WO2023167244A1 - 相互接続構造および情報処理装置 - Google Patents

相互接続構造および情報処理装置 Download PDF

Info

Publication number
WO2023167244A1
WO2023167244A1 PCT/JP2023/007625 JP2023007625W WO2023167244A1 WO 2023167244 A1 WO2023167244 A1 WO 2023167244A1 JP 2023007625 W JP2023007625 W JP 2023007625W WO 2023167244 A1 WO2023167244 A1 WO 2023167244A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
temperature
interconnection structure
conductive path
input signal
Prior art date
Application number
PCT/JP2023/007625
Other languages
English (en)
French (fr)
Inventor
広幸 秋永
久 島
泰久 内藤
暖 佐藤
拓真 松尾
健太郎 木下
敏材 野上
敏幸 伊藤
靖光 折井
正和 小林
Original Assignee
国立研究開発法人産業技術総合研究所
学校法人東京理科大学
国立大学法人鳥取大学
公益財団法人豊田理化学研究所
長瀬産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 学校法人東京理科大学, 国立大学法人鳥取大学, 公益財団法人豊田理化学研究所, 長瀬産業株式会社 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2023167244A1 publication Critical patent/WO2023167244A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/48Analogue computers for specific processes, systems or devices, e.g. simulators
    • G06G7/60Analogue computers for specific processes, systems or devices, e.g. simulators for living beings, e.g. their nervous systems ; for problems in the medical field
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/54Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using elements simulating biological cells, e.g. neuron
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors

