WO2023167196A1 - 電極活物質、電極、電気化学デバイス、モジュール及び方法 - Google Patents

電極活物質、電極、電気化学デバイス、モジュール及び方法 Download PDF

Info

Publication number
WO2023167196A1
WO2023167196A1 PCT/JP2023/007354 JP2023007354W WO2023167196A1 WO 2023167196 A1 WO2023167196 A1 WO 2023167196A1 JP 2023007354 W JP2023007354 W JP 2023007354W WO 2023167196 A1 WO2023167196 A1 WO 2023167196A1
Authority
WO
WIPO (PCT)
Prior art keywords
anhydride
carbonate
fluorinated
group
methyl
Prior art date
Application number
PCT/JP2023/007354
Other languages
English (en)
French (fr)
Inventor
武志 安部
健太郎 平賀
貴哉 山田
明平 杉山
穣輝 山崎
Original Assignee
国立大学法人京都大学
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, ダイキン工業株式会社 filed Critical 国立大学法人京都大学
Publication of WO2023167196A1 publication Critical patent/WO2023167196A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to electrode active materials, electrodes, electrochemical devices, modules and methods.
  • Lithium-ion secondary batteries generally use a lithium-containing metal oxide such as lithium cobaltate for the positive electrode and a carbon material such as graphite for the negative electrode, and charge and discharge using lithium ions (Li + ) as charge carriers.
  • Fluoride ion batteries in which fluoride ions (F ⁇ ) are charge carriers. Fluoride ion batteries are characterized by their high voltage, and the most commonly used are primary batteries that use graphite fluoride for the positive electrode and lithium metal for the negative electrode. is also in progress (see Patent Documents 1 and 2, for example).
  • An object of the present disclosure is to provide an electrode active material, an electrode, an electrochemical device, a module, and a method that can improve the charge-discharge cycle performance using the reaction of fluoride ions.
  • the present disclosure includes a carbon material, a metal fluoride is formed during discharge, and a fluoride ion desorbed from the metal fluoride during charge reacts with the carbon material to form a CF bond.
  • active materials include a carbon material, a metal fluoride is formed during discharge, and a fluoride ion desorbed from the metal fluoride during charge reacts with the carbon material to form a CF bond.
  • the present disclosure also relates to an electrode active material that includes a carbon material and a metal fluoride after discharge and a C—F bond after charge.
  • Carbon fluoride is preferably present in the electrode active material after charging.
  • the electrode active material was found to have the following peak intensity after 100 seconds: )/(peak intensity at 0 second) is preferably 0.30 or less.
  • the present disclosure also relates to electrodes comprising the electrode active materials described above.
  • the electrode is preferably a positive electrode.
  • the present disclosure also relates to electrochemical devices including the electrodes described above.
  • the electrochemical device preferably includes, as a counter electrode of the electrode, an electrode that does not form a bond with fluoride ions during charging and discharging.
  • the electrochemical device preferably contains an electrolytic solution containing a fluorine-containing compound.
  • the electrochemical device preferably uses the electrode as a positive electrode.
  • the electrochemical device preferably uses a material capable of storing lithium as a negative electrode.
  • the material capable of storing lithium is preferably at least one selected from graphite, tin, silicon, silicon oxide and lithium.
  • the electrochemical device is preferably used under a voltage of 4.9V or higher.
  • the present disclosure also relates to modules comprising the above electrochemical devices.
  • the present disclosure also relates to methods of using the above electrochemical devices under voltages of 4.9V or higher.
  • an electrode active material an electrode, an electrochemical device, a module, and a method that can improve the charge/discharge cycle performance using the reaction of fluoride ions.
  • FIG. 1 is the result of XPS analysis of carbon fluoride in Experiment 1.
  • FIG. 4 is the result of XPS analysis of the positive electrode in Experiment 1.
  • FIG. 4 shows the result of image observation of the positive electrode in Experiment 1.
  • FIG. 4 shows the results of XRD analysis of the positive electrode in Experiment 1.
  • the present disclosure includes an electrode active material (hereinafter referred to as “this disclosure (also referred to as “the first electrode active material of”).
  • This disclosure also referred to as “the first electrode active material of”
  • the present disclosure also provides an electrode active material containing a carbon material and a metal fluoride after discharging, and in which fluoride ions are inserted into the carbon material after charging (hereinafter also referred to as "second electrode active material of the present disclosure”) described).
  • metal fluorides are formed on the electrode during discharge.
  • a reaction conversion reaction
  • a reaction insertion reaction
  • the fluoride ions are inserted into the carbon material.
  • a fluoride ion form a C—F bond to form a carbon fluoride or the like. Due to the occurrence of the insertion reaction through such a conversion reaction, the charge/discharge cycle performance can be improved as compared with the rocking chair type secondary battery described above.
  • the second electrode active material of the present disclosure describes the electrode active material in which the insertion reaction via the conversion reaction described above occurs in a different expression from the first electrode active material of the present disclosure.
  • the first electrode active material of the present disclosure and the second electrode active material of the present disclosure are also collectively referred to as the electrode active material of the present disclosure.
  • Example 2 of Patent Document 2 uses an anion receptor or a cation receptor as an additive.
  • the anion receptors exemplified above are boron-based compounds having structures represented by AR1 to AR3. When used as a material, even if the operating voltage is 5 V or higher, good cycle performance cannot be obtained. Therefore, when the anion receptor is used, the anion receptor coordinated with the fluoride ion of the fluoride salt promotes the production of fluoride ions, and the reaction between the fluoride ions and the active materials of both the positive and negative electrodes occurs. It is considered that the insertion reaction, which proceeded preferentially and went through the above-mentioned unipolar conversion reaction, did not occur.
  • Crown ethers and the like are exemplified as the above-mentioned cation receptors, and when these are used, the above-mentioned cation receptors coordinated with the metal ions of the fluoride salt promote the production of fluoride ions, It is believed that the reactions between the compound ions and the active materials of both the positive and negative electrodes proceed preferentially, and that the insertion reaction via the above-mentioned conversion reaction at the single electrode does not occur, as in the case of using the anion receptor. .
  • Example 1 of Patent Document 2 neither an anion receptor nor a cation receptor is used, and the battery is charged to 5.2V.
  • the electrode active material Certain requirements are required. Although the detailed reason is unknown, it is considered that the use of the electrode active material of the present disclosure causes an insertion reaction, which is different from that in Patent Document 2, to proceed through a single-polar conversion reaction.
  • metal fluorides are typically formed on the surface of electrodes comprising the electrode active materials of the present disclosure.
  • the metal source in the metal fluoride formation reaction is not particularly limited, and may be an electrolyte salt or the other electrode.
  • metal elements contained in the metal fluorides include Li, Na, K, Rb, Cs, Ca, Mg, Al, Zn, La, Eu, Si, Ge, Sn, In, V, Cd, Cr, Fe, Ga, Ti, Nb, Mn, Yb, Zr, Sm, Ce, Pb and the like can be mentioned.
  • the metal element is preferably at least one selected from the group consisting of Li, Na, K, Rb, Cs, Ca, Mg, Al and Zn.
  • Li and/or Na are preferred, and Li is most preferred. That is, the metal fluoride is preferably lithium fluoride.
  • the electrode active material of the present disclosure is not particularly limited as long as it contains a carbon material and is capable of undergoing an insertion reaction via the conversion reaction described above.
  • carbon fluoride is formed by reaction with the carbon material, ie carbon fluoride is present after charging. In the state after discharging, the amount of carbon fluoride is usually smaller than that after charging. Carbon fluoride may or may not be present after discharge.
  • carbon fluoride preferably graphite fluoride
  • CFx carbon fluoride
  • x is preferably 0.3 to 0.9.
  • the lower limit is more preferably 0.4 and the upper limit is more preferably 0.8.
  • the electrode active material of the present disclosure preferably has a high fluorine concentration on the surface. It is believed that this facilitates the insertion reaction via the conversion reaction described above.
  • the fluorine concentration on the surface can be evaluated by XPS measurement using argon ion etching. For example, under argon ion etching (10 mA, 0.5 kV), the value of (peak intensity after 100 s)/(peak intensity at 0 s) for the time course of the peak corresponding to CF2 in C1s is the surface fluorine
  • the index I is preferably 0.30 or less, more preferably 0.20 or less, and even more preferably 0.10 or less. Although the lower limit is not particularly limited, it is preferably 0.01 or more.
  • the peak corresponding to CF 2 shifts in the range of 295 eV to 290 eV depending on the type of carbon material used as the raw material and the progress of sputtering.
  • the peak intensity of the peak corresponding to CF 2 is the peak top when the peak top is clear, and the maximum value in the above region when the peak top is not clear.
  • the method for increasing the fluorine concentration on the surface is not particularly limited, but for example, when synthesizing the electrode active material, the reaction time among the reaction conditions between the raw material carbon material and fluorine gas should be shortened (within 100 hours). , by increasing the concentration of the circulating fluorine gas (50% or more), by increasing the reaction temperature (300° C. or more), and the like. These conditions may be used alone or in combination.
  • the electrode active material of the present disclosure preferably has a large specific surface area. It is believed that this facilitates the insertion reaction via the conversion reaction described above. However, if the specific surface area is too large, side reactions tend to occur, so the following range is preferred.
  • the specific surface area of the electrode active material of the present disclosure is preferably 100 m 2 /g or more, more preferably 150 m 2 /g or more, still more preferably 300 m 2 /g or more, and preferably 3000 m 2 /g or less, and more preferably 300 m 2 /g or more. It is preferably 2000 m 2 /g or less, more preferably 1000 m 2 /g or less, still more preferably 500 m 2 /g or less.
  • the above specific surface area is a value obtained by analysis by the BET method based on the nitrogen gas adsorption method.
  • the method for increasing the specific surface area is not particularly limited, but examples thereof include a method of using a carbon material having a large specific surface area as a raw material when synthesizing the electrode active material.
  • the specific surface area of the raw carbon material is preferably 30 m 2 /g or more, more preferably 100 m 2 /g or more, still more preferably 200 m 2 /g or more, and preferably 3000 m 2 /g. g or less, more preferably 2000 m 2 /g or less, still more preferably 1000 m 2 /g or less, and even more preferably 500 m 2 /g or less.
  • the electrode active material of the present disclosure is a carbon fluoride represented by CFx, if x is within the above range, the specific surface area of the carbon fluoride tends to fall within the range described in the preceding paragraph. .
  • the shape of the particles of the electrode active material of the present disclosure includes conventionally used lumps, polyhedrons, spheres, ellipsoids, plates, needles, columns, fibers, tubes, and the like. Also, the primary particles may aggregate to form secondary particles.
  • the fibrous and tubular materials have too large a specific surface area, and side reactions other than the insertion reaction after the conversion reaction described above are likely to occur. Therefore, the shape is preferably neither fibrous nor tubular, and preferably spherical.
  • the form of the electrode active material of the present disclosure described in [0032] to [0038] is the state before charging and discharging (state of raw material (state 1)), the state after charging and discharging in a battery ( Either state 2) may be used. More specifically, only one of state 1 and state 2 may be the above mode, or both state 1 and state 2 may be the above mode. State 2 may be after charging, after discharging, or during charging/discharging.
  • the electrode active material of the present disclosure may be used alone or in combination of two or more.
  • the present disclosure also relates to electrodes comprising the electrode active materials of the present disclosure.
  • the electrode of the present disclosure can be suitably used as a positive electrode.
  • the positive electrode is composed of a positive electrode active material layer containing a positive electrode active material and a current collector. Further, the positive electrode active material layer is composed of a positive electrode mixture containing a positive electrode active material.
  • the content of the electrode active material of the present disclosure is preferably 50 to 99.5% by mass of the positive electrode mixture.
  • the lower limit is more preferably 80% by mass, and the upper limit is more preferably 99% by mass.
  • the content of the electrode active material of the present disclosure in the electrode active material layer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more.
  • the upper limit is preferably 99% by mass or less, more preferably 98% by mass or less. If the content is low, the electric capacity may become insufficient. Conversely, if the content is too high, the strength of the electrode may be insufficient.
  • the content of the electrode active material of the present disclosure in the positive electrode active material layer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more.
  • the upper limit is preferably 99% by mass or less, more preferably 98% by mass or less. If the content is low, the electric capacity may become insufficient. Conversely, if the content is too high, the strength of the positive electrode may be insufficient.
  • the positive electrode mixture may further contain a positive electrode active material other than the electrode active material of the present disclosure.
  • a positive electrode active material a material with a high specific surface area that can impart an electric double layer capacity, a material that can electrochemically absorb and release lithium ions, etc. can be used.
  • lithium-containing transition metals Composite oxides, lithium-containing transition metal phosphate compounds, sulfides (sulfur-based materials), conductive polymers, and the like can be mentioned. Among them, lithium-containing transition metal composite oxides and lithium-containing transition metal phosphate compounds are preferred, and lithium-containing transition metal composite oxides that produce high voltage are particularly preferred.
  • the positive electrode mixture preferably further contains a binder, a thickener, and a conductive material.
  • a binder any material can be used as long as it is a safe material for solvents and electrolytes used in electrode production.
  • Resin-based polymers such as group polyamide, chitosan, alginic acid, polyacrylic acid, polyimide, cellulose, nitrocellulose; SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, fluororubber, NBR (acrylonitrile-butadiene rubber), ethylene - Rubber-like polymers such as propylene rubber; styrene-butadiene-styrene block copolymers or hydrogenated products thereof; EPDM (ethylene-propylene-diene terpolymer), styrene-ethylene-butadiene-styrene copolymers, Thermoplastic elastomeric polymers such as styrene/
  • the content of the binder is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 1.2% by mass or more, as the ratio of the binder in the positive electrode active material layer, and It is usually 50% by mass or less, preferably 40% by mass or less, more preferably 30% by mass or less, and most preferably 10% by mass or less. If the proportion of the binder is too low, the positive electrode active material cannot be sufficiently retained, resulting in insufficient mechanical strength of the positive electrode, which may deteriorate battery performance such as cycle characteristics. On the other hand, if it is too high, it may lead to a decrease in battery capacity and conductivity.
  • thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, polyvinylpyrrolidone and salts thereof.
  • One type may be used alone, or two or more types may be used together in any combination and ratio.
  • the ratio of the thickening agent to the active material is usually 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more, and is usually 5% by mass or less, preferably 3% by mass. % by mass or less, more preferably 2% by mass or less. Below this range, the applicability may be remarkably lowered. If it exceeds, the proportion of the active material in the positive electrode active material layer may decrease, which may cause problems such as a decrease in battery capacity and an increase in resistance between the positive electrode active materials.
  • any known conductive material can be used as the conductive material.
  • Specific examples include metal materials such as copper, nickel, and gold; graphite such as natural graphite and artificial graphite; carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Needle coke, carbon nanotube, fullerene, carbon materials such as amorphous carbon such as VGCF, and the like. In addition, these may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
  • the conductive material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more, and is usually 50% by mass or less, preferably 30% by mass, in the positive electrode active material layer. % or less, more preferably 15 mass % or less. If the content is lower than this range, the electrical conductivity may be insufficient. Conversely, if the content is higher than this range, the battery capacity may decrease.
  • any solvent capable of dissolving or dispersing the positive electrode active material, the conductive material, the binder, and the thickener used as necessary can be used.
  • an aqueous solvent or an organic solvent may be used.
  • the aqueous solvent include water, a mixed medium of alcohol and water, and the like.
  • organic solvents include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone and cyclohexanone.
  • esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine and N,N-dimethylaminopropylamine; ethers such as diethyl ether, propylene oxide and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) , N-butylpyrrolidone (NBP), 3-methoxy-N,N-dimethylpropionamide, dimethylformamide, amides such as dimethylacetamide; hexamethylphosphaamide, aprotic polar solvents such as dimethylsulfoxide, etc. .
  • Examples of materials for the positive electrode current collector include metals such as aluminum, titanium, tantalum, stainless steel and nickel, and metal materials such as alloys thereof; and carbon materials such as carbon cloth and carbon paper. Among them, metal materials, particularly aluminum or alloys thereof, are preferred.
  • the shape of the current collector examples include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, foam metal, etc., in the case of metal materials, and carbon plate, carbon A thin film, a carbon cylinder, etc. are mentioned. Among these, metal thin films are preferred. Incidentally, the thin film may be appropriately formed in a mesh shape. Although the thickness of the thin film is arbitrary, it is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and usually 1 mm or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. If the thin film is thinner than this range, the strength required as a current collector may be insufficient. Conversely, if the thin film is thicker than this range, the handleability may be impaired.
  • the surface of the current collector is coated with a conductive aid from the viewpoint of reducing the electrical contact resistance between the current collector and the positive electrode active material layer.
  • conductive aids include carbon and noble metals such as gold, platinum, and silver.
  • the ratio of the thicknesses of the current collector and the positive electrode active material layer is not particularly limited, but the value of (thickness of the positive electrode active material layer on one side immediately before injection of the electrolyte)/(thickness of the current collector) is 20. is preferably 15 or less, most preferably 10 or less, preferably 0.5 or more, more preferably 0.8 or more, and most preferably 1 or more. If this range is exceeded, the current collector may generate heat due to Joule heat during charging and discharging at a high current density. Below this range, the volume ratio of the current collector to the positive electrode active material increases, and the capacity of the battery may decrease.
  • the production of the positive electrode may be carried out according to a conventional method.
  • the above-described binder, thickener, conductive material, solvent, and the like are added to the positive electrode active material to form a slurry positive electrode mixture, which is applied to a current collector, dried, and then pressed to a high temperature.
  • a method of densification is mentioned.
  • the densification can be performed by hand pressing, roller pressing, or the like.
  • the density of the positive electrode active material layer is preferably 1.0 g/cm 3 or more, more preferably 1.3 g/cm 3 or more, still more preferably 1.5 g/cm 3 or more, and preferably 5.0 g/cm 3 or more. cm 3 or less, more preferably 3.0 g/cm 3 or less, and still more preferably 2.5 g/cm 3 or less. If this range is exceeded, the permeability of the electrolytic solution to the vicinity of the interface between the current collector and the active material is lowered, and the charge/discharge characteristics especially at high current densities are lowered, and high output may not be obtained. On the other hand, if it falls below, the conductivity between the active materials will decrease, the battery resistance will increase, and high output may not be obtained.
  • the present disclosure also relates to electrochemical devices comprising electrodes of the present disclosure.
  • the electrochemical device of the present disclosure preferably includes a positive electrode, a negative electrode, an electrolyte, a separator, etc. Specifically, a secondary battery including these is preferable.
  • both the positive electrode and the negative electrode react with fluoride ions during charging and discharging, and fluoride A bond with an ion is formed. Therefore, it is necessary to increase the concentration of fluoride ions in the electrolytic solution, but it is not easy to increase the concentration of fluoride ions because fluoride salts are usually sparingly soluble.
  • the electrochemical device of the present disclosure performs charging and discharging using the insertion reaction that has undergone the conversion reaction described above in the electrode of the present disclosure. can be a reserve-type secondary battery that reacts with the reactant. As a result, unlike the rocking chair type secondary battery described above, sufficient charging and discharging can be performed without increasing the concentration of fluoride ions in the electrolytic solution.
  • the electrochemical device of the present disclosure When the electrochemical device of the present disclosure is used as a reserve-type secondary battery, it is preferable to use an electrode that does not form a bond with fluoride ions during charging and discharging as the counter electrode of the present disclosure. As such an electrode, those described below for the negative electrode can be preferably used. A preferred configuration when the electrochemical device of the present disclosure is used as a reserve type secondary battery will be described in more detail below.
  • the positive electrode is preferably the electrode of the present disclosure described above.
  • the negative electrode is composed of a negative electrode active material layer containing a negative electrode active material and a current collector.
  • the negative electrode active material layer is composed of a negative electrode mixture containing a negative electrode active material.
  • the negative electrode active material a material capable of storing lithium can be used. More specifically, it is possible to absorb and release lithium such as thermal decomposition products of organic substances under various thermal decomposition conditions, artificial graphite, and natural graphite.
  • metal oxide materials capable of intercalating and deintercalating lithium such as tin oxide and silicon oxide; lithium metals; various lithium alloys; and lithium-containing metal composite oxide materials. These negative electrode active materials may be used in combination of two or more.
  • Carbonaceous materials capable of absorbing and desorbing lithium include artificial graphite or purified natural graphite produced by high-temperature treatment of graphitizable pitch obtained from various raw materials, or surface treatment of these graphites with pitch or other organic substances.
  • Natural graphite, artificial graphite, artificial carbonaceous material, and carbonaceous material obtained by heat-treating the artificial graphite material once or more in the range of 400 to 3200 ° C., and the negative electrode active material layer are preferably obtained by carbonizing after applying A carbonaceous material composed of carbonaceous matter having at least two different crystallinities and/or having an interface where the carbonaceous matter with different crystallinity contacts, and a negative electrode active material layer having at least two or more different orientations
  • a carbonaceous material having an interface in contact with the carbonaceous matter is more preferable because it has a good balance between the initial irreversible capacity and the high current density charge/discharge characteristics.
  • these carbon materials may be used singly, or two or more of them may be used in any combination and
  • Carbonaceous materials obtained by heat-treating the above artificial carbonaceous substances and artificial graphite substances at least once in the range of 400 to 3200 ° C. include coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, and oxidation of these pitches. Processed products, needle coke, pitch coke and partially graphitized carbon agents, furnace black, acetylene black, pyrolyzates of organic substances such as pitch-based carbon fibers, carbonizable organic substances and their carbonized products, or carbonizable benzene, toluene, xylene, quinoline, n-hexane, and other low-molecular-weight organic solvents, and carbonized products thereof.
  • the metal material (excluding lithium-titanium composite oxide) used as the negative electrode active material as long as it can absorb and release lithium, elemental lithium, elemental metals and alloys forming lithium alloys, or oxides thereof It may be any compound such as a substance, carbide, nitride, silicide, sulfide or phosphide, and is not particularly limited.
  • the elemental metals and alloys forming the lithium alloy are preferably materials containing group 13 and group 14 metals and metalloid elements, more preferably aluminum, silicon and tin (hereinafter abbreviated as "specific metal elements” ) and alloys or compounds containing these atoms. These may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
  • the negative electrode active material having at least one atom selected from the specific metal elements, any one metal simple substance of the specific metal element, an alloy composed of two or more specific metal elements, one or two or more specific metal elements Alloys composed of metallic elements and other one or more metallic elements, compounds containing one or more specific metallic elements, and oxides, carbides, nitrides, and silicides of these compounds , sulfides or phosphides.
  • these simple metals, alloys, or metal compounds as the negative electrode active material, it is possible to increase the capacity of the battery.
  • a composite material containing Si or Sn as a first constituent element and additionally containing second and third constituent elements can be mentioned.
  • the second constituent element is, for example, at least one of cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium and zirconium.
  • the third constituent element is, for example, at least one of boron, carbon, aluminum and phosphorus.
  • silicon or tin alone which may contain trace amounts of impurities
  • SiO v (0 ⁇ v ⁇ 2), SnO w (0 ⁇ w ⁇ 2), Si--Co--C composite materials, Si--Ni--C composite materials, Sn--Co--C composite materials, and Sn--Ni--C composite materials are preferred.
  • the lithium-containing metal composite oxide material used as the negative electrode active material is not particularly limited as long as it can occlude and release lithium, but materials containing titanium and lithium are preferable from the viewpoint of high current density charge-discharge characteristics.
  • a lithium-containing composite metal oxide material containing titanium is more preferred, and a composite oxide of lithium and titanium (hereinafter abbreviated as “lithium-titanium composite oxide”) is more preferred. That is, it is particularly preferable to contain a lithium-titanium composite oxide having a spinel structure in the negative electrode active material for electrolyte batteries, because the output resistance is greatly reduced.
  • the above lithium-titanium composite oxide has the general formula: LixTiyMzO4 _ _ _ [In the formula, M represents at least one element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn and Nb. ] It is preferably a compound represented by.
  • M represents at least one element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn and Nb.
  • It is preferably a compound represented by.
  • (i) 1.2 ⁇ x ⁇ 1.4, 1.5 ⁇ y ⁇ 1.7, z 0
  • z 0
  • compositions of the above compounds are Li 4/3 Ti 5/3 O 4 in (i), Li 1 Ti 2 O 4 in (ii), and Li 4/5 Ti 11/5 O in (iii). 4 .
  • Li 4/3 Ti 4/3 Al 1/3 O 4 is preferable.
  • the negative electrode active material is preferably a material capable of storing lithium, more preferably at least one selected from graphite, tin, silicon, silicon oxide, lithium and lithium-containing metal composite oxides, graphite, More preferably, it is at least one selected from tin, silicon, silicon oxide and lithium.
  • the negative electrode mixture preferably further contains a binder, a thickener, and a conductive material.
  • the binder examples include those similar to the binder that can be used for the positive electrode described above.
  • the ratio of the binder to the negative electrode active material is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, particularly preferably 0.6% by mass or more, and preferably 20% by mass or less. It is more preferably 10% by mass or less, particularly preferably 8% by mass or less. If the ratio of the binder to the negative electrode active material exceeds the above range, the ratio of the binder that does not contribute to the battery capacity increases, which may lead to a decrease in the battery capacity. On the other hand, when it is less than the above range, the strength of the negative electrode may be lowered.
  • the ratio of the binder to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more. , more preferably 0.6% by mass or more, and usually 5% by mass or less, preferably 3% by mass or less, and more preferably 2% by mass or less.
  • the ratio to the negative electrode active material is usually 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more. It is preferably 15% by mass or less, preferably 10% by mass or less, and more preferably 8% by mass or less.
  • the thickening agent examples include those similar to the thickening agent that can be used for the positive electrode described above.
  • the ratio of the thickening agent to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and usually 5% by mass or less, 3% by mass or less is preferable, and 2% by mass or less is more preferable. If the ratio of the thickener to the negative electrode active material is less than the above range, the coatability may be remarkably deteriorated. On the other hand, when the above range is exceeded, the proportion of the negative electrode active material in the negative electrode active material layer decreases, which may lead to a problem of a decrease in battery capacity and an increase in resistance between the negative electrode active materials.
  • Examples of conductive materials for the negative electrode include metallic materials such as copper and nickel; carbon materials such as graphite and carbon black.
  • any solvent capable of dissolving or dispersing the negative electrode active material, the binder, and the thickener and conductive material used as necessary can be used.
  • an aqueous solvent or an organic solvent may be used.
  • aqueous solvents include water and alcohols
  • organic solvents include N-methylpyrrolidone (NMP), N-butylpyrrolidone (NBP), 3-methoxy-N,N-dimethylpropionamide, dimethylformamide, dimethyl Acetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N,N-dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphaamide, dimethylsulfoxide, benzene , xylene, quinoline, pyridine, methylnaphthalene, hexane, and the like.
  • NMP N-methylpyrrolidone
  • NBP N-butylpyrrolidone
  • Copper, nickel, stainless steel, etc. are mentioned as a material of the collector for negative electrodes. Among them, copper foil is preferable from the point of view of ease of processing into a thin film and the point of cost.
  • the thickness of the current collector is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, and usually 100 ⁇ m or less, preferably 50 ⁇ m or less. If the thickness of the negative electrode current collector is too thick, the capacity of the entire battery may be too low.
  • the production of the negative electrode may be carried out according to a conventional method. For example, there is a method of adding the binder, thickener, conductive material, solvent, etc. described above to the negative electrode material to form a slurry, applying it to a current collector, drying it, and pressing it to increase the density. . Moreover, when an alloy material is used, a method of forming a thin film layer (negative electrode active material layer) containing the above-mentioned negative electrode active material by a method such as a vapor deposition method, a sputtering method, or a plating method is also used.
  • a method of forming a thin film layer (negative electrode active material layer) containing the above-mentioned negative electrode active material by a method such as a vapor deposition method, a sputtering method, or a plating method is also used.
  • the electrode structure when the negative electrode active material is formed into an electrode is not particularly limited, but the density of the negative electrode active material present on the current collector is preferably 1 g cm ⁇ 3 or more, and 1.2 g cm ⁇ 3 or more. is more preferable, 1.3 g cm ⁇ 3 or more is particularly preferable, 2.2 g cm ⁇ 3 or less is preferable, 2.1 g cm ⁇ 3 or less is more preferable, and 2.0 g cm ⁇ 3 or less is preferable. More preferably, 1.9 g ⁇ cm ⁇ 3 or less is particularly preferable.
  • the density of the negative electrode active material present on the current collector exceeds the above range, the negative electrode active material particles are destroyed, the initial irreversible capacity increases, and the electrolyte near the interface between the current collector and the negative electrode is damaged. In some cases, deterioration of high current density charge/discharge characteristics may be caused due to a decrease in permeability of the electrolyte.
  • the conductivity between the negative electrode active materials may decrease, the battery resistance may increase, and the capacity per unit volume may decrease.
  • the thickness of the negative electrode plate is designed according to the positive electrode plate to be used and is not particularly limited, but the thickness of the mixture layer after subtracting the metal foil thickness of the core material is usually 15 ⁇ m or more, preferably 20 ⁇ m or more. , more preferably 30 ⁇ m or more, and usually 300 ⁇ m or less, preferably 280 ⁇ m or less, more preferably 250 ⁇ m or less.
  • the above negative electrode plate may be used in which a substance having a different composition is attached to the surface of the negative electrode plate.
  • Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, oxides such as bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, and calcium sulfate.
  • sulfates such as aluminum sulfate
  • carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate.
  • the electrolyte may be an electrolytic solution containing a solvent and an electrolyte salt, or may be a solid electrolyte.
  • the solvent preferably contains at least one selected from the group consisting of carbonates and carboxylic acid esters. Further, by forming a fluorine-based electrolyte solution using these fluorides as the solvent, it is possible to maintain better cycle performance even in a fluoride ion battery characterized by high voltage.
  • the carbonate may be a cyclic carbonate or a chain carbonate.
  • the cyclic carbonate may be a non-fluorinated cyclic carbonate or a fluorinated cyclic carbonate.
  • non-fluorinated cyclic carbonates examples include non-fluorinated saturated cyclic carbonates, preferably non-fluorinated saturated alkylene carbonates having an alkylene group having 2 to 6 carbon atoms, and non-fluorine having an alkylene group having 2 to 4 carbon atoms. More preferred are saturated alkylene carbonates.
  • non-fluorinated saturated cyclic carbonate ethylene carbonate, propylene carbonate, cis-2,3-pentylene carbonate, and cis-2,3-butylene carbonate are used because they have a high dielectric constant and a suitable viscosity.
  • non-fluorinated saturated cyclic carbonates may be used alone, or two or more of them may be used in any combination and ratio.
  • the content of the non-fluorinated saturated cyclic carbonate is preferably 5 to 90% by volume, more preferably 10 to 60% by volume, relative to the solvent. It is preferably 15 to 45% by volume, and more preferably 15 to 45% by volume.
  • the fluorinated cyclic carbonate is a cyclic carbonate having a fluorine atom.
  • a solvent containing a fluorinated cyclic carbonate can be suitably used even under high voltage.
  • "high voltage” refers to a voltage of 4.2V or higher. Also, the upper limit of the "high voltage” is preferably 5.5V, more preferably 5.4V.
  • the fluorinated cyclic carbonate may be a fluorinated saturated cyclic carbonate or a fluorinated unsaturated cyclic carbonate.
  • the fluorinated saturated cyclic carbonate is a saturated cyclic carbonate having a fluorine atom, and specifically has the following general formula (A):
  • X 1 to X 4 are the same or different, and are each —H, —CH 3 , —C 2 H 5 , —F, a fluorinated alkyl group which may have an ether bond, or an ether bond. represents a fluorinated alkoxy group which may have, provided that at least one of X 1 to X 4 is —F, a fluorinated alkyl group which may have an ether bond, or a fluorinated alkyl group which may have an ether bond It is a good fluorinated alkoxy group.).
  • the fluorinated alkyl group includes -CF 3 , -CF 2 H, -CH 2 F and the like.
  • an "ether bond” is a bond represented by -O-.
  • one or two of X 1 to X 4 may have —F, a fluorinated alkyl group optionally having an ether bond, or an ether bond A fluorinated alkoxy group is preferred.
  • X 1 to X 4 are -H, -F, a fluorinated alkyl group (a), and an ether bond, since a decrease in viscosity at low temperatures, an increase in flash point, and an improvement in solubility of electrolyte salts can be expected. It is preferably a fluorinated alkyl group (b) or a fluorinated alkoxy group (c).
  • the fluorinated alkyl group (a) is obtained by substituting at least one hydrogen atom of an alkyl group with a fluorine atom.
  • the number of carbon atoms in the fluorinated alkyl group (a) is preferably 1-20, more preferably 1-17, even more preferably 1-7, and particularly preferably 1-5. If the number of carbon atoms is too large, the low-temperature characteristics may deteriorate and the solubility of the electrolyte salt may decrease. Increased viscosity, etc. may be observed.
  • fluorinated alkyl group (a) having 1 carbon atom examples include CFH 2 —, CF 2 H—, and CF 3 —.
  • CF 2 H— or CF 3 — is preferred from the standpoint of high-temperature storage properties, and CF 3 — is most preferred.
  • R a1 -R a2 - (a-1) those having 2 or more carbon atoms are represented by the following general formula (a-1): R a1 -R a2 - (a-1) (Wherein, R a1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom; R a2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom; At least one of R a2 has a fluorine atom) can be preferably exemplified from the viewpoint of good solubility of the electrolyte salt. R a1 and R a2 may further have atoms other than carbon, hydrogen and fluorine atoms.
  • R a1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom.
  • R a1 is preferably a linear or branched alkyl group having 1 to 16 carbon atoms.
  • the number of carbon atoms in R a1 is more preferably 1-6, more preferably 1-3.
  • R a1 is a linear or branched alkyl group such as CH 3 —, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CH 3 CH 2 CH 2 CH 2 —,
  • R a1 is a linear alkyl group having a fluorine atom, CF 3 —, CF 3 CH 2 —, CF 3 CF 2 —, CF 3 CH 2 CH 2 —, CF 3 CF 2 CH 2 — , CF 3 CF 2 CF 2 —, CF 3 CH 2 CF 2 —, CF 3 CH 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CF 2CF2CH2- , CF3CF2CF2CF2- , CF3CF2CH2CF2- , CF3CH2CH2CH2CH2- , CF3CF2CH2CH2CH2- , CF3CF2CH2CH2CH2- , CF3CF2CH2CH2CH2- , CF3CF2CH2CH2CH2- , CF3CF2CH2CH2CH2- , CF
  • R a1 is a branched alkyl group having a fluorine atom
  • R a2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom.
  • R a2 may be linear or branched.
  • An example of the minimum structural unit constituting such a linear or branched alkylene group is shown below.
  • R a2 is composed of these singly or in combination.
  • the structural unit is composed of structural units that do not contain Cl, since the de-HCl reaction by a base does not occur and it is more stable.
  • R a2 is linear, it consists only of the minimum linear structural unit described above, and is preferably -CH 2 -, -CH 2 CH 2 - or -CF 2 -. -CH 2 - or -CH 2 CH 2 - is more preferable because it can further improve the solubility of the electrolyte salt.
  • R a2 When R a2 is branched, it contains at least one branched minimum structural unit described above and has the general formula —(CX a X b )—(X a is H, F , CH 3 or CF 3 ; X b is CH 3 or CF 3 , provided that when X b is CF 3 , X a is H or CH 3 ). These can further improve the solubility of electrolyte salts in particular.
  • Preferred fluorinated alkyl groups (a) include, for example, CF 3 CF 2 —, HCF 2 CF 2 —, H 2 CFCF 2 —, CH 3 CF 2 —, CF 3 CHF—, CH 3 CF 2 —, CF 3 CF 2CF2- , HCF2CF2CF2- , H2CFCF2CF2- , CH3CF2CF2- , _ _ _ _
  • the ether bond-containing fluorinated alkyl group (b) is obtained by substituting at least one hydrogen atom of an ether bond-containing alkyl group with a fluorine atom.
  • the fluorinated alkyl group (b) having an ether bond preferably has 2 to 17 carbon atoms. If the number of carbon atoms is too large, the viscosity of the fluorinated saturated cyclic carbonate increases, and the number of fluorine-containing groups increases. a decrease in From this point of view, the number of carbon atoms in the fluorinated alkyl group (b) having an ether bond is more preferably 2-10, more preferably 2-7.
  • the alkylene group constituting the ether portion of the fluorinated alkyl group (b) having an ether bond may be a linear or branched alkylene group.
  • An example of the minimum structural unit constituting such a linear or branched alkylene group is shown below.
  • the alkylene group may be composed of these minimum structural units alone, and may be linear (i), branched (ii), or linear (i) and branched (ii). It may be configured by a combination. Preferred specific examples will be described later.
  • the structural unit is composed of structural units that do not contain Cl, since the de-HCl reaction by a base does not occur and it is more stable.
  • a more preferable fluorinated alkyl group (b) having an ether bond is the general formula (b-1): R 3 -(OR 4 ) n1 - (b-1) (Wherein, R 3 optionally has a fluorine atom, preferably an alkyl group having 1 to 6 carbon atoms; R 4 optionally having a fluorine atom, preferably an alkylene group having 1 to 4 carbon atoms group; n1 is an integer of 1 to 3; provided that at least one of R 3 and R 4 has a fluorine atom).
  • R 3 and R 4 include the following, which can be appropriately combined to constitute the fluorinated alkyl group (b) having an ether bond represented by the above general formula (b-1). , but not limited to these.
  • R 3 has the general formula: X c 3 C—(R 5 ) n2 — (three X cs are the same or different and all are H or F; R 5 is a fluorine atom having 1 to 5 carbon atoms; An alkylene group which may be present; n2 is preferably 0 or an alkyl group represented by 1).
  • R 3 includes CH 3 —, CF 3 —, HCF 2 — and H 2 CF—.
  • n2 is 1 include CF 3 CH 2 —, CF 3 CF 2 —, CF 3 CH 2 CH 2 — , CF 3 CF 2 CH 2 —, CF 3CF2CF2- , CF3CH2CF2- , CF3CH2CH2CH2- , CF3CF2CH2CH2- , CF3CH2CF2CH2- , CF3CF2CF _ _ _ _ _ _ _ 2CH2- , CF3CF2CF2CF2- , CF3CF2CH2CF2- , CF3CH2CH2CH2CH2- , CF3CF2CH2CH2CH2- , CF3CF2CH2CH2CH2- , CF _ _ _ _ _ _ _ _ _ _ _ 3CH2CF2CH2- , CF3CF2CH2CH2- , CF3CF2CH2CH2CH2- , CF _ _ _ _ _ _
  • R 3 is linear.
  • n1 is an integer of 1 to 3, preferably 1 or 2.
  • R4 may be the same or different.
  • R 4 include the following straight-chain or branched-chain ones.
  • Linear ones include -CH 2 -, -CHF-, -CF 2 -, -CH 2 CH 2 -, -CF 2 CH 2 -, -CF 2 CF 2 - , -CH 2 CF 2 -, -CH2CH2CH2- , -CH2CH2CF2- , -CH2CF2CH2- , -CH2CF2CF2- , -CF2CH2CH2- , -CF2CF2 _ _ _ _ _ _ CH 2 —, —CF 2 CF 2 — and the like can be exemplified.
  • the fluorinated alkoxy group (c) is obtained by substituting at least one hydrogen atom of an alkoxy group with a fluorine atom.
  • the fluorinated alkoxy group (c) preferably has 1 to 17 carbon atoms. More preferably, it has 1 to 6 carbon atoms.
  • the fluorinated alkoxy group (c) has the general formula: X d 3 C-(R 6 ) n3 -O- (three X d's are the same or different and all are H or F; R 6 preferably has a carbon number An alkylene group optionally having 1 to 5 fluorine atoms; n3 is 0 or 1; provided that any of the three Xd 's contains a fluorine atom) is particularly preferred.
  • fluorinated alkoxy group (c) examples include a fluorinated alkoxy group in which an oxygen atom is bonded to the terminal of the alkyl group exemplified as R 1 in the general formula (a-1).
  • the fluorine content of the fluorinated alkyl group (a), the fluorinated alkyl group (b) having an ether bond, and the fluorinated alkoxy group (c) in the fluorinated saturated cyclic carbonate is preferably 10% by mass or more. If the fluorine content is too low, the effect of lowering the viscosity at low temperatures and the effect of raising the flash point may not be sufficiently obtained. From this point of view, the fluorine content is more preferably 12% by mass or more, and even more preferably 15% by mass or more. The upper limit is usually 76% by mass.
  • the fluorine content of the fluorinated alkyl group (a), the fluorinated alkyl group (b) having an ether bond, and the fluorinated alkoxy group (c) is determined based on the structural formula of each group by ⁇ (the number of fluorine atoms ⁇ 19)/formula weight of each group ⁇ ⁇ 100 (%).
  • the fluorine content of the fluorinated saturated cyclic carbonate as a whole is preferably 10% by mass or more, more preferably 15% by mass or more.
  • the upper limit is usually 76% by mass.
  • the fluorine content of the fluorinated saturated cyclic carbonate is determined by ⁇ (number of fluorine atoms x 19)/molecular weight of fluorinated saturated cyclic carbonate ⁇ x 100 (%) based on the structural formula of the fluorinated saturated cyclic carbonate. This is a calculated value.
  • fluorinated saturated cyclic carbonate examples include the following.
  • fluorinated saturated cyclic carbonates in which at least one of X 1 to X 4 is -F,
  • fluorinated saturated cyclic carbonates in which at least one of X 1 to X 4 is a fluorinated alkyl group (a) and the rest are all —H are:
  • fluorinated saturated cyclic carbonates in which at least one of X 1 to X 4 is a fluorinated alkyl group (b) having an ether bond or a fluorinated alkoxy group (c), and the rest are all —H as,
  • any one of the following compounds is preferable as the fluorinated saturated cyclic carbonate.
  • fluorinated saturated cyclic carbonate examples include trans-4,5-difluoro-1,3-dioxolan-2-one, 5-(1,1-difluoroethyl)-4,4-difluoro-1, 3-dioxolan-2-one, 4-methylene-1,3-dioxolan-2-one, 4-methyl-5-trifluoromethyl-1,3-dioxolan-2-one, 4-ethyl-5-fluoro- 1,3-dioxolan-2-one, 4-ethyl-5,5-difluoro-1,3-dioxolan-2-one, 4-ethyl-4,5-difluoro-1,3-dioxolan-2-one, 4-ethyl-4,5,5-trifluoro-1,3-dioxolan-2-one, 4,4-difluoro-5-methyl-1,3-dioxolan-2-one, 4-fluoro-5-methyl
  • fluorinated saturated cyclic carbonate among others, fluoroethylene carbonate, difluoroethylene carbonate, trifluoromethylethylene carbonate (3,3,3-trifluoropropylene carbonate), 2,2,3,3,3-pentafluoro Propyl ethylene carbonate is more preferred.
  • the fluorinated unsaturated cyclic carbonate is a cyclic carbonate having an unsaturated bond and a fluorine atom, and is preferably a fluorinated ethylene carbonate derivative substituted with a substituent having an aromatic ring or a carbon-carbon double bond.
  • One of the fluorinated cyclic carbonates may be used alone, or two or more of them may be used in any combination and ratio.
  • the content of the fluorinated cyclic carbonate is preferably 0.5 to 90% by volume, more preferably 5 to 60% by volume, relative to the solvent, More preferably 10 to 40% by volume.
  • the linear carbonate may be a non-fluorinated linear carbonate or a fluorinated linear carbonate.
  • non-fluorinated linear carbonate examples include CH 3 OCOOCH 3 (dimethyl carbonate: DMC), CH 3 CH 2 OCOOCH 2 CH 3 (diethyl carbonate: DEC), CH 3 CH 2 OCOOCH 3 (ethyl methyl carbonate: EMC ), CH 3 OCOOCH 2 CH 2 CH 3 (methyl propyl carbonate), methyl butyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, dipropyl carbonate, dibutyl carbonate, methyl isopropyl carbonate, methyl-2-phenylphenyl carbonate, phenyl-2 -Phenylphenyl carbonate, trans-2,3-pentylene carbonate, trans-2,3-butylene carbonate, and hydrocarbon chain carbonates such as ethylphenyl carbonate.
  • the non-fluorinated chain carbonates may be used singly, or two or more of them may be used in any combination and ratio.
  • the content of the non-fluorinated linear carbonate is preferably 10 to 90% by volume, more preferably 40 to 85% by volume, relative to the solvent. It is preferably 50 to 80% by volume, and more preferably 50 to 80% by volume.
  • the fluorinated chain carbonate is a chain carbonate having a fluorine atom.
  • a solvent containing a fluorinated linear carbonate can be suitably used even under high voltage.
  • Rf 2 OCOOR 7 (B) (Wherein, Rf 2 is a fluorinated alkyl group having 1 to 7 carbon atoms, and R 7 is an alkyl group having 1 to 7 carbon atoms and may contain a fluorine atom.) can be mentioned.
  • Rf 2 is a fluorinated alkyl group having 1 to 7 carbon atoms
  • R 7 is an optionally fluorine-containing alkyl group having 1 to 7 carbon atoms.
  • the fluorinated alkyl group is obtained by substituting at least one hydrogen atom of an alkyl group with a fluorine atom.
  • R7 is an alkyl group containing a fluorine atom
  • Rf 2 and R 7 preferably have 1 to 7 carbon atoms, more preferably 1 to 2 carbon atoms, in terms of low viscosity. If the number of carbon atoms is too large, the low-temperature characteristics may deteriorate and the solubility of the electrolyte salt may decrease. Increased viscosity, etc. may be observed.
  • fluorinated alkyl group having 1 carbon atom examples include CFH 2 —, CF 2 H—, CF 3 — and the like.
