WO2023166598A1 - リニア搬送システム - Google Patents

リニア搬送システム Download PDF

Info

Publication number
WO2023166598A1
WO2023166598A1 PCT/JP2022/008807 JP2022008807W WO2023166598A1 WO 2023166598 A1 WO2023166598 A1 WO 2023166598A1 JP 2022008807 W JP2022008807 W JP 2022008807W WO 2023166598 A1 WO2023166598 A1 WO 2023166598A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator module
stator
coils
teeth
mover
Prior art date
Application number
PCT/JP2022/008807
Other languages
English (en)
French (fr)
Inventor
雄一朗 中村
信一 山口
秀哲 有田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/008807 priority Critical patent/WO2023166598A1/ja
Priority to CN202280092140.9A priority patent/CN118715131A/zh
Priority to KR1020247027594A priority patent/KR20240137046A/ko
Priority to JP2024504078A priority patent/JPWO2023166598A1/ja
Publication of WO2023166598A1 publication Critical patent/WO2023166598A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/03Electric propulsion by linear motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/08Sliding or levitation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • B65G54/02Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present disclosure relates to a linear transport system that uses linear motor thrust.
  • Patent Literature 1 discloses an invention in which stator coils are arranged on both sides of a branch section, and a lateral force is applied to move the mover in the branch direction by energizing the coils on one side.
  • the present disclosure has been made in view of the above, and aims to obtain a linear transfer system that reduces the weight of the motor and the capacity of the inverter and contributes to miniaturization.
  • a linear transfer system includes a plurality of stator modules forming a transfer path, and a mover having a plurality of magnets arranged on both side surfaces.
  • the plurality of stator modules has a one-side stator module arranged on one side of the unbranched portion of the transport path and a double-sided stator module arranged on both sides of the branched portion of the transport path.
  • Each of the single-sided stator module and the double-sided stator module includes an iron core and a plurality of coils.
  • the mover is propelled by electromagnetic forces from multiple coils.
  • a double-sided stator module has two stator modules. The amount of coils of the single-sided stator modules arranged in the non-branching portion of the conveying path is equal to the amount of coils of the double-sided stator modules arranged in the branching portion of the conveying path.
  • the linear transport system according to the present disclosure has the effect of suppressing the weight of the motor and the capacity of the inverter and contributing to miniaturization.
  • FIG. 1 is a diagram showing the overall configuration of a linear transfer system according to Embodiment 1;
  • FIG. 3 is a perspective view of a double-sided stator module included in the linear transfer system according to Embodiment 1;
  • FIG. 4 is a cross-sectional view of a mover included in a linear transport system according to a first modified example of the first embodiment; Sectional view of a mover included in a linear transport system according to a second modification of the first embodiment FIG.
  • FIG. 2 is a cross-sectional view of a one-side stator module included in the linear transfer system according to the first embodiment; Sectional view of a double-sided stator module included in the linear transfer system according to the second embodiment Sectional view of a mover included in a linear transport system according to a modification of the second embodiment Sectional view of a double-sided stator module included in a linear transport system according to Embodiment 3 Sectional view of a double-sided stator module possessed by a linear transfer system according to Embodiment 4
  • FIG. 11 is a perspective view of a double-sided stator module included in a linear transport system according to a fifth embodiment; FIG. 11 is a first cross-sectional view of a double-sided stator module of a linear transfer system according to a fifth embodiment; Second cross-sectional view of the double-sided stator module of the linear transfer system according to the fifth embodiment
  • FIG. 1 is a diagram showing the overall configuration of a linear transport system 1 according to Embodiment 1.
  • a linear transport system 1 has a plurality of stator modules 2 forming a transport path.
  • the plurality of stator modules 2 has a one-side stator module 21 arranged on one side of the unbranched portion of the transport path and a double-sided stator module 22 arranged on both sides of the branched portion of the transport path.
  • An example of a non-bifurcated portion is a straight portion.
  • the linear transfer system 1 has a plurality of single-side stator modules 21 and a plurality of double-side stator modules 22 . At the branching portion, one transport path branches into two transport paths, or two transport paths merge into one transport path.
  • the linear transport system 1 further comprises a mover 3 having a plurality of magnets arranged on both sides.
  • a linear transport system 1 has a plurality of movers 3 .
  • FIG. 2 is a perspective view of the double-sided stator module 22 included in the linear transfer system 1 according to Embodiment 1.
  • FIG. FIG. 3 is a cross-sectional view of the double-sided stator module 22 included in the linear transfer system 1 according to the first embodiment.
  • the mover 3 is also shown in FIGS. 2 and 3 schematically show the double-sided stator module 22 and the mover 3.
  • FIG. 2 and 3 also show the moving direction of the mover 3.
  • the double-sided stator module 22 has two stator modules. Specifically, the double-sided stator module 22 has a first stator module 221 and a second stator module 222 .
  • the first stator module 221 is one of the two stator modules that the both-sides stator module 22 has.
  • the second stator module 222 is the other stator module of the two stator modules that the both-sides stator module 22 has.
  • the first stator module 221 is arranged on one side of the branch of the transport path and the second stator module 222 is arranged on the other side of the branch of the transport path.
  • the first stator module 221 has an iron core 41 and multiple coils 42 .
  • Core 41 has a plurality of teeth 43 .
  • Each of the multiple coils 42 is wound around one of the multiple teeth 43 .
  • the second stator module 222 has an iron core 51 and multiple coils 52 .
  • Core 51 has a plurality of teeth 53 .
  • Each of the multiple coils 52 is wound around one of the multiple teeth 53 .
  • the number of teeth 43 possessed by the first stator module 221 and the number of teeth 53 possessed by the second stator module 222 are even.
  • the teeth 43, 53 around which the coils 42, 52 are wound and the coils 42, 52 are wound in the moving direction of the mover 3.
  • the teeth 43 and 53 that do not have the same are arranged alternately.
  • the teeth 43 around which the coils 42 of the first stator module 221 are wound face the teeth 53 around which the coils 52 of the second stator module 222 are wound.
  • the teeth 43 around which the coils 42 of the first stator module 221 are not wound face the teeth 53 around which the coils 52 of the second stator module 222 are not wound.
  • the mover 3 has a plurality of magnets 31 arranged on both sides.
  • the mover 3 is positioned between the first stator module 221 and the second stator module 222 at the branched portion of the transport path, and the plurality of coils 42 of the first stator module 221 or the second stator module 222 is propelled by electromagnetic force from the plurality of coils 52 that it has.
  • Each of the plurality of movers 3 is independently controlled on the transport path.
  • a motor drive controller (not shown) supplies current to each coil of the stator module 2 located near the armature 3 .
  • the current is not a UVW three-phase AC current, but a single-phase AC current that controls each phase independently, and the current is supplied to each coil in an arbitrary waveform.
  • the mover 3 has a plurality of magnets 31 arranged on both side surfaces.
  • the magnetic pole direction of the magnets 31 is determined by the side surface of the mover 3 facing the first stator module 221 and the side surface of the mover 3 facing the second stator module 222. is reversed.
  • the side of the mover 3 facing the first stator module 221 is defined as the X side
  • the side of the mover 3 facing the second stator module 222 is defined as the Y side.
  • the magnet arrangement may be the same on the X side and the Y side.
  • FIG. 4 is a cross-sectional view of the mover 3 included in the linear transfer system according to the first modification of the first embodiment. Also shown in FIG. 4 is a double-sided stator module 22 . FIG. 4 schematically shows the mover 3 and both side stator modules 22 . FIG. 4 also shows the traveling direction of the mover 3 . FIG. 4 shows that the arrangement of the magnets 31 is the same on the X side and the Y side. Since the magnet arrangement on the X side and the magnet arrangement on the Y side are the same, when the propulsive force is generated in the non-branched portion, the current command when the electromagnetic force acts on the X side and the electromagnetic force on the Y side. Control is easy because it matches the current command when it works.
  • FIG. 5 is a cross-sectional view of the mover 3 included in the linear transport system according to the second modification of the first embodiment. Also shown in FIG. 5 is a double-sided stator module 22 . FIG. 5 schematically shows the mover 3 and both side stator modules 22 . FIG. 5 also shows the traveling direction of the mover 3 . FIG. 5 shows that the arrangement of the magnets 31 on the X side and the Y side is shifted by half the magnet pitch in the traveling direction.
  • the shift amount that minimizes the cogging thrust is half the magnet pitch, as shown in FIG.
  • the positions where the coils 42 and 52 are arranged may be the same positions as the positions where the coils 42 and 52 are arranged in FIG.
  • the mover 3 is positioned between the first stator module 221 and the second stator module 222 as described above.
  • Each of the plurality of magnets 31 of the mover 3 faces the side surface of the first stator module 221 or the side surface of the second stator module 222 .
  • the coils in the vicinity of the mover 3 are energized to guide the mover 3 to the selected path, and the stator modules 22 move in the direction of travel of the mover 3. Apply electromagnetic force in a vertical direction. Thereby, the both-sides stator module 22 moves the mover 3 .
  • the user of the linear transfer system 1 is not able to It is assumed that a path is selected in a direction in which the distance from the Y side of the mover 3 is reduced.
  • the linear transfer system 1 applies an electromagnetic force from the X side to the Y side to the both-side stator module 22 .
  • the distance between the second stator module 222 and the Y side of the mover 3 becomes smaller than the distance between the first stator module 221 and the X side of the mover 3, and the linear transport system 1 moves to the second fixed position.
