WO2023167191A1 - 炭化ケイ素セラミックス及びその製造方法 - Google Patents

炭化ケイ素セラミックス及びその製造方法 Download PDF

Info

Publication number
WO2023167191A1
WO2023167191A1 PCT/JP2023/007335 JP2023007335W WO2023167191A1 WO 2023167191 A1 WO2023167191 A1 WO 2023167191A1 JP 2023007335 W JP2023007335 W JP 2023007335W WO 2023167191 A1 WO2023167191 A1 WO 2023167191A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
silicon carbide
oxide
silicate
sintered product
Prior art date
Application number
PCT/JP2023/007335
Other languages
English (en)
French (fr)
Inventor
達也 檜木
弘行 堺
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Publication of WO2023167191A1 publication Critical patent/WO2023167191A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics

Definitions

  • the present disclosure relates to silicon carbide ceramics and manufacturing methods thereof.
  • SiC silicon carbide
  • CMC ceramic matrix composites
  • SiC matrix is oxidized by oxygen and water vapor to form silicon dioxide (SiO 2 ) on the surface, but SiO 2 reacts with water vapor. lose weight.
  • a protective coating such as environmental barrier coating (EBC)
  • EBC environmental barrier coating
  • the matrix is further heated to utilize the phenomenon that the metal oxide contained in the matrix diffuses to the surface, and the metal oxide is formed near the surface.
  • a technique for forming a surface-modified layer containing a silicate derived from a substance as a film is known (Patent Document 1). This technique utilizes the metal oxide contained in the matrix, and can be said to be preferable in that it has self-forming and self-healing properties such as forming a new film without supplying materials from the outside.
  • the coatings obtained by this method are very thin. Further, when the heating of the sintered material is continued for the purpose of increasing the thickness of the coating, the amount of SiO2 in the coating increases and the proportion of silicate in the coating (compactness) relatively decreases, which causes the surface cause deterioration. Therefore, it is important to provide new SiC ceramics that can be used in harsh environments.
  • An object of the present disclosure is to provide new silicon carbide ceramics with excellent durability.
  • the coating layer precursor can be converted to a silicate-containing coating layer, thereby forming a silicate-rich (i.e., dense) coating layer on the surface of a silicon carbide ceramic substrate. I found what I can do.
  • Section 1 A silicon carbide ceramic comprising a silicon carbide ceramic substrate and a coating layer covering the surface thereof, (1) The coating layer contains a silicate that is a eutectic reaction product of silicon dioxide derived from the silicon carbide ceramic substrate and metal oxide derived from the silicon carbide ceramic substrate and coating layer precursor. death, (2) The content of the silicate in the coating layer is 80% by volume or more.
  • the metal oxides include scandium oxide (Sc 2 O 3 ), yttrium oxide (Y 2 O 3 ), erbium oxide (Er 2 O 3 ), ytterbium oxide (Yb 2 O 3 ), alumina (Al 2 O 3 ), Item 2.
  • the silicon carbide ceramics according to Item 1 which is at least one selected from the group consisting of hafnium oxide ( HfO2 ) and lutetium oxide ( Lu2O3 ).
  • Item 3 Item 3.
  • the silicon carbide ceramics according to Item 1 or 2 wherein the coating layer has a thickness of 10 ⁇ m or more.
  • Section 4. 4.
  • the silicon carbide ceramic according to any one of Items 1 to 4, wherein the content of the metal oxide in the coating layer precursor is 40 to 100% by mass.
  • the silicates include scandium silicate (Sc 2 Si 2 O 7 ), yttrium silicate (Y 2 SiO 5 ), erbium silicate (Er 2 SiO 5 ), ytterbium silicate (Yb 2 SiO 5 ), ytterbium silicate (Yb 2 Si 2 O 7 ), aluminum silicate (Al 2 SiO 5 ), lutetium silicate (Lu 2 SiO 5 ), lutetium silicate (Lu 2 SiO 7 ) and hafnium silicate (HfSiO 4 ).
  • Item 7 A method for producing a silicon carbide ceramic comprising a silicon carbide ceramic substrate and a coating layer covering the surface thereof, comprising: (A) dispersing at least the silicon carbide forming raw material and the metal oxide in a dispersion medium; (B) sintering the dispersion obtained in step (A); (C) After applying a coating layer precursor containing a metal oxide to the surface of the sintered product obtained in step (B), the sintered product and the coating layer precursor are applied to the sintered product.
  • the coating layer precursor is converted to a coating layer containing a silicate by heat-treating at or above the eutectic temperature of the silicon dioxide derived from the sintered product and the metal oxide derived from the coating layer precursor.
  • a method for producing silicon carbide ceramics comprising: Item 8.
  • the metal oxides include scandium oxide (Sc 2 O 3 ), yttrium oxide (Y 2 O 3 ), erbium oxide (Er 2 O 3 ), ytterbium oxide (Yb 2 O 3 ), alumina (Al 2 O 3 ), Item 8.
  • Item 9. Item 9. The method for producing silicon carbide ceramics according to Item 7 or 8, wherein the coating layer has a thickness of 10 ⁇ m or more.
  • Item 10. 10 The method for producing silicon carbide ceramics according to any one of items 7 to 9, wherein the content of the metal oxide in the coating layer precursor is 40 to 100% by mass.
  • the silicates include scandium silicate (Sc 2 Si 2 O 7 ), yttrium silicate (Y 2 SiO 5 ), erbium silicate (Er 2 SiO 5 ), ytterbium silicate (Yb 2 SiO 5 ), ytterbium silicate (Yb 2 Si 2 O 7 ), aluminum silicate (Al 2 SiO 5 ), lutetium silicate (Lu 2 SiO 5 ), lutetium silicate (Lu 2 SiO 7 ) and hafnium silicate (HfSiO 4 ).
  • Sc 2 Si 2 O 7 scandium silicate
  • Y 2 SiO 5 yttrium silicate
  • Er 2 SiO 5 erbium silicate
  • Yb 2 SiO 5 ytterbium silicate
  • Yb 2 Si 2 O 7 ytterbium silicate
  • Al 2 SiO 5 aluminum silicate
  • lutetium silicate Li 2 SiO 5
  • lutetium silicate Li 2 SiO 7
  • a method for producing silicon carbide ceramics according to claim 1. Item 13.
  • Item 13 The method for producing silicon carbide ceramics according to any one of Items 7 to 12, further comprising the following step (C′) after the step (B) and before the step (C), Step (C') A step of heating the sintered product obtained in the step (B) at 1000 to 1600°C for 10 minutes to 10 hours.
  • silicon carbide ceramic in which the surface of a silicon carbide ceramic substrate is coated with a coating layer containing a high proportion of silicate. According to the present disclosure, silicon carbide ceramics with excellent durability can be produced.
  • FIG. 1 shows a schematic diagram of the manufacturing process of silicon carbide ceramics (Example 1) and a scanning electron microscope (SEM) image of the silicon carbide ceramics (Example 1) surface.
  • FIG. 2 shows a cross-sectional SEM image (left) of silicon carbide ceramics (Example 1) and an elemental mapping (EDX) result (right) by energy dispersive X-ray spectroscopy (EDS).
  • FIG. 3 shows an SEM image of a cross section of silicon carbide ceramic (Example 1).
  • FIG. 4 shows a schematic diagram of the manufacturing process of silicon carbide ceramics (Comparative Example 1) and an SEM image of the surface of the silicon carbide ceramics (Comparative Example 1).
  • FIG. 1 shows a schematic diagram of the manufacturing process of silicon carbide ceramics (Example 1) and a scanning electron microscope (SEM) image of the silicon carbide ceramics (Example 1) surface.
  • FIG. 2 shows a cross-sectional SEM image (left) of silicon carbide ceramic
  • FIG. 5 shows an SEM image (left) of a cross section of silicon carbide ceramic (Comparative Example 1) and an EDX result (right).
  • FIG. 6 shows an SEM image of a cross section of silicon carbide ceramic (Example 2).
  • FIG. 7 shows a cross-sectional SEM image of a silicon carbide ceramic (Comparative Example 2) produced without containing a metal oxide in the silicon carbide ceramic substrate.
  • Silicon carbide ceramics The present disclosure is a silicon carbide ceramics comprising a silicon carbide ceramic base material and a coating layer covering the surface thereof, (1)
  • the coating layer is silicon which is a eutectic reaction product of silicon dioxide (SiO 2 ) derived from the silicon carbide ceramic substrate and a metal oxide derived from the silicon carbide ceramic substrate and coating layer precursor. containing an acid salt, (2)
  • the content of the silicate in the coating layer is 80% by volume or more. It includes silicon carbide ceramics characterized by:
  • silicon carbide ceramics includes a silicon carbide ceramic base material and a coating layer covering the surface thereof.
  • a silicon carbide ceramic substrate is a sintered material containing silicon carbide, and has silicon carbide as a matrix. This matrix contains a metal oxide as described later, and may contain silicon carbide fibers and the like.
  • the SiC content in the silicon carbide ceramic substrate is not limited, but is exemplified by 20 to 99.9% by mass, preferably 30 to 99.5% by mass, more preferably 35 to 95% by mass.
  • the silicon carbide ceramic base material that constitutes the silicon carbide ceramic contains SiC and metal oxide as a matrix.
  • the metal oxide is not limited as long as it is a metal oxide, but is preferably exemplified by rare earth oxides represented by RE 2 O 3 (RE is rare earth), aluminum oxides, and hafnium oxides.
  • RE is rare earth
  • aluminum oxides aluminum oxides
  • hafnium oxides hafnium oxides
  • rare earth elements include Yb, Sc, Y, Er, Lu, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho and Tm, preferably Yb, Sc, Y, Er, Lu is exemplified.
  • RE 2 O 3 is preferably ytterbium oxide (Yb 2 O 3 ), scandium oxide (Sc 2 O 3 ), yttrium oxide (Y 2 O 3 ), erbium oxide (Er 2 O 3 ), lutetium oxide ( Lu 2 O 3 ) and the like are exemplified.
  • As an oxide of aluminum preferably alumina (Al 2 O 3 ) is exemplified.
  • Hafnium oxide (HfO 2 ) is preferably exemplified as the hafnium oxide.
  • metal oxides ytterbium oxide (Yb 2 O 3 ), scandium oxide (Sc 2 O 3 ), yttrium oxide (Y 2 O 3 ), erbium oxide (Er 2 O 3 ), lutetium oxide (Lu 2 O 3 ), alumina (Al 2 O 3 ), and the like.
  • the content of the metal oxide in the silicon carbide ceramic substrate is not limited, but the content of the metal oxide in the silicon carbide ceramic substrate is exemplified by 0.1 to 30% by mass, preferably 0.5 to 25% by mass, More preferably 5 to 20% by mass is exemplified.
  • the silicon carbide ceramic base material may contain any other component as long as it does not interfere with the effects of the present disclosure.
  • examples of such components include ceramic fibers and dispersed particles for improving strength characteristics. These may be used singly or in combination of two or more, and the blending amount thereof may be appropriately determined according to the purpose.
  • examples of the ceramic fiber include SiC fiber, carbon fiber (C fiber), alumina fiber and the like, preferably SiC fiber and the like. be done.
  • the ceramic fiber can be appropriately selected according to the application and the required mechanical strength.
  • it may be any of long fibers, short fibers (length of about 1 to 10 mm), and whiskers, which are continuous fibers of ceramic fibers.
  • long fibers are preferably exemplified as ceramic fibers. These fibers have the usual meaning in this field, and follow the conventionally known definitions of long fibers, short fibers, and whiskers (Japanese Industrial Standards "H7006-1991 Metal Matrix Composite Material Terms").
  • the diameter of the ceramic fiber is also not particularly limited, and a preferred example is a diameter of about 5 to 200 ⁇ m.
  • Ceramic fibers are commercially available, for example, silicon carbide fibers are commercially available under trade names such as Tyranno SA (manufactured by Ube Industries) and Hi-Nicalon Type S (manufactured by NGS Advanced Fiber). Further, for example, alumina fibers are commercially available under trade names such as Nextel 312 and Nextel 440 (manufactured by Sumitomo 3M). The diameter of the ceramic fiber, etc., follows the catalog of the commercial product.
  • the form of the ceramic fibers in the base material is not limited. Ceramic fibers are usually handled as a bundle of about 500 to 2000 fibers (bundle), and may be in the state of the bundle, and are contained in the form of fiber structures such as knitted fabrics and woven fabrics using this. You may have From the viewpoint of efficiently producing a ceramic fiber-reinforced composite material, it is preferable to use ceramic fibers in the state of a fiber structure as the ceramic fibers. Further, the ceramic fibers may be left as they are, or the ceramic fibers may be coated with an arbitrary material such as boron nitride (BN) (coated ceramic fibers).
  • BN boron nitride
  • one type of ceramic fiber may be used alone, or two or more types may be used in combination.
  • the content is not limited, but the ceramic fiber content in the silicon carbide ceramic substrate is 70% by mass or less, preferably 10 to 70% by mass, more preferably 20 to 60 mass %, more preferably 25 to 55 mass % is exemplified.
  • the silicon carbide ceramics of the present disclosure includes a coating layer that covers the surface of the silicon carbide ceramics substrate.
  • the coating layer may cover the entire surface of the base material, or may cover only a part of the surface, and may be appropriately determined depending on the purpose.
  • the coating layer contains silicate, which is a eutectic reaction product of silicon dioxide (SiO 2 ) derived from the silicon carbide ceramic substrate and metal oxide derived from the substrate and coating layer precursor.
  • Sicon dioxide (SiO 2 ) derived from a silicon carbide ceramic substrate is explained as follows. As can be understood from the examples described later, it can be said that silicon dioxide (SiO 2 ) is present on the surface of the sintered product due to oxidation of the sintered product obtained by sintering the dispersion. Therefore, SiO 2 derived from the silicon carbide ceramic substrate means SiO 2 present on the surface of the sintered product.
  • the coating layer precursor contains a metal oxide.
  • Metal oxides are described in the same manner as the metal oxides that can be used in the silicon carbide ceramic substrates.
  • metal oxides to be blended in the coating layer precursor are more preferably ytterbium oxide (Yb 2 O 3 ), scandium oxide (Sc 2 O 3 ), yttrium oxide (Y 2 O 3 ), erbium oxide (Er 2 O 3 ), lutetium oxide (Lu 2 O 3 ), alumina (Al 2 O 3 ), hafnium oxide (HfO 2 ), and the like.
  • the metal oxide to be blended in the coating layer precursor it is preferable to use the same metal oxide as the metal oxide used in the base material. That is, when a rare earth oxide is used in the base material, it is preferable to use the same rare earth oxide as the rare earth oxide used in the base material as the rare earth oxide compounded in the coating layer precursor.
  • the hafnium oxide to be blended in the coating layer precursor is preferably the same type of hafnium oxide as the hafnium oxide used in the substrate. be.
  • the oxide of aluminum mixed in the coating layer precursor is preferably the same oxide of aluminum as the oxide of aluminum used in the substrate. be.
  • a rare earth oxide is used in the base material, and a rare earth oxide of the same kind as the coating layer precursor is used; Hafnium oxide in the base material and a hafnium oxide of the same kind as the coating layer precursor; be.
  • a rare earth oxide is used in the base material, and the same rare earth oxide and aluminum oxide are used in the coating layer precursor.
  • the base material uses a hafnium oxide
  • the coating layer precursor contains a similar hafnium oxide and aluminum.
  • An oxide of hafnium and aluminum in the substrate is used, and the same kind of hafnium oxide and the same kind of aluminum oxide are used as the coating layer precursor.
  • ytterbium oxide (Yb 2 O 3 ), scandium oxide (Sc 2 O 3 ), yttrium oxide (Y 2 O 3 ), erbium oxide (Er 2 O 3 ), lutetium oxide ( Lu 2 O 3 ) and the like
  • hafnium oxide (HfO 2 ) is exemplified as an oxide of hafnium
  • alumina Al 2 O 3 is exemplified as an oxide of aluminum.
  • the content of the metal oxide in the coating layer precursor is not limited. % by mass, 70 to 100% by mass, and the like are exemplified.
  • any other component may be added to the coating layer precursor as necessary as long as it does not interfere with the effects of the present disclosure.
  • examples of such components include reaction aids intended to promote the formation of silicate. These may be used singly or in combination of two or more, and the blending amount thereof may be appropriately determined according to the purpose.
  • the metal oxide can be used as a reaction aid in some cases, the content of the metal oxide is not included in the reaction aid in the present disclosure.
  • the coating layer precursor is exemplified as preferably consisting of a metal oxide, more preferably consisting of a rare earth oxide and an oxide of aluminum, or consisting of a rare earth oxide. exemplified.
  • the form of the coating layer precursor is powdery (dried).
  • the coating layer precursor is applied to the surface of the sintered product (substrate) as described below.
  • a powdery material coating layer precursor
  • a slurry material is applied and then dried.
  • a powdery coating layer precursor may also be used.
  • the coating layer contains silicate, which is a eutectic reaction product of SiO 2 derived from the silicon carbide ceramic substrate and the metal oxide contained in the coating layer precursor and the silicon carbide ceramic substrate.
  • the eutectic reaction occurs on the surface of the silicon carbide ceramic substrate, and as described later, the coating layer precursor is applied to the surface of the sintered product, and SiO , the coating layer precursor and the metal oxide contained in the silicon carbide ceramic substrate.
  • the eutectic reaction produces a silicate derived from the metal oxide.
  • the silicate in the coating layer is not limited as long as it is derived from the coating layer precursor and the substrate.
  • the silicate preferably contains at least one of RE 2 SiO 5 , RE 2 SiO 7 , hafnium silicate, and aluminum silicate. exemplified.
  • the silicates include scandium silicate (Sc 2 Si 2 O 7 ), yttrium silicate (Y 2 SiO 5 ), erbium silicate (Er 2 SiO 5 ), ytterbium silicate (Yb 2 SiO 5 ), ytterbium silicate (Yb 2 Si 2 O 7 ), aluminum silicate (Al 2 SiO 5 ), lutetium silicate (Lu 2 SiO 5 ), lutetium silicate (Lu 2 SiO 7 ), hafnium silicate (HfSiO 4 ) and the like are more preferred examples.
  • Yb2SiO5 , Yb2Si2O7 , Lu2SiO5 , Lu2SiO7 , HfSiO4 etc. are more preferably illustrated as a silicate. These may be contained individually by 1 type, and may be contained in combination of 2 or more type.
  • the silicate content in the coating layer of the present disclosure is 80% by volume or more. Also, the silicate content in the coating layer is preferably 85 to 100% by volume, more preferably 90 to 100% by volume. Also, the silicate content in the coating layer of the present disclosure may be 80-99% by volume, 80-98% by volume, 80-95% by volume, 80-90% by volume, and the like. It can be said that the higher the silicate content, the higher the denseness of the coating film, which is useful in suppressing surface deterioration in an oxidizing environment at high temperatures. In particular, according to the present disclosure, the SiO 2 content in the coating layer can be significantly reduced and the silicate content can be improved, which is useful in suppressing surface deterioration in an oxidizing environment at high temperatures. It can be said. For this reason, the coating layer of the present disclosure also suppresses residual gas (carbon dioxide).
