WO2023167167A1 - リン酸の製造方法 - Google Patents

リン酸の製造方法 Download PDF

Info

Publication number
WO2023167167A1
WO2023167167A1 PCT/JP2023/007246 JP2023007246W WO2023167167A1 WO 2023167167 A1 WO2023167167 A1 WO 2023167167A1 JP 2023007246 W JP2023007246 W JP 2023007246W WO 2023167167 A1 WO2023167167 A1 WO 2023167167A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
bone
protease
solution
calcium
Prior art date
Application number
PCT/JP2023/007246
Other languages
English (en)
French (fr)
Inventor
康一 森本
勝 坂本
善智 田口
Original Assignee
学校法人近畿大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人近畿大学 filed Critical 学校法人近畿大学
Publication of WO2023167167A1 publication Critical patent/WO2023167167A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/18Phosphoric acid
    • C01B25/22Preparation by reacting phosphate-containing material with an acid, e.g. wet process
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F1/00Fertilisers made from animal corpses, or parts thereof
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/20Liquid fertilisers

Definitions

  • the present invention relates to a method for producing phosphoric acid.
  • Phosphoric acid is a material widely used in agriculture and industry. Phosphoric acid is generally produced using phosphate ore as a raw material, but techniques for recovering phosphoric acid from waste have also been developed.
  • Patent Literature 1 discloses a method for recovering phosphoric acid from night soil and septic tank sludge.
  • Patent Literature 2 discloses a method for recovering phosphoric acid from steelmaking slag.
  • Bone tissue is said to contain about 33% phosphoric acid based on the weight before drying. Therefore, if phosphoric acid can be recovered from bone tissue, discarded bones generated at slaughterhouses and the like can become a huge source of phosphoric acid. This is highly desirable for Japan, which depends on imports for all its phosphate rock demand. Therefore, the development of a method for recovering phosphoric acid from bone tissue is desired.
  • An object of one aspect of the present invention is to provide a novel method for producing phosphoric acid.
  • a method for producing phosphoric acid comprising the steps of: (a) a step of acid-treating a bone tissue to obtain an acid extract (b) a step of adding a base to the obtained acid extract to obtain a precipitated calcium phosphate (c) adding an acid to the obtained calcium phosphate precipitate (d) adding one or more selected from the group consisting of sulfates, carbonates and hydrogencarbonates to the resulting calcium phosphate solution to remove precipitated calcium ⁇ 2> Further comprising a step of pretreating the bone tissue prior to step (a); The manufacturing method according to ⁇ 1>, wherein the pretreatment is one or more selected from the group consisting of heating the bone tissue, heating the bone tissue under pressure, and irradiating the bone tissue with microwaves.
  • ⁇ 3> The production method according to ⁇ 1> or ⁇ 2>, further comprising a step of removing anions and cations other than phosphate ions and hydrogen ions after step (d).
  • ⁇ 4> The production method according to any one of ⁇ 1> to ⁇ 3>, wherein the step (b) and the step (c) are repeated twice or more.
  • ⁇ 5> The production method according to any one of ⁇ 1> to ⁇ 4>, wherein in the step (a), the bone tissue is acid-treated with one or more selected from the group consisting of nitric acid, hydrochloric acid, formic acid and sulfuric acid.
  • ⁇ 6> The production method according to any one of ⁇ 1> to ⁇ 5>, wherein in the step (d), sulfuric acid is not added to the calcium phosphate solution.
  • a novel method for producing phosphoric acid is provided.
  • FIG. 2 is a diagram showing the results of protease treatment of bone tissue obtained by acid-treating pig bones with nitric acid.
  • FIG. 3 is a diagram showing the results of treating bone tissue obtained by acid-treating pig bones with nitric acid or hydrochloric acid with actinidyne.
  • FIG. 10 is a diagram showing the results of preparing bone lysate A with solution exchange using various acids and proteases.
  • FIG. 4 is a diagram showing the results of an experiment in which the effect of acid extracts on plant growth was investigated.
  • FIG. 3 is a diagram showing the results of an experiment in which an acid extract, a protease-treated solution, or a bone solubilizing solution A was used to examine the effect of plant growth.
  • FIG. 10 is a diagram showing the results of an experiment comparing the plant growth effects of bone lysate A and a commercially available culture medium.
  • FIG. 10 is a diagram showing the results of an experiment comparing the plant growth effects of bone lysate A and a commercially available culture medium.
  • FIG. 10 is a diagram showing the results of an experiment comparing changes in expression levels of stress tolerance-related genes with bone lysate A and commercially available liquid fertilizers.
  • FIG. 10 is a diagram showing the results of an experiment comparing changes in expression levels of stress tolerance-related genes with bone lysate A and commercially available liquid fertilizers.
  • FIG. 4 is a diagram showing the effect of pretreatment of bone tissue on the amount of phosphoric acid contained in the acid extract. It is a figure showing the result of having analyzed the protein component contained in the acid extract by electrophoresis.
  • FIG. 4 is a diagram showing the results of preparing protease-treated solutions using various proteases.
  • FIG. 4 is a diagram showing the results of electrophoresis analysis of protein components contained in a protease-treated solution.
  • FIG. 10 is a diagram showing the results of preparing bone lysate A with solution exchange using various acids and proteases.
  • FIG. 10 is a diagram showing analysis results of expression-variable genes in leaves of sprouts cultivated for 5 days with bone lysate B or a commercially available liquid fertilizer.
  • FIG. 10 is a diagram showing analysis results of expression-variable genes in roots of sprouts cultivated for 5 days with a mixture of bone solubilizing solution B and a commercially available liquid fertilizer or only with a commercially available liquid fertilizer.
  • FIG. 10 is a diagram showing analysis results of expression-variable genes in leaves of sprouts cultivated for 5 days with a mixture of bone solubilizing solution B and a commercially available liquid fertilizer or only with a commercially available liquid fertilizer. It is an elution curve showing the result of extracting phosphoric acid using commercially available bone meal as a raw material.
  • a method for producing a fertilizer according to one aspect of the present invention includes one or more of the following steps 1 to 3. In one embodiment, the method for producing fertilizer further includes step 4 below. Hereinafter, the steps 2, 3, 4 and 1 will be described in detail in this order.
  • Step 1 Process of treating bone tissue with a solution containing both an acid and a protease to produce a fertilizer from the obtained bone lysate A.
  • Step 2 Acid treatment of bone tissue to obtain an acid extract.
  • Step 3 Process of producing fertilizer from protease-treated solution obtained by treating acid-treated bone tissue with protease
  • Step 4 Mixing acid extract solution and protease-treated solution to obtain Process of manufacturing fertilizer from bone lysate B
  • Step 2 is a step of acid-treating the bone tissue and producing a fertilizer from the resulting acid extract.
  • the inorganic components are separated mainly from the bone tissue and eluted into the acid extract.
  • a fertilizer is produced from the acid extract obtained.
  • the acid extract itself may be used as the fertilizer, or the bone solubilizing solution B mixed with the protease-treated solution may be used as the fertilizer.
  • the bone tissue to be subjected to step 2 may be derived from any organism. Examples of organisms include mammals, birds, amphibians, and fish. In order to mass-produce fertilizer, it is preferable to obtain a large amount of bone tissue as a raw material of fertilizer, and for example, bone tissue of domestic animals (cattle, pig, sheep, chicken, etc.) is preferably used.
  • the bone tissue may be pre-shredded and pulverized prior to the acid treatment. In this way, the bone tissue can be decomposed more efficiently, so the manufacturing time can be shortened.
  • the acid used to treat the bone tissue in step 2 is not particularly limited.
  • acids include hydrochloric acid, nitric acid, formic acid, sulfuric acid, trichloroacetic acid.
  • An acidic demineralization solution such as Planck-Lucro solution may also be used.
  • one or more selected from the group consisting of nitric acid, hydrochloric acid, formic acid and sulfuric acid are preferred.
  • one or more selected from the group consisting of hydrochloric acid, sulfuric acid and nitric acid are preferable, and one or more selected from the group consisting of hydrochloric acid and nitric acid are more preferable.
  • calcium recovery efficiency one or more selected from the group consisting of hydrochloric acid and formic acid is preferable.
  • Two or more kinds of acids may be mixed in an appropriate ratio and used.
  • the bone tissue may be acid-treated with a solution of acid diluted in a solvent.
  • solvents include water, lower alcohols, glycerol, propane-1,2-diol, 1,3-propanediol. Two or more types of solutions may be mixed at an appropriate ratio and used.
  • the acid concentration can be appropriately determined according to the volume of bone tissue to be acid-treated. If the volume of bone tissue is small, it can be treated with low concentrations of acid. When the volume of bone tissue is large, a higher concentration of acid is preferred. When acid treatment is performed with a low-concentration acid, it is preferable to treat pulverized bone tissue. However, even when the volume of the bone tissue is large, if the acid concentration is increased and the bone tissue is immersed for a long period of time, the inorganic components can be sufficiently extracted.
  • the lower limit of the acid concentration in step 2 is 0.6 mol/L or more, 0.7 mol/L or more, 0.8 mol/L or more, or 0 .9 mol/L or more.
  • the upper limit of the acid concentration in step 2 can be 2.0 mol/L or less, 1.5 mol/L or less, 1.0 mol/L or less, or 0.9 mol/L or less. If the concentration of the acid is within the above range, the inorganic components can be efficiently extracted, and since the acid concentration is not too high, the cost of neutralizing the acid extract can be reduced.
  • Suitable acid concentrations for acid treatment of pulverized bone tissue are as follows.
  • the lower limit of the nitric acid concentration is preferably 0.6 mol/L or more, more preferably 0.7 mol/L or more.
  • the upper limit of the concentration of nitric acid is preferably 1.0 mol/L or less, more preferably 0.9 mol/L or less.
  • the lower limit of the concentration of hydrochloric acid is preferably 0.8 mol/L or more, more preferably 0.9 mol/L or more.
  • the upper limit of the concentration of hydrochloric acid is preferably 1.2 mol/L or less, more preferably 1.1 mol/L or less.
  • the lower limit of the concentration of formic acid is preferably 0.8 mol/L or more, more preferably 0.9 mol/L or more.
  • the upper limit of the concentration of formic acid is preferably 1.2 mol/L or less, more preferably 1.1 mol/L or less.
  • the lower limit of the sulfuric acid concentration is preferably 0.8 mol/L or more, more preferably 0.9 mol/L or more.
  • the upper limit of the sulfuric acid concentration is preferably 1.2 mol/L or less, more preferably 1.1 mol/L or less.
  • the above concentration is an example of a suitable concentration when bone tissue is pulverized, and when bone tissue having a larger volume is used as a raw material, the acid concentration may be increased.
  • the lower limit of the extraction time in step 2 is preferably 6 hours or longer, more preferably 8 hours or longer, and even more preferably 10 hours or longer.
  • the upper limit of the extraction time in step 2 is preferably 48 hours or less, more preferably 24 hours or less, and even more preferably 14 hours or less. If the extraction time is within the above range, the inorganic components contained in the bone tissue can be sufficiently extracted.
  • the acid treatment temperature in step 2 is preferably 5 to 60°C. If the acid treatment is carried out within the above temperature range, it is possible to reduce the occurrence of unpleasant odors associated with the acid treatment. As a result, the location requirements for fertilizer manufacturing plants become more lenient. Moreover, in order to adjust the temperature to 60° C. or less, no expensive special equipment is required, and the temperature can be kept constant by using a water bath or an incubator.
  • a chelating agent capable of capturing calcium ions may be added in addition to the acid.
  • the bone tissue may be treated with a chelating agent before and after the acid treatment (the solutions may or may not be exchanged between the acid treatment and the chelating agent treatment).
  • chelating agents include ethylenediaminetetraacetic acid (EDTA, CAS Registry Number: 60-00-4), glycol etherdiaminetetraacetic acid (EGTA, CAS Registry Number: 67-42-5), ethylenediamine-N,N'- and disuccinic acid (EDDS, CAS registry number: 20846-91-7).
  • the pH of the solution containing the chelating agent is preferably 6.0-8.0.
  • the lower limit of the concentration of the chelating agent in step 2 is 0.1 mol/L or more, 0.2 mol/L or more, 0.3 mol/L or more, or It can be 0.4 mol/L or more.
  • the upper limit of the concentration of the chelating agent in step 2 can be 0.9 mol/L or less, 0.8 mol/L or less, 0.7 mol/L or less, or 0.6 mol/L or less.
  • step 2 at least part of calcium may be removed after the acid treatment.
  • methods for removing calcium include neutralizing the acid extract (causing calcium phosphate precipitation), adding sulfuric acid or sulfate (causing calcium sulfate to precipitate), adding carbonic acid or carbonate (calcium carbonate Alternatively, calcium hydrogencarbonate is precipitated), and a method of adding a hydrogencarbonate (calcium carbonate or calcium hydrogencarbonate is precipitated).
  • the concentration of phosphoric acid in the acid extract obtained in step 2 tends to increase when the pretreatment step described later is performed.
  • the concentration of phosphoric acid contained in the acid extract can be, for example, 280 mM or higher, 300 mM or higher, or 320 mM or higher.
  • Step 3 is a step of protease-treating the acid-treated bone tissue and producing a fertilizer from the resulting protease-treated solution.
  • a fertilizer is produced from the resulting protease-treated solution.
  • the protease-treated solution itself may be used as the fertilizer, or the bone solubilizing solution B mixed with the acid extract may be used as the fertilizer.
  • protease used in step 3 is not particularly limited.
  • proteases include serine proteases, cysteine proteases, aspartic proteases, glutamic proteases, metalloproteases.
  • proteases include trypsin [EC 3.4.21.4], chymotrypsin [EC 3.4.21.1], [EC 3.4.21.2], pepsin [EC 3.4.23 .1], ecolysin [EC 3.4.23.19], papain [EC 3.4.22.2], ficin [EC 3.4.22.3], actinidyne [EC 3.4.22.14 ], bromelain [EC 3.4.22.32], cathepsin B [EC 3.4.22.1], cathepsin H [EC 3.4.22.16], cathepsin K [EC 3.4.22. 38], cathepsin L [EC 3.4.22.15], cathepsin S [EC 3.4.22.27], thermolysin [EC 3.4.24.27].
  • a commercially available enzyme preparation may be used as the protease.
  • examples of such formulations include Neurase F3G (from Rhizopus niveus), Orientase AY (from Aspergillus niger), Tetrase (from Aspergillus niger), Sumizyme AP (from Aspergillus niger), Denapsin 2P (from Aspergillus genus), Brewer's Clarex (derived from Aspergillus niger), Maxipro AFP (derived from Aspergillus niger), Protease S “Amano” G (derived from Bacillus stearothermophilus), Protease N “Amano” G (derived from Bacillus subtilis), Protease NL "Amano” (Bacillus subtilis) (derived from Aspergillus oryzae), Protease A "Amano” G (derived from Aspergillus oryzae), Umamizyme (derived from Aspergillus oryzae), Prot
  • the protease used in step 3 is preferably a protease with an optimum pH of 1.5-8.0.
  • proteases having an optimum pH of 1.5 to 8.0 include Protease S "Amano" G (optimum pH: 7.0 to 8.5), Protease N “Amano” G (optimum pH: 6.0 to 7.5), protease NL “Amano” (optimum pH: 6.5 to 7.5), protease A “Amano” G (optimum pH: 6.0 to 7.5), Umamizyme ( Optimum pH: 6.0-7.5), Protease M “Amano” G (optimum pH: 3.0-6.5), Protease P "Amano” 3G (optimum pH: 7.0-8.
  • protease R "Amano" optimum pH: 6.0-8.0
  • actinidyne optimum pH: 2.5-7.5
  • papain optimum pH: 4.0-9.0
  • pepsin optimum pH: 1.5-3.0
  • Neurase F3G optimum pH: 3.0-5.0
  • trypsin optimum pH: 7.0-9.0
  • chymotrypsin optimum pH: 7.0 to 9.0
  • the protease to be used is more preferably a protease having an optimum pH of 1.5-5.0.
  • proteases having an optimum pH of 1.5-5.0 include Protease M "Amano" (optimum pH: 3.0-6.5), actinidin (optimum pH: 2.5-7.
  • protease to be used is more preferably a protease having an optimum pH of 1.5 to 4.0.
  • proteases with an optimum pH of 1.5-4.0 include actinidyne (pH optimum: 2.5-7.5), pepsin (pH optimum: 1.5-3.0), Lase F3G (optimal pH: 3.0-5.0).
  • the concentration of protease in step 3 can be set as appropriate.
  • the lower protease concentration limit can be 2 mg/L or higher or 10 mg/L or higher.
  • the upper limit of protease concentration can be 100 mg/L or less or 50 mg/L or less.
  • the temperature and pH in step 3 can be set as appropriate. Matching the optimum temperature and optimum pH of the protease to be used is preferable for improving the treatment efficiency.
  • Examples of the temperature of the reaction system in step 3 include 20 to 60°C.
  • the lower limit of the temperature of the reaction system in step 2 may be higher than 10°C, higher than 20°C, higher than 25°C, higher than 30°C, higher than 35°C, higher than 40°C, higher than 45°C, higher than 50°C, or higher than 55°C.
  • the upper limit of the temperature of the reaction system in step 2 may be 60° C. or lower or 55° C. or lower.
  • salt may be added to the reaction system.
  • the substrate specificity of the protease may change depending on the salt concentration added to the reaction system. Therefore, by adding a salt to the reaction system, the components contained in the resulting protease-treated solution can be changed.
  • Examples of salts added to the reaction system in step 3 include chloride salts.
  • Examples of chloride salts include NaCl, KCl, LiCl, MgCl2 .
  • the lower limit of the concentration of the salt added to the reaction system in step 3 is more than 0 mmol/L, 20 mmol/L or more, 100 mmol/L or more, 150 mmol/L or more, 200 mmol/L or more, 500 mmol/L or more, 1000 mmol/L or more, 1500 mmol/L. /L or more, 2000mmol/L or more.
  • the upper limit of the concentration of the salt added to the reaction system in step 3 may be 4000 mmol/L or less or 2000 mmol/L or less.
  • the size of the peptide fragment generated in step 3 is 10,000 Da or less, 8,000 Da or less, 6,000 Da or less, or 4,000 Da or less. It is highly probable that a peptide fragment that has been cleaved to such a size has lost its physiological activity. In addition, peptide fragments that have been cleaved to such a size are easily absorbed by plants as nutrients, and may function as active ingredients of fertilizers.
  • the peptide fragment is derived from one or more selected from the group consisting of type I collagen, alpha-2-HS-glycoprotein, periostin, biglycan and SPARC.
  • Step 4 is a step of mixing the acid extract solution obtained in step 2 and the protease-treated solution obtained in step 3, and producing a fertilizer from the bone solubilized solution B obtained. Fertilizer is produced from the obtained bone lysate B.
  • the mixing ratio of the acid extract and the protease-treated solution is not particularly limited. In order to obtain a desired composition of the bone solubilized solution B, the mixing ratio can be appropriately selected.
  • Step 1 is a step of treating bone tissue with a solution containing both an acid and a protease, and manufacturing a fertilizer from the obtained solubilized bone solution A.
  • the acid treatment in step 2 and the protease treatment in step 3 proceed simultaneously.
  • step 1 the order of contacting bone tissue with acid and protease is not particularly limited.
  • order 1 Bone tissue is immersed in a solution containing acid, and after a predetermined time has passed, protease is added to the solution. Prior to adding the protease, the pH of the solution may be adjusted to the optimum pH for the protease.
  • Order 2 Bone tissue is immersed in a solution containing protease, and after a predetermined time has passed, acid is added to the solution.
  • Order 3 A solution containing both acid and protease is prepared, and bone tissue is immersed in the solution.
  • the method for producing a fertilizer according to one embodiment of the present invention may further include steps that are commonly performed in the production of fertilizers. Examples of such steps include pretreatment steps, ingredient addition steps, drying steps, grinding steps, coated granulation steps, and packing steps.
  • the pretreatment process is the process that precedes process 1 or process 2.
  • the raw material bone tissue is pretreated.
  • the amount of phosphoric acid extracted from the bone tissue can be increased (see Example 4).
  • the pretreatment step includes heating bone tissue.
  • the heating temperature at this time may be 30° C. or higher or 40° C. or higher; 100° C. or lower or 80° C. or lower.
  • Bone tissue may be heated while immersed in acid.
  • the pretreatment step heats the bone tissue under pressure.
  • the pressure at this time can be 200 kPa or more or 1 MPa or more; 500 MPa or less or 800 MPa or less.
  • the heating temperature at this time may be 10° C. or higher or 50° C. or higher; 120° C. or lower or 200° C. or lower.
  • the bone tissue is irradiated with microwaves in the pretreatment step.
  • microwaves Any combination of heating, heating under pressure and microwave irradiation may be applied.
  • the microwave irradiation is more preferable as the pretreatment step because the effect can be obtained in a short period of time.
  • the microwave irradiation time can be 5 seconds or more, 10 seconds or more, or 15 seconds or more; 10 minutes or less, 7 minutes or less, or 5 minutes or less.
  • the fertilizer obtained by applying the pretreatment step contains denatured proteins (or fragments thereof).
  • a denatured protein (or a fragment thereof) has lost the physiological activity of the native protein.
  • the ingredient addition process is the process of adding additional fertilizer ingredients.
  • fertilizer components added in the component addition process include potassium components (potassium oxide, potassium hydroxide, potassium chloride, potassium sulfate, etc.), nitrogen components (urea, ammonium nitrate, etc.), magnesium components (magnesium phosphate, magnesium chloride , magnesium sulfate, etc.), vitamins, manganese, boron, iron, copper, zinc, and molybdenum.
  • the acid extract, protease-treated solution, bone solubilizing solution A or bone solubilizing solution B may be mixed with other fertilizers (inorganic fertilizers, organic fertilizers, etc.).
  • the drying step is a step of removing excess water from the acid extract, protease-treated solution, bone solubilized solution A or bone solubilized solution B. Through the drying process, a solid or paste fertilizer is obtained. Solid fertilizers may be cut and pulverized into sizes and shapes that facilitate fertilization, if necessary.
  • the coating granulation process is a process of coating and granulating solid fertilizer.
  • fertilizer is coated with a silicic acid compound or the like, it is possible to adjust the effective timing of fertilizer, prevent immobilization of phosphorus and calcium, prevent fertilizer from running out, and prevent fertilizer from being damaged by impact.
  • the packing process is the process of packing the acid extract, protease-treated liquid, bone solubilized solution A or bone solubilized solution B into a container so that it can be distributed or sold as fertilizer.
  • the acid extract, the protease-treated solution, the bone solubilizing solution A or the bone solubilizing solution B, and instructions for using them as a fertilizer may be combined.
  • the instructions may be printed on the container or may be provided separately from the packaged fertilizer as a physical or electronic document.
  • the manual may describe the formulation of the fertilizer, the method of fertilization, the timing of fertilization, the target crops, and the like.
  • FIG. 1 is an exemplary flow chart representing a manufacturing method including steps 2, 3 and/or 4.
  • an acid extract is obtained through steps S1, S2, S3 and S4.
  • a protease-treated solution is obtained through steps S1, S2 and S5.
  • a bone lysate B is obtained by subjecting the acid extract and the protease-treated solution to step S6. All of the acid extract, protease-treated solution and bone solubilizing solution B can be used as components of fertilizers or mixed fertilizers. Since the acid extract contains phosphoric acid, which is an essential nutrient for plants, it can be used as a fertilizer by itself.
  • step S1 bone tissue is pretreated.
  • Step S1 is an optional step and may not be performed. By pretreating the bone tissue, the amount of phosphoric acid contained in the acid extract can be increased. This step is as described in section [1.5].
  • step S2 the bone tissue is acid treated.
  • the supernatant obtained through step S2 is the acid extract.
  • Production of fertilizer from the acid extract results in step 2 above.
  • the acid treatment of bone tissue is as described in section [1.1].
  • step S3 sulfate, carbonate or hydrogen carbonate is added.
  • Step S3 is an optional step and may not be performed.
  • calcium ions contained in the acid extract are precipitated as calcium sulfate, calcium carbonate, or calcium hydrogen carbonate.
  • sulfates include sodium sulfate, potassium sulfate, ammonium sulfate, magnesium sulfate.
  • carbonates include potassium carbonate and ammonium carbonate.
  • Examples of bicarbonates include potassium bicarbonate.
  • the sulfate is one or more selected from the group consisting of potassium sulfate, ammonium sulfate and magnesium sulfate.
  • the carbonate is potassium carbonate.
  • the bicarbonate is potassium bicarbonate. The use of these sulfates, carbonates or bicarbonates results in potassium, magnesium and/or ammonium being included in the acid extract. These components are important nutrients for plants.
  • step S4 the acid extract is neutralized with a base.
  • Step S4 is an optional step and may not be performed.
  • the liquidity of the acid extract is returned from acidity to near neutrality.
  • usable bases include sodium hydroxide and potassium hydroxide. Of these, when potassium hydroxide is used, potassium ions are included in the acid extract. Since potassium ions are an important nutrient for plants, neutralization with potassium hydroxide is preferred.
  • step S5 the acid-treated bone tissue is treated with protease.
  • the treated liquid obtained through step S5 is the protease-treated liquid.
  • the step 3 described above is performed.
  • the protease-acid treatment of bone tissue is as described in Section [1.2].
  • step S6 the acid extract and the protease-treated liquid are mixed.
  • a solubilized bone solution B is thus obtained.
  • the step 4 described above is carried out. Preparation of bone lysate B is as described in section [1.3].
