WO2023165564A1 - QoS控制方法及通信设备 - Google Patents

QoS控制方法及通信设备 Download PDF

Info

Publication number
WO2023165564A1
WO2023165564A1 PCT/CN2023/079306 CN2023079306W WO2023165564A1 WO 2023165564 A1 WO2023165564 A1 WO 2023165564A1 CN 2023079306 W CN2023079306 W CN 2023079306W WO 2023165564 A1 WO2023165564 A1 WO 2023165564A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
uplink
round
downlink
budget
Prior art date
Application number
PCT/CN2023/079306
Other languages
English (en)
French (fr)
Inventor
柯小婉
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023165564A1 publication Critical patent/WO2023165564A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the embodiments of the present invention relate to the technical field of wireless communication, and in particular, to a QoS control method and a communication device.
  • Some services (such as extended reality (EXtended Reality, XR) media services, cloud game services) have round trip delay guarantee requirements.
  • the uplink data packets are relatively small, which are often the user’s action packets. Only by sending them to the server as soon as possible can the picture be avoided and the delay budget be smaller.
  • the downlink data packets are relatively large, often the background image and status packets of the game, and the delay budget requirements can be larger.
  • Embodiments of the present invention provide a QoS control method and communication equipment, which are used to solve the problem of how to guarantee the round-trip delay.
  • a QoS control method which is applied to a first communication device, and the method includes:
  • the first communication device acquires first information
  • the first communication device performs a first operation according to the first information
  • the first information includes at least one of the following:
  • the first indication information is used to indicate one of the following: perform delay guarantee according to the delay monitoring result and/or the first QoS configuration information; according to the delay monitoring result and/or the third round-trip delay budget Carry out delay protection;
  • the performing the first operation includes at least one of the following:
  • a third round-trip delay budget a third uplink delay budget, and a third downlink delay budget
  • the first round-trip delay budget as one of the following: twice the value of the delay budget of the data channel, the first round-trip delay budget in the first QoS configuration information, the first uplink delay budget and the first downlink time sum of delayed budget;
  • the first QoS configuration information includes at least one of the following;
  • the first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget are The first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget
  • the delay budget of the data channel is the delay budget of the data channel
  • the second indication information is used to indicate one of the following: the first round-trip delay budget is twice the value of the delay budget of the data channel, and the first round-trip delay budget is the first uplink delay budget and the sum of the first downlink delay budget;
  • the third indication information is used to indicate one of the following: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • the fourth indication information is used to indicate: the round-trip delay cannot exceed the round-trip delay budget;
  • the first round-trip delay budget is a round-trip delay budget between the terminal and the anchor gateway;
  • the first uplink delay budget is an uplink delay budget from the terminal to the anchor gateway;
  • the first downlink delay budget is a downlink delay budget from the anchor gateway to the terminal;
  • the third uplink delay budget is the uplink delay budget from the terminal to the RAN network element
  • the third downlink delay budget is the downlink delay budget from the RAN network element to the terminal;
  • the third round-trip delay budget is a round-trip delay budget between the terminal and the RAN network element.
  • a QoS control method which is applied to a second communication device, and the method includes:
  • the second communication device acquires the first information
  • the second communication device performs a second operation according to the first information
  • the first information includes at least one of the following:
  • the first indication information is used to indicate one of the following: perform delay guarantee according to the delay monitoring result and/or the first QoS configuration information; according to the delay monitoring result and/or the third round-trip delay budget Carry out delay protection;
  • the second operation includes at least one of the following:
  • the first QoS configuration information includes at least one of the following;
  • the first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget are The first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget
  • the delay budget of the data channel is the delay budget of the data channel
  • the second indication information is used to indicate one of the following: the first round-trip delay budget is twice the value of the delay budget of the data channel, and the first round-trip delay budget is the first uplink delay budget and the first downlink delay the sum of the budget;
  • the third indication information is used to indicate one of the following: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • Fourth indication information where the fourth indication information is used to indicate that the round-trip delay cannot exceed the round-trip delay budget.
  • a QoS control method which is applied to a third communication device, and the method includes:
  • the third communication device acquires the fifth information
  • the third communication device performs a third operation according to the fifth information
  • the execution of the third operation includes at least one of the following:
  • the second information includes at least one of the following: a delay monitoring strategy, a first QoS strategy, and first indication information;
  • the first indication information is used to indicate one of the following: performing delay guarantee according to the delay monitoring result and/or the first QoS configuration information; performing delay guarantee according to the delay monitoring result and/or the third round-trip delay budget;
  • the fifth information includes at least one of the following: description information of the first service data flow; delay monitoring requirements; a first QoS requirement, the first QoS requirement being the QoS requirement of the first service data flow;
  • the first QoS requirement includes at least one of the following;
  • the fifth indication information is used to indicate one of the following: the first round-trip delay requirement is twice the value of the one-way delay budget, and the first round-trip delay requirement is the first uplink delay requirement and The sum of the first downlink delay requirements;
  • the sixth indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • Seventh indication information where the seventh indication information is used to indicate that: the first round-trip delay cannot exceed the first round-trip delay requirement.
  • a QoS control method which is applied to a fourth communication device, and the method includes:
  • the fourth communication device acquires second information, where the second information includes at least one of the following: delay monitoring requirements or delay monitoring policies, first QoS requirements or first QoS policies, and first indication information;
  • the fourth communication device performs a fourth operation according to the second information, and the performing the fourth operation includes at least one of the following:
  • the first information includes at least one of the following:
  • the first indication information is used to indicate one of the following: perform delay guarantee according to the delay monitoring result and/or the first QoS configuration information; according to the delay monitoring result and/or the third round-trip delay budget Carry out delay protection;
  • the first QoS configuration information includes at least one of the following;
  • the first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget are The first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget
  • the delay budget of the data channel is the delay budget of the data channel
  • the second indication information is used to indicate one of the following: the first round-trip delay budget is twice the value of the delay budget of the data channel, and the first round-trip delay budget is the first uplink delay budget and the sum of the first downlink delay budget;
  • the third indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • Fourth indication information where the fourth indication information is used to indicate: the first round-trip delay cannot exceed the first round-trip delay requirement;
  • the delay monitoring configuration information includes at least one of the following: the delay required to be measured includes at least one of the following: the first uplink delay, the first downlink delay, the first round-trip delay, and the second uplink delay , the second downlink delay, the second round-trip delay;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN.
  • a QoS control method which is applied to a fifth communication device, and the method includes:
  • the fifth communication device sends fifth information, where the fifth information includes at least one of the following: description information of the first service data flow; a delay monitoring requirement; a first QoS requirement, and the first QoS requirement is the first QoS requirements for business data flow;
  • the first QoS requirement includes at least one of the following;
  • the fifth indication information is used to indicate one of the following: the first round-trip delay requirement is twice the value of the one-way delay budget, and the first round-trip delay requirement is the first uplink delay requirement and The sum of the first downlink delay requirements;
  • the sixth indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • the seventh indication information is used to indicate: the first round-trip delay cannot exceed the first round-trip delay requirement;
  • the delay monitoring requirement includes at least one of the following:
  • the time delay required to be measured includes at least one of the following: first uplink time delay, first downlink time delay, first round-trip time delay, second uplink time delay, second downlink time delay, and second round-trip time delay;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN.
  • a first communication device in a sixth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are processed by the The steps of the method described in the first aspect are realized when the controller is executed.
  • a first communication device including a processor and a communication interface, where the communication interface is configured to acquire first information, and the processor is configured to execute a first operation according to the first information.
  • a second communication device in an eighth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are processed by the implement the steps of the method as described in the second aspect when the controller is executed.
  • a second communication device including a processor and a communication interface, where the communication interface is configured to obtain first information, and the processor is configured to execute a second operation according to the first information.
  • a third communication device in a tenth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are processed by the implement the steps of the method as described in the third aspect when the controller is executed.
  • a third communication device including a processor and a communication interface, wherein the communication interface is used to obtain fifth information, and the processor is used to perform a third operation according to the fifth information .
  • a fourth communication device in a twelfth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor When executed, the steps of the method described in the fourth aspect are realized.
  • a fourth communication device including a processor and a communication interface, wherein the communication interface is used to acquire second information, and the processor is used to perform a fourth operation according to the second information .
  • a fifth communication device in a fourteenth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the The processor realizes the steps of the method according to the fifth aspect when executed.
  • a fifteenth aspect provides a fifth communication device, including a processor and a communication interface, where the communication interface is used to send fifth information.
  • a communication system including: a first communication device, a second communication device, a third communication device, a fourth communication device, and a fifth communication device, and the first communication device can be used to perform the The steps of the QoS control method described in one aspect, the second communication device can be used to perform the steps of the QoS control method described in the second aspect, and the third communication device can be used to perform the QoS control method described in the third aspect In the steps of the control method, the fourth communication device may be configured to execute the steps of the QoS control method described in the fourth aspect, and the fifth communication device may be configured to execute the steps of the QoS control method described in the fifth aspect.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method as described in the first aspect are implemented, or The steps of the method described in the second aspect, or the implementation of the steps of the method described in the third aspect, or the implementation of the steps of the method described in the fourth aspect, or the implementation of the steps of the method described in the fifth aspect.
  • a chip in an eighteenth aspect, there is provided a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method described in the first aspect
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the The steps of the method, or realize the steps of the method as described in the second aspect, or realize the steps of the method as described in the third aspect, or realize the steps of the method as described in the fourth aspect, or realize the steps of the method as described in the fifth aspect The steps of the method.
  • the first communication device acquires at least one of delay monitoring configuration information, first QoS configuration information and first indication information, and determines at least one of the following: a third round-trip delay budget, a third uplink Delay budget, the third downlink delay budget; determining the first round-trip delay budget, performing a delay monitoring operation, and/or performing delay guarantee according to the delay monitoring result and/or the first QoS configuration information, so that the first Communication equipment can perform delay scheduling/control to achieve round-trip delay guarantee.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present invention
  • FIG. 2 is one of the schematic flow diagrams of the QoS control method provided by the embodiment of the present invention.
  • FIG. 3 is the second schematic flow diagram of the QoS control method provided by the embodiment of the present invention.
  • FIG. 4 is the third schematic flow diagram of the QoS control method provided by the embodiment of the present invention.
  • FIG. 5 is the fourth schematic flow diagram of the QoS control method provided by the embodiment of the present invention.
  • FIG. 6 is the fifth schematic flow diagram of the QoS control method provided by the embodiment of the present invention.
  • FIG. 7a is one of the interactive flow diagrams of the QoS control method provided by the embodiment of the present invention.
  • FIG. 7b is the second schematic diagram of the interactive flow of the QoS control method provided by the embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a first communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a second communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a third communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a fourth communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a fifth communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is one of the schematic structural diagrams of the network side equipment provided by the embodiment of the present application.
  • FIG. 15 is a second schematic structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present invention shall not be construed as being more preferred or more advantageous than other embodiments or design solutions. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • the technology described herein is not limited to the fifth-generation mobile communication (5th-generation, 5G) system and the subsequent evolution communication system, and is not limited to the evolution of LTE/LTE (LTE-Advanced, LTE-A) system, and can also be used in various A wireless communication system, such as code division multiple access (Code Division Multiple Access, CDMA), time division multiple access (Time Division Multiple Access, TDMA), frequency division multiple access (Frequency Division Multiple Access, FDMA), orthogonal frequency division multiple access (Orthogonal Frequency Division Multiple Access, OFDMA), Single-carrier Frequency-Division Multiple Access (Single-carrier Frequency-Division Multiple Access, SC-FDMA) and other systems.
  • code division multiple access Code Division Multiple Access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA Orthogonal frequency division multiple access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • a CDMA system may implement radio technologies such as CDMA2000, Universal Terrestrial Radio Access (UTRA), and the like.
  • UTRA includes Wideband CDMA (Wideband Code Division Multiple Access, WCDMA) and other CDMA variants.
  • a TDMA system can implement a radio technology such as Global System for Mobile Communication (GSM).
  • OFDMA system can implement such as Ultra Mobile Broadband (Ultra Mobile Broadband, UMB), Evolved UTRA ((Evolution-UTRA, E-UTRA)), IEEE 802.11 ((Wi-Fi)), IEEE 802.16 ((WiMAX)), IEEE 802.20, Flash-OFDM and other radio technologies.
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS).
  • LTE and LTE-Advanced (like LTE-A) are new UMTS releases that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
  • the techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • NR New Radio
  • 6G 6th Generation
  • the anchor gateway is the gateway that terminates the N6 interface.
  • N6 is the interface between the gateway of the network and the data network (data network), N6 can also be called other names
  • the uplink data packets are relatively small, which are often the user’s action packets. Only by sending them to the server as soon as possible can the picture be avoided and the delay budget be smaller.
  • the downlink data packets are relatively large, often the background image and status packets of the game, and the delay budget requirements can be larger.
  • the uplink and downlink delay budgets of existing data channels are the same.
  • the uplink or uplink delay overhead can exceed the delay budget of the QoS flow (assuming that the delay budget corresponding to the QoS flow or 5QI is 1/2 of the round-trip delay budget ), when the sum of the uplink delay overhead and the downlink delay overhead cannot exceed the round-trip delay budget (that is, twice the QoS flow delay budget).
  • round-trip delay control if the RAN obtains the round trip delay (first round-trip delay) budget between the terminal and the anchor gateway or the data channel that requires no more than twice the round-trip delay overhead Delay budget, one method is that RAN determines the delay (third round-trip delay) budget between UE and RAN by monitoring the round trip delay (second round-trip delay) overhead of N3, so that the first uplink delay The sum of the overhead and the second downlink delay overhead cannot exceed the first round-trip delay budget.
  • QoS monitoring can realize the statistics of the RTT delay of the N3 interface, which requires the cooperation of RAN and UPF.
  • the method of QoS monitoring is to converge to UPF to generate RTT delay.
  • the method to be solved in the present invention is that the RAN monitors the N3 interface delay overhead to perform round trip delay scheduling. Therefore, the direction is opposite to the current QoS monitoring method, and a new delay monitoring configuration needs to be defined, which is one of the problems to be solved by the present invention.
  • the direction of QoS monitoring may not be changed, but the order is the delay between the UE and the anchor gateway instead of the delay between the RAN network element and the anchor gateway.
  • FIG. 1 it is a schematic structural diagram of a wireless communication system provided by an embodiment of the present invention.
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , vehicle equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computers, PCs), teller machines or self-service Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function, or Wireless access network unit.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • Wireless access network unit Wireless access network unit
  • the access network device 12 may include a base station, a WLAN access point, or a WiFi node, etc., and the base station may be called a Node B, an evolved Node B (eNB), an access point, a base transceiver station (Base Transceiver Station, BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (Extended Service Set, ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point, TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary.
  • the core network equipment may include but not limited to at least one of the following: core network node, core network function, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and charging rules function unit (Policy and Charging Rules Function, PCRF), edge application service Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local N
  • obtaining can be understood as obtaining from configuration, receiving, receiving after passing a request, obtaining through self-learning, deriving and obtaining based on unreceived information, or obtaining after processing received information, which can be determined according to actual needs.
  • the embodiment of the invention does not limit this. For example, when a certain capability indication information sent by the device is not received, it may be deduced that the device does not support the capability.
  • sending can include broadcasting, broadcasting in system messages, and returning after responding to requests.
  • the communication device may include at least one of the following: a communication network element and a terminal.
  • the communication network element may include at least one of the following: a core network element and a radio access network element.
  • the core network element may include but not limited to at least one of the following: core network equipment, core network node, core network function, core network element, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), serving gateway (serving GW, SGW), PDN gateway ( PDN Gate Way, PDN Gateway), Policy Control Function (Policy Control Function, PCF), Policy and Charging Rules Function (Policy and Charging Rules Function, PCRF), GPRS Service Support Node (Serving GPRS Support Node, SGSN), Gateway GPRS support node (Gateway GPRS Support Node, GGSN), application function (Application Function).