  • the mover 3 can be moved along a path in which the distance between the child module 222 and the Y side of the mover 3 is reduced.
  • FIG. 6 is a cross-sectional view of the one-side stator module 21 included in the linear transfer system 1 according to Embodiment 1.
  • FIG. The mover 3 is also shown in FIG. FIG. 6 schematically shows the one-sided stator module 21 and the mover 3.
  • FIG. FIG. 6 also shows the traveling direction of the mover 3 .
  • the one-sided stator module 21 is arranged on one side of the undivided portion of the transport path. That is, the one-side stator module 21 is positioned on one side of the mover 3 in the non-branched portion.
  • the one-sided stator module 21 has an iron core 61 and multiple coils 62 .
  • Core 61 has a plurality of teeth 63 .
  • Each of the multiple coils 62 is wound around one of the multiple teeth 63 .
  • a coil 62 is wound around all of the plurality of teeth 63 . In the non-branched portion, the mover 3 is propelled by the electromagnetic force from the multiple coils 62 .
  • the coil quantity of the one-side stator module 21 arranged at the non-branching portion of the transport path and the coil quantity of the both-side stator module 22 arranged at the branching portion of the transport path are the same.
  • the teeth 43, 53 around which the coils 42, 52 are wound and the coils 42, 52 are arranged in the moving direction of the mover 3. Teeth 43 and 53 that are not wound are alternately arranged.
  • the number of multiple teeth 43 possessed by the first stator module 221 and the number of multiple teeth 53 possessed by the second stator module 222 are even numbers. That is, in the double-sided stator modules 22 arranged on both sides of the branch portion of the transport path, the number of teeth on which coils are wound is the same as the number of teeth on which no coils are wound.
  • the total thrust generated by the two-sided stator modules 22 arranged in the branched portion is is equal to the sum of the thrust generated by the one-sided stator modules 21 arranged at .
  • the linear transport system 1 includes the one-side stator module 21 arranged on one side of the unbranched portion of the transport path and the double-side stator modules arranged on both sides of the branched portion of the transport path. 22.
  • the double-sided stator module 22 has a first stator module 221 and a second stator module 222 .
  • Each of the first stator module 221 and the second stator module 222 has teeth around which coils are not wound. That is, in Embodiment 1, the number of coils is reduced as compared with the conventional art.
  • the linear transfer system 1 can reduce the weight of the motor by reducing the number of coils.
  • wiring work is reduced by reducing the number of coils, which facilitates assembly of the motor. By reducing the number of coils, the number of inverters (control devices) of the linear transfer system 1 can be reduced.
  • the linear transfer system 1 the amount of coils of the one-side stator module 21 arranged in the non-branching portion of the transfer path and the amount of coils of the both-side stator module 22 arranged in the branching portion of the transfer path are the same. Therefore, when the capacity of the inverter that supplies power to the one-side stator module 21 and the capacity of the inverter that supplies power to the two-side stator module 22 are made equal, when a certain thrust force is output, the branched coil and The effective value of the current flowing through the non-branched coils is the same. That is, the load factor of the inverter becomes equal between the branched portion and the non-branched portion. In other words, the linear transport system 1 can reduce the capacity of the inverter, which in turn can contribute to miniaturization.
  • the teeth 43, 53 around which the coils 42, 52 are wound and the coils 42, 52 are wound in the traveling direction of the mover 3. It is not limited to the teeth 43, 53 having no teeth arranged alternately. In Embodiment 1, coils 42 and 52 may be arranged only on a portion of teeth 43 and 53 .
  • FIG. 7 is a cross-sectional view of a double-sided stator module 22A included in the linear transfer system according to the second embodiment.
  • the linear transport system according to the second embodiment includes the one-side stator module 21 and the two-side stator modules 22A arranged on both sides of the branch portion of the transport path. have.
  • the one-sided stator module 21 is not shown.
  • the linear transport system according to the second embodiment further has a mover 3, like the linear transport system 1 according to the first embodiment.
  • the mover 3 is also shown in FIG.
  • FIG. 7 schematically shows the double-sided stator module 22A and the mover 3. As shown in FIG. FIG. 7 also shows the traveling direction of the mover 3 .
  • the double-sided stator modules 22A arranged on both sides of the branched portion of the transport path have two stator modules.
  • the double-sided stator module 22A has a first stator module 221A and a second stator module 222A.
  • the first stator module 221A is one of the two stator modules included in the two-side stator module 22A.
  • the second stator module 222A is the other stator module of the two stator modules that the double-side stator module 22A has.
  • the first stator module 221A is arranged on one side of the branch of the transport path, and the second stator module 222A is arranged on the other side of the branch of the transport path.
  • the first stator module 221A has an iron core 41 and a plurality of coils 42.
  • Iron core 41 has a plurality of teeth 43a and 43b.
  • Each of the plurality of coils 42 is wound around one of the plurality of teeth 43a. Teeth 43a around which coils 42 are wound and teeth 43b around which coils 42 are not wound are alternately arranged in the moving direction of the mover 3 in the first stator module 221A.
  • the second stator module 222A has an iron core 51 and a plurality of coils 52.
  • Iron core 51 has a plurality of teeth 53a and 53b.
  • Each of the plurality of coils 52 is wound around one of the plurality of teeth 53a.
  • Teeth 53a around which the coils 52 are wound and teeth 53b around which the coils 52 are not wound are alternately arranged in the moving direction of the mover 3 in the second stator module 222A.
  • the number of teeth 43a, 43b possessed by the first stator module 221A and the number of teeth 53a, 53b possessed by the second stator module 222A are even numbers.
  • FIG. 8 is a cross-sectional view of the mover 3 included in the linear transfer system according to the modification of the second embodiment. Also shown in FIG. 8 is a double-sided stator module 22A. FIG. 8 schematically shows the mover 3 and both side stator modules 22A.
  • FIG. 8 also shows the traveling direction of the mover 3 .
  • FIG. 8 shows that the number of magnets 31 on the X side is different from the number of magnets 31 on the Y side.
  • FIG. 8 shows the mover 3 having three magnets 31 on the X side and five magnets 31 on the Y side. If the number of magnets on the X side and the number of magnets on the Y side are different, even if the coils are alternately arranged, by energizing at least two or more coils, an arbitrary propulsive force and a branched lateral force can be generated. can be done.
  • the positions where the coils 42 and 52 are arranged may be the same positions as the positions where the coils 42 and 52 are arranged in FIG.
  • the linear transport system according to the second embodiment has the one-side stator module 21, like the linear transport system 1 according to the first embodiment.
  • the number of coil turns in the single-sided stator module 21 and the number of coil turns in the double-sided stator module 22A are the same.
  • the thrust constant obtained by dividing the thrust generated by energization of the coil by the current value becomes equal between the branched portion and the non-branched portion.
  • the linear transport system according to the second embodiment when the linear transport system outputs the same thrust force in the branched portion and the non-branched portion, the waveform of the current applied to the both-side stator modules 22A arranged in the branched portion is changed.
  • the absolute value becomes equal to the absolute value of the waveform of the current applied to the one-sided stator module 21 arranged in the non-branching portion. Therefore, in the linear transfer system according to the second embodiment, it becomes easy to control the current.
  • the smoothness of the electromagnetic force acting on the mover 3 is the same between the branched portion and the non-branched portion, and the linear transfer system according to the second embodiment can reduce the thrust ripple.
  • FIG. 9 is a cross-sectional view of a double-sided stator module 22B that the linear transfer system according to the third embodiment has.
  • the linear transport system according to the third embodiment includes the one-side stator module 21 and the two-side stator modules 22B arranged on both sides of the branch portion of the transport path. have.
  • the one-sided stator module 21 is not shown.
  • the linear transport system according to the third embodiment further has a mover 3, like the linear transport system 1 according to the first embodiment.
  • the mover 3 is also shown in FIG.
  • FIG. 9 schematically shows the double-sided stator module 22B and the mover 3. As shown in FIG. FIG. 9 also shows the traveling direction of the mover 3 .
  • the double-sided stator modules 22B arranged on both sides of the branched portion of the transport path have two stator modules.
  • the double-sided stator module 22B has a first stator module 221B and a second stator module 222B.
  • the first stator module 221B is one of the two stator modules included in the double-side stator module 22B.
  • the second stator module 222B is the other stator module of the two stator modules that the double-side stator module 22B has.
  • the first stator module 221B is arranged on one side of the branch of the transport path, and the second stator module 222B is arranged on the other side of the branch of the transport path.
  • the first stator module 221B has an iron core 41 and a plurality of coils 42.
  • Iron core 41 has a plurality of teeth 43a and 43b.
  • Each of the plurality of coils 42 is wound around one of the plurality of teeth 43a. Teeth 43a around which the coils 42 are wound and teeth 43b around which the coils 42 are not wound are alternately arranged in the moving direction of the mover 3 in the first stator module 221B.
  • the second stator module 222B has an iron core 51 and a plurality of coils 52.
  • Iron core 51 has a plurality of teeth 53a and 53b.
  • Each of the plurality of coils 52 is wound around one of the plurality of teeth 53a.
  • teeth 53a around which the coils 52 are wound and teeth 53b around which the coils 52 are not wound are alternately arranged in the direction in which the mover 3 moves.
  • the number of teeth 43a, 43b possessed by the first stator module 221B and the number of teeth 53a, 53b possessed by the second stator module 222B are even numbers.
  • a coil is wound on one of the teeth of the first stator module 221B and the second stator module 222B.
  • a coil is not wound around the other teeth of the first stator module 221B and the second stator module 222B.