Definitions

  • the present disclosure relates to interconnection structures and information processing devices.
  • Non-Patent Document 1 ReRAM (resistive change memory), PCM (phase change memory), CBRAM (conducting bridge memory)
  • PCM phase change memory
  • CBRAM conducting bridge memory
  • Non-Patent Document 2 polymer networks used as artificial synapses in neuromorphic devices.
  • Non-Patent Document 3 a NaCl solution
  • the interconnection structures of Non-Patent Documents 1 and 2 are interconnections that utilize a strong connection state due to physical conductor connection between solids, and the interconnection structure of Non-Patent Document 3 is in a liquid.
  • Non-Patent Document 4 The electrical characteristics of the former interconnection have been reported in a CBRAM using an ionic liquid (see Non-Patent Document 4), and the electrical characteristics of the latter interconnection can be obtained by changing the valence of ions in the ionic liquid. , its variation can be controlled, and its utilization for long-term memory in CBRAM and short-term memory in a physical reservoir device has been reported (see Non-Patent Document 5).
  • the problem is how to process the time-series data.
  • the recurrent neural network device learns all weights for the data, and the physical reservoir device learns only the weights on the output side.
  • nonlinearity of conversion, high dimensionality of data, short-term memory, etc. are required for data conversion.
  • An ionic liquid is a salt that exists in a liquid state at room temperature.
  • Ionic liquids have advantages in that they have high ionic conductivity, a wide potential window, and infinite combinations of cations and anions.
  • the ionic liquid controlled the (non-linear) resistivity change with time upon addition of metal ionic species, and that the redox peak of the metal ions controlled the voltage as the input signal.
  • there is an appropriate selection between ionic liquids and metal ions to enhance nonlinearity in conversion to current as an output signal when input International Application No. PCT/JP2022/ 003186.
  • the inventors state that ionic liquid interconnection is a simple connection design that allows electrical interconnection without the need for metallic filaments that can be generated in the ionic liquid, and that this The interconnections have been shown to exhibit reservoir properties.
  • the purpose of the present disclosure is to provide an interconnection structure and an information processing device that utilize electrical characteristics resulting from an electrochemical reaction according to environmental factors.
  • An interconnection structure is an interconnection structure that electrically connects a first portion and a second portion, wherein the interconnection structure includes the first portion and the second portion. a medium between two portions, wherein the electrical connection between the first portion and the second portion is variable by a conductive path created by an electrochemical reaction in the medium;
  • the conductive paths have electrical properties that vary depending on the surrounding environment of the medium.
  • An information processing device is an information processing device that processes information about environmental factors, the information processing device transmitting the input signal to the interconnection structure and the first portion. and an output for receiving said output signal from said second portion.
  • an interconnection structure and an information processing device that utilize electrical characteristics resulting from an electrochemical reaction according to environmental factors.
  • FIG. 1 is a schematic diagram conceptually illustrating an interconnection structure according to an embodiment of the present disclosure
  • FIG. 1B is a schematic diagram conceptually showing a first variation of the interconnect structure shown in FIG. 1A
  • FIG. 1B is a schematic diagram conceptually showing a second variation of the interconnect structure shown in FIG. 1A
  • FIG. 1B is a schematic diagram conceptually showing a third variation of the interconnect structure shown in FIG. 1A
  • FIG. 1 is a perspective view schematically showing aspect 1 of an interconnection structure according to an embodiment of the present disclosure
  • FIG. 1 is a cross-sectional view schematically showing aspect 1 of an interconnect structure according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view schematically illustrating aspect 2 of an interconnect structure according to an embodiment of the present disclosure
  • FIG. 3 is a cross-sectional view schematically illustrating aspect 3 of an interconnect structure according to an embodiment of the present disclosure
  • FIG. 4 is a cross-sectional view schematically illustrating aspect 4 of an interconnect structure according to an embodiment of the present disclosure
  • FIG. 5 is a cross-sectional view schematically illustrating aspect 5 of an interconnect structure according to an embodiment of the present disclosure
  • FIG. 10 is a perspective view schematically illustrating aspect 6 of an interconnect structure according to an embodiment of the present disclosure
  • FIG. 10 is a cross-sectional view schematically illustrating aspect 7 of an interconnect structure according to an embodiment of the present disclosure
  • 9B is a cross-sectional view schematically showing Variation 1 of the interconnection structure of FIG. 9A
  • FIG. FIG. 9B is a cross-sectional view schematically showing Variation 2 of the interconnection structure of FIG. 9A
  • 9B is a schematic cross-sectional view of Variant 3 of the interconnect structure of FIG. 9A
  • FIG. FIG. 10 is a cross-sectional view schematically illustrating aspect 8 of an interconnect structure according to an embodiment of the present disclosure
  • 10B is a schematic cross-sectional view of a variation of the interconnect structure of FIG. 10A
  • FIG. 10 is a cross-sectional view schematically illustrating aspect 9 of an interconnect structure according to an embodiment of the present disclosure
  • 10 is a schematic perspective view of aspect 10 of an interconnect structure in accordance with an embodiment of the present disclosure
  • FIG. 1 is a schematic diagram conceptually showing an information processing apparatus according to an embodiment of the present disclosure
  • FIG. 4 is a schematic graph showing input signals applied to interconnect structures according to Examples 1-3 of the present disclosure
  • 5 is a graph showing current-voltage characteristics of a conductive path in the first cycle when the temperature of the medium is 25° C.
  • 10 is a graph showing the current-voltage characteristics of the conductive paths in the second to tenth cycles when the temperature of the medium is 25° C. and the input signal is input to the medium in the interconnection structure according to Example 1 of the present disclosure.
  • 10 is a graph showing current-voltage characteristics of the 20th to 30th conductive paths when the temperature of the medium is 25° C. and an input signal is input to the medium in the interconnection structure according to Example 1 of the present disclosure.
  • 7 is a graph showing current-voltage characteristics of a conductive path when an input signal is input to the medium at a medium temperature of 25° C.
  • 7 is a graph showing current-voltage characteristics of a conductive path when an input signal is input to the medium at a medium temperature of 40° C. in the interconnection structure according to Example 2 of the present disclosure; 7 is a graph showing current-voltage characteristics of a conductive path when an input signal is input to the medium at a medium temperature of 50° C. in the interconnection structure according to Example 2 of the present disclosure; 7 is a graph showing current-voltage characteristics of a conductive path when an input signal is input to the medium at a medium temperature of 60° C.
  • 7 is a graph showing current-voltage characteristics of a conductive path when an input signal is input to the medium at a medium temperature of 70° C. in the interconnection structure according to Example 2 of the present disclosure; 7 is a graph showing current-voltage characteristics of a conductive path when an input signal is input to the medium at a medium temperature of 80° C.
  • Example 2 of the present disclosure is a graph showing a Weibull distribution of current values of positive peak current at each medium temperature in the interconnection structure according to Example 2 of the present disclosure
  • 5 is a graph showing a Weibull distribution for voltage values indicating a positive peak current at each medium temperature in an interconnect structure according to Example 2 of the present disclosure
  • 5 is a graph showing current values of positive peak current for each cycle of an input signal at each temperature in an interconnect structure according to Example 2 of the present disclosure
  • 5 is a graph showing current values of positive peak current for each cycle of an input signal at each temperature in interconnect structures according to Examples 1-3 of the present disclosure
  • 5 is a graph showing the current value of the positive peak current for each cycle of the input signal at each temperature in the interconnect structure according to Example 1 of the present disclosure
  • the temperature of the medium M is changed to 25° C., 50° C., 70° C., and 50° C.
  • Example 2 of the present disclosure the temperature of the medium M is changed to 25° C., 50° C., 70° C., and 50° C. every 100 cycles, and the 101st to 200th cycles when the input signal D1 is input to the medium M 2 is a graph showing current-voltage characteristics of a conductive path P at .
  • the temperature of the medium M is changed to 25° C., 50° C., 70° C., and 50° C.
  • Example 2 of the present disclosure the temperature of the medium M is changed to 25° C., 50° C., 70° C., and 50° C. every 100 cycles, and the 301st to 400th cycles when the input signal D1 is input to the medium M 2 is a graph showing current-voltage characteristics of a conductive path P at .
  • the temperature of the medium M is changed to 25° C., 50° C., 70° C., and 50° C. every 100 cycles, and the input signal D1 is input to the medium M.
  • FIG. 10 is a graph showing current values at each virtual node when the temperature of the medium is 40° C., 122 virtual nodes are introduced, and an input signal is input in Example 2 of the present disclosure
  • FIG. 10 is a graph showing current values at respective virtual nodes when the temperature of the medium is 60° C., 122 virtual nodes are introduced, and input signals are input in Example 2 of the present disclosure
  • FIG. 10 is a graph showing current values at respective virtual nodes when the temperature of the medium is 80° C., 122 virtual nodes are introduced, and input signals are input in Example 2 of the present disclosure
  • FIG. 21A to 21C is a table showing the determination results of the analyzer for each characteristic graph of FIGS. 21A to 21C when the analyzer is trained using the characteristic graphs of FIGS. 21A to 21C as training data and the support vector machine as a learning algorithm; FIG. .
  • the terms “perpendicular to A” and similar expressions refer not only to directions completely perpendicular to A, but also to include directions that are substantially perpendicular to A. do.
  • parallel to B and similar expressions refer not only to a direction completely parallel to B, but also to include being substantially parallel to B. do.
  • C shape and expressions similar thereto do not refer only to a complete C shape, but a shape visually pronounced of a C shape, such as a shape in which the corners of the C shape are chamfered ( Approximately C shape) shall be included.
  • An interconnection structure 1 is an interconnection structure that electrically connects a first portion T1 and a second portion T2, as shown in the schematic diagram of FIG. 1A.
  • the interconnect structure 1 comprises a medium M between a first portion T1 and a second portion T2.
  • the electrical connection between the first portion T1 and the second portion T2 is made variable by a conductive path P generated by an electrochemical reaction in the medium M. Due to this conductive path P having variable electrical properties, the interconnection structure 1 allows the electrical conductivity of the conductive path P from the medium M to the second part T2 when an input signal D1 is applied to the medium M from the first part T1.
  • An output signal D2 corresponding to the characteristics is output.
  • the “conductive path” referred to here does not necessarily need to physically connect the first portion T1 and the second portion T2 with a conductor such as metal (hereinafter referred to as “strong connection”). It is sufficient if the first portion T1 and the second portion T2 can be electrically connected (hereinafter referred to as “weak connection”) by the medium M without a physical connection by a conductor. In other words, the "conductive path" is defined between the first portion T1 and the second portion T2 if the first portion T1 and the second portion T2 are electrically connected by an electrochemical reaction. , it is sufficient that the medium M is present. Further, the term "electrical connection” as used herein does not necessarily mean that the first portion T1 and the second portion T2 are electrically connected all the time. It suffices if it is in an electrically connectable state with the portion T2 of .
  • the output signal D2 output to the second portion T2 is likely to be non-linearly converted with respect to the input signal D1 input from the first portion T1.
  • the first portion T1 and the second portion T2 are connected by a "weak connection" by the conductive path P so as to mimic electrical transmission between brain neurons. T1 and the second portion T2 are electrically connected.
  • the conductive path P has electrical characteristics that change according to the surrounding environment of the medium M.
  • the “electrical characteristics” referred to here refer to electrical characteristics of the conductive path P that can detect the surrounding environment of the medium M in some way. Due to the conductive path P, which has electrical properties that change according to the surrounding environment of the medium M, the interconnection structure 1 is able to pass through the medium M to the second signal when an input signal D1 is applied to the medium M from the first portion T1. An output signal D2 corresponding to the surrounding environment of the medium M is output to the portion T2. Therefore, the output signal D2 carries information about the surrounding environment of the medium M with respect to the input signal D1 input to the medium M due to the electrical characteristics of the conductive path P.
  • the electrical characteristics of the conductive path P may reflect the surrounding environment of the medium M by structurally changing the medium M according to the surrounding environment of the medium M.
  • the electrochemical reaction changes may reflect the surrounding environment of the medium M.
  • the ambient environment that changes the electrical characteristics of the conductive path P is not particularly limited, it is the temperature environment in this embodiment.
  • the ambient environment that changes the electrical properties of the conductive path P may be other ambient environments such as a light environment, a magnetic environment, a vibration environment, and a pressure environment.
  • the electrical characteristic of the conductive path P that changes depending on the surrounding environment is not particularly limited, but in this embodiment, it is the current-voltage characteristic of the conductive path P.
  • the electrical characteristics of the conductive path P that change depending on the surrounding environment may be other characteristics such as temporal changes in current or voltage, capacitance characteristics, and the like. If the electrical characteristics of the conductive path P also have nonlinear transformability as described above, the output signal D2 is simply information about the surrounding environment of the medium M at the time when the input signal D1 was input to the medium M. Instead, it carries temporal information including information about the surrounding environment of the medium M before the time when the input signal D1 was input to the medium M.
  • the interconnection structure 1 may further comprise a temperature setting portion E1 for setting the temperature of the medium M to a predetermined temperature.
  • the interconnection structure 1 further comprises a first portion T1 and a portion 2 (in FIG. 1C, an input section, described below) that connects to the first portion T1.
  • E2 in FIG. 1C, an asymmetrical element described below
  • FIG. 1D Another element E2 (asymmetrical element described later in FIG. 1D) interposed between the portion T2 and the connected portion 3 (output portion described later in FIG. 1D) may be provided.
  • the use of the interconnection structure 1 is not particularly limited as long as it is used to electrically connect the first portion T1 and the second portion T2.
  • the interconnection structure 1 can be used, for example, as a temperature sensing device (such as a temperature sensor) because the electrical properties of the conductive paths P change according to the temperature of the medium M.
  • the interconnection structure 1 can also be used as a sensing device for temperature history (such as a temperature memory) if the electrical properties of the conductive paths P also have non-linear transformability.
  • temperature history such as a temperature memory
  • interconnection structure 1 can also be used as a sensing device (such as a heat flow sensor) on heat flow.
  • the first part T1 and the second part T2 are parts that are interconnected by the interconnection structure 1 .
  • the first portion T1 and the second portion T2 are not particularly limited, for example, the first portion T1 and the second portion T2 may be terminals (terminals) of a semiconductor chip such as an integrated circuit chip or a discrete chip. Alternatively, a terminal of the interconnection structure 1 electrically connected to the terminal) can be mentioned.
  • the semiconductor chips may be arranged so that the circuit surfaces of the semiconductor chips face each other, and the terminals of the semiconductor chips may be connected by inserting the medium M between the facing circuit surfaces.
  • the terminals of the semiconductor chips may be connected by arranging the semiconductor chips such that the circuit surfaces are parallel to each other and arranging the medium M in a direction parallel to the circuit surfaces.
  • the first portion T1 and the second portion T2 are terminals of a larger electronic device, electrical equipment, information system or the like (or terminals of the interconnection structure 1 electrically connected to such terminals).
  • the number of each of the first portion T1 and the second portion T2 is not particularly limited, and both the first portion T1 and the second portion T2 may be one each, or both Both may be plural, or one may be one and the other may be plural.
  • the constituent materials of the first portion T1 and the second portion T2 are not particularly limited. metal material).
  • the constituent materials of the first portion T1 and the second portion T2 have a higher electrode potential with respect to the medium M than the metal constituting the ions contained in the medium M (typically, ionization tendency is selected from the materials so that the Specifically, the first portion T1 and the second portion T2 are composed of noble metals (for example, copper (Cu), silver (Ag), etc.) having a higher electrode potential than constituent metals of the ions present in the medium M. For example, platinum (Pt), etc.).
  • the first portion T1 and the second portion T2 are composed of an underlying layer made of a noble metal and a metal having a high electron supply capability (tantalum (Ta), molybdenum (Mo), etc.) on the surface of the underlying layer. It may have an adhesion layer.
  • the electrochemical reaction in the medium M specifically, the electrochemical reaction of the metal that causes the conductive path P (specifically, the dissolution deposition reaction (oxidation-reduction reaction))
  • the degree of change in the electrical properties of the conductive path P can be changed.
  • the constituent materials of the first portion T1 and the second portion T2 may be selected from materials that have a lower electrode potential with respect to the medium M than the metal that constitutes the ions contained in the medium M.
  • the first portion T1 and the second portion T2 may be made of the same metal as the constituent metal of the ions present in the medium M, such as a conductive non-metallic material such as carbon (C), or an organic conductive material. may consist of
  • the medium M mediates electrical connection between the first portion T1 and the second portion T2 through a conductive path P generated by an electrochemical reaction. Specifically, the medium M mediates electrical connection between the first portion T1 and the second portion T2 by contacting both the first portion T1 and the second portion T2. .
  • the medium M contains an electrolyte capable of forming a conductive path P electrically connecting the first portion T1 and the second portion T2 to each other in this embodiment.
  • electrolyte refers to a substance in which the ions contained therein are in a state in which they are movable by an applied voltage.
  • the electrolyte may be a colloidal electrolyte in which a dispersoid (colloidal particles) is dispersed in a dispersion medium, or a liquid electrolyte in which a solute (ion) is dissolved in a solvent.
  • the carrier medium may be solid, but is preferably liquid.
  • the electrolyte is preferably a solution in which ions are dissolved, more preferably an ionic liquid in which ions are dissolved.
  • the electrolyte may also be an ionic gel in which ion pairs are contained within a polymer gel.
  • ionic liquid is a concept that includes not only so-called ionic liquids (salts that exist in a liquid state at room temperature) themselves, but also solvated ionic liquids and mixed ionic liquids.
  • solvate refers to a state in which solute molecules or ions are surrounded by solvent molecules to form one molecular group in a solution.
  • solvated ionic liquid refers to an ionic liquid having such solvation.
  • mixed ionic liquid refers to an ionic liquid in which a plurality of arbitrary ionic liquids such as a plurality of ionic liquids and/or solvated ionic liquids are mixed.
  • Mixed ionic liquids can be obtained, for example, by mixing a solvated ionic liquid with an ionic liquid having a lower viscosity (viscosity coefficient) than the solvated ionic liquid (hereinafter referred to as a "low-viscosity ionic liquid").
  • a solvated ionic liquid with an ionic liquid having a lower viscosity (viscosity coefficient) than the solvated ionic liquid (hereinafter referred to as a "low-viscosity ionic liquid").
  • the ionic liquid itself is not particularly limited, but is composed of 1-butyl-3-methylimidazolium ([Bmim]) ⁇ bis(trifluoromethyl)sulfonylamide ([TFSA]) and the like.
  • the mixed ionic liquid is not particularly limited, but is composed of 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonylamide ([Bmim][TFSA]) and the like.
  • TFSA is also abbreviated as [Tf 2 N] and is often referred to as “bis (trifluoromethylsulfonyl) imide” ([TFSI]) in reagent catalogs and literature. ].
  • the solvent for the solvated ionic liquid is not particularly limited as long as it has the property of surrounding solute molecules or ions.
  • Solvents for solvated ionic liquids are, for example, and (However, n is the number of ethyleneoxy groups and is 1 or 2, m is the number of methylene groups and is an integer from 1 to 3, and R 1 and R 2 are the same or different.
  • R 1 is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkylnyl group having 2 to 6 carbon atoms, a trimethylsilyl group, a triethylsilyl group, or a t-butyldimethylsilyl group.
  • R 2 represents an alkyl group having 1 to 16 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a trimethylsilyl group, a triethylsilyl group, or a t-butyldimethylsilyl group.
  • the alkyl group may contain an ether functional group or a thioether functional group) It is composed of at least one solvent selected from the group consisting of.
  • the solvent of the solvated ionic liquid is not limited to one type, and multiple types of solvents may be mixed.
  • the cations dissolved in the ionic liquid are not particularly limited, but in this embodiment, they are composed of copper (Cu) ions or silver (Ag) ions.
  • cations dissolved in the ionic liquid are not particularly limited, and examples include gold (Au) ions, palladium (Pd) ions, rhodium (Rh) ions, ruthenium (Ru) ions, platinum (Pt) ions, and other noble metal ions. , cobalt (Co) ions, nickel (Ni) ions, and lanthanide metal ions such as europium (Eu) ions.
  • the cation dissolved in the ionic liquid is not limited to one type, and multiple types of metal ions may be dissolved in the ionic liquid.
  • the anion that dissolves in the ionic liquid is not particularly limited as long as it is an anion that becomes liquid when solvated.
  • Examples of anions that dissolve in ionic liquids include bis(trifluoromethylsulfonyl)amide (N(SO 2 CF 3 ) 2 ⁇ :TFSA) and bis(fluorosulfonyl)amide (N(SO 2 F) 2 ⁇ :FSA).
  • the anions are not limited to the anions mentioned above, AlCl 4 ⁇ , BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , MeSO 3 ⁇ , CF 3 SO 3 ⁇ , NO 3 ⁇ , CF 3 COO ⁇ , RCOO ⁇ , RSO 4 ⁇ , RCH(NH 2 )COO ⁇ , SO 4 2 ⁇ , ClO 4 ⁇ , (HF) 2.3 F ⁇ (wherein R represents H, an alkyl group or an alkyloxy group), etc. good.
  • the anion dissolved in the ionic liquid is not limited to one type, and plural types of anions may be dissolved in the ionic liquid.
  • the low-viscosity ionic liquid is not particularly limited as long as it has a lower viscosity (viscosity coefficient) than the solvated ionic liquid.
  • Low-viscosity ionic liquids are, for example, (However, or represents an alkenyl group having 2 to 6 carbon atoms, and R 1 may be the same or different in each of the above chemical formulas, and represents an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms.
  • R 2 which may be the same or different, represents a hydrogen atom, an alkyl group having 1 to 16 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkoxy group.
  • R 3 in each of the above chemical formulas may be the same or different, and represents a hydrogen atom, a phenyl group, a methyl group, or an isopropyl group.
  • R 4 and R 5 in each chemical formula above which may be the same or different, represents a hydrogen atom, a phenyl group, a methyl group, or an isopropyl group,
  • R 1 and R 2 may be linked by carbon chains, and in this case they are a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, or a heptamethylene group.
  • R 2 may contain a heteroatom such as an alkyl group such as a methyl group, an ethyl group, or a heteroatom such as a dimethylamino group.
  • the anion (X ⁇ ) of the ionic liquid is AlCl 4- , BF4- , PF6- , SbF6- , N( SO2CF3 ) 2- , N( SO2F ) 2- , N( CN ) 2- , MeSO3- , MeSO4- , CF 3SO3- , NO3- , CF3COO- , RCOO- , RSO4- , RCH ( NH2 ) COO- , SO42- , ClO4- , Me2PO4- , (HF) 2.3 F ⁇ (wherein R represents H, an alkyl group, or an alkyloxy group).
  • the low-viscosity ionic liquid may be composed of one type of low-viscosity ionic liquid, or may be composed of a plurality of types of low-viscosity ionic liquids.
  • dicationic It may contain an ionic liquid, and at this time, in the case of the imidazolium salt represented by the chemical formula (12), even if it is a symmetrical salt in which R 1 and R 3 are the same, an asymmetrical salt in which R 1 and R 3 are different It may also be a polar salt.
  • R 2 in —CH 2 —R 2 —CH 2 — connecting two cations may be 0, that is, an ethylene chain.
  • one or more ether oxygens may be contained in R 2 .
  • R 1 to R 9 may be of the same symmetry or may be different asymmetry compounds, and two cations are R 6 in the linking —CH 2 —R 6 —CH 2 — may be 0, that is, an ethylene chain, and one or more ether oxygens may be contained within R 6 .
  • Anions (X) are AlCl4- , BF4- , PF6- , SbF6- , N( SO2CF3 ) 2- , N( SO2F ) 2- , N( CN ) 2- , MeSO3 - , MeSO4- , CF3SO3- , NO3- , CF3COO- , RCOO- , RSO4- , RCH ( NH2 ) COO- , SO42- , ClO4- , Me2PO4- , (HF) 2 . 3 F ⁇ (wherein R represents H, an alkyl group or an alkyloxy group). ) may contain at least one selected from the group consisting of
  • the cations and anions dissolved in the low-viscosity ionic liquid may each contain at least one of the cations and anions exemplified in the chemical formulas below.
  • Each of the cations and anions dissolved in the low-viscosity ionic liquid may contain one type of the above-described ions, or may contain a plurality of types thereof.
  • the cations dissolved in the mixed ionic liquid are not particularly limited, but are composed of, for example, at least one of copper (Cu) ions and silver (Ag) ions.