  • CFH 2 - or CF 3 - is preferred in terms of high temperature storage characteristics.
  • R d1 ⁇ R d2 ⁇ (d ⁇ 1) As the fluorinated alkyl group having 2 or more carbon atoms, the following general formula (d-1): R d1 ⁇ R d2 ⁇ (d ⁇ 1) (Wherein, R d1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom; R d2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom; At least one of R d2 has a fluorine atom) can be preferably exemplified from the viewpoint of good solubility of the electrolyte salt. R d1 and R d2 may further have atoms other than carbon, hydrogen and fluorine atoms.
  • R d1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom.
  • R d1 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the number of carbon atoms in R d1 is more preferably 1-3.
  • R d1 is a linear or branched alkyl group such as CH 3 —, CF 3 —, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CH 3 CH 2 CH 2 CH. 2- ,
  • R d1 is a linear alkyl group having a fluorine atom, CF 3 —, CF 3 CH 2 —, CF 3 CF 2 —, CF 3 CH 2 CH 2 —, CF 3 CF 2 CH 2 — , CF 3 CF 2 CF 2 —, CF 3 CH 2 CF 2 —, CF 3 CH 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CF 2CF2CH2- , CF3CF2CF2CF2- , CF3CF2CH2CF2- , CF3CH2CH2CH2CH2- , CF3CF2CH2CH2CH2- , CF3CF2CH2CH2CH2- , CF3CF2CH2CH2CH2- , CF3CF2CH2CH2CH2- , CF3CF2CH2CH2CH2- , CF
  • R d1 is a branched alkyl group having a fluorine atom
  • R d2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom.
  • R d2 may be linear or branched.
  • An example of the minimum structural unit constituting such a linear or branched alkylene group is shown below.
  • R d2 is composed of these singly or in combination.
  • the structural unit is composed of structural units that do not contain Cl, since the de-HCl reaction by a base does not occur and it is more stable.
  • R d2 When R d2 is linear, it consists only of the minimum linear structural unit described above, and is preferably -CH 2 -, -CH 2 CH 2 - or -CF 2 -. -CH 2 - or -CH 2 CH 2 - is more preferable because it can further improve the solubility of the electrolyte salt.
  • R d2 When R d2 is branched, it contains at least one branched minimum structural unit described above and has the general formula -(CX a X b )-(X a is H, F , CH 3 or CF 3 ; X b is CH 3 or CF 3 , provided that when X b is CF 3 , X a is H or CH 3 ). These can further improve the solubility of electrolyte salts in particular.
  • preferred fluorinated alkyl groups include CF 3 CF 2 —, HCF 2 CF 2 —, H 2 CFCF 2 —, CH 3 CF 2 —, CF 3 CH 2 —, and CF 3 CF 2 CF.
  • 2- HCF2CF2CF2- , H2CFCF2CF2- , CH3CF2CF2- , _ _
  • the fluorinated alkyl groups of Rf 2 and R 7 include CF 3 —, CF 3 CF 2 —, (CF 3 ) 2 CH—, CF 3 CH 2 —, C 2 F 5 CH 2 —, CF 3 CF 2 CH 2 —, HCF 2 CF 2 CH 2 —, CF 3 CFHCF 2 CH 2 —, CFH 2 —, and CF 2 H— are preferred, since they have high flame retardancy and good rate characteristics and oxidation resistance. , CF 3 CH 2 —, CF 3 CF 2 CH 2 —, HCF 2 CF 2 CH 2 —, CFH 2 —, CF 2 H— are more preferred.
  • R 7 is an alkyl group containing no fluorine atom, it is an alkyl group having 1 to 7 carbon atoms.
  • R 7 preferably has 1 to 4 carbon atoms, more preferably 1 to 3 carbon atoms, in terms of low viscosity.
  • alkyl group containing no fluorine atom examples include CH 3 —, CH 3 CH 2 —, (CH 3 ) 2 CH—, and C 3 H 7 —. Of these, CH 3 — and CH 3 CH 2 — are preferred because of their low viscosity and good rate characteristics.
  • the fluorinated linear carbonate preferably has a fluorine content of 15 to 70% by mass.
  • the fluorine content is more preferably 20% by mass or more, still more preferably 30% by mass or more, particularly preferably 35% by mass or more, more preferably 60% by mass or less, and even more preferably 50% by mass or less.
  • the fluorine content is based on the structural formula of the fluorinated linear carbonate, ⁇ (number of fluorine atoms x 19)/molecular weight of fluorinated linear carbonate ⁇ x 100 (%) It is a value calculated by
  • the fluorinated linear carbonate is preferably any one of the following compounds from the viewpoint of low viscosity.
  • the above fluorinated chain carbonates may be used singly, or two or more may be used in any combination and ratio.
  • the content of the fluorinated linear carbonate is preferably 10 to 90% by volume, more preferably 40 to 85% by volume, relative to the solvent, More preferably 50 to 80% by volume.
  • the carboxylic acid ester may be a cyclic carboxylic acid ester or a chain carboxylic acid ester.
  • the cyclic carboxylic acid ester may be a non-fluorinated cyclic carboxylic acid ester or a fluorinated cyclic carboxylic acid ester.
  • non-fluorinated cyclic carboxylic acid esters examples include non-fluorinated saturated cyclic carboxylic acid esters, and non-fluorinated saturated cyclic carboxylic acid esters having an alkylene group having 2 to 4 carbon atoms are preferred.
  • non-fluorinated saturated cyclic carboxylic acid esters having an alkylene group having 2 to 4 carbon atoms include ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -methyl- ⁇ - Butyrolactone can be mentioned.
  • ⁇ -butyrolactone and ⁇ -valerolactone are particularly preferred from the viewpoint of improving the degree of dissociation of lithium ions and improving load characteristics.
  • non-fluorinated saturated cyclic carboxylic acid esters may be used singly, or two or more of them may be used in any combination and ratio.
  • the content of the non-fluorinated saturated cyclic carboxylic acid ester is preferably 0 to 90% by volume with respect to the solvent, and 0.001 to 90 volumes %, more preferably 1 to 60% by volume, and particularly preferably 5 to 40% by volume.
  • the chain carboxylic acid ester may be a non-fluorinated chain carboxylic acid ester or a fluorinated chain carboxylic acid ester.
  • the solvent contains the chain carboxylic acid ester, an increase in resistance after high-temperature storage of the electrolytic solution can be further suppressed.
  • non-fluorinated linear carboxylic acid ester examples include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, tert-butyl propionate, tert -butyl butyrate, sec-butyl propionate, sec-butyl butyrate, n-butyl butyrate, methyl pyrophosphate, ethyl pyrophosphate, tert-butyl formate, tert-butyl acetate, sec-butyl formate, sec -butyl acetate, n-hexyl pivalate, n-propyl formate, n-propyl acetate, n-butyl formate, n-butyl pivalate, n-octyl pivalate, ethyl 2-(dimeth
  • butyl acetate, methyl propionate, ethyl propionate, propyl propionate and butyl propionate are preferred, and ethyl propionate and propyl propionate are particularly preferred.
  • the non-fluorinated chain carboxylic acid esters may be used singly, or two or more of them may be used in any combination and ratio.
  • the content of the non-fluorinated linear carboxylic acid ester is preferably 0 to 90% by volume with respect to the solvent, and 0.001 to 90 volumes %, more preferably 1 to 60% by volume, and particularly preferably 5 to 40% by volume.
  • the fluorinated chain carboxylic acid ester is a chain carboxylic acid ester having a fluorine atom.
  • a solvent containing a fluorinated chain carboxylic acid ester can be suitably used even under high voltage.
  • the fluorinated linear carboxylic acid ester has the following general formula: R31 COOR32 (Wherein, R 31 and R 32 are each independently an optionally fluorine-containing alkyl group having 1 to 4 carbon atoms, and at least one of R 31 and R 32 contains a fluorine atom.)
  • R31 COOR32 wherein, R 31 and R 32 are each independently an optionally fluorine-containing alkyl group having 1 to 4 carbon atoms, and at least one of R 31 and R 32 contains a fluorine atom.
  • the fluorinated chain carboxylic acid esters shown are preferable from the viewpoint of good compatibility with other solvents and good oxidation resistance.
  • R 31 and R 32 examples include methyl group (--CH 3 ), ethyl group (--CH 2 CH 3 ), propyl group (--CH 2 CH 2 CH 3 ) and isopropyl group (--CH(CH 3 ) 2 ).
  • methyl group, ethyl group, -CF 3 , -CF 2 H, -CF 2 CF 3 , -CH 2 CF 3 , -CH 2 CF 3 , -CH 2 CF 2 H, -CH 2 CFH 2 , -CH 2 CH 2 CF 3 , —CH 2 CF 2 CF 3 , —CH 2 CF 2 CF 2 H, and —CH 2 CF 2 CFH 2 are particularly preferred from the viewpoint of compatibility with other solvents, viscosity and oxidation resistance.
  • the above fluorinated chain carboxylic acid esters may be used alone, or two or more of them may be used in any combination and ratio.
  • the content of the fluorinated chain carboxylic acid ester is preferably 10 to 90% by volume, and 40 to 85% by volume, relative to the solvent. is more preferred, and 50 to 80% by volume is even more preferred.
  • the solvent preferably contains at least one selected from the group consisting of the cyclic carbonate, the chain carbonate and the chain carboxylic acid ester, and the cyclic carbonate, the chain carbonate and the chain carboxylic acid and at least one selected from the group consisting of esters.
  • the cyclic carbonate is preferably a saturated cyclic carbonate.
  • the solvent contains the cyclic carbonate and at least one selected from the group consisting of the chain carbonate and the chain carboxylic acid ester
  • the cyclic carbonate, the chain carbonate and the chain carboxylic acid ester In total, at least one selected from the group consisting of preferably 10 to 100% by volume, more preferably 30 to 100% by volume, and even more preferably 50 to 100% by volume.
  • the solvent contains the cyclic carbonate and at least one selected from the group consisting of the chain carbonate and the chain carboxylic acid ester
  • the cyclic carbonate, the chain carbonate and the chain carboxylic acid ester The volume ratio to at least one selected from the group consisting of is preferably 5/95 to 95/5, more preferably 10/90 or more, further preferably 15/85 or more, and particularly preferably 20/80 or more. , is more preferably 90/10 or less, more preferably 60/40 or less, and particularly preferably 50/50 or less.
  • the solvent also preferably contains at least one selected from the group consisting of the non-fluorinated saturated cyclic carbonate, the non-fluorinated linear carbonate, and the non-fluorinated linear carboxylic acid ester. More preferably, it contains a saturated cyclic carbonate and at least one selected from the group consisting of the non-fluorinated linear carbonate and the non-fluorinated linear carboxylic acid ester.
  • the electrolytic solution containing the solvent having the above composition can be suitably used in electrochemical devices used at relatively low voltages.
  • the solvent contains the non-fluorinated saturated cyclic carbonate and at least one selected from the group consisting of the non-fluorinated linear carbonate and the non-fluorinated linear carboxylic acid ester
  • the non-fluorinated saturated cyclic The total of the carbonate and at least one selected from the group consisting of the non-fluorinated linear carbonate and the non-fluorinated linear carboxylic acid ester preferably contains 5 to 100% by volume, and 20 to 100% by volume. More preferably, it contains 30 to 100% by volume.
  • the electrolytic solution contains the non-fluorinated saturated cyclic carbonate and at least one selected from the group consisting of the non-fluorinated linear carbonate and the non-fluorinated linear carboxylic acid ester
  • the non-fluorinated saturated The volume ratio between the cyclic carbonate and at least one selected from the group consisting of the non-fluorinated linear carbonate and the non-fluorinated linear carboxylic acid ester is preferably 5/95 to 95/5, and 10/ 90 or more is more preferable, 15/85 or more is more preferable, 20/80 or more is particularly preferable, 90/10 or less is more preferable, 60/40 or less is still more preferable, and 50/50 or less is particularly preferable.
  • the solvent also preferably contains at least one selected from the group consisting of the fluorinated saturated cyclic carbonate, the fluorinated linear carbonate, and the fluorinated linear carboxylic acid ester, and the fluorinated saturated cyclic carbonate and at least one selected from the group consisting of the fluorinated linear carbonate and the fluorinated linear carboxylic acid ester.
  • the electrolytic solution containing the solvent having the above composition can be suitably used not only for electrochemical devices used at relatively low voltages but also for electrochemical devices used at relatively high voltages.
  • the solvent contains the fluorinated saturated cyclic carbonate and at least one selected from the group consisting of the fluorinated linear carbonate and the fluorinated linear carboxylic acid ester
  • the fluorinated saturated cyclic carbonate and the The total of at least one selected from the group consisting of the fluorinated linear carbonate and the fluorinated linear carboxylic acid ester preferably contains 5 to 100% by volume, more preferably 10 to 100% by volume, It is more preferable to contain 30 to 100% by volume.
  • the solvent contains the fluorinated saturated cyclic carbonate and at least one selected from the group consisting of the fluorinated linear carbonate and the fluorinated linear carboxylic acid ester
  • the fluorinated saturated cyclic carbonate and the The volume ratio to at least one selected from the group consisting of the fluorinated linear carbonate and the fluorinated linear carboxylic acid ester is preferably 5/95 to 95/5, more preferably 10/90 or more, and 15 /85 or more is more preferable, 20/80 or more is particularly preferable, 90/10 or less is more preferable, 60/40 or less is still more preferable, and 50/50 or less is particularly preferable.
  • An ionic liquid can also be used as the solvent.
  • An "ionic liquid” is a liquid composed of ions that are a combination of organic cations and anions.
  • organic cations include, but are not limited to, imidazolium ions such as dialkylimidazolium cations and trialkylimidazolium cations; tetraalkylammonium ions; alkylpyridinium ions; dialkylpyrrolidinium ions; and dialkylpiperidinium ions. .
  • Examples of anions that serve as counters to these organic cations are not particularly limited .
  • the solvent is preferably a non-aqueous solvent
  • the electrolytic solution is preferably a non-aqueous electrolytic solution.
  • the content of the solvent is preferably 70 to 99.999% by mass in the electrolytic solution, more preferably 80% by mass or more, and more preferably 92% by mass or less.
  • the electrolytic solution may further contain a compound (5) represented by the general formula (5).
  • a a+ is a metal ion, hydrogen ion or onium ion.
  • a is an integer of 1 to 3
  • b is an integer of 1 to 3
  • p is b/a
  • n203 is an integer of 1 to 4
  • n201 is 0 to An integer of 8
  • n202 is 0 or 1
  • Z 201 is a transition metal, an element of Groups III, IV or V of the Periodic Table.
  • X 201 is O, S, an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms (alkylene group , a halogenated alkylene group, an arylene group, and a halogenated arylene group may have substituents and heteroatoms in their structures, and when n202 is 1 and n203 is 2 to 4, n203 X 201 is may be combined).
  • L 201 is a halogen atom, a cyano group, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogenated aryl group having 6 to 20 carbon atoms ( Alkylene groups, halogenated alkylene groups, arylene groups, and halogenated arylene groups may have substituents and heteroatoms in their structures, and when n201 is 2 to 8, each of n201 L 201 is may combine to form a ring) or -Z 203 Y 203 .
  • Y 201 , Y 202 and Z 203 are each independently O, S, NY 204 , a hydrocarbon group or a fluorinated hydrocarbon group.
  • Y 203 and Y 204 are each independently H, F, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen having 6 to 20 carbon atoms.
  • the aryl group (alkyl group, halogenated alkyl group, aryl group and halogenated aryl group) may have a substituent or hetero atom in its structure, and when Y 203 or Y 204 is present in plural numbers, each may combine to form a ring).
  • a a+ includes lithium ion, sodium ion, potassium ion, magnesium ion, calcium ion, barium ion, cesium ion, silver ion, zinc ion, copper ion, cobalt ion, iron ion, nickel ion, manganese ion, titanium ion, Lead ion, chromium ion, vanadium ion, ruthenium ion, yttrium ion, lanthanide ion, actinide ion, tetrabutylammonium ion, tetraethylammonium ion, tetramethylammonium ion, triethylmethylammonium ion, triethylammonium ion, pyridinium ion, imidazolium ion , hydrogen ion, tetraethylphosphonium ion, tetramethylphosphonium ion
  • a a+ is preferably lithium ion, sodium ion, magnesium ion, tetraalkylammonium ion, hydrogen ion, and particularly preferably lithium ion.
  • the valence a of the cation of A a+ is an integer of 1-3. If it is larger than 3, the crystal lattice energy increases, which causes a problem of difficulty in dissolving in a solvent. Therefore, 1 is more preferable when solubility is required.
  • the valence b of the anion is also an integer of 1 to 3, preferably 1.
  • a constant p representing the ratio of cations and anions is inevitably determined by the valence ratio b/a of the two.
  • ligand portion of the general formula (5) will be described.
  • the organic or inorganic moieties attached to Z 201 in general formula (5) are referred to as ligands.
  • Z 201 is preferably Al, B, V, Ti, Si, Zr, Ge, Sn, Cu, Y, Zn, Ga, Nb, Ta, Bi, P, As, Sc, Hf or Sb, and Al , B or P are more preferred.
  • X 201 represents O, S, an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms or a halogenated arylene group having 6 to 20 carbon atoms.
  • alkylene groups and arylene groups may have substituents and heteroatoms in their structures.
  • a halogen atom instead of hydrogen on the alkylene group and arylene group, a halogen atom, a chain or cyclic alkyl group, aryl group, alkenyl group, alkoxy group, aryloxy group, sulfonyl group, amino group, cyano group, carbonyl It may have a group, an acyl group, an amide group, or a hydroxyl group as a substituent, or may have a structure in which nitrogen, sulfur, or oxygen is introduced in place of the carbon on the alkylene or arylene.
  • n202 is 1 and n203 is 2 to 4, each of n203 X 201 may be coupled.
  • ligands include ethylenediaminetetraacetic acid.
  • L 201 is a halogen atom, a cyano group, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogenated aryl group having 6 to 20 carbon atoms, or -Z 203 Y 203 (Z 203 and Y 203 will be described later).
  • the alkyl group and aryl group here may have substituents and heteroatoms in their structures, as with X 201 , and when n201 is 2 to 8, n201 L 201 are may form a ring.
  • L 201 is preferably a fluorine atom or a cyano group.
  • Y 201 , Y 202 and Z 203 each independently represent O, S, NY 204 , a hydrocarbon group or a fluorinated hydrocarbon group.
  • Y 201 and Y 202 are preferably O, S or NY 204 , more preferably O.
  • a feature of compound (5) is that Y 201 and Y 202 are bound to Z 201 in the same ligand, so these ligands form a chelate structure with Z 201 . The effect of this chelate improves the heat resistance, chemical stability and hydrolysis resistance of this compound.
  • the constant n202 in this ligand is 0 or 1.
  • a fluorinated hydrocarbon group is a group in which at least one hydrogen atom of a hydrocarbon group is substituted with a fluorine atom.
  • Y 203 and Y 204 are each independently H, F, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • Halogenated aryl groups, these alkyl groups and aryl groups may have substituents or heteroatoms in their structures, and when Y 203 or Y 204 are present more than once, each may form a ring.
  • n203 related to the number of ligands is an integer of 1 to 4, preferably 1 or 2, more preferably 2.
  • n201 related to the number of ligands is an integer of 0-8, preferably an integer of 0-4, more preferably 0, 2 or 4. Further, when n203 is 1, n201 is preferably 2, and when n203 is 2, n201 is preferably 0.
  • the alkyl group, halogenated alkyl group, aryl group, and halogenated aryl group include those having other functional groups such as branches, hydroxyl groups, and ether bonds.
  • Compound (5) has the general formula: (wherein A a+ , a, b, p, n201, Z 201 and L 201 are as described above), or a compound represented by the general formula: (wherein A a+ , a, b, p, n201, Z 201 and L 201 are as described above).
  • Compound (5) includes lithium oxalatoborate salts, represented by the following formula: Lithium bis(oxalato)borate (LIBOB) represented by the formula: Lithium difluorooxalatoborate (LIDFOB) represented by the formula: Lithium difluorooxalatophosphanite (LIDFOP) represented by the formula: Lithium tetrafluorooxalatophosphanite (LITFOP) represented by the formula: and lithium bis(oxalato)difluorophosphanite represented by.
  • LIBOB Lithium bis(oxalato)borate
  • LIDFOB Lithium difluorooxalatoborate
  • LIDFOP Lithium difluorooxalatophosphanite
  • LITFOP Lithium tetrafluorooxalatophosphanite
  • LITFOP lithium bis(oxalato)difluorophosphanite represented by.
  • Compound (5) also includes lithium bis(malonato)borate, lithium difluoro(malonato)borate, lithium bis(methylmalonato)borate, lithium difluoro(methylmalonato)borate, lithium bis(dimethylmalonato)borate, lithium difluoro(dimethyl Dicarboxylic acid complex salts in which the complex central element is boron, such as malonato)borate, are also included.
  • Compound (5) also includes lithium tris(oxalato)phosphate, lithium tris(malonato)phosphate, lithium difluorobis(malonato)phosphate, lithium tetrafluoro(malonato)phosphate, lithium tris(methylmalonato)phosphate, lithium difluorobis( Dicarboxylic compounds whose complex central element is phosphorus, such as methylmalonato)phosphate, lithium tetrafluoro(methylmalonato)phosphate, lithium tris(dimethylmalonato)phosphate, lithium difluorobis(dimethylmalonato)phosphate, lithium tetrafluoro(dimethylmalonato)phosphate, etc. Also included are acid complex salts.
  • Compound (5) also includes dicarboxylic acid complex salts in which the complex central element is aluminum, such as LiAl(C 2 O 4 ) 2 and LiAlF 2 (C 2 O 4 ).
  • lithium bis(oxalato)borate, lithium difluoro(oxalato)borate, lithium tris(oxalato)phosphate, lithium difluorobis(oxalato)phosphate, and lithium tetrafluoro(oxalato)phosphate are easy to obtain and have a stable film-like structure. It is more preferably used because it can contribute to the formation of a product. Lithium bis(oxalato)borate is particularly preferred as compound (5).
  • the content of the compound (5) is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, more preferably 10% by mass, relative to the solvent, because even more excellent cycle characteristics can be obtained. % or less is preferable, and 3 mass % or less is more preferable.
  • electrolyte salt examples include lithium salts, ammonium salts, metal salts, liquid salts (ionic liquids), inorganic polymer salts, organic polymer salts, and the like, which can be used in the electrolytic solution. Any one can be used.
  • Lithium salt is preferable as the electrolyte salt of the electrolyte solution for secondary batteries.
  • Any lithium salt can be used, and specific examples thereof include the following.
  • electrolyte salts may be used alone or in combination of two or more.
  • a preferred example of the combined use of two or more types is the combined use of LiPF 6 and LiBF 4 or the combined use of LiPF 6 and LiPO 2 F 2 , C 2 H 5 OSO 3 Li or FSO 3 Li, and high temperature storage. It has the effect of improving characteristics, load characteristics and cycle characteristics.
  • the amount of LiBF 4 , LiPO 2 F 2 , C 2 H 5 OSO 3 Li, or FSO 3 Li with respect to 100% by mass of the entire electrolytic solution is not limited, and is arbitrary as long as it does not significantly impair the effects of the present disclosure. , usually 0.01% by mass or more, preferably 0.1% by mass or more, and usually 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, relative to the electrolyte solution , more preferably 5% by mass or less.
  • organic lithium salts include CF 3 SO 3 Li, LiN(FSO 2 ) 2 , LiN(FSO 2 )(CF 3 SO 2 ), LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropanedisulfonylimide, LiC(FSO 2 ) 3 , LiC(CF 3 SO 2 ) 3 , LiC(C 2 F 5 SO 2 ) 3 , LiBF 3 CF 3 , LiBF 3 C 2 F 5 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 and the like are preferred.
  • the concentrations of these electrolyte salts in the electrolyte are not particularly limited as long as they do not impair the effects of the present disclosure.
  • the total molar concentration of lithium in the electrolyte is preferably 0.3 mol/L or more, more preferably 0.4 mol/L, from the viewpoint of keeping the electrical conductivity of the electrolyte in a good range and ensuring good battery performance. Above, more preferably 0.5 mol/L or more, preferably 5.0 mol/L or less, more preferably 3.0 mol/L or less, still more preferably 2.0 mol/L or less.
  • the electrical conductivity of the electrolyte may be insufficient, while if the concentration is too high, the electrical conductivity may decrease due to increased viscosity, resulting in decreased battery performance. sometimes.
  • the electrolytic solution has the general formula (2): (Wherein, X 21 is a group containing at least H or C, n21 is an integer of 1 to 3, Y 21 and Z 21 are the same or different groups containing at least H, C, O or F, n22 is 0 or 1, and Y 21 and Z 21 may combine with each other to form a ring.).
  • X 21 is a group containing at least H or C
  • n21 is an integer of 1 to 3
  • Y 21 and Z 21 are the same or different groups containing at least H, C, O or F
  • n22 is 0 or 1
  • Y 21 and Z 21 may combine with each other to form a ring.
  • n21 is 2 or 3
  • two or three X21 may be the same or different.
  • the multiple Y 21 and Z 21 may be the same or different.
  • Y 21 includes H—, F—, CH 3 —, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CF 3 —, CF 3 CF 2 —, CH 2 FCH 2 — and CF 3 CF 2 CF At least one selected from the group consisting of 2- is preferred.
  • Z 21 includes H—, F—, CH 3 —, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CF 3 —, CF 3 CF 2 —, CH 2 FCH 2 — and CF 3 CF 2 CF At least one selected from the group consisting of 2- is preferred.
  • Y 21 and Z 21 can combine with each other to form a carbocyclic or heterocyclic ring which may contain an unsaturated bond and may have aromatic character.
  • the number of carbon atoms in the ring is preferably 3-20.
  • analog refers to an acid anhydride obtained by replacing part of the structure of the acid anhydride illustrated with another structure within the scope of the present disclosure.
  • dimers, trimers, tetramers, etc. consisting of multiple acid anhydrides, or structurally isomeric substances having the same number of carbon atoms in the substituents but having a branched chain, Examples thereof include those in which the sites that bind to the anhydride are different.
  • acid anhydrides forming a five-membered ring structure include succinic anhydride, methylsuccinic anhydride (4-methylsuccinic anhydride), dimethylsuccinic anhydride (4,4-dimethylsuccinic anhydride , 4,5-dimethylsuccinic anhydride, etc.), 4,4,5-trimethylsuccinic anhydride, 4,4,5,5-tetramethylsuccinic anhydride, 4-vinylsuccinic anhydride, 4,5 - divinylsuccinic anhydride, phenylsuccinic anhydride (4-phenylsuccinic anhydride), 4,5-diphenylsuccinic anhydride, 4,4-diphenylsuccinic anhydride, citraconic anhydride, maleic anhydride, methyl maleic anhydride (4-methyl maleic anhydride), 4,5-dimethyl maleic anhydride, phenyl maleic anhydride (4-phenyl)
  • acid anhydrides forming a 6-membered ring structure include cyclohexanedicarboxylic anhydride (cyclohexane-1,2-dicarboxylic anhydride, etc.), 4-cyclohexene-1,2-dicarboxylic anhydride, Glutaric anhydride, glutaconic anhydride, 2-phenylglutaric anhydride, etc., and analogues thereof.
  • acid anhydrides forming a cyclic structure include 5-norbornene-2,3-dicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, pyromellitic anhydride, and diglycolic anhydride. etc., and analogues thereof.
  • Compound (2) includes, among others, glutaric anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, 4-cyclohexene- 1,2-dicarboxylic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, phenylsuccinic anhydride, 2-phenylglutaric anhydride, Maleic anhydride, methylmaleic anhydride, trifluoromethylmaleic anhydride, phenylmaleic anhydride, succinic anhydride, methylsuccinic anhydride, dimethylsuccinic anhydride, trifluoromethylsuccinic anhydride, monofluorosuccinic Acid anhydride, tetrafluorosuccinic an
  • maleic anhydride methylmaleic anhydride, trifluoromethylmaleic anhydride
  • succinic anhydride methylsuccinic anhydride, trifluoromethylsuccinic anhydride, tetrafluoromethylsuccinic anhydride, etc.
  • Fluorosuccinic anhydride is more preferred, and maleic anhydride and succinic anhydride are even more preferred.
  • Compound (2) has the general formula (3):
  • X 41 and X 42 are the same or different and are preferably at least one selected from the group consisting of the compound (4) represented by the group containing at least H, C, O or F) .
  • X 31 to X 34 are preferably the same or different and at least one selected from the group consisting of an alkyl group, a fluorinated alkyl group, an alkenyl group and a fluorinated alkenyl group.
  • the number of carbon atoms in X 31 to X 34 is preferably 1-10, more preferably 1-3.
  • X 31 to X 34 are the same or different, H—, F—, CH 3 —, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CF 3 —, CF 3 CF 2 —, CH 2 FCH At least one selected from the group consisting of 2- and CF 3 CF 2 CF 2 - is more preferred.
  • X 41 and X 42 are preferably the same or different and at least one selected from the group consisting of an alkyl group, a fluorinated alkyl group, an alkenyl group and a fluorinated alkenyl group.
  • the number of carbon atoms in X 41 and X 42 is preferably 1-10, more preferably 1-3.
  • X 41 and X 42 are the same or different, H—, F—, CH 3 —, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CF 3 —, CF 3 CF 2 —, CH 2 FCH At least one selected from the group consisting of 2- and CF 3 CF 2 CF 2 - is more preferred.
  • Compound (3) is preferably any one of the following compounds.
  • Compound (4) is preferably any one of the following compounds.
  • the electrolytic solution does not easily decrease the capacity retention rate and does not easily increase the amount of gas generated even when stored at a high temperature. is preferably included.
  • the content of compound (2) is more preferably 0.01 to 10% by mass, still more preferably 0.1 to 3% by mass, and particularly preferably 0.1 to 1.0% by mass.
  • the electrolyte contains both compounds (3) and (4), even when stored at high temperatures, the capacity retention rate is unlikely to decrease and the amount of gas generated is unlikely to increase. It is preferable that the electrolyte contains 0.08 to 2.50% by mass of compound (3) and 0.02 to 1.50% by mass of compound (4), and 0.80 to 2.50% by mass. and 0.08 to 1.50% by mass of compound (4).
  • the electrolytic solution may contain at least one selected from the group consisting of nitrile compounds represented by the following general formulas (1a), (1b) and (1c).
  • R a and R b each independently represent a hydrogen atom, a cyano group (CN), a halogen atom, an alkyl group, or a group obtained by substituting at least a portion of the hydrogen atoms of an alkyl group with a halogen atom; and n represents an integer of 1 to 10.
  • R c is a hydrogen atom, a halogen atom, an alkyl group, a group in which at least a portion of hydrogen atoms in an alkyl group is substituted with a halogen atom, or NC—R c1 -X c1 — (R c1 is an alkylene group , X c1 represents an oxygen atom or a sulfur atom.)
  • R d and R e each independently represent a hydrogen atom, a halogen atom,
  • R a and R b each independently represent a hydrogen atom, a cyano group (CN), a halogen atom, an alkyl group, or at least part of the hydrogen atoms of the alkyl group are replaced by halogen atoms. It is a substituted group.
  • Halogen atoms include, for example, fluorine, chlorine, bromine and iodine atoms. Among them, a fluorine atom is preferred.
  • the alkyl group those having 1 to 5 carbon atoms are preferred. Specific examples of alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl and tert-butyl groups.
  • Examples of groups in which at least some of the hydrogen atoms in an alkyl group have been substituted with halogen atoms include groups in which at least some of the hydrogen atoms in the aforementioned alkyl groups have been substituted with the aforementioned halogen atoms.
  • R a and R b are an alkyl group or a group in which at least some of the hydrogen atoms in the alkyl group are substituted with halogen atoms
  • R a and R b are bonded to each other to form a ring structure (e.g., cyclohexane ring ) may be formed.
  • R a and R b are preferably hydrogen atoms or alkyl groups.
  • n is an integer of 1-10.
  • n is 2 or more, all n Ras may be the same, or at least some of them may be different. The same applies to Rb .
  • n is preferably an integer of 1-7, more preferably an integer of 2-5.
  • Dinitrile and tricarbonitrile are preferable as the nitrile compound represented by the general formula (1a).
  • Specific examples of dinitriles include malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile, undecanedinitrile, dodecanedinitrile, methylmalononitrile, ethylmalononitrile, isopropylmalononitrile, and tert-butyl.
  • succinonitrile, glutaronitrile and adiponitrile are particularly preferred.
  • tricarbonitriles include pentanetricarbonitrile, propanetricarbonitrile, 1,3,5-hexanetricarbonitrile, 1,3,6-hexanetricarbonitrile, heptanetricarbonitrile, 1, 2,3-propanetricarbonitrile, 1,3,5-pentanetricarbonitrile, cyclohexanetricarbonitrile, triscyanoethylamine, triscyanoethoxypropane, tricyanoethylene, tris(2-cyanoethyl)amine and the like.
  • Preferred are 1,3,6-hexanetricarbonitrile, cyclohexanetricarbonitrile, most preferred is cyclohexanetricarbonitrile.
  • R c is a hydrogen atom, a halogen atom, an alkyl group, a group in which at least a portion of hydrogen atoms in an alkyl group is substituted with a halogen atom, or NC-R c1 -X c1 -(R c1 is an alkylene group, X c1 represents an oxygen atom or a sulfur atom), and R d and R e each independently represent a hydrogen atom, a halogen atom, an alkyl group, or an alkyl group is a group in which at least part of the hydrogen atoms in are substituted with halogen atoms.
  • R c1 in the above NC-R c1 -X c1 - is an alkylene group.
  • the alkylene group an alkylene group having 1 to 3 carbon atoms is preferred.
  • R c , R d and R e is preferably independently a hydrogen atom, a halogen atom, an alkyl group, or a group in which at least some hydrogen atoms of an alkyl group are substituted with halogen atoms.
  • At least one of R c , R d and R e is preferably a halogen atom or a group in which at least some of the hydrogen atoms in an alkyl group are substituted with halogen atoms, and a fluorine atom or at least A group in which some of the hydrogen atoms are substituted with fluorine atoms is more preferable.
  • R d and R e are an alkyl group or a group in which at least some of the hydrogen atoms in the alkyl group are substituted with halogen atoms
  • R d and R e are bonded to each other to form a ring structure (e.g., cyclohexane ring ) may be formed.
  • m is an integer of 1-10.
  • all m R d's may be the same, or at least some of them may be different. The same is true for Re .
  • m is preferably an integer of 2-7, more preferably an integer of 2-5.
  • Nitrile compounds represented by the general formula (1b) include acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, lauronitrile, 3-methoxypropionitrile, 2-methylbutyro nitrile, trimethylacetonitrile, hexanenitrile, cyclopentanecarbonitrile, cyclohexanecarbonitrile, fluoroacetonitrile, difluoroacetonitrile, trifluoroacetonitrile, 2-fluoropropionitrile, 3-fluoropropionitrile, 2,2-difluoropropionitrile, 2,3-difluoropropionitrile, 3,3-difluoropropionitrile, 2,2,3-trifluoropropionitrile, 3,3,3-trifluoropropionitrile, 3,3′-oxydipropionitrile, Examples include 3,3'-thiodipropionitrile, pen
  • R f , R g , R h and R i are each independently a group containing a cyano group (CN), a hydrogen atom, a halogen atom, an alkyl group, or at least an alkyl group It is a group in which some hydrogen atoms are substituted with halogen atoms.
  • CN cyano group
  • Examples of the halogen atom, the alkyl group, and the group in which at least part of the hydrogen atoms of the alkyl group are substituted with halogen atoms include those exemplified for the above general formula (1a).
  • the group containing a cyano group includes a cyano group and a group obtained by substituting at least part of the hydrogen atoms of an alkyl group with a cyano group.
  • the alkyl group in this case include those exemplified for the above general formula (1a).
  • At least one of R f , R g , R h and R i is a group containing a cyano group.
  • at least two of R f , R g , R h and R i are groups containing a cyano group, more preferably R h and R i are groups containing a cyano group.
  • R f and R g are preferably hydrogen atoms.
  • l is an integer of 1-3.
  • l R f may all be the same, or may be at least partially different.
  • Rg is preferably an integer of 1-2.
  • Nitrile compounds represented by the general formula (1c) include 3-hexendinitrile, mucononitrile, maleonitrile, fumaronitrile, acrylonitrile, methacrylonitrile, crotononitrile, 3-methylcrotononitrile, 2-methyl-2- Butenenitrile, 2-pentenenitrile, 2-methyl-2-pentenenitrile, 3-methyl-2-pentenenitrile, 2-hexenenitrile and the like are exemplified. Nitriles are preferred.
  • the content of the nitrile compound is preferably 0.2 to 7% by mass with respect to the electrolytic solution. This can further improve the high-temperature storage characteristics and safety of the electrochemical device at high voltage.
  • the lower limit of the total content of the nitrile compounds is more preferably 0.3% by mass, still more preferably 0.5% by mass.
  • the upper limit is more preferably 5% by mass, still more preferably 2% by mass, and particularly preferably 0.5% by mass.
  • the electrolytic solution may contain a compound having an isocyanato group (hereinafter sometimes abbreviated as "isocyanate”).
  • isocyanate is not particularly limited, and any isocyanate can be used. Examples of isocyanates include monoisocyanates, diisocyanates, triisocyanates, and the like.
  • monoisocyanates include isocyanatomethane, isocyanatoethane, 1-isocyanatopropane, 1-isocyanatobutane, 1-isocyanatopentane, 1-isocyanatohexane, 1-isocyanatoheptane, and 1-isocyanate.
  • diisocyanates include 1,4-diisocyanatobutane, 1,5-diisocyanatopentane, 1,6-diisocyanatohexane, 1,7-diisocyanatoheptane, and 1,8-diisocyanate.
  • 1,6-diisocyanatohexane, 1,3-bis(isocyanatomethyl)cyclohexane, 1,3,5-tris(6-isocyanatohex-1-yl)-1,3,5-triazine- 2,4,6(1H,3H,5H)-trione, 2,4,4-trimethylhexamethylene diisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate are readily available industrially. It is preferable in that the cost of manufacturing the electrolytic solution can be kept low, and from a technical point of view, it can contribute to the formation of a stable film-like structure, and is more preferably used.
  • the isocyanate content is not particularly limited, and is arbitrary as long as it does not significantly impair the effects of the present disclosure, but is preferably 0.001% by mass or more and 1.0% by mass or less with respect to the electrolytic solution.
  • the isocyanate content is at least this lower limit, the non-aqueous electrolyte secondary battery can be sufficiently improved in cycle characteristics.
  • it is equal to or less than this upper limit an increase in initial resistance of the non-aqueous electrolyte secondary battery can be avoided.
  • the isocyanate content is more preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably 0.2% by mass or more, and more preferably 0.8% by mass or less, and still more preferably is 0.7% by mass or less, particularly preferably 0.6% by mass or less.
  • the electrolytic solution may contain a cyclic sulfonate.
  • the cyclic sulfonate is not particularly limited, and any cyclic sulfonate can be used.
  • Examples of cyclic sulfonates include saturated cyclic sulfonates, unsaturated cyclic sulfonates, saturated cyclic disulfonates, and unsaturated cyclic disulfonates.
  • saturated cyclic sulfonic acid esters include 1,3-propanesultone, 1-fluoro-1,3-propanesultone, 2-fluoro-1,3-propanesultone, and 3-fluoro-1,3-propanesultone.
  • unsaturated cyclic sulfonic acid esters include 1-propene-1,3-sultone, 2-propene-1,3-sultone, 1-fluoro-1-propene-1,3-sultone, 2-fluoro- 1-propene-1,3-sultone, 3-fluoro-1-propene-1,3-sultone, 1-fluoro-2-propene-1,3-sultone, 2-fluoro-2-propene-1,3- sultone, 3-fluoro-2-propene-1,3-sultone, 1-methyl-1-propene-1,3-sultone, 2-methyl-1-propene-1,3-sultone, 3-methyl-1- Propene-1,3-sultone, 1-methyl-2-propene-1,3-sultone, 2-methyl-2-propene-1,3-sultone, 3-methyl-2-propene-1,3-sultone, 1-butene-1,4-sultone, 2-butene-1,4-sul
  • 1,3-propanesultone, 1-fluoro-1,3-propanesultone, 2-fluoro-1,3-propanesultone, 3-fluoro-1,3-propanesultone, 1-propene-1,3- Sultone is more preferably used because it is readily available and can contribute to the formation of a stable film-like structure.
  • the content of the cyclic sulfonate is not particularly limited, and is arbitrary as long as it does not significantly impair the effects of the present disclosure. be.
  • the non-aqueous electrolyte secondary battery can be sufficiently improved in cycle characteristics. Moreover, the increase of the manufacturing cost of a non-aqueous electrolyte secondary battery can be avoided as it is below this upper limit.
  • the content of the cyclic sulfonate is more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more, particularly preferably 0.2% by mass or more, and more preferably 2.5% by mass or less. , more preferably 2.0% by mass or less, and particularly preferably 1.8% by mass or less.
  • the electrolytic solution may further contain a polyethylene oxide having a weight average molecular weight of 2000 to 4000 and having -OH, -OCOOH or -COOH at the end.
  • a polyethylene oxide having a weight average molecular weight of 2000 to 4000 By containing such a compound, the stability of the electrode interface can be improved, and the characteristics of the electrochemical device can be improved.
  • the polyethylene oxide include polyethylene oxide monool, polyethylene oxide carboxylic acid, polyethylene oxide diol, polyethylene oxide dicarboxylic acid, polyethylene oxide triol, and polyethylene oxide tricarboxylic acid. These may be used alone or in combination of two or more. Among them, a mixture of polyethylene oxide monool and polyethylene oxide diol, and a mixture of polyethylene carboxylic acid and polyethylene dicarboxylic acid are preferable in terms of better properties of the electrochemical device.
  • the weight-average molecular weight of the polyethylene oxide is too small, it may be easily oxidatively decomposed.
  • the weight average molecular weight is more preferably 3000-4000.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • the polyethylene oxide content is preferably 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 mol/kg in the electrolytic solution. If the polyethylene oxide content is too high, the properties of the electrochemical device may be impaired. More preferably, the polyethylene oxide content is 5 ⁇ 10 ⁇ 6 mol/kg or more.
  • the electrolytic solution may further contain, as additives, a fluorinated saturated cyclic carbonate, an unsaturated cyclic carbonate, an overcharge inhibitor, other known auxiliary agents, and the like. This makes it possible to suppress deterioration in the characteristics of the electrochemical device.
  • fluorinated saturated cyclic carbonate examples include the compounds represented by the general formula (A) described above. Among them, fluoroethylene carbonate, difluoroethylene carbonate, monofluoromethylethylene carbonate, trifluoromethylethylene carbonate, 2,2,3,3,3-pentafluoropropylethylene carbonate (4-(2,2,3,3, 3-Pentafluoro-propyl)-[1,3]dioxolan-2-one) is preferred.
  • the fluorinated saturated cyclic carbonates may be used singly, or two or more of them may be used in any combination and ratio.
  • the content of the fluorinated saturated cyclic carbonate is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, more preferably 0.1 to 3%, relative to the electrolytic solution. % by mass is more preferred.
  • unsaturated cyclic carbonates examples include vinylene carbonates, ethylene carbonates substituted with substituents having aromatic rings or carbon-carbon double bonds or carbon-carbon triple bonds, phenyl carbonates, vinyl carbonates, allyl carbonates, catechol carbonates and the like.
  • Vinylene carbonates include vinylene carbonate, methylvinylene carbonate, 4,5-dimethylvinylene carbonate, phenylvinylene carbonate, 4,5-diphenylvinylene carbonate, vinylvinylene carbonate, 4,5-divinylvinylene carbonate, allylvinylene carbonate, 4 ,5-diallylvinylene carbonate, 4-fluorovinylene carbonate, 4-fluoro-5-methylvinylene carbonate, 4-fluoro-5-phenylvinylene carbonate, 4-fluoro-5-vinylvinylene carbonate, 4-allyl-5-fluoro vinylene carbonate, ethynylethylene carbonate, propargylethylene carbonate, methylvinylene carbonate, dimethylvinylene carbonate and the like.
  • ethylene carbonates substituted with a substituent having an aromatic ring or a carbon-carbon double bond or a carbon-carbon triple bond include vinylethylene carbonate, 4,5-divinylethylene carbonate, 4-methyl-5- Vinylethylene carbonate, 4-allyl-5-vinylethylene carbonate, ethynylethylene carbonate, 4,5-diethynylethylene carbonate, 4-methyl-5-ethynylethylene carbonate, 4-vinyl-5-ethynylethylene carbonate, 4-allyl -5-ethynylethylene carbonate, phenylethylene carbonate, 4,5-diphenylethylene carbonate, 4-phenyl-5-vinylethylene carbonate, 4-allyl-5-phenylethylene carbonate, allylethylene carbonate, 4,5-diallylethylene carbonate , 4-methyl-5-allylethylene carbonate, 4-methylene-1,3-dioxolan-2-one, 4,5-dimethylene-1,3-dioxolan-2-one, 4-methyl-5-ally
  • unsaturated cyclic carbonates include vinylene carbonate, methylvinylene carbonate, 4,5-dimethylvinylene carbonate, vinylvinylene carbonate, 4,5-vinylvinylene carbonate, allylvinylene carbonate, 4,5-diallylvinylene carbonate, vinyl Ethylene carbonate, 4,5-divinylethylene carbonate, 4-methyl-5-vinylethylene carbonate, allylethylene carbonate, 4,5-diallylethylene carbonate, 4-methyl-5-allylethylene carbonate, 4-allyl-5-vinyl Ethylene carbonate, ethynylethylene carbonate, 4,5-diethynylethylene carbonate, 4-methyl-5-ethynylethylene carbonate, 4-vinyl-5-ethynylethylene carbonate are preferred. Vinylene carbonate, vinylethylene carbonate and ethynylethylene carbonate are particularly preferred because they form a more stable surface protective film, and vinylene carbonate is most preferred.
  • the molecular weight of the unsaturated cyclic carbonate is not particularly limited, and is arbitrary as long as it does not significantly impair the effects of the present disclosure.
  • the molecular weight is preferably 50 or more and 250 or less. Within this range, it is easy to ensure the solubility of the unsaturated cyclic carbonate in the electrolytic solution, and the effects of the present disclosure are likely to be sufficiently exhibited.
  • the molecular weight of the unsaturated cyclic carbonate is more preferably 80 or more and more preferably 150 or less.
  • the method for producing the unsaturated cyclic carbonate is not particularly limited, and any known method can be selected for production.
  • the unsaturated cyclic carbonates may be used singly or in combination of two or more in any desired ratio.
  • the content of the unsaturated cyclic carbonate is not particularly limited, and is arbitrary as long as it does not significantly impair the effects of the present disclosure.
  • the content of the unsaturated cyclic carbonate is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably 0.1% by mass or more in 100% by mass of the electrolytic solution.
  • the content is preferably 5% by mass or less, more preferably 4% by mass or less, and even more preferably 3% by mass or less. If it is within the above range, the electrochemical device using the electrolytic solution is likely to exhibit a sufficient effect of improving cycle characteristics, and the high temperature storage characteristics are deteriorated, the amount of gas generated is increased, and the discharge capacity retention rate is reduced. Situations like this are easy to avoid.
  • a fluorinated unsaturated cyclic carbonate is a cyclic carbonate having an unsaturated bond and a fluorine atom.
  • the number of fluorine atoms in the fluorinated unsaturated cyclic carbonate is not particularly limited as long as it has one or more fluorine atoms. Among them, the number of fluorine atoms is generally 6 or less, preferably 4 or less, and most preferably 1 or 2.
  • fluorinated unsaturated cyclic carbonates examples include fluorinated vinylene carbonate derivatives, fluorinated ethylene carbonate derivatives substituted with a substituent having an aromatic ring or a carbon-carbon double bond, and the like.
  • Fluorinated vinylene carbonate derivatives include 4-fluorovinylene carbonate, 4-fluoro-5-methylvinylene carbonate, 4-fluoro-5-phenylvinylene carbonate, 4-allyl-5-fluorovinylene carbonate, 4-fluoro-5- Examples thereof include vinyl vinylene carbonate and the like.
  • fluorinated ethylene carbonate derivatives substituted with a substituent having an aromatic ring or a carbon-carbon double bond include 4-fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5 -vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4,4-difluoro-4-vinylethylene carbonate, 4,4-difluoro-4-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate , 4,5-difluoro-4-allylethylene carbonate, 4-fluoro-4,5-divinylethylene carbonate, 4-fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate , 4,5-difluoro-4,5-diallylethylene carbonate, 4-fluoro-4-phenylethylene carbonate, 4-fluoro-5-phenylethylene carbonate, 4,4-difluoro-5-pheny
  • fluorinated unsaturated cyclic carbonates include 4-fluorovinylene carbonate, 4-fluoro-5-methylvinylene carbonate, 4-fluoro-5-vinylvinylene carbonate, 4-allyl-5-fluorovinylene carbonate, 4- fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5-vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4,4-difluoro-4-vinylethylene carbonate, 4,4-difluoro-4-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate, 4,5-difluoro-4-allylethylene carbonate, 4-fluoro-4,5-divinylethylene carbonate, 4- Fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate, and 4,5-difluoro-4,5-diallylethylene carbonate form stable interf
  • the molecular weight of the fluorinated unsaturated cyclic carbonate is not particularly limited, and is arbitrary as long as it does not significantly impair the effects of the present disclosure.
  • the molecular weight is preferably 50 or more and 500 or less. Within this range, it is easy to ensure the solubility of the fluorinated unsaturated cyclic carbonate in the electrolytic solution.
  • the method for producing the fluorinated unsaturated cyclic carbonate is not particularly limited, and any known method can be selected for production.
  • the molecular weight is more preferably 100 or more and more preferably 200 or less.
  • the fluorinated unsaturated cyclic carbonates may be used singly, or two or more of them may be used in any combination and ratio.
  • the content of the fluorinated unsaturated cyclic carbonate is not particularly limited, and is arbitrary as long as it does not significantly impair the effects of the present disclosure.
  • the content of the fluorinated unsaturated cyclic carbonate is usually preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably 0.1% by mass or more in 100% by mass of the electrolytic solution. Also, it is preferably 5% by mass or less, more preferably 4% by mass or less, and still more preferably 3% by mass or less. Within this range, the electrochemical device using the electrolytic solution is likely to exhibit a sufficient effect of improving cycle characteristics, and high-temperature storage characteristics deteriorate, the amount of gas generated increases, and the discharge capacity retention rate decreases. Situations like this are easy to avoid.
  • the electrolytic solution may contain a compound having a triple bond.
  • the type of compound is not particularly limited as long as it has one or more triple bonds in the molecule.
  • Specific examples of compounds having a triple bond include the following compounds. 1-pentyne, 2-pentyne, 1-hexyne, 2-hexyne, 3-hexyne, 1-heptyne, 2-heptyne, 3-heptyne, 1-octyne, 2-octyne, 3-octyne, 4-octyne, 1- Nonine, 2-nonyne, 3-nonyne, 4-nonine, 1-dodecyne, 2-dodecyne, 3-dodecyne, 4-dodecyne, 5-dodecyne, phenylacetylene, 1-phenyl-1-propyne, 1-phenyl-2 -propyne, 1-phenyl-1-butyne,
  • 2-butyne-1,4-diol dimethyl dicarbonate 2-butyne-1,4-diol diethyl dicarbonate, 2-butyne-1,4-diol dipropyl dicarbonate, 2-butyne-1, Dicarbonates such as 4-diol dibutyl dicarbonate, 2-butyne-1,4-diol diphenyl dicarbonate, 2-butyne-1,4-diol dicyclohexyl dicarbonate;
  • a compound having an alkynyloxy group is preferred because it forms a negative electrode film more stably in an electrolytic solution.
  • 2- Compounds such as propynyl and di-2-propynyl oxalate are particularly preferred from the viewpoint of improving storage characteristics.