  • MME mobility management entity
  • Access Management Function Access Management Function
  • SMF session management function
  • UPF User Plane Function
  • UPF User Plane Function
  • serving gateway serving gateway
  • serving gateway serving gateway
  • PDN gateway PDN Gate Way,
  • the RAN network element may include but not limited to at least one of the following: radio access network equipment, radio access network node, radio access network function, radio access network unit, 3GPP radio access network, non- 3GPP wireless access network, centralized unit (Centralized Unit, CU), distributed unit (Distributed Unit, DU), base station, evolved Node B (eNB), 5G base station (gNB), radio network controller (Radio Network Controller, RNC), base station (NodeB), non-3GPP interworking function (Non-3GPP Inter Working Function, N3IWF), access control (Access Controller, AC) node, access point (Access Point, AP) device or wireless Local area network (Wireless Local Area Networks, WLAN) node, N3IWF.
  • radio access network equipment radio access network node, radio access network function, radio access network unit, 3GPP radio access network, non- 3GPP wireless access network, centralized unit (Centralized Unit, CU), distributed unit (Distributed Unit, DU), base station, evolved Node B (e
  • the base station can be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or a base station (NodeB) in WCDMA, or an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE and
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • gNB 5G base station
  • the UE may include one of the following: a terminal device, a terminal device and a card, and a card.
  • the card may include one of the following: a SIM card, a USIM card, and an eSIM.
  • the terminal may include a relay supporting a terminal function and/or a terminal supporting a relay function.
  • a terminal can also be called a terminal device or a user equipment (UE), and the terminal can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant, PDA), Terminal-side devices such as mobile Internet devices (Mobile Internet Device, MID), wearable devices (Wearable Devices) or vehicle-mounted devices, it should be noted that the specific types of terminals are not limited in the embodiments of the present invention.
  • the delay is a delay overhead.
  • the delay budget can be understood as the maximum value of delay. That is, the real delay cannot exceed the value of the delay budget.
  • the delay requirement is equal to the delay budget.
  • the QoS requirements are equivalent to the QoS parameter requirements.
  • the delay budget is represented by a delay budget parameter, or represented by a QoS identifier (such as 5QI5G QoS Identifier), which can be reflected because the value of the standardized QoS identifier is in one-to-one correspondence with the delay budget.
  • a QoS identifier such as 5QI5G QoS Identifier
  • the unidirectional delay budget represents an uplink delay budget (such as a first uplink delay budget, a second uplink delay budget, and a third uplink delay budget) and/or a downlink delay budget (such as a first downlink delay budget, second downlink delay budget, third downlink delay budget), and the uplink delay budget is the same as the downlink delay budget.
  • an uplink delay budget such as a first uplink delay budget, a second uplink delay budget, and a third uplink delay budget
  • a downlink delay budget such as a first downlink delay budget, second downlink delay budget, third downlink delay budget
  • the delay budget of the data channel in the QoS configuration information of the first data channel represents the uplink delay budget (such as the first uplink delay budget, the second uplink delay budget, and the third uplink delay budget) And/or a downlink delay budget (such as a first downlink delay budget, a second downlink delay budget, a third downlink delay budget), and the uplink delay budget is the same as the downlink delay budget.
  • the delay budget of the data channel in the QoS configuration information of the second data channel represents the delay budget of the second data channel; the delay budget of the second data channel represents the uplink delay budget (for example, one up uplink delay budget, second uplink delay budget, third uplink delay budget).
  • the delay budget of the data channel in the QoS configuration information of the third data channel represents the delay budget of the third data channel; the delay budget of the third data channel represents the downlink delay budget (such as The first downlink delay budget, the second downlink delay budget, and the third downlink delay budget).
  • delay monitoring includes delay measurement, and may also be referred to as delay monitoring.
  • the latency monitoring may mean measuring and/or monitoring latency.
  • the delay monitoring result is the measured delay value.
  • the delay monitoring operation means measuring the delay.
  • the first round-trip delay is the round-trip delay between the terminal (such as UE) and the anchor gateway.
  • the anchor gateway is the gateway that terminates the N6 interface.
  • N6 is an interface between a network gateway and a data network (data network), and N6 may also be called by other names.
  • the round-trip delay between the terminal and the anchor gateway includes at least one of the following: an uplink delay from the terminal to the anchor gateway, and a downlink delay from the anchor gateway to the terminal.
  • the round-trip delay between the terminal and the anchor gateway may also include at least one of the following: data dwell delay in the terminal, data dwell delay in the RAN network element, data dwell delay in the anchor gateway .
  • the uplink delay from the terminal to the anchor gateway may also include at least one of the following: the residence delay of the uplink data in the terminal, the residence delay of the uplink data in the RAN network element, and the residence delay of the uplink data in the anchor gateway. Leave a delay.
  • the downlink delay from the anchor gateway to the terminal may also include at least one of the following: dwell delay of the downlink data in the terminal, dwell delay of the downlink data in the RAN network element, dwell delay of the downlink data in the anchor gateway Leave a delay.
  • the uplink delay from the terminal to the anchor gateway or the first uplink delay is the time required for data to be sent from the terminal to the anchor gateway.
  • the downlink delay from the anchor gateway to the terminal or the first downlink delay is the time required for data to be sent from the anchor gateway to the terminal.
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway.
  • the round-trip delay between the RAN network element and the anchor gateway includes at least one of the following: uplink delay from the RAN network element to the anchor gateway, and downlink delay from the anchor gateway to the RAN network element.
  • the round-trip delay between the RAN network element and the anchor gateway may also include at least one of the following: data dwell delay in the RAN network element, and data dwell delay in the anchor gateway.
  • the uplink delay from the RAN network element to the anchor gateway may further include at least one of the following: a dwell delay of the uplink data at the RAN network element, and a dwell delay of the uplink data at the anchor gateway.
  • the uplink delay from the RAN network element to the anchor gateway can be composed of the following or the sum of the following values: the uplink delay between the RAN network element and the anchor gateway, the residence delay of uplink data in the RAN network element, the uplink The dwell delay of data at the anchor gateway.
  • the downlink delay from the anchor gateway to the RAN network element may further include at least one of the following: dwell delay of the downlink data in the RAN network element, dwell delay of the downlink data in the anchor gateway.
  • dwell delay of the downlink data in the anchor gateway.
  • the downlink delay of the anchor gateway can be composed of the following components or the sum of the following values: the downlink delay from the anchor gateway to the RAN network element, the residence delay of the downlink data in the RAN network element, and the downlink data in the anchor gateway. dwell delay.
  • the uplink delay from the RAN network element to the anchor gateway or the second uplink delay is the time required for data to be sent from the RAN network element to the anchor gateway.
  • the downlink delay from the anchor gateway to the RAN network element or the second downlink delay is the time required for data to be sent from the anchor gateway to the terminal.
  • the third round-trip delay is the round-trip delay between the terminal and the RAN network element.
  • the round-trip delay between the terminal and the RAN network element includes at least one of the following: uplink delay from the terminal to the RAN network element to the anchor gateway, and downlink delay from the RAN network element to the terminal.
  • the round-trip delay between the terminal and the RAN network element also includes at least one of the following: data dwell delay in the RAN, and data dwell delay in the terminal.
  • the uplink delay from the terminal to the RAN network element may also include at least one of the following: a resident delay of the uplink data in the RAN, and a resident delay of the uplink data in the terminal.
  • the uplink delay from the terminal to the RAN network element can be composed of or the sum of the following values: the uplink delay between the terminal and the RAN network element, the residence time delay of uplink data in the RAN network element, and the residence time delay of uplink data in the terminal. Leave a delay.
  • the downlink delay from the RAN network element to the terminal may further include at least one of the following: dwell delay of the downlink data in the RAN, and dwell delay of the downlink data in the terminal.
  • the downlink delay from the RAN network element to the terminal can be composed of the following or the sum of the following values: the downlink delay from the RAN network element to the terminal, the dwell delay of downlink data in the RAN network element, the downlink data The dwell delay at the terminal.
  • the first round-trip delay budget is a round-trip delay budget between the terminal and the anchor gateway.
  • the round-trip delay budget between the terminal and the anchor gateway includes at least one of the following: an uplink delay budget from the terminal to the anchor gateway, and a downlink delay budget from the anchor gateway to the terminal.
  • the round-trip delay budget between the terminal and the anchor gateway may also include at least one of the following: data residency delay budget in the terminal, data residency delay budget in the RAN network element, data residency delay budget in the anchor gateway Leave a delay budget.
  • the uplink delay budget from the terminal to the anchor point gateway may also include at least one of the following: the resident delay budget of the uplink data in the terminal, the resident delay budget of the uplink data in the RAN network element, and the resident delay budget of the uplink data in the anchor point The dwell delay budget of the gateway.
  • the downlink delay budget from the anchor point gateway to the terminal may also include at least one of the following: the downlink data resides in the terminal delay budget, the downlink data resides in the RAN network element The dwell delay budget of the gateway.
  • the uplink delay budget from the terminal to the anchor gateway or the first uplink delay budget is the time required for data to be sent from the terminal to the anchor gateway.
  • the downlink delay budget from the anchor gateway to the terminal or the first downlink delay budget is the time required for data to be sent from the anchor gateway to the terminal.
  • the second round-trip delay budget is a round-trip delay budget between the RAN network element and the anchor gateway.
  • the round-trip delay budget between the RAN network element and the anchor gateway includes at least one of the following: an uplink delay budget from the RAN network element to the anchor gateway, and a downlink delay budget from the anchor gateway to the RAN network element.
  • the round-trip delay budget between the RAN network element and the anchor point gateway may further include at least one of the following: data residency delay budget in the RAN network element, and data residency delay budget in the anchor point gateway.
  • the uplink delay budget from the RAN network element to the anchor gateway may further include at least one of the following: a resident delay budget of the uplink data in the RAN network element, and a resident delay budget of the uplink data in the anchor gateway.
  • the uplink delay budget from the RAN network element to the anchor gateway can be composed of or the sum of the following values: the uplink delay budget between the RAN network element and the anchor gateway, and the residence delay of uplink data in the RAN network element Budget, the residence delay budget of uplink data at the anchor gateway.
  • the downlink delay budget from the anchor point gateway to the RAN network element may also include at least one of the following: a resident delay budget of the downlink data in the RAN network element, and a resident delay budget of the downlink data in the anchor point gateway.
  • the downlink delay budget from the RAN network element to the anchor gateway can be composed of the following or the sum of the following values: the downlink delay budget from the anchor gateway to the RAN network element, and the time when the downlink data resides in the RAN network element Delay budget, the residence delay budget of downlink data at the anchor gateway.
  • the uplink delay budget from the RAN network element to the anchor gateway or the second uplink delay budget is the time required for data to be sent from the RAN network element to the anchor gateway.
  • the downlink delay budget from the anchor gateway to the RAN network element or the second downlink delay budget is the time required for data to be sent from the anchor gateway to the terminal.
  • the third round-trip delay budget is a round-trip delay budget between the terminal and the RAN network element.
  • the round-trip delay budget between the terminal and the RAN network element includes at least one of the following: an uplink delay budget from the terminal to the RAN network element to the anchor gateway, and a downlink delay budget from the RAN network element to the terminal.
  • the round-trip delay budget between the terminal and the RAN network element also includes at least one of the following: a data residence delay budget in the RAN, and a data residence delay budget in the terminal.
  • the uplink delay budget from the terminal to the RAN network element may further include at least one of the following: a resident delay budget of the uplink data in the RAN, and a resident delay budget of the uplink data in the terminal.
  • the uplink delay budget from the terminal to the RAN network element can be composed of or the sum of the following values: the uplink delay budget between the terminal and the RAN network element, the residence delay budget of the uplink data in the RAN network element, and the uplink data in the RAN network element.
  • the dwell delay budget of the terminal can be composed of or the sum of the following values: the uplink delay budget between the terminal and the RAN network element, the residence delay budget of the uplink data in the RAN network element, and the uplink data in the RAN network element. The dwell delay budget of the terminal.
  • the downlink delay budget from the RAN network element to the terminal may further include at least one of the following: a resident delay budget of the downlink data in the RAN, and a resident delay budget of the downlink data in the terminal.
  • the downlink delay budget from the RAN network element to the terminal can be composed of or the sum of the following values: the downlink delay budget from the RAN network element to the terminal downlink, and the residence delay budget of downlink data in the RAN network element , the resident delay budget of downlink data in the terminal.
  • the uplink delay from the terminal to the RAN network element or the third uplink delay is the time required for data to be sent from the terminal to the RAN network element.
  • the downlink delay from the RAN network element to the terminal or the third downlink delay is the time required for data to be sent from the RAN network element to the terminal.
  • the uplink measurement packet may be referred to as an uplink packet for short.
  • the uplink measurement packet is an uplink data packet used for delay measurement.
  • the downlink measurement packet may be referred to as an uplink packet for short.
  • the downlink measurement packet is a downlink data packet used for delay measurement.
  • the uplink packet or downlink packet is a real service data packet or a packet generated for time monitoring.
  • the channel or data channel may include at least one of the following: a PDU session, a PDN connection, a Quality of Service (QoS) flow, an evolved packet system (Evolved Packet System, EPS) bearer, PDP context, DRB, SRB, and Internet Protocol Security (IPsec) association. wait.
  • QoS Quality of Service
  • EPS evolved Packet System
  • IPsec Internet Protocol Security
  • the NG interface may also be called the S1 interface or the N2 interface, and the name is not limited.
  • the wireless communication network may be at least one of the following: a public network and a non-public network; or the first network may be a non-public network.
  • the non-public network is an abbreviation of the non-public network.
  • a non-public network may be referred to as one of the following: a non-public communication network.
  • the non-public network may include at least one of the following deployment methods: physical non-public network, virtual non-public network, and non-public network implemented on the public network.
  • the non-public network is a closed access group (Closed Access Group, CAG).
  • a CAG can be composed of a group of terminals.
  • the non-public network may include or be called a private network.
  • the private network may be referred to as one of: private communication network, private network, local area network (LAN), private virtual network (PVN), isolated communication network, dedicated communication network, or other nomenclature. It should be noted that there is no specific limitation on the naming manner in the embodiment of the present invention.
  • the public network is an abbreviation of public network.
  • the public network may be called one of the following: public communication network or other nomenclature. It should be noted that there is no specific limitation on the naming manner in the embodiment of the present invention.
  • the data packet size may be referred to as the data packet length.
  • a data packet may be called a data frame.
  • the communication device may include at least one of the following: a communication network element and a terminal.
  • the communication network element may include at least one of the following: a core network element and a radio access network element.
  • an embodiment of the present invention provides a QoS control method, which is applied to a first communication device.
  • a communication device includes but not limited to one of the following: RAN network element, CN network element (such as but not limited to PCF), and the method includes:
  • Step 200 the first communication device acquires first information
  • the first information includes at least one of the following:
  • the first instruction message The first instruction message.
  • the first indication information is used to indicate one of the following: perform delay guarantee according to the delay monitoring result and/or the first QoS configuration information; perform delay according to the delay monitoring result and/or the third round-trip delay budget Assure.
  • the first QoS configuration information includes at least one of the following;
  • the first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget are The first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget
  • the delay budget of the data channel is the delay budget of the data channel
  • the second indication information is used to indicate one of the following: the first round-trip delay budget is twice the value of the delay budget of the data channel, and the first round-trip delay budget is the first uplink delay budget and the sum of the first downlink delay budget;
  • the third indication information is used to indicate one of the following: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • Fourth indication information where the fourth indication information is used to indicate that the round-trip delay cannot exceed the round-trip delay budget.