  • the cations dissolved in the ionic liquid are not particularly limited, and include gold (Au) ions, palladium (Pd) ions, rhodium (Rh) ions, ruthenium (Ru) ions, precious metal ions such as platinum (Pt) ions, cobalt (Co) ions, metal ions such as nickel (Ni) ions, lanthanide metal ions such as europium (Eu) ions, and the like.
  • the cation dissolved in the ionic liquid is not limited to one type, and multiple types of metal ions may be dissolved in the ionic liquid.
  • the anions that dissolve in the mixed ionic liquid are not particularly limited . ( SO2F ) 2- : FSA).
  • the anions that dissolve in the mixed ionic liquid may be composed of anionic species that become liquid when solvated with metal ions, such as AlCl4- , BF4- , PF6- , SbF6- , MeSO3- . , CF3SO3- , NO3- , CF3COO- , RCOO- , RSO4- , RCH( NH2 ) COO- , SO42- , ClO4- , ( HF ) 2.3F- ( where R represents H, an alkyl group, or an alkyloxy group).
  • the anions dissolved in the mixed ionic liquid are not limited to one type, and multiple types of anions may be dissolved in the mixed ionic liquid.
  • the ionic liquid may contain additional elements in addition to the above elements.
  • the ionic liquid may include glymes such as triglyme (“G3”).
  • G3 triglyme
  • the ionic liquid contains glymes (especially triglyme)
  • the cations in the ionic liquid and the glymes form a complex, and the reaction rate of the electrochemical reaction in the ionic liquid is increased.
  • the cations in the complex are metal cations and the complex is a metal complex.
  • the constituent material of the medium M can also be selected depending on whether it is desired to accumulate heat in the medium M or to release heat from the medium M.
  • the heat storage property and heat dissipation property of the medium M can be selected by, for example, changing the side chain or conformation of the constituent molecules of the ionic liquid.
  • Reactive species for example, In the above example, if there are copper (Cu) ions and silver (Ag) ions dissolved in the medium (ionic liquid) M, nonlinearity is more likely to be introduced into the electrical characteristics of the conductive paths P of the medium M. Therefore, the output signal D2 output to the second portion T2 is more likely to be non-linearly converted with respect to the input signal D1 input from the first portion T1.
  • the temperature setting unit E1 sets the temperature of the medium M to a predetermined temperature.
  • the temperature setting unit E1 may function as a temperature control unit that adjusts the temperature of the medium M so that the temperature of the medium M is within a predetermined temperature range. It may function as a heat transfer section that conducts heat between them.
  • the temperature setting part E1 is a temperature control part, adjusting the temperature of the medium M to a temperature range in which the electrochemical reaction in the medium M is active increases the conductivity of the conductive path P of the medium M, and the electrochemical reaction in the medium M increases. Adjusting the temperature of the medium M to a temperature range in which the reaction is inactive reduces the conductivity of the conductive path P of the medium M.
  • the temperature control unit is not particularly limited as long as it can adjust the temperature of the medium M.
  • the temperature control unit may be a heating element such as a thermistor, a heat dissipation element such as a heat sink, or a temperature control unit such as a Peltier element. element.
  • the temperature control unit may adjust the temperature of the medium M by directly contacting the medium M, or may be indirectly contacted with the medium M via a heat medium or the like (arranged apart from the medium M). ) may be used to adjust the temperature of the medium M.
  • the temperature setting part E1 is a heat transfer part
  • heat is conducted between the medium M and the surroundings of the medium M, so that the ambient temperature of the medium M and the temperature of the medium M substantially match.
  • the output signal D2 it is possible to obtain an output signal D2 in which the input signal D1 to the interconnection structure 1 carries the temperature information of the medium M.
  • FIG. Specific aspects of the heat transfer section will be described later.
  • the interconnection structure 1 may be configured such that the transmission characteristics of the transmission line passing through the interconnection structure 1 are different (hereinafter referred to as "transmission characteristic asymmetry") depending on the amplitude direction of the input signal D1.
  • the "amplitude direction” refers to the direction in which the input signal D1 is amplified with respect to the reference value of the input signal D1 (when the input signal D1 is a voltage signal, for example, 0 V) minus direction).
  • the interconnection structure 1 can be applied to the information processing device 10 (see FIG. 12), and the information processing device 10 can learn the temperature of the medium M, as will be described later. In this case, the learning effect of the information processing apparatus 10 can be improved.
  • the interconnection structure 1 comprises an asymmetrical element E2 with different electrical properties depending on the amplitude direction of the input signal D1, and the medium M is connected with the asymmetrical element E2. ing.
  • the asymmetric element E2 is connected to the first portion T1 (see FIG. 1C, in which the asymmetric element E2 is directly connected to the first portion T1), or the second (see FIG. 1D, in which the asymmetric element E2 is directly connected to the second portion T2).
  • the asymmetric element E2 is not particularly limited as long as it can introduce different electrical characteristics into the interconnection structure 1 depending on the amplitude direction of the input signal D1.
  • a diode more specifically a Zener diode or a Schottky diode
  • a transistor more specifically a bipolar transistor or a field effect transistor
  • a diode is employed as the asymmetrical element E2
  • asymmetrical transmission characteristics can be introduced due to the rectifying action between the anode and the cathode.
  • the rectifying action between the collector (drain) and the emitter (source) can introduce asymmetry in the transmission characteristics, adjusting the voltage applied to the base (gate). Thus, the rectifying action can be adjusted.
  • the asymmetry of the transmission characteristics may be introduced by the asymmetry of the physical shape of the interconnection structure 1.
  • at least one of the size, shape, and arrangement of the first portion T1, the second portion T2, and the medium M is made different between the first portion T1 and the second portion T2.
  • an asymmetry in transmission characteristics may be introduced.
  • FIGS. 2A-2 Aspects of interconnect structure according to an embodiment of the present disclosure. Aspects of the interconnect structure of the present disclosure will now be described with reference to FIGS. 2A-2. It should be noted that the aspects of the embodiments shown below are merely examples, and the interconnection structure of the present disclosure is not limited to the aspects of the embodiments below. In aspects of the embodiments shown below, for convenience of explanation, components having the same functions as those of the interconnect structure 1 of FIG. are given the same reference numerals.
  • FIG. 2A and 2B schematically show an interconnection structure 1 according to embodiment 1.
  • FIG. The interconnect structure 1 according to aspect 1 comprises a substrate B having a flat surface Ba, as shown in FIG. 2A.
  • the interconnection structure 1 includes a first portion T1 and a second portion T2 provided to face each other in a predetermined region (medium placement region) Rm on a base material B, and a predetermined region (medium placement region) Rm. ) Rm, an insulator N provided to partially expose the first portion T1 and the second portion T2, and a partition wall W provided to surround a predetermined region (medium placement region) Rm (see FIG. 2B ) and a medium M (see FIG. 2B) arranged inside the partition W.
  • the substrate B is not particularly limited as long as the surface has insulating or semi-insulating properties.
  • the substrate B is, for example, an insulating substrate such as ceramics, a semiconductor wafer such as single crystal silicon (Si), or a conductive base material such as copper ( Cu ). It can be configured by a metal core substrate or the like.
  • the base material B serves as the above-described heat transfer portion E11 in the thickness direction Lt (specifically, the direction connecting the front surface and the back surface of the plate-shaped base material B). It may have through-holes therethrough that are filled with material.
  • the number and arrangement of the through-holes as the heat transfer section E11 are such that heat is directly or indirectly transferred between the medium M and the through-holes without causing a short circuit with the first portion T1 and the second portion T2.
  • heat transfer materials include metal materials.
  • a metal material is employed as the heat transfer material, preferably at least the surface in contact with the medium M is an electrode rather than a constituent metal of ions present in the medium M (for example, copper (Cu), silver (Ag), etc.). It is made of a noble metal with a high potential (for example, platinum (Pt), gold (Au), etc.).
  • the first portion T1 and the second portion T2 are formed on the base material B (the surface Ba of the base material B) so as to extend in directions opposite to each other from tip parts Ta1 and Ta2 separated by a predetermined interval. . Since the constituent materials and layer construction of the first portion T1 and the second portion T2 are the same as the constituent materials and layer construction of the first portion T1 and the second portion T2 in the description of FIG. Now, we omit the explanation.
  • the medium M is composed of an electrolyte M1. Since the constituent materials of the electrolyte M1 are the same as those explained above, the explanation thereof is omitted here.
  • the insulator N is provided on the base material B (the surface Ba of the base material B) so as to expose at least part of the distal ends Ta1 and Ta2 of the first portion T1 and the second portion T2. More specifically, the insulator N is disposed between the first portion T1 and the medium M and between the second portion T2 and the medium M at desired portions of the first portion T1 and the second portion T2. It is provided to suppress the electrochemical reaction (specifically, dissolution deposition reaction (oxidation-reduction reaction)) between.
  • the electrochemical reaction is suppressed. progresses.
  • This allows conductive paths (not shown in FIGS. 2A and 2B) to be created in desired portions of the interconnect structure 1, thereby improving the controllability of the interconnect structure 1.
  • the insulator N is arranged between the first portion T1 and the second portion T2 so that a conductive path is roughly generated in the shortest route between the portions where the first portion T1 and the second portion T2 are adjacent to each other.
  • the tip portions Ta1 and Ta2 of the portion T2 are provided so as to be exposed. More specifically, the surfaces of the first portion T1 and the second portion T2 facing the base material B are arranged so as to suppress the formation of conductive paths in a direction perpendicular to the surface Ba of the base material B.
  • the first insulator N1 is provided on substantially the entire opposite surface (upper surface) of the substrate B, and on the surface of the first insulator N1 and the surface Ba of the base material B, the vicinity of the first portion T1 and the second portion T2
  • a second insulator N2 is provided such that a predetermined region R1 of is exposed.
  • the arrangement of the insulator N can be changed as appropriate according to the desired formation path of the conductive path, the formation process of the insulator N, and the like.
  • the constituent materials of the insulators N ensure insulation and prevent electricity between the medium M and the first portion T1 and the second portion T2. It is not particularly limited as long as the chemical reaction can be suppressed.
  • insulators N are silicon oxide ( SiO2 ), silicon nitride ( Si3N4 ) , silicon oxynitride (SiX + YO2XN4 /3Y (X>0, Y>0)).
  • the partition wall W is provided on the surface Ba of the base material B (more specifically, the surface of the insulator N (second insulator N2)), and the area where the medium M is arranged. Rm (hereinafter referred to as "medium placement area") is defined.
  • the medium M is accommodated inside the partition wall W, for example, by dripping.
  • the shape of the partition wall W is not particularly limited as long as it is a closed space that suppresses the movement of the medium M to the outside.
  • the partition wall W is provided, for example, in the shape of a square frame, but may have other shapes that form a closed space.
  • the constituent material of the partition wall W is a photoresist (either positive or negative).
  • the partition wall W is made of silicon oxide ( SiO2 ), silicon nitride ( Si3N4 ), silicon oxynitride ( SiX+ YO2XN4 /3Y (X>0, Y>0)), or other materials . of known materials.
  • the method of forming the partition wall W is not particularly limited, but may be changed as appropriate depending on the material of the partition wall W.
  • the partition wall W can be formed into a desired shape by applying a liquid photoresist by spin coating and hardening or dissolving the liquid photoresist by photolithography. .
  • the barrier ribs W are made of silicon oxide (SiO 2 ) or the like
  • the silicon oxide (SiO 2 ) or the like is deposited by a CVD (Chemical Vapor Deposition) method, and the silicon oxide (SiO 2 ) or the like is etched by photolithography.
  • the partition wall W can be formed into a desired shape.
  • the conductive path of the medium M is generated parallel to the surface Ba of the base material B (hereinafter, such an interconnection structure is referred to as a "horizontal interconnection structure"). called).
  • the insulator N is interposed between the medium M and the first portion T1 and the second portion T2. It is possible to cause the electrochemical reaction to occur only in a desired portion between the portion T2 of and the medium M. Thereby, the controllability of the interconnection structure 1 can be improved.
  • the partition wall W defines the medium placement region Rm, but the medium placement region Rm may be defined as follows.
  • 3 to 5 schematically show horizontal interconnection structures 1 according to aspects 2 to 4, respectively.
  • the interconnection structure 1 includes a first insulator N1, a first portion T1 and a second insulator N1, a first portion T1 and a second insulator N1, which are sequentially provided on the surface Ba side of the substrate B (on the surface Ba of the substrate B). portion T2, with a second insulator N2.
  • a concave portion R2 extending from the surface of the second insulator N2 to the first insulator N1 in a direction perpendicular to the surface Ba of the base material B is provided.
  • the medium placement region Rm can be defined by the recess R2.
  • the interconnection structure 1 includes a first portion T1 and a second portion T2 which are sequentially provided on the surface Ba side of the base material B (on the surface Ba of the base material B), the insulator N It has On the side of the surface Ba of the base material B, a concave portion R2 extending from the surface of the insulator N to the base material B in a direction perpendicular to the surface Ba of the base material B is provided. Also in the third aspect, the medium placement region Rm can be defined by the recess R2. In Aspect 3, since the base material B is in contact with the first portion T1 and the second portion T2, at least the surface Ba of the base material B is insulating. In the embodiment 4 shown in FIG.
  • the interconnection structures 1 are provided so as to face each other in a predetermined region (medium placement region) Rm on the surface Ba side of the base material B (on the surface Ba of the base material B). a first portion T1 and a second portion T2; an insulator N provided to partially expose the first portion T1 and the second portion T2 in the region (medium placement region) Rm; and a medium M arranged in a region (medium placement region) Rm.
  • the medium M is sealed with the surface Ba of the base material B by being covered with the cover C.
  • the cover C can define the medium placement region Rm.
  • the covering C is not particularly limited as long as it is insulating in order to prevent a short circuit between the first portion T1 and the second portion T2, but it is made of a material with excellent moldability. is preferred.
  • examples of such materials include insulating gel materials (eg, poly(dimethylsiloxane): PDMS) and resins (eg, thermosetting resins such as silicone resins).
  • insulating gel materials eg, poly(dimethylsiloxane): PDMS
  • resins eg, thermosetting resins such as silicone resins.
  • the constituent materials and layer configurations of the first portion T1 and the second portion T2, and the constituent materials of the medium M are the same as those in aspect 1, so descriptions thereof are omitted here.
  • the base material B may have a heat transfer part E11 that conducts heat between the medium M and its surroundings.
  • the heat transfer part E11 may be provided so as to penetrate not only the base material B but also the first insulator N1 in the thickness direction Lt.
  • a covering body C for covering the medium M may be provided.
  • the first portion T1 and the second portion T2 do not necessarily have to be formed in the same plane.
  • the interconnection structure 1 may be an asymmetric structure, for example, the shapes of the first portion T1 and the second portion T2 are asymmetric in plan view.
  • the electrochemical reaction occurs only at desired portions between the medium M and the first portion T1 and the second portion T2. (Specifically, a dissolution-precipitation reaction (oxidation-reduction reaction)) can be caused, so that the controllability of the interconnection structure 1 can be improved.
  • a dissolution-precipitation reaction oxidation-reduction reaction
  • FIG. 6 schematically shows a horizontal interconnection structure 1 according to aspect 5.
  • the interconnect structure 1 according to aspect 5 comprises a substrate B having a flat surface Ba similar to that of the interconnect structure 1 according to aspect 1, as shown in FIG.
  • the interconnection structure 1 includes a first portion T1 and a second portion T1 provided to face each other in a predetermined region (medium placement region) Rm on the surface Ba side of the base material B (on the surface Ba of the base material B). and a medium M placed in the area (medium placement area) Rm.
  • first portions T1 and second portions T2 are provided in FIG. 6, only one of each may be provided as in the first aspect. Since the constituent materials and layer structure of the first portion T1 and the second portion T2 are the same as those of Embodiment 1, description thereof is omitted here.
  • Mode 5 differs from Modes 1 to 4 in that the medium M contains a conductor M2 in addition to the electrolyte M1.
  • a plurality of conductors M2 of the medium M are provided in a grid pattern on the side of the surface Ba of the base material B (on the surface Ba of the base material B) so as to be sandwiched between the first portion T1 and the second portion T2.
  • the conductors M2 may be arranged linearly, or may be arranged randomly rather than regularly such as in a lattice or linearly. Also, only one conductor M2 may be provided.
  • part of the conductor M2 (for example, substantially the entire surface (upper surface) of the conductor M2 opposite to the surface facing the base material B) is made of an insulator (for example, the insulator is silicon oxide (SiO 2 )). may be coated with
  • the constituent material of the conductor M2 is not particularly limited, but in aspect 5, it is selected so that the electrode potential with respect to the electrolyte M1 is high (typically, the ionization tendency is low). More specifically, the conductor M2 is made of the same material as the first portion T1 and the second portion T2. Note that the electrolyte M1 contained in the medium M is the same as in Mode 1, and thus description thereof is omitted here.
  • partition walls W that define the medium placement region Rm may be provided as in mode 1, and a covering body C that covers the medium M may be provided in the same manner as in mode 4. may be Also in mode 5, as in mode 1, the base material B has a heat transfer section (not shown in FIG. 6) that conducts heat between the medium M and the surroundings of the medium M. good too.
  • the conductive paths can have electrical characteristics that change in a complicated manner according to the temperature of the medium M.
  • FIG. 7 schematically shows an interconnection structure 1 according to aspect 6.
  • the interconnection structure 1 according to aspect 6 includes a base material B having a recess R3, and at least a part of the interconnection structure 1 is formed in the internal space of the recess R3, as shown in FIG. .
  • the shape of the recess R3 is not particularly limited, but in FIG. 7, the recess R3 is recessed in the shape of a quadrangular prism. However, the recess R3 may be recessed in other shapes such as a cylindrical shape.
  • the base material B is not particularly limited as long as the inner surface of the recess R3 has insulating or semi-insulating properties.
  • the substrate B is an insulating substrate such as ceramic, a semiconductor wafer such as single crystal silicon (Si), or a conductive base material such as copper ( Cu ). It can be constructed by a metal core substrate.
  • the first portion T1 is arranged on one inner wall of the recess R3. More specifically, a plurality of first portions T1 are arranged in a grid pattern on one inner wall of the recess R3. However, the first portion T1 may be one or may be arranged on a plurality of inner walls. Since the constituent materials and layer structure of the first portion T1 are the same as those of the first aspect, description thereof is omitted here.
  • the second portion T2 is arranged on the other inner wall of the recess R3 (the inner wall facing the first portion T1). More specifically, a plurality of second portions T2 are arranged in a grid pattern on the other inner wall of the recess R3. However, the second portion T2 may be one or may be arranged on a plurality of inner walls. Since the constituent materials and layer structure of the second portion T2 are the same as those of the first aspect, the description thereof is omitted here.
  • medium M contains conductor M2 in addition to electrolyte M1, as in mode 5.
  • the medium M includes a columnar body MC extending along a direction La connecting the bottom of the recess R3 and the opening of the recess R3 (hereinafter referred to as "opening direction"). and insulators M3 are alternately arranged.
  • the conductors M2 are spaced apart from each other in the columnar body MC with the insulator M3 interposed therebetween in the opening direction La.
  • the number of columnar bodies MC may be one or plural, and in the case of a plurality, the arrangement of the columnar bodies MC may be randomly arranged inside the recess R3 as shown in FIG.
  • the conductors M2 and the insulators M3 in the columnar body MC may be arranged regularly, such as in a grid pattern or linear pattern.
  • the number of repetitions of the conductor M2 and the insulator M3 in the columnar body MC may be one or a plurality of times.
  • the intervals of M3 may be equal intervals or may be different intervals.
  • the conductors M2 and the insulators M3 are made of a known material used in the semiconductor manufacturing process, and the CVD (Chemical Vapor Deposition) method and vapor deposition method are used.
  • the columnar body MC can be easily manufactured using a known semiconductor manufacturing process in which fine processing is performed by combining a sputtering method or the like with a photolithography method.
  • the constituent material of the electrolyte M1 contained in the medium M, and the constituent material and layer configuration of the conductor M2 are the same as those of the first embodiment, and thus descriptions thereof are omitted here.
  • the insulator M3 is made of known components such as silicon oxide ( SiO2 ), silicon nitride ( Si3N4 ), silicon oxynitride (SiX + YO2XN4 /3Y (X>0, Y >0)). It may be composed of a single layer of these, or may be composed of a plurality of layers such as by lamination in the opening direction La.
  • the covering body C that covers the medium M may be provided, and the heat transfer part E11 that conducts heat between the medium M and the surroundings of the medium M is provided.
  • the heat transfer part E11 can be provided as a bulk body of a heat transfer material so as to be in contact with the inner wall of the recess R3 where the first part T1 and the second part T2 are not arranged.
  • the interconnection structure 1 can be three-dimensionally formed in the recess R3, so that the constituent elements of the interconnection structure 1 can be arranged at high density. Therefore, miniaturization of the interconnection structure 1 can be achieved.
  • FIG. 7 schematically shows a vertical interconnection structure 1 according to aspect 7.
  • FIG. 7 comprises a substrate B having a flat surface Ba similar to the interconnect structure 1 according to aspect 1, as shown in FIG. 8A.
  • the interconnection structure 1 includes a first portion T1, an insulator N, and a second portion T2 which are sequentially provided on the surface Ba side of the base material B (on the surface Ba of the base material B).
  • the insulator N is arranged in the medium placement region Rm on the surface Ba side of the base material B in the thickness direction Lt (the first surface (lower surface) of the insulator N on the first portion T1 side).
  • the medium M is arranged inside the through hole Nh. ing.
  • the medium placement region Rm is defined by the diameter of the through hole Nh of the insulator N, and the first portion T1 and the second portion T2 each block the through hole Nh of the insulator N. are provided on the first surface Na and the second surface Nb of the insulator N, respectively.
  • the constituent materials and layer construction of the first portion T1 and the second portion T2, and the constituent materials of the medium M and the insulator N are the same as those in Embodiment 1, so descriptions thereof are omitted here.
  • the medium M is flush with the insulator N on the second surface Nb side of the insulator N.
  • the medium M may be slightly recessed with respect to the second surface Nb of the insulator N, as in variant 1 shown in FIG. 8B, or as variant 2 shown in FIG.
  • the second surface Nb of the insulator N may be slightly raised.
  • the medium M extends not only inside the through-hole Nh, but also partly extends to the insulator N near the opening of the through-hole Nh. It protrudes from Nb. That is, in Modification 2 shown in FIG.
  • the medium M is supplied to the through hole Nh in an amount sufficient for the volume of the through hole Nh. Therefore, the problem of insufficient filling of the medium M into the through hole Nh is less likely to occur. Furthermore, in Modified Mode 3 shown in FIG. 8D, the medium M is interposed between the second portion T2 and the insulator N by overflowing the entire second surface Nb from the through hole Nh of the insulator N. are doing. In this way, a sufficiently large amount of the medium M may be supplied to the through hole Nh with respect to the volume of the through hole Nh.
  • the arrangement of the first portion T1 for inputting the input signal D1 to the medium M and the second portion T2 for outputting the output signal D2 from the medium M may be reversed. good.
  • the input signal D1 may be input in the direction away from the surface Ba of the base material B and the output signal D2 may be output
  • the input signal D1 may be input in the direction toward the surface Ba of the base material B and the output signal may be output.
  • D2 may be output.
  • the base material B has a heat transfer portion (not shown in FIGS. 8A to 8D) that conducts heat between the medium M and the surroundings of the medium M.
  • the medium M is provided with a region in contact with the substrate B without being in contact with the first portion T1, and a heat transfer section is provided in the region in contact with the substrate B. can be done.
  • the interconnection structure 1 is formed by forming the through holes Nh that define the medium placement region Rm at desired positions, sizes, shapes, and densities by known etching, laser processing, or the like. controllability can be improved.
  • FIG. 9A schematically shows a vertical interconnection structure 1 according to aspect 8.
  • FIG. The interconnect structure 1 according to aspect 8 comprises a substrate B having a flat surface Ba similar to the interconnect structure 1 according to aspect 1, as shown in FIG. 9A.
  • This interconnection structure 1 includes an insulator N on the surface Ba side of the base material B (on the surface Ba of the base material B). It has a through hole Nh penetrating at Lt.
