WO2023165572A1 - 空调器、空调器停机控制方法及存储介质 - Google Patents

空调器、空调器停机控制方法及存储介质 Download PDF

Info

Publication number
WO2023165572A1
WO2023165572A1 PCT/CN2023/079367 CN2023079367W WO2023165572A1 WO 2023165572 A1 WO2023165572 A1 WO 2023165572A1 CN 2023079367 W CN2023079367 W CN 2023079367W WO 2023165572 A1 WO2023165572 A1 WO 2023165572A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
compressor
threshold
minimum
equal
Prior art date
Application number
PCT/CN2023/079367
Other languages
English (en)
French (fr)
Inventor
李永正
张永良
荣晓明
Original Assignee
海信空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信空调有限公司 filed Critical 海信空调有限公司
Publication of WO2023165572A1 publication Critical patent/WO2023165572A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/12Vibration or noise prevention thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to the technical field of air conditioners, and in particular, to an air conditioner, an air conditioner shutdown control method, and a storage medium.
  • the controller when the controller receives a compressor stop instruction, it directly controls the compressor to stop, which will cause greater stress and vibration after the compressor stops.
  • some embodiments of the present disclosure provide an air conditioner.
  • the air conditioner includes a compressor and a controller.
  • the controller is coupled to the compressor and is configured to: obtain the current operating parameters of the compressor in response to receiving a compressor shutdown command, wherein the current operating parameters include the current operating frequency, the current q-axis current value, the current mechanical angle or At least one of the current operating speed; according to the current operating frequency, determine the current operating condition of the compressor; according to the current operating condition and other current operating parameters in the current operating parameters except the current operating frequency, determine the current load of the compressor.
  • the first difference between the torque and the minimum load torque in the current mechanical cycle is less than or equal to the first threshold; when it is determined that the first difference is less than or equal to the first threshold, the compressor is controlled to stop running.
  • some embodiments of the present disclosure provide a method for controlling shutdown of an air conditioner.
  • the method includes: obtaining the current operating parameters of the compressor in response to receiving a compressor shutdown command, wherein the current operating parameters include at least one of the current operating frequency, the current q-axis current value, the current mechanical angle or the current operating speed; according to The current operating frequency determines the current operating condition of the compressor; according to the current operating condition and current operating parameters other than the current operating frequency in the current operating parameters, determine the current load torque of the compressor and the minimum load in the current mechanical cycle Whether the first difference between the torques is less than or equal to the first threshold; when it is determined that the first difference is less than or equal to the first threshold, the compressor is controlled to stop running.
  • some embodiments of the present disclosure provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer program instructions, and when the computer program instructions are run on a computer, the computer is made to perform some or all of the operations in the above air conditioner shutdown control method.
  • FIG. 1 is a block diagram of an air conditioner according to some embodiments
  • FIG. 2 is another structural diagram of an air conditioner according to some embodiments.
  • Fig. 3 is a structural diagram of an indoor unit according to some embodiments.
  • Fig. 4 is another structural diagram of an air conditioner according to some embodiments.
  • Fig. 5 is another structural diagram of an air conditioner according to some embodiments.
  • FIG. 6 is a diagram of load torque variation of a compressor in one mechanical cycle according to some embodiments.
  • FIG. 7 is an example diagram of a minimum mechanical angle variation curve according to some embodiments.
  • FIG. 8 is a flowchart of an air conditioner shutdown control method according to some embodiments.
  • FIG. 9 is another flowchart of an air conditioner shutdown control method according to some embodiments.
  • FIG. 10 is another flow chart of an air conditioner shutdown control method according to some embodiments.
  • Fig. 11 is another flowchart of an air conditioner shutdown control method according to some embodiments.
  • FIG. 12 is another flow chart of an air conditioner shutdown control method according to some embodiments.
  • Fig. 13 is another flowchart of an air conditioner shutdown control method according to some embodiments.
  • Fig. 14 is yet another flow chart of an air conditioner shutdown control method according to some embodiments.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection or an indirect connection through an intermediary.
  • coupled indicates that two or more elements are in direct physical or electrical contact.
  • coupled or “communicatively Coupled)” may also refer to two or more components that are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed here are not necessarily limited to the content herein.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • perpendicular includes the stated conditions as well as close approximations to the stated conditions within acceptable deviations as defined by the art As determined by one of ordinary skill taking into account the measurement in question and the errors associated with the measurement of the particular quantity (ie, limitations of the measurement system). For example, “vertical” includes absolute vertical and approximate vertical, and the acceptable deviation range of approximate vertical may be within 5 degrees, for example.
  • the air conditioner 1 includes an outdoor unit 2 , an indoor unit 3 , connecting pipes 4 , a remote controller 5 and a controller 50 (not shown in FIG. 1 ).
  • the outdoor unit 2 may be, for example, the air conditioner 1 installed on the outside of the wall or on the roof of a house.
  • the outdoor unit 2 is mainly used to compress the refrigerant and drive the refrigerant to circulate in the air conditioner 1 .
  • the refrigerant is a substance that easily absorbs heat and becomes a gas, and also easily releases heat and becomes a liquid.
  • the indoor unit 3 may be, for example, a device installed indoors in the air conditioner 1 .
  • the indoor unit 3 is mainly used to transmit cold air or hot air to the indoor space where the indoor unit 3 is located, so as to adjust the temperature of the indoor space.
  • the indoor unit 3 may be an indoor hanging unit installed on the wall (as shown in FIG. 1 ), or the indoor unit 3 may be an indoor cabinet unit placed on the ground (not shown in FIG. 1 ).
  • the outdoor unit 2 and a part of connection piping 4 are shown by the dotted line, and it is for demonstrating that the outdoor unit 2 and this part of connection piping 4 are located outdoors.
  • the connecting pipe 4 is configured to connect the outdoor unit 2 and the indoor unit 3 , so that the refrigerant can circulate in the outdoor unit 2 and the indoor unit 3 through the connecting pipe 4 .
  • the connecting pipe 4 includes an air pipe and a liquid pipe.
  • the air pipe is configured to transmit gaseous refrigerant or two-phase refrigerant (refrigerant in both gas and liquid states) between the outdoor unit 2 and the indoor unit 3, and the liquid pipe is configured to transmit liquid refrigerant or refrigerant between the outdoor unit 2 and the indoor unit 3. two-phase refrigerant.
  • the outdoor unit 2 includes a compressor 11 , a four-way valve 12 , an outdoor heat exchanger 13 , an expansion mechanism 14 , a liquid reservoir 15 , and an outdoor fan 21 .
  • the discharge port of the compressor 11 communicates with the D end of the four-way valve 12
  • the suction port of the compressor 11 communicates with the discharge port of the accumulator 15 .
  • the suction port of the liquid reservoir 15 communicates with the S end of the four-way valve 12 .
  • the C end of the four-way valve 12 communicates with the first end of the outdoor heat exchanger 13
  • the E end of the four-way valve 12 communicates with the connecting pipe 4 (such as an air pipe).
  • the second end of the outdoor heat exchanger 13 communicates with the first end of the expansion mechanism 14, and the second end of the expansion mechanism 14 communicates with the connecting pipe 4 (for example, a liquid pipe).
  • the compressor 11 includes a compressor motor 11a and a compressor driving pulse width modulation (Pulse Width Modulation, PWM) (not shown in FIG. 2 ).
  • the compressor driving PWM is configured to supply power to the compressor motor 11a; the compressor motor 11a is configured to convert electrical energy into mechanical energy, thereby driving the mechanical structure in the compressor 11 to complete the compression of the refrigerant.
  • the outdoor fan 21 includes an outdoor fan motor 21 a configured to drive blades of the outdoor fan 21 to rotate.
  • the indoor unit 3 includes an indoor heat exchanger 16 and an indoor fan 31 . Both ends of the indoor heat exchanger 16 communicate with the connecting pipe 4 .
  • the first end of the indoor heat exchanger 16 communicates with the air pipe, and the second end of the indoor heat exchanger 16 communicates with the liquid pipe.
  • the indoor heat exchanger 16 includes a plurality of heat transfer tubes 16b.
  • the indoor fan 31 includes an indoor fan motor 31 a configured to drive the blades of the indoor fan 31 to rotate.
  • FIG. 1 and 2 is an exemplary structure of the air conditioner 1, and the air conditioner 1 may include more or less components than those shown in Figures 1 and 2, or may include the same Figure 1 and Figure 2 show the different components.
  • the controller 50 communicates at least with the compressor 11 in the outdoor unit 2 (for example, the compressor motor 11a in the compressor 11 ), the four-way valve 12, the expansion mechanism 14 and the outdoor fan 21. (for example, the outdoor fan motor 21a), and at least coupled with the indoor fan 31 (for example, the indoor fan motor 31a) in the indoor unit 3 .
  • the controller 50 is configured to control the working states of various components coupled to the controller 50 . It should be noted that the way the controller 50 controls each component will be described in subsequent embodiments.
  • the controller 50 includes an outdoor control device 26 and an indoor control device 35, and the outdoor control device 26 and the indoor control device 35 may be coupled through signal lines.
  • the outdoor control device 26 (or the indoor control device 35 ) is configured to control the working states of various components in the outdoor unit 2 (or the indoor unit 3 ) coupled with the controller 50 .
  • the outdoor control device 26 and the indoor control device 35 can be set under the outdoor unit 2 and the indoor unit 3 respectively, or can be set independently of the outdoor unit 2 and the indoor unit 3 .
  • the controller 50 can also be coupled with the operation switch 61 , the temperature setting switch 62 , the wind direction setting switch 63 , the air volume setting switch 64 and the display device 65 to control the start of the air conditioner 1 . Stop and control the output temperature, output air direction, output air volume, etc. of the indoor unit 3.