  • Step 201 the first communication device performs a first operation according to the first information
  • said performing the first operation includes at least one of the following:
  • a third round-trip delay budget a third uplink delay budget, and a third downlink delay budget
  • the first round-trip delay budget as one of the following: twice the value of the delay budget of the data channel, the first round-trip delay budget in the first QoS configuration information, the first uplink delay budget and the first downlink time sum of delayed budget;
  • the delay guarantee is performed according to the delay monitoring result and/or the first QoS configuration information.
  • the first QoS configuration information does not include at least one of the following: a third round-trip delay budget, a third uplink delay budget, and a third downlink delay budget; the first communication device may, according to the first QoS configuration information Determine at least one of the following: a third round-trip delay budget, a third uplink delay budget, and a third downlink delay budget.
  • the "delay guarantee” refers to adjusting the delay budget so that the delay does not exceed the delay budget. For example, what needs to be guaranteed is the round-trip delay.
  • the round-trip delay budget is determined, when the uplink delay monitoring result is relatively large and exceeds the uplink delay budget, the uplink delay budget can be appropriately increased to reduce the downlink delay budget. Delay budget, so that the overall round-trip delay does not exceed the round-trip delay budget.
  • the downlink delay budget can be appropriately increased and the uplink delay budget can be reduced so that the overall round-trip delay does not exceed the round-trip delay Budget.
  • the first round-trip delay budget is a round-trip delay budget between the terminal and the anchor gateway;
  • the first uplink delay budget is an uplink delay budget from the terminal to the anchor gateway;
  • the first downlink delay budget is a downlink delay budget from the anchor gateway to the terminal;
  • the third uplink delay budget is the uplink delay budget from the terminal to the RAN network element
  • the third downlink delay budget is the downlink delay budget from the RAN network element to the terminal;
  • the third round-trip delay budget is a round-trip delay budget between the terminal and the RAN network element.
  • the delay monitoring configuration information includes:
  • the time delay required to be measured includes at least one of the following: first uplink time delay, first downlink time delay, first round-trip time delay, second uplink time delay, second downlink time delay, and second round-trip time delay;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN.
  • the delay required to be measured is one of the following: the delay calculated by the RAN network element, and the delay calculated by the anchor point gateway and sent to the RAN network element.
  • the Nth uplink delay is calculated by the RAN network element
  • the Nth downlink delay is calculated by the RAN network element
  • the Nth round-trip delay is calculated by the RAN network element
  • N can take the following values One: one, two.
  • the Nth uplink delay is calculated by the anchor gateway and sent to the RAN network element
  • the Nth downlink delay is calculated by the anchor gateway and sent to the RAN network element
  • the Nth round trip delay is the anchor point
  • the N sent to the RAN network element after calculation by the gateway can take one of the following values: one, two.
  • the first QoS configuration information is one of the following: QoS configuration information of the first data channel, QoS configuration information of the second data channel and/or the third data channel;
  • the delay monitoring configuration information is one of the following: delay monitoring configuration information of the first data channel, delay monitoring configuration information of the second data channel and/or the third data channel;
  • the first data channel is used for uplink and/or downlink
  • the second data channel is used for uplink
  • the third data channel is used for downlink
  • the uplink delay-related information (such as the first uplink delay, the second uplink delay) and/or the delay budget of the data channel in the first QoS configuration information is the QoS configuration of the second data channel information.
  • the information related to the downlink delay in the first QoS configuration information (such as the first downlink delay, the second downlink delay) and/or the delay budget of the data channel is the QoS configuration of the third data channel information.
  • At least one of the round-trip delay related information (such as the first round-trip delay and the second round-trip delay), the second indication information, the third indication information, and the fourth indication information in the first QoS configuration information
  • the item is QoS configuration information common to the second data channel and the third data channel.
  • the delay monitoring operation includes at least one of the following:
  • the uplink delay monitoring operation includes at least one of the following: a first uplink delay monitoring operation; a second uplink delay monitoring operation; a third uplink delay monitoring operation;
  • the downlink delay monitoring operation includes at least one of the following: a first downlink delay monitoring operation; a second downlink delay monitoring operation; a third downlink delay monitoring operation;
  • the round-trip delay monitoring operation includes at least one of the following: a first round-trip delay monitoring operation, a second round-trip delay monitoring operation, and a third round-trip delay monitoring operation;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the third round-trip delay is the round-trip delay between the terminal and the RAN network element
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN
  • the third uplink delay is the uplink delay from the terminal to the RAN network element
  • the third downlink delay is the downlink delay from the RAN network element to the terminal.
  • performing the delay monitoring operation, and/or, performing delay guarantee according to the delay monitoring result and/or the first QoS configuration information includes:
  • the first condition includes at least one of the following:
  • the first uplink delay exceeds one of the following: the delay budget of the data channel, 1/2 of the first round-trip delay budget, and the first uplink delay budget;
  • the first downlink delay exceeds one of the following: the delay budget of the data channel, 1/2 of the first round-trip delay budget, and the first downlink delay budget;
  • the third uplink delay exceeds one of the following: the delay budget between the terminal of the data channel and the RAN network element, 1/2 of the third round-trip delay budget, and the third uplink delay budget;
  • the third downlink delay exceeds one of the following: the delay budget between the terminal of the data channel and the RAN network element, 1/2 of the first round-trip delay budget, and the third downlink delay budget.
  • the first condition further includes at least one of the following:
  • the sum of the first uplink delay and the first downlink delay does not exceed the first round-trip delay budget
  • the sum of the third uplink delay and the third downlink delay does not exceed the third round-trip delay budget.
  • the delay guarantee according to the delay monitoring result and/or the first QoS configuration information includes at least one of the following:
  • the delay monitoring result includes at least one of the following: an uplink delay monitoring result, a downlink delay monitoring result, and a round-trip delay monitoring result.
  • the round-trip delay budget includes at least one of the following: a first round-trip delay budget, a second round-trip delay budget, and a third round-trip delay budget.
  • the uplink delay monitoring result includes at least one of the following: a first uplink delay monitoring result; a second uplink delay monitoring result; and a third uplink delay monitoring result.
  • the downlink delay monitoring result includes at least one of the following: a first downlink delay monitoring result; a second downlink delay monitoring result; and a third downlink delay monitoring result.
  • the round-trip delay monitoring result includes at least one of the following: a first round-trip delay monitoring result, a second round-trip delay monitoring result, and a third round-trip delay monitoring result.
  • the uplink delay budget includes at least one of the following: a first uplink delay budget; a second uplink delay budget; and a third uplink delay budget.
  • the downlink delay budget includes at least one of the following: a first downlink delay budget; a second downlink delay budget; and a third downlink delay budget.
  • the uplink delay budget, the downlink delay budget and/or the third round-trip delay budget are determined or adjusted according to the delay monitoring result and/or the round-trip delay budget, including at least one of the following:
  • the first round-trip delay budget determine or adjust the first uplink delay budget and/or The first downlink delay budget
  • the first round-trip delay monitoring result, the second uplink delay monitoring result, the second downlink delay monitoring result, the third uplink delay monitoring result, and the third downlink delay monitoring result at least one item, Determine or adjust at least one of the following: a third uplink delay budget, a third downlink delay budget;
  • the first uplink delay monitoring operation includes at least one of the following:
  • header information to the first uplink packet, where the header information includes at least one of the following: T1 time, T11 time, third uplink delay;
  • the header information of the first downlink packet includes at least one of the following: T2 time, first uplink delay, second uplink delay, header information of the first uplink packet;
  • Determine the first uplink delay including one of the following: T2-T1+third uplink delay to obtain the first uplink delay, T2-T11 to obtain the first uplink delay, second uplink delay+third uplink delay , directly obtaining the first uplink time delay from the header information of the first downlink packet;
  • the T11 time is one of the following: the time when the RAN network element schedules the second uplink packet of the terminal, and the time when the terminal sends the second uplink packet;
  • the T1 time is the sending time of the first uplink packet
  • the T2 time is the receiving time of the first uplink packet.
  • the first downlink delay monitoring operation includes at least one of the following:
  • header information of the first downlink packet includes: T3 time;
  • the T3 time is the sending time of the first downlink packet
  • the T4 time is the receiving time of the first downlink packet.
  • the first round-trip delay monitoring operation includes at least one of the following:
  • header information to the first uplink packet, where the header information includes at least one of the following: T1 time, T11 time, third uplink delay;
  • the header information of the downlink packet includes at least one of the following: T2 time, T3 time, first uplink delay, second uplink delay, header information of the first uplink packet;
  • Determine the first round-trip delay including one of the following: ((T2-T1)+(T4-T3)+the third downlink delay+the third uplink delay) to obtain the first round-trip delay, ((T2-T11 )+(T4-T3)+third downlink delay) to obtain the first round-trip delay, (second uplink delay+(T4-T3)+third downlink delay+third uplink delay) to obtain the first round-trip delay; (the first uplink time delay+(T4-T3)+the third downlink time delay) obtains the first round-trip time delay;
  • the T11 time is one of the following: the time when the RAN network element schedules the second uplink packet of the terminal, and the time when the terminal sends the second uplink packet;
  • the T1 time is the sending time of the first uplink packet
  • the T2 time is the receiving time of the first uplink packet
  • the T3 time is the sending time of the first downlink packet
  • the T4 time is the receiving time of the first downlink packet.
  • the second uplink delay monitoring operation includes at least one of the following:
  • header information to the first uplink packet, where the header information includes at least one of the following: T1 time;
  • the header information of the first downlink packet includes at least one of the following: T2 time, second uplink delay;
  • Determining the second uplink time delay includes one of the following: obtaining the second uplink time delay according to T2-T1, and reading the second uplink time delay in the header of the first downlink packet;
  • the T1 time is the sending time of the first uplink packet
  • the T2 time is the receiving time of the first uplink packet.
  • the second downlink delay monitoring operation includes at least one of the following:
  • the header information of the first downlink packet includes T3 time, and the T3 time is the sending time of the first downlink packet;
  • the T4 time being the receiving time of the first downlink packet
  • Determining the second downlink time delay includes: obtaining the second downlink time delay according to T4-T3.
  • the second round-trip delay monitoring operation includes at least one of the following:
  • header information to the first uplink packet, where the header information includes at least one of the following items: information used by the first uplink packet to measure delay, T1 time;
  • the header information of the first downlink packet includes at least one of the following: T2 time, T3 time, T1 time, second uplink delay, and header information of the first uplink packet;
  • the T4 time being the receiving time of the first downlink packet
  • Determining the second round-trip delay includes one of the following: the second round-trip delay is obtained according to (T4-T3)+(T2-T1), and the second round-trip delay is obtained according to (T4-T3)+the second uplink delay. second round-trip delay;
  • the T1 time is the sending time of the first uplink packet
  • the T2 time is the receiving time of the first uplink packet
  • the T3 time is the sending time of the first downlink packet.
  • the determining or adjusting at least one of the first uplink delay budget and the first downlink delay budget according to the delay monitoring result and/or the round-trip delay budget includes at least the following one item:
  • the determining or adjusting the third round-trip delay budget according to the delay monitoring result and/or the round-trip delay budget includes at least one of the following:
  • the guarantee that the first round-trip delay does not exceed the first round-trip delay budget includes at least one of the following:
  • the sum of the third uplink delay and the third downlink delay does not exceed the first value
  • the first value is a difference between the first round-trip delay budget and the second round-trip delay monitoring result.
  • the ensuring that the first uplink delay does not exceed the first uplink delay budget includes at least one of the following:
  • the third uplink delay or the third uplink delay budget does not exceed the second value
  • the second value is the difference between the first uplink delay budget and the second uplink delay monitoring result, or the difference between the first round-trip delay budget and the second round-trip delay monitoring result minus the third uplink delay monitoring The result, or the difference between the first round-trip delay budget and the second round-trip delay monitoring result minus the third uplink delay budget.
  • the ensuring that the first downlink delay does not exceed the first downlink delay budget includes at least one of the following:
  • the third downlink delay or the third uplink delay budget does not exceed the third value
  • the third value is the difference between the first downlink delay budget and the second downlink delay monitoring result, or the difference between the first round-trip delay budget and the second round-trip delay monitoring result minus the third uplink The delay monitoring result, or the difference between the first round-trip delay budget and the first round-trip delay monitoring result minus the third uplink delay budget.
  • the first communication device obtains the first information from a first source, and the first source includes at least one of the following: a fourth communication device, and a third CN network element (such as but not limited to an SMF network element).
  • the first communication device acquires at least one of delay monitoring configuration information, first QoS configuration information and first indication information, and determines at least one of the following: the third round-trip delay budget, the third uplink time Delay budget, the third downlink delay budget; determine the first round-trip delay budget, perform delay monitoring operation, and/or perform delay guarantee according to the delay monitoring result and/or the first QoS configuration information, so that the first communication The device can perform delay scheduling/control to ensure round-trip delay.
  • an embodiment of the present invention provides a QoS control method, which is applied to a second communication device.
  • the second communication device includes but is not limited to CN network elements (such as but not limited to anchor gateways (such as UPF).
  • anchor gateways such as UPF
  • the second communication device is a CN network element, it can be called the first CN network element, and the anchor gateway is a terminating N6 interface.
  • Step 300 the second communication device acquires the first information
  • the first information includes at least one of the following:
  • the first indication information is used to indicate one of the following: perform delay guarantee according to the delay monitoring result and/or the first QoS configuration information; according to the delay monitoring result and/or the third round-trip delay budget Provide delay protection.
  • the first QoS configuration information includes at least one of the following;
  • the first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget are The first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget
  • the delay budget of the data channel is the delay budget of the data channel
  • the second indication information is used to indicate one of the following: the first round-trip delay budget is twice the value of the delay budget of the data channel, and the first round-trip delay budget is the first uplink delay budget and the sum of the first downlink delay budget;
  • the third indication information is used to indicate one of the following: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • Fourth indication information where the fourth indication information is used to indicate that the round-trip delay cannot exceed the round-trip delay budget.
  • Step 301 the second communication device performs a second operation according to the first information
  • the second operation includes at least one of the following:
  • the delay monitoring configuration information includes:
  • the time delay required to be measured includes at least one of the following: first uplink time delay, first downlink time delay, first round-trip time delay, second uplink time delay, second downlink time delay, and second round-trip time delay;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN.
  • the delay required to be measured is one of the following: a delay calculated by the RAN network element, and a delay measured by the anchor point gateway and sent to the RAN network element.
  • the first QoS configuration information is one of the following: QoS configuration information of the first data channel, QoS configuration information of the second data channel and/or the third data channel;
  • the delay monitoring configuration information is one of the following: delay monitoring configuration information of the first data channel, delay monitoring configuration information of the second data channel and/or the third data channel;
  • the first data channel is used for uplink and/or downlink
  • the second data channel is used for uplink
  • the third data channel is used for downlink
  • the delay monitoring operation includes at least one of the following:
  • the uplink delay monitoring operation includes at least one of the following: a first uplink delay monitoring operation; a second uplink delay monitoring operation; a third uplink delay monitoring operation;
  • the downlink delay monitoring operation includes at least one of the following: a first downlink delay monitoring operation; a second downlink delay monitoring operation; a third downlink delay monitoring operation;
  • the round-trip delay monitoring operation includes at least one of the following: a first round-trip delay monitoring operation, a second round-trip delay monitoring operation, and a third round-trip delay monitoring operation;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the third round-trip delay is the round-trip delay between the terminal and the RAN network element
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN
  • the third uplink delay is the uplink delay from the terminal to the RAN network element
  • the third downlink delay is the downlink delay from the RAN network element to the terminal.