  • the first portion T1 is provided on the surface Ba side of the base material B (on the surface Ba of the base material B) inside the through hole Nh
  • the second portion T2 is provided on the insulator N is provided so as to block the through hole Nh on the second surface Nb of the .
  • medium placement region Rm is defined by the diameter of through hole Nh of insulator N.
  • the constituent materials and layer construction of the first portion T1 and the second portion T2, and the constituent materials of the medium M and the insulator N are the same as those in Embodiment 1, so descriptions thereof are omitted here.
  • Another insulator Nw may be provided, which is made of a material that is wetter to the medium M than the material of which the insulator N is made. In this case, it becomes easier to supply the medium M to the through hole Nh.
  • the formation of another insulator Nw is not limited to the vertical interconnection structure 1 according to aspect 8, and may be applied to the through hole Nh and its periphery in other aspects.
  • the base material B has a heat transfer portion (not shown in FIGS. 9A and 9B) that conducts heat between the medium M and the surroundings of the medium M. You may have
  • the interconnection structure is formed by forming the through holes Nh defining the medium placement region Rm at desired positions, sizes, shapes, and densities by known etching, laser processing, or the like. 1 controllability can be improved.
  • FIG. 10 schematically shows a vertical interconnection structure 1 according to aspect 9.
  • the interconnect structure 1 according to aspect 9 comprises a substrate B having a flat surface Ba similar to that of the interconnect structure 1 according to aspect 1, as shown in FIG.
  • This interconnection structure 1 includes a first portion T1, an insulator N, and a second portion T2 which are sequentially provided on the side of the surface Ba of the base material B (on the surface Ba of the base material B), as in Mode 7. ing.
  • the insulator N has a through hole Nh penetrating through the insulator N in the thickness direction Lt in the medium arrangement region Rm, and the medium M is formed in the through hole Nh. placed inside.
  • second portion T2 is provided on second surface Nb of insulator N so as to block part of through hole Nh.
  • the medium M is sealed with a covering C covering the insulator N and the second portion T2 so as to block the through hole Nh.
  • the constituent materials and layer structure of the first portion T1 and the second portion T2, the constituent materials of the medium M and the insulator N are the same as those in Embodiment 1, and the constituent materials of the cover C are the same as those in Embodiment 4. Therefore, the description is omitted here.
  • the arrangement of the first portion T1 and the second portion T2 may be reversed.
  • the base material B has a heat transfer section (not shown in FIG. 10) that conducts heat between the medium M and its surroundings. good too.
  • a known semiconductor manufacturing process is used to form the first portion T1, the insulator N, and the second portion T2 on the base material B in predetermined shapes, and then the insulation is performed. It can be produced by supplying the medium M to the through hole Nh of the body N. In other words, the medium M can be supplied to the through holes Nh after a series of semiconductor manufacturing processes are completed, so that the manufacturing process of the interconnection structure 1 can be simplified.
  • FIG. 11 schematically shows a vertical interconnection structure 1 according to aspect ten.
  • the interconnection structure 1 according to aspect 10, as shown in FIG. 11, comprises a porous body PB having a large number of interconnected pores PBa.
  • the constituent material of the porous body PB is not particularly limited as long as it has insulating or semi-insulating properties.
  • the porous body PB can be made of, for example, a known low-k material such as fluorine (F)-added silicon oxide (F-- SiO.sub.2 ) or carbon (C)-added silicon oxide (C-- SiO.sub.2 ).
  • the shape of the porous body PB is not particularly limited, but in FIG. 11, the porous body PB has a cuboid shape. However, the porous body PB may have other shapes such as a cylindrical shape.
  • the first portion T1 is arranged on one side wall of the porous body PB. More specifically, a plurality of first portions T1 are arranged in a grid pattern on one side wall of the porous body PB. However, the first portion T1 may be one or may be arranged on a plurality of sidewalls. Since the constituent materials and layer structure of the first portion T1 are the same as those of the first aspect, description thereof is omitted here.
  • the second portion T2 is arranged on the other side wall of the porous body PB (the side wall opposite to the first portion T1). More specifically, a plurality of second portions T2 are arranged in a grid pattern on the other side wall of the porous body PB. However, the second portion T2 may be one or may be arranged on a plurality of sidewalls. Since the constituent materials and layer structure of the second portion T2 are the same as those of the first aspect, the description thereof is omitted here.
  • the medium M is provided in the pores PBa of the porous body PB, and contains the conductor M2 in addition to the electrolyte M1, as in the modes 5 and 6.
  • the conductor M2 is particulate and dispersed in the electrolyte M1.
  • the conductors M2 are dispersed in the porous body PB so as to be spaced apart from each other.
  • descriptions of the constituent materials of the electrolyte M1 and the constituent materials and layer structure of the conductor M2 are omitted here.
  • the cover C that covers the medium M may be provided.
  • the cover C can be provided so as to cover the side wall of the porous body PB.
  • a heat transfer part E11 that conducts heat between the medium M and the periphery of the medium M may be provided.
  • the heat transfer section E11 can be provided as a bulk body of heat transfer material so as to be in contact with the side wall of the porous body PB where the first portion T1 and the second portion T2 are not arranged.
  • the interconnection structure 1 according to aspect 10 is three-dimensionally formed in the porous body PB, it is possible to arrange the constituent elements of the interconnection structure 1 at high density. Therefore, miniaturization of the interconnection structure 1 can be achieved.
  • Embodiments 1 to 10 of the interconnection structure 1 have been specifically described above with reference to FIGS. 2A to 10, but the interconnection structure 1 is not limited to the configurations shown in FIGS. 2A to 10. , but can be modified to the configurations shown in FIGS. 2A-10.
  • the interconnection structure 1 may further comprise other elements such as the temperature control section E1 and the asymmetric element E2, as described above.
  • the temperature control part E1 when the interconnection structure 1 includes the temperature control part E1, the temperature control part E1 may be provided so as to be in direct contact with the surface opposite to the surface Ba of the base material B. It may be provided so as to indirectly contact the surface Ba of the base material B and the surface opposite to the surface Ba.
  • the interconnect structure 1 comprises an asymmetrical element E2
  • the first portion T1 or the second portion T2 may be the asymmetrical element E2 itself, rather than the first portion T1 or the second portion T2. It may be provided separately.
  • the medium M that causes an electrochemical reaction instead of a solid metal is used between the first portion T1 and the second portion T2. It is possible to provide a novel interconnection structure that can control the electrical connection state.
  • nonlinearity is likely to be introduced into the electrical characteristics of the conductive path P. Therefore, when the input signal D1 is input to the medium M, the electrical characteristics of the conductive path P having temperature dependence , the output signal D2 carrying not only information about the temperature of the medium M but also information about the temperature of the medium M over time can be obtained.
  • the interconnection structure 1 according to the present embodiment is expected as a novel sensing device (temperature sensor, temperature memory, etc.) regarding temperature and temperature history.
  • information on heat flow can be obtained from information on temperature history, it is expected to be a novel sensing device for heat flow.
  • the electrical contacts in the interconnection structure are formed between the solid (the first part T1 or the second part T2) and the liquid or colloid. Since it forms an interface with (medium M), it is expected that poor connection such as disconnection due to the difference in coefficient of thermal expansion that tends to occur in a strong electrical contact between solids will be less likely to occur.
  • the electrical characteristics of the conductive paths P change according to the temperature of the medium M.
  • mutual is possible to obtain an output signal D2 in which the input signal D1 to the connection structure 1 carries the temperature information of the medium M, and by intentionally adjusting the temperature of the medium M, the first portion T1 and the second portion T1 It is also possible to change the electrical connection state with the portion T2 to a desired state.
  • FIG. 12 conceptually shows an information processing device 10 according to an embodiment of the present disclosure.
  • an information processing apparatus 10 includes the interconnection structure 1, an input section 2 for transmitting an input signal D1 to a first portion T1 of the interconnection structure 1, an interconnection an output 3 for receiving an output signal D2 from the second part T2 of the structure 1;
  • the information processing device 10 imitates human brain nerve cells and processes an input signal D1, as shown in FIG. It functions as a neural network or neuromorphic device. More specifically, the information processing device 10 functions as a reservoir computing device that holds the input signal D1 in time series and performs signal processing.
  • the interconnection structure 1 functions as a so-called reservoir, and converts the input signal D1 transmitted from the input unit 2 into a plurality of different signals that change over time (hereinafter referred to as called “higher dimensionality of the signal”), and is transmitted to the output unit 3 as the output signal D2.
  • the information processing apparatus 10 can easily obtain the desired external output Dout through learning or the like.
  • the input unit 2 generates an input signal D1 to be sent to the interconnection structure 1.
  • the input unit 2 may generate the input signal D1 itself, or may generate the input signal D1 based on the external input Din.
  • the input section 2 can be constructed from, for example, a known signal generator.
  • the input section 2 can be constructed from, for example, a known signal converter.
  • the input section 2 may have only one input node V2 (for example, a terminal for transmitting the input signal D1 to the interconnection structure 1) for transmitting the input signal D1 to the interconnection structure 1, or may have more than one. good.
  • the input unit 2 may send one signal to the interconnect structure 1 as the input signal D1, or may send a plurality of signals to the interconnect structure 1 as the input signal D1. Note that the input unit 2 may add a predetermined weight Win to the input signal D1.
  • the input signal D1 generated by the input unit 2 may be a carrier signal containing no information itself, or may be a modulated signal in which the carrier signal carries some information.
  • the interconnection structure 1 generates an output signal D2 from the input signal D1 received from the input section 2 and transmits it to the output section 3.
  • the interconnect structure 1 comprises a plurality of conversion nodes V1, some or all of which receive an input signal D1 from the input section 2, and a portion of the plurality of conversion nodes V1.
  • an output signal D2 is output to the output section 3 from all of them.
  • Conversion node V1 may be physically provided in interconnect structure 1 or may be provided virtually without being physically provided in interconnect structure 1 . In the former, specifically, the conversion node V1 corresponds to the conductor M2 in aspects 5, 6, and 10 above.
  • the reading time of the input signal D1 can be regarded as one conversion node V1 (hereinafter, a conversion node based on the reading time is called a "virtual node").
  • the conversion node V1 assigns a weight Wres to the signal so that the signal exchanged between the conversion nodes V1 changes with time, and the weighted signal is sent to the output node V3 of the output unit 3, which will be described later. Send.
  • the output unit 3 may have only the function of receiving without performing any processing on the output signal D2 from the interconnection structure 1, or may perform some processing on the received output signal D2.
  • the output section 3 can be configured from, for example, a connector or a socket.
  • the output section 3 can be composed of, for example, a known signal analyzer or the like.
  • the output section 3 may have only one output node V3 (for example, an input terminal) that receives the output signal D2 from the interconnection structure 1, or may have a plurality of them. In other words, the output section 3 may receive one signal from the interconnect structure 1 as the output signal D2, or may receive a plurality of signals from the interconnect structure 1 as the output signal D2.
  • the output unit 3 learns the electrical characteristics according to the temperature of the medium M from the output signal D2, and based on the learning result of the electrical characteristics, Information about the temperature history of medium M may be generated. For example, the output unit 3 applies a predetermined weight Wout to the output signal D2 received by the output node V3 from the conversion node V1 and performs predetermined arithmetic processing to generate the external output Dout. Output unit 3 compares external output Dout with teacher data (not shown), and changes weight Wout assigned to output signal D2 by, for example, a linear regression method based on the comparison result. The output unit 3 determines the weight Wout by the method of least squares or the like.
  • the information processing device 10 learns how to determine the weight Wout.
  • the information processing apparatus 10 generates information about the temperature history of the medium M from the output signal D2 including the temporal temperature information of the medium M, and furthermore, generates information about the heat flow of the medium M from the information about the temperature history of the medium M. be able to.
  • the learning of the information processing apparatus 10 is performed only by determining the weight Wout by the output unit 3 . Therefore, the power consumed in the process of learning is consumed by a part of information processing device 10 (specifically, only output unit 3 that mainly determines weight Wout). Power consumption can be reduced.
  • the temperature information of the medium M is obtained from the output signal D2 that reflects the electrical characteristics of the conductive paths P that change according to the temperature of the medium M. can be obtained. Also, when the interconnection structure 1 has nonlinear transformability, it is possible to acquire temperature history information of the medium M and, in turn, heat flow information flowing through the medium M, and generate this information through learning.
  • Examples 1-3 The inventors produced three samples shown in FIGS. 2A and 2B in order to confirm the electrical characteristics of the interconnection structure 1 as described above.
  • the input signal D1 increases linearly from ⁇ 0 to +3V, then decreases linearly from +3V to ⁇ 0, and then to ⁇ 0V, as shown in FIG.
  • a carrier signal which is a triangular wave voltage signal whose one cycle is a voltage change that linearly decreases from ⁇ 3 V to ⁇ 3 V and then increases linearly from ⁇ 3 V to ⁇ 0 V, is inputted to the medium M.
  • the period of one cycle of the carrier signal to each sample was changed as follows (Examples 1-3).
  • Example 1 The period of one cycle was set to 240 seconds.
  • Example 2 The period of one cycle was set to 20 seconds.
  • Example 3 The period of one cycle was set to 10 seconds.
  • the 14A to 14C show the 1st cycle, the 2nd to 10th cycles, and the 20th to 30th cycles when the temperature of the medium M is set to 25° C. and the input signal D1 of 30 cycles is input to the medium M in the first embodiment.
  • the current-voltage characteristics of the conductive path P in cycles are shown, respectively.
  • the photograph shown in the graph of FIG. 14A is a photograph of the sample from the top surface by optical microscopy. In the first cycle, as shown in FIG.
  • the negative current becomes the peak current value at around -0.5V, and after a sharp increase, it decreases (hereinafter referred to as the current at the negative peak current value is referred to as "negative peak current"), and along with this, copper (Cu) deposited on the first portion T1 is further dissolved, while copper (Cu) is deposited on the second portion T2. . From this, it is considered that this negative peak current is a Faraday current resulting from the oxidation-reduction reaction (dissolution deposition reaction) of copper (Cu).
  • the current value of the negative peak current changes along with its voltage value each time the cycle is repeated.
  • the positive current value current becomes the peak current value near +1.0V (hereinafter referred to as the positive peak current value current is called “positive peak current”).
  • the Faraday current caused by the oxidation-reduction reaction (dissolution deposition reaction) of copper (Cu) is also generated at a positive voltage. It can be seen that the current value of this positive peak current changes with its voltage value each time the cycle is repeated.
  • the current value at the maximum positive and negative voltage values changes with the number of cycles.
  • the voltage value indicating the positive/negative peak current and the current value at the maximum positive/negative voltage value change with the number of cycles even in the 20th to 30th cycles.
  • the conductive path P has a current-voltage characteristic in which the current value changes nonlinearly with a change in the voltage value in each cycle, and the current-voltage characteristic changes over time according to the number of cycles. was confirmed.
  • 15A to 15F show the conductive path P when the temperature of the medium M is 25° C., 40° C., 50° C., 60° C., 70° C., and 80° C. and the input signal D1 is input to the medium M in the second embodiment. , respectively.
  • the number of cycles of the input signal D1 at each temperature is 500 cycles, 430 cycles, 500 cycles, 310 cycles, 320 cycles at 25°C, 40°C, 50°C, 60°C, 70°C, and 80°C, respectively. 260 cycles. As shown in FIGS.
  • the current-voltage characteristics of the conductive path P are temperature-specific, especially in the current values of positive and negative peak currents and their voltage values, and the current values at the maximum positive and negative voltage values. characteristics. Also, it can be seen that the current-voltage characteristics change greatly in each cycle depending on the temperature of the medium M. 16A and 16B show the Weibull distribution for the current value at the positive peak current and the voltage value at the positive peak current, and FIG. 17 shows the current value of the positive peak current for each cycle.
  • the photographs shown in the graph of FIG. 16A are photographs of the sample from the top surface by an optical microscope at each temperature after completing the input of the input signal D1 for the number of cycles. As shown in FIGS.
  • the current value of the positive peak current and its voltage value change greatly when the temperature of the medium M is 25.degree. C. and 40.degree.
  • the preferable temperature range for the temperature of the medium M is the temperature range of 50° C. to 70° C. from the viewpoint of the stability of the current (output signal D2) with respect to the input signal D1. and a more preferable temperature range is assumed to be around 50°C.
  • Example 2 the temperature dependence of the current-voltage characteristics of the conductive path P and the stable temperature range of the current were confirmed. Also in Examples 1 and 3, the temperature dependence of the current-voltage characteristics of the conductive path P was confirmed (see FIGS. 18A and 18B).
  • 18A shows the current value of the positive peak current for each cycle of the input signal D1 at each temperature in the interconnection structures according to Examples 1 to 3, and FIG. is further increased to show positive peak current values.
  • the current value of the current (output signal D2) with respect to the input signal D1 is large in the temperature range of 50° C. or less. Also, as shown in FIG.
  • Example 3 in Example 3, the current value of the current (output signal D2) with respect to the input signal D1 is large at 50.degree. Therefore, not only in Example 2 but also in both Examples 1 and 3, it is preferable that the temperature of the medium M is in a temperature range near 50°C (a temperature range of 50°C or less in Example 1). is assumed. Further, from FIG. 18, it can be seen that the higher the cycle period of the input signal D1, the higher the current value of the peak current and the higher the stability of the current value of the peak current for each cycle. From this, it is assumed that if the cycle period of the input signal D1 is increased, the output signal D2 can be stably output even if the input signal D1 is input for a long period of time.
  • FIGS. 19A to 19D show that in Example 2, the temperature of the medium M is changed to 25° C. (1st to 100th cycles), 50° C. (101st to 200th cycles), 70° C. (201st to 300th cycles) for every 100 cycles. ), 50° C. (301st to 400th cycles), and input signal D1 to medium M, 1st to 100th cycles, 101st to 200th cycles, 201st to 300th cycles, and 301st to 400th cycles 2 shows the current-voltage characteristics of the conductive path P at . Further, FIG. 20 shows current values of the positive peak current for each cycle at that time. The current-voltage characteristics of FIGS. 19A-19D are slightly different from the current-voltage characteristics of FIGS.
  • the current value of each cycle is influenced by the previous current value in each initial cycle (see arrows in FIG. 20). Therefore, the current value of the current (output signal D2) generated by the input of the input signal D1 to the conductive path P is information about the electrical characteristics of the conductive path P according to the temperature of the medium M, at least one previous cycle. It can be seen that the
  • Example 2 the temperature of the medium M is set to 40° C., 60° C., and 80° C., and the input signal D1 is increased from ⁇ 0 to +3 V for 5 seconds, followed by +3 V to ⁇ 0 for 5 seconds.
  • the reading time of the current (output signal D2) corresponding to the decrease of .
  • the total number of virtual nodes is 122, since we include the later reading time).
  • FIG. 21A shows the reading result when the temperature of the medium M is 40° C.
  • FIG. 21B shows the reading result when the temperature of the medium M is 60° C.
  • FIG. 21C shows the determination result by the classifier. As shown in FIG. 22, it can be seen that the temperature determined by the classifier and the actual temperature match with high accuracy. From this, it was confirmed that the conductive paths P of the medium M have characteristics that change according to the temperature of the medium M to the extent that machine learning is sufficiently possible.
  • An interconnection structure is an interconnection structure that electrically connects a first portion and a second portion, wherein the interconnection structure includes the first portion and the second portion. a medium between two portions, wherein the electrical connection between the first portion and the second portion is variable by a conductive path created by an electrochemical reaction in the medium;
  • the conductive paths have electrical properties that vary depending on the surrounding environment of the medium.
  • the electrical connection state between the first portion and the second portion can be controlled by a medium that causes an electrochemical reaction instead of a solid metal.
  • a novel interconnection structure can be provided. By intentionally adjusting the temperature of the medium using the temperature dependence of the electrical properties of the conductive path, the electrical connection state between the first portion and the second portion can be changed to a desired state. can be made In addition, by reflecting the ambient temperature of the medium on the temperature of the medium without adjusting the temperature of the medium, it is possible to obtain an output signal in which the temperature information of the medium is carried in the input signal to the interconnection structure.
  • an input signal input to the medium is made to carry temporal information regarding electrical characteristics of the conductive path according to the surrounding environment of the medium, and is output as an output signal corresponding to the input signal. good too. With such a configuration, it is possible to obtain an output signal carrying historical information about the surrounding environment of the medium.
  • the medium may contain an electrolyte.
  • Such a configuration is suitable as a medium having electrical characteristics that change according to the temperature of the medium.
  • the medium may contain a liquid electrolyte.
  • the electrical contact in the connection structure is formed by the interface between the solid and the liquid, so it is expected that poor connection such as disconnection due to the difference in coefficient of thermal expansion will be less likely to occur.
  • the medium may contain an ionic liquid.
  • Such a configuration is suitable as a liquid electrolyte having electrical properties that change according to the temperature of the medium.
  • the interconnection structure may be configured such that transmission characteristics of a transmission line passing through the interconnection structure are different depending on the amplitude direction of the input signal. According to such a configuration, it is possible to improve the learning effect when learning the temperature of the solvent.
  • the conductive paths have electrical characteristics that change according to the temperature of the medium
  • the interconnection structure further includes a temperature control section that adjusts the temperature of the medium, and the temperature control section may adjust the temperature of the medium so that the temperature of the medium is within a predetermined temperature range. According to such a configuration, it is possible to change the electrical connection state between the first portion and the second portion to a desired state by adjusting the temperature of the medium.
  • the interconnect structure has electrical properties that vary with the temperature of the medium, and the interconnect structure is thermally conductive between the periphery of the medium and the medium. You may further provide a heat-transfer part which conducts. According to such a configuration, the temperature of the medium can be easily reflected in the temperature of the external environment, and the interconnection structure can be easily used as a sensing device such as a temperature sensor or a temperature memory.
  • An information processing device is an information processing device that processes information about environmental factors, the information processing device transmitting the input signal to the interconnection structure and the first portion. and an output for receiving said output signal from said second portion.
  • the information processing apparatus it is possible to acquire temperature information of the medium from the output signal reflecting the electrical characteristics of the conductive paths that change according to the temperature of the medium.
  • the environmental factor is a temperature factor
  • the output unit learns the electrical characteristic corresponding to the temperature of the medium from the output signal, and based on the learning result of the electrical characteristic, the Information regarding the temperature history of the medium may be generated. According to such a configuration, it is possible to acquire information about the temperature history of the medium.
  • the information regarding the temperature history of the medium may include information regarding the heat flow of the medium. According to such a configuration, it is possible to obtain information about the heat flow of the medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)
  • Semiconductor Memories (AREA)