  • the controller 50 may control the display device 65 to display the temperature of the indoor space where the indoor unit 3 is located, and/or display the working status of the air conditioner 1 and the like.
  • the indoor control device 35 can also be coupled with the indoor unit temperature sensor 66, the indoor heat exchanger temperature sensor 67, the horizontal baffle drive motor 68, and the vertical baffle drive motor 69, so as to obtain the indoor space where the indoor unit 3 is located. temperature and the working temperature of the indoor heat exchanger 16, and control the working state of the horizontal baffle and the vertical baffle of the indoor unit 3.
  • the outdoor control device 26 can also be coupled with the outdoor unit temperature sensor 70, the outdoor heat exchanger temperature sensor 71, the discharge pipe temperature sensor 72 and the suction pipe temperature sensor 73, so as to obtain the temperature of the outdoor space where the outdoor unit 2 is located. , the operating temperature of the outdoor heat exchanger 13, and the temperature at the discharge pipe and the suction pipe of the outdoor unit 3.
  • the controller 50 can establish a communication connection with other devices (for example, a user terminal or the remote controller 5 in FIG. 1 ), so as to operate under the control of the other devices.
  • the remote controller 5 can communicate with the controller 50 using, for example, the following communication technologies: infrared communication technology, radio frequency (Radio Frequency, RF) communication technology, cellular communication technology, wireless network communication technology (Wi-Fi) , near field communication (Near Field Communication, NFC) or other communication technologies.
  • RF radio frequency
  • Wi-Fi wireless network communication technology
  • NFC Near Field Communication
  • the user can control the air conditioner 1 by pressing a button on the remote controller 5 , so as to realize the interaction between the user and the air conditioner 1 .
  • the user controls the air conditioner 1 to work in a cooling working state, so as to reduce the temperature of the indoor space.
  • the controller 50 controls the compressor motor 11a, the outdoor fan motor 21a and the indoor fan motor 31a to start working, and controls the D end of the four-way valve 12 to communicate with the C end, and the S end and the E end to communicate.
  • the compressor 11 starts to compress the refrigerant so that the refrigerant circulates in the air conditioner 1 .
  • the compressor 11 compresses the gaseous refrigerant into a high-temperature, high-pressure gaseous refrigerant, and drives the compressed refrigerant to pass through the D end and the C end of the four-way valve 12 to reach the first end of the outdoor heat exchanger 13, so as to into the outdoor heat exchanger 13.
  • the high-temperature and high-pressure gaseous refrigerant After the high-temperature and high-pressure gaseous refrigerant is liquefied into a low-temperature and low-pressure liquid refrigerant in the outdoor heat exchanger 13, it passes through the second end of the outdoor heat exchanger 13, the expansion mechanism 14 and the connecting pipe 4, and reaches the bottom of the indoor heat exchanger 16. The second end to enter the indoor heat exchanger 16 .
  • the outdoor fan 21 can discharge the heat generated by the liquefaction of the refrigerant to the outdoor unit 2 .
  • expander The mechanism 14 can be, for example, an electronic expansion valve, and the expansion mechanism 14 can expand the refrigerant to depressurize it, thereby controlling the amount of the refrigerant entering the connecting pipe 4 .
  • the low-temperature, low-pressure liquid refrigerant is vaporized into a gaseous refrigerant in the multiple heat transfer tubes 16b of the indoor heat exchanger 16, thereby absorbing the heat around the indoor heat exchanger 16 and lowering the indoor temperature.
  • the indoor fan 21 sends the low-temperature air inside the indoor unit 3 (that is, the temperature lower than the room temperature of the indoor space) to the outside of the indoor unit 3, thereby reducing the temperature of the indoor space.
  • the vaporized gaseous refrigerant reaches the four-way valve 12 through the first end of the indoor heat exchanger 16 and the connecting pipe 4 , and then reaches the suction port of the accumulator 15 through the E end and the S end of the four-way valve 12 .
  • the gaseous refrigerant may condense to produce liquid in the process of being transported from the indoor heat exchanger 16 to the liquid receiver 15. After the liquid receiver 15 separates the liquid, the gaseous refrigerant is input into the compressor 11 to realize the recycling of the refrigerant. .
  • the compressor 11 four-way valve 12 , outdoor heat exchanger 13 , expansion mechanism 14 , liquid receiver 15 , indoor heat exchanger 16 and other components involved in the refrigerant cycle can be collectively referred to as the refrigerant cycle circuit 10 .
  • the air conditioner 1 works in a heating working state to increase the temperature of the indoor space. Different from the above-mentioned cooling working state, in the heating working state, the controller 50 controls the D terminal and the E terminal of the four-way valve 114 to communicate, and the S terminal and the C terminal to communicate.
  • the high-temperature and high-pressure gaseous refrigerant obtained by the compression process of the compressor 11 passes through the D end and the E end of the four-way valve 12 , and enters the first end of the indoor heat exchanger 16 from the connecting pipe 4 .
  • the high-temperature, high-pressure gaseous refrigerant is liquefied into a low-temperature, low-pressure liquid refrigerant in the multiple heat transfer tubes 16b of the indoor heat exchanger 16, thereby releasing heat to the surroundings of the indoor heat exchanger 16 and increasing the volume of the gas inside the indoor unit 3. temperature.
  • the indoor fan 21 transports the high-temperature gas inside the indoor unit 3 (that is, the temperature higher than the room temperature of the indoor space) to the outside of the indoor unit 3, thereby achieving the effect of raising the temperature of the indoor space.
  • the low-temperature, low-pressure liquid refrigerant flows out of the indoor heat exchanger 16 from the second end of the indoor heat exchanger 16 , and enters the outdoor heat exchanger 13 through the connecting pipe 4 and the expansion mechanism 14 .
  • the low-temperature, low-pressure liquid refrigerant is vaporized into a gaseous refrigerant in the outdoor heat exchanger 13 , and then transported to the liquid accumulator 15 through the C-side and S-side of the four-way valve 12 , and then returns to the compressor 11 .
  • the outdoor fan 21 can discharge the cooling energy generated by the vaporization of the refrigerant to the outdoor unit 2 .
  • the outdoor heat exchanger 13 when the air conditioner 1 is working in the cooling working state, the outdoor heat exchanger 13 can also be called a condenser, and the indoor heat exchanger 16 can also be called an evaporator; when the air conditioner 1 is in the heating working state When working down, the outdoor heat exchanger 13 can also be called an evaporator, and the indoor heat exchanger 16 can also be called a condenser.
  • the pressure value at the discharge port of the compressor 11 may be referred to as a discharge pressure value or high pressure value; the pressure value at the suction port of the compressor 11 may be referred to as a suction pressure value or a low pressure value.
  • the controller 50 when the user wants to control the air conditioner 1 to stop running, he can control the remote control 5 and other equipment to send the compressor stop command to the controller 50 .
  • the controller in the related art will directly control the compressor to drive the PWM to stop supplying power to the motor of the compressor after receiving the command to stop the compressor, thereby controlling the compressor to stop running.
  • this usually results in relatively large vibrations after the compressor is shut down, thereby causing components in the compressor to bear relatively large stresses, thereby shortening the service life of the compressor or even causing damage.
  • the inventors of the present disclosure have found through research that the magnitude of the vibration generated after the compressor stops is related to the working state of the compressor when it stops.
  • the discharge pressure of the compressor is the largest
  • the load torque of the compressor that is, the load torque of the rotor in the compressor motor
  • the controller 50 can first judge the current load torque of the compressor 11 based on the current operating parameters of the compressor 11 after receiving the compressor stop command Then, when it is determined that the current load torque is small (for example, the difference with the minimum load torque in the current mechanical cycle is less than a certain threshold), the compressor 11 is then controlled to stop running. In this way, the vibration amplitude generated after the compressor 11 is stopped can be reduced, thereby reducing the stress on the components in the compressor 11 after the compressor 11 is stopped, thereby prolonging the service life of the compressor 11 and improving the performance of the air conditioner. 1 operational reliability.
  • the air conditioner 1 includes an indoor unit 3 , an outdoor unit 2 and a controller 50 .
  • the outdoor unit 2 communicates with the indoor unit 3 and includes a compressor 11 .
  • the controller 50 is coupled to the indoor unit 3 and the outdoor unit 2, and is configured to: obtain the current operating parameters of the compressor 11 in response to receiving a compressor shutdown command, wherein the current operating parameters include the current operating frequency, the current q-axis At least one of the current value, the current mechanical angle or the current operating speed; according to the current operating frequency, determine the current operating condition of the compressor 11; according to the current operating condition and other current operating parameters in the current operating parameters except the current operating frequency , to determine whether the first difference between the current load torque of the compressor 11 and the minimum load torque in the current mechanical cycle is less than or equal to the first threshold; when it is determined that the first difference is less than or equal to the first threshold, the control Compressor 11 is stopped.
  • the air conditioner 1 provided by some embodiments of the present disclosure can judge the current operating condition of the compressor 11 according to the current operating frequency of the compressor 11, so as to select other current operating parameters of the compressor 11 for different current operating conditions. Determine the magnitude of the actual load currently borne by the compressor 11 .
  • the air conditioner 1 can control the compressor 11 to stop running, thereby reducing the amplitude of the vibration generated after the compressor 11 stops, thereby prolonging the service life of the compressor 11 and improving the operation reliability of the air conditioner 1 .
  • the operating parameters of the compressor 11 refer to data information generated during the operation of the compressor 11 that can characterize the working state of the compressor 11 .
  • the operating frequency of the compressor 11 refers to the operating frequency of the compressor motor 11a
  • one mechanical cycle of the compressor 11 refers to the time for the rotor in the compressor motor 11a to rotate one revolution (360 degrees).
  • the compressor 11 may be a single-rotor compressor.
