감부(300)를 포함한다. 본 실시 예에 따른 진동 저감부(300)는 하우징(100)에 구비되어, 진동 또는 소음을 저감하게 구성된다.
구체적으로, 진동 저감부(300)는 하우징(100)의 벽체부(110)에 결합되어, 통전부(200)에서 벽체부(110)로 전달된 진동 또는 소음을 흡수하게 구성된다. 이에 따라, 변압기(10)의 외부로 방사되는 진동 또는 소음의 양이 저감될 수 있다.
진동 저감부(300)는 벽체부(110)에 결합된다. 도 3에 도시된 실시 예에서, 진동 저감부(300)는 전방 측의 제1 벽(111)에 구비되는 것으로 도시되었다. 대안적으로, 진동 저감부(300)는 보강 리브(130) 및 보강 리브(130) 사이에 형성된 충진 공간(140)을 포함하는 벽, 즉 제2 내지 제4 벽(112, 113, 114) 중 어느 하나 이상의 벽에 구비될 수 있다.
즉, 진동 저감부(300)는 복수 개의 벽 중 어느 하나 이상의 벽에 구비될 수 있다.
도시된 실시 예에서, 진동 저감부(300)는 커버 부재(310), 흡음 부재(320), 연통 홀(330), 마개 부재(340) 및 돌출 유로부(350)를 포함한다. 상기 구성 요소 중, 연통 홀(330), 마개 부재(340) 및 돌출 유로부(350)는 진동 저감부(300)의 다양한 실시 예에서 구비될 수 있다.
커버 부재(310)는 진동 저감부(300)의 외형을 형성한다. 커버 부재(310)는 충진 공간(140)에 수용된 흡음 부재(320)를 밀폐한다. 또한, 커버 부재(310)는 흡음 부재(320)를 고정 지지하여, 외부로 임의 유출 또는 노출되지 않게 한다.
커버 부재(310)는 벽체부(110)에 결합된다. 구체적으로, 커버 부재(310)는 벽체부(110)에 형성된 충진 공간(140)을 덮으며 보강 리브(130)의 외측 면에 결합된다. 도 3 내지 도 5에 도시된 실시 예에서, 커버 부재(310)는 보강 리브(130)의 전방 측 면에 결합되어 충진 공간(140)을 전방 측에서 덮게 구성된다.
커버 부재(310)는 복수 개 구비될 수 있다. 복수 개의 커버 부재(310)는 복수 개의 벽체부(110)에 각각 결합될 수 있다. 일 예로, 커버 부재(310)는 네 개 구비되어, 제1 내지 제4 벽(111, 112, 113, 114)에 각각 결합될 수 있다.
커버 부재(310)는 보강 리브(130) 및 충진 공간(140)에 수용된 흡음 부재(320)를 외측에서 덮으며 벽체부(110)와 결합될 수 있다. 도시된 실시 예에서, 커버 부재(310)는 제1 벽(111)에 형성된 보강 리브(130) 및 충진 공간(140)에 수용된 흡음 부재(320)를 전방 측, 하측 및 상측에서 덮으며 결합된다.
커버 부재(310)는 복수 개의 부분을 포함할 수 있다. 커버 부재(310)의 복수 개의 부분은 서로 다른 위치에서 보강 리브(130), 충진 공간(140) 및 충진 공간(140)에 수용된 흡음 부재(320)를 덮으며 벽체부(110)에 결합될 수 있다. 도시된 실시 예에서, 커버 부재(310)는 메인 커버(311) 및 서브 커버(312)를 포함한다.
메인 커버(311)는 커버 부재(310)의 복수 개의 부분 중 일 부분을 형성한다. 메인 커버(311)는 그 두께 방향을 따라 보강 리브(130), 충진 공간(140) 및 충진 공간(140)에 수용된 흡음 부재(320)를 덮으며 벽체부(110)에 결합된다. 도시된 실시 예에서는 메인 커버(311)가 제1 벽(111)의 보강 리브(130), 충진 공간(140) 및 이에 수용된 흡음 부재(320)를 전방 측에서 덮게 제1 벽(111)에 결합된다.
도시되지는 않았으나, 진동 저감부(300)가 제2 내지 제4 벽(112, 113, 114)에 구비될 수 있다. 이때, 메인 커버(311)는 각각 좌측, 우측 및 후방 측에서 보강 리브(130), 충진 공간(140) 및 이에 수용된 흡음 부재(320)를 덮으며 각 벽(112, 113, 114)에 결합됨이 이해될 것이다.
메인 커버(311)는 판 형으로 구비될 수 있다. 도시된 실시 예에서, 메인 커버(311)는 좌우 방향의 연장 길이가 상하 방향의 연장 길이보다 긴 단면을 갖고, 전후 방향의 두께를 갖는 다각 판형으로 구비된다. 메인 커버(311)의 형상은 벽체부(110)의 형상 및 보강 리브(130)의 형상 및 배치 방식에 따라 변경될 수 있다.
메인 커버(311)는 서브 커버(312)와 연속된다.
서브 커버(312)는 커버 부재(310)의 복수 개의 부분 중 다른 부분을 형성한다. 서브 커버(312)는 메인 커버(311)와 다른 방향을 따라 보강 리브(130), 충진 공간(140) 및 충진 공간(140)에 수용된 흡음 부재(320)를 덮으며 벽체부(110)에 결합된다.
서브 커버(312)는 복수 개 구비될 수 있다. 복수 개의 서브 커버(312)는 복수 개의 보강 리브(131) 사이에 형성되는 복수 개의 충진 공간(140)을 각각 덮으며 벽체부(110)와 결합될 수 있다.
서브 커버(312)는 복수 개의 쌍으로 구비될 수 있다. 복수 개의 쌍의 서브 커버(312)는 서로 다른 위치에서 보강 리브(130), 충진 공간(140) 및 충진 공간(140)에 수용된 흡음 부재(320)를 덮으며 벽체부(110)와 결합될 수 있다.
도 5에 도시된 실시 예에서, 서브 커버(312)는 상측 및 하측에 위치되어 충진 공간(140)을 사이에 두고 서로 마주하는 한 쌍으로 구비된다.
상측에 위치되는 서브 커버(312)는 일곱 개 구비되어, 여덟 개의 보강 리브(130)(즉, 제1 보강 리브(131)) 사이에 형성된 일곱 개의 충진 공간(140)의 상측을 각각 덮게 배치된다. 하측에 위치되는 서브 커버(312) 또한 일곱 개 구비되어, 일곱 개의 충진 공간(140)의 하측을 각각 덮게 배치된다.
서브 커버(312)는 메인 커버(311)와 연속된다. 메인 커버(311) 및 서브 커버(312)는 소정의 각도를 이루며 연속될 수 있다. 도 5에 도시된 실시 예에서, 서브 커버(312)와 메인 커버(311)는 서로에 대해 수직하게 연장된다.
서브 커버(312)와 메인 커버(311)가 연속되게 배치됨에 따라, 충진 공간(140)에 수용된 흡음 부재(320)는 외부로 임의 노출되지 않게 된다. 결과적으로, 외부의 환경에 의한 흡음 부재(320)의 손상이 방지될 수 있다.
도 5를 참조하면, 일 실시 예에 따른 진동 저감부(300)가 벽체부(110)에 설치되는 과정이 도시된다.
도 5의 (a)를 참조하면, 흡음 부재(320)는 충진 공간(140)에 수용된다. 상술한 바와 같이, 충진 공간(140)은 복수 개의 제1 보강 리브(131) 및 제2 보강 리브(132)에 의해 복수 개의 소공간으로 구획된다. 흡음 부재(320)는 구획된 복수 개의 소공간에 각각 수용될 수 있다.
이때, 충진 공간(140)을 그 높이 방향, 즉 상측 및 하측에서 덮는 서브 커버(312)는 기 결합되는 것이 바람직하다. 즉, 상기 실시 예에서, 서브 커버(312)는 충진 공간(140)의 상측 및 하측 방향의 연장 거리를 제한할 수 있다. 따라서, 충진 공간(140)에 채워질 흡음 부재(320)의 양이 정확하게 계산될 수 있어, 작업 효율이 향상될 수 있다.
도 5의 (b)를 참조하면, 충진 공간(140)에 흡음 부재(320)가 채워진 후, 메인 커버(311)가 결합된 상태가 도시된다. 메인 커버(311)는 복수 개의 제1 보강 리브(131), 제2 보강 리브(132), 그 사이에 형성된 충진 공간(140) 및 이에 수용된 흡음 부재(320)를 덮으며 벽체부(110)에 결합된다.
도시된 실시 예에서, 메인 커버(311)의 후방 측 면은 각각 제1 보강 리브(131) 및 제2 보강 리브(132)의 전방 측 면 과 각각 결합될 수 있다. 또한, 메인 커버(311)의 상측 모서리 및 하측 모서리는 서브 커버(312)의 전방 측 모서리와 각각 결합, 연속될 수 있다.
도시되지는 않았으나, 메인 커버(311)와 벽체부(110)의 결합 상태를 유지하기 위한 체결 부재가 구비될 수 있다. 상기 체결 부재(미도시)는 메인 커버(311) 및 제1 보강 리브(131)에 관통 결합되는 나사 부재 등의 형태로 구비될 수 있다.
흡음 부재(320)는 외부의 진동 또는 소음을 전달받아, 이를 흡수할 수 있는 임의의 소재로 구비될 수 있다. 일 실시 예에서, 흡음 부재(320)는 우레탄 폼(Urethane Form)으로 형성될 수 있다. 대안적으로, 흡음 부재(320)는 스티로폼(Styrofoam), 고무 등의 소재로 형성될 수 있다.
흡음 부재(320)는 충진 공간(140)에 수용된다. 흡음 부재(320)가 우레탄 폼으로 구비되는 실시 예에서, 흡음 부재(320)는 분사의 방식으로 충진 공간(140)에 채워질 수 있다.
흡음 부재(320)가 스티로폼 또는 고무로 구비되는 실시 예에서, 흡음 부재(320)는 구획된 복수 개의 소공간의 형상에 상응되는 형상으로 형성될 수 있다. 상기 실시 예에서, 흡음 부재(320)는 복수 개의 소공간에 각각 삽입 결합될 수 있다.
충진 공간(140)에 수용된 흡음 부재(320)는 밀폐되어 외부와의 임의 연통이 차단될 수 있다. 즉, 도시된 실시 예에서, 수용된 흡음 부재(320)의 좌우 방향은 제1 보강 리브(131)에 둘러싸인다. 또한, 수용된 흡음 부재(320)의 상하 방향은 서브 커버(312)에 둘러싸이며, 그 전방 측은 메인 커버(311)에, 그 후방 측은 벽체부(110), 도시된 실시 예에서 제1 벽(111)에 둘러싸인다.