  • the ratio of each of the plurality of coils 42, 52 included in the double-sided stator module 22B to the slot areas 44, 54 is 1/2 or less.
  • the wire type and wire diameter of the coils of the double-sided stator module 22B arranged in the branched portion and the single-sided stator module 21 arranged in the non-branched portion are the same.
  • Embodiment 3 since the type of coil is unified between the branched portion and the non-branched portion, according to the linear transfer system according to Embodiment 3, the manufacturing cost of the linear transfer system can be reduced. In addition, since a sufficient insulation distance can be secured between two adjacent coils, the pressure resistance performance of the linear transfer system according to Embodiment 3 is improved.
  • FIG. 10 is a cross-sectional view of a double-sided stator module 22C that the linear transfer system according to the fourth embodiment has.
  • the linear transport system according to the fourth embodiment includes the one-side stator module 21 and the two-side stator modules 22C arranged on both sides of the branch portion of the transport path. have.
  • the one-sided stator module 21 is not shown in the fourth embodiment.
  • the linear transport system according to the fourth embodiment further has a mover 3, like the linear transport system 1 according to the first embodiment.
  • the mover 3 is also shown in FIG.
  • FIG. 10 schematically shows the double-sided stator module 22C and the mover 3. As shown in FIG. FIG. 10 also shows the traveling direction of the mover 3 .
  • Both side stator modules 22C arranged on both sides of the branching portion of the transport path have two stator modules.
  • the double-sided stator module 22C has a first stator module 221C and a second stator module 222C.
  • the first stator module 221C is one of the two stator modules included in the both-sides stator module 22C.
  • the second stator module 222C is the other stator module of the two stator modules that the double-side stator module 22C has.
  • the first stator module 221C is arranged on one side of the branch of the transport path, and the second stator module 222C is arranged on the other side of the branch of the transport path.
  • the first stator module 221C has an iron core 41 and a plurality of coils 42.
  • Core 41 has a plurality of teeth 43 .
  • Each of the multiple coils 42 is wound around one of the multiple teeth 43 .
  • the teeth 43 around which the coils 42 are wound and the teeth 43 around which the coils 42 are not wound are alternately arranged in the moving direction of the mover 3 .
  • the second stator module 222C has an iron core 51 and a plurality of coils 52. Core 51 has a plurality of teeth 53 . Each of the multiple coils 52 is wound around one of the multiple teeth 53 . In the second stator module 222C, the teeth 53 around which the coils 52 are wound and the teeth 53 around which the coils 52 are not wound are alternately arranged in the moving direction of the mover 3 . The number of teeth 43 possessed by the first stator module 221C and the number of teeth 53 possessed by the second stator module 222C are even.
  • one of the teeth of the first stator module 221C and the second stator module 222C has a coil.
  • a coil is not wound around the other teeth of the first stator module 221C and the second stator module 222C.
  • FIG. 10 shows the direction in which each of the plurality of coils 42 and the plurality of coils 52 is wound.
  • a figure composed of a white circle and a black circle described in the white circle indicates that the portion of the coil to which the figure is given is wound from the back side to the front side of the paper surface. It indicates that A figure consisting of a white circle and a cross mark in the white circle indicates that the portion of the coil to which the figure is attached is wound from the front side to the back side of the paper. is shown.
  • all coils 42 included in the first stator module 221C have the same winding direction
  • all the coils 52 included in the second stator module 222C have the same winding direction.
  • the winding direction of the coils 42 included in the first stator module 221C is opposite to the winding direction of the coils 52 included in the second stator module 222C.
  • All the coils 62 included in the one-sided stator module 21 have the same winding direction.
  • the linear transport system when the waveforms of the induced voltages in the coils of the branched portion and the non-branched portion are the same, and the linear transport system outputs the same thrust force in the branched portion and the non-branched portion,
  • the current waveform applied to the two-sided stator modules 22C arranged on both sides of the branched portion of the transport path becomes equal to the current waveform applied to the one-side stator modules 21 arranged on the non-branched portion of the transport path,
  • the induced voltage is the back electromotive force.
  • the second stator module 222C is a stator module that is the same stator module as the first stator module 221C, but is arranged by 180 degrees, facing the first stator module 221C. ing. That is, since the two stator modules of the bifurcated both-sides stator module 22C can be configured with the same parts, the linear transport system according to the fourth embodiment can reduce the manufacturing cost.
  • FIG. 11 is a perspective view of a double-sided stator module 22D included in the linear transfer system according to the fifth embodiment.
  • the linear transport system according to the fifth embodiment includes the one-side stator module 21 and the double-side stator modules 22D arranged on both sides of the branch portion of the transport path. have.
  • the one-sided stator module 21 is not shown.
  • the linear transport system according to the fifth embodiment further has a mover 3, like the linear transport system 1 according to the first embodiment.
  • the mover 3 is also shown in FIG.
  • FIG. 11 also shows the traveling direction of the mover 3 .
  • FIG. 12 is a first cross-sectional view of a double-sided stator module 22D that the linear transfer system according to the fifth embodiment has.
  • the mover 3 is also shown in FIG. 11 and 12 schematically show the double-sided stator module 22D and the mover 3.
  • FIG. 11 and 12 schematically show the double-sided stator module 22D and the mover 3.
  • Both side stator modules 22D arranged on both sides of the branching portion of the transport path have two stator modules.
  • the double-sided stator module 22D has a first stator module 221D and a second stator module 222D.
  • the first stator module 221D is one of the two stator modules included in the double-side stator module 22D.
  • the second stator module 222D is the other stator module of the two stator modules that the double-side stator module 22D has.
  • the first stator module 221D is arranged on one side of the branch of the transport path, and the second stator module 222D is arranged on the other side of the branch of the transport path.
  • the first stator module 221D and the second stator module 222D do not face each other. More specifically, the first stator module 221D and the second stator module 222D are arranged in a direction perpendicular to the moving direction of the mover 3, and a plurality of modules of the mover 3 when moving through the both side stator modules 22D. They are arranged at different positions in the direction perpendicular to the direction of the magnetic lines of force of the magnet 31 .
  • the first stator module 221D and the second stator module 222D are arranged at different positions in the vertical direction z.
  • both the first stator module 221D and the second stator module 222D have an iron core.
  • the vertical direction z is parallel to the core height direction h.
  • the height of each of the first stator module 221D and the second stator module 222D is half the height of the one-side stator module 21 arranged on one side of the non-branching portion of the transport path.
  • FIG. 13 is a second cross-sectional view of the double-sided stator module 22D of the linear transfer system according to the fifth embodiment.
  • the mover 3 is also shown in FIG. FIG. 13 schematically shows the double-sided stator module 22D and the mover 3. As shown in FIG. FIG. 13 also shows the traveling direction of the mover 3 .
  • the first stator module 221D has an iron core 41 and a plurality of coils 42.
  • Core 41 has a plurality of teeth 43 .
  • Each of the multiple coils 42 is wound around one of the multiple teeth 43 .
  • a coil 42 is wound around all the teeth 43 .
  • the second stator module 222D has an iron core 51 and multiple coils 52 .
  • Core 51 has a plurality of teeth 53 .
  • Each of the multiple coils 52 is wound around one of the multiple teeth 53 .
  • a coil 52 is wound around all the teeth 53 .
  • FIG. 13 shows the direction in which each of the plurality of coils 42 and the plurality of coils 52 is wound.
  • a figure composed of a white circle and a black circle described in the white circle indicates that the portion of the coil to which the figure is given is wound from the back side to the front side of the paper surface. It indicates that A figure consisting of a white circle and a cross mark in the white circle indicates that the portion of the coil to which the figure is attached is wound from the front side to the back side of the paper. is shown.
  • all coils 42 included in the first stator module 221D have the same winding direction
  • all the coils 52 included in the second stator module 222D have the same winding direction.
  • the winding direction of the coils 42 included in the first stator module 221D and the winding direction of the coils 52 included in the second stator module 222D are opposite. That is, the second stator module 222D is a stator module that is the same stator module as the first stator module 221D, but is reversed by 180 degrees. All winding directions of the plurality of coils 62 included in the one-sided stator module 21 are the same.
  • the height The height is half the height of the one-sided stator module 21 arranged on one side of the undivided portion of the transport path. That is, the height of each of the iron core 41 of the first stator module 221D and the iron core 51 of the second stator module 222D is half the height of the iron core 61 of the one-side stator module 21. Therefore, the linear transport system according to Embodiment 5 can reduce the weight of the motor.
  • the second stator module 222D is a stator module that is the same stator module as the first stator module 221D and is arranged in a state of being inverted by 180°. That is, since the two stator modules of the bifurcated both-sides stator module 22D can be configured with the same parts, the linear transfer system according to the fifth embodiment can reduce manufacturing costs.
  • stator module 1 linear transfer system, 2 stator module, 3 mover, 21 one-sided stator module, 22, 22A, 22B, 22C, 22D double-sided stator module, 31 magnet, 41, 51, 61 iron core, 42, 52, 62 coil , 43, 43a, 43b, 53, 53a, 53b, 63 teeth, 44, 54 slot area, 221, 221A, 221B, 221C, 221D first stator module, 222, 222A, 222B, 222C, 222D second stator module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Linear Motors (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