  • the current operating frequency of the compressor 11 when the current operating frequency of the compressor 11 is less than or equal to the low frequency threshold, it can be determined that the current operating condition of the compressor 11 is a low frequency operating condition; when the current operating frequency of the compressor 11 is greater than or equal to the high frequency threshold, it can be determined that the current operating condition of the compressor 11 is a high-frequency operating condition.
  • the low-frequency threshold and the high-frequency threshold can be determined according to the properties and actual conditions of the compressor 11, and can be pre-input into the controller 50 by a manufacturer or an installer.
  • different operating conditions of the compressor 11 will cause different changes in the operating parameters of the compressor 11 .
  • the controller 50 after the controller 50 receives the compressor stop command, it can first judge the current operating condition of the compressor 11 through the current operating frequency of the compressor 11, so as to use the determined Under the current operating conditions, other current operating parameters that can characterize the magnitude of the current load torque of the compressor 11 are used to determine the magnitude of the current load torque, thereby determining the time point for controlling the compressor 11 to stop running. In this way, the accuracy of the determined time point for controlling the compressor 11 to stop running can be improved.
  • the controller 50 can immediately obtain the current operating parameters of the compressor 11 and perform other operations in the above-mentioned embodiments. If it is determined according to the obtained current operating parameters that the above-mentioned first difference at this time is less than or equal to the first threshold, then the compressor 11 is controlled to stop running; if it is determined that the first difference at this time is greater than the first threshold, then it can be Acquire the current operating parameters of the compressor 11 again after an interval of a predetermined period of time and perform other operations in the above embodiments until it is determined that the first difference is less than or equal to the first threshold.
  • the predetermined period of time may be shorter than the mechanical cycle of compressor 11 .
  • the controller 50 can judge the magnitude of the current load torque according to the current operating conditions and other current operating parameters multiple times within one mechanical cycle, thereby improving the efficiency of the judgment.
  • the first difference between the current load torque and the minimum load torque in the current mechanical cycle refers to the value obtained by taking the current load torque as the minuend and the minimum load torque as the subtrahend difference.
  • the first threshold may be any value greater than or equal to zero.
  • the gap between the load torque when the compressor 11 stops running and the minimum load torque can be narrowed by reducing the first threshold, thereby reducing the load torque when the compressor 11 stops running, and then Further reduce the vibration amplitude generated after the compressor 11 stops.
  • the optional range of the load torque when the compressor 11 stops running can be widened by increasing the first threshold, so that on the basis of reducing the vibration amplitude generated after the compressor 11 stops running, Speed up the process from receiving the compressor shutdown command to controlling the compressor 11 to stop running.
  • the change curve of the load torque of the compressor 11 within one mechanical cycle determined according to the above other current operating parameters may refer to FIG. 6 .
  • the crank angle on the abscissa represents the rotation angle of the rotor in the compressor motor 11 a
  • the resistance torque on the ordinate represents the magnitude of the load torque.
  • the crankshaft angle is 0 degrees (deg) or 360 degrees, it means that the compressor 11 is at the suction peak, and at this moment, the load torque of the compressor 11 is the minimum (approximately 0 Nm (N m)); when the crankshaft angle
  • the value is 180 degrees, it means that the compressor 11 is at the peak of discharge, and at this time, the load torque of the compressor 11 is the largest.
  • the compressor 11 is currently in a low-frequency operating condition, and at this time, the above-mentioned other current parameters may include a current q-axis flow value.
  • the controller 50 is configured to: when the current operating frequency is less than or equal to the low-frequency threshold, determine that the current operating condition of the compressor 11 is a low-frequency operating condition; obtain the minimum q-axis current value in the current mechanical cycle ; determine whether the second difference between the current q-axis current value and the minimum q-axis current value in the current mechanical cycle is less than or equal to the second threshold; when it is determined that the second difference is less than or equal to the second threshold, determine the first The difference is less than or equal to the first threshold.
  • the q-axis current value is a current value on an axis perpendicular to the rotor pole axis of the compressor motor 11a.
  • the minimum q-axis current value can be understood as the minimum value of the q-axis current of the compressor 11 within one mechanical cycle.
  • the torque compensation algorithm in order to suppress the low-frequency speed fluctuation of the compressor 11, it is necessary to use the torque compensation algorithm to feed forward the q-axis current value to a time approximate to the load curve.
  • Variable current current value changes with time.
  • the time-varying current can be a sine wave or other look-up table curves solidified in the controller 50 .
  • the q-axis current can be considered as There is no phase difference between the value curve and the load torque curve (that is, phase overlap). At this time, the magnitude of the q-axis current value can be directly mapped to the magnitude of the load torque.
  • the air conditioner 1 provided by some embodiments of the present disclosure can use the current q-axis current value and The relationship between the minimum q-axis current value in the current mechanical cycle to characterize the current load torque and the minimum q-axis current value in the current mechanical cycle The relationship between load torque.
  • the air conditioner 1 can determine the current load torque and the current q-axis current value in the current mechanical cycle.
  • the first difference between the minimum load torques is less than or equal to the first threshold, so that the compressor drive PWM output is turned off at this time to control the compressor 11 to stop running, thereby effectively reducing the shutdown vibration and vibration of the compressor 11. shutdown stress.
  • the value range of the second threshold may refer to the value range of the first threshold in the foregoing embodiments, and the second threshold may be equal to or not equal to the first threshold.
  • the minimum q-axis current value in the current mechanical cycle may be obtained according to a predetermined torque compensation curve.
  • the controller 50 is configured to: obtain the current torque compensation current value; determine whether the current torque compensation current value is the minimum torque compensation current value according to a predetermined torque compensation curve; When the value is the minimum torque compensation current value, the q-axis current value corresponding to the current torque compensation current value is determined as the minimum q-axis current value in the current mechanical cycle.
  • the controller 50 can obtain the torque compensation current value through a look-up table method. For example, a certain curve is pre-solidified in the controller 50 as a predetermined torque compensation curve, and the controller 50 can obtain the torque compensation current value at a certain moment during actual operation by querying the torque compensation curve.
  • the controller 50 may determine the q-axis current value corresponding to the current torque compensation current value as The minimum q-axis current value in the current mechanical cycle.
  • the minimum q-axis current value in the current mechanical cycle may be obtained according to the historical q-axis current value generated after the compressor 11 actually runs.
  • the controller 50 is configured to: obtain the historical q-axis current value in at least one historical mechanical cycle before the current mechanical cycle; determine the minimum q-axis current value in the current mechanical cycle according to the historical q-axis current value.
  • the controller 50 can calculate the q-axis current value of the compressor 11 through the phase current. In this way, the controller 50 can obtain the q-axis current values at multiple moments in any mechanical cycle, and use the minimum value among the multiple q-axis current values as the minimum q-axis current value in the mechanical cycle (for example, denoted as q_min_cycle(i), where i is the number of the mechanical cycle). After the controller 50 collects the historical q-axis current value in at least one historical mechanical cycle, the controller 50 may determine at least one minimum q-axis current value corresponding to the at least one historical mechanical cycle.
  • the controller 50 may, for example, take the minimum value of the at least one minimum q-axis current value as a reference value of the minimum q-axis current value in the current mechanical cycle.
  • the controller 50 may use the average value of the at least one minimum q-axis current value as a reference value of the minimum q-axis current value in the current mechanical cycle. In this way, after receiving the compressor shutdown command, when the current q-axis current value calculated by the controller 50 using the current phase current is equal to the reference value (or the difference with the reference value is less than or equal to the preset threshold value), the control The controller 50 can control the compressor 11 to stop.
  • the compressor 11 is currently in a high-frequency operating condition, and at this time, the above-mentioned other current parameters may include the current mechanical angle.
  • the controller 50 is configured to: when the current operating frequency is greater than or equal to the high-frequency threshold, determine that the current operating condition of the compressor 11 is a high-frequency operating condition; obtain the minimum mechanical angle in the current mechanical cycle ;Determine whether the third difference between the current mechanical angle and the minimum mechanical angle in the current mechanical cycle is less than or equal to the first Three thresholds; when the third difference is less than or equal to the third threshold, determine that the first difference is less than or equal to the first threshold.
  • the compressor 11 since the compressor 11 does not need to perform torque compensation when the compressor 11 is in the high-frequency operating condition (that is, the q-axis current value is a DC value), therefore, the minimum q-axis current value under the high-frequency operating condition cannot be determined.
  • the magnitude of the load torque of the compressor 11 under the high-frequency operating condition is proportional to the magnitude of the mechanical angle, therefore, when the current operating condition of the compressor 11 is the high-frequency operating condition, some aspects of the present disclosure