Abstract

環境因子に応じた電気化学反応による電気特性を利用すること。本開示の一実施形態に係る相互接続構造は、第1の部分と第2の部分とを電気的に接続する相互接続構造である。この相互接続構造は、第1の部分と第2の部分との間に媒体を備え、第1の部分と第2の部分との間の電気的な接続は、媒体における電気化学反応によって生成される導電パスによって可変であり、導電パスは、媒体の周辺環境に応じて変化する電気特性を有する。

Description

相互接続構造および情報処理装置
 本開示は相互接続構造および情報処理装置に関する。
 近年、人工知能による情報処理が注目されている。人工知能による情報処理では、要求される計算処理量は、約3月毎に2倍となり、これに伴い、データセンターへのエネルギー需要量は、指数関数的に増加している。そのため、フォンノイマン型演算装置では、たとえば、いわゆるフォン・ノイマン・ボトルネック(CPU(中央演算ユニット)とメモリ(メモリユニット)との間の相互接続)において、エネルギー消費量が増加し、処理速度が低下することが予想されている。エネルギー消費量の増加や処理速度の低下を抑制するために、メモリおよびCPUやGPU(画像処理用演算ユニット)、ならびにアナログAIアクセラレータ(アナログAIアクセラレータユニット)などの異種の半導体ユニット(典型的には、半導体チップ)を1つの半導体パッケージに統合する異種統合(ヘテロジニアス・インテグレーション)や3次元集積化などの相互接続構造が提案されている。このように、複数のユニット間における相互接続は、ますまず重要となっている。
 相互接続構造として、ニューロモルフィック装置において人工シナプスとして使用されるReRAM(抵抗変化型メモリ)、PCM(相変化型メモリ)、CBRAM(導電ブリッジ型メモリ)(非特許文献1参照)、高分子ネットワーク(非特許文献2参照)や、NaCl溶液(非特許文献3参照)が提案されている。非特許文献1および2の相互接続構造は、固体と固体との間での物理的な導体接続による強い接続状態を利用する相互接続であり、非特許文献3の相互接続構造は、液体中に生成される固体と固体との間での物理的な導体接続によるか、または固体と液体との間での物理的な導体接続によらない強い接続状態を利用する相互接続である。前者の相互接続における電気特性は、イオン液体を利用するCBRAMにおいて報告されており(非特許文献4参照)、後者の相互接続における電気特性は、イオン液体中のイオンの価数を変化させることで、その変動を制御可能であり、CBRAMでの長期記憶や、物理リザバー装置での短期記憶への活用について報告されている(非特許文献5参照)。
 時系列データを扱う際には、時系列データをいかに処理するかが問題となる。この問題に対して、回帰型ニューラルネットワーク装置は、データに対する全ての重みを学習し、物理リザバー装置は、出力側の重みのみを学習する。時系列データでは、データ変換に際し、変換の非線形性、データの高次元化、短期記憶などが要求される。
Y. Tuchman, et al., MRS Bulletin 45, 2020 M. A. Kasaya, et al., J. Appl. Phys. 59, 060601, 2020 D. Kim, et al., NPG Asia Materials 12, 62, 2020 A. Harada et al., J. Material Chem. C, 10.1039, 2016 H. Sato et al., IEEE Access, 9, 3076701, 2021
 イオン液体は、室温において液体状態で存在する塩である。イオン液体は、イオン伝導性が高い点、電位窓が広い点、陽イオンと陰イオンとの組合せが無限にある点において利点を有している。本発明者らは、イオン液体は、金属イオン種を追加すると、(非線形的な)抵抗率の経時的な変化を制御することや、金属イオンの酸化還元のピークは、入力信号としての電圧を入力したときに、出力信号としての電流への変換の際の非直線性を高めることや、イオン液体と金属イオンとの適切な選択があることについて確認している(国際出願番号PCT/JP2022/003186号明細書)。当該出願において、本発明者らは、イオン液体による相互接続は、イオン液体中に生成され得る金属フィラメントによらなくても、電気的な相互接続が可能である、簡単な接続設計であり、この相互接続は、リザバー特性を発揮することを示している。
 しかし、このような電気化学的な反応性を有するイオン液体などの媒体の電気特性は、未知な部分が多い。特に、このようなイオン液体などの媒体に対して、環境因子が及ぼす影響については、未知な部分が多い。環境因子による媒体での電気化学反応による電気特性をさらに解明することで、媒体の新たな用途が見出せるものと考えられる。
 本開示は、環境因子に応じた電気化学反応による電気特性を利用した、相互接続構造および情報処理装置を提供することを目的とする。
 本開示の一実施形態に係る相互接続構造は、第1の部分と第2の部分とを電気的に接続する相互接続構造であって、前記相互接続構造は、前記第1の部分と前記第2の部分との間に媒体を備え、前記第1の部分と前記第2の部分との間の電気的な接続は、前記媒体における電気化学反応によって生成される導電パスによって可変であり、前記導電パスは、前記媒体の周辺環境に応じて変化する電気特性を有する。
 本開示の一実施形態に係る情報処理装置は、環境因子に関する情報を処理する情報処理装置であって、前記情報処理装置は、上記相互接続構造と、前記第1の部分に前記入力信号を送信する入力部と、前記第2の部分から前記出力信号を受信する出力部とを備える。
 本開示の一実施形態によれば、環境因子に応じた電気化学反応による電気特性を利用した、相互接続構造および情報処理装置を提供することができる。
本開示の一実施形態に係る相互接続構造を概念的に示す模式図である。 図1Aに示される相互接続構造の第1変形形態を概念的に示す模式図である。 図1Aに示される相互接続構造の第2変形形態を概念的に示す模式図である。 図1Aに示される相互接続構造の第3変形形態を概念的に示す模式図である。 本開示の一実施形態に係る相互接続構造の態様1を模式的に示す斜視図である。 本開示の一実施形態に係る相互接続構造の態様1を模式的に示す断面図である。 本開示の一実施形態に係る相互接続構造の態様2を模式的に示す断面図である。 本開示の一実施形態に係る相互接続構造の態様3を模式的に示す断面図である。 本開示の一実施形態に係る相互接続構造の態様4を模式的に示す断面図である。 本開示の一実施形態に係る相互接続構造の態様5を模式的に示す断面図である。 本開示の一実施形態に係る相互接続構造の態様6を模式的に示す斜視図である。 本開示の一実施形態に係る相互接続構造の態様7を模式的に示す断面図である。 図9Aの相互接続構造の変形形態1を模式的に示す断面図である。 図9Aの相互接続構造の変形形態2を模式的に示す断面図である。 図9Aの相互接続構造の変形形態3を模式的に示す断面図である。 本開示の一実施形態に係る相互接続構造の態様8を模式的に示す断面図である。 図10Aの相互接続構造の変形形態を模式的に示す断面図である。 本開示の一実施形態に係る相互接続構造の態様9を模式的に示す断面図である。 本開示の一実施形態に係る相互接続構造の態様10を模式的に示す斜視図である。 本開示の一実施形態に係る情報処理装置を概念的に示す模式図である。 本開示の実施例1~3に係る相互接続構造に入力した入力信号を示す模式的なグラフである。 本開示の実施例1に係る相互接続構造において、媒体の温度を25℃とし、入力信号を媒体に入力したときの、第1サイクルでの導電パスの電流電圧特性を示すグラフである。 本開示の実施例1に係る相互接続構造において、媒体の温度を25℃とし、入力信号を媒体に入力したときの、第2~10サイクルでの導電パスの電流電圧特性を示すグラフである。 本開示の実施例1に係る相互接続構造において、媒体の温度を25℃とし、入力信号を媒体に入力したときの、第20~30での導電パスの電流電圧特性を示すグラフである。 本開示の実施例2に係る相互接続構造において、媒体の温度を25℃とし、入力信号を媒体に入力したときの導電パスの電流電圧特性を示すグラフである。 本開示の実施例2に係る相互接続構造において、媒体の温度を40℃とし、入力信号を媒体に入力したときの導電パスの電流電圧特性を示すグラフである。 本開示の実施例2に係る相互接続構造において、媒体の温度を50℃とし、入力信号を媒体に入力したときの導電パスの電流電圧特性を示すグラフである。 本開示の実施例2に係る相互接続構造において、媒体の温度を60℃とし、入力信号を媒体に入力したときの導電パスの電流電圧特性を示すグラフである。 本開示の実施例2に係る相互接続構造において、媒体の温度を70℃とし、入力信号を媒体に入力したときの導電パスの電流電圧特性を示すグラフである。 本開示の実施例2に係る相互接続構造において、媒体の温度を80℃とし、入力信号を媒体に入力したときの導電パスの電流電圧特性を示すグラフである。 本開示の実施例2に係る相互接続構造における、各媒体の温度での正のピーク電流の電流値についてのワイブル分布を示すグラフである。 本開示の実施例2に係る相互接続構造における、各媒体の温度での正のピーク電流を示す電圧値についてのワイブル分布を示すグラフである。 本開示の実施例2に係る相互接続構造における、各温度での入力信号のサイクルごとの正のピーク電流の電流値を示すグラフである。 本開示の実施例1~3に係る相互接続構造における、各温度での入力信号のサイクルごとの正のピーク電流の電流値を示すグラフである。 本開示の実施例1に係る相互接続構造における、各温度での入力信号のサイクルごとの正のピーク電流の電流値を示すグラフである。 本開示の実施例2において、媒体Mの温度を100サイクルごとに、25℃、50℃、70℃、50℃に変化させ、入力信号D1を媒体Mに入力したときの、第1~100サイクルでの導電パスPの電流電圧特性を示すグラフである。 本開示の実施例2において、媒体Mの温度を100サイクルごとに、25℃、50℃、70℃、50℃に変化させ、入力信号D1を媒体Mに入力したときの、第101~200サイクルでの導電パスPの電流電圧特性を示すグラフである。 本開示の実施例2において、媒体Mの温度を100サイクルごとに、25℃、50℃、70℃、50℃に変化させ、入力信号D1を媒体Mに入力したときの、第201~300サイクルでの導電パスPの電流電圧特性を示すグラフである。 本開示の実施例2において、媒体Mの温度を100サイクルごとに、25℃、50℃、70℃、50℃に変化させ、入力信号D1を媒体Mに入力したときの、第301~400サイクルでの導電パスPの電流電圧特性を示すグラフである。 本開示の実施例2において、媒体Mの温度を100サイクルごとに、25℃、50℃、70℃、50℃に変化させ、入力信号D1を媒体Mに入力したときの、サイクルごとの正のピーク電流の電流値を示すグラフである。 本開示の実施例2において、媒体の温度を40℃とし、122個の仮想ノードを導入して入力信号を入力したときの、各仮想ノードでの電流値を示すグラフである。 本開示の実施例2において、媒体の温度を60℃とし、122個の仮想ノードを導入して入力信号を入力したときの、各仮想ノードでの電流値を示すグラフである。 本開示の実施例2において、媒体の温度を80℃とし、122個の仮想ノードを導入して入力信号を入力したときの、各仮想ノードでの電流値を示すグラフである。 図21A~図21Cの特性グラフを教師データとし、サポートベクターマシーンを学習アルゴリズムとして、分析器に学習させたときの、図21A~図21Cの各特性グラフに対する分析器の判定結果を示す表である。
 本発明者は、イオン液体などの媒体に電気化学反応によって生成される導電パスの電気特性が、媒体の温度に応じて変化することを見出した。本発明者は、このような特性によって、媒体の導電パスを相互接続構造および情報処理装置などに利用することができることを見出した。以下、添付図面を参照して、本開示の実施形態を説明する。なお、本開示の内容は、以下の実施形態に限定されるものではない。
 なお、本明細書において、「Aに垂直」およびこれに類する表現は、Aに対して完全に垂直な方向のみを指すのではなく、Aに対して略垂直であることを含んで指すものとする。また、本明細書において、「Bに平行」およびこれに類する表現は、Bに対して完全に平行な方向のみを指すのではなく、Bに対して略平行であることを含んで指すものとする。また、本明細書において、「C形状」およびこれに類する表現は、完全なC形状のみを指すのではなく、C形状の角部が面取りされた形状など、見た目にC形状を連想させる形状(略C形状)を含んで指すものとする。
[本開示の一実施形態に係る相互接続構造]
 本開示の一実施形態に係る相互接続構造1は、図1Aの模式図に示されるように、第1の部分T1と第2の部分T2とを電気的に接続する相互接続構造である。相互接続構造1は、第1の部分T1と第2の部分T2との間に媒体Mを備えている。第1の部分T1と第2の部分T2との間の電気的な接続は、媒体Mにおける電気化学反応によって生成される導電パスPによって可変となっている。この可変な電気特性を有する導電パスPによって、相互接続構造1は、第1の部分T1から媒体Mに入力信号D1を入力したときに、媒体Mから第2の部分T2に導電パスPの電気特性に応じた出力信号D2を出力する。ここで言う「導電パス」は、必ずしも、第1の部分T1と第2の部分T2とを金属などの導体によって物理的に接続(以下、「強い接続」と呼ぶ)する必要はなく、金属などの導体による物理的な接続を介さずに、第1の部分T1と第2の部分T2とを媒体Mによって電気的に接続(以下、「弱い接続」と呼ぶ)することができれば足りる。換言すれば、「導電パス」は、電気化学反応によって、第1の部分T1と第2の部分T2とが電気的に接続されれば、第1の部分T1と第2の部分T2との間に、媒体Mが存在しているだけで足りる。また、ここで言う「電気的接続」は、必ずしも、第1の部分T1と第2の部分T2との間を電気的に常時接続している状態でなくとも、第1の部分T1と第2の部分T2との間を電気的に接続可能な状態であれば足りる。
 このように、媒体Mにおける電気化学反応によって生成される導電パスPによって、第1の部分T1と第2の部分T2とを電気的に接続する場合、導電パスPの電気特性に非線形性が導入されやすくなる。そのため、第2の部分T2に出力される出力信号D2は、第1の部分T1から入力される入力信号D1に対して非線形的に変換されやすくなる。本実施形態では、導電パスPによる「弱い接続」によって、第1の部分T1と第2の部分T2とを接続することで、脳神経細胞間での電気伝達を模倣するように、第1の部分T1と第2の部分T2とを電気的に接続する。
 導電パスPは、媒体Mの周辺環境に応じて変化する電気特性を有している。ここでいう「電気特性」は、何らかの方法で、媒体Mの周辺環境を検出可能な導電パスPの電気的な特性を指す。この媒体Mの周辺環境に応じて変化する電気特性を有する導電パスPによって、相互接続構造1は、第1の部分T1から媒体Mに入力信号D1を入力したときに、媒体Mから第2の部分T2に媒体Mの周辺環境に応じた出力信号D2を出力する。そのため、この出力信号D2には、導電パスPの電気特性によって、媒体Mに入力される入力信号D1に対して、媒体Mの周辺環境に関する情報が担持されることになる。なお、導電パスPの電気特性は、媒体Mの周辺環境に応じて、媒体Mが構造的に変化することで、媒体Mの周辺環境を反映してもよく、媒体Mが構造的に変化せずに、電気化学反応が変化する(たとえば、媒体Mの周辺環境に応じて、媒体Mの粘度、溶質である化学種(金属イオンなど)の価数、溶媒に対する溶質の拡散係数などに変化が生じ、電気化学反応が変化する)ことで、媒体Mの周辺環境を反映してもよい。導電パスPの電気特性を変化させる周辺環境は、特に限定されることはないが、本実施形態では、温度環境である。しかし、導電パスPの電気特性を変化させる周辺環境は、光環境、磁気環境、振動環境、圧力環境などのその他の周辺環境であってもよい。また、周辺環境によって変化する導電パスPの電気特性は、特に限定されることはないが、本実施形態では、導電パスPの電流電圧特性である。しかし、周辺環境によって変化する導電パスPの電気特性は、電流または電圧の時間変化、容量特性などのその他の特性であってもよい。導電パスPの電気特性が上述のような非線形性な変換性をも有する場合には、出力信号D2は、単に、入力信号D1が媒体Mに入力された時点の媒体Mの周辺環境に関する情報だけでなく、入力信号D1が媒体Mに入力された時点以前の媒体Mの周辺環境に関する情報を含む経時情報を担持することになる。
 相互接続構造1の構成要素は、第1の部分T1および第2の部分T2が導電パスPによって電気的に接続されれば、特に限定されない。たとえば、図1Bに示される変形形態1のように、相互接続構造1はさらに、媒体Mの温度を所定の温度に設定する温度設定部E1を備えていてもよい。たとえば、図1Cに示される変形形態2のように、相互接続構造1はさらに、第1の部分T1と、第1の部分T1と接続させる部分2(図1Cでは、後述する入力部)との間に介在させる他の要素E2(図1Cでは、後述する非対称素子)を備えていてもよく、同様に、図1Dに示される変形形態3のように、第2の部分T2と、第2の部分T2と接続させる部分3(図1Dでは、後述する出力部)との間に介在させる他の要素E2(図1Dでは、後述する非対称素子)を備えていてもよい。
 相互接続構造1の用途は、第1の部分T1および第2の部分T2を電気的に接続する用途であれば、特に限定されない。相互接続構造1は、導電パスPの電気特性が媒体Mの温度に応じて変化することで、たとえば、温度に関するセンシング装置(温度センサなど)として利用することができる。また、相互接続構造1は、導電パスPの電気特性が非線形性な変換性をも有する場合には、温度履歴に関するセンシング装置(温度メモリなど)として利用することもできる。また、温度履歴に関する情報から熱流に関する情報を得ることできるため、相互接続構造1は、熱流に関するセンシング装置(熱流センサなど)として利用することもできる。
 第1の部分T1および第2の部分T2は、相互接続構造1によって相互に接続される部分である。第1の部分T1および第2の部分T2は、特に限定されることはないが、たとえば、第1の部分T1および第2の部分T2として、集積回路チップやディスクリートチップなどの半導体チップの端子(または、当該端子に電気的に接続される相互接続構造1の端子)が挙げられる。この場合、半導体チップの回路面が互いに対向するように、半導体チップを配置し、対向する回路面の間に媒体Mを挿入することで、半導体チップの端子を接続してもよく、半導体チップの回路面が互いに平行になるように、半導体チップを配置し、回路面に平行な方向に媒体Mを配置することで、半導体チップの端子を接続してもよい。しかし、第1の部分T1および第2の部分T2は、より大規模な電子デバイス、電気機器、または情報システムなどの端子(または、当該端子に電気的に接続される相互接続構造1の端子)であってもよい。第1の部分T1および第2の部分T2のそれぞれの数は、特に限定されることはなく、第1の部分T1および第2の部分T2の両方が、1つずつであってもよく、両方ともに、複数であってもよく、一方が1つで、他方が複数であってもよい。
 第1の部分T1および第2の部分T2の構成材料は、特に限定されることはなく、互いに同じ材料(典型的には、金属材料)であっても、互いに異なる材料(典型的には、金属材料)であってもよい。本実施形態では、第1の部分T1および第2の部分T2の構成材料は、媒体Mに含まれるイオンを構成する金属よりも、媒体Mに対する電極電位が高くなる(典型的には、イオン化傾向が小さくなるように)材料から選択されている。具体的には、第1の部分T1および第2の部分T2は、媒体M中に存在するイオンの構成金属(たとえば、銅(Cu)、銀(Ag)など)よりも電極電位の高い貴金属(たとえば、プラチナ(Pt)など)から構成されている。第1の部分T1および第2の部分T2は、貴金属から構成される下地層と、下地層の表面に、電子供給能が高い金属(タンタル(Ta)、モリブデン(Mo)など)から構成される密着層とを有していてもよい。この場合、媒体Mにおける電気化学反応(具体的には、導電パスPを生じさせる金属の電気化学反応(具体的には、溶解析出反応(酸化還元反応)))が促進または遅延されるので、導電パスPの電気特性の変化の度合いを変化させることができる。しかし、第1の部分T1および第2の部分T2の構成材料は、媒体Mに含まれるイオンを構成する金属よりも、媒体Mに対する電極電位が低くなる材料から選択されてもよい。また、第1の部分T1および第2の部分T2は、媒体Mに存在するイオンの構成金属と同じ金属から構成されてもよく、カーボン(C)など導電性の非金属材料や、有機導電材料から構成されてもよい。
 媒体Mは、電気化学反応によって生成される導電パスPを通じて、第1の部分T1と第2の部分T2との電気的な接続を媒介する。具体的には、媒体Mは、第1の部分T1および第2の部分T2の両方の部分と接触することで、第1の部分T1と第2の部分T2との電気的な接続を媒介する。媒体Mは、本実施形態では、第1の部分T1と第2の部分T2とを互いに電気的に接続する導電パスPを形成可能な電解質を含んでいる。ここで、本明細書において、「電解質」は、含有されるイオンが、印加される電圧によって移動可能な状態にある物質を指す。電解質は、分散質(コロイド粒子)が分散媒に分散しているコロイド状の電解質であってもよく、溶質(イオン)が溶媒に溶解している液体の電解質であってもよい。コロイドの場合、分散媒は、固体であってもよいが、好適には、液体である。電解質は、好適には、イオンが溶解している溶液であり、より好適には、イオンが溶解しているイオン液体である。電解質はまた、ポリマーゲルの中にイオン対が含まれるイオンゲルであっても良い。ここで、本明細書において、「イオン液体」は、いわゆるイオン液体(常温において液体状態で存在する塩)自体だけでなく、溶媒和イオン液体および混合イオン液体をも含む概念である。ここで、「溶媒和」とは、溶液の中で、溶質の分子またはイオンの周りを溶媒の分子が取り囲んで一つの分子群を形成した状態を指す。また、「溶媒和イオン液体」とは、このような溶媒和を有するイオン液体を指す。さらに、「混合イオン液体」は、複数のイオン液体および/または溶媒和イオン液体などの任意のイオン液体が複数混合されたイオン液体を指す。混合イオン液体は、たとえば、溶媒和イオン液体と、当該溶媒和イオン液体よりも小さい粘度(粘性係数)を有するイオン液体(以下、「低粘度イオン液体」と呼ぶ)を混ぜ合わせることにより、その粘度を調整することができる利点がある。
 イオン液体自体は、特に限定されることはないが、1-ブチル-3-メチルイミダゾリウム([Bmim])・ビス(トリフルオロメチル)スルホニルアミド([TFSA])などから構成される。混合イオン液体は、特に限定されることはないが、1-ブチル-3-メチルイミダゾリウム ビス(トリフルオロメチル)スルホニルアミド([Bmim][TFSA])などから構成される。
 なお、「TFSA」は、[Tf2N]とも略され、試薬カタログや文献でしばしば“bis(trifluoromethylsulfonyl)imide”([TFSI])とも表記されるが、本明細書ではIUPAC法に従って、[TFSA]とする。
 溶媒和イオン液体の溶媒は、溶質の分子またはイオンの周りを取り囲むような特性を有すれば、特に限定されない。溶媒和イオン液体の溶媒は、たとえば、
Figure JPOXMLDOC01-appb-C000001
および
Figure JPOXMLDOC01-appb-C000002
(ただし、nはエチレンオキシ基の数であって1または2であり、mはメチレン基の数であって1~3のいずれかの整数であり、R1、R2は、それぞれ同じでも違っていてもよく、R1は炭素数が1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキルニル基、トリメチルシリル基、トリエチルシリル基、またはt-ブチルジメチルシリル基を表し、R2は,炭素数1~16のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、トリメチルシリル基、トリエチルシリル基、またはt-ブチルジメチルシリル基を表し、アルキル基の中にはエーテル官能基、チオエーテル官能基が含まれていても構わない)
からなる群から選ばれる少なくとも1種の溶媒などから構成される。溶媒和イオン液体の溶媒は、1種類に限定されず、複数種の溶媒が混合されていてもよい。
 イオン液体に溶解するカチオンは、特に限定されることはないが、本実施形態では、銅(Cu)イオンまたは銀(Ag)イオンから構成されている。しかし、イオン液体に溶解するカチオンは、特に限定されず、たとえば、金(Au)イオン、パラジウム(Pd)イオン、ロジウム(Rh)イオン、ルテニウム(Ru)イオン、白金(Pt)イオンなどの貴金属イオン、コバルト(Co)イオン、ニッケル(Ni)イオンなどの金属イオン、およびユーロピウム(Eu)イオンなどのランタノイド金属イオンなどから構成されてもよい。イオン液体に溶解するカチオンは、1種類に限定されず、イオン液体に複数種の金属イオンが溶解していてもよい。
 イオン液体に溶解するアニオンは、溶媒和した場合に液体になるアニオンであれば、特に限定されない。イオン液体に溶解するアニオンは、たとえば、ビス(トリフルオロメチルスルホニル)アミド(N(SO2CF32 -:TFSA)、ビス(フルオロスルホニル)アミド(N(SO2F)2 -:FSA)から構成される。しかし、アニオンは、上述のアニオンに限定されず、AlCl4 -、BF4 -、PF6 -、SbF6 -、MeSO3 -、CF3SO3 -、NO3 -、CF3COO-、RCOO-、RSO4 -、RCH(NH2)COO-、SO4 2-、ClO4 -、(HF)2.3-(ここでRはH、アルキル基、アルキルオキシ基を示す)などから構成されてもよい。イオン液体に溶解するアニオンは、1種類に限定されず、イオン液体に複数種のアニオンが溶解していてもよい。
 低粘度イオン液体は、溶媒和イオン液体よりも小さい粘度(粘性係数)を有すれば、特に限定されない。低粘度イオン液体は、たとえば、
Figure JPOXMLDOC01-appb-C000003
(ただし、または炭素数2~6のアルケニル基を表し、R1は上記各化学式において、同じでも違っていてもよく、炭素数1~6のアルキル基、または炭素数2~6のアルケニル基を表し、R2は上記各化学式において、同じでも違っていてもよく、水素原子、炭素数1~16のアルキル基、炭素数2~6のアルケニル基、またはアルコキシ基を表す。アルキル基の中にはエーテル官能基、チオエーテル官能基が含まれていても構わない。R3は上記各化学式において、同じでも違っていてもよく、水素原子、フェニル基、メチル基、またはイソプロピル基を示す。R4ならびにR5は、上記各化学式において、同じでも違っていてもよく、水素原子、フェニル基、メチル基、またはイソプロピル基を示す。化学式(5)のnはメチレン数を示し、n=1または2である。化学式(8)においてR1とR2は炭素鎖が連結していてもよく、この場合はトリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、またはヘプタメチレン基である。化学式(9)においては、R2には、たとえばメチル基、エチル基などのアルキル基、ジメチルアミノ基の様なヘテロ原子を含むものであってもよい。イオン液体のアニオン(X)は、AlCl4 -、BF4 -、PF6 -、SbF6 -、N(SO2CF32 -、N(SO2F)2 -、N(CN)2 -、MeSO3 -、MeSO4 -、CF3SO3 -、NO3 -、CF3COO-、RCOO-、RSO4 -、RCH(NH2)COO-、SO4 2-、ClO4 -、Me2PO4 -、(HF)23-(ここでRはH、アルキル基、アルキルオキシ基を示す)である。)
からなる群から選ばれる少なくとも1種などから構成されている。低粘度イオン液体は、1種類の低粘度イオン液体から構成されてもよく、複数種の低粘度イオン液体から構成されてもよい。
 低粘度イオン液体に溶解するカチオンおよびアニオンは、特に限定されることはないが、たとえば、上述のカチオンおよびアニオンおよびアニオンの他に、下記化学式(12)および化学式(13)のようにジカチオン性のイオン液体を含んでいてもよく、この時、化学式(12)で示されるイミダゾリウム塩の場合、R1とR3が一致する対称性の塩であっても、R1とR3が異なる非対称性の塩であってもよい。二つのカチオンをつなぐ-CH2-R2-CH2-におけるR2は0、すなわちエチレン鎖であってもよい。また、R2内にエーテル酸素を一つ以上含んでいてもよい。化学式(13)で示される第4級アンモノウム塩においては、R1~R9全てが同一の対称性のものであっても、幾つか異なる非対称性の化合物であってもよく、二つのカチオンをつなぐ-CH2-R6-CH2-におけるR6は0、すなわちエチレン鎖であってもよく、R6内にエーテル酸素を一つ以上含んでいてもよい。アニオン(X)は、AlCl4 -、BF4 -、PF6 -、SbF6 -、N(SO2CF32 -、N(SO2F)2 -、N(CN)2 -、MeSO3 -、MeSO4 -、CF3SO3 -、NO3 -、CF3COO-、RCOO-、RSO4 -、RCH(NH2)COO-、SO4 2-、ClO4 -、Me2PO4 -、(HF)23-(ここでRはH、アルキル基、アルキルオキシ基を示す)である。)からなる群から選ばれる少なくとも1種を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000004