リニア搬送システム(1)は、搬送路を形成する複数の固定子モジュール(2)と、両側の側面に配置された複数の磁石を有する可動子(3)とを有する。複数の固定子モジュール(2)は、搬送路の非分岐部分の片側に配置される片側固定子モジュール(21)と、搬送路の分岐部分の両側に配置される両側固定子モジュール(22)とを有する。片側固定子モジュール(21)及び両側固定子モジュール(22)の各々は、鉄心と複数のコイルとを含む。可動子(3)は、複数のコイルからの電磁力で推進される。両側固定子モジュール(22)は、二つの固定子モジュールを有する。搬送路の非分岐部分に配置された片側固定子モジュール(21)のコイル量と、搬送路の分岐部分に配置された両側固定子モジュール(22)のコイル量とが同等である。

Description

リニア搬送システム
 本開示は、リニアモータの推力を使用するリニア搬送システムに関する。
 複数の磁石が取り付けられた可動子が複数の固定子モジュールによって構成されるリニアガイドに沿って移動し、電磁力により経路の分岐及び合流が可能な技術が知られている。例えば特許文献1は、分岐区間において固定子のコイルが両側に配置され、片側のコイルに通電して、可動子を分岐方向に移動させる横方向の力を加える発明を開示している。
特許第6633516号公報
 しかし、従来のリニア搬送システムでは、分岐部分の両側に非分岐部分と同様のコイルが配置されるため、モータの重量が増加する課題がある。さらに、分岐部分のみコイルを両側に配置して分岐部分と非分岐部分とについて同じインバータを用いる場合、分岐部分で非分岐部分と同等の推力を発生させるためには、分岐部分のコイルの半分に通電すればよく、活用されないインバータが生じる。又は、分岐部分で通電する電流が非分岐部分で通電する電流の1/2となり、インバータの性能を1/2しか活用できないため、インバータが大型化する課題がある。
 本開示は、上記に鑑みてなされたものであって、モータの重量とインバータの容量とを抑制すると共に小型化に寄与するリニア搬送システムを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係るリニア搬送システムは、搬送路を形成する複数の固定子モジュールと、両側の側面に配置された複数の磁石を有する可動子とを有する。複数の固定子モジュールは、搬送路の非分岐部分の片側に配置される片側固定子モジュールと、搬送路の分岐部分の両側に配置される両側固定子モジュールとを有する。片側固定子モジュール及び両側固定子モジュールの各々は、鉄心と、複数のコイルとを含む。可動子は、複数のコイルからの電磁力で推進される。両側固定子モジュールは、二つの固定子モジュールを有する。搬送路の非分岐部分に配置された片側固定子モジュールのコイル量と、搬送路の分岐部分に配置された両側固定子モジュールのコイル量とが同等である。
 本開示に係るリニア搬送システムは、モータの重量とインバータの容量とを抑制すると共に小型化に寄与することができるという効果を奏する。
実施の形態1に係るリニア搬送システムの全体の構成を示す図 実施の形態1に係るリニア搬送システムが有する両側固定子モジュールの斜視図 実施の形態1に係るリニア搬送システムが有する両側固定子モジュールの断面図 実施の形態1の第1の変形例に係るリニア搬送システムが有する可動子の断面図 実施の形態1の第2の変形例に係るリニア搬送システムが有する可動子の断面図 実施の形態1に係るリニア搬送システムが有する片側固定子モジュールの断面図 実施の形態2に係るリニア搬送システムが有する両側固定子モジュールの断面図 実施の形態2の変形例に係るリニア搬送システムが有する可動子の断面図 実施の形態3に係るリニア搬送システムが有する両側固定子モジュールの断面図 実施の形態4に係るリニア搬送システムが有する両側固定子モジュールの断面図 実施の形態5に係るリニア搬送システムが有する両側固定子モジュールの斜視図 実施の形態5に係るリニア搬送システムが有する両側固定子モジュールの第1の断面図 実施の形態5に係るリニア搬送システムが有する両側固定子モジュールの第2の断面図
 以下に、実施の形態に係るリニア搬送システムを図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1に係るリニア搬送システム1の全体の構成を示す図である。リニア搬送システム1は、搬送路を形成する複数の固定子モジュール2を有する。複数の固定子モジュール2は、搬送路の非分岐部分の片側に配置される片側固定子モジュール21と、搬送路の分岐部分の両側に配置される両側固定子モジュール22とを有する。非分岐部分の例は、直線部である。
 リニア搬送システム1は、複数の片側固定子モジュール21と複数の両側固定子モジュール22とを有する。分岐部分では、一つの搬送路が二つの搬送路に分岐したり、二つの搬送路が一つの搬送路に合流したりする。リニア搬送システム1は、両側の側面に配置された複数の磁石を有する可動子3を更に有する。リニア搬送システム1は、複数の可動子3を有する。
 図2は、実施の形態1に係るリニア搬送システム1が有する両側固定子モジュール22の斜視図である。図3は、実施の形態1に係るリニア搬送システム1が有する両側固定子モジュール22の断面図である。図2及び図3には、可動子3も示されている。図2及び図3は、両側固定子モジュール22及び可動子3を模式的に示している。図2及び図3には、可動子3の進行方向も示されている。
 両側固定子モジュール22は、二つの固定子モジュールを有する。具体的には、両側固定子モジュール22は、第1固定子モジュール221と第2固定子モジュール222とを有する。第1固定子モジュール221は、両側固定子モジュール22が有する二つの固定子モジュールのうちの一方の固定子モジュールである。第2固定子モジュール222は、両側固定子モジュール22が有する二つの固定子モジュールのうちの他方の固定子モジュールである。第1固定子モジュール221は搬送路の分岐部分の一方の側に配置され、第2固定子モジュール222は搬送路の分岐部分の他方の側に配置される。
 第1固定子モジュール221は、鉄心41と、複数のコイル42とを有する。鉄心41は、複数のティース43を有する。複数のコイル42の各々は、複数のティース43のいずれかに巻回されている。第2固定子モジュール222は、鉄心51と、複数のコイル52とを有する。鉄心51は、複数のティース53を有する。複数のコイル52の各々は、複数のティース53のいずれかに巻回されている。第1固定子モジュール221が有するティース43の数及び第2固定子モジュール222が有するティース53の数は、偶数である。
 第1固定子モジュール221と第2固定子モジュール222との各々について、可動子3の進行方向において、コイル42,52が巻回されているティース43,53とコイル42,52が巻回されていないティース43,53とが交互に配置されている。更に言うと、第1固定子モジュール221のコイル42が巻回されているティース43は、第2固定子モジュール222のコイル52が巻回されているティース53と向き合っている。第1固定子モジュール221のコイル42が巻回されていないティース43は、第2固定子モジュール222のコイル52が巻回されていないティース53と向き合っている。
 可動子3は、両側の側面に配置された複数の磁石31を有する。可動子3は、搬送路の分岐部分では、第1固定子モジュール221と第2固定子モジュール222との間に位置し、第1固定子モジュール221が有する複数のコイル42又は第2固定子モジュール222が有する複数のコイル52からの電磁力で推進される。複数の可動子3の各々は、搬送路において独立して制御される。図示されていないモータ駆動制御装置が、可動子3の近傍に位置する固定子モジュール2の各コイルに電流を供給する。例えば、電流は、UVWの三相交流の電流ではなく、各相を独立に制御する単相交流の電流であり、各コイルに任意の波形で電流が供給される。