  • the air conditioner 1 provided in the embodiment can use the relationship between the current mechanical angle and the minimum mechanical angle in the current mechanical cycle to characterize the relationship between the current load torque and the minimum load torque in the current mechanical cycle.
  • the air conditioner 1 can determine the current load torque and the minimum load torque in the current mechanical cycle when the third difference between the current mechanical angle and the minimum mechanical angle in the current mechanical cycle is less than or equal to the third threshold
  • the first difference between them is less than or equal to the first threshold, so that the compressor driving PWM output is turned off at this time to control the compressor 11 to stop running, thereby effectively reducing the shutdown vibration and shutdown stress of the compressor 11.
  • the value range of the third threshold may refer to the value range of the first threshold in the foregoing embodiments, and the third threshold may be equal to or not equal to the first threshold.
  • the controller 50 may use the mechanical angle corresponding to the minimum q-axis current value after torque compensation as the minimum mechanical angle of the mechanical cycle under low-frequency operating conditions. angle.
  • the q-axis current value is a DC flow under high-frequency operating conditions (that is, it is impossible to determine the current value of a certain machine under high-frequency operating conditions. The minimum q-axis current value in the cycle), so the minimum mechanical angle cannot be determined by the minimum q-axis current value.
  • the controller 50 may be configured to: obtain multiple historical operating frequencies of the compressor 11 under low-frequency operating conditions, and multiple minimum values corresponding to the minimum q-axis current values under the multiple historical operating frequencies.
  • Mechanical angle wherein, the low-frequency operating condition is the operating condition when the operating frequency of the compressor 11 is less than or equal to the low-frequency threshold; according to the multiple historical operating frequencies and the multiple minimum mechanical angles, the minimum mechanical angle change curve is fitted ; Determine the minimum mechanical angle in the current mechanical cycle according to the current operating frequency and the minimum mechanical angle change curve.
  • the controller 50 can aim at each operating frequency or part of the operating frequency under the low-frequency operating condition, when the changing speed of the operating frequency is stable and the speed When the ripple is minimum, record the minimum mechanical angle corresponding to the minimum q-axis current value at the operating frequency or at this part of the operating frequency (for example, denoted as ⁇ n , where n is a natural number greater than or equal to 1).
  • the controller 50 may select a historical operating frequency maintained for a certain period of time (instead of selecting a historical operating frequency in the process of increasing frequency or decreasing frequency) to record the minimum mechanical angle.
  • the equation of the minimum mechanical angle variation curve fitted according to the scatter points in the torque compensation area is, for example, the following equation (1).
  • ⁇ n K ⁇ freq+b formula (1)
  • ⁇ n is the minimum mechanical angle
  • freq is the operating frequency
  • the controller 50 can extend the minimum mechanical angle variation curve to the non-torque compensation region (ie, high-frequency operating condition) according to the variation trend of the minimum mechanical angle variation curve in the torque compensation region. Then, the controller 50 can obtain the minimum mechanical angle corresponding to each frequency in the non-torque compensation area.
  • the magnitude of the current load torque can also be judged by the current operating speed among other current parameters.
  • the controller 50 is configured to: when the current operating frequency is greater than or equal to the high-frequency threshold, determine The current operating condition of the compressor 11 is a high-frequency operating condition; determine whether the fourth difference between the current operating speed and the operating speed threshold is greater than or equal to the fourth threshold; when the fourth difference is greater than or equal to the fourth threshold , to determine that the first difference is less than or equal to the first threshold.
  • the motion equation of the compressor motor 11a is, for example, the following formula (2).
  • T e is the electromagnetic torque
  • T L is the load torque
  • J is the friction coefficient
  • ⁇ m is the running speed.
  • the air conditioner 1 provided by some embodiments of the present disclosure can use the relationship between the current operating speed and the operating speed threshold to characterize the relationship between the current load torque and the minimum load torque in the current mechanical cycle. In this way, the air conditioner 1 can determine the first difference between the current load torque and the minimum load torque in the current mechanical cycle when the fourth difference between the current operating speed and the operating speed threshold is greater than or equal to the fourth threshold. The difference is less than or equal to the first threshold, so that the compressor driving PWM output is turned off at this time to control the compressor 11 to stop running, thereby effectively reducing the shutdown vibration and shutdown stress of the compressor 11 .
  • value range of the fourth threshold may refer to the value range of the first threshold in the foregoing embodiment, and the fourth threshold may be equal to or not equal to the first threshold.
  • some embodiments of the present disclosure also provide a method for controlling shutdown of an air conditioner.
  • the method at least includes steps S1 to S4. It should be noted that, for the execution details of each step in the method, reference may be made to the relevant descriptions of the various operations performed by the controller 50 in the aforementioned embodiments, and the beneficial effects produced by this method include at least the air conditioner 1 in the aforementioned embodiments. The beneficial effects produced will not be repeated here.
  • Step S1 in response to receiving a compressor stop instruction, acquiring current operating parameters of the compressor.
  • the current operating parameters include at least one of the current operating frequency, the current q-axis current value, the current mechanical angle or the current operating speed.
  • Step S2. Determine the current operating condition of the compressor according to the current operating frequency.
  • Step S3 according to the current operating conditions and other current operating parameters in the current operating parameters except the current operating frequency, determine whether the first difference between the current load torque of the compressor and the minimum load torque in the current mechanical cycle is less than or equal to the first threshold.
  • Step S4 when it is determined that the first difference is less than or equal to the first threshold, controlling the compressor to stop running.
  • the above-mentioned other current operating parameters also include the current q-axis current value, and as shown in FIG. 9 , the above-mentioned step S3 includes the following steps S311 to S314.
  • Step S311 when the current operating frequency is less than or equal to the low frequency threshold, determine that the current operating condition of the compressor is the low frequency operating condition.
  • Step S312 obtaining the minimum q-axis current value in the current mechanical cycle.
  • Step S313 determining whether the second difference between the current q-axis current value and the minimum q-axis current value in the current mechanical cycle is less than or equal to a second threshold.
  • Step S314 when it is determined that the second difference is less than or equal to the second threshold, determine that the first difference is less than or equal to the first threshold threshold.
  • the above step S312 includes the following steps S3121 to S3123.
  • Step S3121 acquiring the current torque compensation current value.
  • Step S3122 according to the predetermined torque compensation curve, determine whether the current torque compensation current value is the minimum torque compensation current value.
  • Step S3123 When the current torque compensation current value is the minimum torque compensation current value, determine the q-axis current value corresponding to the current torque compensation current value as the minimum q-axis current value in the current mechanical cycle.
  • step S312 includes the following steps S3124 to S3125.
  • Step S3124 acquiring the historical q-axis current value in at least one historical mechanical cycle before the current mechanical cycle.
  • Step S3125 according to the historical q-axis current value, determine the minimum q-axis current value in the current mechanical cycle.
  • the above other current operating parameters include the current mechanical angle, and as shown in FIG. 12 , the above step S3 includes the following steps S321 to S324.
  • Step S321 when the current operating frequency is greater than or equal to the high-frequency threshold, determine that the current operating condition of the compressor is a high-frequency operating condition.
  • Step S322 acquiring the minimum mechanical angle in the current mechanical cycle.
  • Step S323. Determine whether a third difference between the current mechanical angle and the minimum mechanical angle in the current mechanical cycle is less than or equal to a third threshold.
  • Step S324 when the third difference is less than or equal to the third threshold, determine that the first difference is less than or equal to the first threshold.
  • step S322 includes the following steps S3221 to S3223.
  • the low-frequency operating condition is an operating condition when the operating frequency of the compressor is less than or equal to the low-frequency threshold.
  • the above-mentioned other current operating parameters include the current operating speed, and as shown in FIG. 14 , the above-mentioned step S3 includes the following steps S331 to S333.
  • Step S331 when the current operating frequency is greater than or equal to the high-frequency threshold, determine that the current operating condition of the compressor is a high-frequency operating condition.
  • Step S332. Determine whether the fourth difference between the current running speed and the running speed threshold is greater than or equal to the fourth threshold.
  • Step S333 when the fourth difference is greater than or equal to the fourth threshold, determine that the first difference is less than or equal to the first threshold.
  • some embodiments of the present disclosure further provide a computer-readable storage medium, such as a non-transitory computer-readable storage medium.
  • the computer-readable storage medium stores computer program instructions. When the computer program instructions are run on a computer, the computer is made to perform some or all of the operations in the method for controlling shutdown of the air conditioner as described in the above embodiments.
  • beneficial effects produced by the computer-readable storage medium at least include the beneficial effects produced by the method for controlling shutdown of the air conditioner in the foregoing embodiments, which will not be repeated here.