  • FIG. 2 is an exemplary flow chart representing a manufacturing method including step 1.
  • a bone lysate A is obtained through steps S1, S7, S3 and S4.
  • Bone lysate A can be used as a component of fertilizer or mixed fertilizer.
  • step S7 the bone tissue is treated with both acid and protease. Thereby, a bone lysate A is obtained.
  • the fertilizer is produced from the solubilized bone solution A, the step 1 described above is carried out.
  • the preparation of bone lysate A is as described in section [1.4].
  • a fertilizer according to one aspect of the present invention is a fertilizer obtained by a method for producing a fertilizer according to one aspect of the present invention. Therefore, the fertilizer according to one aspect of the present invention contains acid extract, protease-treated solution, bone solubilizing solution A or bone solubilizing solution B. Among these, the fertilizer containing the solubilized bone A or the solubilized bone B is preferable because it has a higher effect of promoting plant growth.
  • the lower limit of the ratio of acid extract, protease-treated solution, bone solubilizing solution A or bone solubilizing solution B to the total weight of the fertilizer is 0.01 wt% or more, 0.05 wt% or more, 0.1 wt% 0.5% by weight or more, 1% by weight or more, 5% by weight or more, 10% by weight or more, 20% by weight or more, 30% by weight or more, 40% by weight or more, 50% by weight or more, 60% by weight or more, 70 It can be weight percent or higher, 80 weight percent or higher, or 90 weight percent or higher.
  • the upper limit of the ratio of the acid extract, protease-treated solution, bone solubilizing solution A or bone solubilizing solution B to the total weight of the fertilizer is 100% by weight.
  • the fertilizer consists solely of acid extract, protease treatment, bone lysate A, bone lysate B, or any mixture thereof.
  • the composition of the fertilizer may be changed as necessary.
  • some or all of phosphorus and calcium may be changed to calcium dihydrogen phosphate or calcium citrate.
  • the timing of fertilization can be adjusted so that phosphorus and calcium are supplied in accordance with the growth stage of the plant body.
  • Fertilizer can be either solid fertilizer or liquid fertilizer. Since the acid extract, the protease-treated solution, the bone solubilized solution A, or the bone solubilized solution B are obtained as liquids, they can be easily processed into liquid fertilizers. According to the method for producing a fertilizer according to one embodiment of the present invention, the components of bone tissue (for example, all components of bone tissue) can be solubilized, so a liquid fertilizer rich in components useful for plant growth can be obtained. expected to be In addition, while existing bone-derived solid fertilizers (bone meal) are slow-acting and often used for soil improvement over several years, liquid fertilizers are expected to be immediate-acting. Furthermore, while bone meal is not suitable for hydroponics, liquid fertilizers are suitable for hydroponics. In addition, liquid fertilizers have the advantage of being easily applied for foliar applications.
  • the fertilizer may contain components other than the acid extract, the protease-treated solution, the bone solubilizing solution A, or the bone solubilizing solution B.
  • ingredients include acid fertilizers, alkaline fertilizers, and other common fertilizers.
  • acid fertilizers include ammonium sulfate, lime superphosphate, potassium sulfate, aluminum sulfate, peat moss, black earth, ash, and alum.
  • alkaline fertilizers include grass and wood ash, lime nitrogen, chile saltpeter, fish compost, magnesia lime, organic lime, slaked lime, lime nitrogen, limestone, cement, sodium bicarbonate, shells, rice husks and charcoal.
  • Other common fertilizers include straw, bark and molasses.
  • Free amino acids ⁇ -aminobutyric acid, etc.
  • plant growth hormones auxin, etc.
  • trace elements magnesium, sulfur, iron, manganese, zinc, copper, boron, molybdenum, etc.
  • a fertilizer according to an aspect of the present invention contains a decomposition product of bone tissue. Therefore, it often contains type I collagen, osteocalcin, alpha-2-HS-glycoprotein, periostin, biglycan, SPARC or its degradation peptides, which are the main organic components of bone tissue. These ingredients are less likely to be contained in fertilizers obtained by other manufacturing methods. Therefore, a fertilizer containing type I collagen, osteocalcin, alpha-2-HS-glycoprotein, biglycan, SPARC, degradation peptides thereof, or a combination thereof is produced by the production method according to one embodiment of the present invention. There is a high probability that it is a fertilizer that has been used.
  • the fertilizer contains peptide fragments derived from one or more selected from the group consisting of type I collagen, alpha-2-HS-glycoprotein, periostin, biglycan and SPARC.
  • a method for producing a fertilizer according to an embodiment of the present invention may include protease treatment of bone tissue (steps S5 and S7). The location of the peptide chain cleaved by the protease is determined uniquely to the protease. Therefore, treatment of a particular protein with a particular protease will uniquely define the peptide fragments produced by the treatment. Since each fragment has a different molecular weight, for example, by mass spectrometry, the protein before protease treatment can be identified from peptide fragments contained in fertilizer.
  • the peptide fragments contained in the fertilizer are peptides derived from one or more selected from the group consisting of type I collagen, alpha-2-HS-glycoprotein, periostin, biglycan and SPARC. Whether or not it is a fragment can be determined.
  • Table 1 shows examples of peptide fragments that can be detected by LC-MS/MS.
  • This peptide fragment is the peptide fragment that can appear when manure is analyzed without trypsinization. Since it has not been trypsinized, the C-terminus of the peptide fragment is an amino acid that is not Lys or Arg.
  • peptide fragments derived from one or more selected from the group consisting of type I collagen, alpha-2-HS-glycoprotein, periostin, biglycan, and SPARC do not have bioactivity.
  • a method for producing a fertilizer according to an embodiment of the present invention includes a plurality of steps in which proteins can lose their physiological activity.
  • One is a pretreatment step.
  • the pretreatment step the bone tissue is heated, the bone tissue is heated under pressure, or the bone tissue is irradiated with microwaves, so that proteins are denatured and lose their physiological activity.
  • the other is the protease treatment in steps 1 and 3. Proteins treated with proteases become fragments and lose their original physiological activity.
  • the size of the peptide fragment derived from one or more selected from the group consisting of type I collagen, alpha-2-HS-glycoprotein, periostin, biglycan and SPARC is 10,000 Da or less. 000 Da or less, 6,000 Da or less, or 4,000 Da or less. It is highly probable that a peptide fragment that has been cleaved to such a size has lost its physiological activity. In addition, peptide fragments that have been cleaved to such a size are easily absorbed by plants as nutrients, and may function as active ingredients of fertilizers.
  • physiological activities of type I collagen, alpha-2-HS-glycoprotein, periostin, biglycan and SPARC are as follows. The fact that fragments derived from them lack physiological activity means that they do not have the following activities.
  • - Physiological activity of type I collagen It self-assembles to form fibrils under physiological conditions.
  • - Biological activity of alpha-2-HS-glycoprotein binds calcium ions.
  • periostin It functions as a cell adhesion molecule for osteoprogenitor cells.
  • biglycan binds to type I collagen.
  • SPARC Promotes type I collagen synthesis in cultured dermal fibroblasts.
  • the fertilizer contains phosphoric acid.
  • the concentration of phosphoric acid contained in the fertilizer tends to increase.
  • the concentration of phosphate contained in the fertilizer can be, for example, 280 mM or higher, 300 mM or higher, or 320 mM or higher.
  • the fertilizer contains both peptide fragments derived from one or more selected from the group consisting of type I collagen, alpha-2-HS-glycoprotein, periostin, biglycan and SPARC, and phosphate. contains.
  • a method for producing phosphoric acid includes, for example, a calcium phosphate purification step and a calcium removal step.
  • steps for producing calcium phosphate include the following procedures. 1. An alkaline solution is added to the acid extract obtained in step 2 to neutralize it. This gives a precipitate. 2. An acid solution (such as aqueous hydrochloric acid) is added to the precipitate to resolubilize the precipitate. 3. Repeat 1 and 2 to purify the calcium phosphate.
  • calcium is removed by adding a chelating agent to the purified calcium phosphate solution.
  • calcium may be precipitated as calcium sulfate or calcium carbonate by adding one or more selected from the group consisting of sulfates, carbonates and bicarbonates to a solution of purified calcium phosphate.
  • sulfates, carbonates and bicarbonates include sodium sulfate, potassium sulfate, ammonium sulfate, magnesium sulfate, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, ammonium carbonate, or any multicomponent thereof. mixtures.
  • the reagent to be added to the calcium phosphate solution may be added as powder or as a solution (aqueous solution, etc.). Since the above-described method can be applied to acidic solutions at room temperature, calcium can be easily removed.
  • Bone tissue contains inorganic components such as calcium and organic components such as collagen in addition to phosphoric acid.
  • phosphoric acid is dissolved in steps S11 and S12, and components other than phosphoric acid and calcium are removed in steps S13 and S14.
  • Step S13 and step S14 may be repeated, and the number of repetitions can be set appropriately.
  • step S15 sulfate, carbonate or bicarbonate is added to remove calcium. Calcium sulfate, calcium carbonate, or calcium hydrogen carbonate produced in step S15 may be used as agricultural fertilizers or industrial raw materials. Each step will be described in detail below.
  • step S11 bone tissue is pretreated.
  • Step S11 is an optional step and may not be performed. By pretreating the bone tissue, the amount of phosphoric acid contained in the acid extract can be increased. This step is the same step as step S1 described above, and the details are as described in section [1.5].
  • step S12 the bone tissue is acid treated. This step yields an acid extract. This step is the same step as the above-described step S2, and the description in Section [1.1] is incorporated for the acid treatment conditions.
  • step S13 the acid extract is neutralized with a base.
  • phosphate ions contained in the acid extract are precipitated as calcium phosphate, and components derived from bone impurities are contained in the supernatant. Therefore, the phosphoric acid can be purified by collecting the precipitate.
  • usable bases include sodium hydroxide and potassium hydroxide.
  • step S14 an acid is added to the calcium phosphate precipitate.
  • an acid is added to the calcium phosphate precipitate.
  • examples of acids that can be used include hydrochloric acid, nitric acid and formic acid.
  • Steps S13 and S14 may be performed repeatedly. By repeating these steps, the purity of phosphoric acid increases.
  • the number of times steps S13 and S14 are repeated may be, for example, 2 or more, 3 or more, 4 or more, or 5 or more. From the viewpoint of economy, the number of times steps S13 and S14 are repeated may be, for example, 10 times or less.
  • the washing treatment for washing away unnecessary components contained in the calcium phosphate precipitate with pure water may be performed as many times as necessary before proceeding to the step S15.
  • step S15 sulfate, carbonate or bicarbonate is added to the calcium phosphate solution. This causes calcium ions in solution to precipitate as calcium sulfate, calcium carbonate or calcium hydrogen carbonate. Precipitated calcium sulfate, calcium carbonate or calcium hydrogen carbonate is removed by centrifugation or the like.
  • sulfates include one or more selected from sodium sulfate, potassium sulfate, ammonium sulfate and magnesium sulfate.
  • carbonates include one or more selected from sodium carbonate, potassium carbonate and ammonium carbonate.
  • Examples of bicarbonates include one or more selected from sodium bicarbonate and potassium bicarbonate.
  • sulfates, carbonates and hydrogen carbonates can be combined arbitrarily.
  • Adding sulfate instead of sulfuric acid in step S15 has the following advantages. ⁇ Because no liquid is added, the increase in volume of the reaction system can be reduced. ⁇ Since the reaction system does not become strongly acidic, only a small amount of base is required for neutralization. ⁇ High safety. ⁇ High removal rate of calcium.
  • the amount of sulfate, carbonate, or hydrogen carbonate to be added in step S15 can be appropriately set by those skilled in the art.
  • the amount of sulfate, carbonate, or hydrogencarbonate added is, for example, the concentration of sulfate, carbonate, or hydrogencarbonate in the reaction system is 0.2M or more, 0.4M or more, 0.6M or more, or 0.8M or more. Alternatively, the amount may be 1.0M or more. A larger amount of sulfate, carbonate, or hydrogen carbonate added can reduce residual calcium.
  • the upper limit of the amount of sulfate, carbonate, or hydrogencarbonate to be added may be, for example, an amount such that the concentration of sulfate in the reaction system is 3.0M or less, 2.0M or less, or 1.0M.
  • step S15 a small amount of sulfate ions, carbonate ions, or bicarbonate ions remain in the supernatant due to the solubility product.
  • the salt added in step S15 is preferably one or more selected from the group consisting of carbonates and hydrogencarbonates.
  • the supernatant after removing calcium is purified.
  • the supernatant may contain cations such as sodium ions and anions such as chloride ions that were contained in sulfate.
  • High-purity phosphoric acid can be obtained by adsorbing these ions on, for example, an ion-exchange resin.
  • carbonate ions or hydrogen carbonate ions are contained, the ions can be removed from the system by converting them to carbon dioxide by heating.
  • Example 1 Production of fertilizer containing decomposition products of bone tissue
  • Example 1-1 Preparation of acid extract with nitric acid and component analysis
  • the bone tissue was acid-treated with nitric acid according to the following procedure to obtain an acid extract.
  • Pork bones obtained from a slaughterhouse were finely pulverized with a mill (IKA TUBE MILL 100, IKA JAPAN Co., Ltd.).
  • 40 mL of nitric acid aqueous solution was added to 3 g of wet weight of pork bone, and the mixture was immersed at 20°C.
  • the concentration of the nitric acid aqueous solution was 0.3 mol/L, 0.5 mol/L, 0.75 mol/L or 1.0 mol/L.
  • the immersion time was 12 hours, 24 hours or 48 hours. 3.
  • the supernatant was collected and used as an acid extract.
  • Example 1-2 Preparation of acid extract with hydrochloric acid and component analysis
  • the bone tissue was acid-treated with hydrochloric acid according to the following procedure to obtain an acid extract.
  • Pork bones obtained from a slaughterhouse were finely pulverized with a mill (IKA TUBE MILL 100, IKA JAPAN Co., Ltd.).
  • 2. 35 mL of hydrochloric acid aqueous solution was added to a pig bone having a wet weight of 2 g, and the mixture was immersed at 20°C.
  • the concentration of the hydrochloric acid aqueous solution was 0.3 mol/L, 0.5 mol/L or 1.0 mol/L.
  • the immersion time was 6 hours, 12 hours or 24 hours. 3.
  • the supernatant was collected and used as an acid extract.
  • Example 1-3 Preparation of acid extract with formic acid and component analysis
  • the bone tissue was acid-treated with formic acid according to the following procedure to obtain an acid extract.
  • Pork bones obtained from a slaughterhouse were finely pulverized with a mill (IKA TUBE MILL 100, IKA JAPAN Co., Ltd.).
  • 35 mL of formic acid aqueous solution was added to 2 g of wet weight of pork bone, and the mixture was immersed at 20°C.
  • the concentration of the formic acid aqueous solution was 0.3 mol/L, 0.5 mol/L or 1.0 mol/L.
  • the immersion time was 6 hours, 12 hours or 24 hours. 3.
  • the supernatant was collected and used as an acid extract.
  • Example 1-4 Preparation of acid extract with sulfuric acid and component analysis
  • the bone tissue was acid-treated with sulfuric acid according to the following procedure to obtain an acid extract.
  • Pork bones obtained from a slaughterhouse were finely pulverized with a mill (IKA TUBE MILL 100, IKA JAPAN Co., Ltd.).
  • 35 mL of an aqueous sulfuric acid solution was added to 2 g of wet weight of pork bone, and the mixture was immersed at 20°C.
  • the concentration of the sulfuric acid aqueous solution was 0.3 mol/L, 0.5 mol/L or 1.0 mol/L.
  • the immersion time was 6 hours, 12 hours or 24 hours. 3.
  • the supernatant was collected and used as an acid extract.
  • Table 2 shows the results of analyzing the total phosphorus of the obtained acid extract.
  • the component analysis was outsourced to Kurita Analysis Center Co., Ltd.
  • Table 2 shows the measurement results of total phosphorus (mg) converted to 1 g of wet weight of bone.
  • the analysis results were summarized for each acid for each concentration of nitric acid, hydrochloric acid, formic acid, or sulfuric acid and for each immersion time. It was shown that most of the phosphorus can be recovered in about 24 hours in any acid aqueous solution. Moreover, it was shown that phosphorus can be sufficiently recovered at an acid concentration of about 1 mol/L. Among the four acids examined, hydrochloric acid and sulfuric acid had the highest phosphorus recovery efficiencies. From Table 2, it was found that about 100 mg of phosphorus can be recovered from 1 g of bone tissue.
  • Table 3 shows the results of analyzing the total calcium of the obtained acid extract.
  • the component analysis was outsourced to Kurita Analysis Center Co., Ltd.
  • Table 3 shows the measurement results of total calcium (mg) converted to 1 g of wet weight of bone.
  • Concentrations of nitric acid, hydrochloric acid, formic acid and sulfuric acid and the analysis results for each acid were summarized for each immersion time. In the aqueous solutions of nitric acid, hydrochloric acid and formic acid, it was shown that most of the calcium could be recovered in about 24 hours. Also, in aqueous sulfuric acid, the liberated calcium forms insoluble calcium sulfate. Therefore, although the calcium concentration is low as an analysis result, calcium is actually eluted from the bone tissue.
  • Example 1-5 Preparation of protease-treated solution
  • the acid-treated bone tissue obtained in Example 1-2 was immersed in a treatment solution containing the following two kinds of proteases.
  • the conditions for protease treatment were protease concentration: 2% (w/w), temperature: 50°C, pH: optimum pH.
  • protease concentration 2% (w/w), temperature: 50°C, pH: optimum pH.
  • Protease 1 Neurase F3G (Amano Enzyme Co., Ltd., protease derived from Rhizopus niveus filamentous fungus)
  • Protease 2 pepsin (Sigma Aldrich, aspartic protease)
  • A represents the results of protease 1 treatment
  • B represents the results of protease 2 treatment.
  • Treatment times were 3.5 hours, 19 hours or 24 hours.
  • the results of visually confirming the transparency of the treatment liquid and the remaining bone tissue are as follows. ⁇ 3.5 hours later: Bone tissue was almost lost in all protease-treated systems. ⁇ 24 hours later: Bone tissue completely disappeared in all protease-treated systems, and the transparency of the protease-treated solution increased.
  • a protease-treated solution can be obtained by treating acid-treated bone tissue with a commercially available protease.
  • Example 1-6 Preparation of protease-treated solution and component analysis
  • a protease-treated solution was obtained by the following procedure. 1. The bone tissue was immersed in a 1 mol/L nitric acid aqueous solution or hydrochloric acid aqueous solution for 48 hours for acid treatment. 2. The resulting treated liquid was separated into an acid extract and a residue of bone tissue, and the acid extract was transferred to another container. 3. A 0.1 mol/L citrate buffer (pH 3.5) was added to the bone tissue residue. The amount added was 10 mL per 1 g of initial bone weight. 4. Actinidyne (a cysteine protease from kiwifruit) was pretreated.
  • the resulting protease-treated solution was passed through a 100 ⁇ m filter to obtain a filtrate from which fine insoluble matter was removed.
  • the results of component analysis of this filtrate are shown in Table 4 (values converted per 1 g of wet weight of bone).
  • the component analysis was outsourced to Kurita Analysis Center Co., Ltd.
  • Bone lysate A was prepared in one step without solution exchange between acid treatment and protease treatment.
  • the specific procedure is as follows. 1. The bone tissue was immersed in a 1 mol/L nitric acid aqueous solution, hydrochloric acid aqueous solution, formic acid aqueous solution or sulfuric acid aqueous solution for 48 hours for acid treatment. 2. A citrate buffer (pH 3.5) was added to the reaction system to a final concentration of 0.1 mol/L. 3. The optimum pH for the protease was adjusted with 5N NaOH and 5N HCl.
  • actinidine was adjusted to pH 3.5, pepsin to pH 3.0, and neurolase F3G to pH 3.0. 4.
  • Each protease was added to 1% (w/w).
  • the reaction conditions for the protease were 50° C. for 4 days.
  • Actinidyne (kiwifruit-derived cysteine protease) was pretreated at 25°C with a 20 mmol/L phosphate buffer (pH 6.5) containing 10 mmol/L dithiothreitol and 5 mmol/L ethylenediaminetetraacetic acid. Pretreatment for 90 minutes.
  • the obtained bone lysate A was passed through a 100 ⁇ m filter to obtain a filtrate from which fine insoluble matters were removed.
  • the results of measuring the calcium concentration of this filtrate are shown in Table 5 (values converted to 1 g of bone mass). Calcium was measured using a compact calcium ion meter LAQUAtwin-Ca-11 (Horiba Advanced Techno Co., Ltd.).
  • Example 1-8 Extraction of phosphoric acid
  • Crude phosphoric acid was obtained from bone tissue by the following procedure. 1. The bone tissue was immersed in a 1 mol/L nitric acid aqueous solution, hydrochloric acid aqueous solution, formic acid aqueous solution or sulfuric acid aqueous solution for 48 hours for acid treatment. 2. 0.15 volume of 5N NaOH was added to the reaction system, mixed well, and allowed to stand at room temperature for 1 hour. This gave a white solution. 3. The resulting solution was centrifuged at 10,000 g for 10 minutes at room temperature to remove the supernatant. The same amount of 1N HCl added in step 1 was added to the white precipitate and mixed well. This gave a clear solution. 4.
  • Na 2 SO 4 , K 2 SO 4 , MgSO 4 , (NH 4 ) 2 SO 4 , Na 2 CO 3 or NaHCO 3 is added in an amount equal to the calcium concentration contained in the reaction system and mixed well, It was allowed to stand at room temperature for 1 hour. This gave a white solution. 5. The resulting solution was centrifuged at 10,000 g for 10 minutes at room temperature to capture the supernatant. The resulting clear solution contains phosphoric acid.
  • Example 2 Growth evaluation and component analysis of plants cultivated with fertilizer containing bone tissue decomposition products]
  • material and method 1. Radish (Raphanus sativus L) seeds (Takii Seed Co., Ltd.) were sown on wet paper towels. The seeds were allowed to germinate by standing in the dark at 22° C. for 2 days. 2. The resulting plant was transplanted to a hydroponic urethane cube (2 cm x 2 cm x 2 cm). 3. A urethane cube was immersed in acid extract, protease-treated solution or bone solubilizing solution A and allowed to grow for 5 days.
  • the light conditions during this period were a photosynthetically effective photon flux density of about 150 ⁇ mol/m 2 ⁇ s, a light period of 16 hours, and a dark period of 8 hours.
  • a fluorescent lamp for growing cultivated plants Biolux A, NEC Lighting Co., Ltd.
  • Growth evaluation and component analysis of grown plants were performed. Specifically, it is as follows. ⁇ Aerial fresh weight: The plant body was cut at the boundary between the hypocotyl and the root, and the weight of the hypocotyl side was measured. Dry weight of above-ground part: The part of the plant body whose fresh weight was measured was dried in an oven at 80°C for 2 days. The weight was then measured.
  • ⁇ Aerial moisture content Calculated based on the difference between the fresh weight of the aerial part and the dry weight of the aerial part. •
  • Total polyphenol content 50 mg of cotyledons were crushed in a 90% methanol solution. Using the supernatant obtained by centrifugation, the total polyphenol content was measured by the Folin-Ciocalteu method.
  • Plants given protease-treated solution 1 and protease-treated solution 2 showed accelerated growth compared to the control. Similarly, the growth of the plants to which the acid extract was given was promoted as compared with the control (this point is as shown in (1)). Furthermore, the plant body given the bone solubilized solution A, which is a mixture of the protease-treated solution and the acid extract solution, showed a much higher growth-promoting effect than the control. From these results, it can be seen that both the acid extract and the protease-treated solution have the effect of promoting plant growth. Furthermore, it was found that the plant growth promoting effect of the bone solubilized solution A is higher than the growth promoting effect of the acid extract solution or the protease-treated solution alone.
  • the above-ground water content of the plant body increased by adding bone lysate A, and further increased by adding both bone lysate A and culture medium.
  • the total polyphenol content per cotyledon was increased by feeding bone lysate A and further increased by feeding both bone lysate A and culture medium. This is considered to be due to the effect of increased cotyledon weight as a result of accelerated plant growth.
  • Example 3 Plant body RNA expression analysis 1] [Extraction of total RNA from plants] 1. Radish (Raphanus sativus L) seeds (Takii Seed Co., Ltd.) were sown on wet paper towels. The seeds were allowed to germinate by standing at 22° C. in the dark at 100% humidity for 2 days. 2. The resulting plant body was transplanted to a urethane sponge. The urethane sponge is impregnated with either (1) water, (2) bone solubilizer A, (3) commercially available liquid fertilizer, or (4) a mixture of bone solubilizer A and commercially available liquid fertilizer. let me 3. Plants were grown at 22° C. for 1, 3 or 5 days.
  • the light conditions during this period were as follows: amount of light: about 100 ⁇ mol/m 2 ⁇ s, light period: 16 hours, dark period: 8 hours.
  • a fluorescent lamp for growing cultivated plants (Biolux A, NEC Lighting Co., Ltd.) was used as the light source. 4. About 0.1 g of leaf tissue and root tissue were collected from each grown plant. Immediately after collection, the tissue was placed in a mortar, liquid nitrogen was added, and the tissue was ground in a frozen state. 5.
  • Total RNA was extracted from ground tissue using the RNeasy Plant Mini Kit (Qiagen). 6. The concentration of total RNA in the aqueous solution was measured using the Qubit RNA HS Assay Kit (Thermo Fisher Scientific) and a fluorometer (Qubit-4). In addition, the absorbance at 230 nm, 260 nm and 280 nm (A 230 , A 260 and A 280 ) was measured with a spectrophotometer to examine the purity of the extracted RNA.