 上述の通り、可動子3は、両側の側面に配置された複数の磁石31を有する。可動子3の両側の側面における磁石配列については、可動子3の第1固定子モジュール221に面する側面と可動子3の第2固定子モジュール222に面する側面とで、磁石31の磁極方向が反転している。実施の形態1では、可動子3の第1固定子モジュール221に面する側はX側と定義され、可動子3の第2固定子モジュール222に面する側はY側と定義される。X側とY側とで磁石配列が同じであってもよい。図4は、実施の形態1の第1の変形例に係るリニア搬送システムが有する可動子3の断面図である。図4には、両側固定子モジュール22も示されている。図4は、可動子3及び両側固定子モジュール22を模式的に示している。図4には、可動子3の進行方向も示されている。図4は、X側とY側とで磁石31の配列が同じであることを示している。X側の磁石配列とY側の磁石配列とが同じになることで、非分岐部分において推進力が発生する際に、X側に電磁力が作用する場合の電流指令とY側に電磁力が作用する場合の電流指令とが一致するため、制御が容易である。X側とY側とで磁石配列が進行方向にずれていてもよい。なお、コイル42及びコイル52が配置される位置は、図3においてコイル42及びコイル52が配置されている位置と同じ位置であってもよい。図5は、実施の形態1の第2の変形例に係るリニア搬送システムが有する可動子3の断面図である。図5には、両側固定子モジュール22も示されている。図5は、可動子3及び両側固定子モジュール22を模式的に示している。図5には、可動子3の進行方向も示されている。図5は、X側とY側とで磁石31の配列が進行方向に磁石ピッチの半分ずれていることを示している。X側とY側とで磁石配列が進行方向にずれることで、X側に働くコギング推力とY側に働くコギング推力とが相殺して、コギング推力を抑制することができる。コギング推力が最小となるずらし量は、図5に示される通り、磁石ピッチの半分である。なお、コイル42及びコイル52が配置される位置は、図3においてコイル42及びコイル52が配置されている位置と同じ位置であってもよい。
 搬送路の分岐部分では、上述の通り、可動子3は、第1固定子モジュール221と第2固定子モジュール222との間に位置する。可動子3が有する複数の磁石31の各々は、第1固定子モジュール221の側面又は第2固定子モジュール222の側面と向き合う。分岐部分における両側固定子モジュール22では、可動子3を選択された経路に導くために、可動子3の近傍のコイルが通電され、両側固定子モジュール22は、可動子3の進行方向に対して垂直な方向に電磁力を作用させる。これにより、両側固定子モジュール22は、可動子3を移動させる。
 第1固定子モジュール221と可動子3のX側との間隔が第2固定子モジュール222と可動子3のY側との間隔より小さく、リニア搬送システム1のユーザが第2固定子モジュール222と可動子3のY側との間隔が小さくなる方向の経路を選択した場合を想定する。リニア搬送システム1は、両側固定子モジュール22にX側からY側への電磁力を作用させる。それにより、第2固定子モジュール222と可動子3のY側との間隔は、第1固定子モジュール221と可動子3のX側との間隔より小さくなり、リニア搬送システム1は、第2固定子モジュール222と可動子3のY側との間隔が小さくなる方向の経路に可動子3を進行させることができる。
 図6は、実施の形態1に係るリニア搬送システム1が有する片側固定子モジュール21の断面図である。図6には、可動子3も示されている。図6は、片側固定子モジュール21及び可動子3を模式的に示している。図6には、可動子3の進行方向も示されている。上述の通り、片側固定子モジュール21は、搬送路の非分岐部分の片側に配置される。つまり、非分岐部分では、片側固定子モジュール21は可動子3の片側に位置する。
 片側固定子モジュール21は、鉄心61と、複数のコイル62とを有する。鉄心61は、複数のティース63を有する。複数のコイル62の各々は、複数のティース63のいずれかに巻回されている。複数のティース63のすべてに、コイル62が巻回されている。非分岐部分では、可動子3は、複数のコイル62からの電磁力で推進される。
 搬送路の非分岐部分に配置された片側固定子モジュール21のコイル量と、搬送路の分岐部分に配置された両側固定子モジュール22のコイル量とが同等である。
 上述の通り、第1固定子モジュール221と第2固定子モジュール222との各々について、可動子3の進行方向において、コイル42,52が巻回されているティース43,53とコイル42,52が巻回されていないティース43,53とが交互に配置されている。加えて、第1固定子モジュール221が有する複数のティース43の数及び第2固定子モジュール222が有する複数のティース53の数は、偶数である。つまり、搬送路の分岐部分の両側に配置される両側固定子モジュール22では、コイルが巻回されているティースの数とコイルが巻回されていないティースの数とは同じである。
 搬送路の分岐部分と非分岐部分とでは、各コイルに印加される電流の実効値が同等である場合、分岐部分に配置された両側固定子モジュール22で発生する推力の合計は、非分岐部分に配置された片側固定子モジュール21で発生する推力の合計と等しくなる。
 上述の通り、実施の形態1に係るリニア搬送システム1は、搬送路の非分岐部分の片側に配置される片側固定子モジュール21と、搬送路の分岐部分の両側に配置される両側固定子モジュール22とを有する。両側固定子モジュール22は、第1固定子モジュール221と第2固定子モジュール222とを有する。第1固定子モジュール221と第2固定子モジュール222との各々には、コイルが巻回されていないティースが存在する。つまり、実施の形態1では、従来よりコイルが削減されている。リニア搬送システム1は、コイルの削減によってモータの重量を低減することができる。加えて、リニア搬送システム1によれば、コイルの削減によって配線作業が減り、モータの組立が容易になる。コイル数の削減により、リニア搬送システム1のインバータ(制御装置)の数を削減することができる。
 リニア搬送システム1では、搬送路の非分岐部分に配置された片側固定子モジュール21のコイル量と、搬送路の分岐部分に配置された両側固定子モジュール22のコイル量とが同等である。そのため、片側固定子モジュール21に電力を供給するインバータの容量と両側固定子モジュール22に電力を供給するインバータの容量とを同等にした場合、ある一定の推力を出力する際に分岐部分のコイルと非分岐部分のコイルとでは通電する電流の実効値が同じになる。つまり、分岐部分と非分岐部分とでインバータの負荷率が等しくなる。すなわち、リニア搬送システム1は、インバータの容量を抑制することができ、ひいては小型化に寄与することができる。
 なお、両側固定子モジュール22に含まれる複数のティース43,53について、可動子3の進行方向において、コイル42,52が巻回されているティース43,53とコイル42,52が巻回されていないティース43,53とが交互に配置されると限定されない。実施の形態1では、複数のティース43,53の一部分のみに、コイル42,52が配置されればよい。
実施の形態2.
 図7は、実施の形態2に係るリニア搬送システムが有する両側固定子モジュール22Aの断面図である。実施の形態2に係るリニア搬送システムは、実施の形態1に係るリニア搬送システム1と同様に、片側固定子モジュール21と、搬送路の分岐部分の両側に配置される両側固定子モジュール22Aとを有する。実施の形態2では、片側固定子モジュール21は図示されない。実施の形態2に係るリニア搬送システムは、実施の形態1に係るリニア搬送システム1と同様に、可動子3を更に有する。図7には、可動子3も示されている。図7は、両側固定子モジュール22A及び可動子3を模式的に示している。図7には、可動子3の進行方向も示されている。
 搬送路の分岐部分の両側に配置される両側固定子モジュール22Aは、二つの固定子モジュールを有する。具体的には、両側固定子モジュール22Aは、第1固定子モジュール221Aと第2固定子モジュール222Aとを有する。第1固定子モジュール221Aは、両側固定子モジュール22Aが有する二つの固定子モジュールのうちの一方の固定子モジュールである。第2固定子モジュール222Aは、両側固定子モジュール22Aが有する二つの固定子モジュールのうちの他方の固定子モジュールである。第1固定子モジュール221Aは搬送路の分岐部分の一方の側に配置され、第2固定子モジュール222Aは搬送路の分岐部分の他方の側に配置される。
 第1固定子モジュール221Aは、鉄心41と、複数のコイル42とを有する。鉄心41は、複数のティース43a,43bを有する。複数のコイル42の各々は、複数のティース43aのいずれかに巻回されている。第1固定子モジュール221Aには、可動子3の進行方向において、コイル42が巻回されているティース43aとコイル42が巻回されていないティース43bとが交互に配置されている。