Abstract

本公开一些实施例提供了一种空调器、空调器停机控制方法及存储介质。该空调器包括压缩机和控制器。控制器与压缩机耦接,且被配置为:响应于接收到压缩机停机指令,获取压缩机的当前运行参数,其中,当前运行参数包括当前运行频率、当前q轴电流值、当前机械角度或当前运行转速中的至少一个;根据当前运行频率,确定压缩机的当前运行工况;根据当前运行工况和当前运行参数中除当前运行频率以外的其他当前运行参数,确定压缩机的当前负载转矩与当前机械周期内的最小负载转矩之间的第一差值是否小于或等于第一阈值;当确定第一差值小于或等于第一阈值时,控制压缩机停止运行。

Description

空调器、空调器停机控制方法及存储介质
本申请要求于2022年03月03日提交的、申请号为202210209803.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空调技术领域,尤其是涉及一种空调器、空调器停机控制方法及存储介质。
背景技术
在相关技术中的空调器中,当控制器接收到压缩机停机指令时,会直接控制压缩机停机,这会导致压缩机停机后所产生的应力和振动较大。
发明内容
一方面,本公开一些实施例提供一种空调器。该空调器包括压缩机和控制器。控制器与压缩机耦接,且被配置为:响应于接收到压缩机停机指令,获取压缩机的当前运行参数,其中,当前运行参数包括当前运行频率、当前q轴电流值、当前机械角度或当前运行转速中的至少一个;根据当前运行频率,确定压缩机的当前运行工况;根据当前运行工况和当前运行参数中除当前运行频率以外的其他当前运行参数,确定压缩机的当前负载转矩与当前机械周期内的最小负载转矩之间的第一差值是否小于或等于第一阈值;当确定第一差值小于或等于第一阈值时,控制压缩机停止运行。
另一方面,本公开一些实施例提供一种空调器停机控制方法。该方法包括:响应于接收到压缩机停机指令,获取压缩机的当前运行参数,其中,当前运行参数包括当前运行频率、当前q轴电流值、当前机械角度或当前运行转速中的至少一个;根据当前运行频率,确定压缩机的当前运行工况;根据当前运行工况和当前运行参数中除当前运行频率以外的其他当前运行参数,确定压缩机的当前负载转矩与当前机械周期内的最小负载转矩之间的第一差值是否小于或等于第一阈值;当确定第一差值小于或等于第一阈值时,则控制压缩机停止运行。
又一方面,本公开一些实施例提供一种计算机可读存储介质。该计算机可读存储介质存储有计算机程序指令,该计算机程序指令在计算机上运行时,使得该计算机执行上述空调器停机控制方法中的一些或全部操作。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的空调器的一个结构图;
图2为根据一些实施例的空调器的另一个结构图;
图3为根据一些实施例的室内机的结构图;
图4为根据一些实施例的空调器的又一个结构图;
图5为根据一些实施例的空调器的又一个结构图;
图6为根据一些实施例的压缩机在一个机械周期内的负载转矩变化图;
图7为根据一些实施例的最小机械角度变化曲线的示例图;
图8为根据一些实施例的空调器停机控制方法的一个流程图;
图9为根据一些实施例的空调器停机控制方法的另一个流程图;
图10为根据一些实施例的空调器停机控制方法的又一个流程图;
图11为根据一些实施例的空调器停机控制方法的又一个流程图;
图12为根据一些实施例的空调器停机控制方法的又一个流程图;
图13为根据一些实施例的空调器停机控制方法的又一个流程图;
图14为根据一些实施例的空调器停机控制方法的又一个流程图。
附图标记:
空调器1;室外机2;室内机3;连接配管4;遥控器5;
冷媒循环回路10;压缩机11;压缩机电机11a;四通阀12;室外热交换器13;
膨胀机构14;储液器15;室内热交换器16;传热管16b;室外风扇21;室外风扇马达21a;室外控制装置26;室内风扇31;室内风扇马达31a;室内控制装置35;控制器50;
运转开关61;温度设定开关62;风向设定开关63;风量设定开关64;显示装置
65;室内机温度传感器66;室内热交换器温度传感器67;水平挡板驱动马达68;垂直挡板驱动马达69;室外机温度传感器70;室外热交换器温度传感器71;排出管温度传感器72;吸入管温度传感器73。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”例如表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively  coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“垂直”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5度以内偏差。
本公开一些实施例提供一种空调器1。如图1所示,空调器1包括室外机2、室内机3、连接配管4、遥控器5和控制器50(图1中未示出)。室外机2例如可以为空调器1中,安装于房屋的墙体外侧或楼顶等区域的设备。室外机2主要用于压缩冷媒,并驱动该冷媒在空调器1中循环。冷媒为容易吸热变成气体、也容易放热变成液体的物质。室内机3例如可以为空调器1中,安装于室内的设备。室内机3主要用于向该室内机3所在的室内空间传输冷气或热气,以调节该室内空间的温度。示例性地,室内机3可以为安装在墙壁上的室内挂机(如图1所示),或者室内机3可以为放置在地面上的室内柜机(图1中未出)。需要说明的是,在图1中用虚线来表示室外机2和一部分连接配管4,是为了说明室外机2和该部分连接配管4位于室外。
在一些实施例中,连接配管4被配置为连通室外机2和室内机3,以使冷媒可以通过连接配管4在室外机2和室内机3中流通。示例性地,连接配管4包括气管和液管。气管被配置为在室外机2与室内机3之间传输气态冷媒或两相态冷媒(气态和液态并存的冷媒),液管被配置为在室外机2与室内机3之间传输液态冷媒或两相态冷媒。
在一些实施例中,参照图2,室外机2包括压缩机11、四通阀12、室外热交换器13、膨胀机构14、储液器15、室外风扇21。压缩机11的排气口与四通阀12的D端连通,压缩机11的吸气口与储液器15的排气口连通。储液器15的吸气口与四通阀12的S端连通。四通阀12的C端与室外热交换器13的第一端连通,四通阀12的E端与连接配管4(例如气管)连通。室外热交换器13的第二端与膨胀机构14的第一端连通,膨胀机构14的第二端与连接配管4(例如液管)连通。另外,压缩机11包括压缩机电机11a和压缩机驱动脉冲宽度调制(Pulse Width Modulation,PWM)(图2中未示出)。压缩机驱动PWM被配置为给压缩机电机11a供电;压缩机电机11a被配置为将电能转换为机械能,从而驱动压缩机11中的机械结构完成冷媒的压缩。室外风扇21包括室外风扇马达21a,室外风扇马达21a被配置为驱动室外风扇21的扇叶旋转。
在一些实施例中,继续参照图2,室内机3包括室内热交换器16和室内风扇31。室内热交换器16的两端均与连接配管4连通。例如,室内热交换器16的第一端与气管连通,室内热交换器16的第二端与液管连通。示例性地,如图3所示,室内热交换器16包括多根传热管16b。另外,室内风扇31包括室内风扇马达31a,室内风扇马达31a被配置为驱动室内风扇31的扇叶旋转。
需要说明的是,图1和图2所示的结构为空调器1的示例性结构,空调器1可以包括比图1和图2所示的部件更多或更少的部件,或者可以包括与图1和图2所示的不同的部件。
在一些实施例中,如图4所示,控制器50至少与室外机2中的压缩机11(例如压缩机11中的压缩机电机11a)、四通阀12、膨胀机构14和室外风扇21(例如室外风扇马达21a)耦接,且至少与室内机3中的室内风扇31(例如室内风扇马达31a)耦接。控制器50被配置为控制与控制器50耦接的各个部件的工作状态。需要说明的是,控制器50控制各个部件的方式将在后续实施例中进行说明。
在一些示例中,控制器50包括室外控制装置26和室内控制装置35,室外控制装置26与室内控制装置35可以通过信号线耦接。室外控制装置26(或室内控制装置35)被配置为控制与控制器50耦接的、室外机2(或室内机3)中的各个部件的工作状态。示例性地,室外控制装置26和室内控制装置35可以分别隶属于室外机2和室内机3设置,也可以独立于室外机2和室内机3设置。
继续参照图4,示例性地,控制器50还可以与运转开关61、温度设定开关62、风向设定开关63、风量设定开关64以及显示装置65耦接,以控制空调器1的启停以及控制室内机3的输出温度、输出风向、输出风量等。示例性地,控制器50可以控制显示装置65显示室内机3所在的室内空间的温度、和/或显示空调器1的工作状态等。
示例性地,室内控制装置35还可以与室内机温度传感器66、室内热交换器温度传感器67、水平挡板驱动马达68以及垂直挡板驱动马达69耦接,以获取室内机3所在的室内空间的温度和室内热交换器16的工作温度,以及控制室内机3的水平挡板和垂直挡板的工作状态。
示例性地,室外控制装置26还可以与室外机温度传感器70、室外热交换器温度传感器71、排出管温度传感器72以及吸入管温度传感器73耦接,以获取室外机2所在的室外空间的温度、室外热交换器13的工作温度、以及室外机3的排出管处和吸入管处的温度。
此外,控制器50可以与其他设备(例如,用户终端或图1中的遥控器5)建立通信连接,从而在该其他设备的控制下运行。以遥控器5为例,遥控器5例如可以使用以下通信技术与控制器50进行通信:红外线通信技术、射频(Radio Frequency,RF)通信技术、蜂窝通信技术、无线网络通信技术(Wi-Fi)、近场通信(Near Field Communication,NFC)或其他通信技术。示例性地,用户可以通过按下遥控器5上的按钮对空调器1进行控制,以实现用户与空调器1之间的交互。
在一些实施例中,用户控制空调器1在制冷工作状态下工作,以降低室内空间的温度。在制冷工作状态下,控制器50控制压缩机电机11a、室外风扇马达21a和室内风扇马达31a开始工作,并控制四通阀12的D端与C端连通、S端与E端连通。
这样,压缩机11开始压缩冷媒,以使该冷媒在空调器1中循环。示例性地,压缩机11将气态的冷媒压缩为高温、高压的气态冷媒,并驱动压缩处理后的冷媒经过四通阀12的D端和C端到达室外热交换器13的第一端,以进入室外热交换器13中。高温、高压的气态冷媒在室外热交换器13中被液化为低温、低压的液态冷媒后,经过室外热交换器13的第二端、膨胀机构14和连接配管4,到达室内热交换器16的第二端,以进入室内热交换器16中。室外风扇21可以将冷媒液化产生的热量排出室外机2。膨胀机 构14例如可以为电子膨胀阀,膨胀机构14可以使冷媒膨胀而减压,从而可以控制进入连接配管4中的冷媒的量。在冷媒进入室内热交换器16中后,低温、低压的液态冷媒在室内热交换器16的多根传热管16b中被汽化为气态冷媒,从而吸收室内热交换器16周围的热量、降低室内机3内部的气体的温度。此时,室内风扇21将室内机3内部的低温(即,比室内空间的室温更低的温度)气体输送至室内机3外部,从而达到降低室内空间的温度的效果。然后,汽化后的气态冷媒经过室内热交换器16的第一端和连接配管4达到四通阀12,并经过四通阀12的E端和S端到达储液器15的吸气口。气态冷媒在从室内热交换器16传输至储液器15的过程中可能会冷凝产生液体,储液器15将该液体分离出去后,将气态冷媒输入压缩机11中,以实现冷媒的循环利用。