 また、低粘度イオン液体に溶解するカチオンおよびアニオンはそれぞれ、下記各化学式に例示するカチオンおよびアニオンのうちの少なくとも1種を含んでいてもよい。低粘度イオン液体に溶解するカチオンおよびアニオンはそれぞれ、上述のイオンを1種類含んでいてもよく、複数種含んでいてもよい。
Figure JPOXMLDOC01-appb-C000005
 混合イオン液体に溶解するカチオンは、特に限定されることはないが、たとえば、銅(Cu)イオンおよび銀(Ag)イオンのうちの少なくとも1つから構成されている。しかし、イオン液体に溶解するカチオンは、特に限定されず、金(Au)イオン、パラジウム(Pd)イオン、ロジウム(Rh)イオン、ルテニウム(Ru)イオン、白金(Pt)イオンなどの貴金属イオン、コバルト(Co)イオン、ニッケル(Ni)イオンなどの金属イオン、およびユーロピウム(Eu)イオンなどのランタノイド金属イオンなどから構成されてもよい。イオン液体に溶解するカチオンは、1種類に限定されず、イオン液体に複数種の金属イオンが溶解していてもよい。
 混合イオン液体に溶解するアニオンは、特に限定されることはないが、たとえば、ビス(トリフルオロメチルスルホニル)アミド(N(SO2CF32 -:TFSA)、ビス(フルオロスルホニル)アミド(N(SO2F)2 -:FSA)から構成される。しかし、混合イオン液体に溶解するアニオンは、金属イオンと溶媒和した場合に液体になるアニオン種から構成されてもよく、AlCl4 -、BF4 -、PF6 -、SbF6 -、MeSO3 -、CF3SO3 -、NO3 -、CF3COO-、RCOO-、RSO4 -、RCH(NH2)COO-、SO4 2-、ClO4 -、(HF)2.3-(ここでRはH、アルキル基、アルキルオキシ基を示す)などから構成されてもよい。混合イオン液体に溶解するアニオンは、1種類に限定されず、混合イオン液体に複数種のアニオンが溶解していてもよい。
 イオン液体は、上記要素の他に、付加的な要素を含んでいてもよい。たとえば、イオン液体は、トリグライム(「G3」)などのグライム類を含んでいてもよい。イオン液体がグライム類(特に、トリグライム)を含むことで、イオン液体中のカチオンとグライム類とが錯体を形成し、イオン液体における電気化学反応の反応速度を速めることが期待される。この場合、好適には、錯体中のカチオンは、金属カチオンであり、錯体は、金属錯体である。
 なお、媒体Mの構成材料は、媒体Mに熱を蓄積させたいか、または媒体Mから熱を放出させたいかによって選択することもできる。媒体Mの蓄熱性や放熱性は、媒体Mがイオン液体を含む場合、たとえば、イオン液体の構成分子の側鎖や立体配座を変更することなどによって選択可能である。
 第1の部分T1、第2の部分T2、および媒体Mの少なくともいずれかに、第1の部分T1や第2の部分T2と媒体Mとの間の電気化学反応を生じ得る反応種(たとえば、上記例示では、媒体(イオン液体)Mに溶解する銅(Cu)イオンおよび銀(Ag)イオンなど)が存在すれば、媒体Mの導電パスPの電気特性に非線形性がさらに導入されやすくなる。そのため、第2の部分T2に出力される出力信号D2は、第1の部分T1から入力される入力信号D1に対して、さらに非線形的に変換されやすくなる。
 温度設定部E1(図1B参照)は、媒体Mの温度を所定の温度に設定する。たとえば、温度設定部E1は、媒体Mの温度が所定の温度範囲内となるように、媒体Mの温度を調整する温調部として機能してもよいし、媒体Mの周辺と媒体Mとの間で熱を伝導させる伝熱部として機能してもよい。温度設定部E1が温調部である場合、媒体Mにおける電気化学反応が活性な温度域に媒体Mの温度を調整すると、媒体Mの導電パスPの導電性が増大し、媒体Mにおける電気化学反応が不活性な温度域に媒体Mの温度を調整すると、媒体Mの導電パスPの導電性が減少する。そのため、温調部E1によって媒体Mの導電パスPの導電性を調整することができる。温調部は、媒体Mの温度を調整可能であれば、特に限定されることはないが、たとえば、温調部として、サーミスタなどの加熱素子、ヒートシンクなどの放熱素子、ペルチェ素子などの温調素子が挙げられる。温調部は、媒体Mに直接的に接触させることで、媒体Mの温度を調整してもよく、熱媒体などを介して、媒体Mに間接的に接触させる(媒体Mと離間して配置する)ことで、媒体Mの温度を調整してもよい。一方、温度設定部E1が伝熱部である場合、媒体Mの周辺と媒体Mとの間において、熱が伝導することで、媒体Mの周辺温度と媒体Mの温度が略一致するようになる。そうすることで、相互接続構造1への入力信号D1に媒体Mの温度情報を担持させた出力信号D2を得ることができる。伝熱部の具体的態様については、後述される。
 相互接続構造1は、入力信号D1の振幅方向に応じて、相互接続構造1を通る伝送路の伝送特性が異なる(以下、「伝送特性の非対称性」と呼ぶ)ように構成されてもよい。ここでいう「振幅方向」は、入力信号D1の基準値(入力信号D1が電圧信号である場合、たとえば、0V)に対して、入力信号D1が振幅する方向(具体的には、プラス方向およびマイナス方向)を指す。相互接続構造1に伝送特性の非対称性を導入することで、後述するように、相互接続構造1を情報処理装置10(図12参照)に適用し、情報処理装置10に媒体Mの温度を学習させる場合に、情報処理装置10の学習効果を向上させることができる。図1Cおよび図1Dに示される変形形態では、相互接続構造1は、入力信号D1の振幅方向に応じて、電気特性が異なる非対称素子E2を含んでおり、媒体Mは、非対称素子E2と接続されている。具体的には、非対称素子E2は、第1の部分T1に接続されるか(図1C参照。図1Cでは、非対称素子E2は、第1の部分T1に直接接続されている)、または第2の部分T2に接続される(図1D参照。図1Dでは、非対称素子E2は、第2の部分T2に直接接続されている)。
 非対称素子E2は、入力信号D1の振幅方向に応じて異なる電気特性を相互接続構造1に導入することができれば、特に限定されない。非対称素子E2として、たとえば、ダイオード(より具体的には、ツェナーダイオードまたはショットキーダイオードなど)、またはトランジスタ(より具体的には、バイポーラトランジスタまたは電界効果トランジスタなど)を採用することができる。非対称素子E2としてダイオードを採用する場合、アノードとカソードとの間の整流作用により、伝送特性の非対称性を導入することができる。非対称素子E2としてトランジスタを採用する場合、コレクタ(ドレイン)とエミッタ(ソース)との間の整流作用により、伝送特性の非対称性を導入することができ、ベース(ゲート)への印加電圧を調整することで、整流作用を調整することができる。
 なお、伝送特性の非対称性は、相互接続構造1の物理的形状の非対称性によって導入されてもよい。たとえば、第1の部分T1と第2の部分T2との間で、第1の部分T1、第2の部分T2、および媒体Mの大きさ、形状、および配置のうちの少なくともいずれかを異ならせることで、伝送特性の非対称性が導入されてもよい。
[本開示の一実施形態に係る相互接続構造の態様]
 以下、図2A~図2を参照して、本開示の相互接続構造の態様を説明する。なお、以下に示される実施形態の態様は、あくまで例示であり、本開示の相互接続構造は、以下の実施形態の態様に限定されるものではない。以下に示される実施形態の態様において、説明の便宜上、図1の相互接続構造1の構成要素と同じ機能を有する構成要素には、図1の相互接続構造1の構成要素に付された符号と同じ符号が付されている。
(態様1に係る相互接続構造)
 図2Aおよび図2Bは、態様1に係る相互接続構造1を模式的に示している。態様1に係る相互接続構造1は、図2Aに示されるように、平坦な表面Baを有する基材Bを備えている。この相互接続構造1は、基材B上の所定の領域(媒体配置領域)Rmにおいて、互いに対向するように設けられる第1の部分T1および第2の部分T2と、所定の領域(媒体配置領域)Rmにおいて、第1の部分T1および第2の部分T2の一部を露出させるように設けられる絶縁体Nと、所定の領域(媒体配置領域)Rmを囲むように設けられる隔壁W(図2B参照)と、隔壁Wの内部に配置される媒体M(図2B参照)とを備えている。
 基材Bは、表面が絶縁性または半絶縁性を有すれば、特に限定されない。基材Bは、たとえば、セラミックスなどの絶縁性基板、単結晶シリコン(Si)などの半導体ウェハ、銅(Cu)などの導電性の母材の表面にSiO2などの絶縁性コーティングが施された金属コア基板などによって構成することができる。なお、基材Bは、上述の伝熱部E11として、基材Bを厚さ方向Lt(具体的には、板状の基材Bの表面と裏面とを繋ぐ方向)において、内部に伝熱材料が充填される貫通する貫通孔を有していてもよい。伝熱部E11として貫通孔の数および配置は、第1の部分T1および第2の部分T2と短絡を生じずに、媒体Mと貫通孔との間で直接的または間接的に熱が伝達されれば、特に限定されることはない。伝熱材料として、たとえば、金属材料が挙げられる。伝熱材料として金属材料を採用する場合、好適には、少なくとも媒体Mと接する表面は、媒体M中に存在するイオンの構成金属(たとえば、銅(Cu)、銀(Ag)など)よりも電極電位の高い貴金属(たとえば、プラチナ(Pt)や金(Au)など)から構成される。
 第1の部分T1および第2の部分T2は、基材B(基材Bの表面Ba)において、所定の間隔で離間する先端部Ta1、Ta2から互いに反対方向に延伸するように形成されている。第1の部分T1および第2の部分T2の構成材料および層構成は、上述の図1の説明の第1の部分T1および第2の部分T2の構成材料および層構成と同様であるため、ここでは、説明を省略する。
 媒体Mは、電解質M1から構成されている。電解質M1の構成材料は、上記説明の構成材料と同様であるため、ここでは、説明を省略する。
 絶縁体Nは、基材B(基材Bの表面Ba)において、第1の部分T1および第2の部分T2の先端部Ta1、Ta2の少なくとも一部を露出させるように設けられている。より具体的には、絶縁体Nは、第1の部分T1および第2の部分T2の所望の部分で、第1の部分T1と媒体Mとの間、および、第2の部分T2と媒体Mとの間の電気化学反応(具体的には、溶解析出反応(酸化還元反応))を抑制するために設けられている。つまり、第1の部分T1と媒体Mとの間、および、第2の部分T2と媒体Mとの間で、絶縁体Nが介在する部分では、第1の部分T1および第2の部分T2は、媒体Mとそれぞれ接触しないので、電気化学反応が抑制され、絶縁体Nが介在することなく、第1の部分T1および第2の部分T2が、媒体Mとそれぞれ接触する部分では、電気化学反応が進行する。これにより、相互接続構造1において、導電パス(図2Aおよび図2Bでは図示せず)が所望の部分に生成されるので、相互接続構造1の制御性が向上する。態様1では、第1の部分T1および第2の部分T2が互いに近接する部分間において、導電パスが最短経路で概略生成されるように、絶縁体Nは、第1の部分T1および第2の部分T2の先端部Ta1、Ta2が露出するように設けられている。より具体的には、導電パスが基材Bの表面Baに対して垂直方向に生成されるのを抑制するように、第1の部分T1および第2の部分T2の基材Bに面する面の反対面(上面)の略全面に第1の絶縁体N1が設けられ、第1の絶縁体N1の表面および基材Bの表面Baにおいて、第1の部分T1および第2の部分T2の近傍の所定の領域R1が露出するように、第2の絶縁体N2が設けられている。しかし、絶縁体Nの配置は、望まれる導電パスの形成経路、絶縁体Nの形成プロセスなどに応じて、適宜変更することができる。
 絶縁体N(第1の絶縁体N1、第2の絶縁体N2)の構成材料は、絶縁性を確保し、かつ、第1の部分T1および第2の部分T2と媒体Mとの間の電気化学反応を抑制することができれば、特に限定されない。たとえば、絶縁体N(第1の絶縁体N1、第2の絶縁体N2)は、酸化シリコン(SiO2)、窒化シリコン(Si34)、酸窒化シリコン(SiX+Y2X4/3Y(X>0、Y>0))などの、絶縁性を有する公知の材料から構成することができる。
 隔壁Wは、図2Bに示されるように、基材Bの表面Ba(より具体的には、絶縁体N(第2の絶縁体N2)の表面)に設けられ、媒体Mが配置される領域Rm(以下、「媒体配置領域」と呼ぶ)を画定する。隔壁Wの内部には、たとえば滴下によって、媒体Mが収容される。隔壁Wの形状は、媒体Mの外部への移動を抑制する閉空間であれば、特に限定されない。隔壁Wは、たとえば、四角枠状に設けられるが、閉空間を形成する、その他の形状であってもよい。たとえば、隔壁Wの構成材料は、フォトレジスト(ポジ型であっても、ネガ型であってもよい)である。しかし、隔壁Wは、酸化シリコン(SiO2)、窒化シリコン(Si34)、酸窒化シリコン(SiX+Y2X4/3Y(X>0、Y>0))などの、その他の公知の材料から構成されてもよい。隔壁Wの形成方法は、特に限定されることはないが、隔壁Wの材料によって適宜変更され得る。たとえば、隔壁Wの構成材料がフォトレジストである場合、スピンコート法による液状フォトレジストの塗布と、フォトリソグラフィ法による液状フォトレジストの硬化または溶解を通じて、隔壁Wを所望の形状に形成することができる。また、隔壁Wが酸化シリコン(SiO2)などである場合、CVD(Chemical Vapor Deposition)法による酸化シリコン(SiO2)などの成膜と、フォトリソグラフィ法による酸化シリコン(SiO2)などのエッチングを通じて、隔壁Wを所望の形状に形成することができる。
 このような構成を備える相互接続構造1では、媒体Mの導電パスは、基材Bの表面Baに対して平行に生成される(以下、このような相互接続構造を「横型の相互接続構造」と呼ぶ)。
 態様1に係る相互接続構造1では、第1の部分T1および第2の部分T2と媒体Mとの間の一部に、絶縁体Nが介在しているので、第1の部分T1および第2の部分T2と媒体Mとの間の所望の部分のみで電気化学反応を生じさせることができる。これにより、相互接続構造1の制御性を向上させることができる。
(態様2~4に係る相互接続構造)
 上述の態様1では、隔壁Wによって媒体配置領域Rmを画定しているが、以下のように、媒体配置領域Rmを画定してもよい。図3~図5はそれぞれ、態様2~4に係る横型の相互接続構造1を模式的に示している。図3に示される態様2では、相互接続構造1は、基材Bの表面Ba側(基材Bの表面Ba上)に順次設けられる第1の絶縁体N1、第1の部分T1および第2の部分T2、第2の絶縁体N2を備えている。基材Bの表面Ba側には、基材Bの表面Baに垂直な方向で、第2の絶縁体N2の表面から第1の絶縁体N1に至る凹部R2が設けられている。態様2では、凹部R2によって媒体配置領域Rmを画定することができる。態様2では、第1の部分T1および第2の部分T2と基材Bとの間に第1の絶縁体N1が介在しているため、基材Bは、絶縁性であっても、導電性であってもよい。図4に示される態様3では、相互接続構造1は、基材Bの表面Ba側(基材Bの表面Ba上)に順次設けられる第1の部分T1および第2の部分T2、絶縁体Nを備えている。基材Bの表面Ba側には、基材Bの表面Baに垂直な方向で、絶縁体Nの表面から基材Bに至る凹部R2が設けられている。態様3においても、凹部R2によって媒体配置領域Rmを画定することができる。態様3では、基材Bは、第1の部分T1および第2の部分T2と接しているため、少なくとも基材Bの表面Baは、絶縁性である。図5に示される態様4では、相互接続構造1は、基材Bの表面Ba側(基材Bの表面Ba上)の所定の領域(媒体配置領域)Rmにおいて、互いに対向するように設けられる第1の部分T1および第2の部分T2と、上記領域(媒体配置領域)Rmにおいて、第1の部分T1および第2の部分T2の一部を露出させるように設けられる絶縁体Nと、上記領域(媒体配置領域)Rmに配置される媒体Mとを備えている。媒体Mは、被覆体Cによって被覆されることで、基材Bの表面Baで封止されている。態様4では、被覆体Cによって媒体配置領域Rmを画定することができる。なお、被覆体Cは、第1の部分T1および第2の部分T2との短絡防止のために、絶縁性であれば、特に限定されることはないが、成形性に優れる材料から構成されることが好ましい。このような材料として、たとえば、絶縁性のゲル材料(たとえば、ポリジメチルシロキサン(Poly(dimethylsiloxane):PDMS))や樹脂(たとえば、シリコーン樹脂などの熱硬化性樹脂)が挙げられる。態様4では、基材Bは、第1の部分T1および第2の部分T2と接しているため、少なくとも基材Bの表面Baは、絶縁性である。
 態様2~4において、第1の部分T1および第2の部分T2の構成材料および層構成、媒体Mの構成材料はそれぞれ、態様1と同様であるため、ここでは、説明を省略する。また、態様2~4においても、態様1と同様に、基材Bは、媒体Mの周辺と媒体Mとの間で熱を伝導させる伝熱部E11を有していてもよい。態様2では、伝熱部E11は、厚さ方向Ltにおいて、基材Bだけでなく、第1の絶縁体N1をも貫通するように設けられてもよい。さらに、態様1~3においても、態様4と同様に、媒体Mを被覆する被覆体Cが設けられてもよい。
 なお、態様1~4において、第1の部分T1および第2の部分T2は、必ずしも同一平面内に形成されていなくてもよい。また、態様1~4において、相互接続構造1は、たとえば、第1の部分T1および第2の部分T2の形状が平面視で非対称であるなど、非対称な構造であってもよい。
 態様2~4に係る相互接続構造1では、態様1に係る相互接続構造1と同様に、第1の部分T1および第2の部分T2と媒体Mとの間の所望の部分のみで電気化学反応(具体的には、溶解析出反応(酸化還元反応))を生じさせることができるので、相互接続構造1の制御性を向上させることができる。
(態様5に係る相互接続構造)
 図6は、態様5に係る横型の相互接続構造1を模式的に示している。態様5に係る相互接続構造1は、図6に示されるように、態様1に係る相互接続構造1と同様の平坦な表面Baを有する基材Bを備えている。この相互接続構造1は、基材Bの表面Ba側(基材Bの表面Ba上)の所定の領域(媒体配置領域)Rmにおいて、互いに対向するように設けられる第1の部分T1および第2の部分T2と、上記領域(媒体配置領域)Rmに配置される媒体Mとを備えている。
 図6では、第1の部分T1および第2の部分T2は、複数設けられているが、態様1と同様に、それぞれ1つのみ設けられてもよい。第1の部分T1および第2の部分T2の構成材料および層構成は、態様1と同様であるため、ここでは、説明を省略する。
 態様5において、媒体Mは、電解質M1に加え、導電体M2を含んでいる点において、態様1~4と異なる。媒体Mの導電体M2は、基材Bの表面Ba側(基材Bの表面Ba上)に、第1の部分T1および第2の部分T2に挟まれるように、格子状に複数設けられている。しかし、導電体M2は、線状に配置されてもよく、格子状および線状などのように規則的ではなく、ランダムに配置されてもよい。また、導電体M2は、1つのみ設けられてもよい。さらに、導電体M2の一部(たとえば、導電体M2の基材Bに面する面の反対面(上面)の略全面)を絶縁体(たとえば、絶縁体は、酸化シリコン(SiO2)から構成される)で被覆してもよい。導電体M2の構成材料は、特に限定されることはないが、態様5では、電解質M1に対する電極電位が高くなるように(典型的には、イオン化傾向が小さくなるように)選択されている。より具体的には、導電体M2は、第1の部分T1および第2の部分T2と同じ材料から構成されている。なお、媒体Mに含まれる電解質M1は、態様1と同様であるため、ここでは、説明を省略する。
 なお、態様5においても、態様1と同様に、媒体配置領域Rmを画定する隔壁W(図2B参照)が設けられてもよく、態様4と同様に、媒体Mを被覆する被覆体Cが設けられてもよい。また、態様5においても、態様1と同様に、基材Bは、媒体Mの周辺と媒体Mとの間で熱を伝導させる伝熱部(図6では、図示せず)を有していてもよい。
 態様5に係る相互接続構造1では、導電体M2と第1の部分T1との間、導電体M2と第2の部分T2との間、導電体M2が複数である場合、複数の導電体M2の間において、導電パスが生成される。これにより、媒体Mの温度に応じて複雑に変化する電気特性を導電パスに持たせることができる。
(態様6に係る相互接続構造)
 図7は、態様6に係る相互接続構造1を模式的に示している。態様6に係る相互接続構造1は、図7に示されるように、凹部R3を有する基材Bを備えており、相互接続構造1の少なくとも一部は、凹部R3の内部空間に形成されている。凹部R3の形状は、特に限定されることはないが、図7では、凹部R3は、四角柱形状で窪んでいる。しかし、凹部R3は、円筒形状などのその他の形状で窪んでいてもよい。基材Bは、凹部R3の内面が絶縁性または半絶縁性を有すれば、特に限定されない。たとえば、基材Bは、セラミックなどの絶縁性基板、単結晶シリコン(Si)などの半導体ウェハ、銅(Cu)などの導電性の母材の表面にSiO2などの絶縁性コーティングが施された金属コア基板によって構成することができる。
 態様6において、第1の部分T1は、凹部R3の1つの内側壁に配置されている。より具体的には、第1の部分T1は、凹部R3の1つの内側壁において、格子状に複数配置されている。しかし、第1の部分T1は、一つであってもよく、複数の内側壁に配置されてもよい。第1の部分T1の構成材料および層構成は、態様1と同様であるため、ここでは、説明を省略する。
 態様6において、第2の部分T2は、凹部R3の他の内側壁(第1の部分T1と対向する内側壁)に配置されている。より具体的には、第2の部分T2は、凹部R3の他の内側壁において、格子状に複数配置されている。しかし、第2の部分T2は、一つであってもよく、複数の内側壁に配置されてもよい。第2の部分T2の構成材料および層構成は、態様1と同様であるため、ここでは、説明を省略する。
 態様6において、媒体Mは、態様5と同様に、電解質M1に加え、導電体M2を含んでいる。態様6では、媒体Mは、凹部R3の底部と凹部R3の開口とを繋ぐ方向La(以下、「開口方向」と呼ぶ)に沿って延びる柱状体MCを備え、柱状体MCは、導電体M2と絶縁体M3が交互に配置された構造を有している。換言すれば、導電体M2は、開口方向Laにおいて、絶縁体M3を挟んで柱状体MCに互いに離間して配置されている。柱状体MCの数は、一つであっても複数であってもよく、複数の場合、柱状体MCの配置は、図7のように、凹部R3の内部にランダムに配置されてもよく、格子状や線状などのように、規則的に配置されてよい。柱状体MCにおける導電体M2と絶縁体M3との繰り返し回数は、1回であってもよく、複数回であってもよく、複数回の場合、柱状体MCにおける導電体M2の間隔および絶縁体M3の間隔は、等間隔であってもよく、異なる間隔であってもよい。導電体M2の間隔および絶縁体M3の間隔が等間隔の場合、導電体M2および絶縁体M3を半導体製造プロセスに用いられる公知の材料から構成することで、CVD(Chemical Vapor Deposition)法、蒸着法、またはスパッタリング法などとフォトリソグラフィ法とを組合せて微細加工する、公知の半導体製造プロセスを用いて、柱状体MCを容易に作製することができる。
 媒体Mに含まれる電解質M1の構成材料、ならびに導電体M2の構成材料および層構成は、態様1と同様であるため、ここでは、説明を省略する。絶縁体M3は、酸化シリコン(SiO2)、窒化シリコン(Si34)、酸窒化シリコン(SiX+Y2X4/3Y(X>0、Y>0))などの公知の成分から構成することができ、これらの単層から構成されてもよく、開口方向Laへの積層などよって、これらの複数層から構成されてもよい。
 なお、態様6においても、態様4と同様に、媒体Mを被覆する被覆体Cが設けられてもよく、媒体Mの周辺と媒体Mとの間で熱を伝導させる伝熱部E11が設けられてもよい。たとえば、態様6では、第1の部分T1および第2の部分T2が配置されない凹部R3の内側壁と接するように、伝熱材料のバルク体として伝熱部E11を設けることができる。
 態様6に係る相互接続構造1では、相互接続構造1を凹部R3に三次元的に形成することができるので、相互接続構造1の構成要素を高密度に配置することが可能となる。そのため、相互接続構造1の小型化を図ることができる。
(態様7の相互接続構造)
 態様1~6の相互接続構造1は、横型の相互接続構造であるが、媒体Mの導電パスは、基材Bの表面Baに対して平行に生成されてもよい(以下、このような相互接続構造を「縦型の相互接続構造」と呼ぶ)。図8Aは、態様7に係る縦型の相互接続構造1を模式的に示している。態様7に係る相互接続構造1は、図8Aに示されるように、態様1に係る相互接続構造1と同様の平坦な表面Baを有する基材Bを備えている。この相互接続構造1は、基材Bの表面Ba側(基材Bの表面Ba上)に順次設けられる第1の部分T1、絶縁体N、第2の部分T2を備えている。態様7では、絶縁体Nは、基材Bの表面Ba側の媒体配置領域Rmにおいて、絶縁体Nを厚さ方向Lt(第1の部分T1側の絶縁体Nの第1の面(下面)Naと第2の部分T2側の絶縁体Nの第2の面(上面)Nbとを繋ぐ方向)で貫通する貫通孔Nhを有しており、媒体Mは、貫通孔Nhの内部に配置されている。このように、態様7では、媒体配置領域Rmは、絶縁体Nの貫通孔Nhの径によって画定され、第1の部分T1および第2の部分T2はそれぞれ、絶縁体Nの貫通孔Nhを塞ぐように、絶縁体Nの第1の面Naおよび第2の面Nbに設けられている。
 第1の部分T1および第2の部分T2の構成材料および層構成、ならびに媒体Mおよび絶縁体Nの構成材料は、態様1と同様であるため、ここでは、説明を省略する。
 図8Aの相互接続構造1では、絶縁体Nの第2の面Nb側で、媒体Mは、絶縁体Nと面一になっている。しかしながら、媒体Mは、図8Bに示される変形形態1のように、絶縁体Nの第2の面Nbに対して、若干窪んでいてもよく、図8Cに示される変形形態2のように、絶縁体Nの第2の面Nbに対して、若干盛り上がっていてもよい。図8Cに示される変形形態2では、媒体Mは、貫通孔Nh内だけでなく、その一部が貫通孔Nhの開口近傍の絶縁体Nにまで及ぶことで、絶縁体Nの第2の面Nbから突出している。すなわち、図8Cに示される変形形態2では、貫通孔Nhの容積に対して、不足のない量の媒体Mを貫通孔Nhに供給している。そのため、貫通孔Nhへの媒体Mの充填不足といった問題は生じにくい。さらに、図8Dに示される変形形態3では、媒体Mは、絶縁体Nの貫通孔Nhから第2の面Nb全体に溢れ出すことで、第2の部分T2と絶縁体Nとの間に介在している。このように、貫通孔Nhの容積に対して、十分多い量の媒体Mを貫通孔Nhに供給してもよい。
 なお、態様7の相互接続構造1において、媒体Mに入力信号D1を入力する第1の部分T1、および媒体Mから出力信号D2を出力する第2の部分T2の配置は、逆であってもよい。換言すれば、基材Bの表面Baから離れる向きに入力信号D1が入力されて出力信号D2が出力されてもよく、基材Bの表面Baに向かう向きに入力信号D1が入力されて出力信号D2が出力されてもよい。
 態様7においても、態様1と同様に、基材Bは、媒体Mの周辺と媒体Mとの間で熱を伝導させる伝熱部(図8A~図8Dでは、図示せず)を有していてもよい。態様7では、基材B側において、媒体Mが第1の部分T1と接触せずに、基材Bと接触する領域を設け、この基材Bと接触する領域において、伝熱部を設けることができる。
 態様7に係る相互接続構造1では、公知のエッチングやレーザ加工などによって、媒体配置領域Rmを画定する貫通孔Nhを所望の位置、サイズ、形状、及び密度を形成することで、相互接続構造1の制御性を向上させることができる。
(態様8の相互接続構造)
 図9Aは、態様8に係る縦型の相互接続構造1を模式的に示している。態様8に係る相互接続構造1は、図9Aに示されるように、態様1に係る相互接続構造1と同様の平坦な表面Baを有する基材Bを備えている。この相互接続構造1は、基材Bの表面Ba側(基材Bの表面Ba上)に絶縁体Nを備えており、絶縁体Nは、媒体配置領域Rmにおいて、絶縁体Nを厚さ方向Ltで貫通する貫通孔Nhを有している。態様8では、第1の部分T1は、貫通孔Nhの内部において、基材Bの表面Ba側(基材Bの表面Ba上)に設けられており、第2の部分T2は、絶縁体Nの第2の面Nbに貫通孔Nhを塞ぐように設けられている。このように、態様8においても、態様7と同様に、媒体配置領域Rmは、絶縁体Nの貫通孔Nhの径によって画定される。
 第1の部分T1および第2の部分T2の構成材料および層構成、ならびに媒体Mおよび絶縁体Nの構成材料は、態様1と同様であるため、ここでは、説明を省略する。