  • One of the above triple bond-containing compounds may be used alone, or two or more of them may be used in any combination and ratio.
  • the amount of the compound having a triple bond in the entire electrolytic solution is not limited, and is arbitrary as long as it does not significantly impair the effects of the present disclosure. It is contained at a concentration of 0.05% by mass or more, more preferably 0.1% by mass or more, and usually 5% by mass or less, preferably 3% by mass or less, more preferably 1% by mass or less. When the above range is satisfied, effects such as output characteristics, load characteristics, cycle characteristics, and high-temperature storage characteristics are further improved.
  • an overcharge inhibitor can be used in order to effectively suppress explosion and ignition of the battery when the electrochemical device using the electrolyte is overcharged.
  • overcharge inhibitors include unsubstituted or alkyl-substituted terphenyl derivatives such as biphenyl, o-terphenyl, m-terphenyl and p-terphenyl, and unsubstituted or alkyl-substituted terphenyl derivatives.
  • a carboxylic acid anhydride (excluding compound (2)) may be used in the electrolytic solution used in the present disclosure.
  • the carboxylic anhydride a compound represented by the following general formula (6) is preferable.
  • the method for producing the carboxylic anhydride is not particularly limited, and it can be produced by arbitrarily selecting a known method.
  • R 61 and R 62 each independently represent an optionally substituted hydrocarbon group having 1 to 15 carbon atoms.
  • R 61 and R 62 are not particularly limited as long as they are monovalent hydrocarbon groups.
  • it may be an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a combination of an aliphatic hydrocarbon group and an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be a saturated hydrocarbon group and may contain an unsaturated bond (carbon-carbon double bond or carbon-carbon triple bond).
  • the aliphatic hydrocarbon group may be chain or cyclic, and in the case of chain, it may be linear or branched. Furthermore, it may be a combination of a chain and a ring.
  • R 61 and R 62 may be the same or different.
  • substituents other than the rogen atom include substituents having functional groups such as an ester group, a cyano group, a carbonyl group, an ether group, etc., preferably a cyano group and a carbonyl group.
  • the hydrocarbon groups of R 61 and R 62 may have only one of these substituents, or may have two or more of them. When having two or more substituents, those substituents may be the same or different from each other.
  • the number of carbon atoms in each of the hydrocarbon groups of R 61 and R 62 is usually 1 or more, and is usually 15 or less, preferably 12 or less, more preferably 10 or less, still more preferably 9 or less.
  • the number of carbon atoms in the divalent hydrocarbon group is usually 1 or more and usually 15 or less, preferably It is 13 or less, more preferably 10 or less, and still more preferably 8 or less.
  • the hydrocarbon groups of R 61 and R 62 have substituents containing carbon atoms, it is preferable that the total carbon number of R 61 and R 62 including the substituents satisfies the above range.
  • the term “analog” refers to an acid anhydride obtained by replacing part of the structure of the acid anhydride illustrated with another structure within the scope of the present disclosure.
  • dimers, trimers, tetramers, etc. consisting of multiple acid anhydrides, or structurally isomeric substances having the same number of carbon atoms in the substituents but having a branched chain, Examples thereof include those in which the sites that bind to the anhydride are different.
  • acid anhydrides in which R 61 and R 62 are chain alkyl groups include acetic anhydride, propionic anhydride, butanoic anhydride, 2-methylpropionic anhydride, and 2,2-dimethylpropionic anhydride.
  • R 61 and R 62 are cyclic alkyl groups
  • acid anhydrides in which R 61 and R 62 are cyclic alkyl groups include cyclopropanecarboxylic anhydride, cyclopentanecarboxylic anhydride, cyclohexanecarboxylic anhydride and the like, and analogs thereof. .
  • acid anhydrides in which R 61 and R 62 are alkenyl groups include acrylic anhydride, 2-methylacrylic anhydride, 3-methylacrylic anhydride, 2,3-dimethylacrylic anhydride, 3,3-dimethylacrylic anhydride, 2,3,3-trimethylacrylic anhydride, 2-phenylacrylic anhydride, 3-phenylacrylic anhydride, 2,3-diphenylacrylic anhydride, 3, 3-diphenyl acrylic anhydride, 3-butenoic anhydride, 2-methyl-3-butenoic anhydride, 2,2-dimethyl-3-butenoic anhydride, 3-methyl-3-butenoic anhydride, 2-methyl-3-methyl-3-butenoic anhydride, 2,2-dimethyl-3-methyl-3-butenoic anhydride, 3-pentenoic anhydride, 4-pentenoic anhydride, 2-cyclopentenecarboxylic Acid anhydrides, 3-cyclopentenecarboxylic anhydride, 4-cyclopentene
  • acid anhydrides in which R 61 and R 62 are alkynyl groups include propynoic anhydride, 3-phenylpropynoic anhydride, 2-butynoic anhydride, 2-pentynoic anhydride and 3-butynoic anhydride.
  • acid anhydrides in which R 61 and R 62 are aryl groups include benzoic anhydride, 4-methylbenzoic anhydride, 4-ethylbenzoic anhydride, 4-tert-butylbenzoic anhydride, 2-methylbenzoic anhydride, 2,4,6-trimethylbenzoic anhydride, 1-naphthalenecarboxylic anhydride, 2-naphthalenecarboxylic anhydride and the like, and analogs thereof.
  • acid anhydrides in which R 61 and R 62 are substituted with halogen atoms examples of acid anhydrides in which fluorine atoms are mainly substituted are given below. Acid anhydrides obtained by substituting a chlorine atom, a bromine atom, or an iodine atom are also included in the exemplary compounds.
  • Examples of acid anhydrides in which R 61 and R 62 are chain alkyl groups substituted with halogen atoms include fluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, 2-fluoropropionic anhydride, 2,2-difluoropropionic anhydride, 2,3-difluoropropionic anhydride, 2,2,3-trifluoropropionic anhydride, 2,3,3-trifluoropropionic anhydride, 2,2, 3,3-tetrapropionic anhydride, 2,3,3,3-tetrapropionic anhydride, 3-fluoropropionic anhydride, 3,3-difluoropropionic anhydride, 3,3,3-trifluoro Examples include propionic anhydride, perfluoropropionic anhydride, and analogs thereof.
  • Examples of acid anhydrides in which R 61 and R 62 are cyclic alkyl groups substituted with halogen atoms include 2-fluorocyclopentanecarboxylic anhydride, 3-fluorocyclopentanecarboxylic anhydride, 4-fluorocyclopentane Carboxylic anhydride and the like, and analogues thereof and the like.
  • Examples of acid anhydrides in which R 61 and R 62 are alkenyl groups substituted with halogen atoms include 2-fluoroacrylic anhydride, 3-fluoroacrylic anhydride, 2,3-difluoroacrylic anhydride, 3,3-difluoroacrylic anhydride, 2,3,3-trifluoroacrylic anhydride, 2-(trifluoromethyl)acrylic anhydride, 3-(trifluoromethyl)acrylic anhydride, 2,3 - bis(trifluoromethyl)acrylic anhydride, 2,3,3-tris(trifluoromethyl)acrylic anhydride, 2-(4-fluorophenyl)acrylic anhydride, 3-(4-fluorophenyl) acrylic anhydride, 2,3-bis(4-fluorophenyl)acrylic anhydride, 3,3-bis(4-fluorophenyl)acrylic anhydride, 2-fluoro-3-butenoic anhydride, 2, 2-difluoro-3-
  • Examples of acid anhydrides in which R 61 and R 62 are alkynyl groups substituted with halogen atoms include 3-fluoro-2-propynoic anhydride and 3-(4-fluorophenyl)-2-propynoic anhydride. , 3-(2,3,4,5,6-pentafluorophenyl)-2-propynoic anhydride, 4-fluoro-2-butynoic anhydride, 4,4-difluoro-2-butynoic anhydride, 4,4,4-trifluoro-2-butyric anhydride and the like, and analogues thereof and the like.
  • Examples of acid anhydrides in which R 61 and R 62 are aryl groups substituted with halogen atoms include 4-fluorobenzoic anhydride, 2,3,4,5,6-pentafluorobenzoic anhydride, 4 -Trifluoromethylbenzoic anhydride and the like, and analogues thereof and the like.
  • Examples of acid anhydrides in which R 61 and R 62 have substituents having functional groups such as ester, nitrile, ketone and ether include methoxyformic anhydride, ethoxyformic anhydride, methyloxalic anhydride, ethyl oxalic anhydride, 2-cyanoacetic anhydride, 2-oxopropionic anhydride, 3-oxobutanoic anhydride, 4-acetylbenzoic anhydride, methoxyacetic anhydride, 4-methoxybenzoic anhydride and the like, and analogues thereof.
  • Examples of combinations of chain alkyl groups include acetic acid propionic anhydride, acetic acid butanoic anhydride, butanoic propionic anhydride, and acetic acid 2-methylpropionic anhydride.
  • Examples of a combination of a chain alkyl group and a cyclic alkyl group include cyclopentanoic acid anhydride, cyclohexanoic acid anhydride, cyclopentanoic acid anhydride, and the like.
  • Examples of combinations of chain alkyl groups and alkenyl groups include acetic acid acrylic anhydride, acetic acid 3-methyl acrylic acid anhydride, acetic acid 3-butenoic acid anhydride, and acrylic acid propionic acid anhydride.
  • Examples of combinations of chain alkyl groups and alkynyl groups include acetic acid propynoic anhydride, acetic acid 2-butynoic anhydride, acetic acid 3-butynoic anhydride, acetic acid 3-phenylpropynoic anhydride propionic acid propynoic anhydride , etc.
  • Examples of combinations of chain alkyl groups and aryl groups include acetic anhydride, 4-methylbenzoic anhydride, 1-naphthalenecarboxylic anhydride, and benzoic propionic anhydride.
  • Examples of the combination of a chain alkyl group and a hydrocarbon group having a functional group include fluoroacetic anhydride, trifluoroacetic anhydride, 4-fluorobenzoic anhydride, fluoroacetic anhydride, and alkyl acetate.
  • fluoroacetic anhydride trifluoroacetic anhydride, 4-fluorobenzoic anhydride, fluoroacetic anhydride, and alkyl acetate.
  • oxalic anhydride acetic acid 2-cyanoacetic anhydride, acetic acid 2-oxopropionic anhydride, acetic acid methoxyacetic anhydride, methoxyacetic acid propionic anhydride, and the like.
  • Examples of combinations of cyclic alkyl groups include cyclopentanoic acid, cyclohexanoic anhydride, and the like.
  • Examples of combinations of cyclic alkyl groups and alkenyl groups include cyclopentanoic acid anhydride, 3-methylcyclopentanoic acid anhydride, 3-butenoic acid cyclopentanoic anhydride, cyclohexanoic acid anhydride acrylic acid, and the like. is mentioned.
  • Examples of combinations of cyclic alkyl groups and alkynyl groups include propynoic cyclopentanoic anhydride, 2-butynoic cyclopentanoic anhydride, and propynoic cyclohexanoic anhydride.
  • Examples of combinations of cyclic alkyl groups and aryl groups include benzoic cyclopentanoic anhydride, 4-methylbenzoic cyclopentanoic anhydride, and benzoic cyclohexanoic anhydride.
  • Examples of the combination of a cyclic alkyl group and a hydrocarbon group having a functional group include fluoroacetic acid cyclopentanoic anhydride, cyclopentanoic acid trifluoroacetic anhydride, cyclopentanoic acid 2-cyanoacetic anhydride, and cyclopentanoic acid methoxyacetic acid. anhydride, cyclohexanoic acid fluoroacetic anhydride, and the like.
  • alkenyl groups examples include 2-methyl acrylic anhydride, 3-methyl acrylic anhydride, 3-butenoic anhydride acrylic acid, and 3-methyl acrylic anhydride 2-methyl acrylic acid. things, etc.
  • alkenyl groups and alkynyl groups examples include acrylic propynoic anhydride, acrylic 2-butynoic anhydride, 2-methyl acrylic propynoic anhydride, and the like.
  • alkenyl groups and aryl groups examples include acrylic benzoic anhydride, 4-methyl acrylate benzoic anhydride, 2-methyl acrylate benzoic anhydride, and the like.
  • Examples of the combination of an alkenyl group and a hydrocarbon group having a functional group include fluoroacrylate acetic anhydride, trifluoroacetic anhydride acrylate, 2-cyanoacetic anhydride acrylate, methoxy acetic anhydride acrylate, 2- methylacrylic acid fluoroacetic anhydride, and the like.
  • Examples of combinations of alkynyl groups include propynoic acid-2-butynoic anhydride, propynoic acid-3-butynoic anhydride, 2-butynoic acid-3-butynoic anhydride, and the like.
  • alkynyl groups and aryl groups examples include benzoic propynoic anhydride, 4-methylbenzoic propynoic anhydride, benzoic 2-butynoic anhydride, and the like.
  • Examples of combinations of an alkynyl group and a hydrocarbon group having a functional group include fluoropropynoacetic anhydride, trifluoropropynoacetic anhydride, 2-cyanopropynoacetic anhydride, methoxypropynoacetic anhydride, 2- butyric acid, fluoroacetic anhydride, and the like.
  • Examples of combinations of aryl groups include 4-methylbenzoic acid anhydride, 1-naphthalenecarboxylic acid benzoic anhydride, 4-methylbenzoic acid 1-naphthalenecarboxylic acid anhydride, and the like.
  • Examples of combinations of an aryl group and a hydrocarbon group having a functional group include benzoic fluoroacetic anhydride, benzoic trifluoroacetic anhydride, benzoic 2-cyanoacetic anhydride, benzoic methoxyacetic anhydride, 4- methylbenzoic acid, fluoroacetic anhydride, and the like.
  • hydrocarbon groups having functional groups examples include fluoroacetic acid trifluoroacetic anhydride, fluoroacetic acid 2-cyanoacetic anhydride, fluoroacetic acid methoxyacetic anhydride, trifluoroacetic acid 2-cyanoacetic anhydride, and the like. is mentioned.
  • acid anhydrides forming a chain structure preferably acetic anhydride, propionic anhydride, 2-methylpropionic anhydride, cyclopentanecarboxylic anhydride, cyclohexanecarboxylic anhydride, etc., acrylic acid anhydride, 2-methylacrylic anhydride, 3-methylacrylic anhydride, 2,3-dimethylacrylic anhydride, 3,3-dimethylacrylic anhydride, 3-butenoic anhydride, 2-methyl- 3-butenoic anhydride, propynoic anhydride, 2-butynoic anhydride, benzoic anhydride, 2-methylbenzoic anhydride, 4-methylbenzoic anhydride, 4-tert-butyl benzoic anhydride, Trifluoroacetic anhydride, 3,3,3-trifluoropropionic anhydride, 2-(trifluoromethyl)acrylic anhydride, 2-(4-fluorophenyl)acrylic anhydride, 4-fluorobenzo
  • These compounds are capable of improving charge/discharge rate characteristics, input/output characteristics, and impedance characteristics, especially after endurance tests, by appropriately forming bonds with lithium oxalate salts to form films with excellent durability. It is preferable from the viewpoint that it can be done.
  • the molecular weight of the carboxylic acid anhydride is not limited and is arbitrary as long as it does not significantly impair the effects of the present disclosure. be.
  • the molecular weight of the carboxylic anhydride is within the above range, it is possible to suppress an increase in the viscosity of the electrolytic solution and to optimize the film density, thereby appropriately improving the durability.
  • the method for producing the carboxylic acid anhydride is not particularly limited, and any known method can be selected for production. Any one of the carboxylic anhydrides described above may be contained alone in the non-aqueous electrolytic solution of the present disclosure, or two or more thereof may be contained in any combination and ratio.
  • the content of the carboxylic anhydride in the electrolytic solution is not particularly limited, and is arbitrary as long as it does not significantly impair the effects of the present disclosure. is preferably contained at a concentration of 0.1% by mass or more, and usually 5% by mass or less, preferably 3% by mass or less.
  • the content of the carboxylic acid anhydride is within the above range, the effect of improving the cycle characteristics is likely to be exhibited, and the reactivity is suitable, so the battery characteristics are likely to be improved.
  • auxiliaries can be used in the electrolytic solution.
  • Other auxiliaries include pentane, heptane, octane, nonane, decane, cycloheptane, benzene, furan, naphthalene, 2-phenylbicyclohexyl, cyclohexane, 2,4,8,10-tetraoxaspiro [5.5].
  • Hydrocarbon compounds such as undecane, 3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane; fluorobenzene, difluorobenzene, hexafluorobenzene, benzotrifluoride, monofluorobenzene, 1-fluoro-2-cyclohexylbenzene, 1-fluoro-4-tert-butylbenzene, 1-fluoro-3-cyclohexylbenzene, 1-fluoro -Fluorine-containing aromatic compounds such as 2-cyclohexylbenzene and fluorinated biphenyl; Carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate; Ether compounds such as dioxolane, dioxane, 2,5,8,11-tetraoxadodecane, 2,5,8,11,14-pentoxapentadecane
  • Phosphorus-containing compounds are particularly preferred as the other auxiliary agents, and tris(trimethylsilyl) phosphate and tris(trimethylsilyl) phosphorous acid are preferred.
  • the amount of other auxiliary agents to be added is not particularly limited, and is arbitrary as long as it does not significantly impair the effects of the present disclosure.
  • Other auxiliary agents are preferably 0.01% by mass or more and 5% by mass or less in 100% by mass of the electrolytic solution. Within this range, the effect of the other auxiliary agents can be sufficiently exhibited, and a situation in which battery characteristics such as high-load discharge characteristics deteriorate can be easily avoided.
  • the amount of other auxiliaries is more preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and more preferably 3% by mass or less, further preferably 1% by mass or less. .
  • the above-mentioned electrolytic solution includes cyclic and chain carboxylic acid esters, ether compounds, nitrogen-containing compounds, boron-containing compounds, organic silicon-containing compounds, nonflammable (flame retardant) agents, surfactants, as long as the effects of the present disclosure are not impaired.
  • a high dielectric additive, a cycle characteristic and rate characteristic improver, a sulfone-based compound, and the like may be further contained as additives.
  • Examples of the cyclic carboxylic acid ester include those having 3 to 12 total carbon atoms in the structural formula. Specific examples include gamma-butyrolactone, gamma-valerolactone, gamma-caprolactone, epsilon-caprolactone, 3-methyl- ⁇ -butyrolactone and the like. Among them, gamma-butyrolactone is particularly preferable from the viewpoint of improving the characteristics of electrochemical devices derived from improving the degree of dissociation of lithium ions.
  • the compounding amount of the cyclic carboxylic acid ester as an additive is generally preferably 0.1% by mass or more, more preferably 1% by mass or more, based on 100% by mass of the solvent. Within this range, the electrical conductivity of the electrolytic solution can be improved, and the large current discharge characteristics of the electrochemical device can be easily improved. Also, the amount of the cyclic carboxylic acid ester compounded is preferably 10% by mass or less, more preferably 5% by mass or less. By setting the upper limit in this way, the viscosity of the electrolytic solution is set in an appropriate range, a decrease in electrical conductivity is avoided, an increase in negative electrode resistance is suppressed, and the large current discharge characteristics of the electrochemical device are set in a favorable range. make it easier.
  • cyclic carboxylic acid ester a fluorinated cyclic carboxylic acid ester (fluorine-containing lactone) can also be suitably used.
  • fluorine-containing lactone examples include the following formula (C):
  • X 15 to X 20 are the same or different, and are all —H, —F, —Cl, —CH 3 or fluorinated alkyl groups; provided that at least one of X 15 to X 20 is a fluorinated alkyl base) and fluorine-containing lactones represented by
  • fluorinated alkyl groups for X 15 to X 20 include -CFH 2 , -CF 2 H, -CF 3 , -CH 2 CF 3 , -CF 2 CF 3 , -CH 2 CF 2 CF 3 , -CF (CF 3 ) 2 and the like, and —CH 2 CF 3 and —CH 2 CF 2 CF 3 are preferred from the viewpoint of high oxidation resistance and safety improvement effect.
  • X 15 to X 20 is a fluorinated alkyl group
  • —H, —F, —Cl, —CH 3 or a fluorinated alkyl group is substituted at only one position of X 15 to X 20 may be substituted at a plurality of locations.
  • the number is preferably 1 to 3, more preferably 1 to 2.
  • the substitution position of the fluorinated alkyl group is not particularly limited, but since the synthesis yield is good, X 17 and/or X 18 , particularly X 17 or X 18 , is a fluorinated alkyl group, especially —CH 2 CF 3 , —CH 2 CF 2 CF 3 .
  • X 15 to X 20 other than the fluorinated alkyl group are —H, —F, —Cl or CH 3 , and —H is particularly preferred in terms of good solubility of the electrolyte salt.
  • a and B is CX 226 X 227 (X 226 and X 227 are the same or different, and both -H, -F, -Cl, -CF 3 , -CH 3 or a hydrogen atom an alkylene group which may be substituted with a halogen atom or may contain a heteroatom in the chain), and the other is an oxygen atom;
  • Rf 12 is a fluorinated alkyl group optionally having an ether bond or a fluorinated an alkoxy group;
  • X 221 and X 222 are the same or different and are both —H, —F, —Cl, —CF 3 or CH 3 ;
  • X 223 to X 225 are the same or different and are both —H and —F , —Cl or an alkyl group in which a hydrogen atom may be substituted with a halogen atom and which may contain a heteroatom in the chain;
  • Examples of the chain carboxylic acid ester include those having a total carbon number of 3 to 7 in the structural formula. Specifically, methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, t-butyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, isobutyl propionate, n-butyl propionate, methyl butyrate, isobutyl propionate, t-butyl propionate, methyl butyrate, ethyl butyrate, n-propyl butyrate, isopropyl butyrate, methyl isobutyrate, ethyl isobutyrate, iso Examples include n-propyl butyrate and isopropyl isobutyrate.
  • Chain ethers having 2 to 10 carbon atoms and cyclic ethers having 3 to 6 carbon atoms are preferable.
  • Chain ethers having 2 to 10 carbon atoms include dimethyl ether, diethyl ether, di-n-butyl ether, dimethoxymethane, methoxyethoxymethane, diethoxymethane, dimethoxyethane, methoxyethoxyethane, diethoxyethane, and ethylene glycol di-n.
  • -propyl ether ethylene glycol di-n-butyl ether, diethylene glycol, diethylene glycol dimethyl ether, pentaethylene glycol, triethylene glycol dimethyl ether, triethylene glycol, tetraethylene glycol, tetraethylene glycol dimethyl ether, diisopropyl ether and the like.
  • a fluorinated ether can also be suitably used as the ether compound.
  • the fluorinated ether the following general formula (I): Rf 3 —O—Rf 4 (I) (In the formula, Rf 3 and Rf 4 are the same or different and are an alkyl group having 1 to 10 carbon atoms or a fluorinated alkyl group having 1 to 10 carbon atoms, provided that at least one of Rf 3 and Rf 4 is fluorine alkyl group.) and fluorinated ethers (I) represented by By containing the fluorinated ether (I), the flame retardancy of the electrolytic solution is improved, and the stability and safety at high temperature and high voltage are improved.
  • Rf 3 and Rf 4 may be a fluorinated alkyl group having 1 to 10 carbon atoms, but the flame retardancy of the electrolytic solution, stability at high temperature and high voltage, and safety
  • both Rf 3 and Rf 4 are preferably fluorinated alkyl groups having 1 to 10 carbon atoms.
  • Rf 3 and Rf 4 may be the same or different from each other. Among them, Rf 3 and Rf 4 are the same or different, Rf 3 is a fluorinated alkyl group having 3 to 6 carbon atoms, and Rf 4 is a fluorinated alkyl group having 2 to 6 carbon atoms. more preferred.
  • the fluorinated ether (I) preferably has a fluorine content of 40 to 75% by mass. When the fluorine content is within this range, the balance between nonflammability and compatibility is particularly excellent. It is also preferable from the viewpoint of good oxidation resistance and safety.
  • the lower limit of the fluorine content is more preferably 45% by mass, still more preferably 50% by mass, and particularly preferably 55% by mass.
  • the upper limit is more preferably 70% by mass, still more preferably 66% by mass.
  • the fluorine content of the fluorinated ether (I) is based on the structural formula of the fluorinated ether (I), ⁇ (number of fluorine atoms x 19)/molecular weight of the fluorinated ether (I) ⁇ x 100 (% ) is a value calculated by
  • Rf 3 examples include HCF 2 CF 2 —, CF 3 CF 2 CH 2 —, CF 3 CFHCF 2 —, HCF 2 CF 2 CF 2 —, HCF 2 CF 2 CH 2 —, and CF 3 CF 2 CH 2 CH. 2- , CF3CFHCF2CH2- , HCF2CF2CF2CF2- , HCF2CF2CF2CH2- , HCF2CF2CH2CH2- , HCF2CF ( CF3 ) CH2 _ _ _ _ - - and the like.
  • Rf 4 examples include -CH 2 CF 2 CF 3 , -CF 2 CFHCF 3 , -CF 2 CF 2 CF 2 H, -CH 2 CF 2 CF 2 H, -CH 2 CH 2 CF 2 CF 3 , -CH2CF2CFHCF3 , -CF2CF2CF2CF2H , -CH2CF2CF2CF2H , -CH2CH2CF2CF2H , -CH2CF ( CF3 ) _ _ _ _ CF 2 H, -CF 2 CF 2 H, -CH 2 CF 2 H, -CF 2 CH 3 and the like.
  • fluorinated ether ( I ) examples include HCF2CF2OCH2CF2CF2H , HCF2CF2CH2OCF2CF2H , CF3CF2CH2OCF2CF2H , HCF2CF2CH2OCF2CFHCF3 , CF3CF2CH2OCF2CFHCF3 , C6F13OCH3 , C6F13OC2H5 , C8F17OCH3 , C8F17OC _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2H5 , CF3CFHCF2CH ( CH3 ) OCF2CFHCF3 , HCF2CF2OCH ( C2H5 ) 2 , HCF2CF2OC4H9 , HCF2CF2OCH2CH ( C2 _ H 5 ) 2 , HCF 2 CF 2 OCH 2 CH(CH 3 ) 2 and the
  • fluorinated ethers (I) are excellent in polarizability and can give fluorinated ethers (I) with high boiling points. Those containing HCF 2 - at both ends are particularly preferred.
  • the boiling point of the fluorinated ether (I) is preferably 67-120°C. It is more preferably 80° C. or higher, still more preferably 90° C. or higher.
  • fluorinated ethers ( I ) examples include HCF2CF2OCH2CF2CF2H , CF3CH2OCF2CFHCF3 , CF3CF2CH2OCF2CFHCF3 , HCF2CF2 CH2OCF2CFHCF3 , HCF2CF2CH2OCH2CF2CF2H , CF3CFHCF2CH2OCF2CFHCF3 , HCF2CF2CH2OCF2CF2H , CF3CF2 CH2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
  • HCF 2 CF 2 OCH 2 CF 2 CF 2 H HCF 2 CF 2 CH 2 OCF 2 CFHCF are advantageous in terms of high boiling point, compatibility with other solvents and good solubility of electrolyte salts.
  • H (boiling point 68° C.), HCF 2 CF 2 OCH 2 CF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 (boiling point 106° C.) and It is more preferably at least one selected from the group consisting of HCF2CF2CH2OCF2CF2H (boiling point : 92°C), more preferably HCF2CF2OCH2CF2CF2H .
  • Cyclic ethers having 3 to 6 carbon atoms include 1,2-dioxane, 1,3-dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, 1,4-dioxane, meth formaldehyde, 2-methyl-1,3-dioxolane, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 2-(trifluoroethyl)dioxolane 2,2,-bis(trifluoromethyl)-1, 3-dioxolane and the like, and fluorinated compounds thereof.
  • dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethylene glycol-n-propyl ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether, and crown ether have high solvation ability to lithium ions, and the ion dissociation degree is Dimethoxymethane, diethoxymethane, and ethoxymethoxymethane are preferred in terms of improvement, and particularly preferred because they have low viscosity and provide high ionic conductivity.
  • nitrogen-containing compound examples include nitriles, fluorine-containing nitriles, carboxylic acid amides, fluorine-containing carboxylic acid amides, sulfonic acid amides, fluorine-containing sulfonic acid amides, acetamides, formamides, and the like.
  • 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxaziridinone, 1,3-dimethyl-2-imidazolidinone, N-methylsuccinimide and the like can be used.
  • the nitrile compounds represented by the general formulas (1a), (1b) and (1c) are not included in the nitrogen-containing compounds.
  • boron-containing compound examples include boric acid esters such as trimethylborate and triethylborate, boric acid ethers, and alkyl borate.
  • organosilicon-containing compound examples include (CH 3 ) 4 —Si, (CH 3 ) 3 —Si—Si(CH 3 ) 3 and silicon oil.
  • nonflammable (flame retardant) agent examples include phosphate esters and phosphazene compounds.
  • phosphate examples include fluorine-containing alkyl phosphate, non-fluorine alkyl phosphate, and aryl phosphate. Among them, the fluorine-containing alkyl phosphate is preferable because it can exhibit a nonflammable effect even in a small amount.
  • Examples of the phosphazene-based compounds include methoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, dimethylaminopentafluorocyclotriphosphazene, diethylaminopentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, and ethoxyheptafluorocyclotetraphosphazene. is mentioned.
  • fluorine-containing alkyl phosphate examples include a fluorine-containing dialkyl phosphate described in JP-A-11-233141 and a cyclic alkyl phosphate described in JP-A-11-283669. , or a fluorine-containing trialkyl phosphate.
  • the surfactant may be a cationic surfactant, an anionic surfactant, a nonionic surfactant, or an amphoteric surfactant. It is preferable to include
  • surfactants containing fluorine atoms include the following formula (30): Rf5COO - M + (30) (In the formula, Rf 5 is a fluorine-containing alkyl group having 3 to 10 carbon atoms which may contain an ether bond; M + is Li + , Na + , K + or NHR' 3 + (R' is the same or different , all of which are H or alkyl groups having 1 to 3 carbon atoms)) and a fluorine-containing carboxylate represented by the following formula (40): Rf6SO3 - M + (40) (In the formula, Rf 6 is a fluorine-containing alkyl group having 3 to 10 carbon atoms which may contain an ether bond; M + is Li + , Na + , K + or NHR' 3 + (R' is the same or different , all of which are H or alkyl groups having 1 to 3 carbon atoms)) A fluorine-containing sulfonate represented by is preferable.
  • the content of the surfactant is preferably 0.01 to 2% by mass in the electrolytic solution, since the surface tension of the electrolytic solution can be lowered without deteriorating the charge-discharge cycle characteristics.
  • Examples of the high dielectric additive include sulfolane, methylsulfolane, ⁇ -butyrolactone, ⁇ -valerolactone, and the like.
  • cycle characteristics and rate characteristics improver examples include methyl acetate, ethyl acetate, tetrahydrofuran, 1,4-dioxane, and the like.
  • the electrolytic solution may be combined with a polymer material to form a gel-like (plasticized) gel electrolytic solution.
  • polymer materials include conventionally known polyethylene oxide, polypropylene oxide, modified products thereof (JP-A-8-222270, JP-A-2002-100405); polyacrylate-based polymers, polyacrylonitrile, and polyvinylidene fluoride.
  • vinylidene fluoride - fluororesins such as hexafluoropropylene copolymers (Japanese Patent Publication No. 4-506726, Japanese Patent Publication No. 8-507407, Japanese Patent Application Laid-Open No. 10-294131); Composites with resins (JP-A-11-35765, JP-A-11-86630) and the like can be mentioned.
  • the electrolytic solution may also contain an ion conductive compound described in Japanese Patent Application No. 2004-301934.
  • This ion-conducting compound has the formula (101): A-(D)-B (101) [In the formula, D is the formula (201): -(D1) n -(FAE) m -(AE) p -(Y) q - (201) (Where D is the formula (2a):
  • Rf is a fluorine-containing ether group optionally having a crosslinkable functional group; R 10 is a group or bond that binds Rf to the main chain
  • An ether unit having a fluorine-containing ether group in the side chain represented by; FAE has the formula (2b):
  • Rfa is a hydrogen atom, a fluorinated alkyl group optionally having a crosslinkable functional group; R 11 is a group or bond that bonds Rfa to the main chain
  • An ether unit having a fluorinated alkyl group in the side chain represented by; AE has the formula (2c):
  • R 13 has a hydrogen atom, an alkyl group which may have a crosslinkable functional group, an aliphatic cyclic hydrocarbon group which may have a crosslinkable functional group, or a crosslinkable functional group.
  • Y is represented by formulas (2d-1) to (2d-3):
  • a unit containing at least one of n is an integer from 0 to 200; m is an integer from 0 to 200; p is an integer from 0 to 10000; q is an integer from 1 to 100; not specified);
  • a and B are the same or different, and are a hydrogen atom, a fluorine atom and/or an alkyl group optionally containing a crosslinkable functional group, a phenyl group optionally containing a fluorine atom and/or a crosslinkable functional group, -COOH group, -OR (R is a hydrogen atom or a fluorine atom and/or an alkyl group that may contain a crosslinkable functional group), an ester group or a carbonate group (however, if the terminal of D is an oxygen atom, a -COOH group, —OR, not ester and carbonate groups)] It is an amorphous fluorine-containing polyether compound having a fluorine-containing group in the side chain represented by.
  • the electrolytic solution may contain a sulfone-based compound.
  • Preferred sulfone compounds are cyclic sulfones having 3 to 6 carbon atoms and chain sulfones having 2 to 6 carbon atoms.
  • the number of sulfonyl groups in one molecule is preferably one or two.
  • Cyclic sulfones include trimethylene sulfones, tetramethylene sulfones and hexamethylene sulfones which are monosulfone compounds; and trimethylene disulfones, tetramethylene disulfones and hexamethylene disulfones which are disulfone compounds.
  • trimethylene sulfones, tetramethylenedisulfones, hexamethylenesulfones, and hexamethylenedisulfones are more preferable, and tetramethylenesulfones (sulfolanes) are particularly preferable from the viewpoint of dielectric constant and viscosity.
  • sulfolane and/or sulfolane derivatives are preferable.
  • sulfolane derivative one in which one or more hydrogen atoms bonded to carbon atoms constituting a sulfolane ring is substituted with a fluorine atom or an alkyl group is preferable.
  • chain sulfone examples include dimethylsulfone, ethylmethylsulfone, diethylsulfone, n-propylmethylsulfone, n-propylethylsulfone, di-n-propylsulfone, isopropylmethylsulfone, isopropylethylsulfone, diisopropylsulfone, n- butylmethylsulfone, n-butylethylsulfone, t-butylmethylsulfone, t-butylethylsulfone, monofluoromethylmethylsulfone, difluoromethylmethylsulfone, trifluoromethylmethylsulfone, monofluoroethylmethylsulfone, difluoroethylmethylsulfone, trifluoroethylmethylsulfone, pentafluoroethylmethylsulfone, eth
  • the content of the sulfone-based compound is not particularly limited, and is arbitrary as long as it does not significantly impair the effects of the present disclosure. , more preferably 1% by volume or more, and usually 40% by volume or less, preferably 35% by volume or less, more preferably 30% by volume or less. If the content of the sulfone-based compound is within the above range, it is easy to obtain the effect of improving durability such as cycle characteristics and storage characteristics. can be avoided, and the input/output characteristics and charge/discharge rate characteristics of the non-aqueous electrolyte secondary battery can be set within appropriate ranges.
  • compound (7) is used as an additive, it is preferable to use a compound other than compound (7) as the electrolyte salt described above.
  • lithium fluorophosphate examples include lithium monofluorophosphate (LiPO 3 F) and lithium difluorophosphate (LiPO 2 F 2 ).
  • Lithium salts having an S ⁇ O group include lithium monofluorosulfonate (FSO 3 Li), lithium methyl sulfate (CH 3 OSO 3 Li), lithium ethyl sulfate (C 2 H 5 OSO 3 Li), 2,2 , 2-trifluoroethyl lithium sulfate, and the like.
  • LiPO 2 F 2 , FSO 3 Li, and C 2 H 5 OSO 3 Li are particularly preferable as the compound (7).
  • the content of compound (7) is preferably 0.001 to 20% by mass, more preferably 0.01 to 15% by mass, more preferably 0.1 to 10% by mass, relative to the electrolytic solution. 0.1 to 7% by mass is particularly preferable.
  • the electrolytic solution may further contain other additives.
  • Other additives include, for example, metal oxides and glass.
  • the electrolytic solution preferably has a hydrogen fluoride (HF) content of 1 to 1000 ppm.
  • HF hydrogen fluoride
  • the HF content is more preferably 5 ppm or more, still more preferably 10 ppm or more, and particularly preferably 20 ppm or more.
  • the HF content is also more preferably 200 ppm or less, still more preferably 100 ppm or less, even more preferably 80 ppm or less, and particularly preferably 50 ppm or less.
  • the content of HF can be measured by a neutralization titration method.
  • the electrolytic solution preferably contains a fluorine-containing compound.
  • the electrochemical device of the present disclosure can be suitably used even under high voltage.
  • the fluorine-containing compound is preferably at least one selected from the group consisting of fluorinated carbonates, fluorinated carboxylic acid esters and fluorinated ethers.
  • the fluorinated carbonate the fluorinated cyclic carbonate, the fluorinated linear carbonate, and the like described in the description of the solvent can be used.
  • fluorinated carboxylic acid ester the fluorinated cyclic carboxylic acid ester described in the description of the solvent and the additive, the fluorinated linear carboxylic acid ester described in the description of the solvent, and the like can be used.
  • the fluorinated ether As the fluorinated ether, the fluorinated ether (I) described in the explanation of the additive can be used.
  • the electrolytic solution may be prepared by any method using the components described above.
  • the solid electrolyte may be a sulfide-based solid electrolyte or an oxide-based solid electrolyte.
  • a sulfide-based solid electrolyte when using a sulfide-based solid electrolyte, there is an advantage of flexibility.
  • the sulfide-based solid electrolyte preferably contains lithium.
  • a sulfide-based solid electrolyte containing lithium is used in a solid battery using lithium ions as a carrier, and is particularly preferable in terms of an electrochemical device having a high energy density.
  • the oxide-based solid electrolyte is preferably a compound containing an oxygen atom (O), having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and having electronic insulation. .
  • O oxygen atom
  • a ceramic material is also known in which element substitution is performed on LLZ.
  • at least one of Mg (magnesium) and A (A is at least one element selected from the group consisting of Ca (calcium), Sr (strontium), and Ba (barium)) LLZ-based ceramic materials with element substitution are also included.
  • Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate (Li 3 PO 4 ) LiPON in which part of the oxygen in lithium phosphate is replaced with nitrogen
  • LiPOD 1 LiPOD 1 (D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr , Nb, Mo, Ru, Ag, Ta, W, Pt, Au, etc.).
  • LiA 1 ON (A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.) and the like can also be preferably used. Specific examples include Li 2 O—Al 2 O 3 —SiO 2 —P 2 O 5 —TiO 2 —GeO 2 and Li 2 O—Al 2 O 3 —SiO 2 —P 2 O 5 —TiO 2 . mentioned.
  • the oxide-based solid electrolyte preferably contains lithium.
  • a lithium-containing oxide-based solid electrolyte is used for a solid battery using lithium ions as a carrier, and is particularly preferable in terms of an electrochemical device having a high energy density.
  • the oxide-based solid electrolyte is preferably an oxide having a crystal structure.
  • Oxides having a crystalline structure are particularly preferred in terms of good Li ion conductivity.
  • oxides having a crystal structure perovskite type (La 0.51 Li 0.34 TiO 2.94 etc.), NASICON type (Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 etc.), A garnet type (Li 7 La 3 Zr 2 O 12 (LLZ), etc.) and the like are included. Among them, the NASICON type is preferable.
  • the volume average particle size of the oxide-based solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the average particle size of the oxide-based solid electrolyte particles is measured according to the following procedure. A 1% by mass dispersion of the oxide-based solid electrolyte particles is diluted and adjusted in a 20 ml sample bottle using water (heptane in the case of water-labile substances). The dispersed sample after dilution is irradiated with ultrasonic waves of 1 kHz for 10 minutes and used for the test immediately after that.
  • the material and shape of the separator are not particularly limited, and known ones can be used. Among them, resins, glass fibers, inorganic substances, etc. are used, and it is preferable to use porous sheets or non-woven fabrics having excellent liquid retention properties.
  • polyolefins such as polyethylene and polypropylene, aromatic polyamides, polytetrafluoroethylene, polyethersulfone, glass filters, and the like can be used. These materials, such as a polypropylene/polyethylene two-layer film and a polypropylene/polyethylene/polypropylene three-layer film, may be used singly or two or more of them may be used in any combination and ratio.
  • the separator is preferably a porous sheet or non-woven fabric made of polyolefin such as polyethylene or polypropylene, in terms of good electrolyte permeability and shutdown effect.
  • the thickness of the separator is arbitrary, it is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, and usually 50 ⁇ m or less, preferably 40 ⁇ m or less, and more preferably 30 ⁇ m or less. If the separator is thinner than the above range, the insulating properties and mechanical strength may deteriorate. On the other hand, if the thickness is more than the above range, not only the battery performance such as the rate characteristics may deteriorate, but also the energy density of the electrolyte battery as a whole may deteriorate.
  • the porosity of the separator is arbitrary, but is usually 20% or more, preferably 35% or more, and more preferably 45% or more. Moreover, it is usually 90% or less, preferably 85% or less, and more preferably 75% or less. If the porosity is too smaller than the above range, the film resistance tends to increase and the rate characteristics tend to deteriorate. On the other hand, when the thickness is too much larger than the above range, the mechanical strength of the separator tends to decrease and the insulation tends to decrease.
  • the average pore size of the separator is also arbitrary, but it is usually 0.5 ⁇ m or less, preferably 0.2 ⁇ m or less, and usually 0.05 ⁇ m or more. If the average pore diameter exceeds the above range, short circuits tend to occur. On the other hand, below the above range, the film resistance may increase and the rate characteristics may deteriorate.
  • oxides such as alumina and silicon dioxide
  • nitrides such as aluminum nitride and silicon nitride
  • sulfates such as barium sulfate and calcium sulfate are used, and those in the form of particles or fibers are used. Used.
  • thin films such as non-woven fabrics, woven fabrics and microporous films are used.
  • a thin film one having a pore size of 0.01 to 1 ⁇ m and a thickness of 5 to 50 ⁇ m is preferably used.
  • a separator in which a composite porous layer containing the inorganic particles is formed on the surface layer of the positive electrode and/or the negative electrode using a resin binder can be used.
  • a porous layer may be formed on both surfaces of the positive electrode using alumina particles having a 90% particle size of less than 1 ⁇ m and a fluororesin as a binder.
  • the electrode group has a laminated structure in which the positive electrode plate and the negative electrode plate are sandwiched between the separators, and a structure in which the positive electrode plate and the negative electrode plate are spirally wound with the separator interposed therebetween. Either is fine.
  • the ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as electrode group occupancy) is usually 40% or more, preferably 50% or more, and usually 90% or less, preferably 80% or less. .
  • the battery capacity will be small. If the above range is exceeded, the void space is small, and the internal pressure rises due to the swelling of the members due to the high temperature of the battery and the increase in the vapor pressure of the liquid component of the electrolyte, and the repeated charging and discharging performance as a battery.
  • the gas release valve that releases the internal pressure to the outside may operate.
  • the current collecting structure is not particularly limited, but in order to more effectively improve the charging/discharging characteristics of the electrolytic solution at high current density, it is preferable to adopt a structure that reduces the resistance of the wiring portions and joint portions. When the internal resistance is reduced in this way, the effect of using the above-described electrolytic solution is exhibited particularly well.
  • the electrode group has the above laminated structure
  • a structure in which the metal core portions of the electrode layers are bundled and welded to a terminal is preferably used.
  • the internal resistance increases. Therefore, it is preferable to reduce the resistance by providing a plurality of terminals within the electrode.
  • the internal resistance can be reduced by providing a plurality of lead structures for each of the positive electrode and the negative electrode and bundling them around the terminal.
  • the material of the exterior case is not particularly limited as long as it is stable with respect to the electrolytic solution used. Specifically, metals such as nickel-plated steel sheets, stainless steel, aluminum or aluminum alloys, and magnesium alloys, or laminate films of resin and aluminum foil are used. From the viewpoint of weight reduction, aluminum or aluminum alloy metals and laminate films are preferably used.
  • the metals are welded together by laser welding, resistance welding, or ultrasonic welding to form a sealed structure, or the above metals are used through a resin gasket to form a crimped structure. things are mentioned.
  • Examples of exterior cases using the laminate film include those having a sealing and airtight structure by heat-sealing the resin layers to each other.
  • a resin different from the resin used for the laminate film may be interposed between the resin layers in order to improve the sealing property.
  • the resin layer is heat-sealed through the current collector terminal to form a closed structure, the metal and the resin are joined together.
  • a resin is preferably used.
  • the shape of the electrochemical device of the present disclosure is arbitrary, and examples thereof include cylindrical, rectangular, laminated, coin-shaped, and large-sized shapes.
  • the shapes and configurations of the positive electrode, the negative electrode, and the separator can be changed according to the shape of each battery.
  • a module including the electrochemical device of the present disclosure is also one of the present disclosure.
  • the electrochemical device of the present disclosure is preferably used at a voltage of 4.9V or higher, more preferably at 5.0V or higher. As a result, the insertion reaction that has undergone the above-described conversion reaction can proceed sufficiently.
  • the upper limit is preferably 5.5V, more preferably 5.4V.
  • a method of using the electrochemical device of the present disclosure under a voltage of 4.9 V or higher (preferably 5.0 V or higher) is also one aspect of the present disclosure.
  • the upper limit is preferably 5.5V, more preferably 5.4V.
  • Carbon fluoride (CFx) used in the experiments below was analyzed by the following method.
  • FIG. 1 shows the analysis results of carbon fluoride used in Experiment 1.
  • FIG. 1 shows the peak intensity at 291 eV in C1s (the peak top of the peak corresponding to CF2 ) decreases with sputtering (etching) by argon ions, indicating that the fluorine concentration on the surface is high. Recognize.
  • the specific surface area of the carbon fluoride was measured using an automatic specific surface area meter (BELSORP-mini, manufactured by Bell Japan Co., Ltd.). Specifically, the adsorption isotherm was measured by the nitrogen gas adsorption method under the temperature of liquid nitrogen, and then analyzed by the BET method to determine the specific surface area. As a pretreatment of the sample, vacuum degassing was performed at 100° C. for 10 hours using Belprep vac-II (manufactured by Bel Japan Co., Ltd.).
  • Example 1 Comparative Example 1 (Preparation of electrolytic solution) Propylene carbonate, which is a high dielectric constant solvent, and ethyl methyl carbonate, which is a low viscosity solvent, are mixed at a volume ratio of 1:1, and LiBF4 is added to the mixture at a concentration of 1.0 mol/liter to form a non-aqueous electrolyte. Obtained.
  • a positive electrode laminate having a diameter of 1.3 mm was punched out from the positive electrode laminate by a punching machine to prepare a circular positive electrode.
  • a lithium metal foil having a thickness of 0.1 mm was punched into a size of 1.6 mm in diameter by a punching machine to prepare a circular negative electrode.
  • the above-mentioned circular positive electrode and negative electrode are opposed to each other via a microporous polyethylene film (separator) having a thickness of 20 ⁇ m, and the electrolytic solution obtained above is injected. Sealed, precharged and aged to produce a coin-type secondary battery.
  • the coin-shaped secondary battery obtained was measured for discharge capacity after 10 cycles of charging and discharging at a current density of 50 mA/g.
  • the upper limit voltage (charging voltage) was 5.0 V (Example 1) or 4.8 V (Comparative Example 1), and the lower limit voltage was 1.5 V. Table 1 shows the results.
  • the positive electrode was analyzed by X-ray photoelectron spectroscopy (XPS) before charging and discharging, after the first discharge, after recharging to 5.0V, and after recharging to 5.3V.
  • the conditions are the same as those performed for carbon fluoride.
  • the results are shown in FIG.
  • FIG. 2 after recharging to 5.0 V in (c) and after recharging to 5.3 V in (d), a C—F bond peak was detected near 295 to 290 eV of C1s. ing. Therefore, it can be seen that the insertion reaction of fluoride ions into carbon occurs during recharging, that is, the formation of CFx occurs reversibly.
  • Solvent PC propylene carbonate EC: ethylene carbonate FEC: monofluoroethylene carbonate DMC: dimethyl carbonate DEC: diethyl carbonate DME: 1,2-dimethoxyethane F1: CF 3 CH 2 OCOOCH 3 F2 : CF3CH2COOCH3 F3 : CF2HCOOCH3 F4 : HCF2CF2OCH2CF2CF2H _ _ ⁇
  • Additive B1 tris (pentafluorophenyl) borate lithium salt L1: LiBF 4 L2: LiPF6 L3: LiFSI L4: LiTFSI
  • CF 0.5 (I: 0.13, specific surface area: 263 m 2 /g), carbon black and polyvinylidene fluoride were mixed at a ratio of 85/10/5 (mass ratio) and dispersed in N-methyl-2-pyrrolidone.
  • a slurry of the positive electrode mixture was prepared.
  • the obtained positive electrode material mixture slurry is uniformly applied onto an aluminum current collector, dried to form a positive electrode active material layer (thickness: 50 ⁇ m), and then compression-molded by a roller press to form a positive electrode laminate. manufactured.
  • a positive electrode laminate having a diameter of 1.3 mm was punched out from the positive electrode laminate by a punching machine to prepare a circular positive electrode.
  • a 0.1 mm-thick lithium metal foil coated with various materials was punched out into a size of 1.6 mm in diameter by a punching machine to prepare a circular negative electrode.
  • the above-mentioned circular positive electrode and negative electrode are opposed to each other via a microporous polyethylene film (separator) having a thickness of 20 ⁇ m, and the electrolytic solution obtained above is injected. Sealing, precharging, and aging were performed to produce a coin-type secondary battery.
  • IV resistance The secondary battery for which the initial discharge capacity evaluation was completed was charged at 25° C. with a current of 100 mA/g to half the initial discharge capacity. This was discharged at 200 mA/g at 25° C., and the voltage at 10 seconds was measured. The resistance was calculated from the voltage drop during discharge and was taken as the IV resistance. Table 2 shows the results.
  • styrene-butadiene rubber dispersed in distilled water was added to the active material and graphite at a weight ratio of 10:90 so that the solid content was 6% by mass.
  • the resulting slurry was uniformly coated on a negative electrode current collector (copper foil with a thickness of 10 ⁇ m) and dried to form a negative electrode mixture layer. After that, it was compression-molded by a roller press machine, and punched into a size of 1.6 mm in diameter by a puncher to produce a circular negative electrode.
  • Anode3 was prepared in the same manner as in Experiment 1.
  • Example 18 (Production of cells) A solid electrolyte Li 2 S—SiS 2 was sandwiched between a positive electrode and a negative electrode prepared under the same conditions as in Experiment 1 to construct a cell.
  • Example 20 Evaluation was performed in the same manner as in Example 18 except that CF 0.5 (I: 0.13, specific surface area: 263 m 2 /g) was used as the positive electrode active material. (Example 20)
  • Example 21 Evaluation was performed in the same manner as in Example 18 except that CF 0.6 (I: 0.09, specific surface area: 311 m 2 /g) was used as the positive electrode active material. (Example 21)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本開示は、フッ化物イオンの反応を利用した充放電のサイクル性能を改善できる電極活物質、電極、電気化学デバイス、モジュール及び方法を提供することを目的とする。本開示は、炭素材料を含み、放電時、金属フッ化物が形成され、充電時、前記金属フッ化物から脱離したフッ化物イオンが前記炭素材料と反応し、C-F結合が形成される電極活物質である。