需要说明的是,压缩机11、四通阀12、室外热交换器13、膨胀机构14、储液器15和室内热交换器16等参与冷媒循环的部件,可以合称为冷媒循环回路10。
在另一些实施例中,空调器1在制热工作状态下工作,以升高室内空间的温度。区别于上述制冷工作状态,在制热工作状态下,控制器50控制四通阀114的D端与E端连通、S端与C端连通。
这样,压缩机11进行压缩处理后得到的高温、高压的气态冷媒经过四通阀12的D端和E端,从连接配管4输入室内热交换器16的第一端。高温、高压的气态冷媒在室内热交换器16的多根传热管16b中被液化为低温、低压的液态冷媒,从而向室内热交换器16周围释放热量、升高室内机3内部的气体的温度。此时,室内风扇21将室内机3内部的高温(即,比室内空间的室温更高的温度)气体输送至室内机3外部,从而达到升高室内空间的温度的效果。然后,低温、低压的液态冷媒从室内热交换器16的第二端流出室内热交换器16,并经过连接配管4和膨胀机构14进入室外热交换器13中。低温、低压的液态冷媒在室外热交换器13中被汽化为气态冷媒,然后经过四通阀12的C端和S端传输至储液器15中,再回到压缩机11中。室外风扇21可以将冷媒汽化后产生的冷量排出室外机2。
需要说明的是,当空调器1在制冷工作状态下工作时,室外热交换器13也可以称为冷凝器,室内热交换器16也可以称为蒸发器;当空调器1在制热工作状态下工作时,室外热交换器13也可以称为蒸发器,室内热交换器16也可以称为冷凝器。另外,压缩机11的排气口处的压力值可以称为排气压力值或高压压力值;压缩机11的吸气口处的压力值可以称为吸气压力值或低压压力值。
在一些实施例中,当用户要控制空调器1停止运行时,可以控制遥控器5等设备向控制器50发送压缩机停机指令。相关技术中的控制器在接收到压缩机停机指令后,会直接控制压缩机驱动PWM停止给压缩机电机供电,从而控制压缩机停止运行。然而,这通常会造成压缩机停机后产生较大的振动,从而造成压缩机中的部件承受较大的应力,进而导致压缩机的使用寿命缩短、甚至损坏。
针对相关技术中存在的上述技术问题,本公开的发明人经过研究发现:压缩机停机后所产生的振动的大小,与压缩机停机时的工作状态有关。当压缩机处于排气顶点时,压缩机的排气压力值最大、压缩机的负载转矩(即压缩机电机中转子的负载转矩)最大,因此,若在此刻控制压缩机停止运行,则会使压缩机所产生的振动最大。相反,当压缩机处于吸气顶点时,压缩机吸气压力值最小、压缩机的负载转矩最小,因此,若在此刻控制压缩机停止运行,则可以使压缩机所产生的振动最小。
基于上述技术构思,在本公开一些实施例提供的空调器1中,控制器50可以在接收到压缩机停机指令之后,先通过压缩机11的当前运行参数来判断压缩机11的当前负载转矩的大小,然后在确定当前负载转矩较小(例如,与当前机械周期内的最小负载转矩之间的差值小于一定阈值)时,再控制压缩机11停止运行。这样,可以减小压缩机11停机后所产生的振动幅度,从而减小压缩机11中的各部件在压缩机11停机后所承受的应力,进而延长压缩机11的使用寿命、并提高空调器1的运行可靠性。
在一些实施例中,如图5所示,空调器1包括室内机3、室外机2和控制器50。室外机2与室内机3连通,且包括压缩机11。控制器50与室内机3和室外机2耦接,且被配置为:响应于接收到压缩机停机指令,获取压缩机11的当前运行参数,其中,当前运行参数包括当前运行频率、当前q轴电流值、当前机械角度或当前运行转速中的至少一个;根据当前运行频率,确定压缩机11的当前运行工况;根据当前运行工况和当前运行参数中除当前运行频率以外的其他当前运行参数,确定压缩机11的当前负载转矩与当前机械周期内的最小负载转矩之间的第一差值是否小于或等于第一阈值;当确定第一差值小于或等于第一阈值时,控制压缩机11停止运行。
本公开一些实施例所提供的空调器1,可以通过压缩机11的当前运行频率判断压缩机11的当前运行工况,从而针对不同的当前运行工况,选用压缩机11的其他当前运行参数来确定压缩机11当前所承受的实际负载的大小。当确定压缩机11的当前负载转矩与当前机械周期内的最小负载转矩之间的第一差值小于或等于第一阈值时,说明压缩机11当前所承受的实际负载较小,因此,此时空调器1可以控制压缩机11停止运行,从而减小压缩机11停机后所产生的振动的幅度,进而延长压缩机11的使用寿命、并提高空调器1的运行可靠性。
需要说明的是,压缩机11的运行参数是指压缩机11在运行过程中产生的、可以表征压缩机11的工作状态的数据信息。压缩机11的运行频率是指压缩机电机11a的运行频率,压缩机11的一个机械周期是指压缩机电机11a中的转子转动一周(360度)的时间。示例性地,压缩机11可以为单转子压缩机。
在一些实施例中,在压缩机11的当前运行频率小于或等于低频阈值时,可以确定压缩机11的当前运行工况为低频运行工况;在压缩机11的当前运行频率大于或等于高频阈值时,可以确定压缩机11的当前运行工况为高频运行工况。低频阈值和高频阈值可以根据压缩机11的属性和实际情况等确定,且可以由制造商或安装人员等预先输入控制器50中。
在一些实施例中,压缩机11的运行工况不同,会引起压缩机11的运行参数的变化情况不同。在上述实施例中的空调器1中,控制器50在接收到压缩机停机指令后,可以先通过压缩机11的当前运行频率来判断压缩机11的当前运行工况,从而采用在确定出的当前运行工况下、能够表征压缩机11的当前负载转矩的大小的其他当前运行参数来判断当前负载转矩的大小,从而确定控制压缩机11停止运行的时间点。这样,可以提高确定出的控制压缩机11停止运行的时间点的准确性。
在一些示例中,当控制器50接收到压缩机停机指令后,可以立即获取压缩机11的当前运行参数以及执行上述实施例中的其他操作。若根据获取到的当前运行参数确定了此时的上述第一差值小于或等于第一阈值,则控制压缩机11停止运行;若确定了此时的第一差值大于第一阈值,则可以间隔预定时间段后再次获取压缩机11的当前运行参 数以及执行上述实施例中的其他操作,直到确定出第一差值小于或等于第一阈值。
在一些示例中,预定时间段可以短于压缩机11的机械周期。这样,控制器50可以在一个机械周期内多次根据当前运行工况和其他当前运行参数判断当前负载转矩的大小,从而提高进行该判断的效率。
需要说明的是,当前负载转矩与当前机械周期内的最小负载转矩之间的第一差值,是指以该当前负载转矩作为被减数、该最小负载转矩作为减数而得到的差值。
在一些实施例中,第一阈值可以为大于或等于0的任意数值。在一些示例中,可以通过减小第一阈值,来缩小压缩机11停止运行时的负载转矩与最小负载转矩之间的差距,从而减小压缩机11停止运行时的负载转矩,进而进一步减小压缩机11停机后所产生的振动幅度。在另一些示例中,可以通过增大第一阈值,来扩宽压缩机11停止运行时的负载转矩的可选范围,从而在减小压缩机11停机后所产生的振动幅度的基础上,加快从接收到压缩机停机指令至控制压缩机11停止运行的过程。
在一些实施例中,根据上述其他当前运行参数确定出的、压缩机11的负载转矩在一个机械周期内的变化曲线可以参照图6。在图6中,横坐标曲轴转角表示压缩机电机11a中的转子的旋转角度,纵坐标阻力矩表示负载转矩的大小。当曲轴转角为0度(deg)或360度时,说明压缩机11处于吸气顶点,此时,压缩机11的负载转矩最小(近似为0牛米(N·m));当曲轴转角为180度时,说明压缩机11处于排气顶点,此时,压缩机11的负载转矩最大。
下面,主要对控制器50确定上述第一差值是否小于或等于第一阈值的方法进行示例性说明。
在一些实施例中,压缩机11当前处于低频运行工况,此时,上述其他当前参数可以包括当前q轴流量值。
在该实施例中,控制器50被配置为:在当前运行频率小于或等于低频阈值时,确定压缩机11的当前运行工况为低频运行工况;获取当前机械周期内的最小q轴电流值;确定当前q轴电流值与当前机械周期内的最小q轴电流值之间的第二差值是否小于或等于第二阈值;当确定第二差值小于或等于第二阈值时,确定第一差值小于或等于第一阈值。
在一些示例中,q轴电流值为与压缩机电机11a的转子磁极轴线相垂直的轴线上的电流值。最小q轴电流值可以理解为压缩机11在一个机械周期内的q轴电流的最小值。
以压缩机11为单转子压缩机为例,在低频运行工况下,为抑制压缩机11的低频转速波动,需采用转矩补偿算法对q轴电流值前馈补偿一个近似于负载曲线的时变电流(电流值随时间变化而变化)。该时变电流可以为正弦波或其他固化在控制器50中的查表曲线。经转矩补偿算法的补偿后,在转速波动最小(即,速度纹波(压缩机11的实际转速与理论转速之间的差值)不会继续减小)的前提下,可以认为q轴电流值曲线与负载转矩曲线之间无相位差(即相位上重合)。此时,q轴电流值的大小可以直接映射为负载转矩的大小。也就是说,在一个机械周期内,q轴电流值最大时则说明压缩机11的当前负载转矩最大,q轴电流值最小时则说明压缩机11的当前负载转矩最小。因此,在压缩机11的当前运行工况为低频运行工况时,本公开一些实施例所提供的空调器1在抑制压缩机11的低频转速波动的基础上,可以利用当前q轴电流值与当前机械周期内的最小q轴电流值之间的关系,来表征当前负载转矩与该当前机械周期内的最小 负载转矩之间的关系。这样,空调器1可以在当前q轴电流值与当前机械周期内的最小q轴电流值之间的第二差值小于或等于第二阈值时,确定当前负载转矩与该当前机械周期内的最小负载转矩之间的第一差值小于或等于第一阈值,从而在此时关闭压缩机驱动PWM输出,以控制压缩机11停止运行,进而可以有效地减小压缩机11的停机振动和停机应力。
需要说明的是,第二阈值的取值范围可以参考前述实施例中第一阈值的取值范围,且第二阈值可以与第一阈值相等或不相等。
在一些示例中,可以根据预定的转矩补偿曲线,获取当前机械周期内的最小q轴电流值。
在该示例中,控制器50被配置为:获取当前转矩补偿电流值;根据预定的转矩补偿曲线,确定当前转矩补偿电流值是否为最小转矩补偿电流值;在当前转矩补偿电流值为最小转矩补偿电流值时,将当前转矩补偿电流值所对应的q轴电流值确定为当前机械周期内的最小q轴电流值。
示例性地,由于q轴电流值等于速度环比例积分(Proportional Integral,PI)输出值与转矩补偿电流值之和,且压缩机11的运行频率稳定时的速度环PI输出值可被认为是直流量(即常量或匀速变换的量),因此,确定最小q轴电流值即是确定最小转矩补偿电流值。另外,控制器50可以通过查表法获取转矩补偿电流值。例如,控制器50中预先固化了某个曲线作为预定的转矩补偿曲线,控制器50可以通过查询该转矩补偿曲线来获取实际运行时的某个时刻的转矩补偿电流值。当控制器50获取到的当前转矩补偿电流值为该转矩补偿曲线中的最小转矩补偿电流值时,控制器50可以将该当前转矩补偿电流值所对应的q轴电流值确定为当前机械周期内的最小q轴电流值。