  • carbon dioxide residual gas
  • the content of silicate in the coating layer is determined according to Examples described later. Specifically, we analyzed the composition in the coating layer by observing the cross-sectional image of the coating layer with a scanning electron microscope and elemental mapping (EDX) using energy dispersive X-ray spectroscopy, and identified the silicate in the coating layer. , the volume ratio of silicate in the coating layer per predetermined range is calculated from image analysis, and the average value of the calculated values is taken as the content of silicate in the coating layer constituting the silicon carbide ceramic.
  • EDX scanning electron microscope and elemental mapping
  • the predetermined range is the thickness of the coating layer at any one location in the cross-sectional image (the direction in which the coating layer is formed with respect to the substrate (perpendicular to the substrate surface)) is one side, and the thickness is the same. It means a square which has a width and whose other side is a straight line along the substrate surface in the cross-sectional image, and the volume ratio of the silicate in the coating layer in the square is calculated from image analysis. At any other point, similarly calculate the volume fraction of silicate in the covering layer in the square. The average value of the ratios obtained at the two locations is taken as the volume ratio of the silicate in the coating layer that constitutes the silicon carbide ceramic.
  • the thickness of the coating layer is not limited in the present disclosure, and may be determined as appropriate according to the purpose.
  • the lower limit of the thickness of the coating layer is preferably 5 ⁇ m, more preferably 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 35 ⁇ m, 40 ⁇ m, and the like.
  • Examples of the upper limit of the thickness of the coating layer are preferably 180 ⁇ m, 150 ⁇ m, 130 ⁇ m, and the like.
  • the thickness of the coating layer is preferably any value within the range of 5 to 180 ⁇ m, such as 10 to 100 ⁇ m, 10 to 150 ⁇ m, and the like.
  • the thickness of the coating layer is determined according to Examples described later. Specifically, by observing the cross-sectional image of the coating layer with a scanning electron microscope and elemental mapping (EDX) by energy dispersive X-ray spectroscopy, composition analysis within the coating layer is performed, the coating layer is identified, and the coating layer is identified from the image. (the direction in which the coating layer is formed with respect to the substrate (perpendicular to the substrate surface)) at arbitrary 10 points is measured, and the average value is taken as the thickness of the coating layer constituting the silicon carbide ceramics.
  • EDX scanning electron microscope and elemental mapping
  • an example of the coating layer preferably has a silicate content of 80% by volume or more and a thickness of 5 ⁇ m or more, and more preferably has a silicate content of 90 to 100% by volume and a thickness of 10 to 100 ⁇ m, a silicate content of 80 to 100% by volume and a thickness of 10 to 150 ⁇ m, a silicate content of 80 to 98% by volume and a thickness of 10 to 150 ⁇ m, silicic acid Examples include a salt content of 80 to 98% by volume and a thickness of 10 to 120 ⁇ m. The content and thickness are explained in the same manner as described above, and are preferably adjusted appropriately within the range of the above values.
  • the coating layer is not limited as long as it contains the silicate as described above, but may contain various components derived from the coating layer precursor within a range that does not impair the effects of the present disclosure. Examples of such components include unreacted raw materials (unreacted metal oxides, etc.).
  • the silicon carbide ceramics of the present disclosure can be produced by thus providing a coating layer on the surface of the silicon carbide ceramics substrate. Although not intended to limit the present disclosure, the silicon carbide ceramics of the present disclosure can be manufactured according to the manufacturing method described below.
  • the present disclosure is a method for producing silicon carbide ceramics comprising a silicon carbide ceramic base material and a coating layer covering the surface thereof, comprising: (A) dispersing at least the silicon carbide forming raw material and the metal oxide in a dispersion medium; (B) sintering the dispersion obtained in step (A); (C) After applying a coating layer precursor containing a metal oxide to the surface of the sintered product obtained in step (B), the sintered product and the coating layer precursor are applied to the sintered product.
  • the coating layer precursor is converted to a coating layer containing a silicate by heat-treating at or above the eutectic temperature of the silicon dioxide derived from the sintered product and the metal oxide derived from the coating layer precursor.
  • process It includes a method for producing silicon carbide ceramics, comprising:
  • the production method of the present disclosure includes (A) the step of dispersing at least a silicon carbide forming raw material and a metal oxide in a dispersion medium.
  • silicon carbide forming raw materials include SiC powder, silicon (Si) powder, carbon (C) powder, and powders containing carbon components (resins such as phenolic resins, etc.).
  • SiC powder, Si powder, C powder, etc. are preferred. are exemplified. These may be used individually by 1 type as needed, and may be used in combination of 2 or more types.
  • the particle size of these powders is not limited as long as the effect of the present disclosure is obtained, and may be a particle size commonly used in this field. Although not intended to limit the present disclosure, for example, the particle size of these powders is preferably about 0.02 to 50 ⁇ m as an average particle size.
  • Silicon carbide forming raw materials are commercially available, and the particle size thereof is usually according to the catalog of commercial products. Further, for example, the type of SiC is not limited, and may be either ⁇ -SiC powder, which is cubic crystal powder, ⁇ -SiC powder, which is hexagonal crystal powder, or the like.
  • the metal oxide is not limited as long as it is a metal oxide, but preferably includes a rare earth oxide represented by RE 2 O 3 (RE is a rare earth), an aluminum oxide, and a hafnium oxide.
  • RE is a rare earth
  • the metal oxide is described in the same manner as in "1. Silicon carbide ceramics" above, and more preferably ytterbium oxide (Yb 2 O 3 ), scandium oxide (Sc 2 O 3 ), yttrium oxide (Y 2 O 3 ), oxide Examples include erbium (Er 2 O 3 ), lutetium oxide (Lu 2 O 3 ), alumina (Al 2 O 3 ), hafnium oxide (HfO 2 ), and the like.
  • ytterbium oxide Yb 2 O 3
  • scandium oxide Sc 2 O 3
  • yttrium oxide Y 2 O 3
  • erbium oxide Er 2 O 3
  • lutetium oxide Lu 2 O 3
  • Alumina Al 2 O 3
  • the metal oxide to be added to the dispersion medium in step (1) is usually powdery.
  • the metal oxide it is preferable to use a metal oxide powder that is stable in the usage environment.
  • the average particle size of the metal oxide powder is preferably about 0.02 to 50 ⁇ m, more preferably about 0.02 to 30 ⁇ m, and still more preferably about 0.02 to 10 ⁇ m. be done.
  • metal oxides are commercially available, and the particle size usually follows the catalog of commercial products.
  • dispersion media examples include organic solvents such as water and alcohols (ethanol, isopropanol, etc.). These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • any other component may be added to the dispersion as long as it does not interfere with the effects of the present disclosure.
  • examples of such components include sintering aids and the like. These may be used singly or in combination of two or more, and the blending amount thereof may be appropriately determined according to the purpose.
  • the sintering aid for example, about 0.1 to 25 parts by weight of the sintering aid is exemplified per 100 parts by weight of the total amount (total amount) of the silicon carbide forming raw material (powder) and the metal oxide (powder) in the dispersion.
  • the sintering aid blended in the dispersion medium is powder.
  • the metal oxide has a component that can serve as a sintering aid, and such components include yttrium oxide ( Y2O3 ), ytterbium oxide ( Yb2O3 ), alumina (Al 2 O 3 ) and the like. Therefore, the dispersion medium may contain such a component as a sintering aid.
  • a dispersion can be obtained by mixing a dispersion medium, a silicon carbide-forming raw material, a metal oxide, and optionally other components.
  • the form of the dispersion is not limited, it is usually a slurry (suspension).
  • the content of the solid content is not particularly limited, and may be a content that facilitates processing. , preferably about 5 to 50% by mass, more preferably about 10 to 30% by mass.
  • the solid content in the dispersion more preferably consists of silicon carbide forming raw materials and metal oxides.
  • the sintered product is preferably produced by a liquid phase sintering method or a reaction sintering method.
  • SiC powder As a silicon carbide forming raw material, and it is preferable to disperse SiC powder and metal oxide in a dispersion medium.
  • the amount of these in the dispersion is not limited, but preferably the silicon carbide ceramic substrate constituting the silicon carbide ceramic produced by the method of the present disclosure is the silicon carbide ceramic substrate described in "1. Silicon carbide ceramics" above. It is exemplified that the content of the component in the material is appropriately determined within a range that satisfies the content.
  • SiC powder, Si powder, C powder, a resin containing a carbon component a resin such as a phenolic resin
  • a resin containing a carbon component a resin such as a phenolic resin
  • a preferred example is to disperse the silicon carbide forming raw material and the metal oxide in a dispersion medium. The amount of these in the dispersion is also not limited and is explained in the same manner as above.
  • Step (B) The production method of the present disclosure includes a step (B) of sintering the dispersion obtained in step (A).
  • step (B) The procedure for sintering in step (B) is not limited as long as the dispersion can be sintered.
  • sintering can be carried out according to the following liquid phase sintering method and reaction sintering method.
  • the sintering temperature is usually about 1400° C. or higher.
  • the sintering temperature is preferably about 1700° C. or higher from the viewpoint of imparting higher breaking strength.
  • the sintering temperature can be set lower. Above, preferably about 1600° C. or higher is exemplified, and sufficient breaking strength can be imparted.
  • the upper limit of the sintering temperature may be the heat resistance temperature of the matrix (SiC), preferably about 2500°C.
  • the sintering temperature is preferably between about 1400 and 2500.degree. Although it does not limit the present disclosure, for example, when sintering is performed in the presence of silicon carbide fibers, the sintering temperature may be about 1400 to 2000 ° C. in consideration of the heat resistance of the fibers. It can be determined as appropriate according to the ceramic fibers used.
  • the pressure during sintering is not limited as long as a sintered product can be obtained. Although it is not particularly limited, the higher the pressure, the more strength can be imparted to the matrix in a short time. good. Although it does not limit the present disclosure, for example, when sintering is performed in the presence of ceramic fibers such as silicon carbide fibers, the pressure is preferably about 10 to 40 MPa, more preferably about 10 to 30 MPa.
  • the sintering time is also not limited to the present disclosure, but is exemplified as about 0.5 to 10 hours, preferably about 0.5 to 5 hours.
  • the atmosphere during sintering does not limit the present disclosure, but is exemplified by inert gas atmospheres such as nitrogen, argon, and helium, preferably argon atmosphere and nitrogen atmosphere.
  • Sintering conditions are not limited as long as the dispersion can be sintered.
  • SiC is formed by reacting Si and C in the dispersion by heating to a temperature equal to or higher than the melting point of silicon, and a sintered product having SiC as a matrix can be obtained.
  • the powder containing the carbon component (C) in the dispersion C powder is usually used, but a resin such as a phenolic resin that is carbonized below the melting point of silicon may also be used. When such a resin powder is used, in the step of heating to a temperature equal to or higher than the melting point of silicon, the resin is carbonized before reaching 1414° C., which is the melting point of silicon.
  • the carbonized components react with molten silicon to form SiC.
  • Si component Si powder is used.
  • the SiC powder becomes a nucleus around which SiC generated by the reaction grows. Thereby, the formation efficiency of the SiC matrix can be enhanced.
  • the dispersion is mixed with a silicon carbide forming raw material other than Si (that is, other than Si powder), and if necessary, the dispersion is dried, and Si powder (excess amount) is added to the dispersion or dried product. ) may be applied (sprinkled, etc.). The application may be followed by heating at a temperature above the melting point of silicon to form SiC by reacting the molten Si with the silicon carbide forming raw material powder present in the dispersion or dry matter. In this case, the amount of Si powder to be applied may be appropriately determined with reference to the content in the dispersion.
  • the sintering temperature should be about 1414°C or higher, which is the melting point of silicon, and in order to impart sufficient breaking strength, it is preferably about 1450°C or higher and about 1500°C or higher.
  • the upper limit of the sintering temperature may be the heat resistant temperature of the SiC matrix, and is preferably up to about 2500° C., for example.
  • the sintering temperature is preferably between the melting point of silicon and about 2500° C. or less.
  • the temperature may be about 1400 to 2000 ° C. in consideration of the heat resistance of the fibers. It can be appropriately determined according to the ceramic fibers to be used.
  • the atmosphere during sintering does not limit the present disclosure, but is exemplified by inert gas atmospheres such as nitrogen, argon, and helium, preferably argon atmosphere and nitrogen atmosphere. Moreover, you may pressurize as needed. Sufficient strength can be imparted in a short time as the pressure during sintering is higher. Generally, the pressure should be about 5 MPa or higher, but it may be about 10 to 40 MPa, for example. Although it does not limit the present disclosure, for example, when sintering is performed in the presence of ceramic fibers such as silicon carbide fibers, the pressure is preferably about 10 to 40 MPa, preferably about 10 to 30 MPa.
  • the dispersion may be formed into a desired shape and dried before sintering, regardless of which method is used to produce the sintered product.
  • the drying temperature and drying time may be appropriately set.
  • the atmosphere during drying is not limited, and natural drying in air, vacuum drying, and the like are exemplified.
  • ceramic fibers may be arranged in the sintered product (silicon carbide matrix base material) regardless of which method is used to produce the sintered product. Ceramic fibers are described in the same manner as above. In this case, after mixing the dispersion and the ceramic fibers, sintering may be performed as described above. The blending amount of the dispersion and the ceramic fiber is not limited, and may be appropriately set according to the purpose. Also, the content of ceramic fibers in the sintered product is not limited.
  • the silicon carbide ceramic substrate constituting the silicon carbide ceramic produced by the method of the present disclosure is appropriately determined within a range that satisfies the content in the silicon carbide ceramic substrate described in "1. Silicon carbide ceramics". For example, it is exemplified that ceramic fibers are blended into the dispersion so that the content of the ceramic fibers in the base material is 70% by mass or less.
  • the dispersion and the ceramic fibers may be mixed according to any procedure. Any procedure such as immersing the fibers in the dispersion may be used.
  • the dispersion can be placed in a mold and the ceramic fibers can be arranged in an arbitrary shape. It can be arranged in any direction.
  • the ceramic fibers are in the form of a sheet, two or more of the sheets may be stacked, or the sheets may be arranged perpendicular to each other, or the sheets may be arranged in different directions. may Thus, the arrangement of the ceramic fibers in the dispersion may be appropriately determined depending on the purpose.
  • the mixture of the dispersion and the ceramic fibers may be dried before sintering.
  • the drying temperature, drying time, atmosphere, etc. may be appropriately set as described above.
  • the dispersion (mixture with ceramic fibers) thus obtained should be sintered. According to this, a silicon carbide ceramic having ceramic fibers in the silicon carbide ceramic base can be easily obtained, which is preferable from the viewpoint of further improving the fracture toughness of the silicon carbide ceramic base.
  • Process (C) In the production method of the present disclosure, (C) after applying a coating layer precursor containing a metal oxide to the surface of the sintered product obtained in step (B), the sintered product and the coating layer precursor is heat treated at a eutectic temperature or higher between the silicon dioxide derived from the sintered product, the coating layer precursor, and the metal oxide derived from the sintered product, thereby converting the coating layer precursor into a silicate. It contains the step of converting to a containing coating layer.
  • the application of the coating layer precursor to the surface of the sintered product may be performed on the entire surface of the sintered product, or may be performed on only a part of the surface, and may be determined appropriately according to the purpose.
  • the coating layer precursor contains a metal oxide.
  • Metal oxides are explained in the same manner as the above "1.
  • Silicon carbide ceramics As described above, the metal oxide is not limited as long as it is a metal oxide, but is preferably a rare earth oxide represented by RE 2 O 3 (RE is a rare earth element), an aluminum oxide, and a hafnium oxide. and more preferably ytterbium oxide (Yb 2 O 3 ), scandium oxide (Sc 2 O 3 ), yttrium oxide (Y 2 O 3 ), erbium oxide (Er 2 O 3 ), lutetium oxide (Lu 2 O 3 ), Alumina (Al 2 O 3 ), hafnium oxide (HfO 2 ) and the like are exemplified.