Description

電極活物質、電極、電気化学デバイス、モジュール及び方法
本開示は、電極活物質、電極、電気化学デバイス、モジュール及び方法に関する。
近年の電気製品の軽量化、小型化にともない、高いエネルギー密度をもつリチウムイオン二次電池等の電気化学デバイスの開発が進められている。リチウムイオン二次電池は、通常、正極にコバルト酸リチウム等のリチウム含有金属酸化物を、負極にグラファイト等の炭素材料を使用し、リチウムイオン(Li)を電荷のキャリアとして充放電を行う。
その他の電気化学デバイスとして、フッ化物イオン(F)を電荷のキャリアとするフッ化物イオン電池も挙げられる。フッ化物イオン電池は、高電圧であることが特徴で、一般的に使用されているのは、正極にフッ化黒鉛を、負極にリチウム金属を用いた一次電池であるが、二次電池の検討も進められている(例えば、特許文献1、2参照)。
特開2002-151146号公報 特開2013-145758号公報
本開示は、フッ化物イオンの反応を利用した充放電のサイクル性能を改善できる電極活物質、電極、電気化学デバイス、モジュール及び方法を提供することを目的とする。
本開示は、炭素材料を含み、放電時、金属フッ化物が形成され、充電時、上記金属フッ化物から脱離したフッ化物イオンが上記炭素材料と反応し、C-F結合が形成される電極活物質に関する。
本開示はまた、放電後、炭素材料及び金属フッ化物を含み、充電後、C-F結合を含む電極活物質に関する。
上記電極活物質は、充電後にフッ化カーボンが存在することが好ましい。
上記電極活物質は、X線光電子分光法分析において、10mA、0.5kVのアルゴンイオンエッチングのもと、C1sにおけるCFに相当するピークのピーク強度を測定したとき、(100秒後のピーク強度)/(0秒時のピーク強度)の値である表面フッ素指数Iが0.30以下であることが好ましい。
本開示はまた、上記電極活物質を含む電極に関する。
上記電極は、正極であることが好ましい。
本開示はまた、上記電極を含む電気化学デバイスに関する。
上記電気化学デバイスは、上記電極の対極として、充放電時にフッ化物イオンとの結合が形成されない電極を含むことが好ましい。
上記電気化学デバイスは、含フッ素化合物を含む電解液を含むことが好ましい。
上記電気化学デバイスは、上記電極を正極とすることが好ましい。
上記電気化学デバイスは、リチウムを貯蔵可能な材料を負極とすることが好ましい。
上記リチウムを貯蔵可能な材料は、黒鉛、スズ、ケイ素、酸化ケイ素及びリチウムから選択される少なくとも一種であることが好ましい。
上記電気化学デバイスは、4.9V以上の電圧下で使用されることが好ましい。
本開示はまた、上記電気化学デバイスを備えるモジュールに関する。
本開示はまた、上記電気化学デバイスを4.9V以上の電圧下で使用する方法に関する。
本開示によれば、フッ化物イオンの反応を利用した充放電のサイクル性能を改善できる電極活物質、電極、電気化学デバイス、モジュール及び方法を提供できる。
実験1におけるフッ化カーボンのXPS分析の結果である。 実験1における正極のXPS分析の結果である。 実験1における正極の画像観察の結果である。 実験1における正極のXRD分析の結果である。
以下、本開示を具体的に説明する。
<電極活物質>
本開示は、炭素材料を含み、放電時、金属フッ化物が形成され、充電時、前記金属フッ化物から脱離したフッ化物イオンが前記炭素材料に挿入される電極活物質(以下、「本開示の第1の電極活物質」とも記載する。)に関する。
本開示はまた、放電後、炭素材料及び金属フッ化物を含み、充電後、前記炭素材料にフッ化物イオンが挿入されている電極活物質(以下、「本開示の第2の電極活物質」とも記載する。)に関する。
特許文献2のように、正極及び負極間でフッ化物イオンをやり取りするロッキングチェア型の反応を利用する二次電池では、電解液中のフッ化物イオン濃度を高くする必要がある。通常、フッ化物塩は難溶性であるため、特許文献2の二次電池では、添加剤(アニオン受容体、カチオン受容体)によってフッ化物塩の溶解度を向上させ、フッ化物イオンの発生を促進させているが、依然としてフッ化物塩の溶解度は十分とは言えず、二次電池としてのサイクル性能に改善の余地があった。
また、正極及び負極間でフッ化物イオンをやり取りするロッキングチェア型の二次電池とする場合、フッ化物イオンを吸蔵・脱離できる電極材料を正極及び負極の両方に使用する必要があるが、このような電極材料には限りがあるため、電池設計の幅に制限があった。
本開示の第1の電極活物質では、放電時に、電極上に金属フッ化物が形成される。充電時には、まず、この金属フッ化物からフッ化物イオンが脱離する反応(コンバージョン反応)が生じ、次いで、フッ化物イオンが炭素材料に挿入される反応(インサーション反応)が生じた結果、炭素材料とフッ化物イオンとの間にC-F結合が形成され、フッ化カーボン等が形成される。このようなコンバージョン反応を経たインサーション反応が生じることで、上述のロッキングチェア型の二次電池と比較して、充放電のサイクル性能を改善することができる。
本開示の第2の電極活物質は、上述のコンバージョン反応を経たインサーション反応が生じる電極活物質を、本開示の第1の電極活物質とは異なる表現で記載したものである。
以下、本開示の第1の電極活物質及び本開示の第2の電極活物質を総称して、本開示の電極活物質とも記載する。
後述の実験1で示しているように、作動電圧を5Vとした場合、10サイクル後でもある程度の容量を維持できたが、作動電圧を4.8Vとした場合、10サイクル後にはほとんど容量が得られなかった。よって、上述のコンバージョン反応を経たインサーション反応は、4.8V以下では生じていないと推測される。
そして、特許文献1の実施例は、作動電圧が4.8Vであるため、実験1の比較例と同様、上述のコンバージョン反応を経たインサーション反応が生じていないと考えられる。
特許文献2の実施例2は、添加剤としてアニオン受容体やカチオン受容体を使用するものである。
上記アニオン受容体として例示されているのは、AR1~AR3で示された構造を有するホウ素系の化合物であるが、後述の実験2の比較例で示しているように、当該化合物を電解液の材料として使用した場合、作動電圧を5V以上にしても、良好なサイクル性能は得られない。よって、上記アニオン受容体を使用した場合、フッ化物塩のフッ化物イオンに配位する上記アニオン受容体がフッ化物イオンの生成を促進させ、フッ化物イオンと正負極両方の活物質との反応が優先的に進行し、上述の単極でのコンバージョン反応を経たインサーション反応が生じていないと考えられる。
上記カチオン受容体として例示されているのはクラウンエーテル類等であるが、これらを使用した場合、フッ化物塩の金属イオンに配位する上記カチオン受容体がフッ化物イオンの生成を促進させ、フッ化物イオンと正負極両方の活物質との反応が優先的に進行し、上記アニオン受容体を使用した場合と同様、上述の単極でのコンバージョン反応を経たインサーション反応が生じていないと考えられる。
特許文献2の実施例1は、アニオン受容体やカチオン受容体が使用されておらず、また、5.2Vへの充電が行われている。しかしながら、特許文献2の[0077]に記載されているように、フッ化物イオンと正負極両方の活物質との反応(フッ化物イオンを用いたロッキングチェア型の反応)には、電極活物質に一定の要件が必要とされている。詳細な理由は不明であるが、本開示の電極活物質を用いることで、特許文献2とは別種の、単極でのコンバージョン反応を経たインサーション反応が進行すると考えられる。
本開示の電極活物質において、金属フッ化物は、通常、本開示の電極活物質を含む電極の表面に形成される。金属フッ化物の形成反応における金属源は特に限定されず、電解質塩であってもよいし、もう一方の電極であってもよい。
上記金属フッ化物に含まれる金属元素としては、例えば、Li、Na、K、Rb、Cs、Ca、Mg、Al、Zn、La、Eu、Si、Ge、Sn、In、V、Cd、Cr、Fe、Ga、Ti、Nb、Mn、Yb、Zr、Sm、Ce、Pb等を挙げることができる。なかでも、金属元素は、Li、Na、K、Rb、Cs、Ca、Mg、Al及びZnからなる群より選択される少なくとも一種であることが好ましい。特に、Li及び/又はNaが好ましく、Liが最も好ましい。すなわち、上記金属フッ化物は、フッ化リチウムであることが好ましい。
本開示の電極活物質としては、炭素材料を含み、かつ上述のコンバージョン反応を経たインサーション反応が起こり得るものであれば特に限定されないが、充電時、金属フッ化物から脱離したフッ化物イオンと炭素材料との反応によってフッ化カーボンが形成されるもの、すなわち、充電後にフッ化カーボンが存在するものが好ましい。なお、放電後の状態では、通常、充電後よりもフッ化カーボン量が減少している。放電後は、フッ化カーボンが存在してもよいし、存在しなくてもよい。このような条件を満たす材料として、例えば、フッ化カーボン(好ましくはフッ化黒鉛)を用いることができる。
上記フッ化カーボン(フッ化黒鉛)としては、CFxで表される化合物を好適に使用できる。xは、0.3~0.9が好ましい。下限は、より好ましくは0.4であり、上限は、より好ましくは0.8である。
本開示の電極活物質は、表面のフッ素濃度が高いことが好ましい。これにより、上述のコンバージョン反応を経たインサーション反応が起こりやすくなると考えられる。
上記表面のフッ素濃度は、アルゴンイオンエッチングを用いたXPS測定によって評価できる。例えばアルゴンイオンエッチング(10mA、0.5kV)のもと、C1sにおけるCFに相当するピークの経時変化に関して、(100秒後のピーク強度)/(0秒時のピーク強度)の値を表面フッ素指数Iとしたとき、本開示の電極活物質では、このIが好ましくは0.30以下、より好ましくは0.20以下、更に好ましくは0.10以下である。下限は特に限定されないが、好ましくは0.01以上である。
ここで、CFに相当するピークは、原料となる炭素材料の種類やスパッタの進行度合いにより、295eV~290eVの範囲で移動する。本明細書において、CFに相当するピークのピーク強度は、ピークトップが明瞭である場合はピークトップ、ピークトップが明瞭でない場合は上記領域での最大値とする。
上記表面のフッ素濃度を高くする方法は特に限定されないが、例えば、電極活物質の合成時、原料となる炭素材料とフッ素ガスとの反応条件の内、反応時間を短くすること(100時間以内)、流通するフッ素ガスの濃度を高くすること(50%以上)、反応温度を高くすること(300度以上)、などによって高めることができる。これらの条件は単独でも組み合わせてもよい。
本開示の電極活物質は、比表面積が大きいことが好ましい。これにより、上述のコンバージョン反応を経たインサーション反応が起こりやすくなると考えられる。ただし、比表面積が大きすぎると副反応が生じやすくなるため、以下に示す範囲であることが好ましい。
本開示の電極活物質の比表面積は、好ましくは100m/g以上、より好ましくは150m/g以上、更に好ましくは300m/g以上であり、また、好ましくは3000m/g以下、より好ましくは2000m/g以下、更に好ましくは1000m/g以下、更により好ましくは500m/g以下である。
上記比表面積は窒素ガス吸着法によるBET法で解析して求めた値である。
上記比表面積を大きくする方法は特に限定されないが、例えば、電極活物質の合成時、原料として比表面積が大きい炭素材料を使用する方法など方法が挙げられる。具体的には、原料となる炭素材料の比表面積は、好ましくは30m/g以上、より好ましくは100m/g以上、更に好ましくは200m/g以上であり、また、好ましくは3000m/g以下、より好ましくは2000m/g以下、更に好ましくは1000m/g以下、更により好ましくは500m/g以下である。
また、本開示の電極活物質がCFxで表されるフッ化カーボンである場合、xが上述の範囲であれば、フッ化カーボンの比表面積が前段落に記載した範囲内に収まりやすい傾向がある。
本開示の電極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状、繊維状、チューブ状等が挙げられる。また、一次粒子が凝集して、二次粒子を形成していてもよい。繊維状、チューブ状は、比表面積が大き過ぎて、上述のコンバージョン反応を経たインサーション反応以外の副反応が生じやすい。そのため、上記形状は、繊維状、チューブ状でないことが好ましく、球状が好ましい。
[0032]~[0038]に記載の本開示の電極活物質の形態は、充放電を行う前の状態(原料の状態(状態1))、電池に組み込まれて充放電された後の状態(状態2)のどちらであってもよい。より詳細には、状態1及び状態2のいずれかのみが上記形態であってもよいし、状態1及び状態2の両方が上記形態であってもよい。
また、状態2は、充電後、放電後、充放電の途中、のいずれであってもよい。
本開示の電極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
<電極>
本開示はまた、本開示の電極活物質を含む電極にも関する。
本開示の電極は、正極として好適に使用できる。
上記正極は、正極活物質を含む正極活物質層と、集電体とから構成される。
また、上記正極活物質層は、正極活物質を含む正極合剤で構成される。
本開示の電極活物質の含有量は、正極合剤の50~99.5質量%が好ましい。下限は、より好ましくは80質量%であり、上限は、より好ましくは99質量%である。また、本開示の電極活物質の、電極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると電極の強度が不足する場合がある。電池容量が高い点で、正極合剤の50~99.5質量%が好ましく、80~99質量%がより好ましい。また、本開示の電極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
上記正極合剤は、本開示の電極活物質以外の正極活物質を更に含んでもよい。
上記正極活物質としては、電気二重層容量を付与し得る高比表面積材料や、電気化学的にリチウムイオンを吸蔵・放出可能な材料等を用いることができ、具体的には、リチウム含有遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物、硫化物(硫黄系材料)、導電性高分子等が挙げられる。なかでも、リチウム含有遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が好ましく、特に、高電圧を産み出すリチウム含有遷移金属複合酸化物が好ましい。
上記正極合剤は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができ、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、キトサン、アルギン酸、ポリアクリル酸、ポリイミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ化ビニリデン共重合体、テトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
結着剤の含有量は、正極活物質層中の結着剤の割合として、通常0.1質量%以上、好ましくは1質量%以上、更に好ましくは1.2質量%以上であり、また、通常50質量%以下、好ましくは40質量%以下、更に好ましくは30質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
上記増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン、ポリビニルピロリドン及びこれらの塩等が挙げられる。1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上であり、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
上記導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル、金等の金属材料、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、ニードルコークス、カーボンナノチューブ、フラーレン、VGCF等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
スラリーを形成するための溶媒としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系溶媒としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系溶媒としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N-ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N-メチルピロリドン(NMP)、N-ブチルピロリドン(NBP)、3-メトキシ-N,N-ジメチルプロピオンアミド、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等が挙げられる。
正極用集電体の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼、ニッケル等の金属、又は、その合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。なかでも、金属材料、特にアルミニウム又はその合金が好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電気接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、また、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
正極の製造は、常法によればよい。例えば、上記正極活物質に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状の正極合剤とし、これを集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
上記高密度化は、ハンドプレス、ローラープレス等により行うことができる。正極活物質層の密度は、好ましくは1.0g/cm以上、より好ましくは1.3g/cm以上、更に好ましくは1.5g/cm以上であり、また、好ましくは5.0g/cm以下、より好ましくは3.0g/cm以下、更に好ましくは2.5g/cm以下の範囲である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
<電気化学デバイス>
本開示はまた、本開示の電極を含む電気化学デバイスにも関する。
本開示の電気化学デバイスは、正極、負極、電解質、セパレータ等を備えるものであることが好ましく、具体的には、これらを備える二次電池が好ましい。
特許文献2で開示されたような、正極及び負極間でフッ化物イオンをやり取りするロッキングチェア型の二次電池では、充放電の際、正極及び負極の両方がフッ化物イオンと反応し、フッ化物イオンとの結合が形成される。よって、電解液中のフッ化物イオン濃度を高くする必要があるが、通常、フッ化物塩は難溶性のため、フッ化物イオン濃度を高くすることは容易でない。
一方、本開示の電気化学デバイスは、本開示の電極において、上述のコンバージョン反応を経たインサーション反応を利用して充放電を行うものであるため、反応物質を電解液中に貯蔵し、電極近傍の反応物質と反応するリザーブ型の二次電池とすることができる。これにより、上述のロッキングチェア型の二次電池のように、電解液中のフッ化物イオン濃度を高くしなくても、十分な充放電を行うことが可能となる。
本開示の電気化学デバイスをリザーブ型の二次電池とする場合、本開示の対極として、充放電時にフッ化物イオンとの結合が形成されない電極を用いることが好ましい。このような電極としては、後述の負極で説明するものを好適に使用できる。
以下、本開示の電気化学デバイスをリザーブ型の二次電池とする場合の好適な構成について、より詳細に説明する。
(正極)
本開示の電気化学デバイスにおいて、正極は、上述の本開示の電極であることが好ましい。
(負極)
負極は、負極活物質を含む負極活物質層と、集電体とから構成される。
上記負極活物質層は、負極活物質を含む負極合剤で構成される。
上記負極活物質としては、リチウムを貯蔵可能な材料を用いることができ、より詳細には、様々な熱分解条件での有機物の熱分解物や人造黒鉛、天然黒鉛等のリチウムを吸蔵・放出可能な炭素質材料;酸化錫、酸化ケイ素等のリチウムを吸蔵・放出可能な金属酸化物材料;リチウム金属;種々のリチウム合金;リチウム含有金属複合酸化物材料等を挙げることができる。これらの負極活物質は、2種以上を混合して用いてもよい。
リチウムを吸蔵・放出可能な炭素質材料としては、種々の原料から得た易黒鉛性ピッチの高温処理によって製造された人造黒鉛若しくは精製天然黒鉛、又は、これらの黒鉛にピッチその他の有機物で表面処理を施した後炭化して得られるものが好ましく、天然黒鉛、人造黒鉛、人造炭素質物質並びに人造黒鉛質物質を400~3200℃の範囲で1回以上熱処理した炭素質材料、負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質からなり、かつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、負極活物質層が少なくとも2種以上の異なる配向性の炭素質が接する界面を有している炭素質材料、から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよくより好ましい。また、これらの炭素材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記の人造炭素質物質並びに人造黒鉛質物質を400~3200℃の範囲で1回以上熱処理した炭素質材料としては、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素剤、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n-ヘキサン等の低分子有機溶剤に溶解させた溶液及びこれらの炭化物等が挙げられる。
上記負極活物質として用いられる金属材料(但し、リチウムチタン複合酸化物を除く)としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特に制限されない。リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズ(以下、「特定金属元素」と略記)の単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質としては、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、及びその化合物の酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の複合化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。
また、これらの複合化合物が、金属単体、合金又は非金属元素等の数種の元素と複雑に結合した化合物も挙げられる。具体的には、例えばケイ素やスズでは、これらの元素と負極として作動しない金属との合金を用いることができる。例えば、スズの場合、スズとケイ素以外で負極として作用する金属と、更に負極として動作しない金属と、非金属元素との組み合わせで5~6種の元素を含むような複雑な化合物も用いることができる。
具体的には、Si単体、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、LiSiOあるいはスズ単体、SnSiO、LiSnO、MgSn、SnO(0<w≦2)が挙げられる。
また、Si又はSnを第一の構成元素とし、それに加えて第2、第3の構成元素を含む複合材料が挙げられる。第2の構成元素は、例えば、コバルト、鉄、マグネシウム、チタン、バナジウム、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム及びジルコニウムのうち少なくとも1種である。第3の構成元素は、例えば、ホウ素、炭素、アルミニウム及びリンのうち少なくとも1種である。
特に、高い電池容量及び優れた電池特性が得られることから、上記金属材料として、ケイ素又はスズの単体(微量の不純物を含んでよい)、SiO(0<v≦2)、SnO(0≦w≦2)、Si-Co-C複合材料、Si-Ni-C複合材料、Sn-Co-C複合材料、Sn-Ni-C複合材料が好ましい。
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば、特に制限されないが、高電流密度充放電特性の点からチタン及びリチウムを含有する材料が好ましく、より好ましくはチタンを含むリチウム含有複合金属酸化物材料が好ましく、更にリチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記)が好ましい。すなわち、スピネル構造を有するリチウムチタン複合酸化物を、電解液電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
上記リチウムチタン複合酸化物としては、一般式:
LiTi
[式中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
で表される化合物であることが好ましい。
上記組成の中でも、
(i)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(ii)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(iii)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
上記化合物の特に好ましい代表的な組成は、(i)ではLi4/3Ti5/3、(ii)ではLiTi、(iii)ではLi4/5Ti11/5である。また、Z≠0の構造については、例えば、Li4/3Ti4/3Al1/3が好ましいものとして挙げられる。
上記負極活物質は、リチウムを貯蔵可能な材料であることが好ましく、黒鉛、スズ、ケイ素、酸化ケイ素、リチウム及びリチウム含有金属複合酸化物から選択される少なくとも一種であることがより好ましく、黒鉛、スズ、ケイ素、酸化ケイ素及びリチウムから選択される少なくとも一種であることが更に好ましい。
上記負極合剤は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、上述した、正極に用いることができる結着剤と同様のものが挙げられる。負極活物質に対する結着剤の割合は、0.1質量%以上が好ましく、0.5質量%以上が更に好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、8質量%以下が特に好ましい。負極活物質に対する結着剤の割合が、上記範囲を上回ると、結着剤量が電池容量に寄与しない結着剤割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対する結着剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上が更に好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下が更に好ましい。
上記増粘剤としては、上述した、正極に用いることができる増粘剤と同様のものが挙げられる。負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
負極の導電材としては、銅やニッケル等の金属材料;グラファイト、カーボンブラック等の炭素材料等が挙げられる。
スラリーを形成するための溶媒としては、負極活物質、結着剤、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒としては、水、アルコール等が挙げられ、有機系溶媒としてはN-メチルピロリドン(NMP)、N-ブチルピロリドン(NBP)、3-メトキシ-N,N-ジメチルプロピオンアミド、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
負極用集電体の材質としては、銅、ニッケル又はステンレス等が挙げられる。なかでも、薄膜に加工しやすいという点、及び、コストの点から銅箔が好ましい。
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚すぎると、電池全体の容量が低下し過ぎることがあり、逆に薄すぎると取扱いが困難になることがある。
負極の製造は、常法によればよい。例えば、上記負極材料に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。また、合金材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm-3以上が好ましく、1.2g・cm-3以上が更に好ましく、1.3g・cm-3以上が特に好ましく、また、2.2g・cm-3以下が好ましく、2.1g・cm-3以下がより好ましく、2.0g・cm-3以下が更に好ましく、1.9g・cm-3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に制限されないが、芯材の金属箔厚さを差し引いた合剤層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上、また、通常300μm以下、好ましくは280μm以下、より好ましくは250μm以下が望ましい。
また、上記負極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
(電解質)
電解質は、溶媒及び電解質塩を含む電解液であってもよいし、固体電解質であってもよい。
上記溶媒は、カーボネート及びカルボン酸エステルからなる群より選択される少なくとも1種を含むことが好ましい。
また、上記溶媒として、これらのフッ素化物を用いてフッ素系電解液とすることで、高電圧を特徴とするフッ化物イオン電池においても、サイクル性能をより良好に維持することが可能となる。
上記カーボネートは、環状カーボネートであってもよいし、鎖状カーボネートであってもよい。
上記環状カーボネートは、非フッ素化環状カーボネートであってもよいし、フッ素化環状カーボネートであってもよい。
上記非フッ素化環状カーボネートとしては、非フッ素化飽和環状カーボネートが挙げられ、炭素数2~6のアルキレン基を有する非フッ素化飽和アルキレンカーボネートが好ましく、炭素数2~4のアルキレン基を有する非フッ素化飽和アルキレンカーボネートがより好ましい。
なかでも、上記非フッ素化飽和環状カーボネートとしては、誘電率が高く、粘度が好適となる点で、エチレンカーボネート、プロピレンカーボネート、シス-2,3-ペンチレンカーボネート、シス-2,3-ブチレンカーボネート、2,3-ペンチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、1,2-ブチレンカーボネート及びブチレンカーボネートからなる群より選択される少なくとも1種が好ましい。
上記非フッ素化飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記非フッ素化飽和環状カーボネートが含まれる場合、上記非フッ素化飽和環状カーボネートの含有量は、上記溶媒に対して5~90体積%であることが好ましく、10~60体積%であることがより好ましく、15~45体積%であることが更に好ましい。
上記フッ素化環状カーボネートは、フッ素原子を有する環状カーボネートである。フッ素化環状カーボネートを含む溶媒は、高電圧下でも好適に使用することができる。
なお、本明細書において「高電圧」とは、4.2V以上の電圧をいう。また、「高電圧」の上限は5.5Vが好ましく、5.4Vがより好ましい。
上記フッ素化環状カーボネートは、フッ素化飽和環状カーボネートであってもよいし、フッ素化不飽和環状カーボネートであってもよい。
上記フッ素化飽和環状カーボネートは、フッ素原子を有する飽和環状カーボネートであり、具体的には、下記一般式(A):
Figure JPOXMLDOC01-appb-C000001
(式中、X~Xは同じか又は異なり、それぞれ-H、-CH、-C、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基を表す。ただし、X~Xの少なくとも1つは、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基である。)で示される化合物が挙げられる。上記フッ素化アルキル基とは、-CF、-CFH、-CHF等である。
上記フッ素化飽和環状カーボネートを含むと、上記電解液を高電圧fu等に適用した場合電解液の耐酸化性が向上し、安定で優れた充放電特性が得られる。
なお、本明細書中で「エーテル結合」は、-O-で表される結合である。
誘電率、耐酸化性が良好な点から、X~Xの1つ又は2つが、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基であることが好ましい。
低温での粘性の低下、引火点の上昇、更には電解質塩の溶解性の向上が期待できることから、X~Xは、-H、-F、フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であることが好ましい。
上記フッ素化アルキル基(a)は、アルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。フッ素化アルキル基(a)の炭素数は、1~20が好ましく、1~17がより好ましく、1~7が更に好ましく、1~5が特に好ましい。
炭素数が大きくなりすぎると低温特性が低下したり、電解質塩の溶解性が低下したりするおそれがあり、炭素数が少な過ぎると、電解質塩の溶解性の低下、放電効率の低下、更には粘性の増大等がみられることがある。
上記フッ素化アルキル基(a)のうち、炭素数が1のものとしては、CFH-、CFH-、CF-が挙げられる。特に、CFH-又はCF-が高温保存特性上好ましく、CF-が最も好ましい。
上記フッ素化アルキル基(a)のうち、炭素数が2以上のものとしては、下記一般式(a-1):
a1-Ra2- (a-1)
(式中、Ra1はフッ素原子を有していてもよい炭素数1以上のアルキル基;Ra2はフッ素原子を有していてもよい炭素数1~3のアルキレン基;ただし、Ra1及びRa2の少なくとも一方はフッ素原子を有している)で示されるフッ素化アルキル基が、電解質塩の溶解性が良好な点から好ましく例示できる。
なお、Ra1及びRa2は、更に、炭素原子、水素原子及びフッ素原子以外の、その他の原子を有していてもよい。
a1は、フッ素原子を有していてもよい炭素数1以上のアルキル基である。Ra1としては、炭素数1~16の直鎖状又は分岐鎖状のアルキル基が好ましい。Ra1の炭素数としては、1~6がより好ましく、1~3が更に好ましい。
a1として、具体的には、直鎖状又は分岐鎖状のアルキル基として、CH-、CHCH-、CHCHCH-、CHCHCHCH-、
Figure JPOXMLDOC01-appb-C000002
等が挙げられる。
また、Ra1がフッ素原子を有する直鎖状のアルキル基である場合、CF-、CFCH-、CFCF-、CFCHCH-、CFCFCH-、CFCFCF-、CFCHCF-、CFCHCHCH-、CFCFCHCH-、CFCHCFCH-、CFCFCFCH-、CFCFCFCF-、CFCFCHCF-、CFCHCHCHCH-、CFCFCHCHCH-、CFCHCFCHCH-、CFCFCFCHCH-、CFCFCFCFCH-、CFCFCHCFCH-、CFCFCHCHCHCH-、CFCFCFCFCHCH-、CFCFCHCFCHCH-、HCF-、HCFCH-、HCFCF-、HCFCHCH-、HCFCFCH-、HCFCHCF-、HCFCFCHCH-、HCFCHCFCH-、HCFCFCFCF-、HCFCFCHCHCH-、HCFCHCFCHCH-、HCFCFCFCFCH-、HCFCFCFCFCHCH-、FCH-、FCHCH-、FCHCF-、FCHCFCH-、FCHCFCF-、CHCFCH-、CHCFCF-、CHCFCHCF-、CHCFCFCF-、CHCHCFCF-、CHCFCHCFCH-、CHCFCFCFCH-、CHCFCFCHCH-、CHCHCFCFCH-、CHCFCHCFCHCH-、CHCFCHCFCHCH-、HCFClCFCH-、HCFCFClCH-、HCFCFClCFCFClCH-、HCFClCFCFClCFCH-等が挙げられる。
また、Ra1がフッ素原子を有する分岐鎖状のアルキル基である場合、
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
等が好ましく挙げられる。ただし、CH-やCF-という分岐を有していると粘性が高くなりやすいため、その数は少ない(1個)かゼロであることがより好ましい。
a2はフッ素原子を有していてもよい炭素数1~3のアルキレン基である。Ra2は、直鎖状であってもよく、分岐鎖状であってもよい。このような直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。Ra2はこれらの単独又は組合せで構成される。
(i)直鎖状の最小構造単位:
-CH-、-CHF-、-CF-、-CHCl-、-CFCl-、-CCl
(ii)分岐鎖状の最小構造単位:
Figure JPOXMLDOC01-appb-C000005
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
a2は、直鎖状である場合には、上述した直鎖状の最小構造単位のみからなるものであり、なかでも-CH-、-CHCH-又は-CF-が好ましい。電解質塩の溶解性をより一層向上させることができる点から、-CH-又は-CHCH-がより好ましい。
a2は、分岐鎖状である場合には、上述した分岐鎖状の最小構造単位を少なくとも1つ含んでなるものであり、一般式-(CX)-(XはH、F、CH又はCF;XはCH又はCF。ただし、XがCFの場合、XはH又はCHである)で表されるものが好ましく例示できる。これらは特に電解質塩の溶解性をより一層向上させることができる。
好ましいフッ素化アルキル基(a)としては、例えばCFCF-、HCFCF-、HCFCF-、CHCF-、CFCHF-、CHCF-、CFCFCF-、HCFCFCF-、HCFCFCF-、CHCFCF-、
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
等が挙げられる。
上記エーテル結合を有するフッ素化アルキル基(b)は、エーテル結合を有するアルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。上記エーテル結合を有するフッ素化アルキル基(b)は、炭素数が2~17であることが好ましい。炭素数が多過ぎると、上記フッ素化飽和環状カーボネートの粘性が高くなり、また、フッ素含有基が多くなることから、誘電率の低下による電解質塩の溶解性低下や、他の溶剤との相溶性の低下がみられることがある。この観点から上記エーテル結合を有するフッ素化アルキル基(b)の炭素数は2~10がより好ましく、2~7が更に好ましい。
上記エーテル結合を有するフッ素化アルキル基(b)のエーテル部分を構成するアルキレン基は直鎖状又は分岐鎖状のアルキレン基でよい。そうした直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。
(i)直鎖状の最小構造単位:
-CH-、-CHF-、-CF-、-CHCl-、-CFCl-、-CCl
(ii)分岐鎖状の最小構造単位:
Figure JPOXMLDOC01-appb-C000008
アルキレン基は、これらの最小構造単位単独で構成されてもよく、直鎖状(i)同士、分岐鎖状(ii)同士、又は、直鎖状(i)と分岐鎖状(ii)との組み合わせにより構成されてもよい。好ましい具体例は、後述する。
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
更に好ましいエーテル結合を有するフッ素化アルキル基(b)としては、一般式(b-1):
-(ORn1-       (b-1)
(式中、Rはフッ素原子を有していてもよい、好ましくは炭素数1~6のアルキル基;Rはフッ素原子を有していてもよい、好ましくは炭素数1~4のアルキレン基;n1は1~3の整数;ただし、R及びRの少なくとも1つはフッ素原子を有している)で示されるものが挙げられる。
及びRとしては以下のものが例示でき、これらを適宜組み合わせて、上記一般式(b-1)で表されるエーテル結合を有するフッ素化アルキル基(b)を構成することができるが、これらのみに限定されるものではない。
(1)Rとしては、一般式:X C-(Rn2-(3つのXは同じか又は異なりいずれもH又はF;Rは炭素数1~5のフッ素原子を有していてもよいアルキレン基;n2は0又は1)で表されるアルキル基が好ましい。
n2が0の場合、Rとしては、CH-、CF-、HCF-及びHCF-が挙げられる。
n2が1の場合の具体例としては、Rが直鎖状のものとして、CFCH-、CFCF-、CFCHCH-、CFCFCH-、CFCFCF-、CFCHCF-、CFCHCHCH-、CFCFCHCH-、CFCHCFCH-、CFCFCFCH-、CFCFCFCF-、CFCFCHCF-、CFCHCHCHCH-、CFCFCHCHCH-、CFCHCFCHCH-、CFCFCFCHCH-、CFCFCFCFCH-、CFCFCHCFCH-、CFCFCHCHCHCH-、CFCFCFCFCHCH-、CFCFCHCFCHCH-、HCFCH-、HCFCF-、HCFCHCH-、HCFCFCH-、HCFCHCF-、HCFCFCHCH-、HCFCHCFCH-、HCFCFCFCF-、HCFCFCHCHCH-、HCFCHCFCHCH-、HCFCFCFCFCH-、HCFCFCFCFCHCH-、FCHCH-、FCHCF-、FCHCFCH-、CHCF-、CHCH-、CHCFCH-、CHCFCF-、CHCHCH-、CHCFCHCF-、CHCFCFCF-、CHCHCFCF-、CHCHCHCH-、CHCFCHCFCH-、CHCFCFCFCH-、CHCFCFCHCH-、CHCHCFCFCH-、CHCFCHCFCHCH-、CHCHCFCFCHCH-、CHCFCHCFCHCH-等が例示できる。
n2が1であり、かつRが分岐鎖状のものとしては、
Figure JPOXMLDOC01-appb-C000009
等が挙げられる。
ただし、CH-やCF-という分岐を有していると粘性が高くなりやすいため、Rが直鎖状のものがより好ましい。
(2)上記一般式(b-1)の-(ORn1-において、n1は1~3の整数であり、好ましくは1又は2である。なお、n1=2又は3のとき、Rは同じでも異なっていてもよい。
の好ましい具体例としては、次の直鎖状又は分岐鎖状のものが例示できる。
直鎖状のものとしては、-CH-、-CHF-、-CF-、-CHCH-、-CFCH-、-CFCF-、-CHCF-、-CHCHCH-、-CHCHCF-、-CHCFCH-、-CHCFCF-、-CFCHCH-、-CFCFCH-、-CFCHCF-、-CFCFCF-等が例示できる。
分岐鎖状のものとしては、
Figure JPOXMLDOC01-appb-C000010
等が挙げられる。
上記フッ素化アルコキシ基(c)は、アルコキシ基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。上記フッ素化アルコキシ基(c)は、炭素数が1~17であることが好ましい。より好ましくは、炭素数1~6である。
上記フッ素化アルコキシ基(c)としては、一般式:X C-(Rn3-O-(3つのXは同じか又は異なりいずれもH又はF;Rは好ましくは炭素数1~5のフッ素原子を有していてもよいアルキレン基;n3は0又は1;ただし3つのXのいずれかはフッ素原子を含んでいる)で表されるフッ素化アルコキシ基が特に好ましい。
上記フッ素化アルコキシ基(c)の具体例としては、上記一般式(a-1)におけるRとして例示したアルキル基の末端に酸素原子が結合したフッ素化アルコキシ基が挙げられる。
上記フッ素化飽和環状カーボネートにおけるフッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)のフッ素含有率は10質量%以上が好ましい。フッ素含有率が低過ぎると、低温での粘性低下効果や引火点の上昇効果が充分に得られないおそれがある。この観点から上記フッ素含有率は12質量%以上がより好ましく、15質量%以上が更に好ましい。上限は通常76質量%である。
フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)のフッ素含有率は、各基の構造式に基づいて、{(フッ素原子の個数×19)/各基の式量}×100(%)により算出した値である。
また、誘電率、耐酸化性が良好な点からは、上記フッ素化飽和環状カーボネート全体のフッ素含有率は10質量%以上が好ましく、15質量%以上がより好ましい。上限は通常76質量%である。
なお、上記フッ素化飽和環状カーボネートのフッ素含有率は、フッ素化飽和環状カーボネートの構造式に基づいて、{(フッ素原子の個数×19)/フッ素化飽和環状カーボネートの分子量}×100(%)により算出した値である。
上記フッ素化飽和環状カーボネートとしては、具体的には、例えば、以下が挙げられる。
~Xの少なくとも1つが-Fであるフッ素化飽和環状カーボネートの具体例として、
Figure JPOXMLDOC01-appb-C000011
等が挙げられる。これらの化合物は、耐電圧が高く、電解質塩の溶解性も良好である。
他に、
Figure JPOXMLDOC01-appb-C000012
等も使用できる。
~Xの少なくとも1つがフッ素化アルキル基(a)であり、かつ残りが全て-Hであるフッ素化飽和環状カーボネートの具体例としては、
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
等が挙げられる。
~Xの少なくとも1つが、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であり、かつ残りが全て-Hであるフッ素化飽和環状カーボネートの具体例としては、
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
等が挙げられる。
なかでも、上記フッ素化飽和環状カーボネートとしては、以下の化合物のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
上記フッ素化飽和環状カーボネートとしては、その他にも、trans-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、5-(1,1-ジフルオロエチル)-4,4-ジフルオロ-1,3-ジオキソラン-2-オン、4-メチレン-1,3-ジオキソラン-2-オン、4-メチル-5-トリフルオロメチル-1,3-ジオキソラン-2-オン、4-エチル-5-フルオロ-1,3-ジオキソラン-2-オン、4-エチル-5,5-ジフルオロ-1,3-ジオキソラン-2-オン、4-エチル-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4-エチル-4,5,5-トリフルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-5-メチル-1,3-ジオキソラン-2-オン、4-フルオロ-5-メチル-1,3-ジオキソラン-2-オン、4-フルオロ-5-トリフルオロメチル-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン等が挙げられる。
上記フッ素化飽和環状カーボネートとしては、なかでも、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロメチルエチレンカーボネート(3,3,3-トリフルオロプロピレンカーボネート)、2,2,3,3,3-ペンタフルオロプロピルエチレンカーボネートがより好ましい。
上記フッ素化不飽和環状カーボネートは、不飽和結合とフッ素原子とを有する環状カーボネートであり、芳香環又は炭素-炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体が好ましい。具体的には、4,4-ジフルオロ-5-フェニルエチレンカーボネート、4,5-ジフルオロ-4-フェニルエチレンカーボネート、4-フルオロ-5-フェニルエチレンカーボネート、4-フルオロ-5-ビニルエチレンカーボネート、4-フルオロ-4-フェニルエチレンカーボネート、4,4-ジフルオロ-4-ビニルエチレンカーボネート、4,4-ジフルオロ-4-アリルエチレンカーボネート、4-フルオロ-4-ビニルエチレンカーボネート、4-フルオロ-4,5-ジアリルエチレンカーボネート、4,5-ジフルオロ-4-ビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジアリルエチレンカーボネート等が挙げられる。
上記フッ素化環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記フッ素化環状カーボネートが含まれる場合、上記フッ素化環状カーボネートの含有量は、上記溶媒に対して0.5~90体積%であることが好ましく、5~60体積%であることがより好ましく、10~40体積%であることが更に好ましい。
上記鎖状カーボネートは、非フッ素化鎖状カーボネートであってもよいし、フッ素化鎖状カーボネートであってもよい。
上記非フッ素化鎖状カーボネートとしては、例えば、CHOCOOCH(ジメチルカーボネート:DMC)、CHCHOCOOCHCH(ジエチルカーボネート:DEC)、CHCHOCOOCH(エチルメチルカーボネート:EMC)、CHOCOOCHCHCH(メチルプロピルカーボネート)、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、メチルイソプロピルカーボネート、メチル-2-フェニルフェニルカーボネート、フェニル-2-フェニルフェニルカーボネート、トランス-2,3-ペンチレンカーボネート、トランス-2,3-ブチレンカーボネート、エチルフェニルカーボネート等の炭化水素系鎖状カーボネートが挙げられる。なかでも、エチルメチルカーボネート、ジエチルカーボネート及びジメチルカーボネートからなる群より選択される少なくとも1種であることが好ましい。
上記非フッ素化鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記非フッ素化鎖状カーボネートが含まれる場合、上記非フッ素化鎖状カーボネートの含有量は、上記溶媒に対して10~90体積%であることが好ましく、40~85体積%であることがより好ましく、50~80体積%であることが更に好ましい。
上記フッ素化鎖状カーボネートは、フッ素原子を有する鎖状カーボネートである。フッ素化鎖状カーボネートを含む溶媒は、高電圧下でも好適に使用することができる。
上記フッ素化鎖状カーボネートとしては、一般式(B):
RfOCOOR     (B)
(式中、Rfは、炭素数1~7のフッ素化アルキル基であり、Rは、炭素数1~7のフッ素原子を含んでいてもよいアルキル基である。)で示される化合物を挙げることができる。
Rfは、炭素数1~7のフッ素化アルキル基であり、Rは、炭素数1~7のフッ素原子を含んでいてもよいアルキル基である。
上記フッ素化アルキル基は、アルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。Rがフッ素原子を含むアルキル基である場合、フッ素化アルキル基となる。
Rf及びRは、低粘性である点で、炭素数が1~7であることが好ましく、1~2であることがより好ましい。
炭素数が大きくなりすぎると低温特性が低下したり、電解質塩の溶解性が低下したりするおそれがあり、炭素数が少な過ぎると、電解質塩の溶解性の低下、放電効率の低下、更には粘性の増大等がみられることがある。
炭素数が1のフッ素化アルキル基としては、CFH-、CFH-、CF-等が挙げられる。特に、CFH-又はCF-が高温保存特性上好ましい。
炭素数が2以上のフッ素化アルキル基としては、下記一般式(d-1):
d1-Rd2- (d-1)
(式中、Rd1はフッ素原子を有していてもよい炭素数1以上のアルキル基;Rd2はフッ素原子を有していてもよい炭素数1~3のアルキレン基;ただし、Rd1及びRd2の少なくとも一方はフッ素原子を有している)で示されるフッ素化アルキル基が、電解質塩の溶解性が良好な点から好ましく例示できる。
なお、Rd1及びRd2は、更に、炭素原子、水素原子及びフッ素原子以外の、その他の原子を有していてもよい。