따라서, 본 실시 예에 따른 진동 저감부(300)는 벽체부(110)에 기 구비되는 보강 리브(130) 사이에 형성된 충진 공간(140)에 흡음 부재(320)를 충진하게 구성된다. 충진된 흡음 부재(320)는 통전부(200)에서 전달된 진동 또는 소음을 흡수할 수 있다. 이에 따라, 변압기(10)의 외부로 방사되는 진동 또는 소음의 양이 저감될 수 있다.
더욱이, 충진 공간(140)은 벽체부(110)에 기 형성된다. 따라서, 본 실시 예에 따른 진동 저감부(300)가 구비되기 위해 과다한 설계 변경이 요구되지 않아, 작업성이 향상될 수 있다.
도 6을 참조하면, 본 실시 예에 따른 진동 저감부(300)의 변형 예가 도시된다. 본 변형 예에서, 진동 저감부(300)는 연통 홀(330) 및 마개 부재(340)를 더 포함한다.
본 변형 예에서는, 커버 부재(310)가 벽체부(110)에 먼저 결합된 후, 흡음 부재(320)가 충진될 수 있다. 커버 부재(310)의 구조 및 기능은 상술한 실시 예에 따른 커버 부재(310)와 동일한 바, 이하 중복되는 설명은 생략한다.
본 변형 예에서는 흡음 부재(320)가 유동 가능하되, 소정의 시간이 지난 후 경화될 수 있는 소재로 형성될 수 있다. 즉, 본 변형 예에서는 흡음 부재(320)가 우레탄 폼으로 구비됨이 전제될 수 있다.
연통 홀(330)은 커버 부재(310)에 둘러싸여 밀폐된 충진 공간(140)과 외부를 연통한다. 연통 홀(330)은 커버 부재(310)에 관통 형성되어, 흡음 부재(320)가 주입될 수 있는 통로로 기능된다. 도시된 실시 예에서, 연통 홀(330)은 상측에 위치되는 서브 커버(312)에 관통 형성된다. 도시되지는 않았으나, 연통 홀(330)은 하측에 위치되는 서브 커버(312)에도 관통 형성될 수 있다.
연통 홀(330)은 복수 개 형성될 수 있다. 복수 개의 연통 홀(330)은 복수 개의 서브 커버(312)에 각각 관통 형성될 수 있다. 도 6에 도시된 실시 예에서, 연통 홀(330)은 일곱 개 구비되는 서브 커버(312)에 각각 형성되어, 총 일곱 개 형성된다.
따라서, 작업자는 연통 홀(330)에 관통하여 건(gun) 등을 충진 공간(140)에 삽입하고, 흡음 부재(320)를 분사하는 방식으로 흡음 부재(320)를 주입할 수 있다.
흡음 부재(320)의 주입이 완료되면, 흡음 부재(320)의 임의 노출이 방지되기 위해 연통 홀(330)이 폐쇄되어야 한다. 이를 위해, 본 변형 예에 따른 진동 저감부(300)는 마개 부재(340)를 포함한다.
마개 부재(340)는 연통 홀(330)에 삽입 결합되어, 연통 홀(330)을 폐쇄한다. 마개 부재(340)에 의해 충진 공간(140) 및 충진 공간(140)에 수용된 흡음 부재(320)와 외부의 임의 연통이 차단된다.
마개 부재(340)는 복수 개 구비될 수 있다. 복수 개의 마개 부재(340)는 복수 개의 연통 홀(330)에 각각 삽입 결합될 수 있다. 도 6에 도시된 실시 예에서, 마개 부재(340)는 일곱 개 구비되어, 일곱 개의 연통 홀(330)에 각각 삽입된다.
도시된 실시 예에서, 마개 부재(340)는 서로 다른 단면적을 갖는 복수 개의 원기둥이 그 높이 방향으로 연속되어 형성된다. 마개 부재(340)의 형상은 연통 홀(330)의 형상에 따라 변경될 수 있다.
상술한 바와 같이 연통 홀(330)이 하측에 위치되는 서브 커버(312)에도 형성되는 실시 예에서, 마개 부재(340) 또한 하측의 서브 커버(312)에 형성된 연통 홀(330)의 개수만큼 구비되어, 각 연통 홀(330)을 차단하게 구성될 수 있다.
본 변형 예에 따른 진동 저감부(300)는 커버 부재(310)가 벽체부(110)에 먼저 결합된 후, 흡음 부재(320)가 충진될 수 있다. 이때, 작업자는 건 등의 부재를 이용하여 흡음 부재(320)를 충진 공간(140)에 주입한 후, 마개 부재(340)를 이용하여 연통 홀(330)을 폐쇄함으로써 간편하게 진동 저감부(300)를 설치할 수 있다.
도 7을 참조하면, 본 실시 예에 따른 진동 저감부(300)의 다른 변형 예가 도시된다. 본 변형 예에서는, 커버 부재(310)가 벽체부(110)에 먼저 결합된 후, 흡음 부재(320)가 충진될 수 있다. 커버 부재(310)의 구조 및 기능은 상술한 실시 예에 따른 커버 부재(310)와 동일한 바, 이하 중복되는 설명은 생략한다.
본 변형 예에서는 흡음 부재(320)가 유동 가능하되, 소정의 시간이 지난 후 경화될 수 있는 소재로 형성될 수 있다. 즉, 본 변형 예에서는 흡음 부재(320)가 우레탄 폼으로 구비됨이 전제될 수 있다.
본 변형 예에서, 메인 커버(311)는 제1 보강 리브(131)와 그 두께 방향, 도시된 실시 예에서 전후 방향으로 이격되게 배치된다.
즉, 도 7의 (b)를 참조하면, 제1 보강 리브(131)의 두께는 제1 거리(d1), 충진된 흡음 부재(320)의 두께는 제2 거리(d2) 및 메인 커버(311)와 벽체부(110)의 최장 거리는 제3 거리(d3)로 정의될 수 있다.
상기 실시 예에서, 제2 거리(d2)와 제1 거리(d1)의 차이는 메인 커버(311)와 제1 보강 리브(131)가 이격된 거리로 이해될 수 있다. 이때, 제3 거리(d3)와 제2 거리(d2)의 차이는 메인 커버(311)의 두께로 이해될 수 있다.
이에 따라, 메인 커버(311)와 제1 보강 리브(131)가 서로 마주하는 면, 즉 도시된 실시 예에서 메인 커버(311)의 후방 측 면과 제1 보강 리브(131)의 전방 측 면 사이에는 소정의 공간이 형성된다. 상기 소정의 공간은 메인 커버(311)와 제1 보강 리브(131) 사이에는 제1 거리(d1) 및 제2 거리(d2)의 차만큼의 폭을 갖게 됨이 이해될 것이다.
따라서, 복수 개의 보강 리브(130)에 의해 충진 공간(140)이 구획된 복수 개의 소공간은 상기 소정의 공간을 통해 서로 연통될 수 있다. 이에 따라, 본 변형 예에 따른 진동 저감부(300)는 단수 개의 연통 홀(미도시)이 형성되는 경우에도, 상기 연통 홀(미도시)을 통해 어느 하나의 소공간으로 주입된 흡음 부재(320)가 다른 하나의 소공간으로 유동될 수 있다.
이에 따라, 진동 저감부(300)의 제작 공정 및 진동 저감부(300)를 벽체부(110)에 결합하는 제작 공정이 간명해질 수 있다.
도 8을 참조하면, 본 실시 예에 따른 진동 저감부(300)의 또다른 변형 예가 도시된다. 본 변형 예에서, 진동 저감부(300)는 돌출 유로부(350)를 더 포함한다.
본 변형 예에서는, 커버 부재(310)가 벽체부(110)에 먼저 결합된 후, 흡음 부재(320)가 충진될 수 있다. 커버 부재(310)의 구조 및 기능은 상술한 실시 예에 따른 커버 부재(310)와 동일한 바, 이하 중복되는 설명은 생략한다.
본 변형 예에서는 흡음 부재(320)가 유동 가능하되, 소정의 시간이 지난 후 경화될 수 있는 소재로 형성될 수 있다. 즉, 본 변형 예에서는 흡음 부재(320)가 우레탄 폼으로 구비됨이 전제될 수 있다.
본 변형 예에서, 메인 커버(311)는 제1 보강 리브(131)에 인접하게 배치된다. 일 실시 예에서, 메인 커버(311)는 제1 보강 리브(131)에 접촉되게 배치될 수 있다.
메인 커버(311)에는 돌출 유로부(350)가 구비된다. 돌출 유로부(350)는 메인 커버(311)의 외측으로 돌출되되, 메인 커버(311)의 일 연장 방향을 따라 연장 형성된다. 도 8에 도시된 실시 예에서, 돌출 유로부(350)는 벽체부(110)에 반대되는 일측, 즉, 전방 측으로 돌출 형성된다. 돌출 유로부(350)는 메인 커버(311)의 일 연장 방향, 도시된 실시 예에서 좌우 방향으로 연장 형성된다.
돌출 유로부(350)의 내면, 즉 벽체부(110)를 향하는 면은 함몰 형성될 수 있다. 즉, 돌출 유로부(350)의 내측은 메인 커버(311)의 면 중 벽체부(110)를 향하는 면에 함몰된 공간으로 형성된다. 따라서, 돌출 유로부(350)는 메인 커버(311)의 좌우 방향을 따라 연장되는 유로로 기능될 수 있다.
돌출 유로부(350)는 충진 공간(140)이 구획되어 형성된 복수 개의 소공간과 각각 연통될 수 있다. 즉, 돌출 유로부(350)는 그 연장 방향의 각 단부가 가장 외측에 형성되는 소공간과 각각 연통될 수 있다. 도시된 실시 예에서, 돌출 유로부(350)의 좌측 단부는 가장 좌측에 위치되는 소공간과 연통될 수 있다. 돌출 유로부(350)의 우측 단부는 가장 우측에 위치되는 소공간과 연통될 수 있다.
따라서, 상기 실시 예에서, 복수 개의 소공간 중 어느 하나에 주입된 흡음 부재(320)는 돌출 유로부(350)를 통해 다른 소공간으로 유동될 수 있다. 이에 따라, 진동 저감부(300)에 단수 개의 연통 홀(미도시)이 형성되는 경우에도, 상기 연통 홀(미도시)을 통해 어느 하나의 소공간으로 주입된 흡음 부재(320)가 다른 하나의 소공간으로 유동될 수 있다.
도시된 실시 예에서, 돌출 유로부(350)는 단수 개 형성된다. 대안적으로, 돌출 유로부(350)는 복수 개 형성되어, 메인 커버(311)의 높이 방향으로 서로 이격되게 배치될 수 있다.
도 8의 (b)를 참조하면, 메인 커버(311)의 두께는 제1 두께(t1), 돌출 유로부(350)의 돌출 길이는 제2 두께(t2)로 정의될 수 있다. 즉, 제2 두께(t2)는 메인 커버(311)의 내측 면과 돌출 유로부(350)의 외측 단부 사이의 수직 거리임이 이해될 것이다.