  • the metal oxide is preferably the same rare earth oxide as the metal oxide used in the sintered product. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the shape of the metal oxide compounded in the coating layer precursor is usually powdery, and the particle size is explained in the same manner as above.
  • the content of the metal oxide in the coating layer precursor is also explained in the same manner as above.
  • any other component may be blended into the coating layer precursor as long as it does not interfere with the effects of the present disclosure, and the other component is also described in the same manner as above.
  • the metal oxide may be used as a reaction aid, but the content of the metal oxide is not included in the reaction aid in the present disclosure.
  • the coating layer precursor is exemplified as preferably consisting of a metal oxide, more preferably consisting of a rare earth oxide and an oxide of aluminum, or consisting of a rare earth oxide. exemplified.
  • the form of the coating layer precursor is powder (dry matter).
  • a coating layer precursor is applied to the surface of the sintered product.
  • a powdery material coating layer precursor
  • a slurry material is applied and then dried. It is also possible to use a powdery coating layer precursor.
  • the coating layer precursor is powdery at the start of the heat treatment in step (C).
  • the coating layer precursor to the surface of the sintered product is not limited as long as the coating layer precursor contacts the surface of the sintered product.
  • the surface of the sintered product is sprinkled with the powdered coating layer precursor, the sintered product is pressed against the powdered coating layer precursor, and the powder is applied to the surface of the sintered product.
  • the coating layer precursor may be attached to the surface by applying a coating layer precursor having a shape, or embedding a sintered product in the coating layer precursor.
  • the amount to be applied is not limited as long as the desired coating layer is obtained, but for example, 0.01 powdery coating layer precursor per 1 cm 2 of the portion where the coating layer is to be formed on the surface of the sintered product ⁇ 0.5 g is exemplified, and more preferably 0.05 to 0.75 g is exemplified.
  • the sintered product and the coating layer precursor are combined with silicon dioxide derived from the sintered product, the coating layer precursor and a metal oxide derived from the sintered product.
  • heat treatment above the eutectic temperature of Silicon dioxide is present on the surface of the sintered product due to oxidation of the sintered product, and silicon dioxide derived from the sintered product means silicon dioxide present in the sintered product. It means the silicon dioxide present on the surface where the coating layer precursor is applied.
  • a metal oxide derived from the sintered product means a metal oxide contained in the sintered product.
  • a metal oxide derived from the coating layer precursor means a metal oxide contained in the coating layer precursor.
  • the heat treatment above the eutectic temperature is not limited as long as the eutectic reaction between silicon dioxide and metal oxide occurs. Since the eutectic temperature differs depending on the type of metal oxide, the eutectic temperature may be appropriately determined according to the metal oxide used. Although it does not limit the present disclosure, it is exemplified by a eutectic temperature of -50°C to +200°C, preferably -50°C to +100°C, derived from the phase diagram of the metal oxide used.
  • the eutectic reaction between the metal oxide derived from the sintered product and the silicon dioxide does not require that all the metal oxides present in the sintered product undergo a eutectic reaction with silicon dioxide.
  • metal oxides have the property of diffusing to the surface of the sintered product when heated at high temperatures. Therefore, in the present disclosure, the eutectic reaction between the metal oxide derived from the sintered product and the silicon dioxide means a reaction that occurs on the surface of the sintered product.
  • the heat treatment time is also not limited to the present disclosure, but is exemplified to be about 0.5 to 100 hours, preferably about 0.5 to 50 hours, more preferably about 1 to 20 hours.
  • the atmosphere during the heat treatment is not intended to limit the present disclosure, it is exemplified by an air atmosphere, a water vapor atmosphere, etc., preferably an air atmosphere.
  • the coating layer precursor is converted into a coating layer containing silicate. That is, a coating layer containing a silicate that is a eutectic reaction product of silicon dioxide derived from the sintered product (silicon carbide ceramic base material), a coating layer precursor, and a metal oxide derived from the sintered product is obtained. be done.
  • the present disclosure is characterized in that the silicate forming the coating layer is derived from the coating layer precursor and the sintered material. Silicates are described in the same manner as in "1. Silicon carbide ceramics" above.
  • the silicon carbide ceramics of the present disclosure which includes the silicon carbide ceramics base material and the coating layer covering the surface thereof, can be produced.
  • the sintered product obtained in the step (B) may be further heated before the eutectic reaction.
  • the step of heating the sintered material before the eutectic reaction is referred to as step (C').
  • the heating temperature in step (C') is about 1000 to 1600°C, preferably about 1150 to 1500°C.
  • the heating is mainly aimed at further forming SiO 2 on the surface of the sintered material obtained in step (B), it is carried out in an oxidizing atmosphere. Under a water vapor atmosphere is exemplified, preferably under an air atmosphere.
  • the heating time is also not limited to the present disclosure, but is exemplified to be about 10 minutes to 10 hours, preferably about 15 minutes to 3 hours.
  • step (C) By further generating SiO 2 on the surface of the sintered product in step (C′), and then applying the coating layer precursor to the surface of the sintered product obtained in step (C′) and performing heat treatment, The eutectic reaction between SiO 2 and the metal oxide is promoted on the surface, and as a result, silicon carbide ceramics having a coating layer with improved thickness and high density can be more easily produced.
  • the eutectic reaction may be performed in an oxidizing atmosphere or an inert atmosphere, preferably in an oxidizing atmosphere.
  • the silicon carbide ceramics of the present disclosure can be produced.
  • the silicate content in the coating layer is 80% by volume or more, and the preferred content is also explained in the same manner as in "1. Silicon carbide ceramics". It can be said that the higher the silicate content, the higher the denseness of the coating film. According to the production method of the present disclosure, the SiO 2 content in the coating layer can be significantly reduced, and the silicate content can be improved. It can be said that it is useful in terms of suppressing surface deterioration in.
  • the thickness of the coating layer is also not limited, but the thickness is preferably 5 ⁇ m or more, and the more preferable thickness is also explained in the same manner as in "1. Silicon carbide ceramics”.
  • an example of the coating layer preferably has a silicate content of 80% by volume or more and a thickness of 5 ⁇ m or more, and more preferably has a silicate content of 90 to 100% by volume and a thickness of 10 to 100 ⁇ m, a silicate content of 80 to 100% by volume and a thickness of 10 to 150 ⁇ m, a silicate content of 80 to 98% by volume and a thickness of 10 to 150 ⁇ m, silicic acid Examples include a salt content of 80 to 98% by volume and a thickness of 10 to 120 ⁇ m. The content and thickness are explained in the same manner as described above, and are preferably adjusted appropriately within the range of the above values.
  • silicon carbide ceramics capable of further suppressing surface deterioration can be obtained. Further, according to the present disclosure, it is possible to obtain a silicon carbide ceramic in which no interfacial layer exists between the SiC matrix and the ceramic fiber even when the ceramic fiber is contained. Therefore, even when ceramic fibers are mixed in the matrix, silicon carbide ceramics that can further suppress surface deterioration can be easily obtained.
  • the silicate forming the coating layer is derived from the coating layer precursor and the sintered product, and the metal derived from the coating layer precursor and the sintered product Since it is generated by the eutectic reaction between the oxide and the silicon dioxide derived from the surface of the sintered product, there is a significant amount of residual silicon dioxide that tends to stay between the coating layer and the sintered product (base material). suppressed. This means that the coating layer and the base material can be firmly integrated, and that silicon carbide ceramics with more excellent durability can be provided.
  • silicon carbide ceramics having a coating layer with excellent denseness in that gas is less likely to remain in the coating layer.
  • Test example 1 Manufacturing procedure of silicon carbide ceramics 1-1) Production of sintered product Powder (80% by mass of SiC powder, 17% by mass of Yb 2 O 3 powder, 3% by mass of Al 2 O 3 powder) and a dispersion medium (ethanol) were mixed at a mass ratio of 1:1. 4 to obtain a dispersion. The resulting dispersion was placed in a mold and air-dried, followed by sintering in an argon atmosphere under heating conditions of 20 MPa and 1890° C. for 1 hour to obtain a sintered product.
  • sintered product Powder 80% by mass of SiC powder, 17% by mass of Yb 2 O 3 powder, 3% by mass of Al 2 O 3 powder
  • a dispersion medium ethanol
  • the average particle size of the SiC powder used in this test example is 0.27 ⁇ m (trade name: GC40000, manufactured by Fujimi Incorporated), and the average particle size of the Yb 2 O 3 powder is 1 ⁇ m (trade name: Yb 2 O 3 , Kojundo Chemical Co., Ltd.). Laboratory Co., Ltd.), and the average particle size of the Al 2 O 3 powder was 1 ⁇ m (trade name ⁇ -Al 2 O 3 , Kojundo Chemical Laboratory Co., Ltd.).
  • a silicate (Yb 2 Si 2 O 7 ) is formed as a eutectic reactant by heating for 18 hours at a temperature (1430° C. ) at which a eutectic reaction with 2 O 3 occurs, thereby converting the coating layer precursor into silicic acid . It was converted to a coating layer containing an acid salt.
  • a silicon carbide ceramic (Example 1) comprising a silicon carbide ceramic substrate (sintered product) and a coating layer covering the surface thereof was obtained.
  • a dispersion prepared in the same manner as described above was sintered under heating conditions of 1890° C., 20 MPa, and 1 hour to produce a sintered product.
  • the sintered product was further heat-treated at 1430° C. for 18 hours in an air atmosphere to form a surface-modified layer containing a silicate on the sintered product, thereby obtaining a silicon carbide ceramic (Comparative Example 1).
  • FIG. 1 shows a schematic diagram of the manufacturing process of the silicon carbide ceramics (Example 1) and a scanning electron microscope (SEM) image of the surface of the silicon carbide ceramics (Example 1).
  • FIG. 1 is a schematic diagram of the diffusion of the metal oxide in the sintered body, the reaction between the metal oxide and silica in the sintered body and the coating layer precursor, and the formation of the coating layer. Precursor) is a surface SEM image after atmospheric oxidation.
  • FIG. 2 shows a cross-sectional SEM image (left) of the silicon carbide ceramic (Example 1) and an elemental mapping (EDX) result (right) by energy dispersive X-ray spectroscopy (EDS).
  • FIG. 1 shows a schematic diagram of the manufacturing process of the silicon carbide ceramics (Example 1) and a scanning electron microscope (SEM) image of the surface of the silicon carbide ceramics (Example 1).
  • FIG. 1 is a schematic diagram of the diffusion of the metal oxide in the sintered body
  • FIG. 3 shows a SEM image of a cross section of the silicon carbide ceramic (Example 1). SEM images and EDX elemental mapping results were obtained according to the manufacturer's instructions.
  • FIG. 4 shows a schematic diagram of the manufacturing process of the silicon carbide ceramic (Comparative Example 1) and an SEM image of the surface of the silicon carbide ceramic (Comparative Example 1).
  • FIG. 4 is a schematic diagram of surface modification only by diffusion of metal oxides, and is an SEM image of the surface after atmospheric oxidation.
  • FIG. 5 shows the SEM image (left) of the cross section of the silicon carbide ceramic (Example 1) and the EDX result (right).
  • the eutectic reaction product Yb 2 Si 2 O 7 was found to be formed at a high content. Also, it was found that the content of SiO 2 in the coating layer was significantly reduced. Moreover, as shown in FIG. 2, it was found that the eutectic reaction product Yb 2 Si 2 O 7 was efficiently formed also in the cross section of the obtained silicon carbide ceramics. Also from the results of FIG. 2, it was found that the coating layer had a high content of Yb 2 Si 2 O 7 . In FIG.
  • the silicon carbide ceramic substrate (matrix) region is mainly composed of SiC, the strength of Si in the coating layer region is low and it is difficult to see visually, but EDS point analysis and XRD From the results, it was confirmed that the region overlapping Yb in the coating layer was Yb 2 Si 2 O 7 . Also, as shown in FIG. 3, the content of silicate (Yb 2 Si 2 O 7 ) in the coating layer was 97.8% by volume. It can be said that the higher the silicate content, the higher the denseness of the coating layer. Also from this, it can be understood that the coating layer of the present disclosure has a significantly reduced SiO 2 content. From this, it can be said that the silicon carbide ceramics of Example 1 can suppress surface deterioration in an oxidizing environment at high temperatures, that is, it can be said to be extremely excellent in terms of suppressing surface deterioration.
  • the silicate (Yb 2 Si 2 O 7 ) content of the coating layer was calculated as follows. Cross-sectional image observation of the coating layer with a scanning electron microscope and elemental mapping by energy dispersive X-ray spectroscopy (model number Ultra 55, manufactured by Zeiss) are used to analyze the composition within the coating layer and identify the silicate in the coating layer. Then, the thickness of the coating layer (the distance from the surface of the sintered body to the surface of the coating layer) was measured at an arbitrary point in the cross-sectional image. A square having this thickness measurement portion as one side and a straight line having the same width as the thickness and extending along the surface of the silicon carbide ceramic substrate in the cross-sectional image as another side was formed into a square.
  • the volume fraction of silicate in the coating layer in the square was calculated.
  • the volume fraction of silicate in the coating layer in a square at any other location was calculated from image analysis.
  • the average value of the two ratios thus obtained was taken as the volume ratio of the silicate in the coating layer constituting the silicon carbide ceramic of Example 1.
  • the "distance from the surface of the sintered body to the surface of the coating layer" has the same meaning as the above-mentioned "direction in which the coating layer is formed with respect to the substrate (perpendicular to the substrate surface)".
  • the formation of silicate was poor, and the content of silicate in the coating layer was 35% by volume.
  • the content of silicate in the coating layer was low, that is, the compactness was low.
  • the SiO 2 /mullite formation rate was higher and the surface of the sintered product could not be covered with Yb 2 Si 2 O 7 .
  • the thickness of the coating layer was 20 ⁇ m or less.
  • the eutectic temperature of SiO 2 derived from the sintered product and the metal oxide oxide derived from the coating layer precursor and the sintered product can be converted into a silicate-rich coating layer by heat treatment under oxidizing conditions of It has been understood that the silicon carbide ceramics provided with this can be easily produced. That is, it was understood that a silicon carbide ceramic having a highly dense coating layer can be easily obtained.
  • the thickness of the coating layer was 15 ⁇ m. The thickness of the coating layer is determined by observing the cross-sectional image of the coating layer using a scanning electron microscope and elemental mapping using energy dispersive X-ray spectroscopy. The thickness of 10 points was measured, and the average value was taken as the thickness of the coating layer constituting the silicon carbide ceramics of Example 1.
  • Test example 2 A sintered product was obtained in the same manner as in Example 1 of Test Example 1. The obtained sintered product was further heated at 1250° C. for 20 minutes in an air atmosphere. After the heating, a coating layer precursor was applied in the same manner as in Example 1 to the surface of the obtained sintered product. In this test example, a powder mixture containing 85% by mass of Yb 2 O 3 and 15% by mass of Al 2 O 3 was used as the coating layer precursor. Next, the sintered product to which the coating layer precursor was applied was heated in an air atmosphere at a temperature (1484° C.) higher than that in Test Example 1 for 15 hours, thereby converting the coating layer precursor into silica as an eutectic reaction product.
  • Example 2 a silicon carbide ceramic (Example 2) comprising a silicon carbide ceramic substrate derived from the sintered product and a coating layer covering the surface thereof was obtained.
  • FIG. 6 is a cross-sectional SEM image after atmospheric oxidation in powder.
  • the silicate content in the obtained silicon carbide ceramic coating layer was 82.6% by volume.
  • the thickness of the coating layer was 110 ⁇ m. From this, it was found that in the silicon carbide ceramics of Example 2 as well as in Example 1, the denseness of the coating layer was high. Also, as described above, the coating layer of the silicon carbide ceramic of Example 2 was thicker than the coating layer of the silicon carbide ceramic of Example 1. From this, it can be said that the silicon carbide ceramics of Example 2 is also very excellent in suppressing surface deterioration.
  • a coating layer precursor was applied to the surface of the SiC matrix (carbide ceramic base material, produced by chemical vapor deposition (CVD)) obtained without using a metal oxide in the same manner as in Example 1,
  • a ceramic carbide (Comparative Example 2) was produced by heat treatment in an air atmosphere.
  • SiO 2 remained between the Yb 2 Si 2 O 7 thus formed and the SiC matrix, resulting in low compactness (Fig. 7, less than 66 vol%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本開示は、耐久性に優れた新たな炭化ケイ素セラミックスを提供することを目的とする。炭化ケイ素セラミックス基材とその表面を被覆する被覆層とを備える炭化ケイ素セラミックスであって、(1)前記被覆層は、前記炭化ケイ素セラミックス基材に由来する二酸化ケイ素と前記炭化ケイ素セラミックス基材及び被覆層前駆体に由来する金属酸化物との共晶反応物であるケイ酸塩を含有し、(2)前記被覆層中、前記ケイ酸塩の含有量が80体積%以上である、ことを特徴とする炭化ケイ素セラミックス。