d1は、フッ素原子を有していてもよい炭素数1以上のアルキル基である。Rd1としては、炭素数1~6の直鎖状又は分岐鎖状のアルキル基が好ましい。Rd1の炭素数としては、1~3がより好ましい。
d1として、具体的には、直鎖状又は分岐鎖状のアルキル基として、CH-、CF-、CHCH-、CHCHCH-、CHCHCHCH-、
Figure JPOXMLDOC01-appb-C000024
等が挙げられる。
また、Rd1がフッ素原子を有する直鎖状のアルキル基である場合、CF-、CFCH-、CFCF-、CFCHCH-、CFCFCH-、CFCFCF-、CFCHCF-、CFCHCHCH-、CFCFCHCH-、CFCHCFCH-、CFCFCFCH-、CFCFCFCF-、CFCFCHCF-、CFCHCHCHCH-、CFCFCHCHCH-、CFCHCFCHCH-、CFCFCFCHCH-、CFCFCFCFCH-、CFCFCHCFCH-、CFCFCHCHCHCH-、CFCFCFCFCHCH-、CFCFCHCFCHCH-、HCF-、HCFCH-、HCFCF-、HCFCHCH-、HCFCFCH-、HCFCHCF-、HCFCFCHCH-、HCFCHCFCH-、HCFCFCFCF-、HCFCFCHCHCH-、HCFCHCFCHCH-、HCFCFCFCFCH-、HCFCFCFCFCHCH-、FCH-、FCHCH-、FCHCF-、FCHCFCH-、FCHCFCF-、CHCFCH-、CHCFCF-、CHCFCHCF-、CHCFCFCF-、CHCHCFCF-、CHCFCHCFCH-、CHCFCFCFCH-、CHCFCFCHCH-、CHCHCFCFCH-、CHCFCHCFCHCH-、CHCFCHCFCHCH-、HCFClCFCH-、HCFCFClCH-、HCFCFClCFCFClCH-、HCFClCFCFClCFCH-等が挙げられる。
また、Rd1がフッ素原子を有する分岐鎖状のアルキル基である場合、
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
等が好ましく挙げられる。ただし、CH-やCF-という分岐を有していると粘性が高くなりやすいため、その数は少ない(1個)かゼロであることがより好ましい。
d2はフッ素原子を有していてもよい炭素数1~3のアルキレン基である。Rd2は、直鎖状であってもよく、分岐鎖状であってもよい。このような直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。Rd2はこれらの単独又は組合せで構成される。
(i)直鎖状の最小構造単位:
-CH-、-CHF-、-CF-、-CHCl-、-CFCl-、-CCl
(ii)分岐鎖状の最小構造単位:
Figure JPOXMLDOC01-appb-C000027
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
d2は、直鎖状である場合には、上述した直鎖状の最小構造単位のみからなるものであり、なかでも-CH-、-CHCH-又は-CF-が好ましい。電解質塩の溶解性をより一層向上させることができる点から、-CH-又は-CHCH-がより好ましい。
d2は、分岐鎖状である場合には、上述した分岐鎖状の最小構造単位を少なくとも1つ含んでなるものであり、一般式-(CX)-(XはH、F、CH又はCF;XはCH又はCF。ただし、XがCFの場合、XはH又はCHである)で表されるものが好ましく例示できる。これらは特に電解質塩の溶解性をより一層向上させることができる。
好ましいフッ素化アルキル基としては、具体的には、例えば、CFCF-、HCFCF-、HCFCF-、CHCF-、CFCH-、CFCFCF-、HCFCFCF-、HCFCFCF-、CHCFCF-、
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
等が挙げられる。
なかでも、RfとRのフッ素化アルキル基としては、CF-、CFCF-、(CFCH-、CFCH-、CCH-、CFCFCH-、HCFCFCH-、CFCFHCFCH-、CFH-、CFH-が好ましく、難燃性が高く、レート特性や耐酸化性が良好な点から、CFCH-、CFCFCH-、HCFCFCH-、CFH-、CFH-がより好ましい。
がフッ素原子を含まないアルキル基の場合は炭素数1~7のアルキル基である。Rは、低粘性である点で、炭素数が1~4であることが好ましく、1~3であることがより好ましい。
上記フッ素原子を含まないアルキル基としては、例えば、CH-、CHCH-、(CHCH-、C-等が挙げられる。なかでも、粘度が低く、レート特性が良好な点から、CH-、CHCH-が好ましい。
上記フッ素化鎖状カーボネートは、フッ素含有率が15~70質量%であることが好ましい。フッ素含有率が上述の範囲であると、溶剤との相溶性、塩の溶解性を維持することができる。上記フッ素含有率は、20質量%以上がより好ましく、30質量%以上が更に好ましく、35質量%以上が特に好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。
なお、本開示においてフッ素含有率は、上記フッ素化鎖状カーボネートの構造式に基づいて、
{(フッ素原子の個数×19)/フッ素化鎖状カーボネートの分子量}×100(%)
により算出した値である。
上記フッ素化鎖状カーボネートとしては、低粘性である点で、以下の化合物のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000030
上記フッ素化鎖状カーボネートとしては、メチル2,2,2-トリフルオロエチルカーボネート(FCHCOC(=O)OCH)が特に好ましい。
上記フッ素化鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記フッ素化鎖状カーボネートが含まれる場合、上記フッ素化鎖状カーボネートの含有量は、上記溶媒に対して10~90体積%であることが好ましく、40~85体積%であることがより好ましく、50~80体積%であることが更に好ましい。
上記カルボン酸エステルは、環状カルボン酸エステルであってもよいし、鎖状カルボン酸エステルであってもよい。
上記環状カルボン酸エステルは、非フッ素化環状カルボン酸エステルであってもよいし、フッ素化環状カルボン酸エステルであってもよい。
上記非フッ素化環状カルボン酸エステルとしては、非フッ素化飽和環状カルボン酸エステルが挙げられ、炭素数2~4のアルキレン基を有する非フッ素化飽和環状カルボン酸エステルが好ましい。
炭素数2~4のアルキレン基を有する非フッ素化飽和環状カルボン酸エステルの具体的な例としては、β-プロピオラクトン、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、αメチル-γ-ブチロラクトンが挙げられる。なかでも、γ-ブチロラクトン、δ-バレロラクトンがリチウムイオン解離度の向上及び負荷特性向上の点から特に好ましい。
上記非フッ素化飽和環状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記非フッ素化飽和環状カルボン酸エステルが含まれる場合、上記非フッ素化飽和環状カルボン酸エステルの含有量は、上記溶媒に対して0~90体積%であることが好ましく、0.001~90体積%であることがより好ましく、1~60体積%であることが更に好ましく、5~40体積%であることが特に好ましい。
上記鎖状カルボン酸エステルは、非フッ素化鎖状カルボン酸エステルであってもよいし、フッ素化鎖状カルボン酸エステルであってもよい。上記溶媒が上記鎖状カルボン酸エステルを含む場合、電解液の高温保存後の抵抗増加を一層抑制することができる。
上記非フッ素化鎖状カルボン酸エステルとしては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、tert-ブチルプロピオネート、tert-ブチルブチレート、sec-ブチルプロピオネート、sec-ブチルブチレート、n-ブチルブチレート、ピロリン酸メチル、ピロリン酸エチル、tert-ブチルホルメート、tert-ブチルアセテート、sec-ブチルホルメート、sec-ブチルアセテート、n-ヘキシルピバレート、n-プロピルホルメート、n-プロピルアセテート、n-ブチルホルメート、n-ブチルピバレート、n-オクチルピバレート、エチル2-(ジメトキシホスホリル)アセテート、エチル2-(ジメチルホスホリル)アセテート、エチル2-(ジエトキシホスホリル)アセテート、エチル2-(ジエチルホスホリル)アセテート、イソプロピルプロピオネート、イソプロピルアセテート、エチルホルメート、エチル2-プロピニルオギザレート、イソプロピルホルメート、イソプロピルブチレート、イソブチルホルメート、イソブチルプロピオネート、イソブチルブチレート、イソブチルアセテート等が挙げられる。
なかでも、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチルが好ましく、特に好ましくはプロピオン酸エチル、プロピオン酸プロピルである。
上記非フッ素化鎖状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記非フッ素化鎖状カルボン酸エステルが含まれる場合、上記非フッ素化鎖状カルボン酸エステルの含有量は、上記溶媒に対して0~90体積%であることが好ましく、0.001~90体積%であることがより好ましく、1~60体積%であることが更に好ましく、5~40体積%であることが特に好ましい。
上記フッ素化鎖状カルボン酸エステルは、フッ素原子を有する鎖状カルボン酸エステルである。フッ素化鎖状カルボン酸エステルを含む溶媒は、高電圧下でも好適に使用することができる。
上記フッ素化鎖状カルボン酸エステルとしては、下記一般式:
31COOR32
(式中、R31及びR32は、互いに独立に、炭素数1~4のフッ素原子を含んでいてもよいアルキル基であり、R31及びR32の少なくとも一方はフッ素原子を含む。)で示されるフッ素化鎖状カルボン酸エステルが、他溶媒との相溶性や耐酸化性が良好な点から好ましい。
31及びR32としては、例えばメチル基(-CH)、エチル基(-CHCH)、プロピル基(-CHCHCH)、イソプロピル基(-CH(CH)、ノルマルブチル基(-CHCHCHCH)、ターシャリーブチル基(-C(CH)等の非フッ素化アルキル基;-CF、-CFH、-CFH、-CFCF、-CFCFH、-CFCFH、-CHCF、-CHCFH、-CHCFH、-CFCFCF、-CFCFCFH、-CFCFCFH、-CHCFCF、-CHCFCFH、-CHCFCFH、-CHCHCF、-CHCHCFH、-CHCHCFH、-CF(CF、-CF(CFH)、-CF(CFH、-CH(CF、-CH(CFH)、-CH(CFH、-CF(OCH)CF、-CFCFCFCF、-CFCFCFCFH、-CFCFCFCFH、-CHCFCFCF、-CHCFCFCFH、-CHCFCFCFH、-CHCHCFCF、-CHCHCFCFH、-CHCHCFCFH、-CHCHCHCF、-CHCHCHCFH、-CHCHCHCFH、-CF(CF)CFCF、-CF(CFH)CFCF、-CF(CFH)CFCF、-CF(CF)CFCFH、-CF(CF)CFCFH、-CF(CF)CHCF、-CF(CF)CHCFH、-CF(CF)CHCFH、-CH(CF)CFCF、-CH(CFH)CFCF、-CH(CFH)CFCF、-CH(CF)CFCFH、-CH(CF)CFCFH、-CH(CF)CHCF、-CH(CF)CHCFH、-CH(CF)CHCFH、-CFCF(CF)CF、-CFCF(CFH)CF、-CFCF(CFH)CF、-CFCF(CF)CFH、-CFCF(CF)CFH、-CHCF(CF)CF、-CHCF(CFH)CF、-CHCF(CFH)CF、-CHCF(CF)CFH、-CHCF(CF)CFH、-CHCH(CF)CF、-CHCH(CFH)CF、-CHCH(CFH)CF、-CHCH(CF)CFH、-CHCH(CF)CFH、-CFCH(CF)CF、-CFCH(CFH)CF、-CFCH(CFH)CF、-CFCH(CF)CFH、-CFCH(CF)CFH、-C(CF、-C(CFH)、-C(CFH等のフッ素化アルキル基等が挙げられる。なかでもメチル基、エチル基、-CF、-CFH、-CFCF、-CHCF、-CHCFH、-CHCFH、-CHCHCF、-CHCFCF、-CHCFCFH、-CHCFCFHが他溶媒との相溶性、粘度、耐酸化性が良好な点から特に好ましい。
上記フッ素化鎖状カルボン酸エステルの具体例としては、例えばCFCHC(=O)OCH(3,3,3-トリフルオロプロピオン酸メチル)、HCFC(=O)OCH(ジフルオロ酢酸メチル)、HCFC(=O)OC(ジフルオロ酢酸エチル)、CFC(=O)OCHCHCF、CFC(=O)OCH、CFC(=O)OCHCFCFH(トリフルオロ酢酸2,2,3,3-テトラフルオロプロピル)、CFC(=O)OCHCF、CFC(=O)OCH(CF、ペンタフルオロ酪酸エチル、ペンタフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸エチル、ヘプタフルオロイソ酪酸メチル、トリフルオロ酪酸イソプロピル、トリフルオロ酢酸エチル、トリフルオロ酢酸tert-ブチル、トリフルオロ酢酸n-ブチル、テトラフルオロ-2-(メトキシ)プロピオン酸メチル、酢酸2,2-ジフルオロエチル、酢酸2,2,3,3-テトラフルオロプロピル、CHC(=O)OCHCF(酢酸2,2,2-トリフルオロエチル)、酢酸1H,1H-ヘプタフルオロブチル、4,4,4-トリフルオロ酪酸メチル、4,4,4-トリフルオロ酪酸エチル、3,3,3-トリフルオロプロピオン酸エチル、3,3,3-トリフルオロプロピオン酸3,3,3トリフルオロプロピル、3-(トリフルオロメチル)酪酸エチル、2,3,3,3-テトラフルオロプロピオン酸メチル、2,2-ジフルオロ酢酸ブチル、2,2,3,3-テトラフルオロプロピオン酸メチル、2-(トリフルオロメチル)-3,3,3-トリフルオロプロピオン酸メチル、ヘプタフルオロ酪酸メチル等の1種又は2種以上が例示できる。
なかでもCFCHC(=O)OCH、HCFC(=O)OCH、HCFC(=O)OC、CFC(=O)OCH、CFC(=O)OCHCFCFH、CFC(=O)OCHCF、CFC(=O)OCH(CF、ペンタフルオロ酪酸エチル、ペンタフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸エチル、ヘプタフルオロイソ酪酸メチル、トリフルオロ酪酸イソプロピル、トリフルオロ酢酸エチル、トリフルオロ酢酸tert-ブチル、トリフルオロ酢酸n-ブチル、テトラフルオロ-2-(メトキシ)プロピオン酸メチル、酢酸2,2-ジフルオロエチル、酢酸2,2,3,3-テトラフルオロプロピル、CHC(=O)OCHCF、酢酸1H,1H-ヘプタフルオロブチル、4,4,4-トリフルオロ酪酸メチル、4,4,4-トリフルオロ酪酸エチル、3,3,3-トリフルオロプロピオン酸エチル、3,3,3-トリフルオロプロピオン酸3,3,3-トリフルオロプロピル、3-(トリフルオロメチル)酪酸エチル、2,3,3,3-テトラフルオロプロピオン酸メチル、2,2-ジフルオロ酢酸ブチル、2,2,3,3-テトラフルオロプロピオン酸メチル、2-(トリフルオロメチル)-3,3,3-トリフルオロプロピオン酸メチル、ヘプタフルオロ酪酸メチルが、他溶媒との相溶性及びレート特性が良好な点から好ましく、CFCHC(=O)OCH、HCFC(=O)OCH、HCFC(=O)OC、CHC(=O)OCHCFがより好ましく、HCFC(=O)OCH、HCFC(=O)OC、CHC(=O)OCHCFが特に好ましい。
上記フッ素化鎖状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記フッ素化鎖状カルボン酸エステルが含まれる場合、上記フッ素化鎖状カルボン酸エステルの含有量は、上記溶媒に対して10~90体積%であることが好ましく、40~85体積%であることがより好ましく、50~80体積%であることが更に好ましい。
上記溶媒は、上記環状カーボネート、上記鎖状カーボネート及び上記鎖状カルボン酸エステルからなる群より選択される少なくとも1種を含むことが好ましく、上記環状カーボネートと、上記鎖状カーボネート及び上記鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含むことがより好ましい。上記環状カーボネートは、飽和環状カーボネートであることが好ましい。
上記の組成の溶媒を含有する電解液は、電気化学デバイスの高温保存特性やサイクル特性を一層向上させることができる。
上記溶媒が上記環状カーボネートと、上記鎖状カーボネート及び上記鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含む場合、上記環状カーボネートと、上記鎖状カーボネート及び上記鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを合計で、10~100体積%含むことが好ましく、30~100体積%含むことがより好ましく、50~100体積%含むことが更に好ましい。
上記溶媒が上記環状カーボネートと、上記鎖状カーボネート及び上記鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含む場合、上記環状カーボネートと、上記鎖状カーボネート及び上記鎖状カルボン酸エステルからなる群より選択される少なくとも1種との体積比としては、5/95~95/5が好ましく、10/90以上がより好ましく、15/85以上が更に好ましく、20/80以上が特に好ましく、90/10以下がより好ましく、60/40以下が更に好ましく、50/50以下が特に好ましい。
上記溶媒は、また、上記非フッ素化飽和環状カーボネート、上記非フッ素化鎖状カーボネート及び上記非フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種を含むことも好ましく、上記非フッ素化飽和環状カーボネートと、上記非フッ素化鎖状カーボネート及び上記非フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含むことがより好ましい。上記の組成の溶媒を含有する電解液は、比較的低電圧で使用される電気化学デバイスに好適に利用できる。
上記溶媒が上記非フッ素化飽和環状カーボネートと、上記非フッ素化鎖状カーボネート及び上記非フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含む場合、上記非フッ素化飽和環状カーボネートと、上記非フッ素化鎖状カーボネート及び上記非フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを合計で、5~100体積%含むことが好ましく、20~100体積%含むことがより好ましく、30~100体積%含むことが更に好ましい。
上記電解液が上記非フッ素化飽和環状カーボネートと、上記非フッ素化鎖状カーボネート及び上記非フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含む場合、上記非フッ素化飽和環状カーボネートと、上記非フッ素化鎖状カーボネート及び上記非フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種との体積比としては、5/95~95/5が好ましく、10/90以上がより好ましく、15/85以上が更に好ましく、20/80以上が特に好ましく、90/10以下がより好ましく、60/40以下が更に好ましく、50/50以下が特に好ましい。
上記溶媒は、また、上記フッ素化飽和環状カーボネート、上記フッ素化鎖状カーボネート及び上記フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種を含むことも好ましく、上記フッ素化飽和環状カーボネートと、上記フッ素化鎖状カーボネート及び上記フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含むことがより好ましい。上記の組成の溶媒を含有する電解液は、比較的低電圧で使用される電気化学デバイスだけでなく、比較的高電圧で使用される電気化学デバイスにも好適に利用できる。
上記溶媒が上記フッ素化飽和環状カーボネートと、上記フッ素化鎖状カーボネート及び上記フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含む場合、上記フッ素化飽和環状カーボネートと、上記フッ素化鎖状カーボネート及び上記フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを合計で、5~100体積%含むことが好ましく、10~100体積%含むことがより好ましく、30~100体積%含むことが更に好ましい。
上記溶媒が上記フッ素化飽和環状カーボネートと、上記フッ素化鎖状カーボネート及び上記フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含む場合、上記フッ素化飽和環状カーボネートと、上記フッ素化鎖状カーボネート及び上記フッ素化鎖状カルボン酸エステルからなる群より選択される少なくとも1種との体積比としては、5/95~95/5が好ましく、10/90以上がより好ましく、15/85以上が更に好ましく、20/80以上が特に好ましく、90/10以下がより好ましく、60/40以下が更に好ましく、50/50以下が特に好ましい。
また、上記溶媒として、イオン液体を用いることもできる。「イオン液体」とは、有機カチオンとアニオンとを組み合わせたイオンからなる液体である。
有機カチオンとしては、特に限定されないが、例えば、ジアルキルイミダゾリウムカチオン、トリアルキルイミダゾリウムカチオン等のイミダゾリウムイオン;テトラアルキルアンモニウムイオン;アルキルピリジニウムイオン;ジアルキルピロリジニウムイオン;及びジアルキルピペリジニウムイオンが挙げられる。
これらの有機カチオンのカウンターとなるアニオンとしては、特に限定されないが、例えば、PFアニオン、PF(Cアニオン、PF(CFアニオン、BFアニオン、BF(CFアニオン、BF(CF)アニオン、ビスオキサラトホウ酸アニオン、P(C)Fアニオン、Tf(トリフルオロメタンスルホニル)アニオン、Nf(ノナフルオロブタンスルホニル)アニオン、ビス(フルオロスルホニル)イミドアニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(ペンタフルオロエタンスルホニル)イミドアニオン、ジシアノアミンアニオン、ハロゲン化物アニオンを用いることができる。
上記溶媒は、非水溶媒であることが好ましく、上記電解液は、非水電解液であることが好ましい。
上記溶媒の含有量は、電解液中70~99.999質量%であることが好ましく、80質量%以上がより好ましく、92質量%以下がより好ましい。
上記電解液は、更に、一般式(5)で示される化合物(5)を含んでもよい。
一般式(5):
Figure JPOXMLDOC01-appb-C000031
(式中、Aa+は金属イオン、水素イオン又はオニウムイオン。aは1~3の整数、bは1~3の整数、pはb/a、n203は1~4の整数、n201は0~8の整数、n202は0又は1、Z201は遷移金属、周期律表のIII族、IV族又はV族の元素。
201は、O、S、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基又は炭素数6~20のハロゲン化アリーレン基(アルキレン基、ハロゲン化アルキレン基、アリーレン基、及び、ハロゲン化アリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよく、またn202が1でn203が2~4のときにはn203個のX201はそれぞれが結合していてもよい)。
201は、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基(アルキレン基、ハロゲン化アルキレン基、アリーレン基、及び、ハロゲン化アリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよく、またn201が2~8のときにはn201個のL201はそれぞれが結合して環を形成してもよい)又は-Z203203
201、Y202及びZ203は、それぞれ独立でO、S、NY204、炭化水素基又はフッ素化炭化水素基。Y203及びY204は、それぞれ独立でH、F、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基又は炭素数6~20のハロゲン化アリール基(アルキル基、ハロゲン化アルキル基、アリール基及びハロゲン化アリール基はその構造中に置換基、ヘテロ原子を持っていてもよく、Y203又はY204が複数個存在する場合にはそれぞれが結合して環を形成してもよい)。
a+としては、リチウムイオン、ナトリウムイオン、カリウムイオン、マグネシウムイオン、カルシウムイオン、バリウムイオン、セシウムイオン、銀イオン、亜鉛イオン、銅イオン、コバルトイオン、鉄イオン、ニッケルイオン、マンガンイオン、チタンイオン、鉛イオン、クロムイオン、バナジウムイオン、ルテニウムイオン、イットリウムイオン、ランタノイドイオン、アクチノイドイオン、テトラブチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラメチルアンモニウムイオン、トリエチルメチルアンモニウムイオン、トリエチルアンモニウムイオン、ピリジニウムイオン、イミダゾリウムイオン、水素イオン、テトラエチルホスホニウムイオン、テトラメチルホスホニウムイオン、テトラフェニルホスホニウムイオン、トリフェニルスルホニウムイオン、トリエチルスルホニウムイオン等が挙げられる。
電気化学的なデバイス等の用途に使用する場合、Aa+は、リチウムイオン、ナトリウムイオン、マグネシウムイオン、テトラアルキルアンモニウムイオン、水素イオンが好ましく、リチウムイオンが特に好ましい。Aa+のカチオンの価数aは、1~3の整数である。3より大きい場合、結晶格子エネルギーが大きくなるため、溶媒に溶解することが困難になるという問題が起こる。そのため溶解度を必要とする場合は1がより好ましい。アニオンの価数bも同様に1~3の整数であり、特に1が好ましい。カチオンとアニオンの比を表す定数pは、両者の価数の比b/aで必然的に決まる。
次に、一般式(5)の配位子の部分について説明する。本明細書において、一般式(5)におけるZ201に結合している有機又は無機の部分を配位子と呼ぶ。
201は、Al、B、V、Ti、Si、Zr、Ge、Sn、Cu、Y、Zn、Ga、Nb、Ta、Bi、P、As、Sc、Hf又はSbであることが好ましく、Al、B又はPであることがより好ましい。
201は、O、S、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基又は炭素数6~20のハロゲン化アリーレン基を表す。これらのアルキレン基及びアリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよい。具体的には、アルキレン基及びアリーレン基上の水素の代わりに、ハロゲン原子、鎖状又は環状のアルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、水酸基を置換基として持っていてもよいし、アルキレン及びアリーレン上の炭素の代わりに、窒素、硫黄、酸素が導入された構造であってもよい。またn202が1でn203が2~4のときには、n203個のX201はそれぞれが結合していてもよい。そのような例としては、エチレンジアミン四酢酸のような配位子を挙げることができる。
201は、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基又は-Z203203(Z203、Y203については後述)を表す。ここでのアルキル基及びアリール基も、X201と同様に、その構造中に置換基、ヘテロ原子を持っていてもよく、またn201が2~8のときにはn201個のL201はそれぞれが結合して環を形成していてもよい。L201としては、フッ素原子又はシアノ基が好ましい。フッ素原子の場合には、アニオン化合物の塩の溶解度や解離度が向上し、これに伴ってイオン伝導度が向上するからである。また、耐酸化性が向上し、これにより副反応の発生を抑制することができるからである。
201、Y202及びZ203は、それぞれ独立で、O、S、NY204、炭化水素基又はフッ素化炭化水素基を表す。Y201及びY202は、O、S又はNY204であることが好ましく、Oであることがより好ましい。化合物(5)の特徴として、同一の配位子内にY201及びY202によるZ201との結合があるため、これらの配位子がZ201とキレート構造を構成している。このキレートの効果により、この化合物の耐熱性、化学的安定性、耐加水分解性が向上している。この配位子中の定数n202は0又は1であるが、特に、0の場合はこのキレートリングが五員環になるため、キレート効果が最も強く発揮され安定性が増すため好ましい。
なお、本明細書において、フッ素化炭化水素基は、炭化水素基の水素原子の少なくとも1つがフッ素原子に置換された基である。
203及びY204は、それぞれ独立で、H、F、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基又は炭素数6~20のハロゲン化アリール基であり、これらのアルキル基及びアリール基は、その構造中に置換基又はヘテロ原子を有してもよく、またY203又はY204が複数個存在する場合には、それぞれが結合して環を形成してもよい。
また、上述した配位子の数に関係する定数n203は、1~4の整数であり、好ましくは1又は2であり、より好ましくは2である。また、上述した配位子の数に関係する定数n201は、0~8の整数であり、好ましくは0~4の整数であり、より好ましくは0、2又は4である。更に、n203が1のときn201は2、n203が2のときn201は0であることが好ましい。
一般式(5)において、アルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基は、分岐や水酸基、エーテル結合等の他の官能基を持つものも含む。
化合物(5)は、一般式:
Figure JPOXMLDOC01-appb-C000032
(式中、Aa+、a、b、p、n201、Z201及びL201は上述したとおり)で示される化合物、又は、一般式:
Figure JPOXMLDOC01-appb-C000033
(式中、Aa+、a、b、p、n201、Z201及びL201は上述したとおり)で示される化合物であることが好ましい。
化合物(5)としては、リチウムオキサラトボレート塩類が挙げられ、下記式:
Figure JPOXMLDOC01-appb-C000034
で示されるリチウムビス(オキサラト)ボレート(LIBOB)、下記式:
Figure JPOXMLDOC01-appb-C000035
で示されるリチウムジフルオロオキサラトボレート(LIDFOB)、下記式:
Figure JPOXMLDOC01-appb-C000036
で示されるリチウムジフルオロオキサラトホスファナイト(LIDFOP)、下記式:
Figure JPOXMLDOC01-appb-C000037
で示されるリチウムテトラフルオロオキサラトホスファナイト(LITFOP)、下記式:
Figure JPOXMLDOC01-appb-C000038
で示されるリチウムビス(オキサラト)ジフルオロホスファナイト等が挙げられる。
化合物(5)としては、また、リチウムビス(マロナト)ボレート、リチウムジフルオロ(マロナト)ボレート、リチウムビス(メチルマロナト)ボレート、リチウムジフルオロ(メチルマロナト)ボレート、リチウムビス(ジメチルマロナト)ボレート、リチウムジフルオロ(ジメチルマロナト)ボレート等の錯体中心元素がホウ素であるジカルボン酸錯体塩も挙げられる。
化合物(5)としては、また、リチウムトリス(オキサラト)ホスフェート、リチウムトリス(マロナト)ホスフェート、リチウムジフルオロビス(マロナト)ホスフェート、リチウムテトラフルオロ(マロナト)ホスフェート、リチウムトリス(メチルマロナト)ホスフェート、リチウムジフルオロビス(メチルマロナト)ホスフェート、リチウムテトラフルオロ(メチルマロナト)ホスフェート、リチウムトリス(ジメチルマロナト)ホスフェート、リチウムジフルオロビス(ジメチルマロナト)ホスフェート、リチウムテトラフルオロ(ジメチルマロナト)ホスフェート等の錯体中心元素がリンであるジカルボン酸錯体塩も挙げられる。
化合物(5)としては、また、LiAl(C、LiAlF(C)等の錯体中心元素がアルミニウムであるジカルボン酸錯体塩も挙げられる。
中でも、リチウムビス(オキサラト)ボレート、リチウムジフルオロ(オキサラト)ボレート、リチウムトリス(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムテトラフルオロ(オキサラト)ホスフェートが、入手の容易さや安定な被膜状の構造物の形成に寄与することができる点から、より好適に用いられる。
化合物(5)としては、リチウムビス(オキサラト)ボレートが特に好ましい。
化合物(5)の含有量としては、より一層の優れたサイクル特性が得られることから、上記溶媒に対して、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、10質量%以下が好ましく、3質量%以下がより好ましい。
上記電解質塩としては、リチウム塩、アンモニウム塩、金属塩のほか、液体状の塩(イオン性液体)、無機高分子型の塩、有機高分子型の塩等、電解液に使用することができる任意のものを用いることができる。
二次電池用電解液の電解質塩としては、リチウム塩が好ましい。
上記リチウム塩として任意のものを用いることができ、具体的には以下のものが挙げられる。例えば、LiPF、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF、LiAsF、LiAlCl、LiI、LiBr、LiCl、LiB10Cl10、LiSiF、LiPFO、LiPO等の無機リチウム塩;
LiWOF等のタングステン酸リチウム類;
HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類;
FSOLi、CHSOLi、CHFSOLi、CHFSOLi、CFSOLi、CFCFSOLi、CFCFCFSOLi、CFCFCFCFSOLi、リチウムメチルサルフェート、リチウムエチルサルフェート(COSOLi)、リチウム2,2,2-トリフルオロエチルサルフェート等のS=O基を有するリチウム塩類;
LiN(FCO)、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウムビスパーフルオロエタンスルホニルイミド、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、リチウム環状1,2-エタンジスルホニルイミド、リチウム環状1,3-プロパンジスルホニルイミド、リチウム環状1,4-パーフルオロブタンジスルホニルイミド、LiN(CFSO)(FSO)、LiN(CFSO)(CSO)、LiN(CFSO)(CSO)、LiN(POF等のリチウムイミド塩類;
LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;
その他、式:LiPF(C2n+16-a(式中、aは0~5の整数であり、nは1~6の整数である)で表される塩(例えばLiPF(C、LiPF(CF、LiPF(iso-C、LiPF(iso-C)、LiPF(CF、LiPF(C)、LiPF(CFSO、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩類、LiSCN、LiB(CN)、LiB(C、Li(C)、LiP(C、Li1212-b(bは0~3の整数)等が挙げられる。
中でも、LiPF、LiBF、LiSbF、LiTaF、LiPO、FSOLi、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、LiBFCF、LiBF、LiPF(CF、LiPF(C等が出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましく、LiPF、LiN(FSO及びLiBFからなる群より選択される少なくとも1種のリチウム塩が最も好ましい。
これらの電解質塩は単独で用いても、2種以上を併用してもよい。2種以上を併用する場合の好ましい一例は、LiPFとLiBFとの併用や、LiPFと、LiPO、COSOLi又はFSOLiとの併用であり、高温保存特性、負荷特性やサイクル特性を向上させる効果がある。
この場合、電解液全体100質量%に対するLiBF、LiPO、COSOLi又はFSOLiの配合量に制限は無く、本開示の効果を著しく損なわない限り任意であるが、上記電解液に対して、通常、0.01質量%以上、好ましくは0.1質量%以上であり、また、通常30質量%以下、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。
また、他の一例は、無機リチウム塩と有機リチウム塩との併用であり、この両者の併用は、高温保存による劣化を抑制する効果がある。有機リチウム塩としては、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、LiBFCF、LiBF、LiPF(CF、LiPF(C等であるのが好ましい。この場合には、電解液全体100質量%に対する有機リチウム塩の割合は、好ましくは0.1質量%以上、特に好ましくは0.5質量%以上であり、また、好ましくは30質量%以下、特に好ましくは10質量%以下である。
電解液中のこれらの電解質塩の濃度は、本開示の効果を損なわない限り特に制限されない。電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、電解液中のリチウムの総モル濃度は、好ましくは0.3mol/L以上、より好ましくは0.4mol/L以上、更に好ましくは0.5mol/L以上であり、また、好ましくは5.0mol/L以下、より好ましくは3.0mol/L以下、更に好ましくは2.0mol/L以下である。
リチウムの総モル濃度が低すぎると、電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池性能が低下する場合がある。
上記電解液は、一般式(2):
Figure JPOXMLDOC01-appb-C000039
(式中、X21は少なくともH又はCを含む基、n21は1~3の整数、Y21及びZ21は、同じか又は異なり、少なくともH、C、O又はFを含む基、n22は0又は1、Y21及びZ21はお互いに結合して環を形成してもよい。)で示される化合物(2)を更に含むことが好ましい。上記電解液が化合物(2)を含むと、高温で保管した場合でも、容量保持率が低下しにくく、ガスの発生量が増加しにくい。
n21が2又は3の場合、2つ又は3つのX21は同じであっても異なっていてもよい。
21及びZ21が複数存在する場合、複数存在するY21及びZ21は同じであっても異なっていてもよい。
21としては、-CY2121-(式中、Y21及びZ21は上記のとおり)又は-CY21=CZ21-(式中、Y21及びZ21は上記のとおり)で示される基が好ましい。
21としては、H-、F-、CH-、CHCH-、CHCHCH-、CF-、CFCF-、CHFCH-及びCFCFCF-からなる群より選択される少なくとも1種が好ましい。
21としては、H-、F-、CH-、CHCH-、CHCHCH-、CF-、CFCF-、CHFCH-及びCFCFCF-からなる群より選択される少なくとも1種が好ましい。
又は、Y21及びZ21は、お互いに結合して、不飽和結合を含んでもよく、芳香族性を有していてもよい炭素環又は複素環を形成することができる。環の炭素数は3~20が好ましい。
次いで、化合物(2)の具体例について説明する。なお、以下の例示において「類縁体」とは、例示される酸無水物の構造の一部を、本開示の趣旨に反しない範囲で、別の構造に置き換えることにより得られる酸無水物を指すもので、例えば複数の酸無水物からなる二量体、三量体及び四量体等、又は、置換基の炭素数が同じではあるが分岐鎖を有する等構造異性のもの、置換基が酸無水物に結合する部位が異なるもの等が挙げられる。
5員環構造を形成している酸無水物の具体例としては、無水コハク酸、メチルコハク酸無水物(4-メチルコハク酸無水物)、ジメチルコハク酸無水物(4,4-ジメチルコハク酸無水物、4,5-ジメチルコハク酸無水物等)、4,4,5-トリメチルコハク酸無水物、4,4,5,5-テトラメチルコハク酸無水物、4-ビニルコハク酸無水物、4,5-ジビニルコハク酸無水物、フェニルコハク酸無水物(4-フェニルコハク酸無水物)、4,5-ジフェニルコハク酸無水物、4,4-ジフェニルコハク酸無水物、無水シトラコン酸、無水マレイン酸、メチルマレイン酸無水物(4-メチルマレイン酸無水物)、4,5-ジメチルマレイン酸無水物、フェニルマレイン酸無水物(4-フェニルマレイン酸無水物)、4,5-ジフェニルマレイン酸無水物、イタコン酸無水物、5-メチルイタコン酸無水物、5,5-ジメチルイタコン酸無水物、無水フタル酸、3,4,5,6-テトラヒドロフタル酸無水物等、及びそれらの類縁体等が挙げられる。
6員環構造を形成している酸無水物の具体例としては、シクロヘキサンジカルボン酸無水物(シクロヘキサン-1,2-ジカルボン酸無水物等)、4-シクロヘキセン-1,2-ジカルボン酸無水物、無水グルタル酸、無水グルタコン酸、2-フェニルグルタル酸無水物等、及びそれらの類縁体等が挙げられる。
その他の環状構造を形成している酸無水物の具体例としては、5-ノルボルネン-2,3-ジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、ピロメリット酸無水物、無水ジグリコール酸等、及びそれらの類縁体等が挙げられる。
環状構造を形成するとともに、ハロゲン原子で置換された酸無水物の具体例としては、モノフルオロコハク酸無水物(4-フルオロコハク酸無水物等)、4,4-ジフルオロコハク酸無水物、4,5-ジフルオロコハク酸無水物、4,4,5-トリフルオロコハク酸無水物、トリフルオロメチルコハク酸無水物、テトラフルオロコハク酸無水物(4,4,5,5-テトラフルオロコハク酸無水物)、4-フルオロマレイン酸無水物、4,5-ジフルオロマレイン酸無水物、トリフルオロメチルマレイン酸無水物、5-フルオロイタコン酸無水物、5,5-ジフルオロイタコン酸無水物等、及びそれらの類縁体等が挙げられる。
化合物(2)としては、なかでも、無水グルタル酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、4-シクロヘキセン-1,2-ジカルボン酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、フェニルコハク酸無水物、2-フェニルグルタル酸無水物、無水マレイン酸、メチルマレイン酸無水物、トリフルオロメチルマレイン酸無水物、フェニルマレイン酸無水物、無水コハク酸、メチルコハク酸無水物、ジメチルコハク酸無水物、トリフルオロメチルコハク酸無水物、モノフルオロコハク酸無水物、テトラフルオロコハク酸無水物等が好ましく、無水マレイン酸、メチルマレイン酸無水物、トリフルオロメチルマレイン酸無水物、無水コハク酸、メチルコハク酸無水物、トリフルオロメチルコハク酸無水物、テトラフルオロコハク酸無水物がより好ましく、無水マレイン酸、無水コハク酸が更に好ましい。
化合物(2)は、一般式(3):
Figure JPOXMLDOC01-appb-C000040
(式中、X31~X34は、同じか又は異なり、少なくともH、C、O又はFを含む基)で示される化合物(3)、及び、一般式(4):
Figure JPOXMLDOC01-appb-C000041
(式中、X41及びX42は、同じか又は異なり、少なくともH、C、O又はFを含む基)で示される化合物(4)からなる群より選択される少なくとも1種であることが好ましい。
31~X34としては、同じか又は異なり、アルキル基、フッ素化アルキル基、アルケニル基及びフッ素化アルケニル基からなる群より選択される少なくとも1種が好ましい。X31~X34の炭素数は、1~10が好ましく、1~3がより好ましい。
31~X34としては、同じか又は異なり、H-、F-、CH-、CHCH-、CHCHCH-、CF-、CFCF-、CHFCH-及びCFCFCF-からなる群より選択される少なくとも1種がより好ましい。
41及びX42としては、同じか又は異なり、アルキル基、フッ素化アルキル基、アルケニル基及びフッ素化アルケニル基からなる群より選択される少なくとも1種が好ましい。X41及びX42の炭素数は、1~10が好ましく、1~3がより好ましい。
41及びX42としては、同じか又は異なり、H-、F-、CH-、CHCH-、CHCHCH-、CF-、CFCF-、CHFCH-及びCFCFCF-からなる群より選択される少なくとも1種がより好ましい。
化合物(3)は、以下の化合物のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000042
化合物(4)は、以下の化合物のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000043
上記電解液は、高温で保管した場合でも、容量保持率が低下しにくく、ガスの発生量が増加しにくいことから、上記電解液に対して、0.0001~15質量%の化合物(2)を含むことが好ましい。化合物(2)の含有量としては、0.01~10質量%がより好ましく、0.1~3質量%が更に好ましく、0.1~1.0質量%が特に好ましい。
上記電解液が化合物(3)及び(4)の両方を含む場合、高温で保管した場合でも、容量保持率が低下しにくく、ガスの発生量が増加しにくいことから、上記電解液は、上記電解液に対して、0.08~2.50質量%の化合物(3)及び0.02~1.50質量%の化合物(4)を含むことが好ましく、0.80~2.50質量%の化合物(3)及び0.08~1.50質量%の化合物(4)を含むことがより好ましい。
上記電解液は、下記一般式(1a)、(1b)及び(1c)で表されるニトリル化合物からなる群より選択される少なくとも1種を含んでもよい。
Figure JPOXMLDOC01-appb-C000044
(式中、R及びRは、それぞれ独立して、水素原子、シアノ基(CN)、ハロゲン原子、アルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基を表す。nは1~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000045
(式中、Rは、水素原子、ハロゲン原子、アルキル基、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基、又は、NC-Rc1-Xc1-(Rc1はアルキレン基、Xc1は酸素原子又は硫黄原子を表す。)で表される基を表す。R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基を表す。mは1~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000046
(式中、R、R、R及びRは、それぞれ独立して、シアノ基(CN)を含む基、水素原子(H)、ハロゲン原子、アルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基を表す。ただし、R、R、R及びRのうち少なくとも1つはシアノ基を含む基である。lは1~3の整数を表す。)
これにより、電気化学デバイスの高温保存特性を向上させることができる。上記ニトリル化合物を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記一般式(1a)において、R及びRは、それぞれ独立して、水素原子、シアノ基(CN)、ハロゲン原子、アルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基である。
ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。中でもフッ素原子が好ましい。
アルキル基としては、炭素数1~5のものが好ましい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基等が挙げられる。
アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基としては、上述したアルキル基の少なくとも一部の水素原子を上述したハロゲン原子で置換した基が挙げられる。
及びRがアルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基である場合は、RとRとが互いに結合して環構造(例えば、シクロヘキサン環)を形成していてもよい。
及びRは、水素原子又はアルキル基であることが好ましい。
上記一般式(1a)において、nは1~10の整数である。nが2以上である場合、n個のRは全て同じであってもよく、少なくとも一部が異なっていてもよい。Rについても同様である。nは、1~7の整数が好ましく、2~5の整数がより好ましい。
上記一般式(1a)で表されるニトリル化合物としては、ジニトリル及びトリカルボニトリルが好ましい。
ジニトリルの具体例としては、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、イソプロピルマロノニトリル、tert-ブチルマロノニトリル、メチルスクシノニトリル、2,2-ジメチルスクシノニトリル、2,3-ジメチルスクシノニトリル、2,3,3-トリメチルスクシノニトリル、2,2,3,3-テトラメチルスクシノニトリル、2,3-ジエチル-2,3-ジメチルスクシノニトリル、2,2-ジエチル-3,3-ジメチルスクシノニトリル、ビシクロヘキシル-1,1-ジカルボニトリル、ビシクロヘキシル-2,2-ジカルボニトリル、ビシクロヘキシル-3,3-ジカルボニトリル、2,5-ジメチル-2,5-ヘキサンジカルボニトリル、2,3-ジイソブチル-2,3-ジメチルスクシノニトリル、2,2-ジイソブチル-3,3-ジメチルスクシノニトリル、2-メチルグルタロニトリル、2,3-ジメチルグルタロニトリル、2,4-ジメチルグルタロニトリル、2,2,3,3-テトラメチルグルタロニトリル、2,2,4,4-テトラメチルグルタロニトリル、2,2,3,4-テトラメチルグルタロニトリル、2,3,3,4-テトラメチルグルタロニトリル、1,4-ジシアノペンタン、2,6-ジシアノヘプタン、2,7-ジシアノオクタン、2,8-ジシアノノナン、1,6-ジシアノデカン、1,2-ジジアノベンゼン、1,3-ジシアノベンゼン、1,4-ジシアノベンゼン、3,3’-(エチレンジオキシ)ジプロピオニトリル、3,3’-(エチレンジチオ)ジプロピオニトリル、3,9-ビス(2-シアノエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ブタンニトリル、フタロニトリル等を例示できる。これらのうち、特に好ましいのはスクシノニトリル、グルタロニトリル、アジポニトリルである。
また、トリカルボニトリルの具体例としては、ペンタントリカルボニトリル、プロパントリカルボニトリル、1,3,5-ヘキサントリカルボニトリル、1,3,6-ヘキサントリカルボニトリル、ヘプタントリカルボニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル、シクロヘキサントリカルボニトリル、トリスシアノエチルアミン、トリスシアノエトキシプロパン、トリシアノエチレン、トリス(2-シアノエチル)アミン等が挙げられ特に好ましいものは、1,3,6-ヘキサントリカルボニトリル、シクロヘキサントリカルボニトリルであり、最も好ましいものはシクロヘキサントリカルボニトリルである。
上記一般式(1b)において、Rは、水素原子、ハロゲン原子、アルキル基、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基、又は、NC-Rc1-Xc1-(Rc1はアルキレン基、Xc1は酸素原子又は硫黄原子を表す。)で表される基であり、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基である。
ハロゲン原子、アルキル基、及び、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基については、上記一般式(1a)について例示したものが挙げられる。
上記NC-Rc1-Xc1-におけるRc1はアルキレン基である。アルキレン基としては、炭素数1~3のアルキレン基が好ましい。
、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基であることが好ましい。