  • the uplink delay monitoring operation, the first uplink delay monitoring operation and/or the second uplink delay monitoring Actions include at least one of the following:
  • the T2 time is the time when the uplink packet is received
  • the header information of the first uplink packet includes at least one of the following: T1 time, T11 time, third uplink delay;
  • Determining the first uplink delay includes one of the following: obtaining the first uplink delay according to T2-T11, and obtaining the first uplink delay according to T2-T1+third uplink delay;
  • Determining the second uplink time delay includes: obtaining the second uplink time delay according to T2-T1;
  • header information to the first downlink packet, where the header information includes at least one of the following: T2 time, first uplink delay, header information of the uplink packet;
  • the T11 time is one of the following: the time when the RAN network element schedules the second uplink packet of the terminal, and the time when the terminal sends the second uplink packet;
  • the T1 time is the sending time of the uplink packet.
  • the downlink delay monitoring operation, the first downlink delay monitoring operation and/or the second downlink delay monitoring operation include at least one of the following:
  • the header information includes: T3 time, T3 time is the sending time of the first downlink packet;
  • the round-trip delay monitoring operation includes at least one of the following:
  • the T2 time is the time when the first uplink packet is received
  • the header information of the first uplink packet includes at least one of the following: T1 time, T11 time, third uplink delay;
  • Determining the first uplink delay includes one of the following: obtaining the first uplink delay according to T2-T11, and obtaining the first uplink delay according to T2-T1+third uplink delay;
  • T3 time is the sending time of the first downlink packet
  • the T11 time is one of the following: the time when the RAN network element schedules the second uplink packet of the terminal, and the time when the terminal sends the second uplink packet;
  • the T1 time is the sending time of the first uplink packet.
  • the second communication device may obtain the first information from the first source, and the first source includes at least one of the following: a fourth communication device, a third CN network element (such as but not limited to an SMF network element) .
  • a fourth communication device such as but not limited to an SMF network element
  • the second communication device acquires the first information; wherein, the first information includes the following At least one item: delay monitoring configuration information; first QoS configuration information; first indication information, so that the second communication device can perform a delay monitoring operation according to the first information, thereby assisting RAN network elements to realize round-trip delay guarantee.
  • an embodiment of the present invention provides a QoS control method, which is applied to a third communication device.
  • the third communication device includes but is not limited to a CN network element (such as but not limited to a PCF network element).
  • a CN network element such as but not limited to a PCF network element.
  • the second communication device is a CN network element, it can be called a second CN network element.
  • the method includes:
  • Step 400 the third communication device acquires fifth information
  • Step 401 the third communication device performs a third operation according to the fifth information
  • the execution of the third operation includes at least one of the following:
  • the second information includes at least one of the following: a delay monitoring policy, a first QoS policy, and first indication information;
  • the first indication information is used to indicate one of the following: performing delay guarantee according to the delay monitoring result and/or the first QoS configuration information; performing delay guarantee according to the delay monitoring result and/or the third round-trip delay budget.
  • the fifth information includes at least one of the following: description information of the first service data flow; delay monitoring requirements; a first QoS requirement, the first QoS requirement being the QoS of the first service data flow Require;
  • the first QoS requirement includes at least one of the following;
  • the fifth indication information is used to indicate one of the following: the first round-trip delay requirement is twice the value of the one-way delay budget, and the first round-trip delay requirement is the first uplink delay requirement and The sum of the first downlink delay requirements;
  • the sixth indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • Seventh indication information where the seventh indication information is used to indicate that: the first round-trip delay cannot exceed the first round-trip delay requirement.
  • the third communication device determines second information according to the fifth information, including:
  • the third communication device maps the first uplink QoS requirement or the first uplink QoS requirement according to the first uplink delay requirement.
  • QoS budget where the third communication device maps a first downlink QoS requirement or a first downlink QoS budget according to the first downlink delay requirement;
  • the third communication device determines the first round-trip delay requirement or first round trip The budget is divided to obtain the first uplink QoS requirement or the first uplink QoS budget, and the first downlink QoS requirement or the first downlink QoS budget.
  • the first QoS policy includes at least one of the following;
  • the fifth indication information is used to indicate one of the following: the first round-trip delay budget is twice the value of the one-way delay budget, the first round-trip delay budget is the first uplink delay requirement and The sum of the first downlink delay budget;
  • the sixth indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • Seventh indication information where the seventh indication information is used to indicate that: the first round-trip delay cannot exceed the first round-trip delay budget.
  • the delay budget is represented by a delay budget parameter, or represented by a QoS identifier (such as 5QI). Since the value of the QoS identifier is in one-to-one correspondence with the delay budget, it can be represented.
  • the unidirectional delay budget represents the first uplink delay budget and/or the first downlink delay budget, and the first uplink delay budget is the same as the first downlink delay budget.
  • the delay monitoring strategy includes:
  • the time delay required to be measured includes at least one of the following: first uplink time delay, first downlink time delay, first round-trip time delay, second uplink time delay, second downlink time delay, and second round-trip time delay;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN network element.
  • the delay required to be measured is one of the following: a delay calculated by the RAN network element, and a delay measured by the anchor point gateway and sent to the RAN network element.
  • the first QoS policy is one of the following: the QoS policy of the first data channel, the QoS policy of the second data channel and/or the third data channel, and the QoS policy of the first service data flow;
  • the delay monitoring strategy is one of the following: a delay monitoring strategy for the first data channel, a delay monitoring strategy for the second data channel and/or the third data channel;
  • the first data channel is used for uplink and/or downlink
  • the second data channel is used for uplink
  • the third data channel is used for downlink
  • the third communication device configures a delay monitoring policy for the first communication device or the second communication device according to a requirement of the fifth communication device.
  • the third communication device may send the second information to the first target end, and the first target end includes at least one of the following: a fourth communication device, a third CN network element (such as but not limited to an SMF network element) .
  • a fourth communication device such as but not limited to an SMF network element
  • the second CN network element obtains the fifth information from a second source, and the second source includes at least one of the following: a fifth communication device, a fourth CN network element (such as but not limited to an AF network element, NEF network element).
  • a fifth communication device such as but not limited to an AF network element, NEF network element.
  • the third communication device acquires fifth information, and performs a third operation according to the fifth information, and performing the third operation includes at least one of the following: determining the second information; sending the second information, and The second information includes at least one of the following: a delay monitoring policy, a first QoS policy, and first indication information, so that the second information can be sent to the fourth communication device, so as to realize round-trip delay guarantee.
  • an embodiment of the present invention provides a QoS control method, which is applied to a fourth communication device.
  • the fourth communication device includes but is not limited to a CN network element (such as but not limited to an SMF network element).
  • a CN network element such as but not limited to an SMF network element.
  • the second communication device is a CN network element, it can be called a third CN network element.
  • the method includes:
  • Step 500 the fourth communication device acquires second information, where the second information includes at least one of the following: a delay monitoring requirement or a delay monitoring policy, a first QoS requirement or a first QoS policy, and first indication information.
  • Step 501 the fourth communication device performs a fourth operation according to the second information, and the performing the fourth operation includes at least one of the following:
  • the first information includes at least one of the following:
  • the first indication information is used to indicate one of the following: perform delay guarantee according to the delay monitoring result and/or the first QoS configuration information; according to the delay monitoring result and/or the third round-trip delay budget Provide delay protection.
  • the first QoS configuration information includes at least one of the following;
  • the first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget are The first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget
  • the delay budget of the data channel is the delay budget of the data channel
  • the second indication information is used to indicate one of the following: the first round-trip delay budget is twice the value of the delay budget of the data channel, and the first round-trip delay budget is the first uplink delay budget and the sum of the first downlink delay budget;
  • the third indication information is used to indicate: the uplink delay budget and the downlink delay budget can Not the same, the uplink delay budget can only be the same as the downlink delay budget;
  • Fourth indication information where the fourth indication information is used to indicate: the first round-trip delay cannot exceed the first round-trip delay requirement;
  • the delay monitoring configuration information includes at least one of the following:
  • the time delay required to be measured includes at least one of the following: first uplink time delay, first downlink time delay, first round-trip time delay, second uplink time delay, second downlink time delay, and second round-trip time delay;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN.
  • the first QoS requirement includes at least one of the following;
  • the fifth indication information is used to indicate one of the following: the first round-trip delay requirement is twice the value of the one-way delay budget, and the first round-trip delay requirement is the first uplink delay requirement and The sum of the first downlink delay requirements;
  • the sixth indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • the seventh indication information is used to indicate: the first round-trip delay cannot exceed the first round-trip delay requirement;
  • the first QoS policy includes at least one of the following;
  • the fifth indication information is used to indicate one of the following: the first round-trip delay budget is twice the value of the one-way delay budget, the first round-trip delay budget is the first uplink delay requirement and The sum of the first downlink delay budget;
  • the sixth indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • the seventh indication information is used to indicate: the first round-trip delay cannot exceed the first round-trip delay Latency budget.
  • the latency monitoring requirement or latency monitoring strategy includes at least one of the following:
  • the time delay required to be measured includes at least one of the following: first uplink time delay, first downlink time delay, first round-trip time delay, second uplink time delay, second downlink time delay, and second round-trip time delay;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN.
  • the delay required to be measured is one of the following: a delay calculated by the RAN network element, and a delay measured by the anchor point gateway and sent to the RAN network element.
  • the first QoS configuration information is one of the following: QoS configuration information of the first data channel, QoS configuration information of the second data channel and/or the third data channel;
  • the delay monitoring configuration information is one of the following: delay monitoring configuration information of the first data channel, delay monitoring configuration information of the second data channel and/or the third data channel;
  • the first data channel is used for uplink and/or downlink
  • the second data channel is used for uplink
  • the third data channel is used for downlink
  • the fourth communication device may send the first information to the second target end, and the second target end includes at least one of the following: the first communication device, the RAN network element, the second communication device, and the first CN network element (such as but not limited to anchor gateways);
  • the fourth communication device obtains the second information from a third source
  • the third source includes at least one of the following: the third communication device, and a second CN network element (such as but not limited to a PCF network element).
  • the fourth communication device obtains the second information, determines and/or sends the first information, so that the first communication device can perform delay guarantee according to the first information or the second communication device can perform Latency monitoring operations to achieve round-trip latency guarantees.
  • an embodiment of the present invention provides a QoS control method, which is applied to a fifth communication device.
  • the fifth communication device includes but is not limited to CN network elements (such as but not limited to AF network elements and NEF network elements).
  • CN network elements such as but not limited to AF network elements and NEF network elements.
  • the second communication device is a CN network element, it may be called a fourth CN network element.
  • the methods include:
  • Step 600 the fifth communication device sends fifth information, the fifth information includes at least one of the following: description information of the first service data flow; delay monitoring requirements; first QoS requirements, the first QoS requirements are the Describe the QoS requirements of the first service data flow.
  • the first QoS requirement includes at least one of the following;
  • the fifth indication information is used to indicate one of the following: the first round-trip delay requirement is twice the value of the one-way delay budget, and the first round-trip delay requirement is the first uplink delay requirement and The sum of the first downlink delay requirements;
  • the sixth indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • the seventh indication information is used to indicate: the first round-trip delay cannot exceed the first round-trip delay requirement;
  • the delay monitoring requirement includes at least one of the following:
  • the time delay required to be measured includes at least one of the following: first uplink time delay, first downlink time delay, first round-trip time delay, second uplink time delay, second downlink time delay, and second round-trip time delay;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN.
  • the first round-trip time delay is the sum of the first uplink time delay and the first downlink time delay.
  • the first uplink delay requirement is used to request to ensure that the first uplink delay of the first service data flow does not exceed the first uplink delay requirement
  • the first downlink delay requirement is used to request to ensure that the first downlink delay of the first service data flow does not exceed the first downlink delay requirement
  • the first round-trip delay requirement is used to request to ensure that the first round-trip delay of the first service data flow does not exceed the first round-trip delay requirement
  • the first round-trip delay requirement is twice the value of the one-way delay budget, and the first round-trip delay requirement is the sum of the first uplink delay requirement and the first downlink delay requirement .
  • the fifth communication device sends the fifth information to the third target end, and the third target end includes at least one of the following: the third communication device, and a second CN network element (such as but not limited to a PCF network element).
  • the third communication device includes at least one of the following: the third communication device, and a second CN network element (such as but not limited to a PCF network element).
  • the fifth communication device sends fifth information, and the fifth information includes at least one of the following Item: description information of the first service data flow; delay monitoring requirement; first QoS requirement, the first QoS requirement is the QoS requirement of the first service data flow, which can assist in realizing round-trip delay guarantee.
  • the application scenario 1 of the embodiment of the present invention mainly describes the following process:
  • the RAN network element When the RAN network element performs Round Trip delay control, if the RAN obtains the round trip delay (first round-trip delay) budget between the UE and the anchor gateway or the time of the data channel that requires the round-trip delay to be no more than twice Delay budget, one method is that the RAN network element determines the delay (third round-trip delay) budget between the UE and the RAN network element by monitoring the round trip delay (second round-trip delay) overhead of N3, so that the first uplink The sum of the delay and the second downlink delay cannot exceed the first round-trip delay budget.
  • the AF network element provides 1/2 round-trip delay budget to require the PCF network element to map 5QI, but requires one-way (uplink or downlink) to exceed 1/2 round-trip delay.
  • By monitoring and measuring uplink delay and downlink delay to adjust the uplink and downlink delay budgets so that the sum of the uplink and downlink cannot exceed the round-trip delay budget (that is, twice the QoS flow delay budget).
  • the anchor gateway (such as the UPF network element) cooperates with the RAN network element to perform delay measurement or monitoring (for example, the UPF network element sends a downlink measurement packet to notify the RAN network element when the uplink delay is found to be exceeded).
  • the RAN network element or the UPF network element may enable delay monitoring only when the first condition is met, and the first condition includes at least one of the following:
  • the first uplink delay exceeds one of the following: the delay budget of the data channel, 1/2 of the first round-trip delay budget, and the first uplink delay budget;
  • the first downlink delay exceeds one of the following: the delay budget of the data channel, 1/2 of the first round-trip delay budget, and the first downlink delay budget;
  • the third uplink delay exceeds one of the following: the delay budget between the terminal of the data channel and the RAN network element, 1/2 of the third round-trip delay budget, and the third uplink delay budget;
  • the third downlink delay exceeds one of the following: the delay budget between the terminal of the data channel and the RAN network element, 1/2 of the first round-trip delay budget, and the third downlink delay budget.
  • the PCF network element configures the above delay measurement monitoring strategy for the RAN network element and the UPF network element according to the requirements of the AF network element.
  • the AF network element may directly request the difference between the first uplink delay requirement and the first downlink delay requirement (that is, the uplink and the first downlink delay requirements are different).
  • the PCF network element and the SMF network element directly map the uplink QoS and downlink QoS to the RAN network element.
  • the AF requests a first round-trip delay requirement.
  • the PCF network element and the SMF network element directly map the first round-trip delay and send it to the RAN network element.
  • the PCF network element maps the first round-trip delay/2 to the QoS5QI, and at the same time indicates that the uplink and downlink delays cannot exceed the first round-trip delay requirement.
  • the uplink and downlink delay requirements do not exceed the first round-trip delay requirement.
  • the PCF network element needs to generate the delay monitoring policy and the first QoS policy, and the SMF network element generates the delay monitoring configuration information according to the delay monitoring requirement or the delay monitoring policy, the first QoS requirement or the first QoS policy, and the first QoS configuration information.
  • Step 1 AF sends fifth information to 5GS, the fifth information includes at least one of the following: description information of the first service data flow; delay monitoring requirements; first QoS requirements, the first QoS requirements are the first QoS requirements for service data flows.
  • the first QoS requirement includes at least one of the following: first round-trip delay requirement; first uplink delay requirement; first downlink delay requirement; one-way delay budget; fifth indication information, the The fifth message is used to indicate one of the following: the first round-trip delay requirement is twice the value of the one-way delay budget, and the first round-trip delay requirement is the first uplink delay requirement and the first downlink delay requirement and; the sixth indication information, the sixth indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same; the seventh indication information, the The seventh indication information is used to indicate: the first round-trip delay cannot exceed the first round-trip delay requirement;
  • the first uplink delay requirement is the delay requirement for data packet transmission from UE to UPF N6 port.