Description

炭化ケイ素セラミックス及びその製造方法
 本開示は、炭化ケイ素セラミックス及びその製造方法に関する。
 エンジニアリングセラミックスの中でも炭化ケイ素(SiC)マトリックスは、その物理的、化学的耐久性の高さから実用化が進んでいる。特に、SiCマトリックスの耐久性を一層高めることを目的として、SiCセラミックス中にSiC繊維が配置された複合体が開発されており、これは1000℃を超えるような過酷な環境下でも利用可能であるとされている。このことから、従来、セラミックスマトリックス複合材料(CMC、Ceramic Matrix Composites)は、航空機用エンジン、宇宙機用エンジン、原子炉等の分野において着目、利用されている。
 しかし、航空機用エンジン、高圧タービン部材等における過酷な高温環境において、SiCマトリックスは、酸素や水蒸気による酸化で、二酸化ケイ素(SiO)が表面に生成されるが、SiOは水蒸気と反応して減肉する。
 表面劣化への対策の一例として、SiCマトリックス表面に耐環境性コーティング(EBC、Environmental Barrier Coating)等の保護被覆を施すことが知られている。例えば、該対策として、SiCマトリックス(焼結物)を製造後、該マトリックスを更に加熱して、マトリックスに含まれる金属酸化物が表面へ拡散する現象を利用して、該表面付近に該金属酸化物に由来するケイ酸塩を含む表面改質層を被膜として形成させる技術が知られている(特許文献1)。該技術は、マトリックスに含まれる金属酸化物を利用するものであって、外部から材料を供給することなく新たな被膜を形成するという自己形成や自己修復性を有する点で好ましいといえる。しかし、該方法により得られた被膜は非常に薄い。また、被膜の厚みの増加を目的として該焼結物の加熱を続けると、被膜中にSiOが増加するとともに相対的に被膜中のケイ酸塩の割合(緻密性)が低下し、これが表面劣化の原因となる。従って、過酷な環境下で使用可能な新たなSiCセラミックスを提供することは重要である。
国際公開第2018/212139号公報
 本開示は、耐久性に優れた新たな炭化ケイ素セラミックスを提供することを目的とする。
 本発明者らは鋭意検討を重ねた結果、炭化ケイ素セラミックスの製造において、炭化ケイ素及び金属酸化物を含む焼結物の表面に、金属酸化物を含有する被覆層前駆体を付与した後、該焼結物及び前記被覆層前駆体を、該焼結物に由来する二酸化ケイ素と該焼結物及び該被覆層前駆体に由来する金属酸化物との共晶温度以上で熱処理することにより、前記被覆層前駆体をケイ酸塩を含有する被覆層に転化でき、これにより、炭化ケイ素セラミックス基材の表面に、ケイ酸塩を高い割合で含有する(すなわち、緻密度の高い)被覆層を形成できることを見出した。本発明は該知見に基づき更に検討を重ねて完成されたものであり、本開示は例えば下記に代表される発明を包含する。
項1.炭化ケイ素セラミックス基材とその表面を被覆する被覆層とを備える炭化ケイ素セラミックスであって、
(1)前記被覆層は、前記炭化ケイ素セラミックス基材に由来する二酸化ケイ素と前記炭化ケイ素セラミックス基材及び被覆層前駆体に由来する金属酸化物との共晶反応物であるケイ酸塩を含有し、
(2)前記被覆層中、前記ケイ酸塩の含有量が80体積%以上である、
ことを特徴とする炭化ケイ素セラミックス。
項2.前記金属酸化物が、酸化スカンジウム(Sc)、酸化イットリウム(Y)、酸化エルビウム(Er)、酸化イッテルビウム(Yb)、アルミナ(Al)、酸化ハフニウム(HfO)及び酸化ルテチウム(Lu)からなる群より選択される少なくとも1種である、項1に記載の炭化ケイ素セラミックス。
項3.前記被覆層の厚さが10μm以上である、項1又は2に記載の炭化ケイ素セラミックス。
項4.前記炭化ケイ素セラミックス基材がセラミックス繊維を含有する、項1~3のいずれか一項に記載の炭化ケイ素セラミックス。
項5.前記被覆層前駆体中、前記金属酸化物の含有量が40~100質量%である、項1~4のいずれか一項に記載の炭化ケイ素セラミックス。
項6.前記ケイ酸塩が、スカンジウムシリケート(ScSi)、イットリウムシリケート(YSiO)、エルビウムシリケート(ErSiO)、イッテルビウムシリケート(YbSiO)、イッテルビウムシリケート(YbSi)、ケイ酸アルミニウム(AlSiO)、ルテチウムシリケート(LuSiO)、ルテチウムシリケート(LuSiO)及びハフニウムシリケート(HfSiO)からなる群より選択される少なくとも1種である、項1~5のいずれか一項に記載の炭化ケイ素セラミックス。
項7.炭化ケイ素セラミックス基材とその表面を被覆する被覆層とを備える炭化ケイ素セラミックスの製造方法であって、
(A)分散媒中で、少なくとも炭化ケイ素形成原料及び金属酸化物を分散する工程、
(B)工程(A)で得られた分散物を焼結する工程、
(C)工程(B)で得られた焼結物の表面に、金属酸化物を含有する被覆層前駆体を付与した後、前記焼結物及び前記被覆層前駆体を、前記焼結物に由来する二酸化ケイ素と前記焼結物及び前記被覆層前駆体に由来する金属酸化物との共晶温度以上で熱処理することにより、前記被覆層前駆体をケイ酸塩を含有する被覆層に転化する工程、
を含むことを特徴とする、炭化ケイ素セラミックスの製造方法。
項8.前記金属酸化物が、酸化スカンジウム(Sc)、酸化イットリウム(Y)、酸化エルビウム(Er)、酸化イッテルビウム(Yb)、アルミナ(Al)、酸化ハフニウム(HfO)及び酸化ルテチウム(Lu)からなる群より選択される少なくとも1種である、項7に記載の炭化ケイ素セラミックスの製造方法。
項9.前記被覆層の厚さが10μm以上である、項7又は8に記載の炭化ケイ素セラミックスの製造方法。
項10.前記被覆層前駆体中、前記金属酸化物の含有量が40~100質量%である、項7~9のいずれか一項に記載の炭化ケイ素セラミックスの製造方法。
項11.前記ケイ酸塩が、スカンジウムシリケート(ScSi)、イットリウムシリケート(YSiO)、エルビウムシリケート(ErSiO)、イッテルビウムシリケート(YbSiO)、イッテルビウムシリケート(YbSi)、ケイ酸アルミニウム(AlSiO)、ルテチウムシリケート(LuSiO)、ルテチウムシリケート(LuSiO)及びハフニウムシリケート(HfSiO)からなる群より選択される少なくとも1種である、項7~10のいずれか一項に記載の炭化ケイ素セラミックスの製造方法。
項12.前記工程(C)において、焼結物の表面の被覆層を形成させたい部分1cmあたり、粉末状の被覆層前駆体を0.01~0.5g付与する、項7~11のいずれか一項に記載の炭化ケイ素セラミックスの製造方法。
項13.前記工程(B)の後であって、前記工程(C)の前に、更に次の工程(C’)を含む、項7~12のいずれか一項に記載の炭化ケイ素セラミックスの製造方法、
工程(C’)前記工程(B)で得た焼結物を1000~1600℃で10分~10時間加熱する工程。
 本開示によれば、炭化ケイ素セラミックス基材の表面に、ケイ酸塩を高い割合で含有する被覆層が被覆された炭化ケイ素セラミックスを提供できる。本開示によれば、耐久性に優れた炭化ケイ素セラミックスを製造することができる。
図1は、炭化ケイ素セラミックス(実施例1)の製造過程の模式図と、炭化ケイ素セラミックス(実施例1)表面の走査電子顕微鏡(SEM)画像を示す。 図2は、炭化ケイ素セラミックス(実施例1)の断面のSEM画像(左)と、エネルギー分散型X線分光法(EDS)による元素マッピング(EDX)結果(右)を示す。 図3は、炭化ケイ素セラミックス(実施例1)の断面のSEM画像を示す。 図4は、炭化ケイ素セラミックス(比較例1)の製造過程の模式図と、炭化ケイ素セラミックス(比較例1)表面のSEM画像を示す。 図5は、炭化ケイ素セラミックス(比較例1)の断面のSEM画像(左)と、EDX結果(右)を示す。 図6は、炭化ケイ素セラミックス(実施例2)の断面のSEM画像を示す。 図7は、炭化ケイ素セラミックス基材に金属酸化物を含有させることなく作製した炭化ケイ素セラミックス(比較例2)の断面のSEM画像を示す。
 以下、本開示に包含される実施形態について更に詳細に説明する。なお、本開示において「含有する」は、「実質的にからなる」、「からなる」という意味も包含する。
1.炭化ケイ素セラミックス
 本開示は、炭化ケイ素セラミックス基材とその表面を被覆する被覆層とを備える炭化ケイ素セラミックスであって、
(1)前記被覆層は、前記炭化ケイ素セラミックス基材に由来する二酸化ケイ素(SiO)と前記炭化ケイ素セラミックス基材及び被覆層前駆体に由来する金属酸化物との共晶反応物であるケイ酸塩を含有し、
(2)前記被覆層中、前記ケイ酸塩の含有量が80体積%以上である、
ことを特徴とする炭化ケイ素セラミックスを包含する。
 本開示において炭化ケイ素セラミックスは、炭化ケイ素セラミックス基材とその表面を被覆する被覆層とを備える。炭化ケイ素セラミックス基材は、炭化ケイ素を含む焼結物であって、炭化ケイ素をマトリックスとする。このマトリックスは、後述するように金属酸化物を含有し、炭化ケイ素繊維等が含有されていてもよい。
 炭化ケイ素セラミックス基材中、SiC含有量は制限されないが、20~99.9質量%が例示され、好ましくは30~99.5質量%、より好ましくは35~95質量%が例示される。
 このように、炭化ケイ素セラミックスを構成する炭化ケイ素セラミックス基材は、マトリクスとしてSiC及び金属酸化物を含有する。
 金属酸化物は、金属の酸化物であれば制限されないが、好ましくはRE(REは希土類)で表される希土類酸化物、アルミニウムの酸化物、ハフニウムの酸化物が例示される。
 希土類として、Yb、Sc、Y、Er、Lu、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Tmが例示され、好ましくはYb、Sc、Y、Er、Luが例示される。また、REとして、好ましくは、酸化イッテルビウム(Yb)、酸化スカンジウム(Sc)、酸化イットリウム(Y)、酸化エルビウム(Er)、酸化ルテチウム(Lu)等が例示される。アルミニウムの酸化物として、好ましくはアルミナ(Al)が例示される。ハフニウムの酸化物として、好ましくは酸化ハフニウム(HfO)が例示される。
 金属酸化物として、より好ましくは酸化イッテルビウム(Yb)、酸化スカンジウム(Sc)、酸化イットリウム(Y)、酸化エルビウム(Er)、酸化ルテチウム(Lu)、アルミナ(Al)、酸化ハフニウム(HfO)等が例示される。金属酸化物として、より好ましくは酸化イッテルビウム(Yb)、酸化スカンジウム(Sc)、酸化イットリウム(Y)、酸化エルビウム(Er)、酸化ルテチウム(Lu)、アルミナ(Al)等が例示される。
 これらは1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 炭化ケイ素セラミックス基材中、金属酸化物の含有量は制限されないが、炭化ケイ素セラミックス基材中、金属酸化物は0.1~30質量%が例示され、好ましくは0.5~25質量%、より好ましくは5~20質量%が例示される。
 炭化ケイ素セラミックス基材は、本開示の効果を妨げない限り、任意の他の成分を含有していてもよい。該成分として、セラミックス繊維、強度特性向上のための分散粒子等が例示される。これらは1種単独で使用してもよく、2種以上を組み合わせて使用してもよく、その配合量も目的に応じて適宜決定すればよい。
 本開示を制限するものではないが、該他の成分の一例としてセラミックス繊維について説明すると、セラミックス繊維としてSiC繊維、炭素繊維(C繊維)、アルミナ繊維等が例示され、好ましくはSiC繊維等が例示される。
 セラミックス繊維は、用途や求める機械的強度に応じて適宜選択でき、例えば、セラミックス繊維の連続繊維である長繊維、短繊維(1~10mm程度の長さ)、ウィスカーのいずれであってもよい。炭化ケイ素セラミックスの破壊靭性を向上させる観点から、セラミックス繊維として長繊維が好ましく例示される。これらの繊維は、本分野において通常の意味であり、従来公知の長繊維、短繊維、ウィスカーの定義(日本工業規格「H7006-1991 金属基複合材料用語」)に従う。セラミックス繊維の直径も特に制限されず、好ましい例示として直径5~200μm程度が例示される。
 セラミックス繊維は商業的に入手可能であり、例えば、炭化ケイ素繊維はTyranno SA(宇部興産製)、Hi-Nicalon TypeS(NGSアドバンストファイバー製)等の商標名で市販されている。また、例えば、アルミナ繊維として、Nextel 312、 Nextel 440(住友スリーエム製)等の商標名で市販されている。セラミックス繊維の直径等は市販品のカタログに従う。
 炭化ケイ素セラミックス基材がセラミックス繊維を含有する場合、該基材中のセラミックス繊維の形態も制限されない。セラミックス繊維は、通常、500~2000本程度の繊維の束(バンドル)として取り扱われており、該束の状態であってもよく、これを用いた編物、織物等の繊維構造物の形態で含有していてもよい。セラミックス繊維強化複合材料を効率よく製造する観点からは、セラミックス繊維として、繊維構造物の状態のセラミックス繊維を用いることが好ましく例示される。また、セラミックス繊維はそのままであってもよく、セラミックス繊維は窒化ホウ素(BN)等の任意の材料で被覆(被覆セラミックス繊維)されていてもよい。
 本開示においてセラミックス繊維は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 炭化ケイ素セラミックス基材がセラミックス繊維を含有する場合、その含有量は制限されないが、炭化ケイ素セラミックス基材中、セラミックス繊維は70質量%以下が例示され、好ましくは10~70質量%、より好ましくは20~60質量%、更に好ましくは25~55質量%が例示される。
 本開示の炭化ケイ素セラミックスは、炭化ケイ素セラミックス基材の表面を被覆する被覆層を備える。被覆層は、該基材の表面全体を被覆していてもよく、該表面の一部のみを被覆していてもよく、目的に応じて適宜決定すればよい。
 被覆層は、炭化ケイ素セラミックス基材に由来する二酸化ケイ素(SiO)と、該基材及び被覆層前駆体に由来する金属酸化物との共晶反応物であるケイ酸塩を含有する。
 「炭化ケイ素セラミックス基材に由来する二酸化ケイ素(SiO)」とは次の通り説明される。後述の実施例から理解できる通り、分散物を焼結させることにより得た焼結物の酸化により、焼結物の表面には二酸化ケイ素(SiO)が存在するといえる。このことから、炭化ケイ素セラミックス基材に由来するSiOは、該焼結物の表面に存在するSiOを意味する。