  • Table 6 shows the results. 13.2 to 88.2 ⁇ g of total RNA was extracted from about 0.1 g of plant leaves from the start of culture to 5 days. From about 0.1 g of plant roots, 8.4-43.8 ⁇ g of total RNA was extracted. A 260 /A 280 was about 2.0, confirming that there was no problem with the purity of RNA.
  • RNA sequencing library and RNA sequence analysis by next-generation sequencer Preparation of a cDNA library from total RNA extracted from sprouts and analysis of gene expression using a next-generation sequencer were entrusted to Agenta Corporation. The analysis procedure is as follows. 1. The quality of extracted total RNA (degree of RNA degradation) was assessed by BioAnalyzer (Agilent Technologies). 2. PolyA-mRNA was enriched from the extracted total RNA using beads coupled with polyT oligo DNA. 3. A cDNA library was generated using reverse transcriptase. 4. The base sequence of cDNA was determined using a next-generation sequencer (DNBSEQ-G400, MGI tech).
  • RNAseq analysis Based on this, the base sequences of expressed mRNAs were comprehensively determined (RNAseq analysis). Assembly of the sprout gene was performed by Stringtie software. At this time, reference was made to the entire sprout genome base sequence (http://radish.kazusa.or.jp) published in the database of the Kazusa DNA Research Institute.
  • Target genes include glutathione S-transferase ⁇ 19 (GSTU19), catalase 2 (CAT2), auxin transporter-like protein 2-1 (LAX2-1), glutathione S-transferase 12 (GST12) and calmodulin 5 (CaM5). It was adopted. The specific procedure is as follows. 1. Leaves of plants grown by feeding with (1) water, (2) bone solubilizing solution A, (3) commercially available liquid fertilizer, or (4) mixture of bone solubilizing solution A and commercially available liquid fertilizer and roots, total RNA was extracted. 2.
  • RT reaction A reverse transcriptase reaction (RT reaction) was performed using random primers. PrimeScript RT Master Mix (Takara Bio Inc.) was used as the reverse transcriptase. 3. Quantitative PCR was performed on the target gene. For quantitative PCR, a specific primer pair, TB Green Premix Ex Taq II (Takara Bio Inc.), with 2.0 ng of cDNA as template was used. Thermal Cycler Dice Real Time System TP850 (Takara Bio Inc.) was used as an instrument for quantitative PCR.
  • each target gene was normalized to the expression level of the actin gene.
  • the nucleotide sequences of the primer pairs used for amplification of the target gene and actin gene are shown in Table 7 (SEQ ID NOs: 1 to 12 from top to bottom).
  • Example 4 Improvement of phosphoric acid extraction rate by pretreatment
  • pretreatment of bone tissue increased the amount of phosphoric acid contained in the acid extract.
  • an acid extract was prepared by the following procedure, and the amount of phosphoric acid contained was quantified. 1. Pork bones obtained from a slaughterhouse were finely pulverized with a mill (IKA TUBE MILL 100, IKA JAPAN Co., Ltd.). 2. 5 g of pulverized pork bone was subjected to one of the following pretreatments (1) to (5).
  • microwave irradiation is a preferred embodiment because it can be completed in a short period of time, does not require heating, can be applied to large bone tissue, and can further improve the extraction rate of phosphoric acid.
  • Example 5 Analysis of protein components contained in acid extract
  • the protein components contained in the acid extract were analyzed by the following procedure. 1. Pork bones obtained from a slaughterhouse were finely pulverized with a mill (IKA TUBE MILL 100, IKA JAPAN Co., Ltd.). 2. 30 mL of hydrochloric acid (1 mol/L) was added to a wet weight of 2 g of pork bone, and the mixture was immersed in the mixture at 20° C. for 48 hours while shaking (100 rpm). In this way the bone tissue was decalcified. 4. The supernatant was collected and used as an acid extract. 5. The obtained acid extracts were respectively designated as (1) undiluted acid extract, (2) 1/2 diluted acid extract, and (3) 1/4 diluted acid extract. 6.
  • Example 6 Preparation of protease-treated solution and protein component analysis
  • Example 6-1 Preparation of protease-treated solution
  • a protease-treated solution was obtained by the following procedure. 1. The bone tissue was immersed in a 1 mol/L hydrochloric acid aqueous solution for 48 hours for acid treatment. 2. The resulting treated liquid was separated into an acid extract and a residue of bone tissue, and the acid extract was transferred to another container. 3. A 0.1 mol/L citrate buffer (pH 3.5) was added to the bone tissue residue. The amount added was 10 mL per 1 g of initial bone weight. 4. The obtained bone tissue residue was immersed in a treatment liquid containing the following three kinds of proteases.
  • protease treatment The conditions for protease treatment were protease concentration: 2% (w/w), temperature: 50°C, pH: optimum pH.
  • protease concentration 2% (w/w), temperature: 50°C, pH: optimum pH.
  • ⁇ Pro Leather FG-F from Amano Enzyme Co., Ltd., Bacillus sp.
  • Protease P “Amano” 3G from Aspergillus melleus, Amano Enzyme Co., Ltd.
  • Protease M “Amano” SD From Aspergillus oryzae, Amano Enzyme Co., Ltd.
  • FIG. 15 shows the appearance of the treatment liquid.
  • Examples 1-5 neutral F3G and pepsin
  • 1-6 actinidyne
  • FIG. 15 shows the appearance of the treatment liquid.
  • the results of Examples 1-5 neutral F3G and pepsin
  • 1-6 actinidyne
  • the protease examined in this example also decomposed the bone decomposition residue, and a protease-treated solution was obtained. Precipitation is observed in the protease-treated solution obtained in this example, and this is considered to be a precipitate of calcium salt due to the near-neutrality of the solution.
  • Example 6-2 described later, it can be said that the protein contained in the bone decomposition residue was sufficiently degraded by the protease treatment.
  • Example 6-2 Analysis of protein components contained in protease-treated solution
  • a protease-treated solution was prepared in the same manner as in Examples 1-5, 1-6 and 6-1 using the following proteases.
  • ⁇ Pepsin Sigma Aldrich, aspartic protease
  • ⁇ Peptidase R (Amano Enzyme Co., Ltd., derived from the genus Rhizopus)
  • Protease P “Amano” 3G from Aspergillus melleus, Amano Enzyme Co., Ltd.)
  • Pro Leather FG-F from Amano Enzyme Co., Ltd., Bacillus sp.
  • ⁇ Neurase F3G derived from Rhizopus niveus, Amano Enzyme Co., Ltd.
  • ⁇ Protease M “Amano” SD (from Aspergillus oryzae, Amano Enzyme Co., Ltd.)
  • Actinidine from kiwifruit, cyste
  • the resulting protease-treated solution was diluted 10-fold (lane A) or 5-fold (lane B) and electrophoresed using a 16% polyacrylamide gel.
  • the migrated proteins were silver-stained.
  • a solution containing only the enzyme (lane C) was also subjected to electrophoresis.
  • Example 7 Recovery of phosphoric acid from bone tissue
  • Phosphoric acid was recovered as a precipitate from the acid extract by the following procedure. The recovery of phosphoric acid was also calculated.
  • Pork bones obtained from a slaughterhouse were finely pulverized with a mill (IKA TUBE MILL 100, IKA JAPAN Co., Ltd.).
  • the crushed pork bone was immersed in a 1N nitric acid aqueous solution or a 1N hydrochloric acid aqueous solution for 48 hours. 3. The supernatant was collected to obtain an acid extract. 4.
  • the content of phosphoric acid in the acid extract using nitric acid was 24.6 mg. This corresponds to 34.7% of the wet weight of pork bone (71 mg) used in step 2.
  • Example 8 Purification of phosphoric acid by addition of sulfate
  • Example 8-1 Examination of phosphate recovery rate in supernatant
  • Calcium was removed as calcium sulfate precipitate from the redissolved solution of the phosphate precipitate obtained in Example 7 by the following procedure. 1.
  • the acid used in step 2 of Example 7 was a 1N nitric acid aqueous solution or a 1N hydrochloric acid aqueous solution.
  • the amount of 5N aqueous sodium hydroxide solution added in step 4 of Example 7 was 100 ⁇ L. 2.
  • Sulfuric acid or sulphate sodium sulphate, potassium sulphate, ammonium sulphate or magnesium sulphate
  • the amount of sulfuric acid or sulfate added was such that the final concentration was 0.4M, 0.6M, 0.8M or 1.0M.
  • the calcium sulfate precipitate that formed was removed by centrifugation. 4.
  • the weight of phosphate contained in the supernatant was measured.
  • a Malachite Green Phosphate Assay Kit (BioAssay Systems) was used for the measurement.
  • Phosphoric acid recovery was also based on the phosphoric acid content in the precipitate formed by adding an aqueous sodium hydroxide solution to the acid extract (precipitate obtained in step 5 of Example 7) before adding sulfuric acid or a sulfate salt. calculated the rate.
  • Table 9 shows the results. It was found that if the concentration of sulfate is appropriately set, the same level of phosphoric acid recovery can be achieved with sulfate as with sulfuric acid. Also, at a low concentration of 0.4 M, the phosphoric acid concentration obtained by adding sulfate tended to be slightly higher than the phosphoric acid concentration obtained by adding sulfuric acid. Importantly, not only does the addition of sulfate allow for a smaller system volume than the addition of sulfuric acid, but the concentration of phosphoric acid obtained is as much as 1.5 times higher. In this respect, the method according to one embodiment of the invention is a useful method for purifying phosphoric acid. Furthermore, when the technique is put into practical use, it is preferable that the amount of sulfuric acid or sulfate added is small.
  • sulfate rather than sulfuric acid for calcium precipitation has the following advantages.
  • ⁇ Phosphate concentration is about 1.5 times higher.
  • ⁇ Because no liquid is added the increase in volume of the reaction system can be reduced.
  • ⁇ Since the reaction system does not become strongly acidic, only a small amount of base is required for neutralization. ⁇ High safety.
  • Example 8-2 Examination of ability to remove calcium from supernatant
  • the calcium content in the supernatant obtained in step 4 of Example 8-1 was measured.
  • LAQUAtwin-Ca-11 was used for the measurement.
  • the calcium residual rate was determined based on the calcium content in the precipitate formed by adding an aqueous sodium hydroxide solution to the acid extract (precipitate obtained in step 5 of Example 7) before adding sulfuric acid or sulfate. Calculated.
  • Table 11 shows the calculated relative ratio (%) of calcium amount (mg)/phosphoric acid amount (mg) based on the results of Tables 9 and 10.
  • Phosphate can also be recovered by adding sulfuric acid, but it was shown that the amount of residual calcium was greater than that of the experimental system with the addition of sulfate at any concentration.
  • the amount of residual calcium was significantly lower than in the experimental system to which sulfuric acid was added, indicating that the recovery of phosphoric acid was relatively high.
  • the residual amount of calcium can be reduced to 0.2% by weight without reducing the recovery of phosphoric acid. Therefore, it can be said that it is more preferable to use sulfate than sulfuric acid for purifying phosphoric acid extracted from bone tissue.
  • Example 8-3 Examination of phosphate leakage rate to precipitate
  • the phosphoric acid content in the calcium sulfate precipitate obtained in step 3 of Example 8-1 was measured by the following procedure. 1. The calcium sulfate precipitate was redissolved by adding EDTA (pH 7.4) and 5N sodium hydroxide. 2. The phosphoric acid content in the resulting solution was measured. A Malachite Green Phosphate Assay Kit (BioAssay Systems) was used for the measurement. Also, the phosphoric acid loss was determined based on the phosphoric acid content in the precipitate formed by adding aqueous sodium hydroxide solution to the acid extract (precipitate obtained in step 5 of Example 7) before adding sulfuric acid or sulfate. calculated the rate.
  • Table 12 shows the results. As can be seen from the table, the phosphate content in the calcium sulphate precipitate could be reduced to the same extent as the sulfuric acid by adjusting the sulphate concentration accordingly. If the sulfate concentration was 0.4M, the leaked phosphoric acid could be sufficiently reduced.
  • Example 8-4 Examination of total phosphoric acid recovery rate
  • the total amount of the phosphate recovery rate in the supernatant examined in Example 8-1 and the phosphate leakage rate to the precipitate examined in Example 8-3 was examined.
  • Phosphoric acid contained in the precipitate has the potential to be re-recovered by washing the precipitate.
  • phosphoric acid contained in the precipitate can be recovered by washing the precipitate (calcium sulfate) with pure water. Therefore, the higher the total phosphoric acid content, the higher the potential amount of phosphoric acid that can be recovered.
  • Example 9 Plant body RNA expression analysis 2
  • Preparation of cDNA library and gene expression analysis by next-generation sequencer A procedure similar to that of Example 3 was followed.
  • FIG. 18 shows the results of analysis of expression-variable genes in leaves of sprouts cultivated for 5 days with bone lysate B or a commercially available liquid fertilizer. There were 1,568 genes with more than two-fold increase in FPKM values. There were 1,654 genes whose FPKM values decreased by more than half. Therefore, the expression levels of a total of 3,222 genes varied. As a result of the GO enrichment analysis, 65 genes related to growth control, 44 genes related to photosynthesis, and 44 genes related to photosynthesis, and light harvesting in photosynthetic system I were found to be variable in expression levels. 26 genes were included.
  • Fig. 19 shows the analysis results of expression variation genes in the roots of sprouts cultivated for 5 days with a mixture of bone lysate B and a commercially available liquid fertilizer or only with a commercially available liquid fertilizer.
  • genes with varying expression levels included 17 genes related to nitrate assimilation, 16 genes related to root hair elongation, and 12 genes related to nitrate uptake. It was
  • Fig. 20 shows the analysis results of expression variation genes in sprout leaves cultivated for 5 days with a mixed solution of bone lysate B and a commercially available liquid fertilizer or only with a commercially available liquid fertilizer.
  • 32 genes related to response to abscisic acid (a plant hormone), 13 genes related to root hair elongation, and 13 genes related to the promotion of germination were found to be variable in expression levels. It contained 6 genes that
  • Example 10 Examination of calcium ion removal efficiency by addition of sulfate
  • Calcium ions were removed as a calcium carbonate precipitate by adding sulfate to the redissolved solution of the phosphate precipitate.
  • Calcium removal efficiency was examined by measuring the calcium ion content in the supernatant after removing the precipitate.
  • the specific procedure is as follows. 1. In the same manner as in Example 7, a redissolved solution of phosphoric acid precipitate was prepared. The acid used in step 2 of Example 7 was 1N aqueous hydrochloric acid. The amount of 5N aqueous sodium hydroxide solution added in step 4 of Example 7 was 100 ⁇ L. 2.
  • Liquid sulfuric acid ( H2SO4 ) or solid sulfates ( Na2SO4 , K2SO4 , Mg2SO4 and ( NH4 ) 2SO4 ) were added.
  • the amount of sulfuric acid or sulfate added was such that the final concentration was 0.4M.
  • the calcium sulfate precipitate that formed was removed by centrifugation.
  • the weight (mg) of calcium ions contained in the supernatant was measured. Calcium ions were measured under precision measurement conditions using a high performance ion chromatography IC-8100EX (Tosoh Corporation) connected to a TSKgel SuperIC-Cation HSII (4.6 mm ID ⁇ 10 cm).
  • a mixture of 3.0 mmol/L methasulfonic acid and 2.7 mmol/L 18-crown-6 was used as the eluent.
  • the measurement temperature was 40° C.
  • the flow rate was 1.0 mL/min
  • the injection volume was 30 ⁇ L.
  • Calcium ion concentration was measured by measuring electric conductivity ( ⁇ S) and obtaining a regression equation from the area of the standard substance. From the calcium ion concentration, the calcium ion content per sample (30 ⁇ L) was determined.
  • the calcium ions contained in the bone tissue contribute to a decrease in the recovery of phosphoric acid. This is because calcium ions combine with phosphate ions to form calcium phosphate precipitates in the neutral range. Therefore, it is desirable to remove calcium ions by precipitation, and it has been shown to be successfully removed by addition of sulfate.
  • Potassium ions, magnesium ions or ammonium ions contained in sulfates are components necessary for plant growth. Therefore, when potassium sulfate, magnesium sulfate or ammonium sulfate is used as a sulfate, the fertilizer can contain the components necessary for plant growth. Alternatively, even if the base added in step 4 of Example 7 is changed from sodium hydroxide to potassium hydroxide, the fertilizer can contain components necessary for plant growth. By adopting such a manufacturing method, a fertilizer with increased value can be manufactured.
  • Example 11 Purification of phosphoric acid by addition of carbonate
  • Calcium was removed as calcium carbonate precipitate from the redissolved phosphate precipitate obtained in Example 7 by the following procedure. 1.
  • a redissolved solution of phosphoric acid precipitate was prepared.
  • the acid used in step 1 of Example 7 was a 1N nitric acid aqueous solution or a 1N hydrochloric acid aqueous solution.
  • the amount of 5N aqueous sodium hydroxide solution added in step 4 of Example 7 was 100 ⁇ L.
  • Carbonate solid sodium bicarbonate or sodium carbonate
  • the amount of sodium bicarbonate added was such that the final concentration was 0.4M.
  • the amount of sodium carbonate added was such that the final concentration was 0.6M. 3.
  • the calcium carbonate precipitate that formed was removed by centrifugation. 4.
  • the concentration (ppm) of phosphate ions contained in the supernatant was measured. Phosphate ions were measured under precision measurement conditions using a high performance ion chromatography IC-8100EX (Tosoh Corporation) connected to a TSKgel SuperIC-Anion HS (4.6 mm ID ⁇ 10 cm). A mixture of 7.5 mmol/L sodium bicarbonate and 0.8 mmol/L sodium carbonate was used as the eluent. The measurement temperature was 40° C., the flow rate was 1.5 mL/min, and the injection volume was 30 ⁇ L.
  • the phosphate ion concentration was measured by measuring the electric conductivity ( ⁇ S) and determining the regression equation from the area of the standard substance. From the phosphate ion concentration, the phosphate ion content per sample (30 ⁇ L) was determined.
  • Example 12 Removal of cations contained in sulfate
  • Example 12-1 Removal of sodium ions or potassium ions
  • the cations (sodium ions or potassium ions) contained in the sulfate added to remove calcium ions were removed by the following procedure. Specifically, a strong cation exchange gel was used to adsorb sodium ions or potassium ions. 1. TSKgel SP-TOYOPEARL 650M gel (Tosoh Corporation) was decanted with pure water and packed in a microspin column (GE Healthcare). 2. An appropriate amount of the supernatant after addition of sulfate and removal of calcium sulfate was added to the upper layer of the gel. 3.
  • the supernatant was passed through the gel by centrifugation in a tabletop centrifuge.
  • the flow-through fraction that passed through the gel was collected. 3.
  • the content (mg) of sodium ions or potassium ions contained in the flow-through fraction was measured.
  • LAQUAtwin-Na-11 (Horiba Advanced Techno Co., Ltd.) was used to measure sodium ions.
  • LAQUAtwin-K-11 was used to measure potassium ions.
  • Example 12-2 Removal of magnesium ions or ammonium ions
  • the cations (magnesium ions or ammonium ions) contained in the sulfate added to remove calcium ions were removed by the following procedure. Specifically, a strong cation exchange gel was used to adsorb magnesium ions or ammonium ions. 1. TSKgel SP-TOYOPEARL 650M gel (Tosoh Corporation) was decanted with pure water and packed in a microspin column (GE Healthcare). 2. An appropriate amount of the supernatant after addition of sulfate and removal of calcium sulfate was added to the upper layer of the gel. 3. The supernatant was passed through the gel by centrifugation in a tabletop centrifuge.
  • the flow-through fraction that passed through the gel was collected. 3.
  • the content ( ⁇ g) of magnesium ions, ammonium ions or calcium ions contained in the flow-through fraction was measured.
  • the ion concentration was measured under precision measurement conditions using a high performance ion chromatography IC-8100EX (Tosoh Corporation) connected to a TSKgel SuperIC-Cation HSII (4.6 mm ID ⁇ 10 cm). A mixture of 3.0 mmol/L methasulfonic acid and 2.7 mmol/L 18-crown-6 was used as the eluent.
  • the measurement temperature was 40° C.
  • the flow rate was 1.0 mL/min
  • the injection volume was 30 ⁇ L.
  • Calcium ion concentration was measured by measuring electric conductivity ( ⁇ S) and obtaining a regression equation from the area of the standard substance. From the ion concentration, the ion content per sample (30 ⁇ L) was determined.
  • Example 13 Purification of phosphoric acid from commercially available bone meal
  • Phosphoric acid was recovered by solubilizing commercially available steamed bone meal (Omiya Green Service Co., Ltd.) according to the following procedure. 1. 10 mL of sulfuric acid (1N), hydrochloric acid (1N) or nitric acid (1N) was added to 1 g of steamed bone meal and shaken at 25° C. for 19 hours. 2. The resulting acid extract was separated into a supernatant and a precipitate using a centrifuge. 3. 0.1 mL of aqueous NaOH (5N) was added to 0.5 mL of supernatant and shaken for 1 hour. 4.
  • the reaction solution was separated into supernatant and precipitate by centrifugation. 5. A suitable amount of hydrochloric acid (1N) was added to the precipitate to dissolve the precipitate. 6. Steps 3-5 were repeated multiple times. The precipitate was then dissolved in 0.5 mL of hydrochloric acid (0.4N). As a result, a precipitate solution enriched with phosphoric acid was obtained. 7. The anion content in the precipitate solution obtained was measured. The measurement was performed under precision measurement conditions using a high performance ion chromatography IC-8100EX (Tosoh Corporation) connected to a TSKgel SuperIC-Anion HS (4.6 mm ID ⁇ 10 cm).
  • a mixture of 7.5 mmol/L sodium bicarbonate and 0.8 mmol/L sodium carbonate was used as the eluent.
  • the measurement temperature was 40° C.
  • the flow rate was 1.5 mL/min
  • the injection volume was 30 ⁇ L.
  • the anion concentration was measured by measuring the electric conductivity ( ⁇ S) and determining the regression equation from the area of the standard substance. Anion content per sample (30 ⁇ L) was determined from the anion concentration.
  • the results of this example show that phosphoric acid can be extracted from commercially available bone powder (bone tissue heat-treated under pressure).
  • the method for producing phosphoric acid according to one embodiment of the present invention is a sustainable technology with lower energy costs and less environmental destruction than the method of recovering phosphoric acid from phosphate rock or dried sewage sludge. It has been proven.
  • Example 14 Production of protease-treated liquid from commercially available bone meal
  • Commercially available steamed bone meal (Omiya Green Service Co., Ltd.) was solubilized by the following procedure to produce a protease-treated solution.
  • 10 mL of sulfuric acid (1N), hydrochloric acid (1N) or nitric acid (1N) was added to 1 g of steamed bone meal and shaken at 25° C. for 24 hours.
  • the resulting acid extract was separated into a supernatant (acid extract) and a precipitate (bone residue) using a centrifuge and recovered. 3.
  • a protease-treated solution was prepared from the precipitate according to S5 of FIG. Neurase F3G (Amano Enzyme Co., Ltd.) or Papain W-40 (Amano Enzyme Co., Ltd.) was used as the protease, and the procedure was the same as in Example 1-5. Specifically, it was as follows.
  • steamed bone meal is a mixture of pork and chicken bones heat-treated under high pressure.
  • a protease-treated solution could be prepared by the method for producing a fertilizer according to one embodiment of the present invention.
  • the protease-treated solution itself can be used as a fertilizer, or can be used as a raw material for the bone solubilizing solution B.
  • Liquid fertilizer is expected to have a rapid plant growth effect that cannot be expected from solid bone meal. Liquid fertilizers can also be applied to hydroponics and foliar application.
  • Example 15 Measurement of peptide concentration in acid extract made from commercially available bone meal
  • An acid extract was prepared from commercially available steamed bone meal (Omiya Green Service Co., Ltd.) by the following procedure. The peptide concentration contained in the acid extract was measured. 1. 10 mL of sulfuric acid (1N), hydrochloric acid (1N) or nitric acid (1N) was added to 1 g of steamed bone meal and shaken at 25° C. for 24 hours. 2. The resulting acid extract was separated into a supernatant and a precipitate using a centrifuge. The supernatant was recovered as an acid extract. 3.
  • a 0.4 mol/L potassium hydroxide aqueous solution was added to 0.5 mL of the supernatant to precipitate discrete calcium. 4.
  • the peptide concentration in the supernatant obtained by removing the precipitate from the reaction solution obtained in step 3 was measured.
  • a protein assay BCA kit (product number 297-73101, Fujifilm Wako) was used for the measurement. The measurement method followed the product manual. Absorbance was measured at 540 nm. The higher the absorbance, the higher the peptide concentration. 5.
  • a precipitate was recovered from the reaction solution obtained in step 3. At this time, only the system treated with hydrochloric acid or nitric acid in step 1 was recovered. 6. The precipitate was completely dissolved with 1N hydrochloric acid.
  • step 6 after the first and third iterations were completed, the peptide concentration was measured in the supernatant after the precipitate was removed from the reaction.
  • a protein assay BCA kit (product number 297-73101, Fujifilm Wako) was used for the measurement. The measurement method followed the product manual. Absorbance was measured at 540 nm. The higher the absorbance, the higher the peptide concentration.
  • Example 5 it was shown that the acid extract contained almost no protein components that were stained with the silver staining kit (see also Figure 14). For this reason, in Example 5, it was presumed that the peptide bonds of proteins were cleaved to form low-molecular-weight peptides and amino acids. This example supports this presumption.
  • Peptides become impurities in the production of phosphate. It was found that most of the peptides as impurities could be removed by repeating the calcium phosphate dissolution-precipitation process (steps S13 and S14 in FIG. 3). As shown in Table 19, repeating the dissolution-precipitation process three times reduced the peptide concentration by 1/100. This result suggested that peptides could be successfully removed to increase phosphate concentration, especially from acid extracts treated with hydrochloric acid or nitric acid.
  • the present invention can be used for the production of phosphoric acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fertilizers (AREA)