、R及びRの少なくとも1つは、ハロゲン原子、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基であることが好ましく、フッ素原子、又は、アルキル基の少なくとも一部の水素原子をフッ素原子で置換した基であることがより好ましい。
及びRがアルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基である場合は、RとRとが互いに結合して環構造(例えば、シクロヘキサン環)を形成していてもよい。
上記一般式(1b)において、mは1~10の整数である。mが2以上である場合、m個のRは全て同じであってもよく、少なくとも一部が異なっていてもよい。Rについても同様である。mは、2~7の整数が好ましく、2~5の整数がより好ましい。
上記一般式(1b)で表されるニトリル化合物としては、アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、3-メトキシプロピオニトリル、2-メチルブチロニトリル、トリメチルアセトニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2-フルオロプロピオニトリル、3-フルオロプロピオニトリル、2,2-ジフルオロプロピオニトリル、2,3-ジフルオロプロピオニトリル、3,3-ジフルオロプロピオニトリル、2,2,3-トリフルオロプロピオニトリル、3,3,3-トリフルオロプロピオニトリル、3,3’-オキシジプロピオニトリル、3,3’-チオジプロピオニトリル、ペンタフルオロプロピオニトリル、メトキシアセトニトリル、ベンゾニトリル等が例示できる。これらのうち、特に好ましいのは,3,3,3-トリフルオロプロピオニトリルである。
上記一般式(1c)において、R、R、R及びRは、それぞれ独立して、シアノ基(CN)を含む基、水素原子、ハロゲン原子、アルキル基、又は、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基である。
ハロゲン原子、アルキル基、及び、アルキル基の少なくとも一部の水素原子をハロゲン原子で置換した基については、上記一般式(1a)について例示したものが挙げられる。
シアノ基を含む基としては、シアノ基のほか、アルキル基の少なくとも一部の水素原子をシアノ基で置換した基が挙げられる。この場合のアルキル基としては、上記一般式(1a)について例示したものが挙げられる。
、R、R及びRのうち少なくとも1つはシアノ基を含む基である。好ましくは、R、R、R及びRのうち少なくとも2つがシアノ基を含む基であることであり、より好ましくは、R及びRがシアノ基を含む基であることである。R及びRがシアノ基を含む基である場合、R及びRは、水素原子であることが好ましい。
上記一般式(1c)において、lは1~3の整数である。lが2以上である場合、l個のRは全て同じであってもよく、少なくとも一部が異なっていてもよい。Rについても同様である。lは、1~2の整数が好ましい。
上記一般式(1c)で表されるニトリル化合物としては、3-ヘキセンジニトリル、ムコノニトリル、マレオニトリル、フマロニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3-メチルクロトノニトリル、2-メチル-2-ブテンニトリル、2-ペンテンニトリル、2-メチル-2-ペンテンニトリル、3-メチル-2-ペンテンニトリル、2-ヘキセンニトリル等が例示され、3-ヘキセンジニトリル、ムコノニトリルが好ましく、特に3-ヘキセンジニトリルが好ましい。
上記ニトリル化合物の含有量は、電解液に対して0.2~7質量%であることが好ましい。これにより、電気化学デバイスの高電圧での高温保存特性、安全性を一層向上させることができる。上記ニトリル化合物の含有量の合計の下限は0.3質量%がより好ましく、0.5質量%が更に好ましい。上限は5質量%がより好ましく、2質量%が更に好ましく、0.5質量%が特に好ましい。
上記電解液は、イソシアナト基を有する化合物(以下、「イソシアネート」と略記する場合がある)を含んでもよい。上記イソシアネートとしては、特に限定されず、任意のイソシアネートを用いることができる。イソシアネートの例としては、モノイソシアネート類、ジイソシアネート類、トリイソシアネート類等が挙げられる。
モノイソシアネート類の具体例としては、イソシアナトメタン、イソシアナトエタン、1-イソシアナトプロパン、1-イソシアナトブタン、1-イソシアナトペンタン、1-イソシアナトヘキサン、1-イソシアナトヘプタン、1-イソシアナトオクタン、1-イソシアナトノナン、1-イソシアナトデカン、イソシアナトシクロヘキサン、メトキシカルボニルイソシアネート、エトキシカルボニルイソシアネート、プロポキシカルボニルイソシアネート、ブトキシカルボニルイソシアネート、メトキシスルホニルイソシアネート、エトキシスルホニルイソシアネート、プロポキシスルホニルイソシアネート、ブトキシスルホニルイソシアネート、フルオロスルホニルイソシアネート、メチルイソシアネート、ブチルイソシアネート、フェニルイソシアネート、2-イソシアナトエチルアクリレート、2-イソシアナトエチルメタクリレート、エチルイソシアネート等が挙げられる。
ジイソシアネート類の具体例としては、1,4-ジイソシアナトブタン、1,5-ジイソシアナトペンタン、1,6-ジイソシアナトヘキサン、1,7-ジイソシアナトヘプタン、1,8-ジイソシアナトオクタン、1,9-ジイソシアナトノナン、1,10-ジイソシアナトデカン、1,3-ジイソシアナトプロペン、1,4-ジイソシアナト-2-ブテン、1,4-ジイソシアナト-2-フルオロブタン、1,4-ジイソシアナト-2,3-ジフルオロブタン、1,5-ジイソシアナト-2-ペンテン、1,5-ジイソシアナト-2-メチルペンタン、1,6-ジイソシアナト-2-ヘキセン、1,6-ジイソシアナト-3-ヘキセン、1,6-ジイソシアナト-3-フルオロヘキサン、1,6-ジイソシアナト-3,4-ジフルオロヘキサン、トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、1,2-ビス(イソシアナトメチル)シクロヘキサン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、1,2-ジイソシアナトシクロヘキサン、1,3-ジイソシアナトシクロヘキサン、1,4-ジイソシアナトシクロヘキサン、ジシクロヘキシルメタン-1,1’-ジイソシアネート、ジシクロヘキシルメタン-2,2’-ジイソシアネート、ジシクロヘキシルメタン-3,3’-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、イソホロンジイソシアネート、ビシクロ[2.2.1]ヘプタン-2,5-ジイルビス(メチル=イソシアネート)、ビシクロ[2.2.1]ヘプタン-2,6-ジイルビス(メチル=イソシアネート)、2,4,4-トリメチルヘキサメチレンジイソシアナート、2,2,4-トリメチルヘキサメチレンジイソシアナート、ヘキサメチレンジイソシアネート、1,4-フェニレンジイソシアネート、オクタメチレンジイソシアネート、テトラメチレンジイソシアネート等が挙げられる。
トリイソシアネート類の具体例としては、1,6,11-トリイソシアナトウンデカン、4-イソシアナトメチル-1,8-オクタメチレンジイソシアネート、1,3,5-トリイソシアネートメチルベンゼン、1,3,5-トリス(6-イソシアナトヘキサ-1-イル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、4-(イソシアナトメチル)オクタメチレン=ジイソシアネート等が挙げられる。
中でも、1,6-ジイソシアナトヘキサン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,3,5-トリス(6-イソシアナトヘキサ-1-イル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、2,4,4-トリメチルヘキサメチレンジイソシアナート、2,2,4-トリメチルヘキサメチレンジイソシアナートが、工業的に入手し易いものであり、電解液の製造コストが低く抑えられる点で好ましく、また技術的な観点からも安定な被膜状の構造物の形成に寄与することができ、より好適に用いられる。
イソシアネートの含有量は、特に限定されず、本開示の効果を著しく損なわない限り任意であるが、電解液に対して、好ましくは0.001質量%以上、1.0質量%以下である。イソシアネートの含有量がこの下限以上であると、非水系電解液二次電池に、十分なサイクル特性向上効果をもたらすことができる。また、この上限以下であると、非水系電解液二次電池の初期の抵抗増加を避けることができる。イソシアネートの含有量は、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、特に好ましくは0.2質量%以上、また、より好ましくは0.8質量%以下、更に好ましくは0.7質量%以下、特に好ましくは0.6質量%以下である。
上記電解液は、環状スルホン酸エステルを含んでもよい。環状スルホン酸エステルとしては、特に限定されず、任意の環状スルホン酸エステルを用いることができる。環状スルホン酸エステルの例としては、飽和環状スルホン酸エステル、不飽和環状スルホン酸エステル、飽和環状ジスルホン酸エステル、不飽和環状ジスルホン酸エステル等が挙げられる。
飽和環状スルホン酸エステルの具体例としては、1,3-プロパンスルトン、1-フルオロ-1,3-プロパンスルトン、2-フルオロ-1,3-プロパンスルトン、3-フルオロ-1,3-プロパンスルトン、1-メチル-1,3-プロパンスルトン、2-メチル-1,3-プロパンスルトン、3-メチル-1,3-プロパンスルトン、1,3-ブタンスルトン、1,4-ブタンスルトン、1-フルオロ-1,4-ブタンスルトン、2-フルオロ-1,4-ブタンスルトン、3-フルオロ-1,4-ブタンスルトン、4-フルオロ-1,4-ブタンスルトン、1-メチル-1,4-ブタンスルトン、2-メチル-1,4-ブタンスルトン、3-メチル-1,4-ブタンスルトン、4-メチル-1,4-ブタンスルトン、2,4-ブタンスルトン等が挙げられる。
不飽和環状スルホン酸エステルの具体例としては、1-プロペン-1,3-スルトン、2-プロペン-1,3-スルトン、1-フルオロ-1-プロペン-1,3-スルトン、2-フルオロ-1-プロペン-1,3-スルトン、3-フルオロ-1-プロペン-1,3-スルトン、1-フルオロ-2-プロペン-1,3-スルトン、2-フルオロ-2-プロペン-1,3-スルトン、3-フルオロ-2-プロペン-1,3-スルトン、1-メチル-1-プロペン-1,3-スルトン、2-メチル-1-プロペン-1,3-スルトン、3-メチル-1-プロペン-1,3-スルトン、1-メチル-2-プロペン-1,3-スルトン、2-メチル-2-プロペン-1,3-スルトン、3-メチル-2-プロペン-1,3-スルトン、1-ブテン-1,4-スルトン、2-ブテン-1,4-スルトン、3-ブテン-1,4-スルトン、1-フルオロ-1-ブテン-1,4-スルトン、2-フルオロ-1-ブテン-1,4-スルトン、3-フルオロ-1-ブテン-1,4-スルトン、4-フルオロ-1-ブテン-1,4-スルトン、1-フルオロ-2-ブテン-1,4-スルトン、2-フルオロ-2-ブテン-1,4-スルトン、3-フルオロ-2-ブテン-1,4-スルトン、4-フルオロ-2-ブテン-1,4-スルトン、1,3-プロペンスルトン、1-フルオロ-3-ブテン-1,4-スルトン、2-フルオロ-3-ブテン-1,4-スルトン、3-フルオロ-3-ブテン-1,4-スルトン、4-フルオロ-3-ブテン-1,4-スルトン、1-メチル-1-ブテン-1,4-スルトン、2-メチル-1-ブテン-1,4-スルトン、3-メチル-1-ブテン-1,4-スルトン、4-メチル-1-ブテン-1,4-スルトン、1-メチル-2-ブテン-1,4-スルトン、2-メチル-2-ブテン-1,4-スルトン、3-メチル-2-ブテン-1,4-スルトン、4-メチル-2-ブテン-1,4-スルトン、1-メチル-3-ブテン-1,4-スルトン、2-メチル-3-ブテン-1,4-スルトン、3-メチル-3-ブテン-1,4-スルトン、4-メチル-3-ブテン-14-スルトン等が挙げられる。
中でも、1,3-プロパンスルトン、1-フルオロ-1,3-プロパンスルトン、2-フルオロ-1,3-プロパンスルトン、3-フルオロ-1,3-プロパンスルトン、1-プロペン-1,3-スルトンが、入手の容易さや安定な被膜状の構造物の形成に寄与することができる点から、より好適に用いられる。環状スルホン酸エステルの含有量は、特に限定されず、本開示の効果を著しく損なわない限り任意であるが、電解液に対して、好ましくは0.001質量%以上、3.0質量%以下である。
環状スルホン酸エステルの含有量がこの下限以上であると、非水系電解液二次電池に、十分なサイクル特性向上効果をもたらすことができる。また、この上限以下であると、非水系電解液二次電池の製造コストの増加を避けることができる。環状スルホン酸エステルの含有量は、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、特に好ましくは0.2質量%以上、また、より好ましくは2.5質量%以下、更に好ましくは2.0質量%以下、特に好ましくは1.8質量%以下である。
上記電解液は、更に、重量平均分子量が2000~4000であり、末端に-OH、-OCOOH、又は、-COOHを有するポリエチレンオキシドを含有してもよい。
このような化合物を含有することにより、電極界面の安定性が向上し、電気化学デバイスの特性を向上させることができる。
上記ポリエチレンオキシドとしては、例えば、ポリエチレンオキシドモノオール、ポリエチレンオキシドカルボン酸、ポリエチレンオキシドジオール、ポリエチレンオキシドジカルボン酸、ポリエチレンオキシドトリオール、ポリエチレンオキシドトリカルボン酸等が挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。
なかでも、電気化学デバイスの特性がより良好となる点で、ポリエチレンオキシドモノオールとポリエチレンオキシドジオールの混合物、及び、ポリエチレンカルボン酸とポリエチレンジカルボン酸の混合物であることが好ましい。
上記ポリエチレンオキシドの重量平均分子量が小さすぎると、酸化分解されやすくなるおそれがある。上記重量平均分子量は、3000~4000がより好ましい。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算により測定することができる。
上記ポリエチレンオキシドの含有量は、電解液中1×10-6~1×10-2mol/kgであることが好ましい。上記ポリエチレンオキシドの含有量が多すぎると、電気化学デバイスの特性を損なうおそれがある。
上記ポリエチレンオキシドの含有量は、5×10-6mol/kg以上であることがより好ましい。
上記電解液は、添加剤として、更に、フッ素化飽和環状カーボネート、不飽和環状カーボネート、過充電防止剤、その他の公知の助剤等を含有していてもよい。これにより、電気化学デバイスの特性の低下を抑制することができる。
フッ素化飽和環状カーボネートとしては、上述した一般式(A)で示される化合物が挙げられる。なかでも、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、モノフルオロメチルエチレンカーボネート、トリフルオロメチルエチレンカーボネート、2,2,3,3,3-ペンタフルオロプロピルエチレンカーボネート(4-(2,2,3,3,3-ペンタフルオロ-プロピル)-[1,3]ジオキソラン-2-オン)が好ましい。フッ素化飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記フッ素化飽和環状カーボネートの含有量は、上記電解液に対して、0.001~10質量%であることが好ましく、0.01~5質量%であることがより好ましく、0.1~3質量%であることが更に好ましい。
不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環又は炭素-炭素二重結合又は炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類等が挙げられる。
ビニレンカーボネート類としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5-ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ジビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート、4-フルオロビニレンカーボネート、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-フェニルビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート等が挙げられる。
芳香環又は炭素-炭素二重結合又は炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4-メチル-5-ビニルエチレンカーボネート、4-アリル-5-ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5-ジエチニルエチレンカーボネート、4-メチル-5-エチニルエチレンカーボネート、4-ビニル-5-エチニルエチレンカーボネート、4-アリル-5-エチニルエチレンカーボネート、フェニルエチレンカーボネート、4,5-ジフェニルエチレンカーボネート、4-フェニル-5-ビニルエチレンカーボネート、4-アリル-5-フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5-ジアリルエチレンカーボネート、4-メチル-5-アリルエチレンカーボネート、4-メチレン-1,3-ジオキソラン-2-オン、4,5-ジメチレン-1,3-ジオキソラン-2-オン、4-メチル-5-アリルエチレンカーボネート等が挙げられる。
なかでも、不飽和環状カーボネートとしては、ビニレンカーボネート、メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4-メチル-5-ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5-ジアリルエチレンカーボネート、4-メチル-5-アリルエチレンカーボネート、4-アリル-5-ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5-ジエチニルエチレンカーボネート、4-メチル-5-エチニルエチレンカーボネート、4-ビニル-5-エチニルエチレンカーボネートが好ましい。また、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートは更に安定な界面保護被膜を形成するので、特に好ましく、ビニレンカーボネートが最も好ましい。
不飽和環状カーボネートの分子量は、特に制限されず、本開示の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上、250以下である。この範囲であれば、電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本開示の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは80以上であり、また、より好ましくは150以下である。
不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記不飽和環状カーボネートの含有量は、特に制限されず、本開示の効果を著しく損なわない限り任意である。上記不飽和環状カーボネートの含有量は、電解液100質量%中0.001質量%以上が好ましく、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上である。また、上記含有量は、5質量%以下が好ましく、より好ましくは4質量%以下、更に好ましくは3質量%以下である。上記範囲内であれば、電解液を用いた電気化学デバイスが十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
不飽和環状カーボネートとしては、上述のような非フッ素化不飽和環状カーボネートの他、フッ素化不飽和環状カーボネートも好適に用いることができる。
フッ素化不飽和環状カーボネートは、不飽和結合とフッ素原子とを有する環状カーボネートである。フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上があれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1個又は2個のものが最も好ましい。
フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素-炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体としては、4-フルオロビニレンカーボネート、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-フェニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート等が挙げられる。
芳香環又は炭素-炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、4-フルオロ-4-ビニルエチレンカーボネート、4-フルオロ-4-アリルエチレンカーボネート、4-フルオロ-5-ビニルエチレンカーボネート、4-フルオロ-5-アリルエチレンカーボネート、4,4-ジフルオロ-4-ビニルエチレンカーボネート、4,4-ジフルオロ-4-アリルエチレンカーボネート、4,5-ジフルオロ-4-ビニルエチレンカーボネート、4,5-ジフルオロ-4-アリルエチレンカーボネート、4-フルオロ-4,5-ジビニルエチレンカーボネート、4-フルオロ-4,5-ジアリルエチレンカーボネート、4,5-ジフルオロ-4,5-ジビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジアリルエチレンカーボネート、4-フルオロ-4-フェニルエチレンカーボネート、4-フルオロ-5-フェニルエチレンカーボネート、4,4-ジフルオロ-5-フェニルエチレンカーボネート、4,5-ジフルオロ-4-フェニルエチレンカーボネート等が挙げられる。
なかでも、フッ素化不飽和環状カーボネートとしては、4-フルオロビニレンカーボネート、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート、4-フルオロ-4-ビニルエチレンカーボネート、4-フルオロ-4-アリルエチレンカーボネート、4-フルオロ-5-ビニルエチレンカーボネート、4-フルオロ-5-アリルエチレンカーボネート、4,4-ジフルオロ-4-ビニルエチレンカーボネート、4,4-ジフルオロ-4-アリルエチレンカーボネート、4,5-ジフルオロ-4-ビニルエチレンカーボネート、4,5-ジフルオロ-4-アリルエチレンカーボネート、4-フルオロ-4,5-ジビニルエチレンカーボネート、4-フルオロ-4,5-ジアリルエチレンカーボネート、4,5-ジフルオロ-4,5-ジビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジアリルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本開示の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、500以下である。この範囲であれば、電解液に対するフッ素化不飽和環状カーボネートの溶解性を確保しやすい。
フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。
フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。また、フッ素化不飽和環状カーボネートの含有量は、特に制限されず、本開示の効果を著しく損なわない限り任意である。フッ素化不飽和環状カーボネートの含有量は、通常、電解液100質量%中、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下である。この範囲内であれば、電解液を用いた電気化学デバイスが十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
上記電解液は、三重結合を有する化合物を含んでいてもよい。分子内に三重結合を1つ以上有している化合物であれば特にその種類は限定されない。
三重結合を有する化合物の具体例としては、例えば、以下の化合物が挙げられる。
1-ペンチン、2-ペンチン、1-ヘキシン、2-ヘキシン、3-ヘキシン、1-ヘプチン、2-ヘプチン、3-ヘプチン、1-オクチン、2-オクチン、3-オクチン、4-オクチン、1-ノニン、2-ノニン、3-ノニン、4-ノニン、1-ドデシン、2-ドデシン、3-ドデシン、4-ドデシン、5-ドデシン、フェニルアセチレン、1-フェニル-1-プロピン、1-フェニル-2-プロピン、1-フェニル-1-ブチン、4-フェニル-1-ブチン、4-フェニル-1-ブチン、1-フェニル-1-ペンチン、5-フェニル-1-ペンチン、1-フェニル-1-ヘキシン、6-フェニル-1-ヘキシン、ジフェニルアセチレン、4-エチニルトルエン、ジシクロヘキシルアセチレン等の炭化水素化合物;
2-プロピニルメチルカーボネート、2-プロピニルエチルカーボネート、2-プロピニルプロピルカーボネート、2-プロピニルブチルカーボネート、2-プロピニルフェニルカーボネート、2-プロピニルシクロヘキシルカーボネート、ジ-2-プロピニルカーボネート、1-メチル-2-プロピニルメチルカーボネート、1,1-ジメチル-2-プロピニルメチルカーボネート、2-ブチニルメチルカーボネート、3-ブチニルメチルカーボネート、2-ペンチニルメチルカーボネート、3-ペンチニルメチルカーボネート、4-ペンチニルメチルカーボネート等のモノカーボネート;2-ブチン-1,4-ジオールジメチルジカーボネート、2-ブチン-1,4-ジオールジエチルジカーボネート、2-ブチン-1,4-ジオールジプロピルジカーボネート、2-ブチン-1,4-ジオールジブチルジカーボネート、2-ブチン-1,4-ジオールジフェニルジカーボネート、2-ブチン-1,4-ジオールジシクロヘキシルジカーボネート等のジカーボネート;
酢酸2-プロピニル、プロピオン酸2-プロピニル、酪酸2-プロピニル、安息香酸2-プロピニル、シクロヘキシルカルボン酸2-プロピニル、酢酸1,1-ジメチル-2-プロピニル、プロピオン酸1,1-ジメチル-2-プロピニル、酪酸1,1-ジメチル-2-プロピニル、安息香酸1,1-ジメチル-2-プロピニル、シクロヘキシルカルボン酸1,1-ジメチル-2-プロピニル、酢酸2-ブチニル、酢酸3-ブチニル、酢酸2-ペンチニル、酢酸3-ペンチニル、酢酸4-ペンチニル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ビニル、アクリル酸2-プロペニル、アクリル酸2-ブテニル、アクリル酸3-ブテニル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ビニル、メタクリル酸2-プロペニル、メタクリル酸2-ブテニル、メタクリル酸3-ブテニル、2-プロピン酸メチル、2-プロピン酸エチル、2-プロピン酸プロピル、2-プロピン酸ビニル、2-プロピン酸2-プロペニル、2-プロピン酸2-ブテニル、2-プロピン酸3-ブテニル、2-ブチン酸メチル、2-ブチン酸エチル、2-ブチン酸プロピル、2-ブチン酸ビニル、2-ブチン酸2-プロペニル、2-ブチン酸2-ブテニル、2-ブチン酸3-ブテニル、3-ブチン酸メチル、3-ブチン酸エチル、3-ブチン酸プロピル、3-ブチン酸ビニル、3-ブチン酸2-プロペニル、3-ブチン酸2-ブテニル、3-ブチン酸3-ブテニル、2-ペンチン酸メチル、2-ペンチン酸エチル、2-ペンチン酸プロピル、2-ペンチン酸ビニル、2-ペンチン酸2-プロペニル、2-ペンチン酸2-ブテニル、2-ペンチン酸3-ブテニル、3-ペンチン酸メチル、3-ペンチン酸エチル、3-ペンチン酸プロピル、3-ペンチン酸ビニル、3-ペンチン酸2-プロペニル、3-ペンチン酸2-ブテニル、3-ペンチン酸3-ブテニル、4-ペンチン酸メチル、4-ペンチン酸エチル、4-ペンチン酸プロピル、4-ペンチン酸ビニル、4-ペンチン酸2-プロペニル、4-ペンチン酸2-ブテニル、4-ペンチン酸3-ブテニル等のモノカルボン酸エステル、フマル酸エステル、トリメチル酢酸メチル、トリメチル酢酸エチル;
2-ブチン-1,4-ジオールジアセテート、2-ブチン-1,4-ジオールジプロピオネート、2-ブチン-1,4-ジオールジブチレート、2-ブチン-1,4-ジオールジベンゾエート、2-ブチン-1,4-ジオールジシクロヘキサンカルボキシレート、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド(1,2-シクロヘキサンジオール、2,2-ジオキシド-1,2-オキサチオラン-4-イルアセテート、2,2-ジオキシド-1,2-オキサチオラン-4-イルアセテート等のジカルボン酸エステル;
シュウ酸メチル2-プロピニル、シュウ酸エチル2-プロピニル、シュウ酸プロピル2-プロピニル、シュウ酸2-プロピニルビニル、シュウ酸アリル2-プロピニル、シュウ酸ジ-2-プロピニル、シュウ酸2-ブチニルメチル、シュウ酸2-ブチニルエチル、シュウ酸2-ブチニルプロピル、シュウ酸2-ブチニルビニル、シュウ酸アリル2-ブチニル、シュウ酸ジ-2-ブチニル、シュウ酸3-ブチニルメチル、シュウ酸3-ブチニルエチル、シュウ酸3-ブチニルプロピル、シュウ酸3-ブチニルビニル、シュウ酸アリル3-ブチニル、シュウ酸ジ-3-ブチニル等のシュウ酸ジエステル;
メチル(2-プロピニル)(ビニル)ホスフィンオキシド、ジビニル(2-プロピニル)ホスフィンオキシド、ジ(2-プロピニル)(ビニル)ホスフィンオキシド、ジ(2-プロペニル)2(-プロピニル)ホスフィンオキシド、ジ(2-プロピニル)(2-プロペニル)ホスフィンオキシド、ジ(3-ブテニル)(2-プロピニル)ホスフィンオキシド、及びジ(2-プロピニル)(3-ブテニル)ホスフィンオキシド等のホスフィンオキシド;
メチル(2-プロペニル)ホスフィン酸2-プロピニル、2-ブテニル(メチル)ホスフィン酸2-プロピニル、ジ(2-プロペニル)ホスフィン酸2-プロピニル、ジ(3-ブテニル)ホスフィン酸2-プロピニル、メチル(2-プロペニル)ホスフィン酸1,1-ジメチル-2-プロピニル、2-ブテニル(メチル)ホスフィン酸1,1-ジメチル-2-プロピニル、ジ(2-プロペニル)ホスフィン酸1,1-ジメチル-2-プロピニル、及びジ(3-ブテニル)ホスフィン酸1,1-ジメチル-2-プロピニル、メチル(2-プロピニル)ホスフィン酸2-プロペニル、メチル(2-プロピニル)ホスフィン酸3-ブテニル、ジ(2-プロピニル)ホスフィン酸2-プロペニル、ジ(2-プロピニル)ホスフィン酸3-ブテニル、2-プロピニル(2-プロペニル)ホスフィン酸2-プロペニル、及び2-プロピニル(2-プロペニル)ホスフィン酸3-ブテニル等のホスフィン酸エステル;
2-プロペニルホスホン酸メチル2-プロピニル、2-ブテニルホスホン酸メチル(2-プロピニル)、2-プロペニルホスホン酸(2-プロピニル)(2-プロペニル)、3-ブテニルホスホン酸(3-ブテニル)(2-プロピニル)、2-プロペニルホスホン酸(1,1-ジメチル-2-プロピニル)(メチル)、2-ブテニルホスホン酸(1,1-ジメチル-2-プロピニル)(メチル)、2-プロペニルホスホン酸(1,1-ジメチル-2-プロピニル)(2-プロペニル)、及び3-ブテニルホスホン酸(3-ブテニル)(1,1-ジメチル-2-プロピニル)、メチルホスホン酸(2-プロピニル)(2-プロペニル)、メチルホスホン酸(3-ブテニル)(2-プロピニル)、メチルホスホン酸(1,1-ジメチル-2-プロピニル)(2-プロペニル)、メチルホスホン酸(3-ブテニル)(1,1-ジメチル-2-プロピニル)、エチルホスホン酸(2-プロピニル)(2-プロペニル)、エチルホスホン酸(3-ブテニル)(2-プロピニル)、エチルホスホン酸(1,1-ジメチル-2-プロピニル)(2-プロペニル)、及びエチルホスホン酸(3-ブテニル)(1,1-ジメチル-2-プロピニル)等のホスホン酸エステル;
リン酸(メチル)(2-プロペニル)(2-プロピニル)、リン酸(エチル)(2-プロペニル)(2-プロピニル)、リン酸(2-ブテニル)(メチル)(2-プロピニル)、リン酸(2-ブテニル)(エチル)(2-プロピニル)、リン酸(1,1-ジメチル-2-プロピニル)(メチル)(2-プロペニル)、リン酸(1,1-ジメチル-2-プロピニル)(エチル)(2-プロペニル)、リン酸(2-ブテニル)(1,1-ジメチル-2-プロピニル)(メチル)、及びリン酸(2-ブテニル)(エチル)(1,1-ジメチル-2-プロピニル)等のリン酸エステル;
これらのうち、アルキニルオキシ基を有する化合物は、電解液中でより安定に負極被膜を形成するため好ましい。
更に、2-プロピニルメチルカーボネート、ジ-2-プロピニルカーボネート、2-ブチン-1,4-ジオールジメチルジカーボネート、酢酸2-プロピニル、2-ブチン-1,4-ジオールジアセテート、シュウ酸メチル2-プロピニル、シュウ酸ジ-2-プロピニル等の化合物が保存特性向上の点から特に好ましい。
上記三重結合を有する化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。上記電解液全体に対する三重結合を有する化合物の配合量に制限は無く、本開示の効果を著しく損なわない限り任意であるが、上記電解液に対して、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは1質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、サイクル特性、高温保存特性等の効果がより向上する。
上記電解液においては、電解液を用いた電気化学デバイスが過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、ビフェニル、o-ターフェニル、m-ターフェニル、p-ターフェニル等の無置換又はアルキル基で置換されたターフェニル誘導体、無置換又はアルキル基で置換されたターフェニル誘導体の部分水素化物、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン、ジフェニルシクロヘキサン、1,1,3-トリメチル-3-フェニルインダン、シクロペンチルベンゼン、シクロヘキシルベンゼン、クメン、1,3-ジイソプロピルベンゼン、1,4-ジイソプロピルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、t-ヘキシルベンゼン、アニソール等の芳香族化合物;2-フルオロビフェニル、4-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼンフルオロベンゼン、フルオロトルエン、ベンゾトリフルオリド等の上記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、1,6-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等の含フッ素アニソール化合物;3-プロピルフェニルアセテート、2-エチルフェニルアセテート、ベンジルフェニルアセテート、メチルフェニルアセテート、ベンジルアセテート、フェネチルフェニルアセテート等の芳香族アセテート類;ジフェニルカーボネート、メチルフェニルカーボネート等の芳香族カーボネート類、トルエン、キシレン等のトルエン誘導体、2-メチルビフェニル、3-メチルビフェニル、4-メチルビフェニル、o-シクロヘキシルビフェニル等の無置換又はアルキル基で置換されたビフェニル誘導体等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物、ジフェニルシクロヘキサン、1,1,3-トリメチル-3-フェニルインダン、3-プロピルフェニルアセテート、2-エチルフェニルアセテート、ベンジルフェニルアセテート、メチルフェニルアセテート、ベンジルアセテート、ジフェニルカーボネート、メチルフェニルカーボネート等が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt-ブチルベンゼン又はt-アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
本開示に使用する電解液には、カルボン酸無水物(ただし、化合物(2)を除く。)を用いてもよい。上記カルボン酸無水物としては、下記一般式(6)で表される化合物が好ましい。カルボン酸無水物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
Figure JPOXMLDOC01-appb-C000047
(一般式(6)中、R61、R62はそれぞれ独立に、置換基を有していてもよい、炭素数1以上15以下の炭化水素基を表す。)
61、R62は、一価の炭化水素基であれば、その種類は特に制限されない。例えば、脂肪族炭化水素基であっても芳香族炭化水素基であってもよく、脂肪族炭化水素基と芳香族炭化水素基とが結合したものであってもよい。脂肪族炭化水素基は、飽和炭化水素基であってもよく、不飽和結合(炭素-炭素二重結合又は炭素-炭素三重結合)を含んでいてもよい。また、脂肪族炭化水素基は、鎖状であっても環状であってもよく、鎖状の場合は、直鎖状であっても分岐鎖状であってもよい。更には、鎖状と環状とが結合したものであってもよい。なお、R61及びR62は互いに同一であってもよく、異なっていてもよい。
また、R61、R62の炭化水素基が置換基を有する場合、その置換基の種類は、本開示の趣旨に反するものでない限り特に制限されないが、例としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子が挙げられ、好ましくはフッ素原子である。又はロゲン原子以外の置換基として、エステル基、シアノ基、カルボニル基、エーテル基等の官能基を有する置換基等も挙げられ、好ましくはシアノ基、カルボニル基である。R61、R62の炭化水素基は、これらの置換基を一つのみ有していてもよく、二つ以上有していてもよい。二つ以上の置換基を有する場合、それらの置換基は同じであってもよく、互いに異なっていてもよい。
61、R62の各々の炭化水素基の炭素数は、通常1以上であり、また通常15以下、好ましくは12以下、より好ましくは10以下、更に好ましくは9以下である。R61とR62とが互いに結合して二価の炭化水素基を形成している場合は、その二価の炭化水素基の炭素数が、通常1以上であり、また通常15以下、好ましくは13以下、より好ましくは10以下、更に好ましくは8以下である。尚、R61、R62の炭化水素基が炭素原子を含有する置換基を有する場合は、その置換基も含めたR61、R62全体の炭素数が上記範囲を満たしていることが好ましい。
次いで、上記一般式(6)で表される酸無水物の具体例について説明する。なお、以下の例示において「類縁体」とは、例示される酸無水物の構造の一部を、本開示の趣旨に反しない範囲で、別の構造に置き換えることにより得られる酸無水物を指すもので、例えば複数の酸無水物からなる二量体、三量体及び四量体等、又は、置換基の炭素数が同じではあるが分岐鎖を有する等構造異性のもの、置換基が酸無水物に結合する部位が異なるもの等が挙げられる。
まず、R61、R62が同一である酸無水物の具体例を以下に挙げる。
61、R62が鎖状アルキル基である酸無水物の具体例としては、無水酢酸、プロピオン酸無水物、ブタン酸無水物、2-メチルプロピオン酸無水物、2,2-ジメチルプロピオン酸無水物、2-メチルブタン酸無水物、3-メチルブタン酸無水物、2,2-ジメチルブタン酸無水物、2,3-ジメチルブタン酸無水物、3,3-ジメチルブタン酸無水物、2,2,3-トリメチルブタン酸無水物、2,3,3-トリメチルブタン酸無水物、2,2,3,3-テトラメチルブタン酸無水物、2-エチルブタン酸無水物等、及びそれらの類縁体等が挙げられる。
61、R62が環状アルキル基である酸無水物の具体例としては、シクロプロパンカルボン酸無水物、シクロペンタンカルボン酸無水物、シクロヘキサンカルボン酸無水物等、及びそれらの類縁体等が挙げられる。
61、R62がアルケニル基である酸無水物の具体例としては、アクリル酸無水物、2-メチルアクリル酸無水物、3-メチルアクリル酸無水物、2,3-ジメチルアクリル酸無水物、3,3-ジメチルアクリル酸無水物、2,3,3-トリメチルアクリル酸無水物、2-フェニルアクリル酸無水物、3-フェニルアクリル酸無水物、2,3-ジフェニルアクリル酸無水物、3,3-ジフェニルアクリル酸無水物、3-ブテン酸無水物、2-メチル-3-ブテン酸無水物、2,2-ジメチル-3-ブテン酸無水物、3-メチル-3-テン酸無水物、2-メチル-3-メチル-3-ブテン酸無水物、2,2-ジメチル-3-メチル-3-ブテン酸無水物、3-ペンテン酸無水物、4-ペンテン酸無水物、2-シクロペンテンカルボン酸無水物、3-シクロペンテンカルボン酸無水物、4-シクロペンテンカルボン酸無水物等、及びそれらの類縁体等が挙げられる。
61、R62がアルキニル基である酸無水物の具体例としては、プロピン酸無水物、3-フェニルプロピン酸無水物、2-ブチン酸無水物、2-ペンチン酸無水物、3-ブチン酸無水物、3-ペンチン酸無水物、4-ペンチン酸無水物等、及びそれらの類縁体等が挙げられる。
61、R62がアリール基である酸無水物の具体例としては、安息香酸無水物、4-メチル安息香酸無水物、4-エチル安息香酸無水物、4-tert-ブチル安息香酸無水物、2-メチル安息香酸無水物、2,4,6-トリメチル安息香酸無水物、1-ナフタレンカルボン酸無水物、2-ナフタレンカルボン酸無水物等、及びそれらの類縁体等が挙げられる。
また、R61、R62がハロゲン原子で置換された酸無水物の例として、主にフッ素原子で置換された酸無水物の例を以下に挙げるが、これらのフッ素原子の一部又は全部を塩素原子、臭素原子、ヨウ素原子に置換して得られる酸無水物も、例示化合物に含まれるものとする。
61、R62がハロゲン原子で置換された鎖状アルキル基である酸無水物の例としては、フルオロ酢酸無水物、ジフルオロ酢酸無水物、トリフルオロ酢酸無水物、2-フルオロプロピオン酸無水物、2,2-ジフルオロプロピオン酸無水物、2,3-ジフルオロプロピオン酸無水物、2,2,3-トリフルオロプロピオン酸無水物、2,3,3-トリフルオロプロピオン酸無水物、2,2,3,3-テトラプロピオン酸無水物、2,3,3,3-テトラプロピオン酸無水物、3-フルオロプロピオン酸無水物、3,3-ジフルオロプロピオン酸無水物、3,3,3-トリフルオロプロピオン酸無水物、パーフルオロプロピオン酸無水物等、及びそれらの類縁体等が挙げられる。
61、R62がハロゲン原子で置換された環状アルキル基である酸無水物の例としては、2-フルオロシクロペンタンカルボン酸無水物、3-フルオロシクロペンタンカルボン酸無水物、4-フルオロシクロペンタンカルボン酸無水物等、及びそれらの類縁体等が挙げられる。
61、R62がハロゲン原子で置換されたアルケニル基である酸無水物の例としては、2-フルオロアクリル酸無水物、3-フルオロアクリル酸無水物、2,3-ジフルオロアクリル酸無水物、3,3-ジフルオロアクリル酸無水物、2,3,3-トリフルオロアクリル酸無水物、2-(トリフルオロメチル)アクリル酸無水物、3-(トリフルオロメチル)アクリル酸無水物、2,3-ビス(トリフルオロメチル)アクリル酸無水物、2,3,3-トリス(トリフルオロメチル)アクリル酸無水物、2-(4-フルオロフェニル)アクリル酸無水物、3-(4-フルオロフェニル)アクリル酸無水物、2,3-ビス(4-フルオロフェニル)アクリル酸無水物、3,3-ビス(4-フルオロフェニル)アクリル酸無水物、2-フルオロ-3-ブテン酸無水物、2,2-ジフルオロ-3-ブテン酸無水物、3-フルオロ-2-ブテン酸無水物、4-フルオロ-3-ブテン酸無水物、3,4-ジフルオロ-3-ブテン酸無水物、3,3,4-トリフルオロ-3-ブテン酸無水物等、及びそれらの類縁体等が挙げられる。
61、R62がハロゲン原子で置換されたアルキニル基である酸無水物の例としては、3-フルオロ-2-プロピン酸無水物、3-(4-フルオロフェニル)-2-プロピン酸無水物、3-(2,3,4,5,6-ペンタフルオロフェニル)-2-プロピン酸無水物、4-フルオロ-2-ブチン酸無水物、4,4-ジフルオロ-2-ブチン酸無水物、4,4,4-トリフルオロ-2-ブチン酸無水物等、及びそれらの類縁体等が挙げられる。
61、R62がハロゲン原子で置換されたアリール基である酸無水物の例としては、4-フルオロ安息香酸無水物、2,3,4,5,6-ペンタフルオロ安息香酸無水物、4-トリフルオロメチル安息香酸無水物等、及びそれらの類縁体等が挙げられる。
61、R62がエステル、ニトリル、ケトン、エーテル等の官能基を有する置換基を有している酸無水物の例としては、メトキシギ酸無水物、エトキシギ酸無水物、メチルシュウ酸無水物、エチルシュウ酸無水物、2-シアノ酢酸無水物、2-オキソプロピオン酸無水物、3-オキソブタン酸無水物、4-アセチル安息香酸無水物、メトキシ酢酸無水物、4-メトキシ安息香酸無水物等、及びそれらの類縁体等が挙げられる。
続いて、R61、R62が互いに異なる酸無水物の具体例を以下に挙げる。
61、R62としては上に挙げた例、及びそれらの類縁体の全ての組み合わせが考えられるが、以下に代表的な例を挙げる。
鎖状アルキル基同士の組み合わせの例としては、酢酸プロピオン酸無水物、酢酸ブタン酸無水物、ブタン酸プロピオン酸無水物、酢酸2-メチルプロピオン酸無水物、等が挙げられる。
鎖状アルキル基と環状アルキル基の組み合わせの例としては、酢酸シクロペンタン酸無水物、酢酸シクロヘキサン酸無水物、シクロペンタン酸プロピオン酸無水物、等が挙げられる。
鎖状アルキル基とアルケニル基の組み合わせの例としては、酢酸アクリル酸無水物、酢酸3-メチルアクリル酸無水物、酢酸3-ブテン酸無水物、アクリル酸プロピオン酸無水物、等が挙げられる。
鎖状アルキル基とアルキニル基の組み合わせの例としては、酢酸プロピン酸無水物、酢酸2-ブチン酸無水物、酢酸3-ブチン酸無水物、酢酸3-フェニルプロピン酸無水物プロピオン酸プロピン酸無水物、等が挙げられる。
鎖状アルキル基とアリール基の組み合わせの例としては、酢酸安息香酸無水物、酢酸4-メチル安息香酸無水物、酢酸1-ナフタレンカルボン酸無水物、安息香酸プロピオン酸無水物、等が挙げられる。
鎖状アルキル基と官能基を有する炭化水素基の組み合わせの例としては、酢酸フルオロ酢酸無水物、酢酸トリフルオロ酢酸無水物、酢酸4-フルオロ安息香酸無水物、フルオロ酢酸プロピオン酸無水物、酢酸アルキルシュウ酸無水物、酢酸2-シアノ酢酸無水物、酢酸2-オキソプロピオン酸無水物、酢酸メトキシ酢酸無水物、メトキシ酢酸プロピオン酸無水物、等が挙げられる。
環状アルキル基同士の組み合わせの例としては、シクロペンタン酸シクロヘキサン酸無水物、等が挙げられる。
環状アルキル基とアルケニル基の組み合わせの例としては、アクリル酸シクロペンタン酸無水物、3-メチルアクリル酸シクロペンタン酸無水物、3-ブテン酸シクロペンタン酸無水物、アクリル酸シクロヘキサン酸無水物、等が挙げられる。
環状アルキル基とアルキニル基の組み合わせの例としては、プロピン酸シクロペンタン酸無水物、2-ブチン酸シクロペンタン酸無水物、プロピン酸シクロヘキサン酸無水物、等が挙げられる。
環状アルキル基とアリール基の組み合わせの例としては、安息香酸シクロペンタン酸無水物、4-メチル安息香酸シクロペンタン酸無水物、安息香酸シクロヘキサン酸無水物、等が挙げられる。
環状アルキル基と官能基を有する炭化水素基の組み合わせの例としては、フルオロ酢酸シクロペンタン酸無水物、シクロペンタン酸トリフルオロ酢酸無水物、シクロペンタン酸2-シアノ酢酸無水物、シクロペンタン酸メトキシ酢酸無水物、シクロヘキサン酸フルオロ酢酸無水物、等が挙げられる。
アルケニル基同士の組み合わせの例としては、アクリル酸2-メチルアクリル酸無水物、アクリル酸3-メチルアクリル酸無水物、アクリル酸3-ブテン酸無水物、2-メチルアクリル酸3-メチルアクリル酸無水物、等が挙げられる。
アルケニル基とアルキニル基の組み合わせの例としては、アクリル酸プロピン酸無水物、アクリル酸2-ブチン酸無水物、2-メチルアクリル酸プロピン酸無水物、等が挙げられる。
アルケニル基とアリール基の組み合わせの例としては、アクリル酸安息香酸無水物、アクリル酸4-メチル安息香酸無水物、2-メチルアクリル酸安息香酸無水物、等が挙げられる。
アルケニル基と官能基を有する炭化水素基の組み合わせの例としては、アクリル酸フルオロ酢酸無水物、アクリル酸トリフルオロ酢酸無水物、アクリル酸2-シアノ酢酸無水物、アクリル酸メトキシ酢酸無水物、2-メチルアクリル酸フルオロ酢酸無水物、等が挙げられる。
アルキニル基同士の組み合わせの例としては、プロピン酸2-ブチン酸無水物、プロピン酸3-ブチン酸無水物、2-ブチン酸3-ブチン酸無水物、等が挙げられる。
アルキニル基とアリール基の組み合わせの例としては、安息香酸プロピン酸無水物、4-メチル安息香酸プロピン酸無水物、安息香酸2-ブチン酸無水物、等が挙げられる。
アルキニル基と官能基を有する炭化水素基の組み合わせの例としては、プロピン酸フルオロ酢酸無水物、プロピン酸トリフルオロ酢酸無水物、プロピン酸2-シアノ酢酸無水物、プロピン酸メトキシ酢酸無水物、2-ブチン酸フルオロ酢酸無水物、等が挙げられる。
アリール基同士の組み合わせの例としては、安息香酸4-メチル安息香酸無水物、安息香酸1-ナフタレンカルボン酸無水物、4-メチル安息香酸1-ナフタレンカルボン酸無水物、等が挙げられる。
アリール基と官能基を有する炭化水素基の組み合わせの例としては、安息香酸フルオロ酢酸無水物、安息香酸トリフルオロ酢酸無水物、安息香酸2-シアノ酢酸無水物、安息香酸メトキシ酢酸無水物、4-メチル安息香酸フルオロ酢酸無水物、等が挙げられる。
官能基を有する炭化水素基同士の組み合わせの例としては、フルオロ酢酸トリフルオロ酢酸無水物、フルオロ酢酸2-シアノ酢酸無水物、フルオロ酢酸メトキシ酢酸無水物、トリフルオロ酢酸2-シアノ酢酸無水物、等が挙げられる。
上記の鎖状構造を形成している酸無水物のうち好ましくは、無水酢酸、プロピオン酸無水物、2-メチルプロピオン酸無水物、シクロペンタンカルボン酸無水物、シクロヘキサンカルボン酸無水物等、アクリル酸無水物、2-メチルアクリル酸無水物、3-メチルアクリル酸無水物、2,3-ジメチルアクリル酸無水物、3,3-ジメチルアクリル酸無水物、3-ブテン酸無水物、2-メチル-3-ブテン酸無水物、プロピン酸無水物、2-ブチン酸無水物、安息香酸無水物、2-メチル安息香酸無水物、4-メチル安息香酸無水物、4-tert-ブチル安息香酸無水物、トリフルオロ酢酸無水物、3,3,3-トリフルオロプロピオン酸無水物、2-(トリフルオロメチル)アクリル酸無水物、2-(4-フルオロフェニル)アクリル酸無水物、4-フルオロ安息香酸無水物、2,3,4,5,6-ペンタフルオロ安息香酸無水物、メトキシギ酸無水物、エトキシギ酸無水物、であり、より好ましくは、アクリル酸無水物、2-メチルアクリル酸無水物、3-メチルアクリル酸無水物、安息香酸無水物、2-メチル安息香酸無水物、4-メチル安息香酸無水物、4-tert-ブチル安息香酸無水物、4-フルオロ安息香酸無水物、2,3,4,5,6-ペンタフルオロ安息香酸無水物、メトキシギ酸無水物、エトキシギ酸無水物である。
これらの化合物は、適切にリチウムオキサラート塩との結合を形成して耐久性に優れる皮膜を形成することで、特に耐久試験後の充放電レート特性、入出力特性、インピーダンス特性を向上させることができる観点で好ましい。
なお、上記カルボン酸無水物の分子量に制限は無く、本開示の効果を著しく損なわない限り任意であるが、通常90以上、好ましくは95以上であり、一方、通常300以下、好ましくは200以下である。カルボン酸無水物の分子量が上記範囲内であると、電解液の粘度上昇を抑制でき、かつ皮膜密度が適正化されるために耐久性を適切に向上することができる。
また、上記カルボン酸無水物の製造方法にも特に制限は無く、公知の方法を任意に選択して製造することが可能である。以上説明したカルボン酸無水物は、本開示の非水系電解液中に、何れか1種を単独で含有させてもよく、2種以上を任意の組み合わせ及び比率で併有させてもよい。