 被覆層前駆体は、金属酸化物を含有する。金属酸化物は、前記炭化ケイ素セラミックス基材で使用可能な金属酸化物と同様に説明される。本開示を制限するものではないが、被覆層前駆体に配合する金属酸化物として、より好ましくは酸化イッテルビウム(Yb)、酸化スカンジウム(Sc)、酸化イットリウム(Y)、酸化エルビウム(Er)、酸化ルテチウム(Lu)、アルミナ(Al)、酸化ハフニウム(HfO)等が例示される。
 また、被覆層前駆体に配合する金属酸化物として、前記基材に使用される金属酸化物と同種の金属酸化物を用いることが好ましく例示される。すなわち、前記基材において希土類酸化物を用いる場合、被覆層前駆体に配合する希土類酸化物は、前記基材に使用される希土類酸化物と同種の希土類酸化物を用いることが好ましく例示される。前記基材においてハフニウムの酸化物を用いる場合、被覆層前駆体に配合するハフニウムの酸化物は、前記基材に使用されるハフニウムの酸化物と同種のハフニウムの酸化物を用いることが好ましく例示される。前記基材においてアルミニウムの酸化物を用いる場合、被覆層前駆体に配合するアルミニウムの酸化物は、前記基材に使用されるアルミニウムの酸化物と同種のアルミニウムの酸化物を用いることが好ましく例示される。
 このことから、金属酸化物の組み合わせの好ましい一実施態様として、前記基材において希土類酸化物を用い、被覆層前駆体にこれと同種の希土類酸化物を用いる態様;前記基材においてハフニウムの酸化物を用い、被覆層前駆体にこれと同種のハフニウムの酸化物を用いる態様;前記基材においてアルミニウムの酸化物を用い、被覆層前駆体にこれと同種のアルミニウムの酸化物を用いる態様が例示される。
 また、本開示を制限するものではないが、金属酸化物の組み合わせの好ましい一実施態様として、前記基材において希土類酸化物を用い、被覆層前駆体にこれと同種の希土類酸化物及びアルミニウムの酸化物を用いる態様;前記基材において希土類酸化物及びアルミニウムの酸化物を用い、被覆層前駆体にこれと同種の希土類酸化物を用いる態様;前記基材において希土類酸化物及びアルミニウムの酸化物を用い、被覆層前駆体にこれと同種の希土類酸化物及びこれと同種のアルミニウムの酸化物を用いる態様が例示される。
 また、本開示を制限するものではないが、金属酸化物の組み合わせの好ましい一実施態様として、前記基材においてハフニウムの酸化物を用い、被覆層前駆体にこれと同種のハフニウムの酸化物及びアルミニウムの酸化物を用いる態様;前記基材においてハフニウムの酸化物及びアルミニウムの酸化物を用い、被覆層前駆体にこれと同種のハフニウムの酸化物を用いる態様;前記基材においてハフニウムの酸化物及びアルミニウムの酸化物を用い、被覆層前駆体にこれと同種のハフニウムの酸化物及びこれと同種のアルミニウムの酸化物を用いる態様が例示される。
 これらにおいて、特に好ましくは、希土類酸化物として酸化イッテルビウム(Yb)、酸化スカンジウム(Sc)、酸化イットリウム(Y)、酸化エルビウム(Er)、酸化ルテチウム(Lu)等が例示され、ハフニウムの酸化物として酸化ハフニウム(HfO)が例示され、アルミニウムの酸化物としてアルミナ(Al)が例示される。
 被覆層前駆体中の金属酸化物の含有量は制限されないが、被覆層前駆体中、金属酸化物は40~100質量%が例示され、好ましくは50~100質量%、より好ましくは60~100質量%、70~100質量%等が例示される。
 また、この限りにおいて制限されないが、被覆層前駆体中、希土類酸化物及びハフニウムの酸化物からなる群より選択される少なくとも1種(合計量)1質量部に対して、アルミニウムの酸化物が0~1/2質量部、好ましくは1/20~2/5質量部、1/10~2/5質量部等が例示される。
 被覆層前駆体には、本開示の効果を妨げない限り、必要に応じて、任意の他の成分を配合してもよい。該成分として、ケイ酸塩の形成の促進を目的とした反応助剤等が例示される。これらは1種単独で使用してもよく、2種以上を組み合わせて使用してもよく、その配合量も目的に応じて適宜決定すればよい。なお、前記金属酸化物は、反応助剤として使用可能な場合があるが、本開示において金属酸化物の含有量は反応助剤には包含されない。
 本開示を制限するものではないが、被覆層前駆体は、好ましくは金属酸化物からなることが例示され、より好ましくは希土類酸化物及びアルミニウムの酸化物からなるか、希土類酸化物からなることが例示される。
 被覆層前駆体の形態は、粉末状(乾燥物)である。被覆層前駆体は、後述の通り、焼結物(基材)の表面に付与される。被覆層前駆体を形成するための手段として、粉末状の材料(被覆層前駆体)を付与してもよく、取扱い性(塗布性)を高めるためにスラリー状にした材料を付与後に乾燥して粉末状の被覆層前駆体としてもよい。
 被覆層は、炭化ケイ素セラミックス基材に由来するSiOと、該被覆層前駆体及び炭化ケイ素セラミックス基材に含まれる金属酸化物との共晶反応物であるケイ酸塩を含有する。該共晶反応は、炭化ケイ素セラミックス基材の表面で生じるものであって、後述の説明通り、焼結物の表面に被覆層前駆体が付与され、焼結物の表面に存在するSiOと、被覆層前駆体及び炭化ケイ素セラミックス基材に含まれる金属酸化物とにおいて生じる。該共晶反応により、該金属酸化物に由来するケイ酸塩(シリケート)が生じる。
 該被覆層においてケイ酸塩は、前述の通り、被覆層前駆体及び基材に由来して生じるケイ酸塩であれば制限されない。本開示を制限するものではないが、ケイ酸塩として、RESiO、RESiO、ハフニウムのケイ酸塩、アルミニウムのケイ酸塩の少なくともいずれかのケイ酸塩を含有することが好ましく例示される。該ケイ酸塩として、スカンジウムシリケート(ScSi)、イットリウムシリケート(YSiO)、エルビウムシリケート(ErSiO)、イッテルビウムシリケート(YbSiO)、イッテルビウムシリケート(YbSi)、ケイ酸アルミニウム(AlSiO)、ルテチウムシリケート(LuSiO)、ルテチウムシリケート(LuSiO)、ハフニウムシリケート(HfSiO)等がより好ましく例示される。ケイ酸塩として、更に好ましくはYbSiO、YbSi、LuSiO、LuSiO、HfSiO等が例示される。これらは1種単独で含有されていてもよく、2種以上を組み合わせて含有されていてもよい。
 本開示の被覆層中のケイ酸塩の含有量は、80体積%以上である。また、被覆層中のケイ酸塩の含有量として、好ましくは85~100体積%、より好ましくは90~100体積%等が例示される。また、本開示の被覆層中のケイ酸塩の含有量は、80~99体積%、80~98体積%、80~95体積%、80~90体積%等であってもよい。ケイ酸塩の含有量が多いほど被覆膜の緻密度が高いといえ、これは、高温での酸化環境における表面劣化を抑制する点で有用であるといえる。特に、本開示によれば、このように被覆層においてSiO含有量を著しく低減し、ケイ酸塩の含有量を向上できることから、高温での酸化環境における表面劣化を抑制する点で有用であるといえる。このことから、本開示の被覆層では、ガス(二酸化炭素)の残存も抑制されている。
 本開示において被覆層中のケイ酸塩の含有量は、後述の実施例に従い決定される。具体的には、走査電子顕微鏡による被覆層の断面画像観察、エネルギー分散型X線分光法による元素マッピング(EDX)により、被覆層内の組成分析を行い、被覆層中のケイ酸塩を特定し、画像解析から所定範囲あたりの被覆層内のケイ酸塩の体積の割合を算出し、その算出値の平均値を、炭化ケイ素セラミックスを構成する被覆層中のケイ酸塩の含有量とする。所定範囲とは、断面画像内の任意の1か所の被覆層の厚み(基材に対して被覆層が形成されている方向(基材表面と垂直))を1辺とし、該厚みと同じ幅であって断面画像内の基材表面に沿う直線をもう1辺として作成される正方形を意味し、該正方形における被覆層内のケイ酸塩の体積の割合を画像解析から算出する。任意の別の1か所で、同様にして、正方形における被覆層内のケイ酸塩の体積の割合を算出する。得たられた2カ所の割合の平均値を、炭化ケイ素セラミックスを構成する被覆層内のケイ酸塩の体積の割合とする。
 本開示において被覆層の厚みは制限されず、目的に応じて適宜決定すればよい。被覆層の厚みの下限値として、好ましくは5μmが例示され、より好ましくは10μm、15μm、20μm、35μm、40μm等が例示される。被覆層の厚みの上限値として、好ましくは180μm、150μm、130μm等が例示される。このように、被覆層の厚みとして好ましくは5~180μmの範囲内の任意の値が例示され、例えば10~100μm、10~150μm等が例示される。
 本開示において被覆層の厚みは、後述の実施例に従い決定される。具体的には、走査電子顕微鏡による被覆層の断面画像観察、エネルギー分散型X線分光法による元素マッピング(EDX)により、被覆層内の組成分析を行い、被覆層を特定し、画像から被覆層の任意の10地点の厚み(基材に対して被覆層が形成されている方向(基材表面と垂直))を測定し、その平均値を炭化ケイ素セラミックスを構成する被覆層の厚みとする。
 本開示を制限するものではないが、被覆層の一例として、好ましくはケイ酸塩の含有量が80体積%以上且つ厚みが5μm以上が挙げられ、より好ましくはケイ酸塩の含有量が90~100体積%且つ厚みが10~100μm、ケイ酸塩の含有量が80~100体積%且つ厚みが10~150μm、ケイ酸塩の含有量が80~98体積%且つ厚みが10~150μm、ケイ酸塩の含有量が80~98体積%且つ厚みが10~120μm等が例示される。該含有量や厚みは、前述と同様に説明され、好ましくは前記値の範囲内で適宜調整すればよい。
 被覆層は、前記ケイ酸塩を前述の通りに含有する限り制限されないが、本開示の効果を妨げない範囲で、前記被覆層前駆体に由来する各種成分を含有してもよい。このような成分として、未反応の原料(未反応の金属酸化物等)が例示される。
 本開示の炭化ケイ素セラミックスは、このようにして炭化ケイ素セラミックス基材の表面に被覆層を設けることにより製造することができる。本開示を制限するものではないが、本開示の炭化ケイ素セラミックスは、後述の製造方法に従い製造することができる。
2.炭化ケイ素セラミックスの製造方法
 本開示は、炭化ケイ素セラミックス基材とその表面を被覆する被覆層とを備える炭化ケイ素セラミックスの製造方法であって、
(A)分散媒中で、少なくとも炭化ケイ素形成原料及び金属酸化物を分散する工程、
(B)工程(A)で得られた分散物を焼結する工程、
(C)工程(B)で得られた焼結物の表面に、金属酸化物を含有する被覆層前駆体を付与した後、前記焼結物及び前記被覆層前駆体を、前記焼結物に由来する二酸化ケイ素と前記焼結物及び前記被覆層前駆体に由来する金属酸化物との共晶温度以上で熱処理することにより、前記被覆層前駆体をケイ酸塩を含有する被覆層に転化する工程、
を含むことを特徴とする、炭化ケイ素セラミックスの製造方法を包含する。
工程(A)
 本開示の製造方法は、(A)分散媒中で、少なくとも炭化ケイ素形成原料及び金属酸化物を分散する工程を含有する。
 炭化ケイ素形成原料として、SiC粉末、ケイ素(Si)粉末、炭素(C)粉末、炭素成分を含む粉末(フェノール樹脂等の樹脂等)等が例示され、好ましくはSiC粉末、Si粉末、C粉末等が例示される。これらは必要に応じて1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。これらの粉末の粒径は、本開示の効果が得られる限り制限されず、本分野において通常使用される粒径であればよい。本開示を制限するものではないが、例えば、これらの粉末の粒径は、平均粒径として0.02~50μm程度が好ましく例示される。なお、炭化ケイ素形成原料は商業的に入手可能であり、その粒径は、通常、市販品のカタログに従う。また、例えば、SiCの種類も制限されず、立方晶の結晶粉末であるβ-SiC粉末、六方晶系の結晶粉末であるα-SiC粉末等のいずれであってもよい。
 金属酸化物として、金属の酸化物であれば制限されないが、好ましくはRE(REは希土類)で表される希土類酸化物、アルミニウムの酸化物、ハフニウムの酸化物が例示される。金属酸化物は、前記「1.炭化ケイ素セラミックス」と同様に説明され、より好ましくは酸化イッテルビウム(Yb)、酸化スカンジウム(Sc)、酸化イットリウム(Y)、酸化エルビウム(Er)、酸化ルテチウム(Lu)、アルミナ(Al)、酸化ハフニウム(HfO)等が例示される。金属酸化物として、酸化イッテルビウム(Yb)、酸化スカンジウム(Sc)、酸化イットリウム(Y)、酸化エルビウム(Er)、酸化ルテチウム(Lu)、アルミナ(Al)等が例示される。これらは1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。なお、該工程(1)において分散媒に配合する際の金属酸化物は、通常、粉末状である。金属酸化物として、使用環境において安定な金属酸化物の粉末を用いることが好ましい。この限りにおいて制限されないが、金属酸化物の粉末粒径は、平均粒径として好ましくは0.02~50μm程度、より好ましくは0.02~30μm程度、更に好ましくは0.02~10μm程度が例示される。なお、金属酸化物は商業的に入手可能であり、その粒径は、通常、市販品のカタログに従う。
 分散媒として、水、アルコール(エタノール、イソプロパノール等)等の有機溶媒が例示される。これらは1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 分散物には、本開示の効果を妨げない限り、任意の他の成分を配合してもよい。該成分として、焼結助剤等が例示される。これらは1種単独で使用してもよく、2種以上を組み合わせて使用してもよく、その配合量も目的に応じて適宜決定すればよい。
 例えば、分散物中、炭化ケイ素形成原料(粉末)と金属酸化物(粉末)との合計量(合計量)100質量部あたり、焼結助剤が0.1~25重量部程度が例示される。分散媒に配合される焼結助剤は粉末である。焼結助剤を添加することによって、焼結温度が低い場合であっても焼結することが可能となり、マトリックスとして十分な破壊強度を焼結物に付与することが可能となる。焼結助剤としてはBC等が例示される。なお、前記金属酸化物には焼結助剤としての役割を果たすことのできる成分もあり、このような成分として酸化イットリウム(Y)、酸化イッテルビウム(Yb)、アルミナ(Al)等が例示される。このため、分散媒には、このような成分を焼結助剤としての役割も兼ねて配合してもよい。
 分散物は、分散媒、炭化ケイ素形成原料及び金属酸化物を、また、必要に応じて任意の他の成分を、混合することにより得ることができる。分散物の形態は制限されないが、通常、スラリー(懸濁液)である。