在另一些示例中,可以根据压缩机11实际运行后产生的历史q轴电流值,获取当前机械周期内的最小q轴电流值。
在该示例中,控制器50被配置为:获取当前机械周期之前的至少一个历史机械周期内的历史q轴电流值;根据历史q轴电流值,确定当前机械周期内的最小q轴电流值。
示例性地,控制器50可以通过相电流来计算得到压缩机11的q轴电流值。这样,控制器50可以获取任一个机械周期内的多个时刻的q轴电流值,并将这多个q轴电流值中的最小值作为该机械周期内的最小q轴电流值(例如记为q_min_cycle(i),其中,i为机械周期的编号)。在控制器50收集了至少一个历史机械周期内的历史q轴电流值之后,控制器50可以确定出该至少一个历史机械周期所对应的至少一个最小q轴电流值。此时,控制器50例如可以将该至少一个最小q轴电流值中的最小值作为当前机械周期内的最小q轴电流值的参考值。或者,控制器50可以将该至少一个最小q轴电流值的平均值作为当前机械周期内的最小q轴电流值的参考值。这样,在接收到压缩机停机指令之后,当控制器50利用当前相电流计算得到的当前q轴电流值等于该参考值(或与该参考值的差值小于或等于预设阈值)时,控制器50可以控制压缩机11停机。
在另一些实施例中,压缩机11当前处于高频运行工况,此时,上述其他当前参数可以包括当前机械角度。
在该实施例中,控制器50被配置为:在当前运行频率大于或等于高频阈值时,确定压缩机11的当前运行工况为高频运行工况;获取当前机械周期内的最小机械角度;确定当前机械角度与当前机械周期内的最小机械角度之间的第三差值是否小于或等于第 三阈值;当第三差值小于或等于第三阈值时,确定第一差值小于或等于第一阈值。
示例性地,由于压缩机11处于高频运行工况时无需进行转矩补偿(即,q轴电流值为一个直流量),因此,无法确定高频运行工况下的最小q轴电流值。另外,由于压缩机11在高频运行工况下的负载转矩的大小与机械角度的大小呈正比关系,因此,在压缩机11的当前运行工况为高频运行工况时,本公开一些实施例所提供的空调器1可以利用当前机械角度与该当前机械周期内的最小机械角度之间的关系,来表征当前负载转矩与该当前机械周期内的最小负载转矩之间的关系。这样,空调器1可以在当前机械角度与当前机械周期内的最小机械角度之间的第三差值小于或等于第三阈值时,确定当前负载转矩与该当前机械周期内的最小负载转矩之间的第一差值小于或等于第一阈值,从而在此时关闭压缩机驱动PWM输出,以控制压缩机11停止运行,进而可以有效地减小压缩机11的停机振动和停机应力。
需要说明的是,第三阈值的取值范围可以参考前述实施例中第一阈值的取值范围,且第三阈值可以与第一阈值相等或不相等。
在一些示例中,针对低频运行工况下的一个机械周期,控制器50可以将经转矩补偿后的最小q轴电流值所对应的机械角度作为低频运行工况下的该机械周期的最小机械角度。然而,由于高频运行工况下不对q轴电流值进行转矩补偿,因此,在高频运行工况下,q轴电流值为直流量(即,无法确定高频运行工况下某一机械周期内的最小q轴电流值),因此无法通过最小q轴电流值来确定最小机械角度。
在该示例中,控制器50可以被配置为:获取压缩机11在低频运行工况下的多个历史运行频率,以及该多个历史运行频率下的最小q轴电流值所对应的多个最小机械角度,其中,低频运行工况为压缩机11的运行频率小于或等于低频阈值时的运行工况;根据该多个历史运行频率和该多个最小机械角度,拟合出最小机械角度变化曲线;根据当前运行频率和最小机械角度变化曲线,确定当前机械周期内的最小机械角度。
示例性地,由于运行频率的变化会引起最小q轴电流值的变化,因此,控制器50可以针对低频运行工况下的每个运行频率或部分运行频率,在运行频率的变化速度稳定且速度纹波最小时,记录该运行频率或该部分运行频率下的最小q轴电流值所对应的最小机械角度(例如记为Φn,其中,n为大于或等于1的自然数)。例如,在低频运行工况下,控制器50可以选取一个维持运行超过一定时间的历史运行频率(而不是选取处于升频过程或降频过程中的历史运行频率)来记录最小机械角度。
示例性地,拟合出的最小机械角度变化曲线例如可以参考图7。如图7所示,根据转矩补偿区(即,低频运行工况)中的散点拟合出的最小机械角度变化曲线的方程式例如为下述公式(1)。
Φn=K×freq+b      公式(1)
在公式(1)中,Φn为最小机械角度,freq为运行频率。
这样,控制器50可以根据最小机械角度变化曲线在转矩补偿区的变化趋势,将最小机械角度变化曲线扩展至非转矩补偿区(即,高频运行工况)。然后,控制器50可以获取非转矩补偿区内的各频率所对应的最小机械角度。
在又一些实施例中,在压缩机11当前处于高频运行工况时,还可以通过其他当前参数中的当前运行转速来判断当前负载转矩的大小。
在该实施例中,控制器50被配置为:在当前运行频率大于或等于高频阈值时,确定 压缩机11的当前运行工况为高频运行工况;确定当前运行转速与运行转速阈值之间的第四差值是否大于或等于第四阈值;当第四差值大于或等于第四阈值时,确定第一差值小于或等于第一阈值。
示例性地,在一个机械周期内,压缩机电机11a的运动方程例如为下述公式(2)。
在公式(2)中,Te为电磁转矩,TL为负载转矩,J为摩擦系数,ωm为运行转速。
由上述公式(2)可知,当负载转矩大于电磁转矩时,等式右侧的运行转速的微分为负值,说明运行转速呈下降趋势。因此,在一个机械周期内,在运行转速下降时,所对应的负载转矩会变大。也就是说,若运行当前运行转速小于运行转速阈值,则说明此时压缩机11的转子位于负载转矩大的运行区域;反之,若当前运行转速大于运行转速阈值,则说明此时压缩机11的转子位于负载转矩小的运行区域。并且,在当前运行转速大于运行转速阈值的情况下,当前运行转速与运行转速阈值之间的第四差值越大,则说明压缩机11的当前负载转矩越小。基于此,本公开一些实施例所提供的空调器1可以利用当前运行转速与运行转速阈值之间的关系,来表征当前负载转矩与该当前机械周期内的最小负载转矩之间的关系。这样,空调器1可以在当前运行转速与运行转速阈值之间的第四差值大于或等于第四阈值时,确定当前负载转矩与该当前机械周期内的最小负载转矩之间的第一差值小于或等于第一阈值,从而在此时关闭压缩机驱动PWM输出,以控制压缩机11停止运行,进而可以有效地减小压缩机11的停机振动和停机应力。
需要说明的是,第四阈值的取值范围可以参考前述实施例中第一阈值的取值范围,且第四阈值可以与第一阈值相等或不相等。
另一方面,本公开一些实施例还提供一种空调器停机控制方法。如图8所示,该方法至少包括步骤S1至步骤S4。需要说明的是,该方法中的各步骤的执行细节可以参考前述实施例中对控制器50所执行的各个操作的相关描述,且该方法所产生的有益效果至少包括前述实施例中空调器1所产生的有益效果,在此均不再赘述。
步骤S1、响应于接收到压缩机停机指令,获取压缩机的当前运行参数。
其中,当前运行参数包括当前运行频率、当前q轴电流值、当前机械角度或当前运行转速中的至少一个。
步骤S2、根据当前运行频率,确定压缩机的当前运行工况。
步骤S3、根据当前运行工况和当前运行参数中除当前运行频率以外的其他当前运行参数,确定压缩机的当前负载转矩与当前机械周期内的最小负载转矩之间的第一差值是否小于或等于第一阈值。
步骤S4、当确定第一差值小于或等于第一阈值时,控制压缩机停止运行。
在一些实施例中,上述其他当前运行参数还包括当前q轴电流值,且如图9所示,上述步骤S3包括以下步骤S311至步骤S314。
步骤S311、在当前运行频率小于或等于低频阈值时,确定压缩机的当前运行工况为低频运行工况。
步骤S312、获取当前机械周期内的最小q轴电流值。
步骤S313、确定当前q轴电流值与当前机械周期内的最小q轴电流值之间的第二差值是否小于或等于第二阈值。
步骤S314、当确定第二差值小于或等于第二阈值时,确定第一差值小于或等于第一 阈值。
在一些示例中,如图10所示,上述步骤S312包括以下步骤S3121至步骤S3123。
步骤S3121、获取当前转矩补偿电流值。
步骤S3122、根据预定的转矩补偿曲线,确定当前转矩补偿电流值是否为最小转矩补偿电流值。
步骤S3123、在当前转矩补偿电流值为最小转矩补偿电流值时,将当前转矩补偿电流值所对应的q轴电流值确定为当前机械周期内的最小q轴电流值。
在另一些示例中,如图11所示,上述步骤S312包括以下步骤S3124至步骤S3125。
步骤S3124、获取当前机械周期之前的至少一个历史机械周期内的历史q轴电流值。
步骤S3125、根据历史q轴电流值,确定当前机械周期内的最小q轴电流值。
在另一些实施例中,上述其他当前运行参数包括当前机械角度,且如图12所示,上述步骤S3包括以下步骤S321至S324。
步骤S321、在当前运行频率大于或等于高频阈值时,确定压缩机的当前运行工况为高频运行工况。
步骤S322、获取当前机械周期内的最小机械角度。
步骤S323、确定当前机械角度与当前机械周期内的最小机械角度之间的第三差值是否小于或等于第三阈值。
步骤S324、当第三差值小于或等于第三阈值时,确定第一差值小于或等于第一阈值。
在一些示例中,如图13所示,上述步骤S322包括以下步骤S3221至步骤S3223。
S3221、获取压缩机在低频运行工况下的多个历史运行频率,以及多个历史运行频率下的最小q轴电流值所对应的多个最小机械角度。
其中,低频运行工况为压缩机的运行频率小于或等于低频阈值时的运行工况。
S3222、根据多个历史运行频率和多个最小机械角度,拟合出最小机械角度变化曲线。
S3223、根据当前运行频率和最小机械角度变化曲线,确定当前机械周期内的最小机械角度。
在又一些实施例中,上述其他当前运行参数包括当前运行转速,且如图14所示,上述步骤S3包括以下步骤S331至步骤S333。
步骤S331、在当前运行频率大于或等于高频阈值时,确定压缩机的当前运行工况为高频运行工况。
步骤S332、确定当前运行转速与运行转速阈值之间的第四差值是否大于或等于第四阈值。
步骤S333、当第四差值大于或等于第四阈值时,确定第一差值小于或等于第一阈值。
又一方面,本公开一些实施例还提供一种计算机可读存储介质,该计算机可读存储介质例如为非暂态计算机可读存储介质。该计算机可读存储介质存储有计算机程序指令,该计算机程序指令在计算机上运行时,使得该计算机执行如上述实施例中所描述的空调器停机控制方法中的一些或全部操作。
需要说明的是,该计算机可读存储介质所产生的有益效果至少包括前述实施例中空调器停机控制方法所产生的有益效果,在此不再赘述。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受 所附权利要求的限制。