また、上記電解液に対する上記カルボン酸無水物の含有量に特に制限は無く、本開示の効果を著しく損なわない限り任意であるが、上記電解液に対して、通常0.01質量%以上、好ましくは0.1質量%以上、また、通常5質量%以下、好ましくは3質量%以下の濃度で含有させることが望ましい。カルボン酸無水物の含有量が上記範囲内であると、サイクル特性向上効果が発現しやすくなり、また反応性が好適であるため電池特性が向上しやすくなる。
上記電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、ペンタン、ヘプタン、オクタン、ノナン、デカン、シクロヘプタン、ベンゼン、フラン、ナフタレン、2-フェニルビシクロヘキシル、シクロヘキサン、2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ジビニル-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等の炭化水素化合物;
フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド、モノフルオロベンゼン、1-フルオロ-2-シクロヘキシルベンゼン、1-フルオロ-4-tert-ブチルベンゼン、1-フルオロ-3-シクロヘキシルベンゼン、1-フルオロ-2-シクロヘキシルベンゼン、フッ素化ビフェニル等の含フッ素芳香族化合物;
エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート、メトキシエチル-メチルカーボネート等のカーボネート化合物;
ジオキソラン、ジオキサン、2,5,8,11-テトラオキサドデカン、2,5,8,11,14-ペンタオキサペンタデカン、エトキシメトキシエタン、トリメトキシメタン、グライム、エチルモノグライム等のエーテル系化合物;
ジメチルケトン、ジエチルケトン、3-ペンタノン等のケトン系化合物;
2-アリル無水コハク酸等の酸無水物;
シュウ酸ジメチル、シュウ酸ジエチル、シュウ酸エチルメチル、シュウ酸ジ(2-プロピニル)、シュウ酸メチル2-プロピニル、コハク酸ジメチル、グルタル酸ジ(2-プロピニル)、ギ酸メチル、ギ酸エチル、ギ酸2-プロピニル、2-ブチン-1,4-ジイルジホルメート、メタクリル酸2-プロピニル、マロン酸ジメチル等のエステル化合物;
アセトアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系化合物;
硫酸エチレン、硫酸ビニレン、亜硫酸エチレン、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド、ビニルスルホン酸メチル、ビニルスルホン酸エチル、ビニルスルホン酸アリル、ビニルスルホン酸プロパルギル、アリルスルホン酸メチル、アリルスルホン酸エチル、アリルスルホン酸アリル、アリルスルホン酸プロパルギル、1,2-ビス(ビニルスルホニロキシ)エタン、無水プロパンジスルホン酸、無水スルホ酪酸、無水スルホ安息香酸、無水スルホプロピオン酸、無水エタンジスルホン酸、メチレンメタンジスルホネート、メタンスルホン酸2-プロピニル、ペンテンサルファイト、ペンタフルオロフェニルメタンスルホネート、プロピレンサルフェート、プロピレンサルファイト、プロパンサルトン、ブチレンサルファイト、ブタン-2,3-ジイルジメタンスルホネート、2-ブチン-1,4-ジイルジメタンスルホネート、ビニルスルホン酸2-プロピニル、ビス(2-ビニルスルホニルエチル)エーテル、5-ビニル-ヘキサヒドロ-1,3,2-ベンゾジオキサチオール-2-オキシド、2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、5,5-ジメチル-1,2-オキサチオラン-4-オン2,2-ジオキシド、3-スルホ-プロピオン酸無水物トリメチレンメタンジスルホネート2-メチルテトラヒドロフラン、トリメチレンメタンジスルホネート、テトラメチレンスルホキシド、ジメチレンメタンジスルホネート、ジフルオロエチルメチルスルホン、ジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、エチレンビススルホン酸メチル、エチレンビススルホン酸エチル、エチレンサルフェート、チオフェン1-オキシド等の含硫黄化合物;
1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン及びN-メチルスクシンイミド、ニトロメタン、ニトロエタン、エチレンジアミン等の含窒素化合物;
亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、メチルホスホン酸ジメチル、エチルホスホン酸ジエチル、ビニルホスホン酸ジメチル、ビニルホスホン酸ジエチル、ジエチルホスホノ酢酸エチル、ジメチルホスフィン酸メチル、ジエチルホスフィン酸エチル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド、リン酸ビス(2,2-ジフルオロエチル)2,2,2-トリフルオロエチル、リン酸ビス(2,2,3,3-テトラフルオロプロピル)2,2,2-トリフルオロエチル、リン酸ビス(2,2,2-トリフルオロエチル)メチル、リン酸ビス(2,2,2-トリフルオロエチル)エチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2-ジフルオロエチルリン酸ビス(2,2,2-トリフルオロエチル)2,2,3,3-テトラフルオロプロピル、リン酸トリブチル、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、リン酸トリオクチル、リン酸2-フェニルフェニルジメチル、リン酸2-フェニルフェニルジエチル、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル、メチル2-(ジメトキシホスホリル)アセテート、メチル2-(ジメチルホスホリル)アセテート、メチル2-(ジエトキシホスホリル)アセテート、メチル2-(ジエチルホスホリル)アセテート、メチレンビスホスホン酸メチル、メチレンビスホスホン酸エチル、エチレンビスホスホン酸メチル、エチレンビスホスホン酸エチル、ブチレンビスホスホン酸メチル、ブチレンビスホスホン酸エチル、酢酸2-プロピニル2-(ジメトキシホスホリル)、酢酸2-プロピニル2-(ジメチルホスホリル)、酢酸2-プロピニル2-(ジエトキシホスホリル)、酢酸2-プロピニル2-(ジエチルホスホリル)、リン酸トリス(トリメチルシリル)、リン酸トリス(トリエチルシリル)、リン酸トリス(トリメトキシシリル)、亜リン酸トリス(トリメチルシリル)、亜リン酸トリス(トリエチルシリル)、亜リン酸トリス(トリメトキシシリル)、ポリリン酸トリメチルシリル等の含燐化合物;
ホウ酸トリス(トリメチルシリル)、ホウ酸トリス(トリメトキシシリル)等の含ホウ素化合物;
ジメトキシアルミノキシトリメトキシシラン、ジエトキシアルミノキシトリエトキシシラン、ジプロポキシアルミノキシトリエトキシシラン、ジブトキシアルミノキシトリメトキシシラン、ジブトキシアルミノキシトリエトキシシラン、チタンテトラキス(トリメチルシロキシド)、チタンテトラキス(トリエチルシロキシド)、テトラメチルシラン等のシラン化合物;
等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
上記その他の助剤としては、なかでも、含燐化合物が好ましく、リン酸トリス(トリメチルシリル)、亜リン酸(トリストリメチルシリル)が好ましい。
その他の助剤の配合量は、特に制限されず、本開示の効果を著しく損なわない限り任意である。その他の助剤は、電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、その他助剤の効果が十分に発現させやすく、高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。その他の助剤の配合量は、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、更に好ましくは1質量%以下である。
上記電解液は、本開示の効果を損なわない範囲で、環状及び鎖状カルボン酸エステル、エーテル化合物、窒素含有化合物、ホウ素含有化合物、有機ケイ素含有化合物、不燃(難燃)化剤、界面活性剤、高誘電化添加剤、サイクル特性及びレート特性改善剤、スルホン系化合物等を添加剤として更に含有してもよい。
上記環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3~12のものが挙げられる。具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン、3-メチル-γ-ブチロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電気化学デバイスの特性向上の点から特に好ましい。
添加剤としての環状カルボン酸エステルの配合量は、通常、溶媒100質量%中、好ましくは0.1質量%以上、より好ましくは1質量%以上である。この範囲であると、電解液の電気伝導率を改善し、電気化学デバイスの大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの配合量は、好ましくは10質量%以下、より好ましくは5質量%以下である。このように上限を設定することにより、電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、電気化学デバイスの大電流放電特性を良好な範囲としやすくする。
また、上記環状カルボン酸エステルとしては、フッ素化環状カルボン酸エステル(含フッ素ラクトン)も好適に用いることができる。含フッ素ラクトンとしては、例えば、下記式(C):
Figure JPOXMLDOC01-appb-C000048
(式中、X15~X20は同じか又は異なり、いずれも-H、-F、-Cl、-CH又はフッ素化アルキル基;ただし、X15~X20の少なくとも1つはフッ素化アルキル基である)
で示される含フッ素ラクトンが挙げられる。
15~X20におけるフッ素化アルキル基としては、例えば、-CFH、-CFH、-CF、-CHCF、-CFCF、-CHCFCF、-CF(CF等が挙げられ、耐酸化性が高く、安全性向上効果がある点から-CHCF、-CHCFCFが好ましい。
15~X20の少なくとも1つがフッ素化アルキル基であれば、-H、-F、-Cl、-CH又はフッ素化アルキル基は、X15~X20の1箇所のみに置換していてもよいし、複数の箇所に置換していてもよい。好ましくは、電解質塩の溶解性が良好な点から1~3箇所、更に好ましくは1~2箇所である。
フッ素化アルキル基の置換位置は特に限定されないが、合成収率が良好なことから、X17及び/又はX18が、特にX17又はX18がフッ素化アルキル基、なかでも-CHCF、-CHCFCFであることが好ましい。フッ素化アルキル基以外のX15~X20は、-H、-F、-Cl又はCHであり、特に電解質塩の溶解性が良好な点から-Hが好ましい。
含フッ素ラクトンとしては、上記式で示されるもの以外にも、例えば、下記式(D):
Figure JPOXMLDOC01-appb-C000049
(式中、A及びBはいずれか一方がCX226227(X226及びX227は同じか又は異なり、いずれも-H、-F、-Cl、-CF、-CH又は水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキレン基)であり、他方は酸素原子;Rf12はエーテル結合を有していてもよいフッ素化アルキル基又はフッ素化アルコキシ基;X221及びX222は同じか又は異なり、いずれも-H、-F、-Cl、-CF又はCH;X223~X225は同じか又は異なり、いずれも-H、-F、-Cl又は水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキル基;n=0又は1)
で示される含フッ素ラクトン等も挙げられる。
式(D)で示される含フッ素ラクトンとしては、下記式(E):
Figure JPOXMLDOC01-appb-C000050
(式中、A、B、Rf12、X221、X222及びX223は式(D)と同じである)
で示される5員環構造が、合成が容易である点、化学的安定性が良好な点から好ましく挙げられ、更には、AとBの組合せにより、下記式(F):
Figure JPOXMLDOC01-appb-C000051
(式中、Rf12、X221、X222、X223、X226及びX227は式(D)と同じである)
で示される含フッ素ラクトンと、下記式(G):
Figure JPOXMLDOC01-appb-C000052
(式中、Rf12、X221、X222、X223、X226及びX227は式(D)と同じである)
で示される含フッ素ラクトンがある。
これらのなかでも、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本開示における電解液としての特性が向上する点から、
Figure JPOXMLDOC01-appb-C000053
等が挙げられる。
フッ素化環状カルボン酸エステルを含有させることにより、イオン伝導度の向上、安全性の向上、高温時の安定性向上といった効果が得られる。
上記鎖状カルボン酸エステルとしては、その構造式中の全炭素数が3~7のものが挙げられる。具体的には、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸イソブチル、酢酸-t-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸イソブチル、プロピオン酸-n-ブチル、メチルブチレート、プロピオン酸イソブチル、プロピオン酸-t-ブチル、酪酸メチル、酪酸エチル、酪酸-n-プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸-n-プロピル、イソ酪酸イソプロピル等が挙げられる。
中でも、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸-n-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が粘度低下によるイオン伝導度の向上の点から好ましい。
上記エーテル化合物としては、炭素数2~10の鎖状エーテル、及び炭素数3~6の環状エーテルが好ましい。
炭素数2~10の鎖状エーテルとしては、ジメチルエーテル、ジエチルエーテル、ジ-n-ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、ジエトキシメタン、ジメトキシエタン、メトキシエトキシエタン、ジエトキシエタン、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコール、ジエチレングリコールジメチルエーテル、ペンタエチレングリコール、トリエチレングリコールジメチルエーテル、トリエチレングリコール、テトラエチレングリコール、テトラエチレングリコールジメチルエーテル、ジイソプロピルエーテル等が挙げられる。
また、上記エーテル化合物としては、フッ素化エーテルも好適に用いることができる。
上記フッ素化エーテルとしては、下記一般式(I):
Rf-O-Rf       (I)
(式中、Rf及びRfは同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフッ素化アルキル基である。ただし、Rf及びRfの少なくとも一方は、フッ素化アルキル基である。)
で表されるフッ素化エーテル(I)が挙げられる。フッ素化エーテル(I)を含有させることにより、電解液の難燃性が向上するとともに、高温高電圧での安定性、安全性が向上する。
上記一般式(I)においては、Rf及びRfの少なくとも一方が炭素数1~10のフッ素化アルキル基であればよいが、電解液の難燃性及び高温高電圧での安定性、安全性を一層向上させる観点から、Rf及びRfが、ともに炭素数1~10のフッ素化アルキル基であることが好ましい。この場合、Rf及びRfは同じであってもよく、互いに異なっていてもよい。
なかでも、Rf及びRfが、同じか又は異なり、Rfが炭素数3~6のフッ素化アルキル基であり、かつ、Rfが炭素数2~6のフッ素化アルキル基であることがより好ましい。
Rf及びRfの合計炭素数が少な過ぎるとフッ素化エーテルの沸点が低くなりすぎ、また、Rf又はRfの炭素数が多過ぎると、電解質塩の溶解性が低下し、他の溶媒との相溶性にも悪影響が出始め、また粘度が上昇するためレート特性が低減する。Rfの炭素数が3又は4、Rfの炭素数が2又は3のとき、沸点及びレート特性に優れる点で有利である。
上記フッ素化エーテル(I)は、フッ素含有率が40~75質量%であることが好ましい。この範囲のフッ素含有率を有するとき、不燃性と相溶性のバランスに特に優れたものになる。また、耐酸化性、安全性が良好な点からも好ましい。
上記フッ素含有率の下限は、45質量%がより好ましく、50質量%が更に好ましく、55質量%が特に好ましい。上限は70質量%がより好ましく、66質量%が更に好ましい。
なお、フッ素化エーテル(I)のフッ素含有率は、フッ素化エーテル(I)の構造式に基づいて、{(フッ素原子の個数×19)/フッ素化エーテル(I)の分子量}×100(%)により算出した値である。
Rfとしては、例えば、HCFCF-、CFCFCH-、CFCFHCF-、HCFCFCF-、HCFCFCH-、CFCFCHCH-、CFCFHCFCH-、HCFCFCFCF-、HCFCFCFCH-、HCFCFCHCH-、HCFCF(CF)CH-等が挙げられる。また、Rfとしては、例えば、-CHCFCF、-CFCFHCF、-CFCFCFH、-CHCFCFH、-CHCHCFCF、-CHCFCFHCF、-CFCFCFCFH、-CHCFCFCFH、-CHCHCFCFH、-CHCF(CF)CFH、-CFCFH、-CHCFH、-CFCH等が挙げられる。
上記フッ素化エーテル(I)の具体例としては、例えばHCFCFOCHCFCFH、HCFCFCHOCFCFH、CFCFCHOCFCFH、HCFCFCHOCFCFHCF、CFCFCHOCFCFHCF、C13OCH、C13OC、C17OCH、C17OC、CFCFHCFCH(CH)OCFCFHCF、HCFCFOCH(C、HCFCFOC、HCFCFOCHCH(C、HCFCFOCHCH(CH等が挙げられる。
なかでも、片末端又は両末端にHCF-又はCFCFH-を含むものが分極性に優れ、沸点の高いフッ素化エーテル(I)を与えることができる。両末端にHCF-を含むものが特に好ましい。フッ素化エーテル(I)の沸点は、67~120℃であることが好ましい。より好ましくは80℃以上、更に好ましくは90℃以上である。
このようなフッ素化エーテル(I)としては、例えば、HCFCFOCHCFCFH、CFCHOCFCFHCF、CFCFCHOCFCFHCF、HCFCFCHOCFCFHCF、HCFCFCHOCHCFCFH、CFCFHCFCHOCFCFHCF、HCFCFCHOCFCFH、CFCFCHOCFCFH等の1種又は2種以上が挙げられる。
なかでも、高沸点、他の溶媒との相溶性や電解質塩の溶解性が良好な点で有利なことから、HCFCFOCHCFCFH、HCFCFCHOCFCFHCF(沸点106℃)、CFCFCHOCFCFHCF(沸点82℃)、HCFCFCHOCFCFH(沸点92℃)及びCFCFCHOCFCFH(沸点68℃)からなる群より選択される少なくとも1種であることが好ましく、HCFCFOCHCFCFH、HCFCFCHOCFCFHCF(沸点106℃)及びHCFCFCHOCFCFH(沸点92℃)からなる群より選択される少なくとも1種であることがより好ましく、HCFCFOCHCFCFHが更に好ましい。
炭素数3~6の環状エーテルとしては、1,2-ジオキサン、1,3-ジオキサン、2-メチル-1,3-ジオキサン、4-メチル-1,3-ジオキサン、1,4-ジオキサン、メタホルムアルデヒド、2-メチル-1,3-ジオキソラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、2-(トリフルオロエチル)ジオキソラン2,2,-ビス(トリフルオロメチル)-1,3-ジオキソラン等、及びこれらのフッ素化化合物が挙げられる。中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコール-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、クラウンエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離度を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
上記窒素含有化合物としては、ニトリル、含フッ素ニトリル、カルボン酸アミド、含フッ素カルボン酸アミド、スルホン酸アミド及び含フッ素スルホン酸アミド、アセトアミド、ホルムアミド等が挙げられる。また、1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサジリジノン、1,3-ジメチル-2-イミダゾリジノン及びN-メチルスクシンイミド等も使用できる。ただし、上記一般式(1a)、(1b)及び(1c)で表されるニトリル化合物は上記窒素含有化合物に含めないものとする。
上記ホウ素含有化合物としては、例えば、トリメチルボレート、トリエチルボレート等のホウ酸エステル、ホウ酸エーテル、及び、ホウ酸アルキル等が挙げられる。
上記有機ケイ素含有化合物としては、例えば、(CH-Si、(CH-Si-Si(CH、シリコンオイル等が挙げられる。
上記不燃(難燃)化剤としては、リン酸エステルやホスファゼン系化合物が挙げられる。上記リン酸エステルとしては、例えば、含フッ素アルキルリン酸エステル、非フッ素系アルキルリン酸エステル、アリールリン酸エステル等が挙げられる。なかでも、少量で不燃効果を発揮できる点で、含フッ素アルキルリン酸エステルであることが好ましい。
上記ホスファゼン系化合物は例えば、メトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、ジメチルアミノペンタフルオロシクロトリホスファゼン、ジエチルアミノペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、エトキシヘプタフルオロシクロテトラホスファゼン等が挙げられる。
上記含フッ素アルキルリン酸エステルとしては、具体的には、特開平11-233141号公報に記載された含フッ素ジアルキルリン酸エステル、特開平11-283669号公報に記載された環状のアルキルリン酸エステル、又は、含フッ素トリアルキルリン酸エステル等が挙げられる。
上記不燃(難燃)化剤としては、(CHO)P=O、(CFCHO)P=O、(HCFCHO)P=O、(CFCFCHP=O、(HCFCFCHP=O等が好ましい。
上記界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤のいずれでもよいが、サイクル特性、レート特性が良好となる点から、フッ素原子を含むものであることが好ましい。
このようなフッ素原子を含む界面活性剤としては、例えば、下記式(30):
RfCOO     (30)
(式中、Rfは炭素数3~10のエーテル結合を含んでいてもよい含フッ素アルキル基;MはLi、Na、K又はNHR’ (R’は同じか又は異なり、いずれもH又は炭素数が1~3のアルキル基)である)
で表される含フッ素カルボン酸塩や、下記式(40):
RfSO      (40)
(式中、Rfは炭素数3~10のエーテル結合を含んでいてもよい含フッ素アルキル基;MはLi、Na、K又はNHR’ (R’は同じか又は異なり、いずれもH又は炭素数が1~3のアルキル基)である)
で表される含フッ素スルホン酸塩等が好ましい。
上記界面活性剤の含有量は、充放電サイクル特性を低下させずに電解液の表面張力を低下させることができる点から、電解液中0.01~2質量%であることが好ましい。
上記高誘電化添加剤としては、例えば、スルホラン、メチルスルホラン、γ-ブチロラクトン、γ-バレロラクトン等が挙げられる。
上記サイクル特性及びレート特性改善剤としては、例えば、酢酸メチル、酢酸エチル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
また、上記電解液は、更に高分子材料と組み合わせてゲル状(可塑化された)のゲル電解液としてもよい。
かかる高分子材料としては、従来公知のポリエチレンオキシドやポリプロピレンオキシド、それらの変性体(特開平8-222270号公報、特開2002-100405号公報);ポリアクリレート系ポリマー、ポリアクリロニトリルや、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体等のフッ素樹脂(特表平4-506726号公報、特表平8-507407号公報、特開平10-294131号公報);それらフッ素樹脂と炭化水素系樹脂との複合体(特開平11-35765号公報、特開平11-86630号公報)等が挙げられる。特には、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体をゲル電解質用高分子材料として用いることが望ましい。
そのほか、上記電解液は、特願2004-301934号明細書に記載されているイオン伝導性化合物も含んでいてもよい。
このイオン伝導性化合物は、式(101):
A-(D)-B (101)
[式中、Dは式(201):
-(D1)-(FAE)-(AE)-(Y)- (201)
(式中、D1は、式(2a):
Figure JPOXMLDOC01-appb-C000054
(式中、Rfは架橋性官能基を有していてもよい含フッ素エーテル基;R10はRfと主鎖を結合する基又は結合手)
で示される側鎖に含フッ素エーテル基を有するエーテル単位;
FAEは、式(2b):
Figure JPOXMLDOC01-appb-C000055
(式中、Rfaは水素原子、架橋性官能基を有していてもよいフッ素化アルキル基;R11はRfaと主鎖を結合する基又は結合手)
で示される側鎖にフッ素化アルキル基を有するエーテル単位;
AEは、式(2c):
Figure JPOXMLDOC01-appb-C000056
(式中、R13は水素原子、架橋性官能基を有していてもよいアルキル基、架橋性官能基を有していてもよい脂肪族環式炭化水素基又は架橋性官能基を有していてもよい芳香族炭化水素基;R12はR13と主鎖を結合する基又は結合手)
で示されるエーテル単位;
Yは、式(2d-1)~(2d-3):
Figure JPOXMLDOC01-appb-C000057
の少なくとも1種を含む単位;
nは0~200の整数;mは0~200の整数;pは0~10000の整数;qは1~100の整数;ただしn+mは0ではなく、D1、FAE、AE及びYの結合順序は特定されない);
A及びBは同じか又は異なり、水素原子、フッ素原子及び/又は架橋性官能基を含んでいてもよいアルキル基、フッ素原子及び/又は架橋性官能基を含んでいてもよいフェニル基、-COOH基、-OR(Rは水素原子又はフッ素原子及び/又は架橋性官能基を含んでいてもよいアルキル基)、エステル基又はカーボネート基(ただし、Dの末端が酸素原子の場合は-COOH基、-OR、エステル基及びカーボネート基ではない)]
で表される側鎖に含フッ素基を有する非晶性含フッ素ポリエーテル化合物である。
上記電解液は、スルホン系化合物を含んでもよい。スルホン系化合物としては、炭素数3~6の環状スルホン、及び炭素数2~6の鎖状スルホンが好ましい。1分子中のスルホニル基の数は、1又は2であることが好ましい。
環状スルホンとしては、モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めて「スルホラン類」と略記する場合がある。)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
中でも、2-メチルスルホラン、3-メチルスルホラン、2-フルオロスルホラン、3-フルオロスルホラン、2,2-ジフルオロスルホラン、2,3-ジフルオロスルホラン、2,4-ジフルオロスルホラン、2,5-ジフルオロスルホラン、3,4-ジフルオロスルホラン、2-フルオロ-3-メチルスルホラン、2-フルオロ-2-メチルスルホラン、3-フルオロ-3-メチルスルホラン、3-フルオロ-2-メチルスルホラン、4-フルオロ-3-メチルスルホラン、4-フルオロ-2-メチルスルホラン、5-フルオロ-3-メチルスルホラン、5-フルオロ-2-メチルスルホラン、2-フルオロメチルスルホラン、3-フルオロメチルスルホラン、2-ジフルオロメチルスルホラン、3-ジフルオロメチルスルホラン、2-トリフルオロメチルスルホラン、3-トリフルオロメチルスルホラン、2-フルオロ-3-(トリフルオロメチル)スルホラン、3-フルオロ-3-(トリフルオロメチル)スルホラン、4-フルオロ-3-(トリフルオロメチル)スルホラン、3-スルホレン、5-フルオロ-3-(トリフルオロメチル)スルホラン等がイオン伝導度が高く入出力が高い点で好ましい。
また、鎖状スルホンとしては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n-プロピルメチルスルホン、n-プロピルエチルスルホン、ジ-n-プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n-ブチルメチルスルホン、n-ブチルエチルスルホン、t-ブチルメチルスルホン、t-ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル-n-プロピルスルホン、ジフルオロメチル-n-プロピルスルホン、トリフルオロメチル-n-プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル-n-プロピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル-n-プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル-n-ブチルスルホン、トリフルオロエチル-t-ブチルスルホン、ペンタフルオロエチル-n-ブチルスルホン、ペンタフルオロエチル-t-ブチルスルホン等が挙げられる。
中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n-プロピルメチルスルホン、イソプロピルメチルスルホン、n-ブチルメチルスルホン、t-ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル-n-プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル-n-ブチルスルホン、トリフルオロエチル-t-ブチルスルホン、トリフルオロメチル-n-ブチルスルホン、トリフルオロメチル-t-ブチルスルホン等がイオン伝導度が高く入出力が高い点で好ましい。
スルホン系化合物の含有量は、特に制限されず、本開示の効果を著しく損なわない限り任意であるが、上記溶媒100体積%中、通常0.3体積%以上、好ましくは0.5体積%以上、より好ましくは1体積%以上であり、また、通常40体積%以下、好ましくは35体積%以下、より好ましくは30体積%以下である。スルホン系化合物の含有量が上記範囲内であれば、サイクル特性や保存特性等の耐久性の向上効果が得られやすく、また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避することができ、非水系電解液二次電池の入出力特性や充放電レート特性を適正な範囲とすることができる。
上記電解液は、出力特性向上の観点から、添加剤として、フルオロリン酸リチウム塩類(但し、LiPFを除く)及びS=O基を有するリチウム塩類からなる群より選択される少なくとも1種の化合物(7)を含むことも好ましい。
なお、添加剤として化合物(7)を使用する場合、上述した電解質塩としては、化合物(7)以外の化合物を使用することが好ましい。
上記フルオロリン酸リチウム塩類としては、モノフルオロリン酸リチウム(LiPOF)、ジフルオロリン酸リチウム(LiPO)等が挙げられる。
上記S=O基を有するリチウム塩類としては、モノフルオロスルホン酸リチウム(FSOLi)、メチル硫酸リチウム(CHOSOLi)、エチル硫酸リチウム(COSOLi)、2,2,2-トリフルオロエチル硫酸リチウム等が挙げられる。
化合物(7)としては、中でも、LiPO、FSOLi、COSOLiが好ましい。
化合物(7)の含有量は、上記電解液に対し、0.001~20質量%であることが好ましく、0.01~15質量%であることがより好ましく、0.1~10質量%であることが更に好ましく、0.1~7質量%であることが特に好ましい。
上記電解液には必要に応じて、更に他の添加剤を配合してもよい。他の添加剤としては、例えば、金属酸化物、ガラス等が挙げられる。
上記電解液は、フッ化水素(HF)の含有量が1~1000ppmであることが好ましい。HFを含有することにより、上述した添加剤の被膜形成を促進させることができる。HFの含有量が少なすぎると、負極上での被膜形成能力が下がり、電気化学デバイスの特性が低下する傾向がある。また、HF含有量が多すぎると、HFの影響により電解液の耐酸化性が低下する傾向がある。上記電解液は、上記範囲のHFを含有しても、電気化学デバイスの高温保存性回復容量率を低下させることがない。
HFの含有量は、5ppm以上がより好ましく、10ppm以上が更に好ましく、20ppm以上が特に好ましい。HFの含有量はまた、200ppm以下がより好ましく、100ppm以下が更に好ましく、80ppm以下が更により好ましく、50ppm以下が特に好ましい。
HFの含有量は、中和滴定法により測定することができる。
上記電解液は、含フッ素化合物を含むことが好ましい。これにより、本開示の電気化学デバイスを高電圧下でも好適に使用することができる。
上記含フッ素化合物としては、フッ素化カーボネート、フッ素化カルボン酸エステル及びフッ素化エーテルからなる群より選択される少なくとも一種が好ましい。
上記フッ素化カーボネートとしては、溶媒の説明で記載したフッ素化環状カーボネート、フッ素化鎖状カーボネート等を用いることができる。
上記フッ素化カルボン酸エステルとしては、溶媒や添加剤の説明で記載したフッ素化環状カルボン酸エステル、溶媒の説明に記載したフッ素化鎖状カルボン酸エステル等を用いることができる。
上記フッ素化エーテルとしては、添加剤の説明で記載したフッ素化エーテル(I)等を用いることができる。
上記電解液は、上述した成分を用いて、任意の方法で調製するとよい。
上記固体電解質は、硫化物系固体電解質であっても、酸化物系固体電解質であってもよい。特に、硫化物系固体電解質を使用する場合、柔軟性があるという利点がある。
上記硫化物系固体電解質としては、特に限定されず、LiS-P、LiS-P、LiS-P-P、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiI-LiS-SiS-P、LiS-SiS-LiSiO、LiS-SiS-LiPO、LiPS-LiGeS、Li3.40.6Si0.4、Li3.250.25Ge0.76、Li4-xGe1-x(X=0.6~0.8)、Li4+yGe1-yGa(y=0.2~0.3)、LiPSCl、LiCl、Li7-x-2yPS6-x-yCl(0.8≦x≦1.7、0<y≦-0.25x+0.5)等から選択されるいずれか、又は2種類以上の混合物を使用することができる。
上記硫化物系固体電解質は、リチウムを含有するものであることが好ましい。リチウムを含有する硫化物系固体電解質は、リチウムイオンをキャリアとして使用する固体電池に使用されるものであり、高エネルギー密度を有する電気化学デバイスという点で特に好ましいものである。
上記酸化物系固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族又は第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
具体的な化合物例としては、例えば、LixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦2、0≦zd≦2、0≦ad≦2、1≦md≦7、3≦nd≦15)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.51Li0.34TiO2.94、La0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。また、LLZに対して元素置換を行ったセラミックス材料も知られている。例えば、LLZに対して、Mg(マグネシウム)とA(Aは、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)から構成される群より選択される少なくとも1つの元素)との少なくとも一方の元素置換を行ったLLZ系セラミックス材料も挙げられる。また、Li、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。具体例として、例えば、LiO-Al-SiO-P-TiO-GeO、LiO-Al-SiO-P-TiO等が挙げられる。
上記酸化物系固体電解質は、リチウムを含有するものであることが好ましい。リチウムを含有する酸化物系固体電解質は、リチウムイオンをキャリアとして使用する固体電池に使用されるものであり、高エネルギー密度を有する電気化学デバイスという点で特に好ましいものである。
上記酸化物系固体電解質は、結晶構造を有する酸化物であることが好ましい。結晶構造を有する酸化物は、良好なLiイオン伝導性という点で特に好ましいものである。結晶構造を有する酸化物としては、ペロブスカイト型(La0.51Li0.34TiO2.94等)、NASICON型(Li1.3Al0.3Ti1.7(PO等)、ガーネット型(LiLaZr12(LLZ)等)等が挙げられる。なかでも、NASICON型が好ましい。
酸化物系固体電解質の体積平均粒子径は特に限定されないが、0.01μm以上であることが好ましく、0.03μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、酸化物系固体電解質粒子の平均粒子径の測定は、以下の手順で行う。酸化物系固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザー回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
(セパレータ)
セパレータの材質や形状は、特に限定されず、公知のものを使用することができる。なかでも、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。ポリプロピレン/ポリエチレン2層フィルム、ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルム等、これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。なかでも、上記セパレータは、電解液の浸透性やシャットダウン効果が良好である点で、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等であることが好ましい。
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上が更に好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下が更に好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、電解液電池全体としてのエネルギー密度が低下する場合がある。
更に、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上が更に好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下が更に好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状若しくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
(電池設計)
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作動する場合がある。
集電構造は、特に制限されないが、上記電解液による高電流密度の充放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、上記電解液を使用した効果は特に良好に発揮される。
電極群が上記の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が上記の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
外装ケースの材質は用いられる電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
本開示の電気化学デバイスの形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等の形状が挙げられる。なお、正極、負極、セパレータの形状及び構成は、それぞれの電池の形状に応じて変更して使用することができる。
本開示の電気化学デバイスを備えるモジュールも本開示の一つである。
本開示の電気化学デバイスは、4.9V以上の電圧下で使用することが好ましく、5.0V以上で使用することがより好ましい。これにより、上述のコンバージョン反応を経たインサーション反応を十分進行させることができる。上限は、5.5Vが好ましく、5.4Vがより好ましい。
本開示の電気化学デバイスを4.9V以上(好ましくは5.0V以上)の電圧下で使用する方法も本開示の一つである。上限は、5.5Vが好ましく、5.4Vがより好ましい。
以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
次に本開示を実施例を挙げて説明するが、本開示はかかる実施例のみに限定されるものではない。
下記実験で使用するフッ化カーボン(CFx)は、以下の方法で分析した。
(XPS分析)
下記の条件でフッ化カーボンのX線光電子分光法(XPS)分析を実施し、表面フッ素指数Iを算出した。
図1は、実験1で使用するフッ化カーボンの分析結果である。図1にあるように、アルゴンイオンによるスパッタリング(エッチング)に伴い、C1sにおける291eVのピーク強度(CFに相当するピークのピークトップ)が減少していることから、表面のフッ素濃度が高いことがわかる。
・条件
 アルバック・ファイ社製VersaProbeII
 アルゴンガスクラスターイオンビーム
 スパッタ条件0.5kV、10mA
 X線ビーム径100μm
 測定範囲1000μm×300μm
 光電子の取り出し角度45度
(比表面積)
自動比表面積計(BELSORP-mini、日本ベル株式会社製)を用いて、フッ化カーボンの比表面積を測定した。具体的には、液体窒素温度下における窒素ガス吸着法にて、吸着等温線を測定した後、BET法にて解析し、比表面積を求めた。
なお、試料の前処理として、Belprep vac-II(日本ベル株式会社製)を用いて100℃にて10時間真空脱気を行った。
<実験1>実施例1、比較例1
(電解液の調製)
高誘電率溶媒であるプロピレンカーボネートおよび低粘度溶媒であるエチルメチルカーボネートを体積比1対1で混合し、これにLiBFを1.0モル/リットルの濃度で添加して、非水電解液を得た。
(セルの作製)
正極活物質としてのCF0.45(I:0.21、比表面積:111m/g)を80質量%と、導電材としてのアセチレンブラック10質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)10質量%とを、N-メチルピロリドン溶媒中で混合して、スラリー化した。アルミ集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥して正極活物質層(厚さ50μm)を形成し、その後、ローラープレス機により圧縮成形して、正極積層体を製造した。正極積層体を打ち抜き機で直径1.3mmの大きさに打ち抜き、円状の正極を作製した。
別途、厚さ0.1mmのリチウム金属箔を打ち抜き機で直径1.6mmの大きさに打ち抜き、円状の負極を作製した。
上記の円状の正極及び負極を厚さ20μmの微孔性ポリエチレンフィルム(セパレータ)を介して対向させ、上記で得られた電解液を注入し、電解液がセパレータなどに充分に浸透した後、封止し予備充電、エージングを行い、コイン型の二次電池を作製した。
(充放電試験)
得られたコイン型の二次電池について、電流密度50mA/gで充放電した際の10サイクル後の放電容量を測定した。作動電圧は、上限電圧(充電電圧)を5.0V(実施例1)又は4.8V(比較例1)、下限電圧を1.5Vとした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000058
(XPS分析)
正極に対し、充放電前、最初の放電後、5.0Vへの再充電後、5.3Vへの再充電後、X線光電子分光法(XPS)による分析を行った。条件はフッ化カーボンに対して実施した際と同じである。結果を図2に示す。
図2にあるように、(c)の5.0Vへの再充電後、(d)の5.3Vへの再充電後には、C1sの295~290eV付近にC-F結合のピークが検出されている。よって、再充電時にフッ化物イオンのカーボンへのインサーション反応が生じていること、すなわち、CFxの形成が可逆的に起こることが分かる。
(画像観察)
正極に対し、最初の放電後、5.0Vへの再充電後、再放電後、電子顕微鏡による画像観察を行った。結果を図3に示す。
図3にあるように、(a)の放電後にフッ化リチウムが生成していること、(b)の5.0Vへの再充電後にフッ化リチウムが消失すること、(c)の再放電後にフッ化リチウムが再度生成していることが確認できた。
(XRD分析)
画像観察で使用した試料と、充放電前の正極とについて、下記の条件でX線回折法(XRD)による分析を行った。結果を図4に示す。
図4においても、図3と同様、(a)の放電後にフッ化リチウムが生成していること、(b)の5.0Vへの再充電後にフッ化リチウムが消失すること、(c)の再放電後にフッ化リチウムが再度生成していることが確認できた。
・条件
 XRD装置:リガク製SmartLab(登録商標)
 X線種:Cu-Kα線
 Kβ線除去方法:Niフィルター
 X線出力:40kV、40mA
 測定範囲:5.0~100.0deg.
 スキャンスピード:1.0deg./min.
<実験2>実施例2~12、比較例2
(電解液の調製)
表2に記載の組成で溶媒を混合し、リチウム塩を1.2モル/リットルの濃度で添加して、非水電解液を得た。
・溶媒
 PC:プロピレンカーボネート
 EC:エチレンカーボネート
 FEC:モノフルオロエチレンカーボネート
 DMC:ジメチルカーボネート
 DEC:ジエチルカーボネート
 DME:1,2-ジメトキシエタン
 F1:CFCHOCOOCH
 F2:CFCHCOOCH
 F3:CFHCOOCH
 F4:HCFCFOCHCFCF
・添加剤
 B1:トリス(ペンタフルオロフェニル)ボラート
・リチウム塩
 L1:LiBF
 L2:LiPF
 L3:LiFSI
 L4:LiTFSI
(コイン型電池の作製)
CF0.5(I:0.13、比表面積:263m/g)とカーボンブラックとポリフッ化ビニリデンを85/10/5(質量比)で混合し、N-メチル-2-ピロリドンに分散してスラリー状とした正極合剤スラリーを準備した。アルミ集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥して正極活物質層(厚さ50μm)を形成し、その後、ローラープレス機により圧縮成形して、正極積層体を製造した。正極積層体を打ち抜き機で直径1.3mmの大きさに打ち抜き、円状の正極を作製した。
別途、各種材料をコーティングした厚さ0.1mmのリチウム金属箔を打ち抜き機で直径1.6mmの大きさに打ち抜き、円状の負極を作製した。
上記の円状の正極及び負極を厚さ20μmの微孔性ポリエチレンフィルム(セパレータ)を介して対向させ、上記で得られた電解液を注入し、電解液がセパレータなどに充分に浸透した後、封止し予備充電、エージングを行い、コイン型の二次電池を作製した。
(容量維持率)
得られたコイン型の二次電池について、次の要領で容量維持率を調べた。結果を表2に示す。
・充放電条件
 充電:100mA/gの充電電流で5.05Vになるまで充電を行った。
 放電:100mA/gの放電電流で1.8Vになるまで放電を行った。
 試験温度:25℃
・算出式
 容量維持率(%)=100サイクル後の放電容量(mAh)/3サイクル後の放電容量(mAh)×100
(IV抵抗)
初期放電容量の評価が終了した二次電池を、25℃にて、100mA/gの電流で初期放電容量の半分の容量となるよう充電した。これを25℃において、200mA/gで放電させ、その10秒時の電圧を測定した。放電時の電圧の降下から抵抗を算出し、IV抵抗とした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000059
<実験3>(実施例13~17)
(電解液の調製)
高誘電率溶媒であるモノフルオロエチレンカーボネートおよび低粘度溶媒であるエチルメチルーボネートと、F4:(HCFCFOCHCFCFH)とを、体積比3対4対3になるように混合し、これにLiFSIを1.0モル/リットルの濃度となるように添加して、非水電解液を得た。
(セルの作製)
正極活物質としてのCF0.8(I:0.09、比表面積:370m/g)を80質量%と、導電材としてのアセチレンブラック10質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)10質量%とを、N-メチルピロリドン溶媒中で混合して、スラリー化した。アルミ集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥して正極活物質層(厚さ50μm)を形成し、その後、ローラープレス機により圧縮成形して、正極積層体を製造した。正極積層体を打ち抜き機で直径1.3mmの大きさに打ち抜き、円状の正極を作製した。
Anode1、2、4の活物質については、活物質とグラファイトを10対90の重量比で、蒸留水で分散させたスチレン-ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成した。その後、ローラープレス機により圧縮成形し、打ち抜き機で直径1.6mmの大きさに打ち抜き、円状の負極を作製した。Anode3については実験1と同様に準備をした。
上記の円状の正極及び負極を厚さ20μmの微孔性ポリエチレンフィルム(セパレータ)を介して対向させ、上記で得られた電解液を注入し、電解液がセパレータなどに充分に浸透した後、封止し予備充電、エージングを行い、コイン型の二次電池を作製した。
・負極活物質
 Anode1:SiO
 Anode2:Sn
 Anode3:Li
 Anode4:Li/3Ti/3O
 Anode5:Si
(容量維持率)
得られたコイン型の二次電池について、次の要領で容量維持率を調べた。結果を表3に示す。
・充放電条件
 充電:100mA/gの充電電流で5.05Vになるまで充電を行った。
 放電:100mA/gの放電電流で1.8Vになるまで放電を行った。
 試験温度:5℃
・算出式
 容量維持率(%)=20サイクル後の放電容量(mAh)/3サイクル後の放電容量(mAh)×100
Figure JPOXMLDOC01-appb-T000060
<実験4>実施例18
(セルの作製)
固体電解質であるLiS-SiSを、実験1と同様の条件で作製した正極及び負極で挟み、セルを構築した。
(容量維持率)
得られたコイン型の二次電池について、次の要領で容量維持率を調べた。結果を表4に示す。
・充放電条件
 充電:10mA/gの充電電流で5.0Vになるまで充電を行った。
 放電:10mA/gの放電電流で2.0Vになるまで放電を行った。
 試験温度:45℃
・算出式
 容量維持率(%)=5サイクル後の放電容量(mAh)/2サイクル後の放電容量(mAh)×100
Figure JPOXMLDOC01-appb-T000061
<実験5>実施例19~21
実験1、実施例1の電池を用いて同様の試験条件で5サイクル目の容量維持率を算出した。
・算出式
 容量維持率(%)=5サイクル後の放電容量(mAh)/2サイクル後の放電容量(mAh)×100(実施例19)
正極活物質としてCF0.5(I:0.13、比表面積:263m/g)を用いる以外は実施例18と同様の方法で評価した。(実施例20)
正極活物質としてCF0.6(I:0.09、比表面積:311m/g)を用いる以外は実施例18と同様の方法で評価した。(実施例21)
Figure JPOXMLDOC01-appb-T000062