 該分散物中、固形分量(炭化ケイ素形成原料、金属酸化物、必要に応じて焼結助剤等)の含有量は特に制限されず、処理が容易な含有量とすればよいが、固形分量として、好ましくは5~50質量%程度、より好ましくは10~30質量%程度が例示される。該分散物中、固形分量として、より好ましくは炭化ケイ素形成原料及び金属酸化物からなる。
 本開示を制限するものではないが、本開示において焼結物は、好ましくは液相焼結法または反応焼結法により作製することが例示される。
 液相焼結法により製造する場合、炭化ケイ素形成原料としてSiC粉末を用いることが好ましく例示され、SiC粉末と金属酸化物とを分散媒に分散させることが好ましく例示される。分散物中のこれらの量は制限されないが、好ましくは本開示の方法により製造された炭化ケイ素セラミックスを構成する炭化ケイ素セラミックス基材が、前記「1.炭化ケイ素セラミックス」に記載する炭化ケイ素セラミックス基材における成分の含有量を充足する範囲において適宜決定することが例示される。
 反応焼結法により製造する場合、炭化ケイ素形成原料として好ましくはSiC粉末、Si粉末、C粉末、炭素成分を含む樹脂(フェノール樹脂等の樹脂)等を適宜選択して用いればよい。炭化ケイ素形成原料として、より好ましくはSiC粉末及びSi粉末;Si粉末及びC粉末;SiC粉末、Si粉末及びC粉末を少なくとも用いることが例示される。該炭化ケイ素形成原料と金属酸化物とを分散媒に分散させることが好ましく例示される。分散物中のこれらの量も制限されず、前述と同様にして説明される。
工程(B)
 本開示の製造方法は、(B)工程(A)で得られた分散物を焼結する工程を含有する。
 工程(B)における焼結は、前記分散物を焼結できる限り、その手順は制限されない。一例として、焼結は次の液相焼結法、反応焼結法による手順に従い行うことができる。
・液相焼結法
 焼結条件は、前記分散物を焼結できる限り制限されない。焼結温度は、通常、1400℃程度以上が例示される。焼結温度として、より高い破壊強度を付与する観点から、1700℃程度以上が好ましく例示される。分散物に焼結助剤を配合する場合や焼結助剤として有用な金属酸化物を配合する場合、焼結温度を低めに設定することが可能になり、焼結温度として、例えば1400℃程度以上、好ましくは1600℃程度以上が例示され、十分な破壊強度を付与することができる。焼結温度の上限は、マトリックス(SiC)の耐熱温度とすればよく、好ましくは2500℃程度が例示される。このことから、焼結温度は1400~2500℃程度の間が好ましく例示される。なお、本開示を制限するものではないが、例えば炭化ケイ素繊維共存下で焼結を行う場合は、該繊維の耐熱性を考慮して、1400~2000℃程度の焼結温度としてもよく、このように使用するセラミックス繊維に応じて適宜決定できる。
 焼結時の圧力は、焼結物が得られる限り制限されない。特に制限されないが、通常、圧力が高い程、短時間でマトリックスに十分な強度を付与できることから、焼結時の圧力として、5MPa程度以上が例示されるが、例えば10~40MPa程度であってもよい。本開示を制限するものではないが、例えば炭化ケイ素繊維等のセラミック繊維共存下で焼結を行う場合、好ましくは10~40MPa程度、より好ましくは10~30MPa程度が例示される。
 焼結時間も、本開示を制限するものではないが、0.5~10時間程度が例示され、好ましくは0.5~5時間程度が例示される。
 焼結時の雰囲気は、本開示を制限するものではないが、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気が例示され、好ましくはアルゴン雰囲気、窒素雰囲気が例示される。
・反応焼結法
 焼結条件は、前記分散物を焼結できる限り制限されない。焼結条件は、通常、シリコンの融点以上の温度に加熱して、分散物中のSiとCとを反応させることによってSiCが形成され、SiCをマトリックスとする焼結物を得ることができる。分散物において、炭素成分(C)を含む粉末としては、通常、C粉末を用いればよいが、シリコンの融点以下で炭化する、フェノール樹脂等の樹脂を用いてもよい。このような樹脂粉末を用いる場合は、シリコンの融点以上の温度に加熱する工程において、シリコンの融点である1414℃に達する前に樹脂が炭化し、次いで、シリコンの融点に達した段階で樹脂の炭化した成分と熔融シリコンとが反応してSiCが形成される。Si成分としては、Si粉末を用いるが、SiC粉末を配合するによって、SiC粉末が核となり、その周囲に反応によって生じたSiCが成長する。これにより、SiCマトリックスの形成効率を高めることができる。
 また、分散物には、Si以外(すなわちSi粉末以外)の炭化ケイ素形成原料を配合しておき、必要に応じて分散物を乾燥させ、分散物または乾燥物に対してSi粉末(過剰量程度であってもよい)を適用(振りかける等)してもよい。該適用後、シリコンの融点以上の温度で加熱して、溶融したSiが、分散物または乾燥物に存在する炭化ケイ素形成原料の粉末と反応することによりSiCを形成させもよい。この場合、Si粉末を適用する量は、前記分散物中の含有量等を参考にして適宜決定すればよい。
 このことから、焼結温度は、シリコンの融点である1414℃程度以上とすればよく、十分な破壊強度を付与するためには、1450℃程度以上、1500℃程度以上とすることが好ましい。焼結温度の上限については、SiCマトリックスの耐熱温度とすればよく、例えば2500℃程度迄が好ましく例示される。このことから、焼結温度はシリコンの融点以上2500℃程度以下の間が好ましく例示される。なお、本開示を制限するものではないが、例えば炭化ケイ素繊維共存下で焼結を行う場合は、該繊維の耐熱性を考慮して、1400~2000℃程度の温度としてもよく、このように使用するセラミックス繊維に応じて適宜決定できる。
 焼結時の雰囲気は、本開示を制限するものではないが、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気が例示され、好ましくはアルゴン雰囲気、窒素雰囲気が例示される。また、必要に応じて加圧しても良い。焼結時の圧力は、圧力が高い程、短時間で十分な強度を付与できる。通常、5MPa程度以上の圧力とすればよいが、例えば10~40MPa程度であってもよい。本開示を制限するものではないが、例えば炭化ケイ素繊維等のセラミック繊維共存下で焼結を行う場合、好ましくは10~40MPa程度、10~30MPa程度の圧力とすることが好ましく例示される。
 本開示を制限するものではないが、いずれの方法で焼結物を作製する場合であっても、焼結前に、分散物を所望の形状に成形し乾燥させてもよい。乾燥温度及び乾燥時間は、適宜設定すればよい。乾燥時の雰囲気も制限されず、大気中での自然乾燥、真空乾燥等が例示される。
 また、本開示を制限するものではないが、いずれの方法で焼結物を作製する場合であっても、焼結物(炭化ケイ素マトリックス基材)にセラミックス繊維を配置してもよい。セラミックス繊維は前述と同様に説明される。この場合、分散物とセラミックス繊維とを混合したのちに、前述の通り焼結を行えばよい。分散物とセラミックス繊維との配合量は制限されず、目的に応じて適宜設定すればよい。また、焼結物中のセラミックス繊維の含有量も制限されない。好ましくは本開示の方法により製造された炭化ケイ素セラミックスを構成する炭化ケイ素セラミックス基材が、前記「1.炭化ケイ素セラミックス」に記載する炭化ケイ素セラミックス基材における含有量を充足する範囲において適宜決定することが例示され、例えば、該基材中にセラミックス繊維が70質量%以下になるように分散物にセラミックス繊維を配合することが例示される。
 分散物とセラミックス繊維との混合は、いかなる手順に従い行ってもよく、例えば、セラミックス繊維(前述の通り、束状の繊維、繊維構造物等の形態は問わない)に分散物を塗布する、セラミックス繊維を分散物に浸漬させる等のいずれの手順であってもよい。また、分散物を型に入れ、セラミックス繊維を任意の形状に配置することでき、例えば、束状の繊維を一方向に配置してよく、交差する二方向に配置してもよく、それ以外の任意の方向に配置してもよい。また、セラミックス繊維がシート状である場合、該シートを2枚以上重ねて配置してもよく、シート同士が垂直になるように配置してもよく、各シートが異なる方向になるように配置されてもよい。このように、分散物におけるセラミックス繊維の配置は、目的に応じて適宜決定すればよい。
 また、分散物とセラミックス繊維との混合物を、焼結前に乾燥させてもよい。乾燥温度、乾燥時間、雰囲気等は、前述の通り、適宜設定すればよい。
 このようにして得られた分散物(セラミックス繊維との混合体)を焼結すればよい。これによれば、炭化ケイ素セラミックス基材中にセラミックス繊維を備えた炭化ケイ素セラミックスが容易に得られ、炭化ケイ素セラミックス基材の破壊靭性の一層の向上等の観点から好ましい。
 本開示によれば、このようにして分散物を焼結させることにより、焼結物が得られる。焼結物の表面には焼結物の酸化による二酸化ケイ素(SiO)が存在する。
工程(C)
 本開示の製造方法は、(C)工程(B)で得られた焼結物の表面に、金属酸化物を含有する被覆層前駆体を付与した後、前記焼結物及び前記被覆層前駆体を、前記焼結物に由来する二酸化ケイ素と前記被覆層前駆体及び前記焼結物に由来する金属酸化物との共晶温度以上で熱処理することにより、前記被覆層前駆体をケイ酸塩を含有する被覆層に転化する工程を含有する。
 焼結物の表面への被覆層前駆体の付与は、焼結物の表面全体に行ってもよく、該表面の一部のみに行ってもよく、目的に応じて適宜決定すればよい。
 被覆層前駆体は、金属酸化物を含有する。金属酸化物は前記「1.炭化ケイ素セラミックス」と同様に説明される。前述の通り、金属酸化物は、金属の酸化物であれば制限されないが、好ましくはRE(REは希土類)で表される希土類酸化物、アルミニウムの酸化物、ハフニウムの酸化物が例示され、より好ましくは酸化イッテルビウム(Yb)、酸化スカンジウム(Sc)、酸化イットリウム(Y)、酸化エルビウム(Er)、酸化ルテチウム(Lu)、アルミナ(Al)、酸化ハフニウム(HfO)等が例示される。また、前記「1.炭化ケイ素セラミックス」と同様に、金属酸化物として好ましくは、前記焼結物に用いた金属酸化物と同種の希土類酸化物が例示される。これらは1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 被覆層前駆体に配合される金属酸化物の形状は、通常、粉末状であり、粒径は前述と同様にして説明される。被覆層前駆体中の金属酸化物の含有量も前述と同様に説明される。
 被覆層前駆体には、本開示の効果を妨げない限り、任意の他の成分を配合してもよく、該他の成分についても前述と同様にして説明される。前述の通り、前記金属酸化物は、反応助剤として使用可能な場合があるが、本開示において金属酸化物の含有量は反応助剤には包含されない。
 本開示を制限するものではないが、被覆層前駆体は、好ましくは金属酸化物からなることが例示され、より好ましくは希土類酸化物及びアルミニウムの酸化物からなるか、希土類酸化物からなることが例示される。
 また、前述と同様に、被覆層前駆体の形態は、粉末状(乾燥物)である。被覆層前駆体は、焼結物の表面に付与される。被覆層前駆体を形成するための手段として、粉末状の材料(被覆層前駆体)を付与してもよく、取扱い性(塗布性)を高めるためにスラリー状にした材料を付与後に乾燥することにより粉末状の被覆層前駆体としてもよい。このように、工程(C)における熱処理開始時に被覆層前駆体は粉末状である。
 焼結物の表面への被覆層前駆体の付与は、焼結物の表面に被覆層前駆体が接触する限り制限されない。本開示を制限するものではないが、一例として、焼結物の表面に粉末状の被覆層前駆体を振りかける、焼結物を粉末状の被覆層前駆体に押さえつける、焼結物の表面に粉末状の被覆層前駆体を塗布する、被覆層前駆体に焼結物を埋没させる等により該表面に被覆層前駆体を付着させることが例示される。また、付与量も制限されず、所望の被覆層が得られる限り制限されないが、例えば、焼結物の表面の被覆層を形成させたい部分1cmあたり、粉末状の被覆層前駆体0.01~0.5gが例示され、より好ましくは0.05~0.75gが例示される。
 焼結物の表面への被覆層前駆体の付与後、焼結物及び被覆層前駆体を、焼結物に由来する二酸化ケイ素と被覆層前駆体及び焼結物に由来する金属酸化物等との共晶温度以上で熱処理する。焼結物の酸化により焼結物の表面には二酸化ケイ素が存在しており、焼結物に由来する二酸化ケイ素とは、焼結物に存在する二酸化ケイ素を意味し、特に、焼結物の表面であって、被覆層前駆体の付与部分に存在する二酸化ケイ素を意味する。焼結物に由来する金属酸化物とは、焼結物に含まれる金属酸化物を意味する。被覆層前駆体に由来する金属酸化物とは、被覆層前駆体に含まれる金属酸化物を意味する。
 共晶温度以上で熱処理とは、前述の通り、二酸化ケイ素と金属酸化物との共晶反応が生じる限り制限されない。金属酸化物の種類に応じて共晶温度が異なることから、共晶温度は、使用する金属酸化物に応じて適宜決定すればよい。本開示を制限するものではないが、使用する金属酸化物の状態図等から導き出す共晶温度の-50℃~+200℃、好ましくは-50℃~+100℃程度が例示される。
 なお、焼結物に由来する金属酸化物と前記二酸化ケイ素との共晶反応は、焼結物に存在する金属酸化物全てが二酸化ケイ素と共晶反応する必要はない。例えば、金属酸化物は、高温での加熱により焼結物の表面へ拡散する特性を有する。このため、本開示において、焼結物に由来する金属酸化物と前記二酸化ケイ素との共晶反応は、焼結物の表面で生じる反応を意味する。
 熱処理時間も、本開示を制限するものではないが、0.5~100時間程度が例示され、好ましくは0.5~50時間程度、より好ましくは1~20時間程度が例示される。
 熱処理時の雰囲気も、本開示を制限するものではないが、大気雰囲気、水蒸気雰囲気等が例示され、好ましくは大気雰囲気等が例示される。
 このように熱処理することにより、被覆層前駆体が、ケイ酸塩を含有する被覆層に転化する。すなわち、焼結物(炭化ケイ素セラミックス基材)に由来する二酸化ケイ素と被覆層前駆体及び焼結物に由来する金属酸化物との共晶反応物であるケイ酸塩を含有する被覆層が得られる。
 このように、本開示においては被覆層を形成するケイ酸塩は、被覆層前駆体及び焼結物に由来することを特徴とする。ケイ酸塩は、前記「1.炭化ケイ素セラミックス」と同様に説明される。