상기 실시 예에서, 제2 두께(t2)는 제1 두께(t1) 이상으로 형성될 수 있다. 제2 두께(t2)와 제1 두께(t1)의 차이는 복수 개의 소공간을 연통하는 공간의 두께로 정의될 수 있다. 상기 공간, 즉 돌출 유로부(350)의 내부에 형성되는 공간을 통해 구획된 복수 개의 소공간이 서로 연통되어, 흡음 부재(320)가 유동될 수 있음은 상술한 바와 같다.
따라서, 복수 개의 보강 리브(130)에 의해 충진 공간(140)이 구획된 복수 개의 소공간은 돌출 유로부(350)에 의해 서로 연통될 수 있다. 이에 따라, 본 변형 예에 따른 진동 저감부(300)는 단수 개의 연통 홀(미도시)이 형성되는 경우에도, 상기 연통 홀(미도시)을 통해 어느 하나의 소공간으로 주입된 흡음 부재(320)가 다른 하나의 소공간으로 유동될 수 있다.
이에 따라, 진동 저감부(300)의 제작 공정 및 진동 저감부(300)를 벽체부(110)에 결합하는 제작 공정이 간명해질 수 있다.
4. 본 발명의 다른 실시 예에 따른 진동 저감부(400)의 설명
도 9 내지 도 13을 참조하면, 본 발명의 다른 실시 예에 따른 변압기(10)는 진동 저감부(400)를 포함한다. 본 실시 예에 따른 진동 저감부(400)는 하우징(100) 및 통전부(200)와 각각 결합되어, 진동 또는 소음을 저감하게 구성된다.
구체적으로, 진동 저감부(400)는 철심 부재(210) 또는 지지 프레임(230)과 결합되어, 통전부(200)에서 발생된 진동 또는 소음을 저감하게 구성된다. 또한, 진동 저감부(400)는 하우징(100)의 벽체부(110)와 결합되어 발생된 진동 또는 소음 중 벽체부(110)로 전달되는 양을 최소화하게 구성된다. 이에 따라, 변압기(10)의 외부로 방사되는 진동 또는 소음의 양이 저감될 수 있다.
진동 저감부(400)는 벽체부(110)와 결합된다. 이때, 진동 저감부(400)는 철심 부재(210)의 연장 방향과 다른 방향을 따라 벽체부(110)와 결합될 수 있다. 도 9에 도시된 실시 예에서, 철심 부재(210)는 좌우 방향으로 연장 형성된다. 이에, 진동 저감부(400)는 상기 방향과 다른 방향, 도시된 실시 예에서 전후 방향으로 연장될 수 있다.
상기 실시 예에서, 진동 저감부(400)의 전방 측 단부는 전방 측에 위치되는 제1 벽(111)과 결합된다. 또한, 진동 저감부(400)의 후방 측 단부는 후방 측에 위치되는 제4 벽(114)과 결합된다.
진동 저감부(400)는 통전부(200)의 철심 부재(210) 및 지지 프레임(230)과 결합된다. 즉, 도 10에 도시된 실시 예에서, 진동 저감부(400)는 철심 부재(210)와 지지 프레임(230) 사이에 위치되는 일 부분 및 지지 프레임(230)과 결합되는 다른 부분을 포함한다.
진동 저감부(400)는 복수 개 구비될 수 있다. 복수 개의 진동 저감부(400)는 철심 부재(210)의 연장 방향을 따라 서로 이격되게 배치될 수 있다. 도 9에 도시된 실시 예에서, 진동 저감부(400)는 상측에 위치되어 전후 방향으로 서로 이격되어 배치되는 세 개 및 하측에 위치되어 전후 방향으로 서로 이격되어 배치되는 세 개를 포함하여 총 여섯 개 구비된다.
진동 저감부(400)의 개수 및 배치 방식은 변경될 수 있다.
도시된 실시 예에서, 진동 저감부(400)는 철심 지지 부재(410), 전달 부재(420), 하우징 결합 부재(430) 및 탄성 부재(440)를 포함한다.
철심 지지 부재(410)는 철심 부재(210) 및 지지 프레임(230)과 각각 결합되어, 철심 부재(210)에서 발생된 진동 또는 소음을 저감하게 구성된다. 철심 지지 부재(410)는 철심 부재(210)와 지지 프레임(230) 사이에 위치된다.
철심 지지 부재(410)는 철심 부재(210) 및 지지 프레임(230)에 각각 결합되어, 철심 부재(210)에서 지지 프레임(230)으로 전달되는 진동 또는 소음을 저감할 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 철심 지지 부재(410)는 코르크 또는 고무 소재로 형성될 수 있다.
도시된 실시 예에서는, 철심 지지 부재(410)가 철심 부재(210)의 외측의 일부, 즉 상측에 위치되는 철심 부재(210)의 상측 외주 및 하측에 위치되는 철심 부재(210)의 하측 외주를 둘러싸게 배치된다. 대안적으로, 철심 지지 부재(410)는 철심 부재(210)의 폭 방향, 도시된 실시 예에서 전후 방향 또한 둘러싸게 배치될 수 있다.
철심 지지 부재(410)는 지지 프레임(230)에 둘러싸인다. 도 10 내지 도 13에 도시된 실시 예에서, 철심 지지 부재(410)는 그 전방 측 및 후방 측이 지지 프레임(230)에 둘러싸이게 형성된다.
철심 지지 부재(410)는 복수 개 구비될 수 있다. 복수 개의 철심 지지 부재(410)는 서로 다른 위치에서 철심 부재(210) 및 지지 프레임(230)과 각각 결합될 수 있다. 도 10 내지 도 13에 도시된 실시 예에서, 철심 지지 부재(410)는 철심 부재(210)의 상측 및 하측에 각각 인접하게 위치된다.
철심 지지 부재(410)는 지지 프레임(230)을 통해 전달 부재(420)와 결합된다.
전달 부재(420)는 철심 부재(210)에서 지지 프레임(230)으로 전달된 진동 또는 소음을 전달한다. 이때, 전달 부재(420)는 소정의 크기의 진동 또는 소음을 흡수하여, 하우징(100)으로 전달되는 진동 또는 소음을 저감할 수 있다.
전달 부재(420)는 벽체부(110) 및 지지 프레임(230)과 각각 결합된다. 전달 부재(420)는 벽체부(110)와 지지 프레임(230) 사이에서 연속된다. 후술될 바와 같이, 벽체부(110)에는 하우징 결합 부재(430)가 구비되는 바, 전달 부재(420)는 지지 프레임(230) 및 하우징 결합 부재(430)와 각각 결합된다고 할 수 있을 것이다.
전달 부재(420)는 철심 부재(210)의 폭 방향, 도시된 실시 예에서 전후 방향으로 연장 형성된다. 전달 부재(420)의 연장 방향의 일 단부는 벽체부(110)에 구비되는 하우징 결합 부재(430)와 결합된다. 전달 부재(420)의 연장 방향의 타 단부는 지지 프레임(230)과 결합된다.
전달 부재(420)는 강체(rigid body)로 형성될 수 있다. 전달 부재(420)는 철심 부재(210) 및 지지 프레임(230)에서 전달된 진동 또는 소음을 하우징(100)의 벽체부(110)로 전달할 수 있다.
전달 부재(420)는 복수 개 구비될 수 있다. 복수 개의 전달 부재(420)는 서로 다른 위치에서 지지 프레임(230) 및 하우징 결합 부재(430)와 각각 결합될 수 있다. 도시된 실시 예에서, 전달 부재(420)는 철심 부재(210)의 상측 및 하측에 각각 인접하게 위치된다.
전달 부재(420)는 서로 다른 위치에서 단수 개의 지지 프레임(230)과 결합될 수 있다. 즉, 지지 프레임(230)은 복수 개의 지점에서 전달 부재(420)와 결합될 수 있다.
도시된 실시 예에서, 전달 부재(420)는 지지 프레임(230)을 기준으로 그 전방 측에 위치되는 제1 전달 부재(421) 및 그 후방 측에 위치되는 제2 전달 부재(422)를 포함한다.
제1 전달 부재(421)는 지지 프레임(230)의 일측과 일 벽체부(110)를 연결한다. 도시된 실시 예에서, 제1 전달 부재(421)는 지지 프레임(230)의 전방 측과 제1 벽(111)에 결합되는 제1 결합 부재(431)와 각각 결합된다.
제1 전달 부재(421)는 지지 프레임(230)의 전방 측과 제1 결합 부재(431) 사이에서 연장된다. 도시된 실시 예에서, 제1 전달 부재(421)는 전후 방향으로 연장되어, 그 전방 측 단부는 제1 결합 부재(431)와 결합되고, 그 후방 측 단부는 지지 프레임(230)의 전방 측 면과 결합된다.
제2 전달 부재(422)는 지지 프레임(230)의 타측과 다른 벽체부(110)를 연결한다. 도시된 실시 예에서, 제2 전달 부재(422)는 지지 프레임(230)의 후방 측과 제4 벽(114)에 결합되는 제2 결합 부재(432)와 각각 결합된다.
제2 전달 부재(422)는 지지 프레임(230)의 후방 측과 제2 결합 부재(432) 사이에서 연장된다. 도시된 실시 예에서, 제2 전달 부재(422)는 전후 방향으로 연장되어, 그 전방 측 단부는 지지 프레임(230)의 후방 측 면과 결합되고, 그 후방 측 단부는 제2 결합 부재(432)와 결합된다.
제1 전달 부재(421) 및 제2 전달 부재(422)는 통전부(200)를 사이에 두고 서로 마주하게 배치된다.
전달 부재(420)를 통해 전달된 진동 또는 소음은 하우징 결합 부재(430)로 전달된다.
하우징 결합 부재(430)는 전달 부재(420)를 통해 전달된 진동 또는 소음을 저감하게 구성된다. 하우징 결합 부재(430)에 의해, 하우징(100), 구체적으로, 벽체부(110)에 전달되는 진동 또는 소음이 최소화될 수 있다. 이에 따라, 벽체부(110)에서 변압기(10)의 외측으로 방사되는 진동 또는 소음 역시 저감될 수 있다.
하우징 결합 부재(430)는 하우징(100)에 결합된다. 구체적으로, 하우징 결합 부재(430)는 벽체부(110)의 내측 면에 결합된다. 하우징 결합 부재(430)는 하우징(100)의 수용 공간(120)에 수용되어, 외측으로 노출되지 않는다.
하우징 결합 부재(430)는 복수 개 구비될 수 있다. 복수 개의 하우징 결합 부재(430)는 서로 다른 벽체부(110)의 내면에 결합될 수 있다. 도 10 내지 도 13에 도시된 실시 예에서, 하우징 결합 부재(430)는 전방 측에 위치되는 제1 벽(111) 및 후방 측에 위치되는 제4 벽(114)에 각각 결합된다.