Abstract

リン酸の新規な製造方法を提供する。本発明の一態様に係るリン酸の製造方法は、次の工程を含む。(a)骨組織を酸処理して、酸抽出液を得る工程。(b)得られた酸抽出液に塩基を加えて、沈澱したリン酸カルシウムを得る工程。(c)得られたリン酸カルシウム沈澱に酸を加えて、リン酸カルシウム溶液を得る工程。(d)得られたリン酸カルシウム溶液に、硫酸塩、炭酸塩および炭酸水素塩からなる群より選択される1つ以上を加えて、沈澱したカルシウムを除去する工程。

Description

リン酸の製造方法
 本発明は、リン酸の製造方法に関する。
 リン酸は、農産や工業において広く利用されている材料である。リン酸は、リン鉱石を原料として製造するのが一般的であるが、廃棄物からリン酸を回収する技術も開発されている。例えば、特許文献1は、屎尿および浄化槽汚泥からリン酸を回収する方法を開示している。特許文献2は、製鋼スラグからリン酸を回収する方法を開示している。
特開2017-196619号公報 特開2011-213558号公報
 骨組織には、乾燥前の重量を基準として約33%のリン酸が含まれているとされている。したがって、骨組織からリン酸を回収することができれば、屠畜場などで発生する廃棄骨が、巨大なリン酸供給源となりうる。これは、リン鉱石の全需要を輸入に頼っている日本国にとって非常に望ましいことである。それゆえ、骨組織からリン酸を回収する方法の開発が求められている。
 本発明の一態様は、リン酸の新規な製造方法を提供することを目的とする。
<1>
 下記工程を含む、リン酸の製造方法。
  (a)骨組織を酸処理して、酸抽出液を得る工程
  (b)得られた酸抽出液に塩基を加えて、沈澱したリン酸カルシウムを得る工程
  (c)得られたリン酸カルシウム沈澱に酸を加えて、リン酸カルシウム溶液を得る工程
  (d)得られたリン酸カルシウム溶液に、硫酸塩、炭酸塩および炭酸水素塩からなる群より選択される1つ以上を加えて、沈澱したカルシウムを除去する工程
<2>
 上記工程(a)に先立って、上記骨組織を前処理する工程をさらに含み、
 上記前処理は、上記骨組織の加熱、上記骨組織の加圧下における加熱および上記骨組織へのマイクロ波の照射からなる群より選択される1つ以上である、<1>に記載の製造方法。
<3>
 上記工程(d)の後に、リン酸イオンおよび水素イオン以外のアニオンおよびカチオンを除去する工程をさらに含む、<1>または<2>に記載の製造方法。
<4>
 上記工程(b)および上記工程(c)を、2回以上繰り返して行う、<1>~<3>のいずれかに記載の製造方法。
<5>
 上記工程(a)において、硝酸、塩酸、蟻酸および硫酸からなる群より選択される1種類以上により骨組織を酸処理する、<1>~<4>のいずれかに記載の製造方法。
<6>
 上記工程(d)では、リン酸カルシウム溶液に硫酸を加えない、<1>~<5>のいずれかに記載の製造方法。
 本発明の一態様によれば、リン酸の新規な製造方法が提供される。
本発明の一実施形態に係る肥料の製造方法の一例を表すフローチャートである。 本発明の一実施形態に係る肥料の製造方法の他の例を表すフローチャートである。 本発明の一実施形態に係るリン酸の製造方法の一例を表すフローチャートである。 豚骨を硝酸で酸処理して得られた骨組織をプロテアーゼで処理した結果を表す図である。 豚骨を硝酸または塩酸で酸処理して得られた骨組織を、アクチニダインで処理した結果を表す図である。 種々の酸およびプロテアーゼを利用して、溶液交換を伴わすに骨可溶化液Aを調製した結果を表す図である。 酸抽出液による植物の生長効果を検討した実験の結果を表す図である。 酸抽出液、プロテアーゼ処理液または骨可溶化液Aによる植物の生長効果を検討した実験の結果を表す図である。 骨可溶化液Aまたは市販の培養液による植物の生長効果を比較した実験の結果を表す図である。 骨可溶化液Aまたは市販の培養液による植物の生長効果を比較した実験の結果を表す図である。 骨可溶化液Aまたは市販の液体肥料による、ストレス耐性関連遺伝子の発現量の変化を比較した実験の結果を表す図である。 骨可溶化液Aまたは市販の液体肥料による、ストレス耐性関連遺伝子の発現量の変化を比較した実験の結果を表す図である。 骨組織の前処理による、酸抽出液に含まれているリン酸の量への影響を表す図である。 酸抽出液に含まれているタンパク質成分を、電気泳動により分析した結果を表す図である。 種々のプロテアーゼを利用して、プロテアーゼ処理液を調製した結果を表す図である。 プロテアーゼ処理液に含まれているタンパク質成分を、電気泳動により分析した結果を表す図である。 種々の酸およびプロテアーゼを利用して、溶液交換を伴わすに骨可溶化液Aを調製した結果を表す図である。 骨可溶化液Bまたは市販の液体肥料を与えて5日間栽培したスプラウトの葉における、発現変動遺伝子の解析結果を表す図である。 骨可溶化液Bと市販の液体肥料の混合液または市販の液体肥料のみを与えて5日間栽培したスプラウトの根における、発現変動遺伝子の解析結果を表す図である。 骨可溶化液Bと市販の液体肥料の混合液または市販の液体肥料のみを与えて5日間栽培したスプラウトの葉における、発現変動遺伝子の解析結果を表す図である。 市販の骨粉を原料としてリン酸を抽出した結果を表す溶出曲線である。 市販の骨粉を原料として液体肥料を製造した結果を表す図である。プロテアーゼとして、ニューラーゼF3Gを使用した。 市販の骨粉を原料として液体肥料を製造した結果を表す図である。プロテアーゼとして、パパインを使用した。
 〔1.肥料の製造方法〕
 本発明の一態様に係る肥料の製造方法は、下記工程1~3のうち1つ以上を含む。一実施形態において、肥料の製造方法は、下記工程4をさらに含む。以下、工程2、工程3、工程4、工程1の順に詳細に説明する。
 工程1:骨組織を酸およびプロテアーゼの両方を含む溶液で処理して、得られた骨可溶化液Aから肥料を製造する工程
 工程2:骨組織を酸処理して、得られた酸抽出液から肥料を製造する工程
 工程3:酸処理された骨組織をプロテアーゼ処理して、得られたプロテアーゼ処理液から肥料を製造する工程
 工程4:酸抽出液およびプロテアーゼ処理液を混合して、得られた骨可溶化液Bから肥料を製造する工程
 [1.1.工程2]
 工程2は、骨組織を酸処理して、得られた酸抽出液から肥料を製造する工程である。工程2では、主として骨組織から無機成分が分離して、酸抽出液中に溶離する。得られた酸抽出液からは、肥料を製造する。酸抽出液そのものを肥料としてもよいし、プロテアーゼ処理液と混合した骨可溶化液Bを肥料としてもよい。
 工程2に供する骨組織は、どのような生物に由来してもよい。生物の例としては、哺乳類、鳥類、両生類、魚類が挙げられる。肥料を大量生産するためには、肥料の原料となる骨組織を大量に入手できることが好ましく、例えば家畜(ウシ、ブタ、ヒツジ、ニワトリなど)の骨組織が好適に用いられる。骨組織を酸処理する前に、予め細断、粉砕してもよい。このようにすれば、骨組織の分解をより効率よく行えるので、製造時間を短縮できることがある。
 工程2で骨組織を処理する酸は、特に限定されない。酸の例としては、塩酸、硝酸、蟻酸、硫酸、トリクロロ酢酸が挙げられる。プランク・リュクロ液などの酸性脱灰液を使用してもよい。入手がしやすいという観点からは、硝酸、塩酸、蟻酸および硫酸からなる群より選択される1種類以上が好ましい。リン酸の回収効率の観点からは、塩酸、硫酸および硝酸からなる群より選択される1種類以上が好ましく、塩酸および硝酸からなる群より選択される1種類以上がより好ましい。カルシウムの回収効率の観点からは、塩酸および蟻酸からなる群より選択される1種類以上が好ましい。2種類以上の酸を適切な比率で混合して用いてもよい。
 工程2においては、酸を溶媒に稀釈した溶液により、骨組織を酸処理してもよい。溶媒の例としては、水、低級アルコール、グリセロール、プロパン-1,2-ジオール、1,3-プロパンジオールが挙げられる。2種類以上の溶液を適切な比率で混合して用いてもよい。
 酸の濃度は、酸処理を施す骨組織の体積に応じて、適宜決定できる。骨組織の体積が小さい場合は、低濃度の酸で処理できる。骨組織の体積が大きい場合は、酸の濃度が高い方が好ましい。低濃度の酸で酸処理を行う場合は、微粉化した骨組織を処理することが好ましい。しかし、骨組織の体積が大きい場合であっても、酸濃度を高くし、かつ長時間浸漬すれば、十分に無機成分を抽出できる。例えば、体積が数cm以下の骨破砕物を原料とする場合、工程2における酸の濃度の下限は、0.6mol/L以上、0.7mol/L以上、0.8mol/L以上または0.9mol/L以上でありうる。工程2における酸の濃度の上限は、2.0mol/L以下、1.5mol/L以下、1.0mol/L以下または0.9mol/L以下でありうる。酸の濃度が上記範囲であれば、無機成分を効率よく抽出でき、かつ、酸濃度が高すぎないので酸抽出液を中和するコストを低減できる。
 微粉化した骨組織を酸処理する場合における、好適な酸の濃度の例は次の通りである。酸が硝酸であるとき、硝酸の濃度の下限は、0.6mol/L以上が好ましく、0.7mol/L以上がより好ましい。硝酸の濃度の上限は、1.0mol/L以下が好ましく、0.9mol/L以下がより好ましい。酸が塩酸であるとき、塩酸の濃度の下限は、0.8mol/L以上が好ましく、0.9mol/L以上がより好ましい。塩酸の濃度の上限は、1.2mol/L以下が好ましく、1.1mol/L以下がより好ましい。酸が蟻酸であるとき、蟻酸の濃度の下限は、0.8mol/L以上が好ましく、0.9mol/L以上がより好ましい。蟻酸の濃度の上限は、1.2mol/L以下が好ましく、1.1mol/L以下がより好ましい。酸が硫酸であるとき、硫酸の濃度の下限は、0.8mol/L以上が好ましく、0.9mol/L以上がより好ましい。硫酸の濃度の上限は、1.2mol/L以下が好ましく、1.1mol/L以下がより好ましい。ただし、上記の濃度は骨組織を微粉化した場合における好適な濃度の例であり、体積がより大きい骨組織を原料とする場合は、酸の濃度をより高めてもよい。
 例えば、体積が数cm以下の骨破砕物を原料とする場合、工程2における抽出時間の下限は、6時間以上が好ましく、8時間以上がより好ましく、10時間以上がさらに好ましい。工程2における抽出時間の上限は、48時間以下が好ましく、24時間以下がより好ましく、14時間以下がさらに好ましい。抽出時間が上記の範囲であれば、骨組織に含まれている無機成分を充分に抽出できる。
 例えば、体積が数cm以下の骨破砕物を原料とする場合、工程2における酸処理の温度は、5~60℃が好ましい。上記の温度範囲で酸処理を行えば、酸処理に伴う不快臭の発生を低減できる。そのため、肥料の製造工場の立地条件が緩やかになる。また、60℃以下の温度条件に調節するためには高価な特別の機器を必要とせず、ウォーターバスまたはインキュベーターを用いることで温度を一定に保つことができる。
 工程2においては、酸に加えて、カルシウムイオンを捕捉できるキレート剤を添加してもよい。あるいは、工程2において、酸処理の前後において骨組織をキレート剤処理してもよい(酸処理とキレート剤処理では、溶液を交換してもよいし、交換しなくてもよい)。キレート剤の例としては、エチレンジアミン四酢酸(EDTA、CAS登録番号:60-00-4)、グリコールエーテルジアミン四酢酸(EGTA、CAS登録番号:67-42-5)、エチレンジアミンーN、N’-ジコハク酸(EDDS、CAS登録番号:20846-91-7)が挙げられる。工程2において、キレート剤を含んでいる溶液のpHは、6.0~8.0が好ましい。例えば、体積が数cm以下の骨破砕物を原料とする場合、工程2におけるキレート剤の濃度の下限は、0.1mol/L以上、0.2mol/L以上、0.3mol/L以上または0.4mol/L以上でありうる。工程2におけるキレート剤の濃度の上限は、0.9mol/L以下、0.8mol/L以下、0.7mol/L以下または0.6mol/L以下でありうる。
 工程2においては、酸処理の後において、カルシウムの少なくとも一部を除去してもよい。カルシウムを除去する方法の例としては、酸抽出液を中和する方法(リン酸カルシウム沈澱が生じる)、硫酸または硫酸塩を加える方法(硫酸カルシウムが沈澱する)、炭酸または炭酸塩を加える方法(炭酸カルシウムまたは炭酸水素カルシウムが沈澱する)、炭酸水素塩を加える方法(炭酸カルシウムまたは炭酸水素カルシウムが沈澱する)が挙げられる。
 後述する前処理工程を実施すると、工程2において得られる酸抽出液のリン酸濃度が向上する傾向にある。酸抽出液に含まれているリン酸の濃度は、例えば、280mM以上、300mM以上または320mM以上でありうる。
 [1.2.工程3]
 工程3は、酸処理された骨組織をプロテアーゼ処理して、得られたプロテアーゼ処理液から肥料を製造する工程である。得られたプロテアーゼ処理液からは、肥料を製造する。プロテアーゼ処理液そのものを肥料としてもよいし、酸抽出液と混合した骨可溶化液Bを肥料としてもよい。
 工程3において使用されるプロテアーゼは、特に限定されない。プロテアーゼの例としては、セリンプロテアーゼ、システインプロテアーゼ、アスパラギン酸プロテアーゼ、グルタミン酸プロテアーゼ、メタロプロテアーゼが挙げられる。
 プロテアーゼの具体例としては、トリプシン[EC 3.4.21.4]、キモトリプシン[EC 3.4.21.1]、[EC 3.4.21.2]、ペプシン[EC 3.4.23.1]、エコリシン[EC 3.4.23.19]、パパイン[EC 3.4.22.2]、フィシン[EC 3.4.22.3]、アクチニダイン[EC 3.4.22.14]、ブロメライン[EC 3.4.22.32]、カテプシンB[EC 3.4.22.1]、カテプシンH[EC 3.4.22.16]、カテプシンK[EC 3.4.22.38]、カテプシンL[EC 3.4.22.15]、カテプシンS[EC 3.4.22.27]、サーモライシン[EC 3.4.24.27]が挙げられる。
 プロテアーゼとして、市販の酵素製剤を使用してもよい。このような製剤の例としては、ニューラーゼF3G(Rhizopus niveus由来)、オリエンターゼAY(Aspergillus niger由来)、テトラーゼ(Aspergillus niger由来)、スミチームAP(Aspergillus niger由来)、デナプシン2P(Aspergillus属由来)、ブリューワーズクラレックス(Aspergillus niger由来)、マキシプロAFP(Aspergillus niger由来)、プロテアーゼS「アマノ」G(Bacillus stearothermophilus由来)、プロテアーゼN「アマノ」G(Bacillus subtilis由来)、プロテアーゼNL「アマノ」(Bacillus subtilis由来)、プロテアーゼA「アマノ」G(Aspergillus oryzae由来)、ウマミザイム(Aspergillus oryzae由来)、プロテアーゼP「アマノ」3G(Aspergillus melleus由来)、プロテアーゼM「アマノ」SD(Aspergillus oryzae由来)、ペプチダーゼR(Rhizopus oryzae由来)が挙げられる。あるいは、化学合成された酵素、遺伝子工学の手法により作製された酵素、生物から抽出された酵素を使用してもよい。
 工程3において用いるプロテアーゼは、好ましくは、至適pHが1.5~8.0であるプロテアーゼである。至適pHが1.5~8.0であるプロテアーゼの例としては、プロテアーゼS「アマノ」G(至適pH:7.0~8.5)、プロテアーゼN「アマノ」G(至適pH:6.0~7.5)、プロテアーゼNL「アマノ」(至適pH:6.5~7.5)、プロテアーゼA「アマノ」G(至適pH:6.0~7.5)、ウマミザイム(至適pH:6.0~7.5)、プロテアーゼM「アマノ」G(至適pH:3.0~6.5)、プロテアーゼP「アマノ」3G(至適pH:7.0~8.0)、ペプチダーゼR「アマノ」(至適pH:6.0~8.0)、アクチニダイン(至適pH:2.5~7.5)、パパイン(至適pH:4.0~9.0)、ペプシン(至適pH:1.5~3.0)、ニューラーゼF3G(至適pH:3.0~5.0)、トリプシン(至適pH:7.0~9.0)、キモトリプシン(至適pH:7.0~9.0)が挙げられる。用いるプロテアーゼは、より好ましくは、至適pHが1.5~5.0であるプロテアーゼである。至適pHが1.5~5.0であるプロテアーゼの例としては、プロテアーゼM「アマノ」(至適pH:3.0~6.5)、アクチニダイン(至適pH:2.5~7.5)、パパイン(至適pH:4.0~9.0)、ペプシン(至適pH:1.5~3.0)、ニューラーゼF3G(至適pH:3.0~5.0)が挙げられる。用いるプロテアーゼは、さらに好ましくは、至適pHが1.5~4.0であるプロテアーゼである。至適pHが1.5~4.0であるプロテアーゼの例としては、アクチニダイン(至適pH:2.5~7.5)、ペプシン(至適pH:1.5~3.0)、ニューラーゼF3G(至適pH:3.0~5.0)が挙げられる。
 工程3におけるプロテアーゼの濃度は、適宜設定できる。プロテアーゼの濃度の下限は、2mg/L以上または10mg/L以上でありうる。プロテアーゼの濃度の上限は、100mg/L以下または50mg/L以下でありうる。
 工程3における温度およびpHは、適宜設定できる。使用するプロテアーゼの至適温度および至適pHに合わせることが、処理効率を向上させる上では好ましい。工程3における反応系の温度の例としては、20~60℃が挙げられる。工程2における反応系の温度の下限は、10℃超、20℃以上、25℃以上、30℃以上、35℃以上、40℃以上、45℃以上、50℃以上または55℃以上でありうる。工程2における反応系の温度の上限は、60℃以下または55℃以下でありうる。
 工程3においては、反応系に塩を加えてもよい。反応系に加わる塩の濃度に応じて、プロテアーゼの基質特異性が変化する場合がある。したがって、反応系に塩を加えることにより、得られるプロテアーゼ処理液に含まれている成分を変化させることができる。
 工程3において反応系に加える塩の例としては、塩化物塩が挙げられる。塩化物塩の例としては、NaCl、KCl、LiCl、MgClが挙げられる。工程3において反応系に加える塩の濃度の下限は、0mmol/L超、20mmol/L以上、100mmol/L以上、150mmol/L以上、200mmol/L以上、500mmol/L以上、1000mmol/L以上、1500mmol/L以上、2000mmol/L以上でありうる。工程3において反応系に加える塩の濃度の上限は、4000mmol/L以下または2000mmol/L以下でありうる。
 一実施形態において、工程3において生成するペプチド断片の大きさは、1万Da以下、8,000Da以下、6,000Da以下または4,000Da以下である。この程度の大きさにまで切断されたペプチド断片は、生理活性を失っている蓋然性が高い。また、この程度の大きさにまで切断されたペプチド断片は、植物に栄養として吸収されやすく、肥料の有効成分として機能する場合がある。一実施形態において、ペプチド断片は、I型コラーゲン、アルファ-2-HS-グリコプロテイン、ペリオスチン、バイグリカンおよびSPARCからなる群より選択される1つ以上に由来するペプチド断片である。
 [1.3.工程4]
 工程4は、工程2で得られた酸抽出液と、工程3で得られたプロテアーゼ処理液とを混合して、得られた骨可溶化液Bから肥料を製造する工程である。得られた骨可溶化液Bからは、肥料を製造する。工程4において、酸抽出液およびプロテアーゼ処理液の混合比率は、特に限定されない。得られる骨可溶化液Bを所望の組成とするために、混合比を適宜選択できる。
 [1.4.工程1]
 工程1は、骨組織を酸およびプロテアーゼの両方を含む溶液で処理して、得られた骨可溶化液Aから肥料を製造する工程である。工程1では、工程2における酸処理と、工程3におけるプロテアーゼ処理が同時に進行することになる。工程1においては、酸処理およびプロテアーゼ処理に際して、溶液を交換する必要がない。
 工程1において、骨組織と酸およびプロテアーゼを接触させる順序は、特に限定されない。例えば、以下の順序が挙げられる。これらの順序の中では、順序1が好ましい。
順序1:酸を含む溶液に骨組織を浸漬させ、所定時間が経過した後、当該溶液にプロテアーゼを添加する。プロテアーゼを添加する前に、溶液のpHをプロテアーゼの至適pHに調節してもよい。
順序2:プロテアーゼを含む溶液に骨組織を浸漬させ、所定時間が経過した後、当該溶液に酸を加える。
順序3:酸およびプロテアーゼの両方を含む溶液を調製し、当該溶液に骨組織を浸漬させる。
 工程1における酸処理およびプロテアーゼ処理の好ましい条件については、[1.1]節および[1.2]節の記載が援用される。
 [1.5.その他の工程]
 本発明の一実施形態に係る肥料の製造方法は、工程1~4に加えて、肥料の製造において通常実施されうる工程をさらに含んでもよい。そのような工程の例としては、前処理工程、成分添加工程、乾燥工程、粉砕工程、被覆造粒工程、梱包工程が挙げられる。
 前処理工程は、工程1または工程2に先立つ工程である。前処理工程では、原料である骨組織を前処理する。前処理工程を施すことにより、骨組織から抽出されるリン酸の量を増加させることができる(実施例4を参照)。
 一実施形態において、前処理工程では、骨組織を加熱する。このときの加熱温度は、30℃以上または40℃以上;100℃以下または80℃以下でありうる。骨組織を酸に浸漬した状態で加熱してもよい。
 一実施形態において、前処理工程では、骨組織を加圧下において加熱する。このときの圧力は、200kPa以上または1MPa以上;500MPa以下または800MPa以下でありうる。このときの加熱温度は、10℃以上または50℃以上;120℃以下または200℃以下でありうる。
 一実施形態において、前処理工程では、骨組織にマイクロ波を照射する。加熱、加圧下における加熱およびマイクロ波照射を、任意に組合せて施してもよい。このうち、マイクロ波照射は短時間で効果が得られるため、前処理工程としてより好ましい。マイクロ波の照射時間は、5秒間以上、10秒間以上または15秒間以上;10分間以下、7分間以下または5分間以下でありうる。
 前処理工程を施すと、骨組織に含まれているタンパク質は変性する。それゆえ、前処理工程を施して得られる肥料には、変性したタンパク質(またはその断片)が含まれている。変性したタンパク質(またはその断片)は、本来のタンパク質が有していた生理活性を失っている。
 成分添加工程は、追加の肥料成分を添加する工程である。成分添加工程を設ければ、栽培される植物に応じて好適な組成を有する肥料を製造できるようになる。成分添加工程において添加される肥料成分の例としては、カリウム成分(酸化カリウム、水酸化カリウム、塩化カリウム、硫酸カリウムなど)、窒素成分(尿素、硝酸アンモニウムなど)、マグネシウム成分(リン酸マグネシウム、塩化マグネシウム、硫酸マグネシウムなど)、ビタミン、マンガン、ホウ素、鉄、銅、亜鉛、モリブデンが挙げられる。また、酸抽出液、プロテアーゼ処理液、骨可溶化液Aまたは骨可溶化液Bを、他の肥料(無機肥料、有機肥料など)と混合してもよい。
 乾燥工程は、酸抽出液、プロテアーゼ処理液、骨可溶化液Aまたは骨可溶化液Bから余剰の水分を除去する工程である。乾燥工程を経ることにより、固体またはペースト状の肥料が得られる。固体の肥料は、必要に応じて、施肥しやすい大きさおよび形状に切断、粉砕してもよい。
 被覆造粒工程は、固体肥料を被覆造粒する工程である。例えば、肥料をケイ酸化合物などで被覆すると、肥効時期を調整したり、リンおよびカルシウムの固定化を防止したり、肥料の流亡を防止したり、衝撃による肥料の破損を防止したりできる。
 梱包工程は、酸抽出液、プロテアーゼ処理液、骨可溶化液Aまたは骨可溶化液Bを容器に梱包して、肥料として流通または販売できるようにする工程である。梱包工程では、酸抽出液、プロテアーゼ処理液、骨可溶化液Aまたは骨可溶化液Bと、これらを肥料として使用するための説明書とを組合せてもよい。この説明書は、容器に印刷されていてもよいし、物理的または電子的な書類として梱包された肥料とは別に用意されていてもよい。説明書には、肥料の処方、施肥方法、施肥時期、対象作物などが記載されうる。
 [1.6.例示的な肥料の製造方法]
 本発明の一実施形態に係る肥料の製造方法の一例を、例示的なフローチャートに従って説明する。
 図1は、工程2、工程3および/または工程4を含む製造方法を表す例示的なフローチャートである。このフローチャートにおいては、工程S1、工程S2、工程S3および工程S4を経ることにより、酸抽出液が得られる。また、工程S1、工程S2および工程S5を経ることにより、プロテアーゼ処理液が得られる。さらに、酸抽出液およびプロテアーゼ処理液が工程S6を経ることにより、骨可溶化液Bが得られる。酸抽出液、プロテアーゼ処理液および骨可溶化液Bは、いずれも、肥料または混合肥料の成分として使用できる。酸抽出液は、植物の必須栄養であるリン酸を含んでいるので、これ自体でも肥料として利用できる。