 このようにして、本開示の、炭化ケイ素セラミックス基材とその表面を被覆する被覆層とを備える炭化ケイ素セラミックスを製造することができる。
 なお、本開示を制限するものではないが、前記工程(B)で得た焼結物に対して、前記共晶反応前に、更に加熱を行ってもよい。焼結物に対して、前記共晶反応前に加熱を行う工程を、工程(C’)とする。
 工程(C’)における加熱温度は、1000~1600℃程度、好ましくは1150~1500℃程度が例示される。また、該加熱は、主として工程(B)により得た焼結物の表面に更にSiOを生成させることを目的とすることから、酸化雰囲気下で実施され、酸化雰囲気下としては大気雰囲気下、水蒸気雰囲気下等が例示され、好ましくは大気雰囲気下が例示される。加熱時間も、本開示を制限するものではないが、10分~10時間程度が例示され、好ましくは15分~3時間程度が例示される。
 工程(C’)により焼結物の表面に更にSiOを生成させ、その後、工程(C’)において得られた焼結物の表面に前記被覆層前駆体を付与し熱処理を行うことによって、該表面においてSiOと金属酸化物との共晶反応が促進され、その結果、厚みが向上され且つ緻密度が高い被覆層を備えた炭化ケイ素セラミックスを一層簡便に製造することができる。なお、工程(C’)の工程後に工程(C)を行う場合、共晶反応は酸化雰囲気下で行ってもよく、不活性雰囲気下で行ってもよく、好ましくは酸化雰囲気下で行う。
 このようにして、本開示の炭化ケイ素セラミックスを製造することができる。該炭化ケイ素セラミックスにおいて、被覆層中のケイ酸塩の含有量は80体積%以上であり、好ましい含有量についても前記「1.炭化ケイ素セラミックス」と同様に説明される。ケイ酸塩の含有量が多いほど被覆膜の緻密度が高いといえる。本開示の製造方法によれば、被覆層においてSiO含有量を著しく低減し、且つ、ケイ酸塩の含有量を向上できることから、該方法により製造された炭化ケイ素セラミックスは、高温での酸化環境における表面劣化を抑制する点で有用であるといえる。
 被覆層の厚みも制限されないが、厚みとして、好ましくは5μm以上が例示され、より好ましい厚みについても前記「1.炭化ケイ素セラミックス」と同様に説明される。
 本開示を制限するものではないが、被覆層の一例として、好ましくはケイ酸塩の含有量が80体積%以上且つ厚みが5μm以上が挙げられ、より好ましくはケイ酸塩の含有量が90~100体積%且つ厚みが10~100μm、ケイ酸塩の含有量が80~100体積%且つ厚みが10~150μm、ケイ酸塩の含有量が80~98体積%且つ厚みが10~150μm、ケイ酸塩の含有量が80~98体積%且つ厚みが10~120μm等が例示される。該含有量や厚みは、前述と同様に説明され、好ましくは前記値の範囲内で適宜調整すればよい。
 このほか被覆層について、更には炭化ケイ素セラミックスについては、前記「1.炭化ケイ素セラミックス」と同様に説明される。
 本開示によれば、表面劣化を一層抑制可能な炭化ケイ素セラミックスを得ることができる。また、本開示によれば、セラミックス繊維を含有している場合であっても、SiCマトリックスとセラミックス繊維との間に界面層が存在しない炭化ケイ素セラミックスを得ることができる。このことから、そのマトリックスにセラミックス繊維を配合する場合であっても、表面劣化を一層抑制可能な炭化ケイ素セラミックスを簡便に得ることができる。
 本開示の炭化ケイ素セラミックスによれば、前述の通り、被覆層を形成するケイ酸塩が、被覆層前駆体及び焼結物に由来し、且つ、被覆層前駆体及び焼結物に由来する金属酸化物と、焼結物の表面に由来するに二酸化ケイ素との共晶反応により生じていることから、被覆層と焼結物(基材)との間に滞留しやすい二酸化ケイ素の残留が著しく抑制されている。これは、被覆層と基剤とを強固に一体化できることを意味し、より耐久性に優れた炭化ケイ素セラミックスを提供できることを意味する。
 また、後述の実施例から理解できる通り、本開示によれば、被覆層にガスが残存しにくいという点でも、緻密度に優れた被膜層を有する炭化ケイ素セラミックスを提供できる。
 以下、例を示して本開示の実施形態をより具体的に説明するが、本開示の実施形態は下記の例に限定されるものではない。
試験例1
1.炭化ケイ素セラミックスの製造手順
1-1)焼結物の製造
 粉末(SiC粉末を80質量%、Yb2O3粉末を17質量%、Al2O3粉末を3質量%)と分散媒(エタノール)とを質量比1:4となるように混合して、分散物を得た。得られた分散物を型に入れて自然乾燥後、アルゴン雰囲気下、20MPa、1890℃、1時間の加熱条件で焼結させることにより、焼結物を得た。本試験例で用いたSiC粉末の平均粒径は0.27μm(商品名GC40000、フジミインコーポレーテッド社製)、Yb2O3粉末の平均粒径は1μm(商品名Yb2O3、高純度化学研究所社製)、Al2O3粉末の平均粒径は1μm(商品名α-Al2O3、高純度化学研究所社製)であった。
1-2)被覆層前駆体を用いた被覆層の形成
 このようにして得た焼結物を被覆層前駆体に埋めることにより、焼結物の表面に被覆層前駆体を付与した。換算値として該焼結物1cmあたり50mgの被覆層前駆体を付与したと推定された。該被覆層前駆体として、Yb2O3を85質量%、Al2O3を15質量%含有する粉体混合物を用いた。焼結物製造時と同じ粉末を用いた。次いで、被覆層前駆体を付与した焼結物を、大気雰囲気下、該焼結物に由来する二酸化ケイ素(SiO2)と前記被覆層前駆体及び焼結物に由来するYb2O3及びAl2O3との共晶反応が生じる温度(1430℃)で18時間加熱することにより共晶反応物としてケイ酸塩(Yb2Si2O7)を形成させて、前記被覆層前駆体をケイ酸塩を含有する被覆層に転化させた。これにより、炭化ケイ素セラミックス基材(焼結物)とその表面を被覆する被覆層とを備える炭化ケイ素セラミックス(実施例1)を得た。
 比較例として、前述と同様に調製した分散物を、1890℃、20MPa、1時間の加熱条件で焼結させることにより、焼結物を製造し、得られた焼結物を、被覆層前駆体を用いることなく、更に大気雰囲気下、1430℃、18時間熱処理することにより、焼結物にケイ酸塩を含む表面改質層を形成させて、炭化ケイ素セラミックスを(比較例1)得た。
2.結果
 図1に、炭化ケイ素セラミックス(実施例1)の製造過程の模式図と、炭化ケイ素セラミックス(実施例1)表面の走査電子顕微鏡(SEM)画像を示す。図1は、焼結体中の金属酸化物の拡散、焼結体及び被覆層前駆体中の金属酸化物とシリカとの反応、被覆層形成の模式図であり、また、粉体(被覆層前駆体)中での大気酸化後の表面SEM画像である。図2に、炭化ケイ素セラミックス(実施例1)の断面のSEM画像(左)と、エネルギー分散型X線分光法(EDS)による元素マッピング(EDX)結果(右)を示す。また、図3に、炭化ケイ素セラミックス(実施例1)の断面のSEM画像を示す。SEM画像、EDXによる元素マッピング結果は、使用説明書の手順に従い取得した。また、図4に、炭化ケイ素セラミックス(比較例1)の製造過程の模式図と、炭化ケイ素セラミックス(比較例1)表面のSEM画像を示す。図4は、金属酸化物の拡散のみによる表面改質の模式図であり、また、大気酸化後の表面SEM画像である。図5に、炭化ケイ素セラミックス(実施例1)の断面のSEM画像(左)と、EDX結果(右)を示す。
 図1に示す通り、実施例1の炭化ケイ素セラミックスでは、前記手順に従い被覆層前駆体を付与し、共晶反応させることにより得た被覆層において、共晶反応物であるYb2Si2O7が高含有量で形成されていることが分かった。また、該被覆層中のSiO2の含有量が著しく低減されていることが分かった。また、図2に示す通り、得られた炭化ケイ素セラミックスの断面においても、共晶反応物であるYb2Si2O7が効率よく形成されていることが分かった。図2の結果からも、被覆層にYb2Si2O7が高含有量で形成されていることが分かった。なお、図2において、炭化ケイ素セラミックス基材(マトリックス)領域が主としてSiCで構成されていることから、被覆層領域においてSiの強度が低くなり目視し難いところがあるが、EDSの点分析とXRDの結果から、被覆層においてYbと重なる領域がYb2Si2O7であることを確認した。また、図3に示す通り、被覆層中のケイ酸塩(Yb2Si2O7)の含有割合は97.8体積%であった。ケイ酸塩の含有割合が高いほど、被覆層の緻密度が高いといえる。また、このことからも、本開示の被覆層はSiO2の含有量が著しく低減されていることが理解できる。このことから、実施例1の炭化ケイ素セラミックスは、高温での酸化環境における表面劣化を抑制できるといえ、すなわち、表面劣化の抑制の点で非常に優れているといえる。
 なお、本試験例において被覆層のケイ酸塩(Yb2Si2O7)含有量は、次のようにして算出した。走査電子顕微鏡による被覆層の断面画像観察、エネルギー分散型X線分光法による元素マッピング(型番Ultra 55、Zeiss社製)により、被覆層内の組成分析を行い、被覆層中のケイ酸塩を特定し、該断面画像内の任意の1か所の被覆層の厚み(焼結体表面から被覆層表面までの距離)を測定した。この厚み測定部分を1辺として、該厚みと同じ幅であって断面画像内の炭化ケイ素セラミックス基材表面に沿う直線をもう1辺として、正方形とした。画像解析から該正方形における被覆層内のケイ酸塩の体積の割合を算出した。同様にして、任意の別の1か所で正方形における被覆層内のケイ酸塩の体積の割合を画像解析から算出した。このようにして得た2か所の割合の平均値を、実施例1の炭化ケイ素セラミックスを構成する被覆層内のケイ酸塩の体積の割合とした。なお、「焼結体表面から被覆層表面までの距離」は、前述の「基材に対して被覆層が形成されている方向(基材表面と垂直)」と同じ意味といえる。
 これに対して、比較例1の炭化ケイ素セラミックスでは、図4及び5に示す通り、ケイ酸塩の形成が乏しく、被覆層中のケイ酸塩の含有割合が35体積%であった。このように、前記被覆層前駆体を用いることなく作製した比較例1の炭化ケイ素セラミックスでは、被覆層中のケイ酸塩の含有割合が低く、すなわち緻密度が低かった。比較例1においては、SiO2/mulliteの生成速度の方が速く、焼結物の表面をYb2Si2O7で覆うことができないことが分かった。なお、比較例1の炭化ケイ素セラミックスにおいて被覆層の厚みは20μm以下であった。
 また、図5から理解できる通り、比較例1では酸化時に発生するバブル(ガス(二酸化炭素))によって、多くの穴(空間)が開いた状態となった。これに対して、図3等から理解できる通り、実施例1ではガスによる穴が実質的に認められなかった。これは、二酸化ケイ素の生成過程で二酸化炭素が発生するものの、共晶反応の促進により表面が軟化し、ガスの放出が促進されることにより、ガスが残存しにくい可能性が考えられた。
 これらのことから、焼結物に被覆層前駆体を付与後、前記焼結物に由来するSiO2と前記被覆層前駆体及び焼結物に由来する金属酸化物酸化物との共晶温度以上の酸化条件下で熱処理を行うことにより、前記被覆層前駆体を、ケイ酸塩を高い割合で含有する被覆層に転化することができ、これによりケイ酸塩を高含有量で含む被覆層を備えた炭化ケイ素セラミックスを簡便に製造できることが理解できた。すなわち、緻密度が高い被覆層を有する炭化ケイ素セラミックスが簡便に得られることが理解できた。なお、実施例1の炭化ケイ素セラミックスにおいて被覆層の厚みは15μmであった。被覆層の厚みは、走査電子顕微鏡による被覆層の断面画像観察、エネルギー分散型X線分光法による元素マッピングにより、被覆層内の組成分析を行い、被覆層を特定し、画像から被覆層の任意の10地点の厚みを測定し、その平均値を実施例1の炭化ケイ素セラミックスを構成する被覆層の厚みとした。
試験例2
1.炭化ケイ素セラミックスの製造手順
 試験例1の実施例1と同様にして焼結物を得た。得られた焼結物を大気雰囲気下、1250℃、20分間更に加熱した。該加熱後、得られた焼結物の表面に、被覆層前駆体を実施例1と同様にして付与した。なお、本試験例では、被覆層前駆体として、Yb2O3を85質量%、Al2O3を15質量%を含有する粉体混合物を用いた。次いで、被覆層前駆体を付与した焼結物を、大気雰囲気下、試験例1よりも高い温度(1484℃)で15時間加熱することにより、前記被覆層前駆体を、共晶反応物としてケイ酸塩(Yb2Si2O7)を含有する被覆層に転化させた。これにより、前記焼結物に由来する炭化ケイ素セラミックス基材とその表面を被覆する被覆層とを備える炭化ケイ素セラミックス(実施例2)を得た。
2.結果
 結果を図6に示す。図6は、粉体中における大気酸化後の断面SEM画像である。図6に示す通り、得られた炭化ケイ素セラミックスの被覆層中のケイ酸塩の含有割合は82.6体積%であった。また、該被覆層の厚みは110μmであった。このことから、実施例1と同様に、実施例2の炭化ケイ素セラミックスにおいても、被覆層の緻密度が高いことが分かった。また、このように、実施例2の炭化ケイ素セラミックスにおける被覆層は、実施例1の炭化ケイ素セラミックスにおける被覆層よりも厚くなった。このことから、実施例2の炭化ケイ素セラミックスも、表面劣化の抑制の点で非常に優れているといえる。
 なお、実施例1の炭化ケイ素セラミックスよりも、実施例2の炭化ケイ素セラミックスにおいて厚い被覆層が得られた主な理由としては、実施例1よりも高温で熱処理を行ったことにより、より多くのSiO2の形成とケイ酸塩への転換が行われたためと考えられた。
 また、該結果に基づき考察すると、焼結物作製後、被覆層前駆体無しで高温で酸化を行うだけでは、焼結物の表面により多くのSiO2が形成されることが理解できた。これは焼結物(セラミックス)の表面劣化を引き起こす原因になることが示唆された。
 なお、金属酸化物を用いることなく得た作製したSiCマトリックス(炭化セラミックス基材、化学蒸着法(CVD)により作製)の表面に、前記実施例1と同様にして被覆層前駆体を付与し、大気雰囲気で熱処理して、炭化セラミックス(比較例2)を製造した。そうしたところ、比較例2の炭化ケイ素セラミックスでは、マトリックスの表面に由来するSiO2と被覆層前駆体に由来する金属酸化物との共晶反応によるYb2Si2O7の生成が認められたが、このように形成されたYb2Si2O7とSiCマトリックスの間にSiO2が残留し、緻密度が低かった(図7、66体積%未満)。図7は、粉体中における大気酸化後の表面SEM画像である。これは、SiCマトリックスに金属酸化物が存在しなかったことから、該マトリックス内部からの金属酸化物の拡散が生じず、該マトリックス(基材)に由来する金属酸化物とマトリックスの表面に由来するSiO2との共晶反応が生じなかったためであると考えられる。