하우징 결합 부재(430)는 철심 부재(210)가 연장되는 다른 방향을 따라 이격되어 복수 개 배치될 수 있다. 도 10 내지 도 13에 도시된 실시 예에서, 하우징 결합 부재(430)는 상하 방향을 따라 상측 및 하측에 서로 이격되게 배치된다.
상측에 배치되는 하우징 결합 부재(430)는 상측에 위치되는 전달 부재(420)와, 하측에 배치되는 하우징 결합 부재(430)는 하측에 위치되는 전달 부재(420)와 결합된다.
하우징 결합 부재(430)는 전달 부재(420)에서 전달된 진동 또는 소음을 저감할 수 있는 임의의 소재로 형성될 수 있다. 일 실시 예에서, 하우징 결합 부재(430)는 우레탄 폼, 코르크 또는 고무 소재로 형성될 수 있다.
하우징 결합 부재(430)는 벽체부(110) 및 전달 부재(420)와 각각 결합되어, 전달된 진동 또는 소음을 저감할 수 있는 임의의 형상일 수 있다. 도시된 실시 예에서, 하우징 결합 부재(430)는 벽체부(110) 및 전달 부재(420)와 각각 결합되며 서로 마주하게 배치되는 한 쌍의 면을 포함하는 다각기둥 형상이다.
도시된 실시 예에서, 하우징 결합 부재(430)는 제1 결합 부재(431) 및 제2 결합 부재(432)를 포함한다.
제1 결합 부재(431)는 통전부(200)를 기준으로 일 측에 치우쳐 위치된다. 도시된 실시 예에서, 제1 결합 부재(431)는 전방 측에 치우쳐 위치된다. 제1 결합 부재(431)는 전방 측에 위치되는 제1 벽(111) 및 전방 측에 치우쳐 위치되는 제1 전달 부재(421)와 각각 결합된다.
제2 결합 부재(432)는 통전부(200)를 기준으로 타 측에 치우쳐 위치된다. 제2 결합 부재(432)는 통전부(200)를 사이에 두고 제1 결합 부재(431)를 마주하게 배치된다. 도시된 실시 예에서, 제2 결합 부재(432)는 후방 측에 치우쳐 위치된다. 제2 결합 부재(432)는 후방 측에 위치되는 제4 벽(114) 및 후방 측에 치우쳐 위치되는 제2 전달 부재(422)와 각각 결합된다.
따라서, 본 실시 예에 따른 진동 저감부(400)는 통전부(200)에서 발생된 진동 또는 소음이 철심 지지 부재(410)에 의해 일차적으로 저감된 후 전달 부재(420)를 통해 하우징 결합 부재(430)로 전달될 수 있다.
또한, 전달된 진동 또는 소음은 하우징 결합 부재(430)에 의해 재차 저감된 후 벽체부(110)에 전달된다. 이에 따라, 통전부(200)에서 발생된 진동 또는 소음 중 변압기(10)의 외부로 방사되는 양이 저감될 수 있다.
도 11을 참조하면, 본 실시 예에 따른 진동 저감부(400)의 변형 예가 도시된다. 본 변형 예에서, 진동 저감부(400)는 탄성 부재(440)를 더 포함한다.
본 변형 예에서는, 지지 프레임(230)과 하우징 결합 부재(430)가 복수 개의 부재에 의해 연결될 수 있다. 즉, 본 변형 예에서는, 전달 부재(420) 및 탄성 부재(440)에 의해 지지 프레임(230)과 하우징 결합 부재(430)가 연결된다.
본 변형 예에서 철심 지지 부재(410) 및 하우징 결합 부재(430)의 구조 및 기능은 상술한 실시 예와 동일한 바, 이하 중복되는 설명은 생략한다.
탄성 부재(440)는 지지 프레임(230)과 전달 부재(420) 또는 전달 부재(420)와 하우징 결합 부재(430) 사이에 위치된다. 도시된 실시 예에서, 탄성 부재(440)는 전달 부재(420)와 하우징 결합 부재(430) 사이에 위치된다.
탄성 부재(440)는 전달 부재(420)와 하우징 결합 부재(430) 사이에서 연장된다. 탄성 부재(440)는 그 연장 방향의 일 단부는 전달 부재(420)와 결합되고, 타 단부는 하우징 결합 부재(430)와 결합될 수 있다.
탄성 부재(440)는 소정만큼 형상 변형되며 인가된 진동 또는 소음을 저감할 수 있는 임의의 형태로 구비될 수 있다. 즉, 탄성 부재(440)는 소정의 탄성을 갖게 형성될 수 있다. 도시된 실시 예에서, 탄성 부재(440)는 코일 스프링(coil spring)으로 구비된다.
탄성 부재(440)는 복수 개의 위치에서 전달 부재(420) 및 하우징 결합 부재(430)와 각각 결합될 수 있다. 도시된 실시 예에서, 탄성 부재(440)는 철심 부재(210)의 상측 및 하측에 각각 인접하게 위치된다.
탄성 부재(440)는 복수 개 구비될 수 있다. 복수 개의 탄성 부재(440)는 서로 다른 방향에서 단일의 지지 프레임(230)을 지지하게 구성될 수 있다. 도시된 실시 예에서, 탄성 부재(440)는 전방 측에 위치되는 제1 탄성 부재(441) 및 후방 측에 위치되는 제2 탄성 부재(442)를 포함한다. 제1 탄성 부재(441) 및 제2 탄성 부재(442)는 통전부(200)를 사이에 두고 서로 마주하게 배치된다.
제1 탄성 부재(441)는 전방 측에 위치되는 제1 전달 부재(421) 및 제1 결합 부재(431)와 각각 결합된다. 제1 탄성 부재(441)는 제1 전달 부재(421) 및 제1 결합 부재(431) 사이에서 연장된다.
제1 탄성 부재(441)의 연장 방향의 일 단부, 도시된 실시 예에서 전방 측 단부는 제1 결합 부재(431)와 결합된다. 제1 탄성 부재(441)의 연장 방향의 타 단부, 도시된 실시 예에서 후방 측 단부는 제1 전달 부재(421)와 결합된다.
제1 탄성 부재(441)는 지지 프레임(230) 및 제1 전달 부재(421)를 탄성 지지한다. 통전부(200)에서 발생된 진동 또는 소음은 제1 탄성 부재(441)에 의해 저감되며 제1 전달 부재(421)로 전달될 수 있다.
상기 실시 예에서, 제1 탄성 부재(441)는 그 연장 방향, 즉 좌우 방향으로 형상 변형되며 진동 또는 소음을 저감할 수 있다. 즉, 제1 탄성 부재(441)는 전후 방향의 댐퍼(damper)로 기능될 수 있다.
제2 탄성 부재(442)는 후방 측에 위치되는 제2 전달 부재(422) 및 제2 결합 부재(432)와 각각 결합된다. 제2 탄성 부재(442)는 제2 전달 부재(422) 및 제2 결합 부재(432) 사이에서 연장된다.
제2 탄성 부재(442)의 연장 방향의 일 단부, 도시된 실시 예에서 전방 측 단부는 제2 전달 부재(422)와 결합된다. 제2 탄성 부재(442)의 연장 방향의 타 단부, 도시된 실시 예에서 후방 측 단부는 제2 결합 부재(432)와 결합된다.
제2 탄성 부재(442)는 지지 프레임(230) 및 제2 전달 부재(422)를 탄성 지지한다. 통전부(200)에서 발생된 진동 또는 소음은 제2 탄성 부재(442)에 의해 저감되며 제2 전달 부재(422)로 전달될 수 있다.
상기 실시 예에서, 제2 탄성 부재(442)는 그 연장 방향, 즉 좌우 방향으로 형상 변형되며 진동 또는 소음을 저감할 수 있다. 즉, 제2 탄성 부재(442)는 전후 방향의 댐퍼(damper)로 기능될 수 있다.
따라서, 본 변형 예에 따른 진동 저감부(400)는 통전부(200)에서 발생된 진동 또는 소음이 철심 지지 부재(410)에 의해 일차적으로 저감되고, 탄성 부재(440)를 통해 전달되며 재차 저감되며 하우징 결합 부재(430)로 전달될 수 있다.
또한, 전달된 진동 또는 소음은 하우징 결합 부재(430)에 의해 재차 저감된 후 벽체부(110)에 전달된다. 이에 따라, 통전부(200)에서 발생된 진동 또는 소음 중 변압기(10)의 외부로 방사되는 양이 저감될 수 있다.
도 12를 참조하면, 본 실시 예에 따른 진동 저감부(400)의 다른 변형 예가 도시된다. 본 변형 예에서, 진동 저감부(400)는 탄성 부재(440)를 더 포함한다.
본 변형 예에서는, 지지 프레임(230)과 하우징 결합 부재(430)가 탄성 부재(440)에 의해 연결될 수 있다. 즉, 본 변형 예에서는, 전달 부재(420)가 별도로 구비되지 않고 탄성 부재(440)만에 의해 지지 프레임(230)과 하우징 결합 부재(430)가 연결된다.
본 변형 예에서 철심 지지 부재(410) 및 하우징 결합 부재(430)의 구조 및 기능은 상술한 실시 예와 동일한 바, 이하 중복되는 설명은 생략한다.
본 변형 예에서, 탄성 부재(440)는 지지 프레임(230)과 하우징 결합 부재(430) 사이에 위치된다. 탄성 부재(440)는 지지 프레임(230)과 하우징 결합 부재(430) 사이에서 연장된다. 탄성 부재(440)는 그 연장 방향의 일 단부는 지지 프레임(230)과 결합되고, 타 단부는 하우징 결합 부재(430)와 결합될 수 있다.
탄성 부재(440)는 소정만큼 형상 변형되며 인가된 진동 또는 소음을 저감할 수 있는 임의의 형태로 구비될 수 있다. 즉, 탄성 부재(440)는 소정의 탄성을 갖게 형성될 수 있다. 도시된 실시 예에서, 탄성 부재(440)는 코일 스프링(coil spring)으로 구비된다.
탄성 부재(440)는 복수 개의 위치에서 지지 프레임(230) 및 하우징 결합 부재(430)와 각각 결합될 수 있다. 도시된 실시 예에서, 탄성 부재(440)는 철심 부재(210)의 상측 및 하측에 각각 인접하게 위치된다.
탄성 부재(440)는 복수 개 구비될 수 있다. 복수 개의 탄성 부재(440)는 서로 다른 방향에서 단일의 지지 프레임(230)을 지지하게 구성될 수 있다. 도시된 실시 예에서, 탄성 부재(440)는 전방 측에 위치되는 제1 탄성 부재(441) 및 후방 측에 위치되는 제2 탄성 부재(442)를 포함한다. 제1 탄성 부재(441) 및 제2 탄성 부재(442)는 통전부(200)를 사이에 두고 서로 마주하게 배치된다.