  • the first downlink delay requirement is the delay requirement for the UPF N6 port to receive the data packet and transmit it to the UE.
  • the first round-trip delay requirement is the sum of the first uplink delay requirement and the first downlink delay requirement.
  • Step 5 The PCF determines a delay monitoring policy and/or a first QoS policy according to at least one of the delay monitoring requirement, the first QoS requirement, and the description information of the first service data flow.
  • the PCF maps the first uplink QoS requirement or the first uplink QoS budget according to the first uplink delay requirement
  • the third The communication device maps a first downlink QoS requirement or a first downlink QoS budget according to the first downlink delay requirement.
  • the PCF can divide the first round-trip delay requirement into uplink QoS requirements and downlink QoS requirements.
  • the uplink data packets are relatively small, and they are often user action packets. Only by sending them to the server as soon as possible can the screen be avoided and the delay budget be smaller.
  • the downlink data packets are relatively large, often the background image and status packets of the game, and the delay budget requirements can be larger.
  • the PCF network element sends second information to the SMF network element, and the second information includes at least one of the following: a delay monitoring policy, a first QoS policy, and first indication information.
  • the SMF network element determines the first QoS according to the second information, and the second information includes at least one of the following: delay monitoring requirements or delay monitoring policies, first QoS requirements or first QoS policies, and first indication information Configuration, to determine the first information, the first information includes at least one of the following: delay monitoring configuration information; first QoS configuration information; first indication information, the first indication information is used to indicate one of the following: according to delay monitoring Perform delay guarantee based on the result and/or the first QoS configuration information; perform delay guarantee according to the delay monitoring result and/or the third round-trip delay budget.
  • Step 8 the SMF network element sends the first information to the RAN network element through the AMF.
  • SMF will first The information is sent to the anchor gateway.
  • Step 9 the RAN network element performs at least one of the following operations according to the first information:
  • a third round-trip delay budget a third uplink delay budget, and a third downlink delay budget
  • the first round-trip delay budget as one of the following: twice the value of the delay budget of the data channel, the first round-trip delay budget in the first QoS configuration information, the first uplink delay budget and the first downlink time sum of delayed budget;
  • the delay guarantee is performed according to the delay monitoring result and/or the first QoS configuration information.
  • Fig. 7b is the second interactive schematic diagram of the QoS control method provided by the embodiment of the present application. As shown in Fig. 7b, the QoS control method includes:
  • Step 1 the fourth CN network element sends fifth information to the second CN network element (the fifth information includes at least one of the following: description information of the first service data flow; delay monitoring requirements; first QoS requirements);
  • Step 2 the second CN network element determines the second information according to the fifth information
  • Step 3 the second CN network element sends the second information to the third CN network element
  • Step 4 the third CN network element determines the first information according to the second information
  • Step 5a the third CN network element sends the first information to the RAN network element
  • step 5b the third CN network element sends the first information to the first CN network element
  • Step 6a the RAN network element performs a first operation according to the first information
  • step 6b the first CN network element performs a second operation according to the first information
  • Step 7 The first CN network element sends the delay monitoring result to the RAN network element, so as to assist the RAN network element to perform delay guarantee according to the delay monitoring result and/or the first QoS configuration information.
  • the first information, the second information, the fifth information, the first operation, the second operation, the delay monitoring result, and the first QoS configuration information may refer to the descriptions in the preceding embodiments, and details are not repeated here.
  • the QoS control method provided in the embodiment of the present application may be executed by a QoS control device.
  • the QoS control device provided in the embodiment of the present application is described by taking the QoS control device executing the QoS control method as an example.
  • FIG. 8 is a schematic structural diagram of a first communication device provided by an embodiment of the present application. As shown in FIG. 8, the first communication device 800 includes:
  • a first acquiring unit 810 configured to acquire first information
  • a first executing unit 820 configured to execute a first operation according to the first information
  • the first information includes at least one of the following:
  • the first indication information is used to indicate one of the following: perform delay guarantee according to the delay monitoring result and/or the first QoS configuration information; according to the delay monitoring result and/or the third round-trip delay budget Carry out delay protection;
  • said performing the first operation includes at least one of the following:
  • a third round-trip delay budget a third uplink delay budget, and a third downlink delay budget
  • the first round-trip delay budget as one of the following: twice the value of the delay budget of the data channel, the first round-trip delay budget in the first QoS configuration information, the first uplink delay budget and the first downlink time sum of delayed budget;
  • the first QoS configuration information includes at least one of the following;
  • the first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget are The first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget
  • the delay budget of the data channel is the delay budget of the data channel
  • the second indication information is used to indicate one of the following: the first round-trip delay budget is twice the value of the delay budget of the data channel, and the first round-trip delay budget is the first uplink delay budget and the sum of the first downlink delay budget;
  • the third indication information is used to indicate one of the following: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • the fourth indication information is used to indicate: the round-trip delay cannot exceed the round-trip delay budget;
  • the first round-trip delay budget is a round-trip delay budget between the terminal and the anchor gateway;
  • the first uplink delay budget is an uplink delay budget from the terminal to the anchor gateway;
  • the first downlink delay budget is a downlink delay budget from the anchor gateway to the terminal;
  • the third uplink delay budget is the uplink delay budget from the terminal to the RAN network element
  • the third downlink delay budget is the downlink delay budget from the RAN network element to the terminal;
  • the third round-trip delay budget is a round-trip delay budget between the terminal and the RAN network element.
  • the delay monitoring configuration information includes:
  • the time delay required to be measured includes at least one of the following: first uplink time delay, first downlink time delay, first round-trip time delay, second uplink time delay, second downlink time delay, and second round-trip time delay;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN.
  • the delay required to be measured is one of the following: the delay calculated by the RAN network element, and the delay calculated by the anchor point gateway and sent to the RAN network element.
  • the Nth uplink delay is calculated by the RAN network element, and the Nth downlink delay is calculated by the RAN network element.
  • the network element is responsible for the calculation, and the Nth round-trip delay is calculated by the RAN network element, and N can take one of the following values: one, two.
  • the Nth uplink delay is calculated by the anchor gateway and sent to the RAN network element
  • the Nth downlink delay is calculated by the anchor gateway and sent to the RAN network element
  • the Nth round trip delay is the anchor point
  • the first QoS configuration information is one of the following: QoS configuration information of the first data channel, QoS configuration information of the second data channel and/or the third data channel;
  • the delay monitoring configuration information is one of the following: delay monitoring configuration information of the first data channel, delay monitoring configuration information of the second data channel and/or the third data channel;
  • the first data channel is used for uplink and/or downlink
  • the second data channel is used for uplink
  • the third data channel is used for downlink
  • the uplink delay-related information (such as the first uplink delay, the second uplink delay) and/or the delay budget of the data channel in the first QoS configuration information is the QoS configuration of the second data channel information
  • the information related to the downlink delay in the first QoS configuration information (such as the first downlink delay, the second downlink delay) and/or the delay budget of the data channel is the QoS configuration information of the third data channel.
  • At least one of the round-trip delay-related information (such as the first round-trip delay and the second round-trip delay), the second indication information, the third indication information, and the fourth indication information in the first QoS configuration information is the second data channel Common QoS configuration information with the third data channel.
  • the delay monitoring operation includes at least one of the following:
  • the uplink delay monitoring operation includes at least one of the following: a first uplink delay monitoring operation; a second uplink delay monitoring operation; a third uplink delay monitoring operation;
  • the downlink delay monitoring operation includes at least one of the following: a first downlink delay monitoring operation; a second downlink delay monitoring operation; a third downlink delay monitoring operation;
  • the round-trip delay monitoring operation includes at least one of the following: a first round-trip delay monitoring operation, a second round-trip delay monitoring operation, and a third round-trip delay monitoring operation;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the third round-trip delay is the round-trip delay between the terminal and the RAN network element
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN
  • the third uplink delay is the uplink delay from the terminal to the RAN network element
  • the third downlink delay is the downlink delay from the RAN network element to the terminal.
  • performing the delay monitoring operation, and/or, performing delay guarantee according to the delay monitoring result and/or the first QoS configuration information includes:
  • the first condition includes at least one of the following:
  • the first uplink delay exceeds one of the following: the delay budget of the data channel, 1/2 of the first round-trip delay budget, and the first uplink delay budget;
  • the first downlink delay exceeds one of the following: the delay budget of the data channel, 1/2 of the first round-trip delay budget, and the first downlink delay budget;
  • the third uplink delay exceeds one of the following: the delay budget between the terminal of the data channel and the RAN network element, 1/2 of the third round-trip delay budget, and the third uplink delay budget;
  • the third downlink delay exceeds one of the following: the delay budget between the terminal of the data channel and the RAN network element, 1/2 of the first round-trip delay budget, and the third downlink delay budget.
  • the first condition further includes at least one of the following:
  • the sum of the first uplink delay and the first downlink delay does not exceed the first round-trip delay budget
  • the sum of the third uplink delay and the third downlink delay does not exceed the third round-trip delay budget.
  • the delay guarantee according to the delay monitoring result and/or the first QoS configuration information includes at least one of the following:
  • the delay monitoring result includes at least one of the following: an uplink delay monitoring result, a downlink delay monitoring result, and a round-trip delay monitoring result.
  • the round-trip delay budget includes at least one of the following: a first round-trip delay budget, a second round-trip delay budget, and a third round-trip delay budget.
  • the uplink delay monitoring result includes at least one of the following: a first uplink delay monitoring result; a second uplink delay monitoring result; a third uplink delay monitoring result;
  • the downlink delay monitoring result includes at least one of the following: a first downlink delay monitoring result; a second downlink delay monitoring result; a third downlink delay monitoring result;
  • the round-trip delay monitoring result includes at least one of the following: a first round-trip delay monitoring result, a second round-trip delay monitoring result, and a third round-trip delay monitoring result.
  • the uplink delay budget includes at least one of the following: a first uplink delay budget; a second uplink delay budget; a third uplink delay budget;
  • the downlink delay budget includes at least one of the following: a first downlink delay budget; a second downlink delay budget; a third downlink delay budget;
  • the uplink delay budget, the downlink delay budget and/or the third round-trip delay budget are determined or adjusted according to the delay monitoring result and/or the round-trip delay budget, including at least one of the following:
  • the first round-trip delay budget determine or adjust the first uplink delay budget and/or The first downlink delay budget
  • the first round-trip delay monitoring result, the second uplink delay monitoring result, the second downlink delay monitoring result, the third uplink delay monitoring result, and the third downlink delay monitoring result at least One item, determining or adjusting at least one of the following items: a third uplink delay budget and a third downlink delay budget;
  • the first uplink delay monitoring operation includes at least one of the following:
  • header information to the first uplink packet, where the header information includes at least one of the following: T1 time, T11 time, third uplink delay;
  • the header information of the first downlink packet includes at least one of the following: T2 time, first uplink delay, second uplink delay, header information of the first uplink packet;
  • Determine the first uplink delay including one of the following: T2-T1+the third uplink delay to obtain the first uplink delay,
  • T2-T11 obtains the first uplink time delay, the second uplink time delay+the third uplink time delay, and directly obtains the first uplink time delay from the header information of the first downlink packet;
  • the T11 time is one of the following: the time when the RAN network element schedules the second uplink packet of the terminal, and the time when the terminal sends the second uplink packet;
  • the T1 time is the sending time of the first uplink packet
  • the T2 time is the receiving time of the first uplink packet.
  • the first downlink delay monitoring operation includes at least one of the following:
  • header information of the first downlink packet includes: T3 time;
  • the T3 time is the sending time of the first downlink packet
  • the T4 time is the receiving time of the first downlink packet.
  • the first round-trip delay monitoring operation includes at least one of the following:
  • header information to the first uplink packet, where the header information includes at least one of the following: T1 time, T11 time, third uplink delay;
  • the header information of the downlink packet includes at least one of the following: T2 time, T3 time, first uplink delay, second uplink delay, header information of the first uplink packet;
  • Determine the first round-trip delay including one of the following: ((T2-T1)+(T4-T3)+the third downlink delay+the third uplink delay) to obtain the first round-trip delay, ((T2-T11 )+(T4-T3)+third downlink delay) to obtain the first round-trip delay, (second uplink delay+(T4-T3)+third downlink delay+third uplink delay) to obtain the first round-trip delay; (the first uplink time delay+(T4-T3)+the third downlink time delay) obtains the first round-trip time delay;
  • the T11 time is one of the following: the time when the RAN network element schedules the second uplink packet of the terminal, and the time when the terminal sends the second uplink packet;
  • the T1 time is the sending time of the first uplink packet
  • the T2 time is the receiving time of the first uplink packet
  • the T3 time is the sending time of the first downlink packet
  • the T4 time is the receiving time of the first downlink packet.
  • the second uplink delay monitoring operation includes at least one of the following:
  • header information to the first uplink packet, where the header information includes at least one of the following: T1 time;
  • the header information of the first downlink packet includes at least one of the following: T2 time, second uplink delay;
  • Determining the second uplink time delay includes one of the following: obtaining the second uplink time delay according to T2-T1, and reading the second uplink time delay in the header of the first downlink packet;
  • the T1 time is the sending time of the first uplink packet
  • the T2 time is the receiving time of the first uplink packet.
  • the second downlink delay monitoring operation includes at least one of the following:
  • the header information of the first downlink packet includes T3 time, and the T3 time is the sending time of the first downlink packet;
  • the T4 time being the receiving time of the first downlink packet
  • Determining the second downlink time delay includes: obtaining the second downlink time delay according to T4-T3.
  • the second round-trip delay monitoring operation includes at least one of the following:
  • header information to the first uplink packet, where the header information includes at least one of the following items: information used by the first uplink packet to measure delay, T1 time;
  • the header information of the first downlink packet includes at least one of the following: T2 time,
  • T3 time T1 time, second uplink delay, header information of the first uplink packet
  • the T4 time being the receiving time of the first downlink packet
  • Determining the second round-trip delay includes one of the following: the second round-trip delay is obtained according to (T4-T3)+(T2-T1), and the second round-trip delay is obtained according to (T4-T3)+the second uplink delay. second round-trip delay;
  • the T1 time is the sending time of the first uplink packet
  • the T2 time is the receiving time of the first uplink packet
  • the T3 time is the sending time of the first downlink packet.
  • At least one of the first uplink delay budget and the first downlink delay budget is determined or adjusted according to the delay monitoring result and/or the round-trip delay budget, including at least one of the following :
  • the determining or adjusting the third round-trip delay budget according to the delay monitoring result and/or the round-trip delay budget includes at least one of the following:
  • the guarantee that the first round-trip delay does not exceed the first round-trip delay budget includes at least one of the following:
  • the sum of the third uplink delay and the third downlink delay does not exceed the first value
  • the first value is a difference between the first round-trip delay budget and the second round-trip delay monitoring result.
  • the ensuring that the first uplink delay does not exceed the first uplink delay budget includes at least one of the following:
  • the third uplink delay or the third uplink delay budget does not exceed the second value
  • the second value is the difference between the first uplink delay budget and the second uplink delay monitoring result, or the difference between the first round-trip delay budget and the second round-trip delay monitoring result minus the third uplink delay monitoring The result, or the difference between the first round-trip delay budget and the second round-trip delay monitoring result minus the third uplink delay budget.
  • the ensuring that the first downlink delay does not exceed the first downlink delay budget includes at least one of the following:
  • the third downlink delay or the third uplink delay budget does not exceed the third value
  • the third value is the difference between the first downlink delay budget and the second downlink delay monitoring result, or the difference between the first round-trip delay budget and the second round-trip delay monitoring result minus the third uplink The delay monitoring result, or the difference between the first round-trip delay budget and the first round-trip delay monitoring result minus the third uplink delay budget.