Claims (7)

  1. 炭化ケイ素セラミックス基材とその表面を被覆する被覆層とを備える炭化ケイ素セラミックスであって、
    (1)前記被覆層は、前記炭化ケイ素セラミックス基材に由来する二酸化ケイ素と前記炭化ケイ素セラミックス基材及び被覆層前駆体に由来する金属酸化物との共晶反応物であるケイ酸塩を含有し、
    (2)前記被覆層中、前記ケイ酸塩の含有量が80体積%以上である、
    ことを特徴とする炭化ケイ素セラミックス。
  2. 前記金属酸化物が、酸化スカンジウム(Sc)、酸化イットリウム(Y)、酸化エルビウム(Er)、酸化イッテルビウム(Yb)、アルミナ(Al)、酸化ハフニウム(HfO)及び酸化ルテチウム(Lu)からなる群より選択される少なくとも1種である、請求項1に記載の炭化ケイ素セラミックス。
  3. 前記被覆層の厚さが10μm以上である、請求項1又は2に記載の炭化ケイ素セラミックス。
  4. 前記炭化ケイ素セラミックス基材がセラミックス繊維を含有する、請求項1~3のいずれか一項に記載の炭化ケイ素セラミックス。
  5. 炭化ケイ素セラミックス基材とその表面を被覆する被覆層とを備える炭化ケイ素セラミックスの製造方法であって、
    (A)分散媒中で、少なくとも炭化ケイ素形成原料及び金属酸化物を分散する工程、
    (B)工程(A)で得られた分散物を焼結する工程、
    (C)工程(B)で得られた焼結物の表面に、金属酸化物を含有する被覆層前駆体を付与した後、前記焼結物及び前記被覆層前駆体を、前記焼結物に由来する二酸化ケイ素と前記焼結物及び前記被覆層前駆体に由来する金属酸化物との共晶温度以上で熱処理することにより、前記被覆層前駆体をケイ酸塩を含有する被覆層に転化する工程、
    を含むことを特徴とする、炭化ケイ素セラミックスの製造方法。
  6. 前記金属酸化物が、酸化スカンジウム(Sc)、酸化イットリウム(Y)、酸化エルビウム(Er)、酸化イッテルビウム(Yb)、アルミナ(Al)、酸化ハフニウム(HfO)及び酸化ルテチウム(Lu)からなる群より選択される少なくとも1種である、請求項5に記載の炭化ケイ素セラミックスの製造方法。
  7. 前記被覆層の厚さが10μm以上である、請求項5又は6に記載の炭化ケイ素セラミックスの製造方法。
PCT/JP2023/007335 2022-03-02 2023-02-28 炭化ケイ素セラミックス及びその製造方法 WO2023167191A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-031961 2022-03-02
JP2022031961A JP2023127960A (ja) 2022-03-02 2022-03-02 炭化ケイ素セラミックス及びその製造方法

Publications (1)

Publication Number Publication Date
WO2023167191A1 true WO2023167191A1 (ja) 2023-09-07

Family

ID=87883796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007335 WO2023167191A1 (ja) 2022-03-02 2023-02-28 炭化ケイ素セラミックス及びその製造方法

Country Status (2)

Country Link
JP (1) JP2023127960A (ja)
WO (1) WO2023167191A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888188A (ja) * 1981-11-20 1983-05-26 住友電気工業株式会社 非酸化物系セラミツクスの製造法
JPH1087386A (ja) * 1996-09-11 1998-04-07 Toshiba Corp 積層セラミックスの製造方法
JP2005097061A (ja) * 2003-09-26 2005-04-14 Chugoku Electric Power Co Inc:The 耐酸化性複合構成繊維結合型セラミックスおよびその製造方法
WO2016093360A1 (ja) * 2014-12-12 2016-06-16 国立大学法人京都大学 炭化ケイ素繊維強化炭化ケイ素複合材料
WO2018212139A1 (ja) * 2017-05-15 2018-11-22 国立大学法人京都大学 炭化ケイ素セラミックス
JP2018193259A (ja) * 2017-05-15 2018-12-06 株式会社東芝 長繊維強化炭化ケイ素部材、その製造方法、および、原子炉構造部材
CN109053207A (zh) * 2018-10-16 2018-12-21 航天特种材料及工艺技术研究所 一种硅酸钇改性碳化硅纤维增强碳化硅复合材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888188A (ja) * 1981-11-20 1983-05-26 住友電気工業株式会社 非酸化物系セラミツクスの製造法
JPH1087386A (ja) * 1996-09-11 1998-04-07 Toshiba Corp 積層セラミックスの製造方法
JP2005097061A (ja) * 2003-09-26 2005-04-14 Chugoku Electric Power Co Inc:The 耐酸化性複合構成繊維結合型セラミックスおよびその製造方法
WO2016093360A1 (ja) * 2014-12-12 2016-06-16 国立大学法人京都大学 炭化ケイ素繊維強化炭化ケイ素複合材料
WO2018212139A1 (ja) * 2017-05-15 2018-11-22 国立大学法人京都大学 炭化ケイ素セラミックス
JP2018193259A (ja) * 2017-05-15 2018-12-06 株式会社東芝 長繊維強化炭化ケイ素部材、その製造方法、および、原子炉構造部材
CN109053207A (zh) * 2018-10-16 2018-12-21 航天特种材料及工艺技术研究所 一种硅酸钇改性碳化硅纤维增强碳化硅复合材料及其制备方法

Also Published As

Publication number Publication date
JP2023127960A (ja) 2023-09-14

Similar Documents

Publication Publication Date Title
JP6954685B2 (ja) 炭化ケイ素繊維強化炭化ケイ素複合材料
CA2444963C (en) A method of manufacturing a sic fiber-reinforced sic-matrix composite
EP3636620A1 (en) Silicon carbide ceramic
Nguyen et al. Strength improvement and purification of Yb2Si2O7‐SiC nanocomposites by surface oxidation treatment
CN107074667A (zh) 一种由自蔓延高温合成制造复合材料部件的方法
WO2006038489A1 (ja) 導電性窒化ケイ素材料とその製造方法
Wang et al. Fabrication of carbon fiber reinforced ceramic matrix composites with improved oxidation resistance using boron as active filler
WO2005066098A1 (ja) 複合材料及びその製造方法
WANG et al. Oxidation behavior of SiC f/SiC composites modified by layered-Y 2 Si 2 O 7 in wet oxygen environment
JPH1059780A (ja) セラミックス基繊維複合材料およびその製造方法
Ren et al. Preparation of MoSi2-modified HfB2-SiC ultra high temperature ceramic anti-oxidation coatings by liquid phase sintering
WO2023167191A1 (ja) 炭化ケイ素セラミックス及びその製造方法
WO2005092610A1 (en) Boron nitride-aluminum (ban) interfaces and coatings and methods for their production and use
Fitriani et al. Fabrication of tough SiCf/SiC composites by electrophoretic deposition using a fabric coated with FeO-catalyzed phenolic resin
JP4014765B2 (ja) 炭化ケイ素長繊維強化セラミックス基複合材料
Hirata et al. Processing of high performance silicon carbide
Cinibulk et al. Porous Rare‐Earth Aluminate Fiber Coatings for Oxide‐Oxide Composites
JP2008297135A (ja) 炭化硼素質焼結体およびその製法ならびに防護部材
Mujib et al. Hybrid HfC‐SiCN matrix for improved oxidation resistance of carbon fiber–reinforced mini‐composites
Sacks et al. Silicon Carbide Fibers with Boron Nitride Coatings
Ji et al. Mechanical Properties and Oxidation Behaviors of Self-Healing SiCf/SiC-SiBCN Composites Exposed to H2O/O2/Na2SO4 Environments
JP3756583B2 (ja) セラミックス基繊維複合材料およびその製造方法
JPH08188480A (ja) 炭素繊維強化セラミックス複合材料およびその製造方法
JPH09268063A (ja) セラミックス基繊維複合材料
JPH01320152A (ja) 炭素繊維強化炭素材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763448

Country of ref document: EP

Kind code of ref document: A1