 

Claims (15)

  1. 炭素材料を含み、
    放電時、金属フッ化物が形成され、
    充電時、前記金属フッ化物から脱離したフッ化物イオンが前記炭素材料と反応し、C-F結合が形成される電極活物質。
  2. 放電後、炭素材料及び金属フッ化物を含み、
    充電後、C-F結合を含む電極活物質。
  3. 充電後にフッ化カーボンが存在する請求項1又は2記載の電極活物質。
  4. X線光電子分光法分析において、10mA、0.5kVのアルゴンイオンエッチングのもと、C1sにおけるCFに相当するピークのピーク強度を測定したとき、(100秒後のピーク強度)/(0秒時のピーク強度)の値である表面フッ素指数Iが0.30以下である請求項1~3のいずれかに記載の電極活物質。
  5. 請求項1~4のいずれかに記載の電極活物質を含む電極。
  6. 正極である請求項5記載の電極。
  7. 請求項5又は6記載の電極を含む電気化学デバイス。
  8. 請求項5又は6記載の電極の対極として、充放電時にフッ化物イオンとの結合が形成されない電極を含む請求項7記載の電気化学デバイス。
  9. 含フッ素化合物を含む電解液を含む請求項7又は8記載の電気化学デバイス。
  10. 請求項5又は6記載の電極を正極とする請求項7~9のいずれかに記載の電気化学デバイス。
  11. リチウムを貯蔵可能な材料を負極とする請求項7~10のいずれかに記載の電気化学デバイス。
  12. 前記リチウムを貯蔵可能な材料は、黒鉛、スズ、ケイ素、酸化ケイ素及びリチウムから選択される少なくとも一種である請求項11記載の電気化学デバイス。
  13. 4.9V以上の電圧下で使用される、請求項7~12のいずれかに記載の電気化学デバイス。
  14. 請求項7~13のいずれかに記載の電気化学デバイスを備えるモジュール。
  15. 請求項7~13のいずれかに記載の電気化学デバイスを4.9V以上の電圧下で使用する方法。

     
PCT/JP2023/007354 2022-03-03 2023-02-28 電極活物質、電極、電気化学デバイス、モジュール及び方法 WO2023167196A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022032708 2022-03-03
JP2022-032708 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023167196A1 true WO2023167196A1 (ja) 2023-09-07

Family

ID=87883806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007354 WO2023167196A1 (ja) 2022-03-03 2023-02-28 電極活物質、電極、電気化学デバイス、モジュール及び方法

Country Status (3)

Country Link
JP (1) JP7432906B2 (ja)
TW (1) TW202404157A (ja)
WO (1) WO2023167196A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389462A (ja) * 1989-08-31 1991-04-15 Mitsubishi Kasei Corp リチウム電池
JP2010500725A (ja) * 2006-08-11 2010-01-07 カリフォルニア インスティテュート オブ テクノロジー フッ化物の溶解度増進をもたらす解離剤、配合物及び方法
JP2013145758A (ja) * 2006-03-03 2013-07-25 California Inst Of Technology フッ化物イオン電気化学セル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389462A (ja) * 1989-08-31 1991-04-15 Mitsubishi Kasei Corp リチウム電池
JP2013145758A (ja) * 2006-03-03 2013-07-25 California Inst Of Technology フッ化物イオン電気化学セル
JP2010500725A (ja) * 2006-08-11 2010-01-07 カリフォルニア インスティテュート オブ テクノロジー フッ化物の溶解度増進をもたらす解離剤、配合物及び方法

Also Published As

Publication number Publication date
JP2023129327A (ja) 2023-09-14
JP7432906B2 (ja) 2024-02-19
TW202404157A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP7164821B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、モジュール及び化合物
WO2019031315A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP7161122B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP7319565B2 (ja) リチウム二次電池用電解液、リチウム二次電池及びモジュール
JP7307361B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP7201943B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、モジュール及び化合物
JP7315870B2 (ja) 電極および電気化学デバイス
JP7177367B2 (ja) 硫酸エチルリチウムの製造方法
JP7277819B2 (ja) 化合物、電解液用添加剤、電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
EP3703171A1 (en) Electrolyte for lithium ion secondary battery, lithium ion secondary battery, and module
JP2022130409A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP7116351B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP7284423B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP7284422B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2022163016A (ja) 含フッ素カルボン酸塩化合物
KR20220008350A (ko) 알칼리 금속 이온 이차 전지용 전해액, 알칼리 금속 이온 이차 전지 및 모듈
EP3651255B1 (en) Electrolyte for lithium ion secondary battery, lithium ion secondary battery, and module
JP7277701B2 (ja) リチウムイオン二次電池用電解液、リチウムイオン二次電池及びモジュール
JP2019087497A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP7168897B2 (ja) 化合物、組成物、電気化学デバイス、リチウムイオン二次電池及びモジュール
WO2019102782A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2019087498A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
WO2023167196A1 (ja) 電極活物質、電極、電気化学デバイス、モジュール及び方法
WO2019093161A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP7492187B1 (ja) 電解液、並びに、それを用いた電気化学デバイス及び二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763453

Country of ref document: EP

Kind code of ref document: A1