  • the first communication device provided in the embodiment of the present application can implement various processes implemented in the method embodiment in FIG. 2 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 9 is a schematic structural diagram of a second communication device provided by an embodiment of the present application. As shown in FIG. 9, the second communication device 900 includes:
  • the second obtaining unit 910 is configured to obtain the first information
  • the second executing unit 920 is configured to execute a second operation according to the first information
  • the first information includes at least one of the following:
  • the first indication information is used to indicate one of the following: perform delay guarantee according to the delay monitoring result and/or the first QoS configuration information; according to the delay monitoring result and/or the third round-trip delay budget Carry out delay protection;
  • the second operation includes at least one of the following:
  • the first QoS configuration information includes at least one of the following;
  • the first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget are The first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget
  • the delay budget of the data channel is the delay budget of the data channel
  • the second indication information is used to indicate one of the following: the first round-trip delay budget is twice the value of the delay budget of the data channel, and the first round-trip delay budget is the first uplink delay budget and the sum of the first downlink delay budget;
  • the third indication information is used to indicate one of the following: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • Fourth indication information where the fourth indication information is used to indicate that the round-trip delay cannot exceed the round-trip delay budget.
  • the delay monitoring configuration information includes:
  • the time delay required to be measured includes at least one of the following: first uplink time delay, first downlink time delay, first round-trip time delay, second uplink time delay, second downlink time delay, and second round-trip time delay;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN.
  • the delay required to be measured is one of the following: a delay calculated by the RAN network element, and a delay measured by the anchor point gateway and sent to the RAN network element.
  • the first QoS configuration information is one of the following: QoS configuration information of the first data channel, QoS configuration information of the second data channel and/or the third data channel;
  • the delay monitoring configuration information is one of the following: delay monitoring configuration information of the first data channel, delay monitoring configuration information of the second data channel and/or the third data channel;
  • the first data channel is used for uplink and/or downlink
  • the second data channel is used for uplink
  • the third data channel is used for downlink
  • the delay monitoring operation includes at least one of the following:
  • the uplink delay monitoring operation includes at least one of the following: a first uplink delay monitoring operation; a second uplink delay monitoring operation; a third uplink delay monitoring operation;
  • the downlink delay monitoring operation includes at least one of the following: a first downlink delay monitoring operation; a second downlink delay monitoring operation; a third downlink delay monitoring operation;
  • the round-trip delay monitoring operation includes at least one of the following: a first round-trip delay monitoring operation, a second round-trip delay monitoring operation, and a third round-trip delay monitoring operation;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the third round-trip delay is the round-trip delay between the terminal and the RAN network element
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN
  • the third uplink delay is the uplink delay from the terminal to the RAN network element
  • the third downlink delay is the downlink delay from the RAN network element to the terminal.
  • the uplink delay monitoring operation, the first uplink delay monitoring operation and/or the second uplink delay monitoring operation include at least one of the following:
  • the T2 time is the time when the uplink packet is received
  • the header information of the first uplink packet includes at least one of the following: T1 time, T11 time, third uplink delay;
  • Determining the first uplink delay includes one of the following: obtaining the first uplink delay according to T2-T11, and obtaining the first uplink delay according to T2-T1+third uplink delay;
  • Determining the second uplink time delay includes: obtaining the second uplink time delay according to T2-T1;
  • header information to the first downlink packet, where the header information includes at least one of the following: T2 time, first uplink delay, header information of the uplink packet;
  • the T11 time is one of the following: the time when the RAN network element schedules the second uplink packet of the terminal, and the time when the terminal sends the second uplink packet;
  • the T1 time is the sending time of the uplink packet.
  • the downlink delay monitoring operation, the first downlink delay monitoring operation and/or the second downlink delay monitoring operation include at least one of the following:
  • the header information includes: T3 time, T3 time is the sending time of the first downlink packet;
  • the round-trip delay monitoring operation includes at least one of the following:
  • the T2 time is the time when the first uplink packet is received
  • the header information of the first uplink packet includes at least one of the following: T1 time, T11 time, third uplink delay;
  • Determining the first uplink delay includes one of the following: obtaining the first uplink delay according to T2-T11, and obtaining the first uplink delay according to T2-T1+third uplink delay;
  • T3 time is the sending time of the first downlink packet
  • the T11 time is one of the following: the time when the RAN network element schedules the second uplink packet of the terminal, and the time when the terminal sends the second uplink packet;
  • the T1 time is the sending time of the first uplink packet.
  • the second communication device provided in the embodiment of the present application can implement various processes implemented in the method embodiment in FIG. 3 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 10 is a schematic structural diagram of a third communication device provided by an embodiment of the present application. As shown in FIG. 10, the third communication device 1000 includes:
  • a third obtaining unit 1010 configured to obtain fifth information
  • a third executing unit 1020 configured to execute a third operation according to the fifth information
  • the execution of the third operation includes at least one of the following:
  • the second information includes at least one of the following: a delay monitoring strategy, a first QoS strategy, and first indication information;
  • the first indication information is used to indicate one of the following: performing delay guarantee according to the delay monitoring result and/or the first QoS configuration information; performing delay guarantee according to the delay monitoring result and/or the third round-trip delay budget;
  • the fifth information includes at least one of the following: description information of the first service data flow; delay monitoring requirements; a first QoS requirement, the first QoS requirement being the QoS requirement of the first service data flow;
  • the first QoS requirement includes at least one of the following;
  • the fifth indication information is used to indicate one of the following: the first round-trip delay requirement is twice the value of the one-way delay budget, and the first round-trip delay requirement is the first uplink delay requirement and The sum of the first downlink delay requirements;
  • the sixth indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • Seventh indication information where the seventh indication information is used to indicate that: the first round-trip delay cannot exceed the first round-trip delay requirement.
  • the third communication device determines second information according to the fifth information, including:
  • the third communication device maps the first uplink QoS requirement or the first uplink QoS requirement according to the first uplink delay requirement.
  • QoS budget where the third communication device maps a first downlink QoS requirement or a first downlink QoS budget according to the first downlink delay requirement;
  • the third communication device determines the first round-trip delay requirement or The first round-trip delay budget is divided to obtain the first uplink QoS requirement or the first uplink QoS budget, and the first downlink QoS requirement or the first downlink QoS budget.
  • the first QoS policy includes at least one of the following;
  • the fifth indication information is used to indicate one of the following: the first round-trip delay budget is twice the value of the one-way delay budget, the first round-trip delay budget is the first uplink delay requirement and The sum of the first downlink delay budget;
  • the sixth indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • Seventh indication information where the seventh indication information is used to indicate that: the first round-trip delay cannot exceed the first round-trip delay budget.
  • the delay budget is represented by a delay budget parameter, or represented by a QoS identifier (such as 5QI). Since the value of the QoS identifier is in one-to-one correspondence with the delay budget, it can be represented.
  • the unidirectional delay budget represents the first uplink delay budget and/or the first downlink delay budget, and the first uplink delay budget is the same as the first downlink delay budget.
  • the delay monitoring strategy includes at least one of the following:
  • the time delay required to be measured includes at least one of the following: first uplink time delay, first downlink time delay, first round-trip time delay, second uplink time delay, second downlink time delay, and second round-trip time delay;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN network element.
  • the delay required to be measured is one of the following: a delay calculated by the RAN network element, and a delay measured by the anchor point gateway and sent to the RAN network element.
  • the first QoS policy is one of the following: the QoS policy of the first data channel, the QoS policy of the second data channel and/or the third data channel, and the QoS policy of the first service data flow;
  • the delay monitoring strategy is one of the following: a delay monitoring strategy for the first data channel, a delay monitoring strategy for the second data channel and/or the third data channel;
  • the first data channel is used for uplink and/or downlink
  • the second data channel is used for uplink
  • the third data channel is used for downlink
  • the third communication device configures a delay monitoring policy for the first communication device or the second communication device according to a requirement of the fifth communication device.
  • the third communication device provided in the embodiment of the present application can implement various processes implemented in the method embodiment in FIG. 4 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 11 is a schematic structural diagram of a fourth communication device provided by an embodiment of the present application. As shown in FIG. 11, the fourth communication device 1100 includes:
  • the fourth acquiring unit 1110 is configured to acquire second information, where the second information includes at least one of the following: delay monitoring requirements or delay monitoring policies, first QoS requirements or first QoS policies, and first indication information;
  • the fourth execution unit 1120 is configured to execute a fourth operation according to the second information, and the execution of the fourth operation includes at least one of the following:
  • the first information includes at least one of the following:
  • the first indication information is used to indicate one of the following: perform delay guarantee according to the delay monitoring result and/or the first QoS configuration information; according to the delay monitoring result and/or the third round-trip delay budget Carry out delay protection;
  • the first QoS configuration information includes at least one of the following;
  • the first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget are The first round-trip delay budget, the first uplink delay budget, and the first downlink delay budget
  • the delay budget of the data channel is the delay budget of the data channel
  • the second indication information is used to indicate one of the following: the first round-trip delay budget is twice the value of the delay budget of the data channel, and the first round-trip delay budget is the first uplink delay budget and the sum of the first downlink delay budget;
  • the third indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • Fourth indication information where the fourth indication information is used to indicate: the first round-trip delay cannot exceed the first round-trip delay requirement;
  • the delay monitoring configuration information includes at least one of the following: the delay required to be measured includes at least one of the following: the first uplink delay, the first downlink delay, the first round-trip delay, and the second uplink delay , the second downlink time delay, the second round-trip time delay;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN.
  • the first QoS requirement includes at least one of the following:
  • the first QoS requirement includes at least one of the following;
  • the fifth indication information is used to indicate one of the following: the first round-trip delay requirement is twice the value of the one-way delay budget, and the first round-trip delay requirement is the first uplink delay requirement and The sum of the first downlink delay requirements;
  • the sixth indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • the seventh indication information is used to indicate: the first round-trip delay cannot exceed the first round-trip delay requirement;
  • the first QoS policy includes at least one of the following;
  • the fifth indication information is used to indicate one of the following: the first round-trip delay budget is twice the value of the one-way delay budget, the first round-trip delay budget is the first uplink delay requirement and The sum of the first downlink delay budget;
  • the sixth indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • Seventh indication information where the seventh indication information is used to indicate that: the first round-trip delay cannot exceed the first round-trip delay budget.
  • the latency monitoring requirement or latency monitoring strategy includes at least one of the following:
  • the time delay required to be measured includes at least one of the following: first uplink time delay, first downlink time delay, first round-trip time delay, second uplink time delay, second downlink time delay, and second round-trip time delay;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN.
  • the delay required to be measured is one of the following: a delay calculated by the RAN network element, and a delay measured by the anchor point gateway and sent to the RAN network element.
  • the first QoS configuration information is one of the following: QoS configuration information of the first data channel, QoS configuration information of the second data channel and/or the third data channel;
  • the delay monitoring configuration information is one of the following: delay monitoring configuration information of the first data channel, delay monitoring configuration information of the second data channel and/or the third data channel;
  • the first data channel is used for uplink and/or downlink
  • the second data channel is used for uplink
  • the third data channel is used for downlink
  • the fourth communication device provided in the embodiment of the present application can implement various processes implemented in the method embodiment in FIG. 5 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 12 is a schematic structural diagram of a fifth communication device provided by an embodiment of the present application. As shown in FIG. 12, the fifth communication device 1200 includes:
  • the first sending unit 1210 is configured to send fifth information, where the fifth information includes at least one of the following: description information of the first service data flow; a delay monitoring requirement; a first QoS requirement, and the first QoS requirement is QoS requirements of the first service data flow;
  • the first QoS requirement includes at least one of the following;
  • the fifth indication information is used to indicate one of the following: the first round-trip delay requirement is twice the value of the one-way delay budget, and the first round-trip delay requirement is the first uplink delay requirement and The sum of the first downlink delay requirements;
  • the sixth indication information is used to indicate: the uplink delay budget and the downlink delay budget can be different, and the uplink delay budget and the downlink delay budget can only be the same;
  • the seventh indication information is used to indicate: the first round-trip delay cannot exceed the first round-trip delay requirement;
  • the delay monitoring requirement includes at least one of the following:
  • the time delay required to be measured includes at least one of the following: first uplink time delay, first downlink time delay, first round-trip time delay, second uplink time delay, second downlink time delay, and second round-trip time delay;
  • the first round-trip delay is the round-trip delay between the terminal and the anchor gateway
  • the second round-trip delay is the round-trip delay between the RAN network element and the anchor gateway
  • the first uplink delay is the uplink delay from the terminal to the anchor gateway
  • the first downlink delay is the downlink delay from the anchor gateway to the terminal
  • the second uplink delay is the uplink delay from the RAN network element to the anchor gateway
  • the second downlink delay is the downlink delay from the anchor gateway to the RAN.
  • the first uplink delay requirement is used to request to ensure that the first uplink delay of the first service data flow does not exceed the first uplink delay requirement
  • the first downlink delay requirement is used to request to ensure that the first downlink delay of the first service data flow does not exceed the first downlink delay requirement
  • the first round-trip delay requirement is used to request to ensure that the first round-trip delay of the first service data flow does not exceed the first round-trip delay requirement.
  • the first round-trip delay requirement is one of the following: twice the value of the one-way delay budget, and the sum of the first uplink delay requirement and the first downlink delay requirement.
  • the fifth communication device provided in the embodiment of the present application can implement various processes implemented in the method embodiment in FIG. 6 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application also provides a communication device 1300, including a processor 1301 and a memory 1302, and the memory 1302 stores programs or instructions that can run on the processor 1301, such as
  • the communication device 1300 is a terminal, when the program or instruction is executed by the processor 1301, each step of the above QoS control method embodiment can be realized, and the same technical effect can be achieved.
  • the communication device 1300 is a network-side device, when the program or instruction is executed by the processor 1301, each step of the above-mentioned QoS control method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a network side device, the network side device may be a first communication device, a second communication device, a third communication device, a fourth communication device or a fifth communication device, and the network side device includes a processor and a communication interface, the network-side device embodiment corresponds to the above-mentioned QoS control method embodiment, each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1400 includes: an antenna 1401 , a radio frequency device 1402 , a baseband device 1403 , a processor 1404 and a memory 1405 .
  • the antenna 1401 is connected to the radio frequency device 1402 .
  • the radio frequency device 1402 receives information through the antenna 1401, and sends the received information to the baseband device 1403 for processing.
  • the baseband device 1403 processes the information to be sent and sends it to the radio frequency device 1402
  • the radio frequency device 1402 processes the received information and sends it out through the antenna 1401 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 1403, where the baseband device 1403 includes a baseband processor.
  • the baseband device 1403 may include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 1406, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 1406 such as a common public radio interface (common public radio interface, CPRI).
  • the network side device 1400 in this embodiment of the present invention further includes: instructions or programs stored in the memory 1405 and executable on the processor 1404, and the processor 1404 calls the instructions or programs in the memory 1405 to execute the The method of module execution achieves the same technical effect, so in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1500 includes: a processor 1501 , a network interface 1502 and a memory 1503 .
  • the network interface 1502 is, for example, a common public radio interface (common public radio interface, CPRI).
  • the network-side device 1500 in this embodiment of the present invention further includes: instructions or programs stored in the memory 1503 and executable on the processor 1501, and the processor 1501 calls the instructions or programs in the memory 1503 to execute FIGS. 9-12
  • the methods executed by each module shown in the figure achieve the same technical effect, so in order to avoid repetition, they are not repeated here.