Claims (15)

  1. 一种空调器,包括:
    室内机;
    室外机,所述室外机与所述室内机连通,且包括压缩机;
    控制器,与所述室内机和所述室外机耦接,且被配置为:
    响应于接收到压缩机停机指令,获取所述压缩机的当前运行参数,其中,所述当前运行参数包括当前运行频率、当前q轴电流值、当前机械角度或当前运行转速中的至少一个;
    根据所述当前运行频率,确定所述压缩机的当前运行工况;
    根据所述当前运行工况和所述当前运行参数中除所述当前运行频率以外的其他当前运行参数,确定所述压缩机的当前负载转矩与当前机械周期内的最小负载转矩之间的第一差值是否小于或等于第一阈值;
    当确定所述第一差值小于或等于所述第一阈值时,控制所述压缩机停止运行。
  2. 根据权利要求1所述的空调器,其中,
    所述其他当前运行参数包括所述当前q轴电流值;
    所述控制器被配置为:
    在所述当前运行频率小于或等于低频阈值时,确定所述压缩机的所述当前运行工况为低频运行工况;
    获取所述当前机械周期内的最小q轴电流值;
    确定所述当前q轴电流值与所述当前机械周期内的所述最小q轴电流值之间的第二差值是否小于或等于第二阈值;
    当确定所述第二差值小于或等于所述第二阈值时,确定所述第一差值小于或等于所述第一阈值。
  3. 根据权利要求2所述的空调器,其中,所述控制器被配置为:
    获取当前转矩补偿电流值;
    根据预定的转矩补偿曲线,确定所述当前转矩补偿电流值是否为最小转矩补偿电流值;
    在所述当前转矩补偿电流值为所述最小转矩补偿电流值时,将所述当前转矩补偿电流值所对应的q轴电流值确定为所述当前机械周期内的所述最小q轴电流值。
  4. 根据权利要求2所述的空调器,其中,所述控制器被配置为:
    获取所述当前机械周期之前的至少一个历史机械周期内的历史q轴电流值;
    根据所述历史q轴电流值,确定所述当前机械周期内的所述最小q轴电流值。
  5. 根据权利要求1至4中任一项所述的空调器,其中,
    所述其他当前运行参数包括所述当前机械角度;
    所述控制器被配置为:
    在所述当前运行频率大于或等于高频阈值时,确定所述压缩机的所述当前运行工况为高频运行工况;
    获取所述当前机械周期内的最小机械角度;
    确定所述当前机械角度与所述当前机械周期内的所述最小机械角度之间的第三差值是否小于或等于第三阈值;
    当所述第三差值小于或等于所述第三阈值时,确定所述第一差值小于或等于所 述第一阈值。
  6. 根据权利要求5所述的空调器,其中,所述控制器被配置为:
    获取所述压缩机在低频运行工况下的多个历史运行频率,以及所述多个历史运行频率下的所述最小q轴电流值所对应的多个最小机械角度,其中,所述低频运行工况为所述压缩机的运行频率小于或等于低频阈值时的运行工况;
    根据所述多个历史运行频率和所述多个最小机械角度,拟合出最小机械角度变化曲线;
    根据所述当前运行频率和所述最小机械角度变化曲线,确定所述当前机械周期内的所述最小机械角度。
  7. 根据权利要求1至6中任一项所述的空调器,其中,
    所述其他当前运行参数包括所述当前运行转速;
    所述控制器被配置为:
    在所述当前运行频率大于或等于高频阈值时,确定所述压缩机的所述当前运行工况为高频运行工况;
    确定所述当前运行转速与运行转速阈值之间的第四差值是否大于或等于第四阈值;
    当所述第四差值大于或等于所述第四阈值时,确定所述第一差值小于或等于所述第一阈值。
  8. 一种空调器停机控制方法,所述空调器包括室内机和室外机,所述室外机与所述室内机连通,所述室外机包括压缩机,所述方法包括:
    响应于接收到压缩机停机指令,获取所述压缩机的当前运行参数,其中,所述当前运行参数包括当前运行频率、当前q轴电流值、当前机械角度或当前运行转速中的至少一个;
    根据所述当前运行频率,确定所述压缩机的当前运行工况;
    根据所述当前运行工况和所述当前运行参数中除所述当前运行频率以外的其他当前运行参数,确定所述压缩机的当前负载转矩与当前机械周期内的最小负载转矩之间的第一差值是否小于或等于第一阈值;
    当确定所述第一差值小于或等于所述第一阈值时,则控制所述压缩机停止运行。
  9. 根据权利要求8所述的方法,其中,
    所述其他当前运行参数包括所述当前q轴电流值;
    根据所述当前运行工况和所述当前运行参数中除所述当前运行频率以外的所述其他当前运行参数,确定所述压缩机的所述当前负载转矩与所述当前机械周期内的所述最小负载转矩之间的所述第一差值是否小于或等于所述第一阈值,包括:
    在所述当前运行频率小于或等于低频阈值时,确定所述压缩机的所述当前运行工况为低频运行工况;
    获取所述当前机械周期内的最小q轴电流值;
    确定所述当前q轴电流值与所述当前机械周期内的所述最小q轴电流值之间的第二差值是否小于或等于第二阈值;
    当确定所述第二差值小于或等于所述第二阈值时,确定所述第一差值小于或等于所述第一阈值。
  10. 根据权利要求9所述的方法,其中,获取所述当前机械周期内的所述最小q轴电流值,包括:
    获取当前转矩补偿电流值;
    根据预定的转矩补偿曲线,确定所述当前转矩补偿电流值是否为最小转矩补偿电流值;
    在所述当前转矩补偿电流值为所述最小转矩补偿电流值时,将所述当前转矩补偿电流值所对应的q轴电流值确定为所述当前机械周期内的所述最小q轴电流值。
  11. 根据权利要求9所述的方法,其中,获取所述当前机械周期内的所述最小q轴电流值,包括:
    获取所述当前机械周期之前的至少一个历史机械周期内的历史q轴电流值;
    根据所述历史q轴电流值,确定所述当前机械周期内的所述最小q轴电流值。
  12. 根据权利要求8至11中任一项所述的方法,其中,
    所述其他当前运行参数包括所述当前机械角度;
    根据所述当前运行工况和所述当前运行参数中除所述当前运行频率以外的所述其他当前运行参数,确定所述压缩机的所述当前负载转矩与所述当前机械周期内的所述最小负载转矩之间的所述第一差值是否小于或等于所述第一阈值,包括:
    在所述当前运行频率大于或等于高频阈值时,确定所述压缩机的所述当前运行工况为高频运行工况;
    获取所述当前机械周期内的最小机械角度;
    确定所述当前机械角度与所述当前机械周期内的所述最小机械角度之间的第三差值是否小于或等于第三阈值;
    当所述第三差值小于或等于所述第三阈值时,确定所述第一差值小于或等于所述第一阈值。
  13. 根据权利要求12所述的方法,其中,获取所述当前机械周期内的所述最小机械角度,包括:
    获取所述压缩机在低频运行工况下的多个历史运行频率,以及所述多个历史运行频率下的所述最小q轴电流值所对应的多个最小机械角度,其中,所述低频运行工况为所述压缩机的运行频率小于或等于低频阈值时的运行工况;
    根据所述多个历史运行频率和所述多个最小机械角度,拟合出最小机械角度变化曲线;
    根据所述当前运行频率和所述最小机械角度变化曲线,确定所述当前机械周期内的所述最小机械角度。
  14. 根据权利要求8至13中任一项所述的方法,其中,
    所述其他当前运行参数包括所述当前运行转速;
    根据所述当前运行工况和所述当前运行参数中除所述当前运行频率以外的所述其他当前运行参数,确定所述压缩机的所述当前负载转矩与所述当前机械周期内的所述最小负载转矩之间的所述第一差值是否小于或等于所述第一阈值,包括:
    在所述当前运行频率大于或等于高频阈值时,确定所述压缩机的所述当前运行工况为高频运行工况;
    确定所述当前运行转速与运行转速阈值之间的第四差值是否大于或等于第四阈 值;
    当所述第四差值大于或等于所述第四阈值时,确定所述第一差值小于或等于所述第一阈值。
  15. 一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序指令,所述计算机程序指令在计算机上运行时,使得所述计算机执行如权利要求8至14中任一项所述的方法。
PCT/CN2023/079367 2022-03-03 2023-03-02 空调器、空调器停机控制方法及存储介质 WO2023165572A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210209803.2A CN114659226A (zh) 2022-03-03 2022-03-03 空调器以及压缩机停机控制方法
CN202210209803.2 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023165572A1 true WO2023165572A1 (zh) 2023-09-07

Family

ID=82028212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079367 WO2023165572A1 (zh) 2022-03-03 2023-03-02 空调器、空调器停机控制方法及存储介质

Country Status (2)

Country Link
CN (1) CN114659226A (zh)
WO (1) WO2023165572A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114659226A (zh) * 2022-03-03 2022-06-24 海信(山东)空调有限公司 空调器以及压缩机停机控制方法
CN115682361A (zh) * 2022-11-16 2023-02-03 宁波奥克斯电气股份有限公司 一种空调器的控制方法、控制装置以及空调器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104061145A (zh) * 2014-06-16 2014-09-24 邯郸美的制冷设备有限公司 变频压缩机的控制方法、装置及变频除湿机和变频窗机
CN105715524A (zh) * 2016-03-09 2016-06-29 广东美的制冷设备有限公司 空调器及其压缩机的停机控制方法和装置
CN106500241A (zh) * 2016-10-10 2017-03-15 芜湖美智空调设备有限公司 空调器的停机控制方法及装置和空调器
CN114659226A (zh) * 2022-03-03 2022-06-24 海信(山东)空调有限公司 空调器以及压缩机停机控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378788B (zh) * 2012-04-28 2015-11-25 瑞萨电子(中国)有限公司 变频空调用压缩机的驱动方法和装置
JP6107778B2 (ja) * 2014-09-25 2017-04-05 トヨタ自動車株式会社 内燃機関の回転速度制御装置
CN105591582B (zh) * 2014-10-23 2019-01-29 比亚迪股份有限公司 永磁同步电机的控制方法及控制装置
CN104753432B (zh) * 2015-04-23 2017-11-10 四川长虹空调有限公司 抑制转子式压缩机低频振动的方法
CN105471329B (zh) * 2015-12-30 2018-05-08 南京航空航天大学 交流同步电机系统转矩冲量平衡控制方法
CN107659230B (zh) * 2016-07-26 2021-01-15 广州极飞科技有限公司 电机矢量控制方法、装置和飞行器
CN107387382B (zh) * 2017-08-31 2019-06-04 广东美芝制冷设备有限公司 压缩机振幅的控制方法、压缩机系统及制冷设备
CN110518851A (zh) * 2019-07-19 2019-11-29 杭州洲钜电子科技有限公司 基于神经网络的压缩机控制方法、系统和存储介质
CN111277189B (zh) * 2020-03-25 2022-02-25 海信(山东)空调有限公司 压缩机低频振动抑制方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104061145A (zh) * 2014-06-16 2014-09-24 邯郸美的制冷设备有限公司 变频压缩机的控制方法、装置及变频除湿机和变频窗机
CN105715524A (zh) * 2016-03-09 2016-06-29 广东美的制冷设备有限公司 空调器及其压缩机的停机控制方法和装置
CN106500241A (zh) * 2016-10-10 2017-03-15 芜湖美智空调设备有限公司 空调器的停机控制方法及装置和空调器
CN114659226A (zh) * 2022-03-03 2022-06-24 海信(山东)空调有限公司 空调器以及压缩机停机控制方法

Also Published As

Publication number Publication date
CN114659226A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2023165572A1 (zh) 空调器、空调器停机控制方法及存储介质
WO2019011094A1 (zh) 空调强力制冷控制方法
CN106556099B (zh) 多联机空调系统的室内机的电子膨胀阀的控制方法
CN105135622B (zh) 家用空调的控制方法及家用空调
WO2018094844A1 (zh) 一种空调系统及控制方法
CN111780362B (zh) 一种空调器及其控制方法
CN104776633B (zh) 混合动力制冷系统及其控制方法
CN106871293A (zh) 采用vrv系统的机房热管空调
KR20130012743A (ko) 멀티 공기 조화기 및 그 제어 방법
WO2021218436A1 (zh) 变频空调的控制方法
CN105627515A (zh) 一种空调控制方法、装置及空调
CN114165942A (zh) 一种热泵机组
JP2012202581A (ja) 冷凍サイクル装置及びその制御方法
WO2021223530A1 (zh) 变频空调的控制方法
WO2023207222A1 (zh) 空调器及其控制方法
CN204574599U (zh) 混合动力制冷系统
KR20110013979A (ko) 공기조화기 및 그 제어 방법
WO2023040299A1 (zh) 气悬浮压缩机的控制方法及空调器
CN102455017A (zh) 基于物联网概念的高效空调
WO2021190104A1 (zh) 压缩机运行频率的控制方法
JP2010175098A (ja) 空気調和機のデマンド制御システム
CN112556127B (zh) 空调蓄冷控制方法、装置及计算机可读存储介质
CN206637769U (zh) 采用vrv系统的机房热管空调
KR101153422B1 (ko) 에어컨 운전 제어 방법
CN114216202B (zh) 一种检测空调冷媒含量的方法及控制装置、空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762970

Country of ref document: EP

Kind code of ref document: A1