 第2固定子モジュール222Aは、鉄心51と、複数のコイル52とを有する。鉄心51は、複数のティース53a,53bを有する。複数のコイル52の各々は、複数のティース53aのいずれかに巻回されている。第2固定子モジュール222Aには、可動子3の進行方向において、コイル52が巻回されているティース53aとコイル52が巻回されていないティース53bとが交互に配置されている。第1固定子モジュール221Aが有するティース43a,43bの数及び第2固定子モジュール222Aが有するティース53a,53bの数は、偶数である。
 第1固定子モジュール221Aのティースと第2固定子モジュール222Aのティースとが向き合う部分については、第1固定子モジュール221Aと第2固定子モジュール222Aとのうちの一方のティースにはコイルが巻回されており、第1固定子モジュール221Aと第2固定子モジュール222Aとのうちの他方のティースにはコイルは巻回されていない。X側の磁石数とY側の磁石数とは異なってもよい。図8は、実施の形態2の変形例に係るリニア搬送システムが有する可動子3の断面図である。図8には、両側固定子モジュール22Aも示されている。図8は、可動子3及び両側固定子モジュール22Aを模式的に示している。図8には、可動子3の進行方向も示されている。図8は、X側の磁石31の数とY側の磁石31の数とが異なっていることを示している。具体的には、図8は、X側に3個の磁石31を有しY側に5個の磁石31を有する可動子3を示している。X側の磁石数とY側の磁石数とが異なると、コイルを交互に配置した場合でも、少なくとも二つ以上のコイルに通電することで、任意の推進力と分岐横力とを発生させることができる。なお、コイル42及びコイル52が配置される位置は、図3においてコイル42及びコイル52が配置されている位置と同じ位置であってもよい。
 上述の通り、実施の形態2に係るリニア搬送システムは、実施の形態1に係るリニア搬送システム1と同様に、片側固定子モジュール21を有する。実施の形態2では、片側固定子モジュール21におけるコイルの巻数と、両側固定子モジュール22Aにおけるコイルの巻数とは、同じである。これにより、コイルへの通電で生じる推力を電流値で除した推力定数が、分岐部分と非分岐部分とで同等となる。
 実施の形態2に係るリニア搬送システムでは、リニア搬送システムが分岐部分と非分岐部分とにおいて同等の推力を出力する場合、分岐部分に配置される両側固定子モジュール22Aに通電される電流の波形の絶対値と、非分岐部分に配置される片側固定子モジュール21に通電される電流の波形の絶対値とが等しくなる。そのため、実施の形態2に係るリニア搬送システムでは、電流の制御が容易となる。加えて、分岐部分と非分岐部分とで可動子3に作用する電磁力の滑らかさが同等となり、実施の形態2に係るリニア搬送システムは、推力リップルを低減することができる。
実施の形態3.
 図9は、実施の形態3に係るリニア搬送システムが有する両側固定子モジュール22Bの断面図である。実施の形態3に係るリニア搬送システムは、実施の形態1に係るリニア搬送システム1と同様に、片側固定子モジュール21と、搬送路の分岐部分の両側に配置される両側固定子モジュール22Bとを有する。実施の形態3では、片側固定子モジュール21は図示されない。実施の形態3に係るリニア搬送システムは、実施の形態1に係るリニア搬送システム1と同様に、可動子3を更に有する。図9には、可動子3も示されている。図9は、両側固定子モジュール22B及び可動子3を模式的に示している。図9には、可動子3の進行方向も示されている。
 搬送路の分岐部分の両側に配置される両側固定子モジュール22Bは、二つの固定子モジュールを有する。具体的には、両側固定子モジュール22Bは、第1固定子モジュール221Bと第2固定子モジュール222Bとを有する。第1固定子モジュール221Bは、両側固定子モジュール22Bが有する二つの固定子モジュールのうちの一方の固定子モジュールである。第2固定子モジュール222Bは、両側固定子モジュール22Bが有する二つの固定子モジュールのうちの他方の固定子モジュールである。第1固定子モジュール221Bは搬送路の分岐部分の一方の側に配置され、第2固定子モジュール222Bは搬送路の分岐部分の他方の側に配置される。
 第1固定子モジュール221Bは、鉄心41と、複数のコイル42とを有する。鉄心41は、複数のティース43a,43bを有する。複数のコイル42の各々は、複数のティース43aのいずれかに巻回されている。第1固定子モジュール221Bには、可動子3の進行方向において、コイル42が巻回されているティース43aとコイル42が巻回されていないティース43bとが交互に配置されている。
 第2固定子モジュール222Bは、鉄心51と、複数のコイル52とを有する。鉄心51は、複数のティース53a,53bを有する。複数のコイル52の各々は、複数のティース53aのいずれかに巻回されている。第2固定子モジュール222Bには、可動子3の進行方向において、コイル52が巻回されているティース53aとコイル52が巻回されていないティース53bとが交互に配置されている。第1固定子モジュール221Bが有するティース43a,43bの数及び第2固定子モジュール222Bが有するティース53a,53bの数は、偶数である。
 第1固定子モジュール221Bのティースと第2固定子モジュール222Bのティースとが向き合う部分については、第1固定子モジュール221Bと第2固定子モジュール222Bとのうちの一方のティースにはコイルが巻回されており、第1固定子モジュール221Bと第2固定子モジュール222Bとのうちの他方のティースにはコイルは巻回されていない。
 図9に示されるように、実施の形態3では、両側固定子モジュール22Bが含む複数のコイル42,52の各々のスロット面積44,54に占める割合は、1/2以下である。実施の形態3では、分岐部分に配置される両側固定子モジュール22B及び非分岐部分に配置される片側固定子モジュール21のコイルの線種及び線径は、同じである。
 実施の形態3では、分岐部分と非分岐部分とでコイルの種類が統一されているため、実施の形態3に係るリニア搬送システムによれば、リニア搬送システムの製造コストを低減することができる。加えて、隣り合う二つのコイルの間の絶縁距離を十分に確保することができるため、実施の形態3に係るリニア搬送システムの耐圧性能は向上する。
実施の形態4.
 図10は、実施の形態4に係るリニア搬送システムが有する両側固定子モジュール22Cの断面図である。実施の形態4に係るリニア搬送システムは、実施の形態1に係るリニア搬送システム1と同様に、片側固定子モジュール21と、搬送路の分岐部分の両側に配置される両側固定子モジュール22Cとを有する。実施の形態4では、片側固定子モジュール21は図示されない。実施の形態4に係るリニア搬送システムは、実施の形態1に係るリニア搬送システム1と同様に、可動子3を更に有する。図10には、可動子3も示されている。図10は、両側固定子モジュール22C及び可動子3を模式的に示している。図10には、可動子3の進行方向も示されている。
 搬送路の分岐部分の両側に配置される両側固定子モジュール22Cは、二つの固定子モジュールを有する。具体的には、両側固定子モジュール22Cは、第1固定子モジュール221Cと第2固定子モジュール222Cとを有する。第1固定子モジュール221Cは、両側固定子モジュール22Cが有する二つの固定子モジュールのうちの一方の固定子モジュールである。第2固定子モジュール222Cは、両側固定子モジュール22Cが有する二つの固定子モジュールのうちの他方の固定子モジュールである。第1固定子モジュール221Cは搬送路の分岐部分の一方の側に配置され、第2固定子モジュール222Cは搬送路の分岐部分の他方の側に配置される。
 第1固定子モジュール221Cは、鉄心41と、複数のコイル42とを有する。鉄心41は、複数のティース43を有する。複数のコイル42の各々は、複数のティース43のいずれかに巻回されている。第1固定子モジュール221Cには、可動子3の進行方向において、コイル42が巻回されているティース43とコイル42が巻回されていないティース43とが交互に配置されている。
 第2固定子モジュール222Cは、鉄心51と、複数のコイル52とを有する。鉄心51は、複数のティース53を有する。複数のコイル52の各々は、複数のティース53のいずれかに巻回されている。第2固定子モジュール222Cには、可動子3の進行方向において、コイル52が巻回されているティース53とコイル52が巻回されていないティース53とが交互に配置されている。第1固定子モジュール221Cが有するティース43の数及び第2固定子モジュール222Cが有するティース53の数は、偶数である。