제1 탄성 부재(441)는 지지 프레임(230)의 전방 측 및 제1 결합 부재(431)와 각각 결합된다. 제1 탄성 부재(441)는 지지 프레임(230) 및 제1 결합 부재(431) 사이에서 연장된다.
제1 탄성 부재(441)의 연장 방향의 일 단부, 도시된 실시 예에서 전방 측 단부는 제1 결합 부재(431)와 결합된다. 제1 탄성 부재(441)의 연장 방향의 타 단부, 도시된 실시 예에서 후방 측 단부는 지지 프레임(230)과 결합된다.
제1 탄성 부재(441)는 지지 프레임(230) 및 제1 결합 부재(431)를 탄성 지지한다. 통전부(200)에서 발생된 진동 또는 소음은 제1 탄성 부재(441)에 의해 저감되며 제1 결합 부재(431)로 전달될 수 있다.
상기 실시 예에서, 제1 탄성 부재(441)는 그 연장 방향, 즉 좌우 방향으로 형상 변형되며 진동 또는 소음을 저감할 수 있다. 즉, 제1 탄성 부재(441)는 전후 방향의 댐퍼(damper)로 기능될 수 있다.
제2 탄성 부재(442)는 후방 측에 위치되는 지지 프레임(230) 및 제2 결합 부재(432)와 각각 결합된다. 제2 탄성 부재(442)는 지지 프레임(230) 및 제2 결합 부재(432) 사이에서 연장된다.
제2 탄성 부재(442)의 연장 방향의 일 단부, 도시된 실시 예에서 전방 측 단부는 지지 프레임(230)과 결합된다. 제2 탄성 부재(442)의 연장 방향의 타 단부, 도시된 실시 예에서 후방 측 단부는 제2 결합 부재(432)와 결합된다.
제2 탄성 부재(442)는 지지 프레임(230) 및 제2 결합 부재(432)를 탄성 지지한다. 통전부(200)에서 발생된 진동 또는 소음은 제2 탄성 부재(442)에 의해 저감되며 제2 결합 부재(432)로 전달될 수 있다.
상기 실시 예에서, 제2 탄성 부재(442)는 그 연장 방향, 즉 좌우 방향으로 형상 변형되며 진동 또는 소음을 저감할 수 있다. 즉, 제2 탄성 부재(442)는 전후 방향의 댐퍼(damper)로 기능될 수 있다.
따라서, 본 변형 예에 따른 진동 저감부(400) 역시 통전부(200)에서 발생된 진동 또는 소음이 철심 지지 부재(410)에 의해 일차적으로 저감되고, 탄성 부재(440)를 통해 전달되며 재차 저감되며 하우징 결합 부재(430)로 전달될 수 있다.
또한, 전달된 진동 또는 소음은 하우징 결합 부재(430)에 의해 재차 저감된 후 벽체부(110)에 전달된다. 이에 따라, 통전부(200)에서 발생된 진동 또는 소음 중 변압기(10)의 외부로 방사되는 양이 저감될 수 있다.
도 13을 참조하면, 본 실시 예에 따른 진동 저감부(400)의 다른 변형 예가 도시된다. 본 변형 예에서, 진동 저감부(400)는 탄성 부재(440)를 더 포함한다.
본 변형 예에서는, 지지 프레임(230)과 벽체부(110)가 탄성 부재(440)에 의해 연결될 수 있다. 즉, 본 변형 예에서는, 전달 부재(420) 및 하우징 결합 부재(430)가 별도로 구비되지 않고 탄성 부재(440)만에 의해 지지 프레임(230)과 벽체부(110)가 연결된다.
본 변형 예에서 철심 지지 부재(410) 및 하우징 결합 부재(430)의 구조 및 기능은 상술한 실시 예와 동일한 바, 이하 중복되는 설명은 생략한다.
본 변형 예에서, 탄성 부재(440)는 지지 프레임(230)과 벽체부(110) 사이에 위치된다. 탄성 부재(440)는 지지 프레임(230)과 벽체부(110) 사이에서 연장된다. 탄성 부재(440)는 그 연장 방향의 일 단부는 지지 프레임(230)과 결합되고, 타 단부는 벽체부(110)와 결합될 수 있다.
탄성 부재(440)는 소정만큼 형상 변형되며 인가된 진동 또는 소음을 저감할 수 있는 임의의 형태로 구비될 수 있다. 즉, 탄성 부재(440)는 소정의 탄성을 갖게 형성될 수 있다. 도시된 실시 예에서, 탄성 부재(440)는 코일 스프링(coil spring)으로 구비된다.
탄성 부재(440)는 복수 개의 위치에서 지지 프레임(230) 및 벽체부(110)와 각각 결합될 수 있다. 도시된 실시 예에서, 탄성 부재(440)는 철심 부재(210)의 상측 및 하측에 각각 인접하게 위치된다.
탄성 부재(440)는 복수 개 구비될 수 있다. 복수 개의 탄성 부재(440)는 서로 다른 방향에서 단일의 지지 프레임(230)을 지지하게 구성될 수 있다. 도시된 실시 예에서, 탄성 부재(440)는 전방 측에 위치되는 제1 탄성 부재(441) 및 후방 측에 위치되는 제2 탄성 부재(442)를 포함한다. 제1 탄성 부재(441) 및 제2 탄성 부재(442)는 통전부(200)를 사이에 두고 서로 마주하게 배치된다.
제1 탄성 부재(441)는 전방 측에 위치되는 제1 벽(111) 및 제1 결합 부재(431)와 각각 결합된다. 제1 탄성 부재(441)는 제1 벽(111) 및 제1 결합 부재(431) 사이에서 연장된다.
제1 탄성 부재(441)의 연장 방향의 일 단부, 도시된 실시 예에서 전방 측 단부는 제1 벽(111)과 결합된다. 제1 탄성 부재(441)의 연장 방향의 타 단부, 도시된 실시 예에서 후방 측 단부는 지지 프레임(230)과 결합된다.
제1 탄성 부재(441)는 지지 프레임(230) 및 제1 벽(111)을 탄성 지지한다. 통전부(200)에서 발생된 진동 또는 소음은 제1 탄성 부재(441)에 의해 저감되며 제1 벽(111)으로 전달될 수 있다.
상기 실시 예에서, 제1 탄성 부재(441)는 그 연장 방향, 즉 좌우 방향으로 형상 변형되며 진동 또는 소음을 저감할 수 있다. 즉, 제1 탄성 부재(441)는 전후 방향의 댐퍼(damper)로 기능될 수 있다.
제2 탄성 부재(442)는 후방 측에 위치되는 지지 프레임(230) 및 제4 벽(114)과 각각 결합된다. 제2 탄성 부재(442)는 지지 프레임(230) 및 제4 벽(114) 사이에서 연장된다.
제2 탄성 부재(442)의 연장 방향의 일 단부, 도시된 실시 예에서 전방 측 단부는 지지 프레임(230)과 결합된다. 제2 탄성 부재(442)의 연장 방향의 타 단부, 도시된 실시 예에서 후방 측 단부는 제4 벽(114)과 결합된다.
제2 탄성 부재(442)는 지지 프레임(230) 및 제4 벽(114)을 탄성 지지한다. 통전부(200)에서 발생된 진동 또는 소음은 제2 탄성 부재(442)에 의해 저감되며 제4 벽(114)으로 전달될 수 있다.
상기 실시 예에서, 제2 탄성 부재(442)는 그 연장 방향, 즉 좌우 방향으로 형상 변형되며 진동 또는 소음을 저감할 수 있다. 즉, 제2 탄성 부재(442)는 전후 방향의 댐퍼(damper)로 기능될 수 있다.
따라서, 본 변형 예에 따른 진동 저감부(400) 역시 통전부(200)에서 발생된 진동 또는 소음이 철심 지지 부재(410)에 의해 일차적으로 저감되고, 탄성 부재(440)를 통해 전달되며 재차 저감되며 벽체부(110)로 전달될 수 있다. 이에 따라, 통전부(200)에서 발생된 진동 또는 소음 중 변압기(10)의 외부로 방사되는 양이 저감될 수 있다.
5. 본 발명의 또다른 실시 예에 따른 진동 저감부(500)의 설명
도 14 내지 도 20을 참조하면, 본 발명의 또다른 실시 예에 따른 변압기(10)는 진동 저감부(500)를 포함한다. 본 실시 예에 따른 진동 저감부(500)는 하우징(100)에 결합되어, 전달된 진동 또는 소음을 저감하게 구성된다.
구체적으로, 진동 저감부(500)는 하우징(100)의 벽체부(110)에 결합되어, 통전부(200)에서 발생되어 하우징(100)으로 전달된 진동 또는 소음을 저감하게 구성된다.
진동 저감부(500)는 수용 공간(120)에 수용되어, 벽체부(110)의 내면에 결합된다. 진동 저감부(500)는 복수 개 구비되어, 수용 공간(120)을 둘러싸는 제1 내지 제5 벽(111, 112, 113, 114, 115) 중 어느 하나 이상의 벽에 구비될 수 있다. 또한, 진동 저감부(500)는 도시되지 않은 하측 벽에도 구비될 수 있다.
도 14에 도시된 실시 예에서, 진동 저감부(500)는 좌측에 위치되는 제2 벽(112)의 내면에 결합된다.
진동 저감부(500)는 통전부(200)와 직접 접촉되지 않는다. 즉, 진동 저감부(500)는 수용 공간(120)의 유체, 예를 들면 공기를 매질로 하여 전달된 진동 또는 소음을 저감하게 구성된다. 일 실시 예에서, 진동 저감부(500)는 공명(resonance) 현상을 이용하여 발생된 진동 또는 소음을 저감할 수 있다. 상기 실시 예에서, 진동 저감부(500)는 공명기(resonator)로 정의될 수 있다.
도시된 실시 예에서, 진동 저감부(500)는 제1 프레임(510), 제2 프레임(520), 파이프 부재(530), 통공(540), 공명 공간(550) 및 격벽(560)을 포함한다.
제1 프레임(510)은 진동 저감부(500)의 외형의 일부를 형성한다. 제1 프레임(510)은 제2 프레임(520)과 결합되어 진동 저감부(500)의 외형을 형성한다. 제1 프레임(510)은 진동 저감부(500)의 높이 방향, 도시된 실시 예에서 상하 방향으로 제2 프레임(520)과 분리 가능하게 결합될 수 있다.
도시된 실시 예에서, 제1 프레임(510)은 제2 프레임(520)의 상측에 위치되어, 제2 프레임(520)의 내부에 형성된 공명 공간(550)을 덮게 형성된다. 이에, 제1 프레임(510)은 진동 저감부(500)의 커버로 정의될 수 있을 것이다.
제1 프레임(510)은 진동 저감부(500)가 수용 공간(120)에 노출되는 부분이다. 제1 프레임(510)은 진동 저감부(500)의 부분 중 수용 공간(120)을 향하는 부분이다. 달리 표현하면, 제1 프레임(510)은 통전부(200)를 향하게 위치된다. 제1 프레임(510)은 제2 프레임(520)을 사이에 두고 벽체부(110)를 마주하게 배치된다.