 工程S1では、骨組織を前処理する。工程S1は任意工程であり、実施しなくてもよい。骨組織を前処理することにより、酸抽出液に含まれるリン酸の量を増加させることができる。この工程については、[1.5]節において説明した通りである。
 工程S2では、骨組織を酸処理する。工程S2を経て得られる上清が、酸抽出液である。酸抽出液から肥料を製造すると、上述の工程2となる。骨組織の酸処理については、[1.1]節において説明した通りである。
 工程S3では、硫酸塩、炭酸塩または炭酸水素塩を加える。工程S3は任意工程であり、実施しなくてもよい。工程S3により、酸抽出液に含まれていたカルシウムイオンが、硫酸カルシウム、炭酸カルシウムまたは炭酸水素カルシウムとして沈澱する。硫酸塩の例としては、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウム、硫酸マグネシウムが挙げられる。炭酸塩の例としては、炭酸カリウム、炭酸アンモニウムが挙げられる。炭酸水素塩の例としては、炭酸水素カリウムが挙げられる。好ましくは、硫酸塩は、硫酸カリウム、硫酸アンモニウムおよび硫酸マグネシウムからなる群より選択される1種類以上である。好ましくは、炭酸塩は、炭酸カリウムである。好ましくは、炭酸水素塩は、炭酸水素カリウムである。これらの硫酸塩、炭酸塩または炭酸水素塩を用いると、カリウム、マグネシウムおよび/またはアンモニウムが酸抽出液に含まれるようになる。これらの成分は、植物にとって重要な栄養素である。
 工程S4では、酸抽出液を塩基で中和する。工程S4は任意工程であり、実施しなくてもよい。工程S4により、酸抽出液の液性を酸性から中性近くに戻す。使用できる塩基の例としては、水酸化ナトリウム、水酸化カリウムが挙げられる。このうち、水酸化カリウムを用いると、酸抽出液にカリウムイオンが含まれるようになる。カリウムイオンは植物にとって重要な栄養素であるので、水酸化カリウムで中和することが好ましい。
 工程S5では、酸処理を経た骨組織を、プロテアーゼ処理する。工程S5を経て得られる処理液が、プロテアーゼ処理液である。プロテアーゼ処理液から肥料を製造すると、上述の工程3となる。骨組織のプロテアーゼ処理酸処理については、[1.2]節において説明した通りである。
 工程S6では、酸抽出液およびプロテアーゼ処理液を混合する。これにより、骨可溶化液Bが得られる。骨可溶化液Bから肥料を製造すると、上述の工程4となる。骨可溶化液Bの調製については、[1.3]節において説明した通りである。
 図2は、工程1を含む製造方法を表す例示的なフローチャートである。このフローチャートにおいては、工程S1、工程S7、工程S3および工程S4を経ることにより、骨可溶化液Aが得られる。骨可溶化液Aは、肥料または混合肥料の成分として使用できる。
 工程S1、S3、S4については、上記に説明した通りであるので、再度の説明は省略する。
 工程S7では、骨組織を酸およびプロテアーゼの両方で処理する。これにより、骨可溶化液Aが得られる。骨可溶化液Aから肥料を製造すると、上述の工程1となる。骨可溶化液Aの調製については、[1.4]節において説明した通りである。
 〔2.肥料〕
 [2.1.製造方法により特定される肥料]
 本発明の一態様に係る肥料は、本発明の一態様に係る肥料の製造方法によって得られる肥料である。したがって、本発明の一態様に係る肥料は、酸抽出液、プロテアーゼ処理液、骨可溶化液Aまたは骨可溶化液Bを含んでいる。この中でも、骨可溶化液Aまたは骨可溶化液Bを含んでいる肥料は、植物体の生長促進効果がより高いため好ましい。
 肥料の全重量に占める酸抽出液、プロテアーゼ処理液、骨可溶化液Aまたは骨可溶化液Bの割合の下限は、0.01重量%以上、0.05重量%以上、0.1重量%以上、0.5重量%以上、1重量%以上、5重量%以上、10重量%以上、20重量%以上、30重量%以上、40重量%以上、50重量%以上、60重量%以上、70重量%以上、80重量%以上または90重量%以上でありうる。肥料の全重量に占める酸抽出液、プロテアーゼ処理液、骨可溶化液Aまたは骨可溶化液Bの割合の上限は、100重量%である。一実施形態において、肥料は、酸抽出液、プロテアーゼ処理液、骨可溶化液A、骨可溶化液B、またはこれらの任意の混合物のみからなる。
 肥料の組成は、必要に応じて適宜変更してもよい。例えば、リンおよびカルシウムの一部または全部を、リン酸二水素カルシウムまたはクエン酸カルシウムに変化させてもよい。このような組成とすれば、植物体の生長段階に合わせてリンおよびカルシウムが供給されるように、肥効時期を調節できる。
 肥料は、固体肥料であってもよいし、液体肥料であってもよい。酸抽出液、プロテアーゼ処理液、骨可溶化液Aまたは骨可溶化液Bは液体として得られるため、液体肥料に容易に加工できる。本発明の一実施形態に係る肥料の製造方法によれば、骨組織の成分(例えば、骨組織の全成分)を可溶化できるので、植物の生長に有用な成分を豊富に含む液体肥料が得られると期待される。また、既存の骨由来固形肥料(骨粉)は遅効性であり、数年間をかけた土壌改良に用いられることが多いのに対し、液体肥料ならば即効性が期待できる。さらに、骨粉は水耕栽培には適していないのに対し、液体肥料は水耕栽培に好適に利用できる。加えて、液体肥料には、葉面散布にも容易に適用できるという利点もある。
 肥料には、酸抽出液、プロテアーゼ処理液、骨可溶化液Aまたは骨可溶化液B以外の成分が含まれていてもよい。そのような成分の例としては、酸性肥料、アルカリ性肥料、その他一般的な肥料が挙げられる。酸性肥料の例としては、硫安、過燐酸石灰、硫酸カリウム、硫酸アルミニウム、ピートモス、黒土、灰、ミョウバンが挙げられる。アルカリ性肥料の例としては、草木灰、石灰窒素、チリ硝石、魚肥腐葉土、苦土石灰、有機石灰、消石灰、石灰窒素、石灰岩、セメント、重曹、貝殻、もみ殻、燻炭が挙げられる。その他一般的な肥料の例としては、藁、樹皮、糖蜜が挙げられる。遊離アミノ酸(γ-アミノ酪酸など)、植物成長ホルモン(オーキシンなど)、微量元素(マグネシウム、硫黄、鉄、マンガン、亜鉛、銅、ホウ素、モリブデンなど)をさらに含んでいてもよい。
 [2.2.成分で特定される肥料]
 本発明の一態様に係る肥料は、骨組織分解物を含んでいる。したがって、骨組織の主な有機成分であるI型コラーゲン、オステオカルシン、アルファ-2-HS-グリコプロテイン、ペリオスチン、バイグリカン、SPARCまたはその分解ペプチドを含んでいることが多い。これらの成分は、他の製造方法で得られる肥料には含まれにくい。そのため、I型コラーゲン、オステオカルシン、アルファ-2-HS-グリコプロテイン、バイグリカン、SPARC、これらの分解ペプチド、またはこれらの組合せが含まれている肥料は、本発明の一実施形態に係る製造方法で製造された肥料である蓋然性が高い。
 一実施形態において、肥料は、I型コラーゲン、アルファ-2-HS-グリコプロテイン、ペリオスチン、バイグリカンおよびSPARCからなる群より選択される1つ以上に由来するペプチド断片を含んでいる。本発明の一実施形態に係る肥料の製造方法には、骨組織のプロテアーゼ処理が含まれる場合がある(工程S5および工程S7)。プロテアーゼによって切断されるペプチド鎖の箇所は、当該プロテアーゼに固有に決定される。それゆえ、特定のタンパク質を特定のプロテアーゼによって処理すると、処理により生じるペプチド断片は一意に定まる。それぞれの断片は分子量が異なるので、例えば質量分析によれば、肥料に含まれているペプチド断片から、プロテアーゼ処理前のタンパク質を特定できる。したがって、当業者であれば、肥料に含まれているペプチド断片が、I型コラーゲン、アルファ-2-HS-グリコプロテイン、ペリオスチン、バイグリカンおよびSPARCからなる群より選択される1つ以上に由来するペプチド断片であるか否かを判断できる。
 表1に、LC-MS/MSで検出されうるペプチド断片の例を示す。このペプチド断片は、肥料をトリプシン処理せずに分析したときに現れうるペプチド断片である。トリプシン処理していないので、ペプチド断片のC末端はLysまたはArgではないアミノ酸である。
Figure JPOXMLDOC01-appb-T000001
 一実施形態において、I型コラーゲン、アルファ-2-HS-グリコプロテイン、ペリオスチン、バイグリカンおよびSPARCからなる群より選択される1つ以上に由来するペプチド断片は、生理活性を有していない。本発明の一実施形態に係る肥料の製造方法には、タンパク質が生理活性を失いうる工程が、複数含まれている。一つは、前処理工程である。前処理工程においては、骨組織を加熱するか、骨組織を加圧下において加熱するか、または骨組織にマイクロ波を照射するので、タンパク質が変性し、生理活性を失う。もう一つは、工程1および工程3におけるプロテアーゼ処理である。プロテアーゼで処理されたタンパク質は断片となり、本来の生理活性を失う。
 一実施形態において、I型コラーゲン、アルファ-2-HS-グリコプロテイン、ペリオスチン、バイグリカンおよびSPARCからなる群より選択される1つ以上に由来するペプチド断片の大きさは、1万Da以下、8,000Da以下、6,000Da以下または4,000Da以下である。この程度の大きさにまで切断されたペプチド断片は、生理活性を失っている蓋然性が高い。また、この程度の大きさにまで切断されたペプチド断片は、植物に栄養として吸収されやすく、肥料の有効成分として機能する場合がある。
 本明細書において、「I型コラーゲン、アルファ-2-HS-グリコプロテイン、ペリオスチン、バイグリカンおよびSPARCの生理活性」とは、下記の通りである。これらに由来する断片が生理活性を失っているとは、下記の活性を有していないことを意味する。
・I型コラーゲンの生理活性:生理条件で自己会合して線維を形成する。
・アルファ-2-HS-グリコプロテインの生理活性:カルシウムイオンと結合する。
・ペリオスチンの生理活性:骨芽前駆細胞の細胞接着分子として機能する。
・バイグリカンの生理活性:I型コラーゲンと結合する。
・SPARCの生理活性:培養真皮線維芽細胞のI型コラーゲン合成を促進する。
 一実施形態において、肥料は、リン酸を含んでいる。本発明の一実施形態に係る肥料の製造方法において、前処理工程を施すと、肥料に含まれるリン酸の濃度が高くなる傾向にある。肥料に含まれているリン酸の濃度は、例えば、280mM以上、300mM以上または320mM以上でありうる。
 一実施形態において、肥料は、I型コラーゲン、アルファ-2-HS-グリコプロテイン、ペリオスチン、バイグリカンおよびSPARCからなる群より選択される1つ以上に由来するペプチド断片と、リン酸と、の両方を含んでいる。
 〔3.リン酸の製造方法〕
 本発明の他の態様は、骨組織を原料とするリン酸の製造方法に関する。リン酸の製造方法は、例えば、リン酸カルシウムの精製工程およびカルシウムの除去工程を含む。
 リン酸カルシウムの生成工程の例としては、下記の手順が挙げられる。
1. 工程2で得られた酸抽出液に、アルカリ溶液を加えて中和する。これにより、沈澱物が得られる。
2. 沈澱物に酸溶液(塩酸水溶液など)を加えて、沈澱物を再び可溶化させる。
3. 1および2を繰返して、リン酸カルシウムを精製する。
 カルシウムの除去工程では、精製したリン酸カルシウム溶液にキレート剤を加えることにより、カルシウムを除去する。他の例としては、精製したリン酸カルシウムの溶液に、硫酸塩、炭酸塩および炭酸水素塩からなる群より選択される1つ以上を加えることにより、カルシウムを硫酸カルシウムまたは炭酸カルシウムとして沈澱させてもよい。硫酸塩、炭酸塩および炭酸水素塩の例としては、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウム、硫酸マグネシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸アンモニウム、またはこれらの任意の複数成分の混合物が挙げられる。リン酸カルシウム溶液に加える試薬は、粉末のまま加えてもよいし、溶液(水溶液など)として加えてもよい。上述の方法は、酸性溶液かつ室温にも適用できるため、簡便にカルシウムを除去できる。
 [3.1.例示的なリン酸の製造方法]
 骨組織からリン酸を製造する方法として、2種類の製造方法が考えられる。一つは、骨を焼却して骨灰にし、骨灰からリン酸を精製する製造方法である。骨灰からリン酸を精製する工程では、リン鉱石からリン酸を精製する従来法を採用する。しかし、この製造方法は、大量のエネルギーを消費し、COの産出量も多くなるので、SDGsの達成には不向きである。
 もう一つの製造方法が、図3のフローチャートに例示されている方法である。骨組織には、リン酸以外にも、カルシウムなどの無機成分や、コラーゲンなどの有機成分が含まれている。図3に例示されている方法においては、工程S11および工程S12においてリン酸を溶解させ、工程S13および工程S14においてリン酸およびカルシウム以外の成分を除去する。工程S13および工程S14は繰り返し行ってもよく、繰り返し回数は適宜設定できる。工程S15においては、カルシウムを除去するために、硫酸塩、炭酸塩または炭酸水素塩を加える。工程S15で生じる硫酸カルシウム、炭酸カルシウムまたは炭酸水素カルシウムは、農業用肥料または工業原料として利用してもよい。以下、各工程を詳述する。
 工程S11では、骨組織を前処理する。工程S11は任意工程であり、実施しなくてもよい。骨組織を前処理することにより、酸抽出液に含まれるリン酸の量を増加させることができる。この工程は、上述した工程S1と同じ工程であり、詳細は[1.5]節において説明した通りである。
 工程S12では、骨組織を酸処理する。この工程により、酸抽出液が得られる。この工程は、上述した工程S2同じ工程であり、酸処理の条件については、[1.1]節の記載が援用される。
 工程S13では、酸抽出液を塩基で中和する。工程S13により、酸抽出液に含まれていたリン酸イオンがリン酸カルシウムとして沈澱し、骨夾雑物由来の成分は上清に含まれるようになる。したがって、沈澱を回収することにより、リン酸を精製できる。使用できる塩基の例としては、水酸化ナトリウム、水酸化カリウムが挙げられる。
 工程S14では、リン酸カルシウムの沈澱に酸を加える。これにより、沈澱として析出していたリン酸カルシウムが、再び溶解する。使用できる酸の例としては、塩酸、硝酸、蟻酸が挙げられる。
 工程S13およびS14は、繰り返し行ってもよい。これらの工程を繰返すことにより、リン酸の純度が上昇する。工程S13およびS14を繰返す回数は、例えば、2回以上、3回以上、4回以上または5回以上でありうる。経済性の観点から、工程S13およびS14を繰返す回数は、例えば、10回以下であってもよい。工程S13およびS14を繰返した後、工程S15に移行する前に、リン酸カルシウム沈澱に含まれる不要な成分を純水で洗い流す洗浄処理を、必要な回数だけ施してもよい。
 工程S15では、リン酸カルシウム溶液に硫酸塩、炭酸塩または炭酸水素塩を加える。これにより溶液中のカルシウムイオンが、硫酸カルシウム、炭酸カルシウムまたは炭酸水素カルシウムとして沈澱する。沈澱した硫酸カルシウム、炭酸カルシウムまたは炭酸水素カルシウムは、遠心分離などにより除去する。硫酸塩の例としては、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムおよび硫酸マグネシウムから選択される1種類以上が挙げられる。炭酸塩の例としては、炭酸ナトリウム、炭酸カリウムおよび炭酸アンモニウムから選択される1種類以上が挙げられる。炭酸水素塩の例としては、炭酸水素ナトリウムおよび炭酸水素カリウムから選択される1種類以上が挙げられる。また、硫酸塩、炭酸塩および炭酸水素塩のうち2つ以上を任意に組合せることもできる。工程S15において、硫酸ではなく硫酸塩を加えることには、次のような利点がある。
・液体を加えないので、反応系の体積増加を低減できる。
・反応系が強酸性にならないので、中和のために必要な塩基の量が少量で済む。
・安全性が高い。
・カルシウムの除去率が高い。
 工程S15において加える硫酸塩、炭酸塩または炭酸水素塩の量は、当業者により適宜設定できる。硫酸塩、炭酸塩または炭酸水素塩の投入量は、例えば、反応系における硫酸塩、炭酸塩または炭酸水素塩の濃度が0.2M以上、0.4M以上、0.6M以上、0.8M以上または1.0M以上となる量であってもよい。硫酸塩、炭酸塩または炭酸水素塩の投入量が多い方が、残留するカルシウムを少なくできる。硫酸塩、炭酸塩または炭酸水素塩の投入量の上限は、例えば、反応系における硫酸塩の濃度が3.0M以下、2.0M以下または1.0Mとなる量であってもよい。
 工程S15においては、溶解度積の都合上、少量の硫酸イオン、炭酸イオンまたは炭酸水素イオンが上清に残存する。これらのイオンを除去する際に、炭酸イオンまたは炭酸水素イオンは、加熱により二酸化炭素に変換されるので、容易に除去できる。それゆえ、工程S15において加える塩は、炭酸塩および炭酸水素塩からなる群より選択される1種類以上が好ましい。
 工程S16においては、カルシウムを除去した後の上清を精製する。上清には、硫酸塩に含まれていたナトリウムイオンなどのカチオンや、塩素イオンなどのアニオンが含まれている場合がある。これらのイオンを、例えばイオン交換樹脂に吸着させることにより、高純度のリン酸が得られる。炭酸イオンまたは炭酸水素イオンが含まれている場合は、加熱により二酸化炭素に変換することで、イオンを系外に除去できる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。異なる実施形態に開示された技術的手段を適宜組合せて得られる実施形態も、本発明の技術的範囲に含まれる。
 〔実施例1:骨組織分解物を含んでいる肥料の作製〕
 [実施例1-1:硝酸による酸抽出液の作製および成分分析]
 下記の手順により骨組織を硝酸で酸処理し、酸抽出液を得た。
1. 屠殺場から入手した豚骨を、ミル(IKA TUBE MILL 100、IKA JAPAN株式会社)で細粉砕した。
2. 湿重量3gの豚骨に、40mLの硝酸水溶液を加えて、20℃にて浸漬した。硝酸水溶液の濃度は、0.3mol/L、0.5mol/L、0.75mol/Lまたは1.0mol/Lとした。浸漬時間は、12時間、24時間または48時間とした。
3. 上清を回収し、酸抽出液とした。
 [実施例1-2:塩酸による酸抽出液の作製および成分分析]
 下記の手順により骨組織を塩酸で酸処理し、酸抽出液を得た。
1. 屠殺場から入手した豚骨を、ミル(IKA TUBE MILL 100、IKA JAPAN株式会社)で細粉砕した。
2. 湿重量2gの豚骨に、35mLの塩酸水溶液を加えて、20℃にて浸漬した。塩酸水溶液の濃度は、0.3mol/L、0.5mol/Lまたは1.0mol/Lとした。浸漬時間は、6時間、12時間または24時間とした。
3. 上清を回収し、酸抽出液とした。
 [実施例1-3:蟻酸による酸抽出液の作製および成分分析]
 下記の手順により骨組織を蟻酸で酸処理し、酸抽出液を得た。
1. 屠殺場から入手した豚骨を、ミル(IKA TUBE MILL 100、IKA JAPAN株式会社)で細粉砕した。
2. 湿重量2gの豚骨に、35mLの蟻酸水溶液を加えて、20℃にて浸漬した。蟻酸水溶液の濃度は、0.3mol/L、0.5mol/Lまたは1.0mol/Lとした。浸漬時間は、6時間、12時間または24時間とした。
3. 上清を回収し、酸抽出液とした。
 [実施例1-4:硫酸による酸抽出液の作製および成分分析]
 下記の手順により骨組織を硫酸で酸処理し、酸抽出液を得た。
1. 屠殺場から入手した豚骨を、ミル(IKA TUBE MILL 100、IKA JAPAN株式会社)で細粉砕した。
2. 湿重量2gの豚骨に、35mLの硫酸水溶液を加えて、20℃にて浸漬した。硫酸水溶液の濃度は、0.3mol/L、0.5mol/Lまたは1.0mol/Lとした。浸漬時間は、6時間、12時間または24時間とした。
3. 上清を回収し、酸抽出液とした。
 表2に、得られた酸抽出液の全リンを分析した結果を示す。成分分析は、株式会社クリタ分析センターに委託した。表2は、骨の湿重量1gあたりに換算した全リン(mg)の測定結果である。硝酸、塩酸、蟻酸または硫酸の濃度と、浸漬した時間ごとに、分析結果を各々の酸でまとめた。どの酸水溶液においても、24時間程度でほとんどのリンが回収できることが示された。また、酸の濃度は、1mol/L程度で十分にリンが回収できることが示された。検討した4種類の酸の中では、塩酸および硫酸が、リンの回収効率が高かった。表2から、1gの骨組織から100mg程度のリンを回収できることが分かった。
Figure JPOXMLDOC01-appb-T000002
 表3に、得られた酸抽出液の全カルシウムを分析した結果を示す。成分分析は、株式会社クリタ分析センターに委託した。表3は、骨の湿重量1gあたりに換算した全カルシウム(mg)の測定結果である。硝酸、塩酸、蟻酸、硫酸の濃度と、浸漬した時間ごとに、分析結果を各々の酸でまとめた。硝酸、塩酸および蟻酸の水溶液においては、24時間程度でほとんどのカルシウムが回収できていることが示された。また、硫酸水溶液においては、遊離したカルシウムは不溶性の硫酸カルシウムを形成する。そのため、分析結果としてはカルシウム濃度が低いが、実際には骨組織からカルシウムが溶出している。酸の濃度は、1mol/L程度で十分にカルシウムが回収できることが示された。検討した4種類の酸の中では、塩酸および蟻酸が、カルシウムの回収効率が高かった。表3から、1gの骨組織から約200mg程度のカルシウムを回収できることが分かった。
Figure JPOXMLDOC01-appb-T000003
 [実施例1-5:プロテアーゼ処理液の調製]
 実施例1-2で得られた酸処理後の骨組織を、下記2種類のプロテアーゼを含んでいる処理液に浸漬した。プロテアーゼ処理の条件は、プロテアーゼ濃度:2%(w/w)、温度:50℃、pH:至適pHとした。
・プロテアーゼ1:ニューラーゼF3G(天野エンザイム株式会社、Rhizopus niveus糸状菌由来のプロテアーゼ)
・プロテアーゼ2:ペプシン(Sigma Aldrich、アスパラギン酸プロテアーゼ)
 結果を図4に示す。図4において、Aはプロテアーゼ1で処理した結果を表し、Bはプロテアーゼ2で処理した結果を表す。処理時間は3.5時間、19時間または24時間とした。処理液の透明性および骨組織の残存を目視で確認した結果は、次の通りである。
・3.5時間後:いずれのプロテアーゼで処理した系でも、骨組織がほとんど消失していた。
・24時間後:いずれのプロテアーゼで処理した系でも、骨組織が完全に消失し、プロテアーゼ処理液の透明度も上昇した。
 このように、酸処理された骨組織を市販のプロテアーゼで処理することにより、プロテアーゼ処理液が得られることが分かった。
 [実施例1-6:プロテアーゼ処理液の調製および成分分析]
 下記の手順により、プロテアーゼ処理液を得た。
1. 骨組織を1mol/Lの硝酸水溶液または塩酸水溶液に48時間浸漬して、酸処理した。
2. 得られた処理液を、酸抽出液と骨組織の残渣に分別し、酸抽出液を別容器に移した。
3. 骨組織残渣に、0.1mol/Lのクエン酸緩衝液(pH3.5)を加えた。添加量は、最初の骨重量1g当たり10mLとした。
4. アクチニダイン(キウイフルーツ由来のシステインプロテアーゼ)を前処理した。具体的には、25℃で、10mmol/Lのジチオスレイトールおよび5mmol/Lのエチレンジアミン四酢酸を含む20mmol/Lリン酸緩衝液(pH6.5)に、90分間接触させた。
5. 3で得られた反応系に、活性化したアクチニダインを加えて、プロテアーゼ処理した。処理条件は、温度:20℃または50℃、pH:3.5(100mmol/Lリン酸緩衝液により調節)、時間:3日間とした。
 結果を図5に示す。硝酸または塩酸のいずれで酸処理した系でも、反応温度が50℃であれば、骨組織はほとんど消失していた。
 得られたプロテアーゼ処理液を100μmのフィルターに通し、微細な不溶物を除去した濾液を得た。この濾液を成分分析した結果を、表4に示す(骨の湿重量1gあたりに換算した数値を示す)。成分分析は、株式会社クリタ分析センターに委託した。
Figure JPOXMLDOC01-appb-T000004
 [実施例1-7:骨可溶化液Aの調製および成分分析]
 酸処理とプロテアーゼ処理との間に溶液交換を伴わずに、一段階で骨可溶化液Aを調製した。具体的な手順は下記の通りである。
1. 骨組織を1mol/Lの硝酸水溶液、塩酸水溶液、蟻酸水溶液または硫酸水溶液に48時間浸漬して、酸処理した。