 第1固定子モジュール221Cのティース43と第2固定子モジュール222Cのティース53とが向き合う部分については、第1固定子モジュール221Cと第2固定子モジュール222Cとのうちの一方のティースにはコイルが巻回されており、第1固定子モジュール221Cと第2固定子モジュール222Cとのうちの他方のティースにはコイルは巻回されていない。
 図10では、複数のコイル42及び複数のコイル52の各々が巻回されている方向が示されている。図10において、白い丸と当該白い丸のなかに記載されている黒い丸とで構成される図形は、コイルのなかの当該図形が付与されている部分が紙面の裏側から表側の方向に巻回されていることを示している。白い丸と当該白い丸のなかに記載されているバツ印とで構成される図形は、コイルのなかの当該図形が付与されている部分が紙面の表側から裏側の方向に巻回されていることを示している。
 図10に示される通り、第1固定子モジュール221Cに含まれるすべてのコイル42の巻回方向は同一であり、第2固定子モジュール222Cに含まれるすべてのコイル52の巻回方向は同一である。第1固定子モジュール221Cに含まれるコイル42の巻回方向と、第2固定子モジュール222Cに含まれるコイル52の巻回方向とは、逆である。片側固定子モジュール21に含まれるすべてのコイル62の巻回方向は、同一である。
 実施の形態4に係るリニア搬送システムでは、分岐部分と非分岐部分との各コイルにおける誘起電圧の波形が同等となり、リニア搬送システムが分岐部分と非分岐部分とで同等の推力を出力する場合、搬送路の分岐部分の両側に配置される両側固定子モジュール22Cに通電される電流波形と、搬送路の非分岐部分に配置される片側固定子モジュール21に通電される電流波形とが等しくなり、実施の形態4に係るリニア搬送システムでは、電流の制御が更に容易となる。誘起電圧は、逆起電力である。
 両側固定子モジュール22Cでは、第2固定子モジュール222Cは、第1固定子モジュール221Cと同じ固定子モジュールを180°反転させて配置された固定子モジュールであって、第1固定子モジュール221Cと向き合っている。つまり、分岐部分の両側固定子モジュール22Cが有する二つの固定子モジュールを同一の部品で構成することができるため、実施の形態4に係るリニア搬送システムは、製造コストを低減することができる。
実施の形態5.
 図11は、実施の形態5に係るリニア搬送システムが有する両側固定子モジュール22Dの斜視図である。実施の形態5に係るリニア搬送システムは、実施の形態1に係るリニア搬送システム1と同様に、片側固定子モジュール21と、搬送路の分岐部分の両側に配置される両側固定子モジュール22Dとを有する。実施の形態5では、片側固定子モジュール21は図示されない。実施の形態5に係るリニア搬送システムは、実施の形態1に係るリニア搬送システム1と同様に、可動子3を更に有する。図11には、可動子3も示されている。図11には、可動子3の進行方向も示されている。図12は、実施の形態5に係るリニア搬送システムが有する両側固定子モジュール22Dの第1の断面図である。図12には、可動子3も示されている。図11及び図12は、両側固定子モジュール22D及び可動子3を模式的に示している。
 搬送路の分岐部分の両側に配置される両側固定子モジュール22Dは、二つの固定子モジュールを有する。具体的には、両側固定子モジュール22Dは、第1固定子モジュール221Dと第2固定子モジュール222Dとを有する。第1固定子モジュール221Dは、両側固定子モジュール22Dが有する二つの固定子モジュールのうちの一方の固定子モジュールである。第2固定子モジュール222Dは、両側固定子モジュール22Dが有する二つの固定子モジュールのうちの他方の固定子モジュールである。第1固定子モジュール221Dは搬送路の分岐部分の一方の側に配置され、第2固定子モジュール222Dは搬送路の分岐部分の他方の側に配置される。
 第1固定子モジュール221Dと第2固定子モジュール222Dとは、向き合っていない。更に言うと、第1固定子モジュール221Dと第2固定子モジュール222Dとは、可動子3の進行方向と垂直な方向であると共に両側固定子モジュール22Dを進行する際の可動子3が有する複数の磁石31の磁力線の方向と垂直な方向において、異なる位置に配置されている。
 例えば、搬送路が水平面と平行な面に設けられている場合、第1固定子モジュール221Dと第2固定子モジュール222Dとは、鉛直方向zにおいて異なる位置に配置されている。詳細については後述するが、第1固定子モジュール221D及び第2固定子モジュール222Dはいずれも鉄心を有している。例えば、上述の場合、鉛直方向zは、鉄心の高さ方向hと平行である。第1固定子モジュール221D及び第2固定子モジュール222Dの各々の高さは、搬送路の非分岐部分の片側に配置される片側固定子モジュール21の高さの1/2である。
 図13は、実施の形態5に係るリニア搬送システムが有する両側固定子モジュール22Dの第2の断面図である。図13には、可動子3も示されている。図13は、両側固定子モジュール22D及び可動子3を模式的に示している。図13には、可動子3の進行方向も示されている。
 第1固定子モジュール221Dは、鉄心41と、複数のコイル42とを有する。鉄心41は、複数のティース43を有する。複数のコイル42の各々は、複数のティース43のいずれかに巻回されている。すべてのティース43に、コイル42が巻回されている。第2固定子モジュール222Dは、鉄心51と、複数のコイル52とを有する。鉄心51は、複数のティース53を有する。複数のコイル52の各々は、複数のティース53のいずれかに巻回されている。すべてのティース53に、コイル52が巻回されている。
 図13では、複数のコイル42及び複数のコイル52の各々が巻回されている方向が示されている。図13において、白い丸と当該白い丸のなかに記載されている黒い丸とで構成される図形は、コイルのなかの当該図形が付与されている部分が紙面の裏側から表側の方向に巻回されていることを示している。白い丸と当該白い丸のなかに記載されているバツ印とで構成される図形は、コイルのなかの当該図形が付与されている部分が紙面の表側から裏側の方向に巻回されていることを示している。
 図13に示される通り、第1固定子モジュール221Dに含まれるすべてのコイル42の巻回方向は同一であり、第2固定子モジュール222Dに含まれるすべてのコイル52の巻回方向は同一である。第1固定子モジュール221Dに含まれるコイル42の巻回方向と、第2固定子モジュール222Dに含まれるコイル52の巻回方向とは、逆である。つまり、第2固定子モジュール222Dは、第1固定子モジュール221Dと同じ固定子モジュールを180°反転させた状態で配置された固定子モジュールである。片側固定子モジュール21に含まれる複数のコイル62のすべての巻回方向は、同一である。
 上述の通り、実施の形態5に係るリニア搬送システムでは、搬送路の分岐部分の両側に配置される両側固定子モジュール22Dが有する第1固定子モジュール221D及び第2固定子モジュール222Dの各々の高さは、搬送路の非分岐部分の片側に配置される片側固定子モジュール21の高さの1/2である。つまり、第1固定子モジュール221Dが有する鉄心41及び第2固定子モジュール222Dが有する鉄心51の各々の高さは、片側固定子モジュール21が有する鉄心61の高さの1/2である。そのため、実施の形態5に係るリニア搬送システムは、モータの重量を低減することができる。
 両側固定子モジュール22Dでは、第2固定子モジュール222Dは、第1固定子モジュール221Dと同じ固定子モジュールを180°反転させた状態で配置された固定子モジュールである。つまり、分岐部分の両側固定子モジュール22Dが有する二つの固定子モジュールを同一の部品で構成することができるため、実施の形態5に係るリニア搬送システムは、製造コストを低減することができる。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略又は変更することも可能である。
 1 リニア搬送システム、2 固定子モジュール、3 可動子、21 片側固定子モジュール、22,22A,22B,22C,22D 両側固定子モジュール、31 磁石、41,51,61 鉄心、42,52,62 コイル、43,43a,43b,53,53a,53b,63 ティース、44,54 スロット面積、221,221A,221B,221C,221D 第1固定子モジュール、222,222A,222B,222C,222D 第2固定子モジュール。