제1 프레임(510)의 내부에는 파이프 부재(530)가 관통 결합된다. 파이프 부재(530)는 제1 프레임(510)의 내부에서 제1 프레임(510)의 두께 방향, 도 15에 도시된 실시 예에서 상하 방향으로 연장될 수 있다.
제1 프레임(510)의 내부에는 통공(540)이 관통 형성된다. 통공(540)은 파이프 부재(530)에 인접하게 위치되어, 파이프 부재(530)와 함께 전달된 진동 또는 소음을 저감하게 구성된다.
제1 프레임(510)은 복수 개의 영역으로 구획될 수 있다. 도 16에 도시된 실시 예에서, 제1 프레임(510)은 복수 개의 모듈(M)에 의해 형성될 수 있다. 상기 실시 예에서, 복수 개의 모듈(M)은 전후 방향 및 좌우 방향으로 각 세 개씩 구비되어, 총 아홉 개의 모듈(M)이 제1 프레임(510)을 형성할 수 있다.
제1 프레임(510)은 내부에 파이프 부재(530)가 관통 결합되고, 통공(540)이 관통 형성되며, 제2 프레임(520)과 결합될 수 있는 임의의 형상일 수 있다. 도시된 실시 예에서, 제1 프레임(510)은 사각형의 단면을 갖고 상하 방향의 두께를 갖는 판형으로 형성된다.
도시된 실시 예에서, 제1 프레임(510)은 제1 면(511) 및 제2 면(512)을 포함한다.
제1 면(511)은 제1 프레임(510)의 면 중 통전부(200)를 향하는 일 면, 도시된 실시 예에서 상측 면을 형성한다. 제1 면(511)은 제1 프레임(510)이 수용 공간(120)에 노출되는 부분이다.
제1 면(511)에 대향되게 제2 면(512)이 형성된다.
제2 면(512)은 제1 프레임(510)의 면 중 통전부(200)에 반대되는 타 면, 도시된 실시 예에서 하측 면을 형성한다. 제2 면(512)은 제1 프레임(510)의 면 중 수용 공간(120)에 노출되지 않는 면이다. 달리 표현하면, 제2 면(512)은 제1 프레임(510)의 면 중 제2 프레임(520)을 향하는 면으로 정의될 수 있다.
제1 면(511) 및 제2 면(512)은 소정의 거리만큼 이격되게 배치될 수 있다. 제1 면(511) 및 제2 면(512)이 이격된 거리에 따라 통공(540)의 길이가 결정될 수 있다. 후술될 바와 같이, 통공(540)은 그 길이에 따라 공명 현상을 통해 상쇄할 수 있는 진동 또는 소음의 주파수가 조정될 수 있다.
즉, 제1 프레임(510)의 두께가 조정되어 통공(540)이 상쇄할 수 있는 진동 또는 소음의 주파수가 조정될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
제2 프레임(520)은 진동 저감부(500)의 외형의 다른 일부를 형성한다. 제2 프레임(520)은 제1 프레임(510)과 결합되어 진동 저감부(500)의 외형을 형성한다. 제2 프레임(520)은 진동 저감부(500)의 높이 방향, 도시된 실시 예에서 상하 방향으로 제1 프레임(510)과 분리 가능하게 결합될 수 있다.
도시된 실시 예에서, 제2 프레임(520)은 제1 프레임(510)의 하측에 위치된다. 이에, 제2 프레임(520)은 진동 저감부(500)의 몸체로 정의될 수 있을 것이다.
제2 프레임(520)은 진동 저감부(500)가 벽체부(110)에 결합되는 부분이다. 제2 프레임(520)은 진동 저감부(500)의 부분 중 벽체부(110)를 향하는 부분이다. 달리 표현하면, 제2 프레임(520)은 통전부(200)에 반대되게 위치된다. 제2 프레임(520)은 제1 프레임(510)을 사이에 두고 통전부(200)를 마주하게 배치된다.
제2 프레임(520)의 내부에는 전달된 진동 또는 소음을 저감하기 위한 복수 개의 공명 공간(550) 및 복수 개의 공명 공간(550)을 구획하는 격벽(560)이 배치된다. 구획된 복수 개의 공명 공간(550)은 제1 프레임(510)을 형성하는 복수 개의 모듈(M)과 그 적층 방향, 도시된 실시 예에서 상하 방향으로 겹쳐질 수 있다. 즉, 단수 개의 모듈(M)은 단수 개의 공명 공간(550)과 겹쳐지게 배치될 수 있다.
제2 프레임(520)은 내부에 공명 공간(550) 및 격벽(560)을 수용하여, 전달된 진동 또는 소음을 저감할 수 있는 임의의 형상일 수 있다. 도시된 실시 예에서, 제2 프레임(520)은 사각형의 단면을 갖고 상하 방향의 두께를 갖는 사각기둥 형상이다. 제2 프레임(520)의 형상은 제1 프레임(510)의 형상에 따라 변경될 수 있다.
도시된 실시 예에서, 제2 프레임(520)은 프레임 외주(521), 프레임 면(522) 및 체결공(523)을 포함한다.
프레임 외주(521)는 제2 프레임(520)의 외주를 형성한다. 프레임 외주(521)는 복수 개의 공명 공간(550)을 외측에서 둘러싼다. 프레임 외주(521)는 제2 프레임(520)에 상응하는 형상으로 형성될 수 있다. 도시된 실시 예에서, 제2 프레임(520)은 사각기둥 형상인 바, 프레임 외주(521)는 사각형의 단면을 갖게 형성될 수 있다.
프레임 외주(521)는 제1 프레임(510)의 외주와 맞춰질 수 있다. 즉, 제1 프레임(510)의 외주와 프레임 외주(521)는 그 외주를 따라 같은 면 상에 배치될 수 있다.
프레임 외주(521)는 프레임 면(522)과 연속된다.
프레임 면(522)은 제2 프레임(520)의 일 면, 도시된 실시 예에서 하측 면을 형성한다. 프레임 면(522)은 공명 공간(550)을 사이에 두고 제1 프레임(510)을 마주하게 배치된다. 프레임 면(522)은 공명 공간(550)을 다른 방향, 도시된 실시 예에서 하측에서 둘러싼다.
프레임 면(522)은 제2 프레임(520)이 하우징(100)에 결합되는 부분이다. 즉, 프레임 면(522)은 벽체부(110)와 결합된다. 이를 위해, 프레임 면(522)의 외측은 벽체부(110)의 내면과 같은 형상으로 형성될 수 있다.
프레임 면(522)의 내부에는 체결공(523)이 관통 형성된다.
체결공(523)은 제2 프레임(520)을 벽체부(110)에 결합하기 위한 체결 부재(미도시)가 관통되는 공간이다. 체결공(523)은 프레임 면(522)의 내부에 관통 형성된다.
체결공(523)은 복수 개 형성될 수 있다. 복수 개의 체결공(523)은 프레임 면(522)의 서로 다른 위치에 배치될 수 있다. 도 17의 (b)에 도시된 실시 예에서, 체결공(523)은 네 개 구비된다. 네 개의 체결공(523)은 사각형의 단면을 갖는 프레임 면(522)의 각 모서리(corner)에 각각 인접하게 위치된다.
이때, 네 개의 체결공(523)은 프레임 외주(521)의 내측에 위치되어, 체결공(523)에 결합되는 체결 부재(미도시)는 외측으로 노출되지 않게 된다. 따라서, 진동 저감부(500)로 전달되는 진동 또는 소음의 교란이 최소화되어, 진동 저감부(500)가 기 설정된 주파수의 진동 또는 소음을 효과적으로 저감할 수 있다.
체결공(523)은 벽체부(110)에 형성된 복수 개의 관통공(미도시)과 맞추어질 수 있다. 달리 표현하면, 체결공(523) 및 상기 관통공(미도시)은 같은 중심축을 갖게 형성될 수 있다.
파이프 부재(530)는 진동 저감부(500)가 진동 또는 소음을 저감하는 역할을 실질적으로 수행한다. 통전부(200)에서 발생된 진동 또는 소음은 파이프 부재(530)의 내부를 통과되며 공명 공간(550)으로 진행되어 공명 현상에 의해 저감될 수 있다.
파이프 부재(530)는 제1 프레임(510)에 결합된다. 구체적으로, 파이프 부재(530)는 제1 프레임(510)의 내부에 관통 결합될 수 있다.
파이프 부재(530)는 소정의 길이만큼 연장될 수 있다. 파이프 부재(530)의 연장 길이는 제1 프레임(510)의 두께, 즉 제1 면(511)과 제2 면(512)이 이격된 길이 이상으로 형성될 수 있다. 따라서, 파이프 부재(530)의 연장 방향의 단부 중 어느 하나 이상은 제1 프레임(510)의 두께 방향으로 돌출될 수 있다.
도시된 실시 예에서, 파이프 부재(530)는 그 하측 단부가 제1 프레임(510)의 두께 방향으로 돌출된다. 파이프 부재(530)의 상기 단부는 공명 공간(550)에 수용된다.
대안적으로, 파이프 부재(530)는 그 상측 단부가 제1 프레임(510)의 두께 방향으로 돌출될 수 있다. 상기 실시 예에서, 파이프 부재(530)의 상기 단부는 수용 공간(120)에 위치될 수 있다.
다른 대안으로, 파이프 부재(530)는 그 상측 단부 및 그 하측 단부가 모두 제1 프레임(510)의 두께 방향으로 돌출될 수 있다. 상기 실시 예에서, 파이프 부재(530)의 상측 단부는 수용 공간(120)에, 하측 단부는 공명 공간(550)에 수용됨이 이해될 것이다.
파이프 부재(530)는 복수 개 구비될 수 있다. 복수 개의 파이프 부재(530)는 제1 프레임(510)을 구획하는 복수 개의 모듈(M)에 각각 배치될 수 있다. 도시된 실시 예에서, 파이프 부재(530)는 아홉 개 구비되어, 아홉 개의 모듈(M)에 각각 배치된다.
이때, 상술한 바와 같이 복수 개의 모듈(M)은 복수 개의 공명 공간(550)을 각각 덮게 배치된다. 따라서, 파이프 부재(530)의 단부가 하측으로 돌출되는 실시 예에서, 복수 개의 파이프 부재(530)의 각 단부는 복수 개의 공명 공간(550)에 각각 위치될 수 있다.
파이프 부재(530)는 모듈(M) 내부의 임의의 위치에 배치될 수 있다. 도시된 실시 예에서, 파이프 부재(530)는 모듈(M)의 중심에 배치된다. 상기 실시 예에서, 파이프 부재(530)의 중심과 모듈(M)의 중심은 같은 축 상에 배치될 수 있다.
파이프 부재(530)의 내부에는 중공이 형성된다. 상기 중공은 수용 공간(120)과 공명 공간(550)을 연통하여, 진동 또는 소음이 진행될 수 있는 통로로 기능될 수 있다.