  • the embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, each process of the above-mentioned QoS control method embodiment is realized, and can achieve the same To avoid repetition, the technical effects will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above QoS control method embodiment Each process can achieve the same technical effect, so in order to avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above-mentioned QoS control method embodiment
  • the computer program/program product is executed by at least one processor to implement the above-mentioned QoS control method embodiment
  • the embodiment of the present application also provides a communication system, including: a first communication device, a second communication device, a third communication device, a fourth communication device, a fifth communication device, the first communication device, the second communication device , the third communication device, the fourth communication device, and the fifth communication device may be used to execute the steps of the QoS control method described above.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例提供一种QoS控制方法及通信设备,应用于第一通信设备的QoS控制方法包括:第一通信设备获取第一信息;第一通信设备根据第一信息,执行第一操作;其中,第一信息包括以下至少一项:时延监控配置信息;第一QoS配置信息;第一指示信息;执行第一操作包括以下至少一项:确定以下至少一项:第三往返时延预算,第三上行时延预算,第三下行时延预算;确定第一往返时延预算为以下之一:数据通道的时延预算的两倍取值,第一QoS配置信息中的第一往返时延预算,第一上行时延预算与第一下行时延预算的和;执行时延监控操作;根据时延监控结果和/或第一QoS配置信息进行时延保障。

Description

QoS控制方法及通信设备
相关申请的交叉引用
本申请要求于2022年03月04日提交的申请号为2022102103098,发明名称为“QoS控制方法及通信设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本发明实施例涉及无线通信技术领域,尤其涉及一种QoS控制方法及通信设备。
背景技术
一些业务(如扩展现实(EXtended Reality,XR)媒体业务,云游戏业务)中存在往返(round trip)时延保障需求。
本质上,是业务的上第一下行时延要求不均衡导致的。比如游戏业务,上行数据包比较小,往往是用户的动作包,尽快地发给服务器才能避免画面抖动,时延预算小一些。下行数据包则比较大,往往是游戏的背景画面和状态包,时延预算要求则可以大一些。
如何进行时延调度/控制,以保障往返时延是本发明要解决的问题。
发明内容
本发明实施例提供一种QoS控制方法及通信设备,用于解决如何保障往返时延的问题。
第一方面,提供了一种QoS控制方法,应用于第一通信设备,该方法包括:
第一通信设备获取第一信息;
所述第一通信设备根据所述第一信息,执行第一操作;
其中,所述第一信息包括以下至少一项:
时延监控配置信息;
第一QoS配置信息;
第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
所述执行第一操作包括以下至少一项:
确定以下至少一项:第三往返时延预算,第三上行时延预算,第三下行时延预算;
确定第一往返时延预算为以下之一:数据通道的时延预算的两倍取值,第一QoS配置信息中的第一往返时延预算,第一上行时延预算与第一下行时延预算的和;
执行时延监控操作;
根据时延监控结果和/或第一QoS配置信息进行时延保障;
其中,所述第一QoS配置信息,包括以下至少一项;
第一往返时延预算,第一上行时延预算,第一下行时延预算;
第三往返时延预算,第三上行时延预算,第三下行时延预算;
数据通道的时延预算;
第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延预算的和;
第三指示信息,所述第三指示信息用于指示以下之一:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第四指示信息,所述第四指示信息用于指示:往返时延不能够超过往返时延预算;
其中,所述第一往返时延预算为终端与锚点网关间的往返时延预算;
所述第一上行时延预算为从终端到锚点网关的上行时延预算;
所述第一下行时延预算为从锚点网关到终端的下行时延预算;
所述第三上行时延预算为终端到RAN网元的上行时延预算;
所述第三下行时延预算为RAN网元到终端的下行时延预算;
所述第三往返时延预算为终端与RAN网元间的往返时延预算。
第二方面,提供了一种QoS控制方法,应用于第二通信设备,该方法包括:
第二通信设备获取第一信息;
所述第二通信设备根据所述第一信息,执行第二操作;
其中,所述第一信息包括以下至少一项:
时延监控配置信息;
第一QoS配置信息;
第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
所述第二操作包括以下至少一项:
时延监控操作;
其中,所述第一QoS配置信息,包括以下至少一项;
第一往返时延预算,第一上行时延预算,第一下行时延预算;
第三往返时延预算,第三上行时延预算,第三下行时延预算;
数据通道的时延预算;
第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延 预算的和;
第三指示信息,所述第三指示信息用于指示以下之一:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第四指示信息,所述第四指示信息用于指示:往返时延不能够超过往返时延预算。
第三方面,提供了一种QoS控制方法,应用于第三通信设备,该方法包括:
第三通信设备获取第五信息;
所述第三通信设备根据所述第五信息,执行第三操作;
所述执行第三操作包括以下至少一项:
确定第二信息;
发送第二信息;
其中,
所述第二信息包括以下至少一项:时延监控策略,第一QoS策略,第一指示信息;
所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
其中,所述第五信息包括以下至少一项:第一业务数据流的描述信息;时延监控要求;第一QoS要求,所述第一QoS要求为所述第一业务数据流的QoS要求;
其中,所述第一QoS要求,包括以下至少一项;
第一往返时延要求;
第一上行时延要求;
第一下行时延要求;
单向时延预算;
第五指示信息,所述第五示信息用于指示以下之一:第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和;
第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延要求。
第四方面,提供了一种QoS控制方法,应用于第四通信设备,该方法包括:
第四通信设备获取第二信息,所述第二信息包括以下至少一项:时延监控要求或时延监控策略,第一QoS要求或第一QoS策略,第一指示信息;
所述第四通信设备根据所述第二信息,执行第四操作,所述执行第四操作包括以下至少一项:
确定第一信息;
发送第一信息;
其中,所述第一信息包括以下至少一项:
时延监控配置信息;
第一QoS配置信息;
第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
其中,
所述第一QoS配置信息,包括以下至少一项;
第一往返时延预算,第一上行时延预算,第一下行时延预算;
第三往返时延预算,第三上行时延预算,第三下行时延预算;
数据通道的时延预算;
第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延预算的和;
第三指示信息,所述第三指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预只能相同;
第四指示信息,所述第四指示信息用于指示:第一往返时延不能够超过第一往返时延要求;
其中,
所述时延监控配置信息,包括以下至少一项:要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
其中,
第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,
第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延。
第五方面,提供了一种QoS控制方法,应用于第五通信设备,该方法包括:
第五通信设备发送第五信息,所述第五信息包括以下至少一项:第一业务数据流的描述信息;时延监控要求;第一QoS要求,所述第一QoS要求为所述第一业务数据流的QoS要求;
其中,所述第一QoS要求,包括以下至少一项;
第一往返时延要求;
第一上行时延要求;
第一下行时延要求;
单向时延预算;
第五指示信息,所述第五示信息用于指示以下之一:第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和;
第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延要求;
其中,所述时延监控要求包括以下至少一项:
要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
其中,
第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延。
第六方面,提供了一种第一通信设备,该第一通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第七方面,提供了一种第一通信设备,包括处理器及通信接口,其中,所述通信接口用于获取第一信息,所述处理器用于根据所述第一信息,执行第一操作。
第八方面,提供了一种第二通信设备,该第二通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第九方面,提供了一种第二通信设备,包括处理器及通信接口,其中,所述通信接口用于获取第一信息,所述处理器用于根据所述第一信息,执行第二操作。
第十方面,提供了一种第三通信设备,该第三通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第十一方面,提供了一种第三通信设备,包括处理器及通信接口,其中,所述通信接口用于获取第五信息,所述处理器用于根据所述第五信息,执行第三操作。
第十二方面,提供了一种第四通信设备,该第四通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器 执行时实现如第四方面所述的方法的步骤。
第十三方面,提供了一种第四通信设备,包括处理器及通信接口,其中,所述通信接口用于获取第二信息,所述处理器用于根据所述第二信息,执行第四操作。
第十四方面,提供了一种第五通信设备,该第五通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第五方面所述的方法的步骤。
第十五方面,提供了一种第五通信设备,包括处理器及通信接口,其中,所述通信接口用于发送第五信息。
第十六方面,提供了一种通信系统,包括:第一通信设备,第二通信设备,第三通信设备,第四通信设备,第五通信设备,所述第一通信设备可用于执行如第一方面所述的QoS控制方法的步骤,所述第二通信设备可用于执行如第二方面所述的QoS控制方法的步骤,所述第三通信设备可用于执行如第三方面所述的QoS控制方法的步骤,所述第四通信设备可用于执行如第四方面所述的QoS控制方法的步骤,所述第五通信设备可用于执行如第五方面所述的QoS控制方法的步骤。
第十七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤,或者实现如第四方面所述的方法的步骤,或者实现如第五方面所述的方法的步骤。
第十八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤,或者实现如第四方面所述的方法的步骤,或者实现如第五方面所述的方法的步骤。
第十九方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤,或者实现如第四方面所述的方法的步骤,或者实现如第五方面所述的方法的步骤。
在本发明实施例中,第一通信设备获取时延监控配置信息,第一QoS配置信息和第一指示信息中的至少一项,确定以下至少一项:第三往返时延预算,第三上行时延预算,第三下行时延预算;确定第一往返时延预算,执行时延监控操作,和/或,根据时延监控结果和/或第一QoS配置信息进行时延保障,从而第一通信设备可以进行时延调度/控制,实现往返时延保障。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通 技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的一种无线通信系统的架构示意图;
图2为本发明实施例提供的QoS控制方法的流程示意图之一;
图3为本发明实施例提供的QoS控制方法的流程示意图之二;
图4为本发明实施例提供的QoS控制方法的流程示意图之三;
图5为本发明实施例提供的QoS控制方法的流程示意图之四;
图6为本发明实施例提供的QoS控制方法的流程示意图之五;
图7a为本发明实施例提供的QoS控制方法的交互流程示意图之一;
图7b为本发明实施例提供的QoS控制方法的交互流程示意图之二;
图8为本申请实施例提供的第一通信设备的结构示意图;
图9为本申请实施例提供的第二通信设备的结构示意图;
图10为本申请实施例提供的第三通信设备的结构示意图;
图11为本申请实施例提供的第四通信设备的结构示意图;
图12为本申请实施例提供的第五通信设备的结构示意图;
图13为本申请实施例提供的通信设备的结构示意图;
图14为本申请实施例提供的网络侧设备的结构示意图之一;
图15为本申请实施例提供的网络侧设备的结构示意图之二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。
此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。字符“/”一般 表示前后关联对象是一种“或”的关系。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本文所描述的技术不限于第五代移动通信(5th-generation,5G)系统以及后续演进通信系统,以及不限于LTE/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。
术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进型UTRA((Evolution-UTRA,E-UTRA))、IEEE 802.11((Wi-Fi))、IEEE 802.16((WiMAX))、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
为了便于更好地理解本发明实施例,下面先介绍以下技术点。
一些业务(如扩展现实(EXtended Reality,XR)媒体业务,云游戏业务)中存在往返(round trip)时延保障需求。锚点网关为终结N6接口的网关。(N6为网络的网关与数据网(data network)间接口,N6也可以称为其他名称)
本质上,是业务的上第一下行时延不均衡导致的。比如游戏业务,上行数据包比较小,往往是用户的动作包,尽快地发给服务器才能避免画面抖动,时延预算小一些。下行数据包则比较大,往往是游戏的背景画面和状态包,时延预算要求则可以大一些。 但现有的数据通道的上下行时延预算是一样的。
如何保障round trip时延是本发明要解决的问题,即上行或上行的时延开销可以超过QoS流的时延预算(假设QoS流或5QI对应的时延预算是1/2的往返时延预算),当上行时延开销和下行时延开销的和不能超过往返时延预算(即两倍的QoS流时延预算)。当RAN来执行往返(Round Trip)时延控制时,如果RAN获得的是终端到锚点网关间round trip时延(第一往返时延)预算或要求往返时延开销不超过两倍的数据通道的时延预算,一种方法是RAN通过监控N3的round trip时延(第二往返时延)开销来确定UE与RAN间的时延(第三往返时延)预算,使得第一上行时延开销和第二下行时延开销的和不能超过第一往返时延预算。
目前,QoS monitoring可以实现N3接口RTT时延的统计,需要RAN与UPF来配合。QoS monitoring的方法是汇聚到UPF生成RTT时延。
而本发明要解决的方法是RAN来监控N3接口时延开销进行round trip时延调度。因此方向上跟当前的QoS monitoring方法是相反的,需要定义新的时延监控配置,是本发明要解决的问题之一。
当PCF来执行round trip时延控制时,则可以不改变QoS monitoring的方向,但订购的是UE与锚点网关间的时延而不是RAN网元与锚点网关间的时延。
问题1:如何进行时延调度/控制,以保障round trip时延。
问题2:RAN来监控N3接口时延开销进行round trip时延调度,需要定义新的时延监控配置。
参考图1,为本发明实施例提供的一种无线通信系统的架构示意图。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base  Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
可选的,获取可以理解为从配置获得、接收、通过请求后接收、通过自学习获取、根据未收到的信息推导获取或者是根据接收的信息处理后获得,具体可根据实际需要确定,本发明实施例对此不作限定。比如当未收到设备发送的某个能力指示信息时可推导出该设备不支持该能力。
可选的,发送可以包含广播,系统消息中广播,响应请求后返回。