Claims (6)

  1.  搬送路を形成する複数の固定子モジュールと、
     両側の側面に配置された複数の磁石を有する可動子とを備え、
     前記複数の固定子モジュールは、前記搬送路の非分岐部分の片側に配置される片側固定子モジュールと、前記搬送路の分岐部分の両側に配置される両側固定子モジュールとを有し、
     前記片側固定子モジュール及び前記両側固定子モジュールの各々は、鉄心と、複数のコイルとを含み、
     前記可動子は、前記複数のコイルからの電磁力で推進され、
     前記両側固定子モジュールは、二つの固定子モジュールを有し、
     前記搬送路の前記非分岐部分に配置された前記片側固定子モジュールのコイル量と、前記搬送路の前記分岐部分に配置された前記両側固定子モジュールのコイル量とが同等である
     ことを特徴とするリニア搬送システム。
  2.  前記鉄心は、複数のティースを含み、
     前記複数のコイルの各々は、前記複数のティースのいずれかに巻回されており、
     前記両側固定子モジュールについては、複数のティースの一部分のみにコイルが配置されており、
     前記片側固定子モジュールについては、複数のティースのすべてにコイルが配置されている
     ことを特徴とする請求項1に記載のリニア搬送システム。
  3.  前記鉄心は、複数のティースを含み、
     前記複数のコイルの各々は、前記複数のティースのいずれかに巻回されており、
     前記両側固定子モジュールが有する前記二つの固定子モジュールのうちの一方の固定子モジュールである第1固定子モジュールと前記両側固定子モジュールが有する前記二つの固定子モジュールのうちの他方の固定子モジュールである第2固定子モジュールとの各々について、前記可動子の進行方向において、コイルが巻回されているティースとコイルが巻回されていないティースとが交互に配置されており、
     前記第1固定子モジュールのティースと前記第2固定子モジュールのティースとが向き合う部分については、前記第1固定子モジュールと前記第2固定子モジュールとのうちの一方のティースにはコイルが巻回されており、前記第1固定子モジュールと前記第2固定子モジュールとのうちの他方のティースにはコイルが巻回されておらず、
     前記第1固定子モジュール及び前記第2固定子モジュールの各々が含むティースの数は、偶数であり、
     前記片側固定子モジュールにおけるコイルの巻数と、前記第1固定子モジュール及び前記第2固定子モジュールの各々におけるコイルの巻数とは、同じである
     ことを特徴とする請求項1又は2に記載のリニア搬送システム。
  4.  前記両側固定子モジュールが含む複数のコイルの各々のスロット面積に占める割合は、1/2以下である
     ことを特徴とする請求項1から3のいずれか1項に記載のリニア搬送システム。
  5.  前記片側固定子モジュールが含む前記複数のコイルの各々の巻回方向は、同一であり、
     前記両側固定子モジュールが有する前記二つの固定子モジュールのうちの一方の固定子モジュールである第1固定子モジュールに含まれるコイルの巻回方向と、前記両側固定子モジュールが有する前記二つの固定子モジュールのうちの他方の固定子モジュールである第2固定子モジュールに含まれるコイルの巻回方向とは、逆である
     ことを特徴とする請求項3又は4に記載のリニア搬送システム。
  6.  前記両側固定子モジュールが有する前記二つの固定子モジュールのうちの一方の固定子モジュールである第1固定子モジュールと前記両側固定子モジュールが有する前記二つの固定子モジュールのうちの他方の固定子モジュールである第2固定子モジュールとは、向き合っておらず、前記可動子の進行方向と垂直な方向であると共に前記両側固定子モジュールを進行する際の前記可動子が有する前記複数の磁石の磁力線の方向に垂直な方向において、異なる位置に配置されている
     ことを特徴とする請求項1に記載のリニア搬送システム。
PCT/JP2022/008807 2022-03-02 2022-03-02 リニア搬送システム WO2023166598A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2022/008807 WO2023166598A1 (ja) 2022-03-02 2022-03-02 リニア搬送システム
CN202280092140.9A CN118715131A (zh) 2022-03-02 2022-03-02 线性输送系统
KR1020247027594A KR20240137046A (ko) 2022-03-02 2022-03-02 리니어 반송 시스템
JP2024504078A JPWO2023166598A1 (ja) 2022-03-02 2022-03-02

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008807 WO2023166598A1 (ja) 2022-03-02 2022-03-02 リニア搬送システム

Publications (1)

Publication Number Publication Date
WO2023166598A1 true WO2023166598A1 (ja) 2023-09-07

Family

ID=87883230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008807 WO2023166598A1 (ja) 2022-03-02 2022-03-02 リニア搬送システム

Country Status (4)

Country Link
JP (1) JPWO2023166598A1 (ja)
KR (1) KR20240137046A (ja)
CN (1) CN118715131A (ja)
WO (1) WO2023166598A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286008A (ja) * 2000-03-31 2001-10-12 Sanki Eng Co Ltd リニア駆動台車の分岐装置
JP2009177888A (ja) * 2008-01-22 2009-08-06 Railway Technical Res Inst 磁気浮上機構
WO2012066868A1 (ja) * 2010-11-16 2012-05-24 株式会社安川電機 リニアモータ
US20170346379A1 (en) * 2016-05-31 2017-11-30 Bernecker + Rainer Industrie-Elektronik Ges.M.B.H. Method for operating a long stator linear motor
WO2019171456A1 (ja) * 2018-03-06 2019-09-12 株式会社Fuji 搬送装置、及び搬送路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6633516B2 (ja) 2013-09-21 2020-01-22 マグネモーション インコーポレイテッド パッケージングおよび他の用途のためのリニアモータ輸送

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286008A (ja) * 2000-03-31 2001-10-12 Sanki Eng Co Ltd リニア駆動台車の分岐装置
JP2009177888A (ja) * 2008-01-22 2009-08-06 Railway Technical Res Inst 磁気浮上機構
WO2012066868A1 (ja) * 2010-11-16 2012-05-24 株式会社安川電機 リニアモータ
US20170346379A1 (en) * 2016-05-31 2017-11-30 Bernecker + Rainer Industrie-Elektronik Ges.M.B.H. Method for operating a long stator linear motor
WO2019171456A1 (ja) * 2018-03-06 2019-09-12 株式会社Fuji 搬送装置、及び搬送路

Also Published As

Publication number Publication date
CN118715131A (zh) 2024-09-27
KR20240137046A (ko) 2024-09-19
JPWO2023166598A1 (ja) 2023-09-07

Similar Documents

Publication Publication Date Title
JP5956993B2 (ja) リニアモータ
US3770995A (en) Linear induction motor
US8283815B2 (en) Electrical machine
US11387728B2 (en) Linear motor and transport system using the same
WO2010067837A1 (ja) 推力発生機構、駆動装置,xyステージ及びxyzステージ
WO2009128321A1 (ja) 多自由度アクチュエータおよびステージ装置
JP2007318839A (ja) リニアモータ
US8786142B2 (en) Linear motor
JP5289799B2 (ja) リニアモータ
JP2005065488A (ja) 電動モータ、電動モータにより移動可能なケージを備えたリフト、ケージ及びケージに対する案内素子の移動用の電動モータを備えたリフト
WO2023166598A1 (ja) リニア搬送システム
KR20230161343A (ko) 선형 전동기 및 이송 시스템
JP2005253259A (ja) リニア電磁アクチュエータ
KR101798548B1 (ko) 선형 전동기
JP2001112119A (ja) リニアモータ式搬送装置
JP3430770B2 (ja) ドア開閉用リニアモータ
JPH0880027A (ja) リニアモータ
JP5427037B2 (ja) リニアモータシステム
KR100639265B1 (ko) 안내력을 증가시킨 자기부상 이송 시스템
JP4253823B1 (ja) 磁気浮上推進装置
JP6061372B2 (ja) 電磁石形アクチュエータ及びこれを用いた平面モータ
US20230291294A1 (en) Motor Assembly for Linear Direct-Drive Motor
KR20240061611A (ko) 선형 전동기
WO2016132465A1 (ja) リニアモータ
JP2006213462A (ja) 駆動式搬送チェーン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929746

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024504078

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247027594

Country of ref document: KR

Kind code of ref document: A