파이프 부재(530)는 소정의 단면을 갖게 형성된다. 도시된 실시 예에서, 파이프 부재(530)는 원형의 단면을 갖되, 그 내부에 중공이 관통 형성된 환형(ring shape)의 단면을 갖게 형성된다.
파이프 부재(530)의 연장 길이 및 상기 중공의 단면적은 진동 저감부(500)에 의해 발생되는 공명 주파수의 인자로 작용될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
통공(540)은 진동 저감부(500)가 진동 또는 소음을 저감하는 역할을 실질적으로 수행한다. 통전부(200)에서 발생된 진동 또는 소음은 통공(540)을 통과하며 공명 공간(550)으로 진행되어 공명 현상에 의해 저감될 수 있다.
통공(540)은 제1 프레임(510)에 형성된다. 구체적으로, 통공(540)은 제1 프레임(510)의 내부에, 제1 프레임(510)의 두께 방향으로 관통 형성된다. 도시된 실시 예에서, 통공(540)은 상하 방향으로 관통 형성된다.
통공(540)의 연장 길이는 제1 프레임(510)의 두께에 따라 결정될 수 있다. 달리 표현하면, 통공(540)은 제1 면(511) 및 제2 면(512)이 이격되는 길이만큼 연장될 수 있다.
통공(540)은 복수 개 형성될 수 있다. 복수 개의 통공(540)은 제1 프레임(510)을 구획하는 복수 개의 모듈(M)에 각각 배치될 수 있다. 일 실시 예에서, 복수 개의 통공(540)은 파이프 부재(530)를 방사상 외측에서 둘러싸게 배치될 수 있다.
도 15 내지 도 18에 도시된 실시 예에서, 통공(540)은 각 모듈(M)마다 여덟 개 형성되어, 그 중심에 배치되는 파이프 부재(530)를 여덟 개의 방향에서 둘러싸게 배치된다. 상기 실시 예에서, 통공(540)은 총 일흔 두 개로 구비된다.
이때, 상술한 바와 같이 복수 개의 모듈(M)은 복수 개의 공명 공간(550)을 각각 덮게 배치된다. 따라서, 어느 하나의 모듈(M)에 형성된 여덟 개의 통공(540)은 서로 같은 공명 공간(550)과 연통된다. 또한, 서로 다른 모듈(M)에 각각 형성된 통공(540)은 서로 다른 공명 공간(550)과 각각 연통된다.
통공(540)의 개수는 변경될 수 있다. 도 19에 도시된 실시 예에서, 각 모듈(M)에 형성되는 통공(540)은 그 사선 방향을 따라 서로 마주하게 배치되는 두 쌍으로 구비된다. 상기 실시 예에서, 각 모듈(M)에는 네 개의 통공(540)이 형성된다.
통공(540)은 소정의 단면을 갖게 형성된다. 도시된 실시 예에서, 통공(540)은 원형의 단면을 갖고 제1 프레임(510)의 두께 방향으로 연장된 중공의 형상이다.
통공(540)의 연장 길이 및 단면적은 진동 저감부(500)에 의해 발생되는 공명 주파수의 인자로 작용될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
공명 공간(550)은 파이프 부재(530) 또는 통공(540)을 통해 진행된 진동 또는 소음이 상쇄되는 공간이다. 공명 공간(550)으로 진행된 진동 또는 소음은 공명 현상에 의해 저감될 수 있다. 이에 따라, 진동 저감부(500)와 결합된 하우징(100)의 외부로 방사되는 진동 또는 소음의 크기 또한 저감될 수 있다.
공명 공간(550)은 제2 프레임(520)의 내부에 형성된 공간이다. 공명 공간(550)은 제1 프레임(510), 프레임 외주(521) 및 프레임 면(522)에 둘러싸인다. 도시된 실시 예에서, 공명 공간(550)의 수평 방향의 외주는 프레임 외주(521)에 둘러싸인다. 공명 공간(550)의 하측은 프레임 면(522)에 둘러싸이며, 공명 공간(550)의 상측은 제1 프레임(510)에 둘러싸인다.
공명 공간(550)은 수용 공간(120)과 연통된다. 구체적으로, 공명 공간(550)은 파이프 부재(530) 및 통공(540)에 의해 수용 공간(120)과 연통된다. 통전부(200)에서 발생된 진동 또는 소음은 파이프 부재(530) 또는 통공(540)을 통과되어 공명 공간(550)으로 진행될 수 있다.
공명 공간(550)은 소정의 체적을 갖게 형성될 수 있다. 공명 공간(550)의 체적은 파이프 부재(530) 및 통공(540)의 형상과 함께, 형성되는 공명 주파수를 결정하기 위한 인자로 활용된다. 이에 대한 상세한 설명은 후술하기로 한다.
공명 공간(550)은 복수 개의 소공간으로 구획될 수 있다. 구획된 복수 개의 소공간은 각 모듈(M)에 구비되는 파이프 부재(530) 및 통공(540)과 각각 연통될 수 있다. 상기 구획은 복수 개의 격벽(560)에 의해 달성될 수 있다.
도시된 실시 예에서, 공명 공간(550)은 전후 방향 및 좌우 방향으로 각각 세 개씩, 총 아홉 개의 소공간으로 구획된다. 아홉 개의 소공간은 아홉 개의 모듈(M)에 각각 덮일 수 있다.
달리 표현하면, 공명 공간(550)은 격벽(560)에 의해 구획된 복수 개의 공간으로 구획된 공간일 수 있다. 즉, 구획된 복수 개의 소공간 각각이 공명 공간(55)으로 정의될 수 있다. 상기 정의에 따를 경우, 도시된 실시 예에서는 아홉 개의 공명 공간(550)이 형성됨이 이해될 것이다.
공명 공간(550)은 진행된 진동 또는 소음을 저감할 수 있는 임의의 형상일 수 있다. 도시된 실시 예에서, 공명 공간(550)은 사각형의 단면을 갖고 상하 방향의 높이를 갖는 사각기둥 형상의 공간이다. 공명 공간(550)의 형상은 제2 프레임(520) 및 격벽(560)의 형상에 따라 변경될 수 있다.
격벽(560)은 공명 공간(550)을 복수 개의 소공간으로 구획한다.
격벽(560)은 공명 공간(550)에 위치된다. 격벽(560)은 소정의 높이를 갖게 형성된다. 일 실시 예에서, 격벽(560)은 그 상측 단부가 프레임 외주(521)의 상측 단부와 같은 평면 상에 위치될 수 있다. 상기 실시 예에서, 제1 프레임(510)과 제2 프레임(520)이 결합되면, 구획된 복수 개의 소공간은 서로 연통이 차단될 수 있다.
격벽(560)은 복수 개 구비될 수 있다. 복수 개의 격벽(560)은 서로 이격되어, 일 방향 또는 타 방향으로 연장될 수 있다. 도시된 실시 예에서, 격벽(560)은 전후 방향으로 연장되며, 서로 이격되게 배치되는 한 쌍 및 좌우 방향으로 연장되며 서로 이격되게 배치되는 다른 한 쌍을 포함하여 총 네 개 구비된다.
이때, 상기 한 쌍의 격벽(560) 및 상기 다른 한 쌍의 격벽(560)은 소정의 각도를 이루며 교차될 수 있다. 일 실시 예에서, 상기 소정의 각도는 직각일 수 있다.
복수 개의 격벽(560)에 의해, 각 모듈(M)에 구비되는 파이프 부재(530) 및 통공(540)과 연통되는 공명 공간(550) 또는 구획된 각 공간의 형상이 변형될 수 있다. 이에 따라, 진동 저감부(500)에 의해 발생되는 공명 주파수가 조정될 수 있다.
도 20을 참조하면, 본 실시 예에 따른 진동 저감부(500)의 변형 예가 도시된다. 도시된 변형 예에서, 진동 저감부(500)는 서로 물리적으로 이격된 복수 개의 모듈(M)로 구비된다. 각 모듈(M)에는 단수 개의 파이프 부재(530) 및 복수 개의 통공(540)이 각각 구비될 수 있다.
상기 변형 예에서, 통전부(200)에서 발생된 진동 또는 소음의 주파수에 따라 하우징(100)에 결합되는 모듈(M)의 개수가 조정될 수 있다. 이에 따라, 발생된 진동 또는 소음이 더욱 효과적으로 저감될 수 있다.
한편, 파이프 부재(530) 및 공명 공간(550)의 형상에 따른 공명 주파수는 다음의 [수학식 1]에 의해 도출될 수 있다.
Figure PCTKR2023001057-appb-img-000001
상기 수학식 1에서, f1은 공명 주파수, v는 진동 또는 소음의 속도, A1은 파이프 부재(530)의 내부에 형성된 중공의 단면적, V1은 공명 공간(550)의 체적 및 l1은 파이프 부재(530)의 연장 길이이다.
또한, 통공(540) 및 공명 공간(550)의 형상에 따른 공명 주파수는 다음의 [수학식 2]에 의해 도출될 수 있다.
Figure PCTKR2023001057-appb-img-000002
상기 수학식 2에서, f2는 공명 주파수, v는 진동 또는 소음의 속도, A2는 통공(540)의 단면적, V2는 공명 공간(550)의 체적 및 l2는 파이프 부재(530)의 연장 길이이다.
상기 [수학식 1] 및 [수학식 2]에서, 진동 또는 소음의 속도인 v는 상수이다. 따라서, A1, A2, V1, V2, L1, L2를 조정함으로써, 공명 주파수인 f1 및 f2가 조정될 수 있음이 이해될 것이다.
더 나아가, f1 및 f2를 적절하게 합성하여 다양한 주파수의 진동 또는 소음이 저감되거나, 특정 주파수의 진동 또는 소음이 중점적으로 저감될 수 있다.
따라서, 본 실시 예에 따른 진동 저감부(500)는 파이프 부재(530), 통공(540) 및 공명 공간(550)의 형상을 변경하여, 다양한 주파수의 진동 또는 소음을 저감할 수 있다. 이에 따라, 진동 저감부(500)와 결합된 하우징(100)을 통해 외부로 방사되는 진동 또는 소음 역시 저감될 수 있다.
일 실시 예에서, 상술한 파이프 부재(530), 통공(540) 및 공명 공간(550)은 서로 상이한 형상을 갖게 형성될 수 있다. 예를 들어, 파이프 부재(530), 통공(540) 및 공명 공간(550)은 모듈(M)별로 상이한 형상을 갖게 형성될 수 있다.
상기 실시 예에서, 진동 저감부(500)를 구성하는 복수 개의 모듈(M)은 서로 다른 형태의 진동 또는 소음을 상쇄할 수 있게 구성된다. 이에 따라, 통전부(200)에서 다양한 주파수의 진동 또는 소음이 발생되는 경우에도, 진동 저감부(500)에 의해 저감된 후 외부로 방사될 수 있다.