 絶縁体Nの構成材料に対する媒体Mの濡れ性が低い場合には、図9Bに示される変形形態のように、絶縁体Nの貫通孔Nhの内面や絶縁体Nの第2の面Nbに、絶縁体Nの構成材料よりも媒体Mの濡れ性が高い構成材料から構成される、別の絶縁体Nwが設けられてもよい。この場合、貫通孔Nhに媒体Mを供給しやすくなる。別の絶縁体Nwの形成は、態様8に係る縦型の相互接続構造1に限定されず、他の態様における貫通孔Nhやその周辺において適用されてもよい。
 なお、態様8の相互接続構造1においても、第1の部分T1および第2の部分T2の配置は、逆であってもよい。また、態様8においても、態様7と同様に、基材Bは、媒体Mの周辺と媒体Mとの間で熱を伝導させる伝熱部(図9A~図9Bでは、図示せず)を有していてもよい。
 態様8に係る相互接続構造1においても、公知のエッチングやレーザ加工などによって、媒体配置領域Rmを画定する貫通孔Nhを所望の位置、サイズ、形状、及び密度を形成することで、相互接続構造1の制御性を向上させることができる。
(態様9の相互接続構造)
 図10は、態様9に係る縦型の相互接続構造1を模式的に示している。態様9に係る相互接続構造1は、図10に示されるように、態様1に係る相互接続構造1と同様の平坦な表面Baを有する基材Bを備えている。この相互接続構造1は、態様7と同様に、基材Bの表面Ba側(基材Bの表面Ba上)に順次設けられる第1の部分T1、絶縁体N、第2の部分T2を備えている。態様9においても、態様7と同様に、絶縁体Nは、媒体配置領域Rmにおいて、絶縁体Nを厚さ方向Ltで貫通する貫通孔Nhを有しており、媒体Mは、貫通孔Nhの内部に配置されている。しかし、態様9では、態様7とは異なり、第2の部分T2は、貫通孔Nhの一部を塞ぐように、絶縁体Nの第2の面Nbに設けられている。態様9では、媒体Mは、貫通孔Nhを塞ぐように、絶縁体Nおよび第2の部分T2を覆う被覆体Cによって封止されている。
 第1の部分T1および第2の部分T2の構成材料および層構成、ならびに媒体Mおよび絶縁体Nの構成材料は、態様1と同様であり、被覆体Cの構成材料は、態様4と同様であるため、ここでは、説明を省略する。
 なお、態様9の相互接続構造1においても、第1の部分T1および第2の部分T2の配置は、逆であってもよい。また、態様9においても、態様7と同様に、基材Bは、媒体Mの周辺と媒体Mとの間で熱を伝導させる伝熱部(図10では、図示せず)を有していてもよい。
 態様9に係る相互接続構造1では、公知の半導体製造プロセスを用いて、基材B上に、第1の部分T1、絶縁体N、第2の部分T2を所定の形状に形成した後、絶縁体Nの貫通孔Nhに媒体Mを供給することで、作製することができる。換言すれば、貫通孔Nhへの媒体Mの供給を、一連の半導体製造プロセスが完了した後に行うことができるので、相互接続構造1の製造プロセスを単純化することができる。
(態様10に係る相互接続構造)
 図11は、態様10に係る縦型の相互接続構造1を模式的に示している。態様10に係る相互接続構造1は、図11に示されるように、互いに連結された多数の空孔PBaを有する多孔質体PBを備えている。多孔質体PBの構成材料は、絶縁性または半絶縁性を有すれば、特に限定されない。多孔質体PBは、たとえば、フッ素(F)添加酸化シリコン(F-SiO2)や炭素(C)添加酸化シリコン(C-SiO2)などの公知のlow-k材料などから構成することができる。多孔質体PBの形状は、特に限定されることはないが、図11では、多孔質体PBは、直方体形状を有している。しかし、多孔質体PBは、円筒形状などのその他の形状を有していてもよい。
 態様10において、第1の部分T1は、多孔質体PBの一側壁に配置されている。より具体的には、第1の部分T1は、多孔質体PBの一側壁において、格子状に複数配置されている。しかし、第1の部分T1は、一つであってもよく、複数の側壁に配置されてもよい。第1の部分T1の構成材料および層構成は、態様1と同様であるため、ここでは、説明を省略する。
 態様10において、第2の部分T2は、多孔質体PBの他側壁(第1の部分T1と反対側の側壁)に配置されている。より具体的には、第2の部分T2は、多孔質体PBの他側壁において、格子状に複数配置されている。しかし、第2の部分T2は、一つであってもよく、複数の側壁に配置されてもよい。第2の部分T2の構成材料および層構成は、態様1と同様であるため、ここでは、説明を省略する。
 態様10において、媒体Mは、多孔質体PBの空孔PBaに設けられ、態様5および6と同様に、電解質M1に加え、導電体M2を含んでいる。態様10では、導電体M2は、粒子状であり、電解質M1中に分散している。この場合、空孔PBaを充填するように媒体Mを多孔質体PBに浸透させることで、導電体M2は、互いに離間するように多孔質体PB内に分散配置される。電解質M1の構成材料、ならびに導電体M2の構成材料および層構成は、態様5および6と同様に、ここでは、説明を省略する。
 なお、態様10においても、態様4と同様に、媒体Mを被覆する被覆体Cが設けられてもよい。態様10においても、多孔質体PBの側壁を被覆するように、被覆体Cを設けることができる。媒体Mの周辺と媒体Mとの間で熱を伝導させる伝熱部E11が設けられてもよい。たとえば、態様10では、第1の部分T1および第2の部分T2が配置されない多孔質体PBの側壁と接するように、伝熱材料のバルク体として伝熱部E11を設けることができる。
 態様10に係る相互接続構造1は、多孔質体PBに三次元的に形成されるので、相互接続構造1の構成要素を高密度に配置することが可能となる。そのため、相互接続構造1の小型化を図ることができる。
 以上、図2A~図10を参照して、相互接続構造1の態様1~10について具体的に説明したが、相互接続構造1は、図2A~図10に示される構成に限定されるものではなく、図2A~図10に示される構成に対して変更可能である。たとえば、相互接続構造1は、上述のように、温調部E1や非対称素子E2などの他の要素をさらに備えていてもよい。たとえば、相互接続構造1が温調部E1を備える場合、温調部E1は、基材Bの表面Baと反対面に直接的に接触するように設けられてもよく、熱媒体などを介して基材Bの表面Baと反対面に間接的に接触するように設けられてもよい。たとえば、相互接続構造1が非対称素子E2を備える場合、第1の部分T1や第2の部分T2は、非対称素子E2自体であってもよく、第1の部分T1や第2の部分T2とは別体で設けられてもよい。
 上記態様1~10の構成において、たとえば、第1の部分T1や第2の部分T2と基材Bとの間など、相互に接合される構成要素間の熱膨張率差が大きい場合には、熱膨張率差による接合箇所の接合不良を抑制するために、これらの構成要素の間に、熱膨張率差を緩和させる部材(たとえば、一方の構成要素の熱膨張率と他方の構成要素の熱膨張率との間の熱膨張率を有する部材)を介在させてもよい。
 以上のように構成される本実施形態に係る相互接続構造1によれば、固体金属ではなく、電気化学反応を生じさせる媒体Mによって、第1の部分T1と第2の部分T2との間の電気的な接続状態を制御可能な、新規な相互接続構造を提供することができる。このような電気化学反応による導電パスPでは、導電パスPの電気特性に非線形性が導入されやすくなるので、媒体Mに入力信号D1を入力すると、温度依存性を有する導電パスPの電気特性によって、媒体Mの温度に関する情報だけでなく、媒体Mの温度に関する経時情報が担持された出力信号D2を得ることができる。そのため、本実施形態に係る相互接続構造1は、温度や温度履歴に関する新規なセンシング装置(温度センサや温度メモリなど)として期待される。また、温度履歴に関する情報から熱流に関する情報を得ることできるため、熱流に関する新規なセンシング装置としても期待される。
 このような相互接続構造1において、媒体Mが固体ではなく液体やコロイドから構成される場合、接続構造内の電気接点が、固体(第1の部分T1または第2の部分T2)と液体やコロイド(媒体M)との界面となるため、固体と固体との間の強固な電気接点に生じやすい熱膨張率差に起因する断線などの接続不良が生じにくくなることも期待される。
 また、本実施形態に係る相互接続構造1によれば、導電パスPの電気特性は、媒体Mの温度に応じて変化する。このような導電パスPの電気特性の温度依存性を利用して、媒体Mの温度を調整せずに、媒体Mの雰囲気温度を媒体Mの温度に反映させることで、上述のように、相互接続構造1への入力信号D1に媒体Mの温度情報を担持させた出力信号D2を得ることができるし、媒体Mの温度を意図的に調整することで、第1の部分T1と第2の部分T2との間の電気的な接続状態を所望の状態に変化させることもできる。
[本開示の一実施形態に係る情報処理装置]
 図12は、本開示の一実施形態に係る情報処理装置10を概念的に示している。本実施形態に係る情報処置装置10は、図12に示されるように、上記相互接続構造1と、相互接続構造1の第1の部分T1に入力信号D1を送信する入力部2と、相互接続構造1の第2の部分T2から出力信号D2を受信する出力部3とを備えている。
 情報処理装置10の用途は、特に限定されることはないが、本実施形態では、情報処理装置10は、図12に示されるように、人間の脳神経細胞を模倣して入力信号D1を処理するニューラルネットワーク装置またはニューロモルフィック装置として機能する。より具体的には、情報処理装置10は、入力信号D1を時系列で保持して信号処理するリザバーコンピューティング装置として機能する。この場合、情報処置装置10において、相互接続構造1は、いわゆるリザバーとして機能し、入力部2から送信される入力信号D1を、経時的に変化する、互いに異なる複数の信号に変換し(以下、「信号の高次元化」と呼ぶ)、出力信号D2として出力部3に送信する。そうすることで、情報処理装置10は、学習などを通して、所望の外部出力Doutを得やすくなる。
 入力部2は、相互接続構造1に送信する入力信号D1を生成する。入力部2は、自ら入力信号D1を生成してもよいし、外部入力Dinに基づいて、入力信号D1を生成してもよい。前者の場合、入力部2は、たとえば、公知の信号発生器などから構成することができる。後者の場合、入力部2は、たとえば、公知の信号変換器などから構成することができる。入力部2は、入力信号D1を相互接続構造1に送信する入力ノードV2(たとえば、入力信号D1を相互接続構造1に送信する端子)を1つのみ備えていてもよく、複数備えていてもよい。換言すれば、入力部2は、入力信号D1として、1つの信号を相互接続構造1に送信してもよいし、入力信号D1として、複数の信号を相互接続構造1に送信してもよい。なお、入力部2は、入力信号D1に対して、所定の重みWinを付してもよい。
 入力部2が生成する入力信号D1は、それ自体に情報を含まないキャリア信号であってもよく、キャリア信号に何らかの情報を担持させた変調信号であってもよい。
 相互接続構造1は、入力部2から受信する入力信号D1から出力信号D2を生成し、これを出力部3に送信する。具体的には、相互接続構造1は、複数の変換ノードV1を備え、複数の変換ノードV1の一部または全部に入力部2からの入力信号D1が入力され、複数の変換ノードV1の一部または全部から出力部3に出力信号D2が出力される。変換ノードV1は、相互接続構造1に物理的に設けられてもよく、相互接続構造1に物理的に設けられずに仮想的に設けられてもよい。前者では、具体的には、変換ノードV1は、上記態様5、6、10における導電体M2に対応する。後者では、具体的には、入力信号D1の読み取り時間を1つの変換ノードV1とみなすことができる(以下、読み取り時間による変換ノードを「仮想ノード」と呼ぶ)。たとえば、変換ノードV1は、変換ノードV1間で授受される信号が経時変化するように、当該信号に重みWresを付して、重みWresを付した信号を後述する出力部3の出力ノードV3に送信する。
 出力部3は、相互接続構造1から出力信号D2に何らの処理を施さず、受信する機能のみを有していてもよく、受信した出力信号D2に何らかの処理を施してもよい。前者の場合、出力部3は、たとえば、コネクタやソケットなどから構成することができる。後者の場合、出力部3は、たとえば、公知の信号分析器などから構成することができる。出力部3は、出力信号D2を相互接続構造1から受信する出力ノードV3(たとえば、入力端子)を1つのみ備えていてもよく、複数備えていてもよい。換言すれば、出力部3は、出力信号D2として、1つの信号を相互接続構造1から受信してもよいし、出力信号D2として、複数の信号を相互接続構造1から受信してもよい。
 出力部3は、相互接続構造1が上述のような非線形な変換性を有する場合には、媒体Mの温度に応じた電気特性を出力信号D2から学習し、電気特性の学習結果に基づいて、媒体Mの温度履歴に関する情報を生成してもよい。たとえば、出力部3は、出力ノードV3が変換ノードV1から受信する出力信号D2に所定の重みWoutを付して所定の演算処理を行うことで、外部出力Doutを生成する。出力部3は、外部出力Doutを教師データ(図示せず)と比較し、当該比較結果に基づいて、たとえば線形回帰法により出力信号D2に付される重みWoutを変更する。出力部3は、重みWoutを最小二乗法などで決定する。この過程において、情報処理装置10は、当該重みWoutの決定を学習する。これにより、情報処理装置10は、媒体Mの経時的な温度情報を含む出力信号D2から媒体Mの温度履歴に関する情報、ひいては、媒体Mの温度履歴に関する情報から媒体Mの熱流に関する情報を生成することができる。この情報処理装置10の学習は、出力部3による重みWoutの決定のみで行われる。そのため、学習の過程で消費される電力は、情報処理装置10の一部分(具体的には、主に重みWoutを決定する出力部3のみ)で消費されるので、全体として、情報処理装置10の消費電力を低減することができる。
 以上のように構成される本実施形態に係る情報処理装置10によれば、媒体Mの温度に応じて変化する導電パスPの電気特性が反映された出力信号D2から、媒体Mの温度情報を取得することができる。また、相互接続構造1が非線形な変換性を有する場合には、媒体Mの温度履歴情報、ひいては、媒体Mを流れる熱流情報を取得し、学習により、これらの情報を生成することができる。
(実施例1~3)
 本発明者は、上述のような相互接続構造1における電気特性を確認すべく、図2Aおよび図2Bに示されるサンプルを3つ作製した。作製した各サンプルにおいて、第1の部分T1および第2の部分T2はそれぞれ、プラチナ(Pt)から構成し、媒体Mは、[Bmim]にCu(II)(TFSA)2:トリグライム(G3)=1:1の割合で混合したイオン液体から構成した。この3つのサンプルに対して、入力信号D1として、図13に示されように、±0から+3Vに直線的に増加し、その後に、+3Vから±0に直線的に減少し、さらに、±0Vから-3Vに直線的に減少し、その後に、-3Vから±0Vに直線的に増加する電圧変化を1サイクルとする三角波の電圧信号であるキャリア信号を媒体Mにそれぞれ入力した。各サンプルへのキャリア信号の1サイクルの周期は、以下のように変更した(実施例1~3)。
  実施例1:1サイクルの周期を240秒とした。
  実施例2:1サイクルの周期を20秒とした。
  実施例3:1サイクルの周期を10秒とした。
 図14A~図14Cに、実施例1において、媒体Mの温度を25℃とし、30サイクルの入力信号D1を媒体Mに入力したときの、第1サイクル、第2~10サイクル、第20~30サイクルでの導電パスPの電流電圧特性をそれぞれ示す。図14Aのグラフ中に示される写真は、光学顕微鏡による上面からのサンプルの写真である。第1サイクルでは、図14Aに示されるように、電圧を±0Vから+3Vに増加させると、+2V付近から正の電流が増加しながら、第1の部分T1に銅(Cu)が析出し、電圧を+3Vから±0に減少させると、+2.3V付近まで正の電流が減少し、これに伴い、第1の部分T1に析出した銅(Cu)が溶解していることがわかる。また、電圧を±0Vから-3Vに減少させる過程において、-0.5V付近で、負の電流がピーク電流値となって、急激に増加した後に減少し(以下、負のピーク電流値の電流を「負のピーク電流」という)、これに伴い、第1の部分T1に析出した銅(Cu)がさらに溶解しながら、第2の部分T2に銅(Cu)が析出していることがわかる。このことから、この負のピーク電流は、銅(Cu)の酸化還元反応(溶解析出反応)に起因するファラデー電流であると考えられる。さらに、電圧を-3Vまで減少させると、-2.3V付近から負の電流が増加し、これに伴い、第1の部分T1からの銅(Cu)の溶解および第2の部分T2への銅(Cu)の析出がさらに進んでいることがわかる。また、電圧を-3Vから±0Vに増加させると、-2.3V付近まで負の電流が減少し、これに伴い、第1の部分T1に銅(Cu)が再度析出しながら、第2の部分T2に析出した銅(Cu)が溶解していることがわかる。
 第2~第10サイクルでは、図14Bに示されるように、負のピーク電流の電流値が、サイクルを繰り返すごとに、その電圧値とともに変化していることがわかる。第2~第10サイクルではさらに、電圧を±0Vから+3Vに増加させる過程において、+1.0V付近で、正の電流がピーク電流値となっていることがわかる(以下、正のピーク電流値の電流を「正のピーク電流」という)。これは、上記同様に、銅(Cu)の酸化還元反応(溶解析出反応)に起因するファラデー電流が、正の電圧においても生じたものであると考えられる。この正のピーク電流の電流値は、サイクルを繰り返すごとに、その電圧値とともに変化していることがわかる。また、第2~第10サイクルではさらに、正負の最大電圧値(±3V)での電流値がサイクル数とともに変化していることが分かる。図14Cを参照すると、この正負のピーク電流を示す電圧値および正負の最大電圧値での電流値がサイクル数とともに変化する傾向は、第20~30サイクルでも見られることがわかる。
 これらのことから、導電パスPは、各サイクルにおいて、電圧値の変化とともに電流値が非線形的に変化する電流電圧特性を有し、その電流電圧特性は、サイクル数に応じて、経時変化を示すことが確認された。
 図15A~図15Fに、実施例2において、媒体Mの温度を25℃、40℃、50℃、60℃、70℃、80℃とし、入力信号D1を媒体Mに入力したときの導電パスPの電流電圧特性をそれぞれ示す。ここで、各温度での入力信号D1のサイクル数は、25℃、40℃、50℃、60℃、70℃、80℃でそれぞれ、500サイクル、430サイクル、500サイクル、310サイクル、320サイクル、260サイクルとした。図15A~図15Fに示されるように、導電パスPの電流電圧特性は、特に、正負のピーク電流の電流値およびその電圧値、ならびに正負の最大電圧値での電流値において、各温度特有の特性を示すことがわかる。また、媒体Mの温度によっては、サイクル毎の電流電圧特性の変化が大きいことがわかる。図16Aおよび図16Bに、正のピーク電流での電流値および正のピーク電流での電圧値に関するワイブル分布を、図17に、サイクルごとの正のピーク電流の電流値をそれぞれ示す。図16Aのグラフ中に示される写真は、上記サイクル数の入力信号D1の信号の入力を完了した後の、各温度における光学顕微鏡による上面からのサンプルの写真である。図16Aおよび図16Bに示されるように、正のピーク電流の電流値およびその電圧値は、媒体Mの温度を25℃および40℃としたときに、変化が大きいことがわかる。図16Aのグラフ中に示される写真に示されるように、媒体Mの温度を25℃および40℃としたときに、サンプル中に黄色の沈着物が確認されており、この大きな変化は、この黄色の沈着物に起因するものと考えられる。また、図17に示されるように、媒体Mの温度を80℃としたときに、サイクルの早い段階で、電流値が減少し始めている。これらのことから、上記サンプルを採用した場合には、入力信号D1に対する電流(出力信号D2)の安定性の観点から、媒体Mの温度に関して、好ましい温度領域は、50℃~70℃の温度領域であり、より好ましい温度領域は、50℃近傍の温度領域であると想定される。
 このように、実施例2において、導電パスPの電流電圧特性の温度依存性および電流の安定温度域を確認したが、正のピーク電流の電流値およびその電圧値の測定を通じて、同様に、実施例1および3においても、導電パスPの電流電圧特性の温度依存性を確認した(図18Aおよび図18B参照)。図18Aは、実施例1~3に係る相互接続構造における、各温度での入力信号D1のサイクルごとの正のピーク電流の電流値を示しており、図18Bは、実施例1において、媒体Mの温度をさらに増やして、正のピーク電流の電流値を示している。図18Aおよび図18Bに示されるように、実施例1では、入力信号D1に対する電流(出力信号D2)の電流値は、50℃以下の温度領域で大きいことがわかる。また、図18Bに示されるように、実施例3では、入力信号D1に対する電流(出力信号D2)の電流値は、50℃において大きいことがわかる。このことから、実施例2だけでなく、実施例1および3のいずれにおいても、媒体Mの温度は、50℃近傍の温度領域(実施例1では、50℃以下の温度領域)が好適であることが想定される。また、図18から、入力信号D1のサイクル周期が高いほど、ピーク電流の電流値が高く、ピーク電流の電流値のサイクルごとの安定性も高いことがわかる。このことから、入力信号D1のサイクル周期を高くすると、入力信号D1を長期間に亘って入力しても、安定して出力信号D2を出力することができることが想定される。
 図19A~図19Dに、実施例2において、媒体Mの温度を100サイクルごとに、25℃(第1~100サイクル)、50℃(第101~200サイクル)、70℃(第201~300サイクル)、50℃(第301~400サイクル)に変化させ、入力信号D1を媒体Mに入力したときの、第1~100サイクル、第101~200サイクル、第201~300サイクル、第301~400サイクルでの導電パスPの電流電圧特性をそれぞれ示す。また、図20に、その際のサイクルごとの正のピーク電流の電流値をそれぞれ示す。図19A~図19Dの電流電圧特性は、対応する温度である図15A、図15C、図15E、図15Cの電流電圧特性と若干異なっている。図20を参照すると、媒体Mの温度を50℃とした第101~200サイクル、媒体Mの温度を70℃とした第201~300サイクル、媒体Mの温度を再び50℃とした第301~400サイクルのそれぞれの初期のサイクル(図20中の矢印参照)において、各サイクルの電流値は、その1つ前の電流値の影響を受けていることがわかる。このことから、導電パスPへの入力信号D1の入力によって生じる電流(出力信号D2)の電流値は、媒体Mの温度に応じた導電パスPの電気特性に関する、少なくとも1つ前のサイクルに関する情報を担持していることがわかる。
 次に、本発明者は、相互接続構造1での媒体Mの導電パスPが、媒体Mの温度に特徴付けられる電気特性を有しているかを確認すべく、以下の実験を行った。まず、実施例2において、媒体Mの温度を40℃、60℃、80℃とし、入力信号D1の±0から+3Vへの5秒間の増加と、これに続く、+3Vから±0への5秒間の減少とに対応する電流(出力信号D2)の読み取り時間を、それぞれ等間隔で60等分し、これらの読み取り時間を仮想ノードとして設定した(±0からの増加前と、±0への減少後の読み取り時間を含めているため、仮想ノードの総数は、122個)。その後に、100サイクルの入力信号D1を媒体Mに入力し、導電パスPへの入力信号D1の入力によって生じる電流(出力信号D2)の電流値を読み取った。媒体Mの温度を40℃としたときの読み取り結果を図21Aに、媒体Mの温度を60℃としたときの読み取り結果を図21Bに、媒体Mの温度を80℃としたときの読み取り結果を図21Cにそれぞれ示す。得られた図21A~図21Cの特性グラフを教師データとし、サポートベクターマシーンを学習アルゴリズムとして、分類器(ニューラルネットワーク装置)に各温度での特性グラフを学習させた。その後、各40℃、60℃、80℃での各サイクルのグラフ(図21A~図21Cのそれぞれにおける各特性グラフ)の温度がどの温度に対応するかを判定させた。分類器による判定結果を図22に示す。図22に示されるように、分類器による判定温度および実際の温度は、高い精度で一致していることがわかる。このことから、媒体Mの導電パスPは、機械学習を十分可能な程度に、媒体Mの温度に応じて変化する特性を有することが確認された。
[まとめ]
 本開示の一実施形態に係る相互接続構造は、第1の部分と第2の部分とを電気的に接続する相互接続構造であって、前記相互接続構造は、前記第1の部分と前記第2の部分との間に媒体を備え、前記第1の部分と前記第2の部分との間の電気的な接続は、前記媒体における電気化学反応によって生成される導電パスによって可変であり、前記導電パスは、前記媒体の周辺環境に応じて変化する電気特性を有する。
 本開示の一実施形態に係る相互接続構造によれば、固体金属ではなく、電気化学反応を生じさせる媒体によって、第1の部分と第2の部分との間の電気的な接続状態を制御可能な、新規な相互接続構造を提供することができる。導電パスの電気特性の温度依存性を利用して、媒体の温度を意図的に調整することで、第1の部分と第2の部分との間の電気的な接続状態を所望の状態に変化させることができる。また、媒体の温度を調整せずに、媒体の雰囲気温度を媒体の温度に反映させることで、相互接続構造への入力信号に媒体の温度情報を担持させた出力信号を得ることができる。
 上記相互接続構造において、前記媒体に入力される入力信号に対して、前記媒体の周辺環境に応じた前記導電パスの電気特性に関する経時情報を担持させて、前記入力信号に対する出力信号として出力してもよい。このような構成によれば、媒体の周辺環境に関する履歴情報を担持した出力信号を得ることができる。
 上記相互接続構造において、前記媒体は、電解質を含んでもよい。このような構成によれば、媒体の温度に応じて変化する電気特性を有する媒体として、好適である。
 上記相互接続構造において、前記媒体は、液体電解質を含んでもよい。このような構成によれば、接続構造内の電気接点が、固体と液体との界面から構成されるため、熱膨張率差に起因する断線などの接続不良が生じにくくなることが期待される。
 上記相互接続構造において、前記媒体は、イオン液体を含んでもよい。このような構成によれば、媒体の温度に応じて変化する電気特性を有する液体電解質として好適である。
 上記相互接続構造は、前記入力信号の振幅方向に応じて、前記相互接続構造を通る伝送路の伝送特性が異なるように構成されてもよい。このような構成によれば、溶媒の温度を学習させる場合に、学習効果を向上させることができる。
 上記相互接続構造において、前記導電パスは、前記媒体の温度に応じて変化する電気特性を有し、前記相互接続構造は、前記媒体の温度を調整する温調部をさらに備え、前記温調部は、前記媒体の温度が所定の温度範囲内となるように、前記媒体の温度を調整してもよい。このような構成によれば、媒体の温度を調整することで、第1の部分と第2の部分との間の電気的な接続状態を所望の状態に変化させることができる。
 上記相互接続構造は、前記導電パスは、前記媒体の温度に応じて変化する電気特性を有し、前記相互接続構造は、前記相互接続構造は、前記媒体の周辺と前記媒体との間で熱を伝導させる伝熱部をさらに備えてもよい。このような構成によれば、媒体の温度を外界の温度に反映させやすくなり、温度センサや温度メモリなどのセンシング装置として、相互接続構造を利用しやすくなる。
 本開示の一実施形態に係る情報処理装置は、環境因子に関する情報を処理する情報処理装置であって、前記情報処理装置は、上記相互接続構造と、前記第1の部分に前記入力信号を送信する入力部と、前記第2の部分から前記出力信号を受信する出力部とを備える。
 本開示の一実施形態に係る情報処理装置によれば、媒体の温度に応じて変化する導電パスの電気特性が反映された出力信号から、媒体の温度情報を取得することができる。
 上記情報処理装置において、前記環境因子は、温度因子であり、前記出力部は、前記媒体の温度に応じた前記電気特性を前記出力信号から学習し、前記電気特性の学習結果に基づいて、前記媒体の温度履歴に関する情報を生成してもよい。このような構成によれば、媒体の温度履歴に関する情報を取得することができる。
 上記情報処理装置において、前記媒体の温度履歴に関する情報は、前記媒体の熱流に関する情報を含んでいてもよい。このような構成によれば、媒体の熱流に関する情報を取得することができる。
 1 相互接続構造
 10 情報処理装置
 2 入力部
 3 出力部
 B 基材
 Ba 表面
 C 被覆体
 D1 入力信号
 D2 出力信号
 Din 外部入力
 Dout 外部出力
 E1 温度設定部
 E11 伝熱部
 E2 非対称素子
 La 開口方向
 Lt 厚さ方向
 M 媒体
 M1 電解質
 M2 導電体
 M3 絶縁体
 MC 柱状体
 N 絶縁体
 N1 第1の絶縁体
 N2 第2の絶縁体
 Na 第1の面
 Nb 第2の面
 Nh 貫通孔
 Nw 別の絶縁体
 P 導電パス
 PB 多孔質体
 PBa 空孔
 R1 領域
 R2、R3 凹部
 Rm 媒体配置領域
 T1 第1の部分
 Ta1 第1の部分の先端部
 T2 第2の部分
 Ta1、Ta2 第2の部分の先端部
 V1 変換ノード
 V2 入力ノード
 V3 出力ノード
 W 隔壁
 Win、Wres、Wout 重み