2. 反応系に、最終濃度0.1mol/Lになるようにクエン酸緩衝液(pH3.5)を加えた。
3. 5NのNaOHおよび5NのHClにより、プロテアーゼの至適pHに調節した。具体的には、アクチニダインはpH3.5、ペプシンはpH3.0、ニューラーゼF3GはpH3.0に調節した。
4. 各プロテアーゼを、1%(w/w)となるように加えた。プロテアーゼの反応条件は、温度50℃で4日間とした。なお、アクチニダイン(キウイフルーツ由来のシステインプロテアーゼ)は、あらかじめ、10mmol/Lのジチオスレイトールおよび5mmol/Lのエチレンジアミン四酢酸を含む20mmol/Lリン酸緩衝液(pH6.5)で、25℃にて90分間前処理した。
 結果を図6に示す。いずれの系においても、反応温度が50℃であれば、骨組織は小さくなっていた。このように、酸処理とプロテアーゼ処理との間に溶液交換を挟まずに、ワンステップで骨組織から骨可溶化液Aが得られた。特に、ペプシンと塩酸または硝酸との組合せは骨組織をよく溶解し、残存した骨組織はごく僅かであった。
 得られた骨可溶化液Aを100μmのフィルターに通し、微細な不溶物を除去した濾液を得た。この濾液のカルシウム濃度を測定した結果を、表5に示す(骨の質重量1gあたりに換算した数値を示す)。カルシウムの測定は、コンパクトカルシウムイオンメータLAQUAtwin-Ca-11(株式会社堀場アドバンスドテクノ)を用いた。
Figure JPOXMLDOC01-appb-T000005
 [実施例1-8:リン酸の抽出]
 下記の手順により、骨組織から粗精製のリン酸を得た。
1. 骨組織を1mol/Lの硝酸水溶液、塩酸水溶液、蟻酸水溶液または硫酸水溶液に48時間浸漬して、酸処理した。
2. 反応系に5NのNaOHを0.15容量加えてよく混合し、室温で1時間静置した。これにより、白色の溶液を得た。
3. 得られた溶液を、10,000gで10分間、室温で遠心分離して上清を除去した。白色沈澱に1NのHClを工程1で加えた量と同じ量だけ加えて、よく混合した。これにより、透明な溶液を得た。
4. NaSO、KSO、MgSO、(NHSO、NaCOまたはNaHCOを、反応系に含まれるカルシウム濃度と同じ量となるように加えてよく混合し、室温で1時間静置した。これにより、白色の溶液を得た。
5. 得られた溶液を、10,000gで10分間、室温で遠心分離して上清を拐取した。得られた透明な溶液に、リン酸が含まれる。
 骨組織を硫酸に浸漬することにより、カルシウムがある程度除去されたリン酸含有溶液を得ることができる。しかし、硫酸による処理は、容積が増加し、溶液が強酸性になり、さらに不純物が多く精製が困難である。一方、上記の工程によれば、簡便に純度の高いリン酸を含む溶液を得ることができる。
 〔実施例2:骨組織分解物を含んでいる肥料で栽培した植物体の生長評価および成分分析〕
 [材料および方法]
1. ダイコン(Raphanus sativus L)の種子(タキイ種苗株式会社)を、濡れた紙タオルに播種した。暗下、22℃にて2日間静置し、種子を発芽させた。
2. 得られた植物体を、水耕栽培用ウレタンキューブ(2cm×2cm×2cm)に移植した。
3. ウレタンキューブに酸抽出液、プロテアーゼ処理液または骨可溶化液Aを浸漬させ、5日間生長させた。この期間の光条件は、光合成有効光量子束密度:約150μmol/m・s、明期:16時間、暗期:8時間とした。光源には、栽培植物育成用蛍光灯(ビオルックスA、NECライティング株式会社)を用いた。
4. 生長した植物体の生長評価および成分分析を行った。具体的には、下記の通りである。
・地上部新鮮重:植物体を胚軸と根の境界で切断し、胚軸側の重量を測定した。
・地上部乾物重:新鮮重を測定した植物体の部分を、80℃のオーブンで2日間乾燥させた。その後、重量を測定した。
・地上部水分含有率:地上部新鮮重と地上部乾物重の差に基づいて算出した
・葉面積:植物体の子葉をスキャナーで取り込み、ImageJを用いて葉面積を測定した。
・総ポリフェノール含量:50mgの子葉を、90%メタノール溶液中で破砕した。遠心分離して得られた上清を用いて、フォーリン・チオカルト法により総ポリフェノール含量を測定した。
 [結果および考察]
 (1)酸抽出液の濃度の生長に対する影響
 500倍または2000倍に稀釈した酸抽出液を与えた条件で植物体を生長させた。結果を図7に示す。500倍に稀釈した酸抽出液で生長させた植物体は、コントロールの植物体と比較して、地上部新鮮重が増加した。この結果から、500倍程度に稀釈した酸抽出液には、植物体の生長促進効果があると分かった。以降の実験では、500倍に稀釈した酸抽出液およびプロテアーゼ処理液を使用した。
 (2)酸抽出液、プロテアーゼ処理液または骨可溶化液Aの生長に対する影響
 下記の6条件で植物体を生長させ、地上部新鮮重を比較した。
・水のみを与える(コントロール)
・加熱処理していないプロテーゼ処理液(プロテアーゼ処理液1)を与える
・50℃にて加熱処理したプロテアーゼ処理液(プロテアーゼ処理液2)を与える
・酸抽出液を与える
・プロテアーゼ処理液1および酸抽出液を混合した骨可溶化液Aを与える
・プロテアーゼ処理液2および酸抽出液を混合した骨可溶化液Aを与える
 結果を図8に示す。プロテアーゼ処理液1およびプロテアーゼ処理液2を与えた植物体は、コントロールと比較して生長が促進された。同様に、酸抽出液を与えた植物体も、コントロールと比較して生長が促進された(この点は、(1)にて示した通りである)。さらに、プロテアーゼ処理液と酸抽出液とを混合した骨可溶化液Aを与えた植物体は、コントロールと比較した生長促進効果がより一層高かった。この結果から、酸抽出液およびプロテアーゼ処理液のいずれもが、植物体の生長促進効果を有していることが分かる。さらに、骨可溶化液Aによる植物体の生長促進効果は、酸抽出液またはプロテアーゼ処理液単独による生長促進効果よりも高いことが分かった。
 (3)市販の培養液との効果の比較
 骨可溶化液Aと市販の培養液との生長促進効果を比較した。市販の培養液としては、OATハウス(OATアグリオ株式会社)のA処方をさらに1/6倍に稀釈したものを使用した。この稀釈により、骨可溶化液Aと同じ硝酸イオン濃度(約600ppm)になるように調節した。
 結果を図8、9に示す。市販の培養液を与えた植物体は、骨可溶化液Aを与えた植物体と同程度に生長が促進された。骨可溶化液Aと培養液の両方を与えた植物体は、それぞれを単独で与えた植物体よりも、生長促進効果がさらに高まった。このことから、骨可溶化液Aにより、市販の培養液の生長促進効果をさらに向上できることが示唆された。
 植物体の地上部水分含有率は、骨可溶化液Aを与えることで増加し、骨可溶化液Aおよび培養液の両方を加えることによりさらに増加した。子葉あたりの総ポリフェノール含量は、骨可溶化液Aを与えることで増加し、骨可溶化液Aおよび培養液の両方を与えることでさらに増加した。これは、植物体の生長が促進された結果、子葉重量が増加した影響によると考えられる。
 〔実施例3:植物体のRNA発現解析1〕
 [植物体の全RNA抽出]
1. ダイコン(Raphanus sativus L)の種子(タキイ種苗株式会社)を、濡れた紙タオルに播種した。暗下、湿度100%、22℃にて2日間静置し、種子を発芽させた。
2. 得られた植物体を、ウレタンスポンジに移植した。ウレタンスポンジには、(1)水、(2)骨可溶化液A、(3)市販の液体肥料、または(4)骨可溶化液Aと市販の液体肥料との混合液のいずれかを含浸させた。
3. 植物体を22℃にて1日間、3日間または5日間生長させた。この期間の光条件は、光量:約100μmol/m・s、明期:16時間、暗期:8時間とした。光源には、栽培植物育成用蛍光灯(ビオルックスA、NECライティング株式会社)を用いた。
4. 生長させた植物体から、葉および根の組織を約0.1gずつ採取した。採取後すぐに乳鉢に入れて液体窒素を加え、組織を凍結させた状態で磨砕した。
5. RNeasy Plant Mini Kit(Qiagen)を用いて、磨砕した組織から全RNAを抽出した。
6. Qubit RNA HS Assay Kit(Thermo Fisher Scientific)および蛍光光度計(Qubit-4)を用いて、水溶液中における全RNAの濃度を測定した。併せて、230nm、260nmおよび280nmにおける吸光度(A230、A260およびA280)を分光光度計によって測定し、抽出したRNAの純度を調べた。
 結果を表6に示す。培養開始から5日目までの時点において、植物体の葉約0.1gからは、13.2~88.2μgの全RNAが抽出された。植物体の根約0.1gからは、8.4~43.8μgの全RNAが抽出された。A260/A280は2.0程度であり、RNAの純度に問題がないことを確認した。
Figure JPOXMLDOC01-appb-T000006
 [RNAシークエンスライブラリーの作製および次世代シークエンサーによるRNA配列解析]
 スプラウトより抽出した全RNAからのcDNAライブラリーの作製と、次世代シークエンサーによる遺伝子発現解析は、アゼンタ株式会社に委託して実施した。その解析の手順は以下の通りである。
1. 抽出した全RNAの品質(RNAの分解度)を、BioAnalyzer(Agilent Technologies)によって評価した。
2. 抽出した全RNAから、polyT オリゴDNAを結合したビーズを用いて、polyA-mRNAを濃縮した。
3. 逆転写酵素を用いてcDNAライブラリーを作製した。
4. 次世代シークエンサー(DNBSEQ-G400、MGI tech)を用いてcDNAの塩基配列を決定した。これにより、発現しているmRNAの塩基配列を網羅的に決定した(RNAseq解析)。スプラウト遺伝子のアッセンブリーはStringtieソフトウェアによって行った。このとき、公益財団法人かずさDNA研究所のデータベースで公開されているスプラウトの全ゲノム塩基配列(http://radish.kazusa.or.jp)を参照した。
 [発現量が変化した遺伝子の解析]
1. 栽培条件の違いによって発現量が有意に変化した遺伝子を、それぞれの遺伝子のリード数を転写産物長で補正して得られるFPKM値(fragments per kilobase of exon per million reads mapped)に基づいて同定した。同定には、DESeq2ソフトウェアを用いた。
2. 発現量が有意に増加または減少している遺伝子(DEG)を、網羅的に決定した。解析結果は、ボルケーノプロットによって表示した。発現量の比較は、(1)水のみ、(2)骨可溶化液A、(3)市販の液体肥料、(4)骨可溶化液Aと市販の液体肥料との混合液の4群で実施した。(2)または(4)群において発現量が有意に増加または減少している遺伝子を同定した。
3. 同定された発現変動遺伝子について、GOseqソフトウェアを用いてGOエンリッチメント解析を行った。これにより、発現変動遺伝子の生物学的な機能を解析した。
 [定量RT-PCR]
 ストレス耐性に関連が深い5種類の遺伝子を標的遺伝子とし、当該遺伝子の発現を、定量RT-PCRによって検討した。標的遺伝子としては、グルタチオンS-転移酵素τ19(GSTU19)、カタラーゼ2(CAT2)、オーキシン輸送体類似タンパク質2-1(LAX2-1)、グルタチオンS-転移酵素12(GST12)およびカルモジュリン5(CaM5)を採用した。具体的な手順は下記の通りである。
1. (1)水、(2)骨可溶化液A、(3)市販の液体肥料、または(4)骨可溶化液Aと市販の液体肥料との混合液を与えて生長させた植物体の葉および根から、全RNAを抽出した。
2. ランダムプライマーを用いて逆転写酵素反応(RT反応)を行った。逆転写酵素には、PrimeScript RT Master Mix(タカラバイオ株式会社)を用いた。
3. 標的遺伝子を定量PCRした。定量PCRには、2.0ngのcDNAをテンプレートとする特異的なプライマー対、TB Green Premix Ex Taq II(タカラバイオ株式会社)を用いた。定量PCRを実行する機器としては、Thermal Cycler Dice Real Time System TP850(タカラバイオ株式会社)を用いた。
 定量RT-PCRにおいては、各標的遺伝子の発現量を、アクチン遺伝子の発現量に対して標準化した。標的遺伝子およびアクチン遺伝子の増幅に用いたプライマー対の塩基配列を、表7に示す(上から順に配列番号1~12)。
Figure JPOXMLDOC01-appb-T000007
 [結果]
 グルタチオンS-転移酵素τ19(GSTU-19)をコードする遺伝子の発現量は、ウレタンスポンジへの移植前には検出されなかった。同じく、移植後1日目の時点では、(1)水、(2)骨可溶化液Aおよび(3)市販の液体肥料を含む系で生長させた植物体の葉および根からも検出されなかった。しかし、移植後1日目の時点において、(4)骨可溶化液Aと市販の液体肥料との混合液を含む系で生長させた植物体の葉および根では、GSTU-19の発現量が顕著に上昇していた(図11)。同様に、移植後1日目の時点において、(4)骨可溶化液Aと市販の液体肥料との混合液を含む系で生長させた植物体の葉ではカタラーゼ2(CAT2)、オーキシン輸送体類似タンパク質2-1(LAX2-1)、グルタチオンS-転移酵素12(GST12)およびカルモジュリン5(CaM5)をコードする遺伝子の発現量が顕著に上昇していた(図12)。
 このように、本発明の一実施形態に係る肥料と既存の液体肥料とを併用すると、植物のストレス耐性に関与する遺伝子の発現が促進されることが示された。この結果は、本発明の一実施形態に係る肥料と既存の液体肥料との併用により、植物体のストレス耐性を向上できることを示唆している。
 〔実施例4:前処理によるリン酸抽出率の向上〕
 骨組織を前処理することにより、酸抽出液に含まれるリン酸の量が増加することを確認した。具体的には、下記の手順により酸抽出液を調製し、含まれているリン酸の量を定量した。
1. 屠殺場から入手した豚骨を、ミル(IKA TUBE MILL 100、IKA JAPAN株式会社)で細粉砕した。
2. 5gの粉砕した豚骨に、下記(1)~(5)のいずれかの前処理を施した。
   (1)処理なし
   (2)30mLの硝酸(1mol/L)中で50℃にて1日浸漬
   (3)500Wのマイクロ波を30間秒照射
   (4)500Wのマイクロ波を60間秒照射
   (5)500Wのマイクロ波を120間秒照射
3. (1)および(3)~(5)の豚骨に、30mLの硝酸(1mol/L)を加えた。30mLの硝酸に浸漬した(1)~(5)の豚骨を、20℃にて48時間、振盪(100rpm)しながら浸漬した。このようにして、骨組織を脱灰した。
4. 上清を回収し、酸抽出液とした。
5. リン酸濃度をMalachite Green Phosphate Assay Kit(BioAssay Systems)により測定した。測定方法は、製品付属マニュアルに従った。測定に際しては、上清を蒸留水で稀釈した。
 [結果]
 結果を図13に示す。50℃で加熱して前処理した骨組織(2)からは、前処理をしなかった骨組織(1)よりも、1.18倍のリン酸が抽出された。また、マイクロ波照射で前処理した骨組織(3)~(5)からは、前処理をしなかった骨組織(1)よりも、最大で1.26倍のリン酸が抽出された。
 このように、適切な前処理をすることにより、酸抽出液に抽出されるリン酸の量が増加することが分かった。特に、マイクロ波の照射は、短時間で完了し、加熱の必要がなく、大きな骨組織にも応用でき、さらにリン酸の抽出率をより向上できるので、好ましい態様である。
 〔実施例5:酸抽出液に含まれているタンパク質成分の分析〕
 下記の手順により、酸抽出液に含まれているタンパク質成分を分析した。
1. 屠殺場から入手した豚骨を、ミル(IKA TUBE MILL 100、IKA JAPAN株式会社)で細粉砕した。
2. 湿重量2gの豚骨に、30mLの塩酸(1mol/L)を加え、20℃にて48時間、振盪(100rpm)しながら浸漬した。このようにして、骨組織を脱灰した。
4. 上清を回収し、酸抽出液とした。
5. 得られた酸抽出液を、それぞれ(1)酸抽出液原液、(2)酸抽出液1/2稀釈液、(3)酸抽出液1/4稀釈液とした。
6. 1mol/LのNaOH溶液を適量加えて、pHを中性にした。
5. 等量のジチオトレイトールを還元剤として加えて、95℃にて10分間加熱した。
6. 5%ポリアクリルアミドゲル(高分子成分用)および12.5%ポリアクリルアミドゲル(低分子成分用)を使用して、常法により電気泳動させた。
 [結果]
 結果を図14に示す。対照サンプルとして、骨に多量に含まれているタンパク質であるI型コラーゲンと、分子量マーカーとを同じゲルで電気泳動させた。同図から分かるように、酸抽出液からは、高感度な銀染色キットで染色される分子量1万Da以上のタンパク質が検出されなかった。つまり、酸抽出液には、タンパク質成分がほとんど含まれていないことが分かった。これは、強酸である塩酸で処理したため、タンパク質のペプチド結合が切断されて低分子ペプチドおよびアミノ酸になったからだと考えられる。
 〔実施例6:プロテアーゼ処理液の調製およびタンパク質成分分析〕
 [実施例6-1:プロテアーゼ処理液の調製]
 下記の手順により、プロテアーゼ処理液を得た。
1. 骨組織を1mol/Lの塩酸水溶液に48時間浸漬して、酸処理した。
2. 得られた処理液を、酸抽出液と骨組織の残渣に分別し、酸抽出液を別容器に移した。
3. 骨組織残渣に、0.1mol/Lのクエン酸緩衝液(pH3.5)を加えた。添加量は、最初の骨重量1g当たり10mLとした。
4. 得られた骨組織残渣を、下記3種類のプロテアーゼを含んでいる処理液に浸漬した。プロテアーゼ処理の条件は、プロテアーゼ濃度:2%(w/w)、温度:50℃、pH:至適pHとした。
・プロレザーFG-F(天野エンザイム株式会社、Bacillus sp.由来)
・プロテアーゼP「アマノ」3G(天野エンザイム株式会社、Aspergillus melleus由来)
・プロテアーゼM「アマノ」SD(天野エンザイム株式会社、Aspergillus oryzae由来)
 [結果]
 処理液の外観を図15に示す。参考として、実施例1-5(ニューラーゼF3Gおよびペプシン)および実施例1-6(アクチニダイン)の結果も併せて示す。同図から分かるように、本実施例で検討したプロテアーゼでも骨分解残渣が分解され、プロテアーゼ処理液が得られることが分かった。なお、本実施例で得られたプロテアーゼ処理液には沈澱が見られるが、これは、液性が中性に近いために生じたカルシウム塩の沈澱と考えられる。後述する実施例6-2の結果も踏まえると、プロテアーゼ処理によって骨分解残渣に含まれていたタンパク質は充分に分解されていると言える。
 [実施例6-2:プロテアーゼ処理液に含まれるタンパク質成分分析]
 実施例1-5、1-6および6-1と同様にして、下記のプロテアーゼを用いてプロテアーゼ処理液を調製した。
・ペプシン(Sigma Aldrich、アスパラギン酸プロテアーゼ)
・ペプチダーゼR(天野エンザイム株式会社、Rhizopus属由来)
・プロテアーゼP「アマノ」3G(天野エンザイム株式会社、Aspergillus melleus由来)
・プロレザーFG-F(天野エンザイム株式会社、Bacillus sp.由来)
・ニューラーゼF3G(天野エンザイム株式会社、Rhizopus niveus由来)
・プロテアーゼM「アマノ」SD(天野エンザイム株式会社、Aspergillus oryzae由来)
・アクチニダイン(キウイフルーツ由来、システインプロテアーゼ)
 得られたプロテアーゼ処理液を、10倍稀釈(レーンA)または5倍稀釈(レーンB)して、16%ポリアクリルアミドゲルを使用して電気泳動させた。泳動させたタンパク質を、銀染色した。対照サンプルとして、酵素のみを加えた溶液(レーンC)も電気泳動させた。
 結果を図16に示す。同図に示すように、いずれのプロテアーゼ処理液にも、酵素(レーンC)とは異なる分子量のタンパク質成分が含まれていた。つまり、いずれのプロテアーゼで処理しても、骨組織残渣に含まれていたタンパク質が分解されていた。このように分解されたペプチドは、栄養源として植物体に利用される。
 〔実施例7:骨組織からのリン酸の回収〕
 下記の手順により、酸抽出液から沈澱としてリン酸を回収した。また、リン酸の回収率も計算した。
1. 屠殺場から入手した豚骨を、ミル(IKA TUBE MILL 100、IKA JAPAN株式会社)で細粉砕した。
2. 粉砕した豚骨を、1Nの硝酸水溶液または1Nの塩酸水溶液に48時間浸漬した。
3. 上清を回収して、酸抽出液を得た。
4. 0.5mLの酸抽出液に、5Nの水酸化ナトリウム水溶液を、30μL、50μL、70μL、100μLまたは120μL加えて、室温にて1時間静置した。これにより、リン酸を沈澱させた。
5. 遠心分離により、反応液を上清と沈澱とに分けた。
6. 沈澱に1Nの塩酸水溶液を0.5mL加えて、リン酸を再溶解させた。
7. 工程5で得られた沈澱の最溶解液および工程4で得られた上清におけるリン酸含有量を測定した。測定には、Malachite Green Phosphate Assay Kit(BioAssay Systems)を用いた。また、工程3で得られた酸抽出液におけるリン酸含有量を基準として、リン酸回収率を計算した。
Figure JPOXMLDOC01-appb-T000008
 [結果]
 結果を表8に示す。硝酸を用いた酸抽出液においては、NaOH水溶液の添加量を100μL以上にすれば、70%以上のリン酸を沈澱として回収できた。一方、上清に含まれているリン酸は、NaOH水溶液の添加量を120μLとすると、10%程度にまで減少した。塩酸を用いた酸抽出液においては、NaOH水溶液の添加量を70μL以上にすれば、70%以上のリン酸を沈澱として回収できた。一方、上清に含まれているリン酸は、NaOH水溶液の添加量を100μLとすると、10%程度にまで減少した。このように、酸抽出液に適量のNaOH水溶液を添加することにより、沈澱としてリン酸を回収・粗精製できた。
 ちなみに、硝酸を用いた酸抽出液におけるリン酸の含有量は、24.6mgであった。これは、工程2で使用した豚骨の湿重量(71mg)に対して、34.7%に当たる。また、塩酸を用いた酸抽出液におけるリン酸の含有量は、15.1mgであった。これは、工程2で使用した豚骨の湿重量(74.5mg)に対して、20.2%に当たる。乾燥前の骨組織に占めるリン酸の重量は25~35%とされているので、酸抽出液の調製により、最大で99%(=34.7/35×100)のリン酸が取出せていることになる。
 〔実施例8:硫酸塩の添加によるリン酸の精製〕
 [実施例8-1:上清におけるリン酸回収率の検討]
 下記の手順により、実施例7で得られたリン酸沈澱の再溶解液から、カルシウムを硫酸カルシウム沈澱として除去した。
1. 実施例7と同様にして、リン酸沈澱の再溶解液を調製した。実施例7の工程2において使用する酸は、1Nの硝酸水溶液または1Nの塩酸水溶液とした。実施例7の工程4において添加する5Nの水酸化ナトリウム水溶液の量は、100μLとした。
2. 硫酸または硫酸塩(硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムまたは硫酸マグネシウム)を加えた。硫酸または硫酸塩の添加量は、最終濃度が0.4M、0.6M、0.8Mまたは1.0Mとなる量とした。
3. 生成した硫酸カルシウム沈澱を、遠心分離により除去した。
4. 上清に含まれているリン酸の重量を測定した。測定には、Malachite Green Phosphate Assay Kit(BioAssay Systems)を用いた。また、硫酸または硫酸塩を加える前の、酸抽出液に水酸化ナトリウム水溶液を加えて生じた沈澱(実施例7の工程5で得られた沈澱)におけるリン酸含有量を基準として、リン酸回収率を計算した。
Figure JPOXMLDOC01-appb-T000009
 [結果]
 結果を表9に示す。硫酸塩の濃度を適切に設定すれば、硫酸と同程度のリン酸回収率を硫酸塩でも達成できることが分かった。また、0.4Mの低濃度においては、硫酸塩の添加により得られるリン酸濃度は、硫酸の添加により得られるリン酸濃度よりも若干高い傾向にあった。重要なことには、硫酸塩を添加は硫酸の添加よりも系の体積を少なくできるだけでなく、得られるリン酸の濃度も1.5倍程度高い。この点において、本発明の一実施形態に係る方法は、リン酸を精製する有用な方法である。さらに、技術を実用化する際には、硫酸または硫酸塩の添加量が少ない方が好ましいことからも、硫酸塩によるカルシウム除去効果の有効性が改めて証明された。
 カルシウムの沈澱に硫酸ではなく硫酸塩を用いることには、次のような利点がある。