이상 설명한 본 발명의 각 실시 예에 따른 진동 저감부(300, 400, 500)는 하나 이상 구비될 수 있다. 이는, 각 실시 예에 따른 진동 저감부(300, 400, 500)가 서로 다른 위치에서 하우징(100) 또는 통전부(200)와 결합됨에 기인한다.
진동 저감부(300, 400, 500)가 모두 구비되는 실시 예에서, 통전부(200)에서 발생된 진동 또는 소음이 가장 효과적으로 저감될 수 있음이 이해될 것이다.
본 발명의 실시 예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 의해 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.
10: 변압기 100: 하우징
110: 벽체부 111: 제1 벽
112: 제2 벽 113: 제3 벽
114: 제4 벽 115: 제5 벽
120: 수용 공간 130: 보강 리브
131: 제1 보강 리브 132: 제2 보강 리브
140: 충진 공간 200: 통전부
210: 철심 부재 220: 권선 부재
230: 지지 프레임 300: 진동 저감부
310: 커버 부재 311: 메인 커버
312: 서브 커버 320: 흡음 부재
330: 연통 홀 340: 마개 부재
350: 돌출 유로부 400: 진동 저감부
410: 철심 지지 부재 420: 전달 부재
421: 제1 전달 부재 422: 제2 전달 부재
430: 하우징 결합 부재 431: 제1 결합 부재
432: 제2 결합 부재 440: 탄성 부재
441: 제1 탄성 부재 442: 제2 탄성 부재
500: 진동 저감부 510: 제1 프레임
511: 제1 면 512: 제2 면
520: 제2 프레임 521: 프레임 외주
522: 프레임 면 523: 체결공
530: 파이프 부재 540: 통공
550: 공명 공간 560: 격벽
d1: 제1 거리 d2: 제2 거리
d3: 제3 거리 t1: 제1 두께
t2: 제2 두께 M: 모듈

Claims (15)

  1. 외형의 일 부분을 형성하는 제1 프레임;
    외형의 타 부분을 형성하며, 상기 제1 프레임과 결합되는 제2 프레임;
    상기 제2 프레임의 내부에 형성되어, 전달된 진동 또는 소음을 공진 현상(resonance)에 의해 저감시키는 공명 공간; 및
    상기 제1 프레임에 관통 결합되어, 상기 공명 공간과 외부를 연통하는 파이프 부재를 포함하는,
    진동 저감부.
  2. 제1항에 있어서,
    상기 제1 프레임에 관통 형성되어, 상기 공명 공간과 외부를 연통하는 통공을 포함하는,
    진동 저감부.
  3. 제2항에 있어서,
    상기 통공은 복수 개 형성되어, 복수 개의 상기 통공은 상기 파이프 부재를 둘러싸게 배치되는,
    진동 저감부.
  4. 제1항에 있어서,
    상기 파이프 부재의 연장 길이는 상기 제1 프레임의 두께 이상으로 형성되어, 상기 파이프 부재의 연장 방향의 일 단부는 상기 제1 프레임에서 돌출되게 위치되는,
    진동 저감부.
  5. 제4항에 있어서,
    상기 파이프 부재의 상기 일 단부는 상기 공명 공간에 위치되는,
    진동 저감부.
  6. 제1항에 있어서,
    상기 제1 프레임은 복수 개의 모듈로 구획되고,
    상기 공명 공간은 복수 개 형성되어, 복수 개의 상기 공명 공간은 상기 파이프 부재의 연장 방향을 따라, 상기 복수 개의 상기 모듈과 각각 겹쳐지게 배치되는,
    진동 저감부.
  7. 제6항에 있어서,
    상기 파이프 부재는 복수 개 구비되어, 복수 개의 상기 파이프 부재는 복수 개의 상기 모듈에 각각 관통되고,
    복수 개의 상기 파이프 부재의 각 단부는 복수 개의 상기 공명 공간에 각각 위치되는,
    진동 저감부.
  8. 제7항에 있어서,
    상기 제1 프레임에 관통 형성되어, 상기 공명 공간과 외부를 연통하는 통공을 포함하며,
    상기 통공은, 복수 개의 상기 모듈에 각각 형성되는,
    진동 저감부.
  9. 제8항에 있어서,
    복수 개의 상기 모듈에는 복수 개의 통공이 각각 형성되고,
    복수 개의 상기 통공은, 복수 개의 상기 공명 공간과 각각 연통되는,
    진동 저감부.
  10. 제1항에 있어서,
    상기 공명 공간에 위치되어, 상기 공명 공간을 복수 개의 공간으로 구획하는 격벽을 포함하는,
    진동 저감부.
  11. 제10항에 있어서,
    상기 격벽은 일 방향으로 연장되는 일 부분 및 타 방향으로 연장되는 다른 부분을 포함하며,
    상기 일 부분 및 상기 타 부분은 소정의 각도를 이루며 교차되며 연장되는,
    진동 저감부.
  12. 외부의 전원 및 부하와 통전되어, 상기 전원에서 전달된 전력을 변압하여 상기 부하에 제공하는 통전부;
    상기 통전부를 수용하는 수용 공간 및 상기 수용 공간을 둘러싸는 벽체부를 포함하는 하우징; 및
    상기 수용 공간에 수용되며, 상기 하우징에 각각 결합되어, 상기 통전부에서 발생된 진동 또는 소음을 저감하게 구성되는 진동 저감부를 포함하며,
    상기 진동 저감부는,
    상기 통전부를 향하는 일측을 형성하는 제1 프레임;
    상기 제1 프레임 및 상기 벽체부와 각각 결합되는 제2 프레임;
    상기 제2 프레임의 내부에 형성되어, 전달된 진동 또는 소음을 공진 현상에 의해 저감시키는 공명 공간; 및
    상기 제1 프레임에 관통 결합되어, 상기 공명 공간과 상기 수용 공간을 연통하는 파이프 부재를 포함하는,
    변압기.
  13. 제12항에 있어서,
    상기 진동 저감부는,
    상기 제1 프레임에 관통 형성되어, 상기 공명 공간과 상기 수용 공간을 연통하는 복수 개의 통공을 포함하는,
    변압기.
  14. 제13항에 있어서,
    상기 공명 공간에서 발생되는 진동 또는 소음의 공명 주파수는, 상기 파이프 부재의 연장 길이 및 단면적, 상기 통공의 연장 길이 및 단면적 및 상기 공명 공간의 부피 중 어느 하나 이상을 인자로 하여 연산되는,
    변압기.
  15. 제12항에 있어서,
    상기 파이프 부재는, 상기 제1 프레임의 두께 이상의 길이만큼 연장되어, 그 연장 방향의 일 단부가 상기 공명 공간에 위치되는,
    변압기.
PCT/KR2023/001057 2022-03-03 2023-01-20 진동 저감부 및 이를 포함하는 변압기 WO2023167423A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0027179 2022-03-03
KR1020220027179A KR20230130255A (ko) 2022-03-03 2022-03-03 진동 저감부 및 이를 포함하는 변압기

Publications (1)

Publication Number Publication Date
WO2023167423A1 true WO2023167423A1 (ko) 2023-09-07

Family

ID=87883964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001057 WO2023167423A1 (ko) 2022-03-03 2023-01-20 진동 저감부 및 이를 포함하는 변압기

Country Status (2)

Country Link
KR (1) KR20230130255A (ko)
WO (1) WO2023167423A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010010290A (ko) * 1999-07-19 2001-02-05 이종훈 변압기 밀폐구조용 공명형 소음 저감장치
US20080023261A1 (en) * 2004-05-14 2008-01-31 Yanmar Co., Ltd. Noise Proof Structure of Cabin
KR100879887B1 (ko) * 2008-04-02 2009-01-22 안경덕 변압기 소음 저감용 흡음·공명형 음향 배플 및 그 설치방법
KR101753082B1 (ko) * 2017-01-13 2017-07-04 주식회사 동인 변전설비용 변압기의 소음저감 장치
KR20200143556A (ko) * 2019-06-13 2020-12-24 현대일렉트릭앤에너지시스템(주) 저소음 변압기

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101530347B1 (ko) 2015-01-26 2015-06-29 (유)전일기술단 변전소 변압기의 방진 지지장치
KR101661138B1 (ko) 2016-06-17 2016-10-10 (주)천도건축사사무소 변전소 변압기의 방진 지지장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010010290A (ko) * 1999-07-19 2001-02-05 이종훈 변압기 밀폐구조용 공명형 소음 저감장치
US20080023261A1 (en) * 2004-05-14 2008-01-31 Yanmar Co., Ltd. Noise Proof Structure of Cabin
KR100879887B1 (ko) * 2008-04-02 2009-01-22 안경덕 변압기 소음 저감용 흡음·공명형 음향 배플 및 그 설치방법
KR101753082B1 (ko) * 2017-01-13 2017-07-04 주식회사 동인 변전설비용 변압기의 소음저감 장치
KR20200143556A (ko) * 2019-06-13 2020-12-24 현대일렉트릭앤에너지시스템(주) 저소음 변압기

Also Published As

Publication number Publication date
KR20230130255A (ko) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2020145718A1 (ko) 디스플레이용 기판
WO2020241969A1 (ko) 직류 릴레이 및 그 제작 방법
WO2018147493A1 (ko) 브레이커, 장볼트 풀림 모니터링 시스템 및 장볼트 풀림 모니터링 방법
WO2021157873A1 (ko) 냉각 플레이트 및 이의 제조 방법
WO2020197334A1 (ko) 분리형 능동 emi 필터 모듈
WO2011002151A2 (ko) 떨림 보정기능이 구비된 영상 촬영 장치
WO2023167423A1 (ko) 진동 저감부 및 이를 포함하는 변압기
WO2023167409A1 (ko) 진동 저감부 및 이를 포함하는 변압기
WO2020241968A1 (ko) 직류 릴레이
WO2021230515A1 (ko) 가동 코어부 및 이를 포함하는 직류 릴레이
WO2024117439A1 (ko) 진동 저감부 및 이를 포함하는 변압기
WO2024117438A1 (ko) 진동 저감부 및 이를 포함하는 변압기
WO2021112343A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2024085365A1 (ko) 아크 소호 장치
WO2023090794A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2023090792A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2022097988A1 (ko) 코일부 및 이를 포함하는 ev 릴레이
WO2023090793A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2023090788A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2022098217A1 (ko) 단락 조정 장치 및 이를 포함하는 모듈형 멀티 레벨 컨버터
WO2022108156A1 (ko) 모터 조립체 및 이를 포함하는 회로 차단기
WO2023090789A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2023090790A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2023120915A1 (ko) 전력 변환 모듈 및 이를 포함하는 전력 공급 장치
WO2021100984A1 (ko) 크로스바 조립체 및 이를 포함하는 트립 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763622

Country of ref document: EP

Kind code of ref document: A1