Claims (11)

  1. 第1の部分と第2の部分とを電気的に接続する相互接続構造であって、
    前記相互接続構造は、
     前記第1の部分と前記第2の部分との間に媒体を備え、前記第1の部分と前記第2の部分との間の電気的な接続は、前記媒体における電気化学反応によって生成される導電パスによって可変であり、
     前記導電パスは、前記媒体の周辺環境に応じて変化する電気特性を有する、
    相互接続構造。
  2.  前記媒体に入力される入力信号に対して、前記媒体の周辺環境に応じた前記導電パスの電気特性に関する経時情報を担持させて、前記入力信号に対する出力信号として出力する、
    請求項1記載の相互接続構造。
  3.  前記媒体は、電解質を含む、
    請求項1または2記載の相互接続構造。
  4.  前記媒体は、液体電解質を含む、
    請求項3記載の相互接続構造。
  5.  前記媒体は、イオン液体を含む、
    請求項4記載の相互接続構造。
  6.  前記入力信号の振幅方向に応じて、前記相互接続構造を通る伝送路の伝送特性が異なるように構成される、
    請求項1~5のいずれか1項に記載の相互接続構造。
  7.  前記導電パスは、前記媒体の温度に応じて変化する電気特性を有し、
     前記相互接続構造は、前記媒体の温度を調整する温調部をさらに備え、
     前記温調部は、前記媒体の温度が所定の温度範囲内となるように、前記媒体の温度を調整する、
    請求項1~6のいずれか1項に記載の相互接続構造。
  8.  前記導電パスは、前記媒体の温度に応じて変化する電気特性を有し、
     前記相互接続構造は、前記媒体の周辺と前記媒体との間で熱を伝導させる伝熱部をさらに備える、
    請求項1~6のいずれか1項に記載の相互接続構造。
  9. 環境因子に関する情報を処理する情報処理装置であって、
    前記情報処理装置は、
     請求項1~8のいずれか1項に記載の相互接続構造と、
     前記第1の部分に前記入力信号を送信する入力部と、
     前記第2の部分から前記出力信号を受信する出力部と
    を備える、
    情報処理装置。
  10.  前記環境因子は、温度因子であり、
     前記出力部は、前記媒体の温度に応じた前記電気特性を前記出力信号から学習し、前記電気特性の学習結果に基づいて、前記媒体の温度履歴に関する情報を生成する、
    請求項9記載の情報処理装置。
  11.  前記媒体の温度履歴に関する情報は、前記媒体の熱流に関する情報を含む、
    請求項10記載の情報処理装置。
PCT/JP2023/007625 2022-03-03 2023-03-01 相互接続構造および情報処理装置 WO2023167244A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022032819 2022-03-03
JP2022-032819 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023167244A1 true WO2023167244A1 (ja) 2023-09-07

Family

ID=87883898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007625 WO2023167244A1 (ja) 2022-03-03 2023-03-01 相互接続構造および情報処理装置

Country Status (2)

Country Link
TW (1) TW202403759A (ja)
WO (1) WO2023167244A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219467A (ja) * 2015-05-14 2016-12-22 国立大学法人名古屋大学 Ptcサーミスタ部材およびptcサーミスタ素子
JP2017049945A (ja) * 2015-09-04 2017-03-09 株式会社東芝 信号発生装置および伝送装置
WO2019240139A1 (ja) * 2018-06-12 2019-12-19 国立大学法人鳥取大学 導電性ブリッジ型のメモリ装置及びその製造方法並びにスイッチ素子
JP2020141024A (ja) * 2019-02-27 2020-09-03 株式会社Soken 温度センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219467A (ja) * 2015-05-14 2016-12-22 国立大学法人名古屋大学 Ptcサーミスタ部材およびptcサーミスタ素子
JP2017049945A (ja) * 2015-09-04 2017-03-09 株式会社東芝 信号発生装置および伝送装置
WO2019240139A1 (ja) * 2018-06-12 2019-12-19 国立大学法人鳥取大学 導電性ブリッジ型のメモリ装置及びその製造方法並びにスイッチ素子
JP2020141024A (ja) * 2019-02-27 2020-09-03 株式会社Soken 温度センサ

Also Published As

Publication number Publication date
TW202403759A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
Wei et al. Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics
Romele et al. Ion buffering and interface charge enable high performance electronics with organic electrochemical transistors
Zhang et al. Humidity effect on resistive switching characteristics of the CH3NH3PbI3 memristor
Hu et al. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell
Talin et al. ECRAM materials, devices, circuits and architectures: A perspective
Melianas et al. High‐Speed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene
CN106415866B (zh) 纳米材料-掺杂剂组合物复合体制造方法、纳米材料-掺杂剂组合物复合体和掺杂剂组合物
Dong et al. Ultrafast and low-power 2D Bi2O2Se memristors for neuromorphic computing applications
Park et al. Introduction of interfacial load polymeric layer to organic flexible memristor for regulating conductive filament growth
Milano et al. Water-mediated ionic migration in memristive nanowires with a tunable resistive switching mechanism
Patel et al. Photocurrent imaging of multi-memristive charge density wave switching in two-dimensional 1T-TaS2
Dimaggio et al. Reliable fabrication of metal contacts on silicon nanowire forests
Jeon et al. Suppressed stochastic switching behavior and improved synaptic functions in an atomic switch embedded with a 2D NbSe2 material
JP6631986B1 (ja) 導電性ブリッジ型のメモリ装置及びその製造方法並びにスイッチ素子
US10910436B2 (en) Asymmetric selectors for memory cells
Torres et al. Thermal management in neuromorphic materials, devices, and networks
Patel et al. Hybrid Perovskite‐Based Flexible and Stable Memristor by Complete Solution Process for Neuromorphic Computing
Nandi et al. High Spatial Resolution Thermal Mapping of Volatile Switching in NbO x-Based Memristor Using In Situ Scanning Thermal Microscopy
WO2023167244A1 (ja) 相互接続構造および情報処理装置
Peiris et al. Memristor arrays formed by reversible formation and breakdown of nanoscale silica layers on Si–H surfaces
Qian et al. Thermodynamics of Ionic Thermoelectrics for Low-Grade Heat Harvesting
Lv et al. Nonvolatile bipolar resistive switching behavior in the perovskite-like (CH3NH3) 2FeCl4
Aiba et al. Investigation of Ag and Cu filament formation inside the metal sulfide layer of an atomic switch based on point-contact spectroscopy
Hao et al. Activating silent synapses in sulfurized indium selenide for neuromorphic computing
Ananthakrishnan et al. Water-based resistive switches for neuromorphic long-range connections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024504727

Country of ref document: JP

Kind code of ref document: A