・リン酸濃度が1.5倍程度高い。
・液体を加えないので、反応系の体積増加を低減できる。
・反応系が強酸性にならないので、中和のために必要な塩基の量が少量で済む。
・安全性が高い。
 [実施例8-2:上清からのカルシウム除去能の検討]
 実施例8-1の工程4で得られた上清における、カルシウム含有量を測定した。測定には、LAQUAtwin-Ca-11を用いた。また、硫酸または硫酸塩を加える前の、酸抽出液に水酸化ナトリウム水溶液を加えて生じた沈澱(実施例7の工程5で得られた沈澱)におけるカルシウム含有量を基準として、カルシウム残留率を計算した。
Figure JPOXMLDOC01-appb-T000010
 [結果]
 結果を表10に示す。同じ濃度で比較すると、一般に、硫酸よりも硫酸塩の方が、カルシウム残留率が低かった。例えば、塩酸での酸処理後に0.4M水酸化ナトリウムを加えた実験系において、溶液中のカルシウム量は、HSOでは1,210μgであったのに対し、硫酸塩では155~270μgであった。つまり、この条件におけるカルシウム除去能は、硫酸塩の方が最大で7.8倍高かった。加えて、重要なことには、硫酸塩を添加した溶液と硫酸を添加した溶液とを比較すると、溶液の体積は前者が後者の約1/2でありながら、カルシウム濃度は前者が後者の約1/2まで減少していた。つまり、硫酸塩を添加することにより、リン酸を精製する上で不必要なカルシウムを効率よく除去できる。
 酸処理に使用した酸で比較すると、塩酸による酸処理の方が、硝酸による酸処理よりもカルシウム残留率が低かった。最もカルシウムを除去できていたのは、塩酸で酸処理した酸抽出液に1Mの硫酸カリウムを添加した系であった。
 表11に、表9、10の結果に基づいて、カルシウム量(mg)/リン酸量(mg)の相対比率(%)を計算した値を示す。硫酸の添加によってもリン酸を回収できるが、いずれの濃度においても、カルシウムの残留量は硫酸塩を添加した実験系よりも多いことが示された。一方、硫酸塩を添加してリン酸を回収すると、硫酸を添加した実験系よりもカルシウムの残留量が著しく少なくなり、リン酸の回収量が相対的に高いことも示された。このように、適切な硫酸塩を添加することにより、リン酸の回収量を減少させることなく、カルシウムの残存量を0.2重量%まで低減させることができる。したがって、骨組織から抽出したリン酸の精製には、硫酸よりも硫酸塩を用いる方が好ましいと言える。
Figure JPOXMLDOC01-appb-T000011
 [実施例8-3:沈澱へのリン酸脱漏率の検討]
 下記の手順により、実施例8-1の工程3で得られた硫酸カルシウム沈澱における、リン酸の含有量を測定した。
1. 硫酸カルシウム沈澱にEDTA(pH7.4)および5Nの水酸化ナトリウムを加えて、再溶解させた。
2. 得られた溶解液におけるリン酸含有量を測定した。測定には、Malachite Green Phosphate Assay Kit(BioAssay Systems)を用いた。また、硫酸または硫酸塩を加える前の、酸抽出液に水酸化ナトリウム水溶液を加えて生じた沈澱(実施例7の工程5で得られた沈澱)におけるリン酸含有量を基準として、リン酸脱漏率を計算した。
Figure JPOXMLDOC01-appb-T000012
 [結果]
 結果を表12に示す。表から分かるように、硫酸塩の濃度を適宜調節すれば、硫酸カルシウム沈澱におけるリン酸含有量を硫酸と同程度に低減できた。硫酸塩の濃度は、0.4Mあれば、脱漏するリン酸を充分に低減できた。
 [実施例8-4:合計リン酸回収率の検討]
 実施例8-1で検討した上清におけるリン酸回収率と、実施例8-3で検討した沈澱へのリン酸脱漏率の合計量を検討した。沈澱に含まれているリン酸は、沈澱の洗浄によって再回収できる見込みがある。例えば、沈澱(硫酸カルシウム)を純水により洗浄することで、沈澱に含まれていたリン酸を回収できる。そのため、合計リン酸含有量が多いほど、回収できるリン酸の潜在量も多くなる。
Figure JPOXMLDOC01-appb-T000013
 [結果]
 結果を表13に示す。濃度を適切に調節すれば、硫酸と同程度のリン酸回収率を硫酸塩でも達成できることが分かった。合計回収率は塩酸を用いた酸抽出液の方が高かったが、絶対的なリン酸含有量は塩酸を用いた酸抽出液と硝酸を用いた酸抽出液とで同程度であった。
 〔実施例9:植物体のRNA発現解析2〕
 [cDNAライブラリーの作製および次世代シークエンサーによる遺伝子発現解析]
 実施例3と同様の手順により行った。
 [発現量が変化した遺伝子の解析]
 実施例3と同様の手順により行った。発現量の比較は、骨可溶化液Bvs.市販の液体肥料、および、骨可溶化液Bと市販の液体肥料との混合液vs.市販の液体肥料のみの2組で実施した。
 [結果]
 図18は、骨可溶化液Bまたは市販の液体肥料を与えて5日間栽培したスプラウトの葉における、発現変動遺伝子の解析結果である。FPKM値が2倍以上に増加した遺伝子は、1,568個であった。FPKM値が2分の1以下に減少した遺伝子は、1,654個であった。したがって、合計3,222個の遺伝子の発現量が変動していた。GOエンリッチメント解析の結果、発現量が変動している遺伝子には、成長の制御に関連する遺伝子が65個、光合成に関連する遺伝子が44個、光合成の光化学系Iにおける光捕集に関係する遺伝子が26個含まれていた。
 図19は、骨可溶化液Bと市販の液体肥料との混合液または市販の液体肥料のみを与えて5日間栽培したスプラウトの根における、発現変動遺伝子の解析結果である。FPKM値が2倍以上に増加した遺伝子は、766個であった。FPKM値が2分の1以下に減少した遺伝子は、1,235個であった。したがって、合計2,001個の遺伝子の発現量が変動していた。GOエンリッチメント解析の結果、発現量が変動している遺伝子には、硝酸同化に関連する遺伝子が17個、根毛の伸長に関連する遺伝子が16個、硝酸の取り込みに関係する遺伝子が12個含まれていた。
 図20は、骨可溶化液Bと市販の液体肥料との混合液または市販の液体肥料のみを与えて5日間栽培したスプラウトの葉における、発現変動遺伝子の解析結果である。FPKM値が2倍以上に増加した遺伝子は、582個であった。FPKM値が2分の1以下に減少した遺伝子は、662個であった。したがって、合計1,244個の遺伝子の発現量が変動していた。GOエンリッチメント解析の結果、発現量が変動している遺伝子には、アブシシン酸(植物ホルモン)に対する反応に関連する遺伝子が32個、根毛の伸長に関連する遺伝子が13個、発芽の促進に関係する遺伝子が6個含まれていた。
 図18~20に示される結果から、骨可溶化液Bは、スプラウトの遺伝子発現を変動させることが分かった。特に、葉部または根部の組織成長、葉における光合成、および根における養分吸収に関連する遺伝子群の発現が、大きく変動していた。
 〔実施例10:硫酸塩の添加によるカルシウムイオン除去効率の検討〕
 リン酸沈澱の再溶解液に硫酸塩を添加することにより、カルシウムイオンを炭酸カルシウム沈澱として除去した。沈澱除去後の上清におけるカルシウムイオン含有量を測定して、カルシウム除去効率を検討した。具体的な手順は次の通りである。
1. 実施例7と同様にして、リン酸沈澱の再溶解液を調製した。実施例7の工程2において使用する酸は、1Nの塩酸水溶液とした。実施例7の工程4において添加する5Nの水酸化ナトリウム水溶液の量は、100μLとした。
2. 液体の硫酸(HSO)または固体の硫酸塩(NaSO、KSO、MgSOおよび(NHSO)を加えた。硫酸または硫酸塩の添加量は、最終濃度がそれぞれ0.4Mとなる量とした。
3. 生成した硫酸カルシウム沈澱を、遠心分離により除去した。
4. 上清に含まれているカルシウムイオンの重量(mg)を測定した。カルシウムイオンの測定は、TSKgel SuperIC-Cation HSII(4.6mm I.D.×10cm)を接続した高速イオンクロマトグラフィーIC-8100EX(東ソー株式会社)を用いて、精密測定条件で実施した。3.0mmol/Lのメタスルホン酸および2.7mmol/Lの18-クラウン-6の混合液を溶離液とした。測定温度は40℃、流速は1.0mL/分、注入量は30μLであった。電気電動度(μS)を測定し、標準物質の面積から回帰式を求めることにより、カルシウムイオン濃度を測定した。カルシウムイオン濃度から、1つのサンプル(30μL)あたりのカルシウムイオン含有量を求めた。
Figure JPOXMLDOC01-appb-T000014
 [結果]
 結果を表14に示す。液体の硫酸を添加した系は、系全体の容積が増加するだけでなく、カルシウムイオンの除去率も73%と一番低かった。固体の硫酸塩を加えた系では、系全体の容積の増加が少なく、カルシウムイオンの除去率も91~94%と高かった。また、強酸である硫酸を使用しないので、硫酸塩を加える方法は安全性も高い。さらに、硫酸塩の添加量を適宜増減させることで、所望する濃度のカルシウムを残存させることもできた。
 リン酸またはリン酸を含有する肥料を骨組織から製造する際に、骨組織に含まれているカルシウムイオンは、リン酸の回収を減少させる一因となる。これは、中性域においては、カルシウムイオンがリン酸イオンと結合してリン酸カルシウム沈澱となるためである。したがって、カルシウムイオンを沈澱により除去することが望ましく、硫酸塩の添加により上首尾に除去できることが示された。
 硫酸塩に含まれているカリウムイオン、マグネシウムイオンまたはアンモニウムイオンは、植物の生長に必要な成分である。それゆえ、硫酸塩として硫酸カリウム、硫酸マグネシウムまたは硫酸アンモニウムを使用すると、植物の生長に必要な成分を肥料に含ませることができる。あるいは、実施例7の工程4で加える塩基を、水酸化ナトリウムから水酸化カリウムに変更しても、植物の生長に必要な成分を肥料に含ませることができる。このような製造方法を採用すれば、価値を高めた肥料が製造できる。
 〔実施例11:炭酸塩の添加によるリン酸の精製〕
 下記の手順により、実施例7で得られたリン酸沈澱の再溶解液から、カルシウムを炭酸カルシウム沈澱として除去した。
1. 実施例7と同様にして、リン酸沈澱の再溶解液を調製した。実施例7の工程1において使用する酸は、1Nの硝酸水溶液または1Nの塩酸水溶液とした。実施例7の工程4において添加する5Nの水酸化ナトリウム水溶液の量は、100μLとした。
2. 炭酸塩(固体の炭酸水素ナトリウムまたは炭酸ナトリウム)を加えた。炭酸水素ナトリウムの添加量は、最終濃度が0.4Mとなる量とした。炭酸ナトリウムの添加量は、最終濃度が0.6Mとなる量とした。
3. 生成した炭酸カルシウム沈澱を、遠心分離により除去した。
4. 上清に含まれているリン酸イオンの濃度(ppm)を測定した。リン酸イオンの測定は、TSKgel SuperIC-Anion HS(4.6mm I.D.×10cm)を接続した高速イオンクロマトグラフィーIC-8100EX(東ソー株式会社)を用いて、精密測定条件で実施した。7.5mmol/Lの炭酸水素ナトリウムおよび0.8mmol/Lの炭酸ナトリウムの混合液を溶離液とした。測定温度は40℃、流速は1.5mL/分、注入量は30μLであった。電気電動度(μS)を測定し、標準物質の面積から回帰式を求めることにより、リン酸イオン濃度を測定した。リン酸イオン濃度から、1つのサンプル(30μL)あたりのリン酸イオン含有量を求めた。
Figure JPOXMLDOC01-appb-T000015
 [結果]
 結果を表15に示す。炭酸塩を添加することにより、カルシウムイオンは炭酸カルシウムとなって沈澱し、リン酸イオンは上清に残った。例えば、塩酸による酸抽出液に炭酸水素ナトリウムを加えた系では、9,000ppm以上のリン酸が上清に含まれていた。上清に残留している炭酸イオンは、加熱すると二酸化炭素に変換されるので、容易に除去できる。
 〔実施例12:硫酸塩に含まれていた陽イオンの除去〕
 [実施例12-1:ナトリウムイオンまたはカリウムイオンの除去]
 下記の手順により、カルシウムイオン除去するために加えた硫酸塩に含まれていた陽イオン(ナトリウムイオンまたはカリウムイオン)を除去した。具体的には、強陽イオン交換ゲルを用いてナトリウムイオンまたはカリウムイオンを吸着させた。
1. TSKgel SP-TOYOPEARL 650Mゲル(東ソー株式会社)を純水でデカンテーションして、マイクロスピンカラム(GE Healthcare)に充填した。
2. 硫酸塩を添加して硫酸カルシウムを除去した後の上清を、ゲルの上層に適量加えた。
3. 卓上遠心機で遠心することにより、上清にゲルを通過させた。ゲルを通過した素通り画分を集めた。
3. 素通り画分に含まれるナトリウムイオンまたはカリウムイオンの含有量(mg)を測定した。ナトリウムイオンの測定には、LAQUAtwin-Na-11(株式会社堀場アドバンスドテクノ)を用いた。カリウムイオンの測定には、LAQUAtwin-K-11(株式会社堀場アドバンスドテクノ)を用いた。
Figure JPOXMLDOC01-appb-T000016
 [結果]
 結果を表16に示す。硫酸ナトリウムまたは硫酸カリウムの添加により硫酸カルシウムを沈澱させた後の上清には、ナトリウムイオンまたはカリウムイオンが含まれている。これらのイオンは、強陽イオン交換ゲルに通すことで除去できた。具体的に、ナトリウムイオンは83%が除去され、カリウムイオンは86%が除去された。強陽イオン交換ゲルへの流通を繰り返すことにより、さらに多くの陽イオンを除去できる。
 このように、硫酸塩を添加する方法において、硫酸塩として加えられた陽イオンは、強陽イオン交換ゲルで除去できることが示された。ただし、骨組織から肥料を製造する場合、カリウムイオン、マグネシウムイオンおよびアンモニウムイオンは、植物の生長にとって重要な栄養元素であるから、除去しなくてもよい。
 [実施例12-2:マグネシウムイオンまたはアンモニウムイオンの除去]
 下記の手順により、カルシウムイオン除去するために加えた硫酸塩に含まれていた陽イオン(マグネシウムイオンまたはアンモニウムイオン)を除去した。具体的には、強陽イオン交換ゲルを用いてマグネシウムイオンまたはアンモニウムイオンを吸着させた。
1. TSKgel SP-TOYOPEARL 650Mゲル(東ソー株式会社)を純水でデカンテーションして、マイクロスピンカラム(GE Healthcare)に充填した。
2. 硫酸塩を添加して硫酸カルシウムを除去した後の上清を、ゲルの上層に適量加えた。
3. 卓上遠心機で遠心することにより、上清にゲルを通過させた。ゲルを通過した素通り画分を集めた。
3. 素通り画分に含まれるマグネシウムイオン、アンモニウムイオンまたはカルシウムイオンの含有量(μg)を測定した。イオン濃度の測定は、TSKgel SuperIC-Cation HSII(4.6mm I.D.×10cm)を接続した高速イオンクロマトグラフィーIC-8100EX(東ソー株式会社)を用いて、精密測定条件で実施した。3.0mmol/Lのメタスルホン酸および2.7mmol/Lの18-クラウン-6の混合液を溶離液とした。測定温度は40℃、流速は1.0mL/分、注入量は30μLであった。電気電動度(μS)を測定し、標準物質の面積から回帰式を求めることにより、カルシウムイオン濃度を測定した。イオン濃度から、1つのサンプル(30μL)あたりのイオン含有量を求めた。
Figure JPOXMLDOC01-appb-T000017
 [結果]
 結果を表17に示す。マグネシウムイオン、アンモニウムイオンおよびカルシウムイオンも、強陽イオン交換ゲルと接触させることにより上清から除去できることが示された。強陽イオン交換ゲルへの流通を繰り返すことにより、カルシウムイオンも含め、さらに多くの陽イオンを除去できる。これにより、リン酸の純度を高められることが示唆された。
 〔実施例13:市販の骨粉からのリン酸精製〕
 下記の手順により、市販の蒸製骨粉(株式会社大宮グリーンサービス)を可溶化して、リン酸を回収した。
1. 1gの蒸製骨粉に、10mLの硫酸(1N)、塩酸(1N)または硝酸(1N)を加えて、25℃にて19時間振盪した。
2. 得られた酸抽出液を、遠心機を用いて上清と沈澱とに分けた。
3. 0.5mLの上清に、0.1mLのNaOH水溶液(5N)を加えて、1時間振盪させた。
4. 遠心分離により、反応液を上清と沈澱とに分けた。
5. 適量の塩酸(1N)を沈澱に加えて沈澱を溶解させた。
6. 工程3~5を複数回繰り返した。その後、0.5mLの塩酸(0.4N)に沈澱を溶解させた。これにより、リン酸を濃縮した沈澱溶解液を得た。
7. 得られた沈澱溶解液におけるアニオン含有量を測定した。測定は、TSKgel SuperIC-Anion HS(4.6mm I.D.×10cm)を接続した高速イオンクロマトグラフィーIC-8100EX(東ソー株式会社)を用いて、精密測定条件で実施した。7.5mmol/Lの炭酸水素ナトリウムおよび0.8mmol/Lの炭酸ナトリウムの混合液を溶離液とした。測定温度は40℃、流速は1.5mL/分、注入量は30μLであった。電気電動度(μS)を測定し、標準物質の面積から回帰式を求めることにより、アニオンイオン濃度を測定した。アニオンイオン濃度から、1つのサンプル(30μL)あたりのアニオンイオン含有量を求めた。
Figure JPOXMLDOC01-appb-T000018
 [結果]
 結果を表18および図21に示す。市販の蒸製骨粉(高圧下で加熱処理した骨組織)を原料としても、本発明の一実施形態に係るリン酸の製造方法により、効率よく比較的安全にリン酸を回収できた。表18によると、硫酸による酸抽出液を用いるよりも、塩酸または硝酸による酸抽出液を用いる方が、リン酸の回収効率が高い。塩酸または硝酸を用いた系のリン酸回収効率は、硫酸を用いた系のリン酸回収効率の3.2~3.4倍に達した。
 このことは、図21にも示されている。同図に示すイオンクロマトグラフィーの溶出曲線によると、塩酸または硝酸を用いた系において、リン酸イオン以外のアニオンは、塩化物イオン以外にほとんど含まれていなかった(工程5において沈澱を溶解させるのに塩酸使用した)。一方、硫酸を用いた系においては、リン酸イオンの他に硫酸イオンが検出された。
 本実施例の結果は、市販の骨粉(加圧下で加熱処理された骨組織)からリン酸を取り出せることを示している。これにより、本発明の一実施形態に係るリン酸の製造方法は、リン鉱石や下水汚泥乾燥物からリン酸を回収する方法よりも、エネルギーコストが低く、環境破壊を起こしにくい持続可能な技術であることが証明された。
 〔実施例14:市販の骨粉からのプロテアーゼ処理液の製造〕
 下記の手順により、市販の蒸製骨粉(株式会社大宮グリーンサービス)を可溶化して、プロテアーゼ処理液を製造した。
1. 1gの蒸製骨粉に、10mLの硫酸(1N)、塩酸(1N)または硝酸(1N)を加えて、25℃にて24時間振盪した。
2. 得られた酸抽出液を、遠心機を用いて上清(酸抽出液)と沈澱(骨残渣)とに分けて回収した。
3. 沈澱に、0.1mol/Lのクエン酸緩衝液(pH3)または0.1mol/Lのトリス塩酸緩衝液(pH8)を10mL加えた。
4. 図1のS5にしたがって、沈澱からプロテアーゼ処理液を調製した。プロテアーゼとしては、ニューラーゼF3G(天野エンザイム株式会社)またはパパインW-40(天野エンザイム株式会社)を用い、実施例1-5と同じ手順で処理した。具体的には、次の通りであった。
・ニューラーゼF3G系:プロテアーゼ濃度=最初の骨重量の1%(w/w)、緩衝液=クエン酸緩衝液(pH3)、温度=37℃、浸漬時間=3日間
・パパインW-40系:プロテアーゼ濃度=最初の骨重量の1%(w/w)、緩衝液=トリス塩酸緩衝液(pH8)、温度=37℃、浸漬時間=3日間
5. 反応液を遠心して、沈澱物と上清に分けた。
 [結果]
 結果を図22、23に示す。市販の蒸製骨粉は、高圧下で加熱処理した豚骨と鶏骨との混合物である。この骨粉を原料としても、本発明の一実施形態に係る肥料の製造方法により、プロテアーゼ処理液が調製できた。プロテアーゼ処理液は、それ自体を肥料とすることもできるし、骨可溶化液Bの原料とすることもできる。液体肥料には、固形の骨粉では期待できない即効性の植物生長効果が期待される。また、液体肥料は、水耕栽培や葉面散布にも適用できる。
 ニューラーセF3Gを用いたプロテアーゼ処理に関して、塩酸で酸処理した後の骨残渣は、プロテアーゼ処理によってほとんど全て溶解した。硝酸で酸処理した後の骨残渣は、プロテアーゼ処理によって全て溶解した。硫酸で酸処理した後の骨残渣は、プロテアーゼ処理の後にも白色沈澱が見られた。この沈澱は硫酸カルシウムと見られ、タンパク質成分の少なくとも一部は分解されていると考えられる。
 パパインW-40を用いたプロテアーゼ処理に関して、塩酸または硝酸で酸処理した後の骨残渣は、プロテアーゼ処理によってほとんど全て溶解した。硫酸で酸処理した後の骨残渣は、プロテアーゼ処理の後にも白色沈澱が見られた。この沈澱は硫酸カルシウムと見られ、タンパク質成分の少なくとも一部は分解されていると考えられる。
 以上の結果から、硫酸を用いた酸抽出液を原料としてプロテアーゼ処理液を得る際には、遠心分離などによる沈澱の除去が必要となる場合があることが分かった。塩酸または硝酸を用いた酸抽出液を原料としてプロテアーゼ処理液を得る際には、沈澱の除去は必要なく、この点において、塩酸または硝酸を酸処理工程で用いることが好ましい。また、プロテアーゼ処理後の溶液の遠心上清は、硫酸で酸処理したものは透明であり、硝酸または塩酸で処理したものは濁っていた。この結果から、骨残渣をより完全に分解するためには、塩酸または硝酸で酸処理することがより好ましいと分かった。ただし、硫酸を用いてもプロテアーゼ処理液を調製できることには留意されたい。
 〔実施例15:市販の骨粉を原料とする酸抽出液におけるペプチド濃度の測定〕
 下記の手順により、市販の蒸製骨粉(株式会社大宮グリーンサービス)から酸抽出液を調製した。酸抽出液に含まれているペプチド濃度を測定した。
1. 1gの蒸製骨粉に、10mLの硫酸(1N)、塩酸(1N)または硝酸(1N)を加えて、25℃にて24時間振盪した。
2. 得られた酸抽出液を、遠心機を用いて上清と沈澱とに分けた。上清を酸抽出液として回収した。
3. 0.5mLの上清に、0.4mol/Lの水酸化カリウム水溶液を加えて、離散カルシウムを沈澱させた。
4. 工程3で得られた反応液から沈澱を除去した上清におけるペプチド濃度を測定した。測定には、プロテインアッセイBCAキット(品番297-73101、富士フィルム和光)を使用した。測定方法は、製品マニュアルに従った。540nmにおける吸光度を測定した。吸光度が高いほど、ペプチド濃度も高い。
5. 工程3で得られた反応液から沈澱を回収した。このとき回収したのは、工程1において、塩酸または硝酸で処理した系のみとした。
6. 沈澱を1Nの塩酸で完全に溶解させた。その後、0.4mol/Lの水酸化カリウムを再び加えて、リン酸カルシウムを沈澱させた。この溶解-沈澱のプロセスを3回繰り返した。
7. 工程6において、1回目および3回目の繰り返しが完了した後に、反応液から沈澱を除去した上清におけるペプチド濃度を測定した。測定には、プロテインアッセイBCAキット(品番297-73101、富士フィルム和光)を使用した。測定方法は、製品マニュアルに従った。540nmにおける吸光度を測定した。吸光度が高いほど、ペプチド濃度も高い。
Figure JPOXMLDOC01-appb-T000019
 [結果]
 結果を表19に示す。市販の蒸製骨粉を原料として調製した酸抽出液には、ペプチドが検出された。ペプチド濃度は、塩酸で処理した酸抽出液、硫酸で処理した酸抽出液、硝酸で処理した酸抽出液の処理の順番に高かった。この結果から、特に塩酸で処理した酸抽出液には、多くのペプチドが含まれることが示された。ペプチドは、骨組織に含まれている有機成分である。それゆえ、酸抽出液には植物生長効果をもたらす成分が含まれていることが示唆された。
 実施例5において、酸抽出液には、銀染色キットで染色されるタンパク質成分がほとんど含まれていないことが示されていた(図14も参照)。この理由について、実施例5では、タンパク質のペプチド結合が切断されて低分子ペプチドおよびアミノ酸になったと推定していた。本実施例は、この推定を裏付けるものである。
 ペプチドは、リン酸の製造においては不純物となる。不純物としてのペプチドは、リン酸カルシウムの溶解-沈澱のプロセス(図3の工程S13および工程S14)を繰返すことにより、ほとんど除去できることが分かった。表19に示す通り、溶解-沈澱プロセスを3回繰り返すことにより、ペプチド濃度は1/100まで減少した。この結果から、特に塩酸または硝酸により処理した酸抽出液からは、上首尾にペプチドを除去してリン酸濃度を高められることが示唆された。
 本発明は、リン酸の製造などに利用できる。

Claims (6)

  1.  下記工程を含む、リン酸の製造方法。
      (a)骨組織を酸処理して、酸抽出液を得る工程
      (b)得られた酸抽出液に塩基を加えて、沈澱したリン酸カルシウムを得る工程
      (c)得られたリン酸カルシウム沈澱に酸を加えて、リン酸カルシウム溶液を得る工程
      (d)得られたリン酸カルシウム溶液に、硫酸塩、炭酸塩および炭酸水素塩からなる群より選択される1つ以上を加えて、沈澱したカルシウムを除去する工程
  2.  上記工程(a)に先立って、上記骨組織を前処理する工程をさらに含み、
     上記前処理は、上記骨組織の加熱、上記骨組織の加圧下における加熱および上記骨組織へのマイクロ波の照射からなる群より選択される1つ以上である、請求項1に記載の製造方法。
  3.  上記工程(d)の後に、リン酸イオンおよび水素イオン以外のアニオンおよびカチオンを除去する工程をさらに含む、請求項1に記載の製造方法。
  4.  上記工程(b)および上記工程(c)を、2回以上繰り返して行う、請求項1に記載の製造方法。
  5.  上記工程(a)において、硝酸、塩酸、蟻酸および硫酸からなる群より選択される1種類以上により骨組織を酸処理する、請求項1に記載の製造方法。
  6.  上記工程(d)では、リン酸カルシウム溶液に硫酸を加えない、請求項1に記載の製造方法。
PCT/JP2023/007246 2022-03-01 2023-02-28 リン酸の製造方法 WO2023167167A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022031179 2022-03-01
JP2022-031179 2022-03-01

Publications (1)

Publication Number Publication Date
WO2023167167A1 true WO2023167167A1 (ja) 2023-09-07

Family

ID=87883750

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/007246 WO2023167167A1 (ja) 2022-03-01 2023-02-28 リン酸の製造方法
PCT/JP2023/007245 WO2023167166A1 (ja) 2022-03-01 2023-02-28 肥料およびその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007245 WO2023167166A1 (ja) 2022-03-01 2023-02-28 肥料およびその製造方法

Country Status (1)

Country Link
WO (2) WO2023167167A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848589A (ja) * 1994-05-30 1996-02-20 Frontier:Kk 骨炭の処理方法およびその生成物
JPH09191833A (ja) * 1996-01-22 1997-07-29 Toyo Denka Kogyo Kk 排血液の処理方法
JPH09192481A (ja) * 1996-01-22 1997-07-29 Toyo Denka Kogyo Kk 重金属用吸着剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0891976A (ja) * 1994-09-19 1996-04-09 Hirotoshi Arafuka 液状複合肥料とその製造方法
ATE423568T1 (de) * 1996-01-05 2009-03-15 Autoimmune Inc Methode zur herstellung von type-ii kollagen
JP3803774B2 (ja) * 2000-05-18 2006-08-02 学校法人日本大学 コラーゲンの抽出方法
JP2013116825A (ja) * 2010-03-19 2013-06-13 Ajinomoto Co Inc 骨からリン酸を製造する方法、並びに、骨から製造したリン酸を糖の発酵に利用する方法及び装置
CN111170767A (zh) * 2020-03-10 2020-05-19 滨州市京阳生物肥业有限公司 一种牛骨氨基酸有机肥的生产方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848589A (ja) * 1994-05-30 1996-02-20 Frontier:Kk 骨炭の処理方法およびその生成物
JPH09191833A (ja) * 1996-01-22 1997-07-29 Toyo Denka Kogyo Kk 排血液の処理方法
JPH09192481A (ja) * 1996-01-22 1997-07-29 Toyo Denka Kogyo Kk 重金属用吸着剤

Also Published As

Publication number Publication date
WO2023167166A1 (ja) 2023-09-07

Similar Documents

Publication Publication Date Title
Bailey Liming and nitrogen efficiency: some effects of increased calcium supply and increased soil pH on nitrogen recovery by perennial ryegrass
WO2023167167A1 (ja) リン酸の製造方法
JP6348292B2 (ja) 活性化フルボ酸の製造方法
JP2006290716A (ja) ゼラチン廃棄物由来の天然アミノ酸肥料の製造方法
Ferreira et al. From piggery wastewater to wheat using microalgae towards zero waste
JP2003012389A (ja) ペプチド類及びアミノ酸を含有する液体肥料及びその製造方法
EP1082279A1 (en) Process for preparation of biocatalysts agents; biocatalysts agents thus obtained; process for preparation of organominerals fertilizers deriving from a wide series of organical residuals; organominerals fertilizers thus obtained and a process for applying organominerals fertilizers in agriculture
Abd et al. Evaluation of the Effect of Nano-Fertilization and Disper Osmotic in Treating the Salinity of Irrigation Water on the Chemical and Mineral Properties of Date Palm (Phoenix dactylifera L.
Singh et al. Green manure: aspects and its role in sustainable agriculture
WO2013118131A1 (en) A composition and a process for preparation of nano bio-nutrient processed organic spray
US6709481B2 (en) Method for the production of a unique soil adjuvant for horticultural and agronomic use
EP3647431A1 (en) Method for producing a yeast-based product with high nucleotide concentration
ES2399559T3 (es) Utilización de sustancias húmicas como activadores de agentes moleculares específicos de la absorción de hierro en plantas
RU2458894C2 (ru) Способ получения биоудобрения
Imran Integration of organic, inorganic and bio fertilizer, improve maize-wheat system productivity and soil nutrients
KR101603586B1 (ko) 천연잔디 유지관리용 친환경 비료의 제조방법 및 이 방법에 의해 제조된 친환경 비료
Schmidt et al. How humic substances help turfgrass grow
Płaza et al. The influence of biological preparations Azofix and Maxprolin and nitrogen fertilisation on soil mineral nitrogen content in growing season and after spring wheat harvest
Helmy et al. Rhizobium biofertilization with or without mineral fertilization for a new cowpea cultivar (Kafer El-Sheikh 1) grown under saline conditions
Kurbanoglu et al. Effect of ram horn hydrolyzate on the growth of bean (Phaseolus vulgaris cv. Aziziye-94)
Paul et al. Agronomic Suitability of Biologically Produced PARP as a Source of Phosphorus for Maize Production
Sh et al. Maximizing the quality and productivity of two faba bean cultivars via foliar application of L-glutamic acid
Stefan et al. Review of Soil Quality Improvement Using Biopolymers from Leather Waste. Polymers 2022, 14, 1928
WO2019122775A1 (fr) Stimulation de la nitrification d'un sol avec des compositions comprenant un extrait de plante
Dromantienė et al. The effect of foliar application of amino acids on their content and composition in winter wheat grain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763424

Country of ref document: EP

Kind code of ref document: A1