本发明一种可选实施例中,通信设备可以包括以下至少一项:通信网元和终端。
本发明一种实施例中,通信网元可以包括以下至少一项:核心网网元和无线接入网网元。
本发明实施例中,核心网网元(CN网元)可以包含但不限于如下至少一项:核心网设备、核心网节点、核心网功能、核心网网元、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、服务网关(serving GW,SGW)、PDN网关(PDN Gate Way,PDN网关)、策略控制功能(Policy Control Function、PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、GPRS服务支持节点(Serving GPRS Support Node,SGSN)、网关GPRS支持节点(Gateway GPRS Support Node,GGSN)、应用功能(Application Funcation)。
本发明实施例中,RAN网元可以包含但不限于至少以下之一:无线接入网设备、无线接入网节点、无线接入网功能、无线接入网单元、3GPP无线接入网、非3GPP无线接入网、集中单元(Centralized Unit,CU)、分布式单元(Distributed Unit,DU)、基站、演进型基站(evolved Node B,eNB)、5G基站(gNB)、无线网络控制器(Radio Network Controller,RNC)、基站(NodeB)、非3GPP互操作功能(Non-3GPP Inter Working Function,N3IWF)、接入控制(Access Controller,AC)节点、接入点(Access Point,AP)设备或无线局域网(Wireless Local Area Networks,WLAN)节点、N3IWF。
基站,可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B)及5G基站(gNB),本发明实施例并不限定。
本发明一种可选的实施例中,UE可以包括以下之一:终端设备、终端设备和卡、卡。
本发明一种可选的实施例中,卡可以包括以下之一:SIM卡、USIM卡、eSIM。
本发明一种可选的实施例中,终端可以包括支持终端功能的中继和/或支持中继功能的终端。终端也可以称作终端设备或者用户终端(User Equipment,UE),终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本发明实施例中并不限定终端的具体类型。
在本发明一种可选实施例中,所述时延为时延开销。所述时延预算可以理解为时延的最大值。即真实的时延不能超过所述时延预算的取值。
在本发明一种可选实施例中,时延要求等同于时延预算。
在本发明一种可选实施例中,QoS要求等同于QoS参数要求。
一种实施方式中,所述时延预算由时延预算参数体现,或由QoS标识表示(如5QI5G QoS Identifier),由于标准化QoS标识取值与时延预算一一对应,所以可以体现。
一种实施方式中,单向时延预算代表上行时延预算(如第一上行时延预算,第二上行时延预算,第三上行时延预算)和/或下行时延预算(如第一下行时延预算,第二下行时延预算,第三下行时延预算),且所述上行时延预算和所述下行时延预算相同。
一种实施方式中,第一数据通道的QoS配置信息中的数据通道的时延预算表示上行时延预算(如第一上行时延预算,第二上行时延预算,第三上行时延预算)和/或下行时延预算((如第一下行时延预算,第二下行时延预算,第三下行时延预算),且所述上行时延预算和所述下行时延预算相同。
一种实施方式中,第二数据通道的QoS配置信息中的数据通道的时延预算表示第二数据通道的时延预算;所述第二数据通道的时延预算代表上行时延预算(如第一上 行时延预算,第二上行时延预算,第三上行时延预算)。
一种实施方式中,第三数据通道的QoS配置信息中的数据通道的时延预算表示第三数据通道的时延预算;所述第三数据通道的时延预算代表下行时延预算(如第一下行时延预算,第二下行时延预算,第三下行时延预算)。
在本发明一种可选的实施例中,时延监控包括时延测量,也可以成为时延监测。所述时延监控可以代表测量和/或监控时延的含义。在本发明一种可选实施例中,所述时延监控结果为所述测量到的时延取值。在本发明一种可选实施例中,时延监控操作表示对所述时延进行测量。
1)在本发明一种可选的实施例中,第一往返时延为终端(如UE)与锚点网关间往返时延。锚点网关为终结N6接口的网关。其中,N6为网络的网关与数据网(data network)间接口,N6也可以称为其他名称。
可选地,终端与锚点网关间往返时延包括以下至少一项:从终端到锚点网关上行时延,从锚点网关到终端下行时延。
进一步地,终端与锚点网关间往返时延还可以包括以下至少一项:数据在终端的驻留时延,数据在RAN网元的驻留时延,数据在锚点网关的驻留时延。
进一步地,从终端到锚点网关上行时延还可以包括以下至少一项:上行数据在终端的驻留时延,上行数据在RAN网元的驻留时延,上行数据在锚点网关的驻留时延。
进一步地,从锚点网关到终端下行时延还可以包括以下至少一项:下行数据在终端的驻留时延,下行数据在RAN网元的驻留时延,下行数据在锚点网关的驻留时延。
在本发明一种可选的实施例中,从终端到锚点网关上行时延或第一上行时延为数据从终端到锚点网关发送所需时间。
在本发明一种可选的实施例中,从锚点网关到终端下行时延或第一下行时延为数据从锚点网关到终端发送所需时间。
2)在本发明一种可选的实施例中,第二往返时延为RAN网元与锚点网关间往返时延。
可选地,RAN网元与锚点网关间往返时延包括以下至少一项:从RAN网元到锚点网关上行时延,从锚点网关到RAN网元下行时延。
进一步地,RAN网元与锚点网关间往返时延还可以包括以下至少一项:数据在RAN网元的驻留时延,数据在锚点网关的驻留时延。
进一步地,从RAN网元到锚点网关上行时延还可以包括以下至少一项:上行数据在RAN网元的驻留时延,上行数据在锚点网关的驻留时延。比如,从RAN网元到锚点网关上行时延可以由以下组成或为以下取值的和:RAN网元到锚点网关间上行时延,上行数据在RAN网元的驻留时延,上行数据在锚点网关的驻留时延。
进一步地,从锚点网关到RAN网元下行时延还可以包括以下至少一项:下行数据在RAN网元的驻留时延,下行数据在锚点网关的驻留时延。比如,从RAN网元到 锚点网关下行时延可以由以下组成或为以下取值的和:从锚点网关到RAN网元间下行时延,下行数据在RAN网元的驻留时延,下行数据在锚点网关的驻留时延。
在本发明一种可选的实施例中,从RAN网元到锚点网关上行时延或第二上行时延为数据从RAN网元到锚点网关发送所需时间。
在本发明一种可选的实施例中,从锚点网关到RAN网元下行时延或第二下行时延为数据从锚点网关到终端发送所需时间。
3)在本发明一种可选的实施例中,第三往返时延为终端与RAN网元间往返时延。
可选地,终端与RAN网元间往返时延包括以下至少一项:从终端到RAN网元到锚点网关上行时延,从RAN网元到终端下行时延。
进一步地,终端与RAN网元间往返时延还包括以下至少一项:数据在RAN的驻留时延,数据在终端的驻留时延。
进一步地,从终端到RAN网元上行时延还可以包括以下至少一项:上行数据在RAN的驻留时延,上行数据在终端的驻留时延。比如,终端到RAN网元上行时延可以由以下组成或为以下取值的和:终端到RAN网元间上行时延,上行数据在RAN网元的驻留时延,上行数据在终端的驻留时延。
进一步地,从RAN网元到终端下行时延还可以包括以下至少一项:下行数据在RAN的驻留时延,下行数据在终端的驻留时延。比如,从RAN网元到终端下下行时延可以由以下组成或为以下取值的和:从RAN网元到终端下间下行时延,下行数据在RAN网元的驻留时延,下行数据在终端的驻留时延。
1)在本发明一种可选的实施例中,第一往返时延预算为终端与锚点网关间往返时延预算。可选地,终端与锚点网关间往返时延预算包括以下至少一项:从终端到锚点网关上行时延预算,从锚点网关到终端下行时延预算。
进一步地,终端与锚点网关间往返时延预算还可以包括以下至少一项:数据在终端的驻留时延预算,数据在RAN网元的驻留时延预算,数据在锚点网关的驻留时延预算。
进一步地,从终端到锚点网关上行时延预算还可以包括以下至少一项:上行数据在终端的驻留时延预算,上行数据在RAN网元的驻留时延预算,上行数据在锚点网关的驻留时延预算。
进一步地,从锚点网关到终端下行时延预算还可以包括以下至少一项:下行数据在终端的驻留时延预算,下行数据在RAN网元的驻留时延预算,下行数据在锚点网关的驻留时延预算。
在本发明一种可选的实施例中,从终端到锚点网关上行时延预算或第一上行时延预算为数据从终端到锚点网关发送所需时间。
在本发明一种可选的实施例中,从锚点网关到终端下行时延预算或第一下行时延预算为数据从锚点网关到终端发送所需时间。
2)在本发明一种可选的实施例中,第二往返时延预算为RAN网元与锚点网关间往返时延预算。
可选地,RAN网元与锚点网关间往返时延预算包括以下至少一项:从RAN网元到锚点网关上行时延预算,从锚点网关到RAN网元下行时延预算。
进一步地,RAN网元与锚点网关间往返时延预算还可以包括以下至少一项:数据在RAN网元的驻留时延预算,数据在锚点网关的驻留时延预算。
进一步地,从RAN网元到锚点网关上行时延预算还可以包括以下至少一项:上行数据在RAN网元的驻留时延预算,上行数据在锚点网关的驻留时延预算。比如,从RAN网元到锚点网关上行时延预算可以由以下组成或为以下取值的和:RAN网元到锚点网关间上行时延预算,上行数据在RAN网元的驻留时延预算,上行数据在锚点网关的驻留时延预算。
进一步地,从锚点网关到RAN网元下行时延预算还可以包括以下至少一项:下行数据在RAN网元的驻留时延预算,下行数据在锚点网关的驻留时延预算。比如,从RAN网元到锚点网关下行时延预算可以由以下组成或为以下取值的和:从锚点网关到RAN网元间下行时延预算,下行数据在RAN网元的驻留时延预算,下行数据在锚点网关的驻留时延预算。
在本发明一种可选的实施例中,从RAN网元到锚点网关上行时延预算或第二上行时延预算为数据从RAN网元到锚点网关发送所需时间。
在本发明一种可选的实施例中,从锚点网关到RAN网元下行时延预算或第二下行时延预算为数据从锚点网关到终端发送所需时间。
3)在本发明一种可选的实施例中,第三往返时延预算为终端与RAN网元间往返时延预算。
可选地,终端与RAN网元间往返时延预算包括以下至少一项:从终端到RAN网元到锚点网关上行时延预算,从RAN网元到终端下行时延预算。
进一步地,终端与RAN网元间往返时延预算还包括以下至少一项:数据在RAN的驻留时延预算,数据在终端的驻留时延预算。
进一步地,从终端到RAN网元上行时延预算还可以包括以下至少一项:上行数据在RAN的驻留时延预算,上行数据在终端的驻留时延预算。比如,终端到RAN网元上行时延预算可以由以下组成或为以下取值的和:终端到RAN网元间上行时延预算,上行数据在RAN网元的驻留时延预算,上行数据在终端的驻留时延预算。
进一步地,从RAN网元到终端下行时延预算还可以包括以下至少一项:下行数据在RAN的驻留时延预算,下行数据在终端的驻留时延预算。比如,从RAN网元到终端下下行时延预算可以由以下组成或为以下取值的和:从RAN网元到终端下间下行时延预算,下行数据在RAN网元的驻留时延预算,下行数据在终端的驻留时延预算。
在本发明一种可选的实施例中,从终端到RAN网元上行时延或第三上行时延为数据从从终端到RAN网元发送所需时间。
在本发明一种可选的实施例中,从RAN网元到终端下行时延或第三下行时延为数据从RAN网元到终端发送所需时间。
在本发明一种可选的实施例中,上行测量包可以简称为上行包。所述上行测量包为用于时延测量的上行方向的数据包。
在本发明一种可选的实施例中,下行测量包可以简称为上行包。所述下行测量包为用于时延测量的下行方向的数据包。
在一些可选的实施例中,上行包或下行包是真实的业务数据包或为了时间监控生成的包。
在本发明一种可选实施例中,所述通道或数据通道可以包括以下至少一项:PDU会话、PDN连接,服务质量(Quality of Service,QoS)流、演进的分组系统(Evolved Packet System,EPS)承载、PDP上下文、DRB、SRB、网络安全协议(Internet Protocol Security,IPsec)关联。等。
本发明一种实施例中,NG接口也可以称为S1接口或N2接口,命名不受限制。
本发明一种实施例中,无线通信网络可以是以下至少一项:公网,非公网;或者第一网络可以是非公网。
在本发明一种实施例中,非公网是非公众网络的简称。非公众网络可以称为以下之一:非公众通信网络。非公网可以包括以下至少一种部署方式:物理的非公网,虚拟的非公网、实现在公网上的非公网。一种实施方式中,非公网为封闭的访问组(Closed Access Group,CAG)。一个CAG可以由一组终端组成。
在本发明一种实施例中,非公众网络可以包含或称为私有网络。私有网络可以称为以下之一:私有通信网络、私网、本地区域网络(LAN)、私有虚拟网络(PVN)、隔离的通信网络、专用的通信网络或其他命名。需要说明的是,在本发明实施例中对于命名方式不做具体限定。
在本发明一种实施例中,公网是公众网络的简称。公众网络可以称为以下之一:公众通信网络或其他命名。需要说明的是,在本发明实施例中对于命名方式不做具体限定。
在本发明一种实施例中,数据包大小可以称为数据包长度。
在本发明一种实施例中,数据包可以称为数据帧。
本发明一种可选实施例中,通信设备可以包括以下至少一项:通信网元和终端。
本发明一种实施例中,通信网元可以包括以下至少一项:核心网网元和无线接入网网元。
以下对本发明实施例的QoS控制方法进行说明。
请参考图2,本发明实施例提供了一种QoS控制方法,应用于第一通信设备。第 一通信设备包括但不限于以下之一:RAN网元,CN网元(比如但不限于PCF),所述方法包括:
步骤200、第一通信设备获取第一信息;
其中,所述第一信息包括以下至少一项:
时延监控配置信息;
第一QoS配置信息;
第一指示信息。
其中,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障。
其中,所述第一QoS配置信息,包括以下至少一项;
第一往返时延预算,第一上行时延预算,第一下行时延预算;
第三往返时延预算,第三上行时延预算,第三下行时延预算;
数据通道的时延预算;
第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延预算的和;
第三指示信息,所述第三指示信息用于指示以下之一:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第四指示信息,所述第四指示信息用于指示:往返时延不能够超过往返时延预算。
步骤201、所述第一通信设备根据所述第一信息,执行第一操作;
其中,所述执行第一操作包括以下至少一项:
确定以下至少一项:第三往返时延预算,第三上行时延预算,第三下行时延预算;
确定第一往返时延预算为以下之一:数据通道的时延预算的两倍取值,第一QoS配置信息中的第一往返时延预算,第一上行时延预算与第一下行时延预算的和;
执行时延监控操作;
根据时延监控结果和/或第一QoS配置信息进行时延保障。
一种实施方式中,第一QoS配置信息不包括以下至少一项:第三往返时延预算,第三上行时延预算,第三下行时延预算;第一通信设备可以根据第一QoS配置信息确定以下至少一项:第三往返时延预算,第三上行时延预算,第三下行时延预算。
一种实施方式中,所述“时延保障”是指调整时延预算,使得时延不超过时延预算。比如需要保障的是往返时延,当往返时延预算确定的情况下,当上行时延监控结果比较大,超出了上行时延预算的情况下,可以适当地调大上行时延预算,缩小下行时延预算,使得整体的往返时延不超过往返时延预算。反之亦然,当下行时延监控结果比较大,超出了下行时延预算的情况下,可以适当地调大下行时延预算,缩小上行时延预算,使得整体的往返时延不超过往返时延预算。
其中,所述第一往返时延预算为终端与锚点网关间的往返时延预算;
所述第一上行时延预算为从终端到锚点网关的上行时延预算;
所述第一下行时延预算为从锚点网关到终端的下行时延预算;
所述第三上行时延预算为终端到RAN网元的上行时延预算;
所述第三下行时延预算为RAN网元到终端的下行时延预算;
所述第三往返时延预算为终端与RAN网元间的往返时延预算。
可选地,所述时延监控配置信息包括:
要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
其中,
第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,
第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延。
可选地,所述要求测量的时延为以下之一:RAN网元负责计算的时延,锚点网关计算后发送给RAN网元的时延。
一种实施方式中,第N上行时延是RAN网元负责计算的,第N下行时延是RAN网元负责计算的,第N往返时延是RAN网元负责计算的,N可以取值以下之一:一,二。
一种实施方式中,第N上行时延是锚点网关计算后发送给RAN网元的,第N下行时延是锚点网关计算后发送给RAN网元的,第N往返时延是锚点网关计算后发送给RAN网元的N可以取值以下之一:一,二。
在一些可选的实施例中,所述第一QoS配置信息是以下之一:第一数据通道的QoS配置信息,第二数据通道和/或第三数据通道的QoS配置信息;
和/或
所述时延监控配置信息是以下之一:第一数据通道的时延监控配置信息,第二数据通道和/或第三数据通道的时延监控配置信息;
其中,所述第一数据通道用于上行和/或下行,所述第二数据通道用于上行,所述第三数据通道用于下行。
一种实施方式中,第一QoS配置信息中的上行时延相关的信息(如第一上行时延,第二上行时延)和/或数据通道的时延预算为第二数据通道的QoS配置信息。
一种实施方式中,第一QoS配置信息中下行时延相关的信息(如第一下行时延,第二下行时延)和/或数据通道的时延预算为第三数据通道的QoS配置信息。
一种实施方式中,第一QoS配置信息中往返时延相关信息(如第一往返时延,第二往返时延)、第二指示信息、第三指示信息、第四指示信息中的至少一项是第二数据通道和第三数据通道公共的QoS配置信息。
在一些可选的实施例中,所述时延监控操作包括以下至少一项:
上行时延监控操作,包括以下至少一项:第一上行时延监控操作;第二上行时延监控操作;第三上行时延监控操作;
下行时延监控操作,包括以下至少一项:第一下行时延监控操作;第二下行时延监控操作;第三下行时延监控操作;
往返时延监控操作,包括以下至少一项:第一往返时延监控操作,第二往返时延监控操作,第三往返时延监控操作;
其中,
第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第三往返时延为终端与RAN网元间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,
第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延,
第三上行时延为从终端到RAN网元的上行时延,
第三下行时延为从RAN网元到终端的下行时延。
在一些可选的实施例中,所述执行时延监控操作,和/或,根据时延监控结果和/或第一QoS配置信息进行时延保障包括:
在满足第一条件的情况下,执行时延监控操作,和/或,根据时延监控结果和/或第一QoS配置信息进行时延保障;
其中,所述第一条件包括以下至少一项:
第一上行时延超过以下之一:数据通道的时延预算,1/2第一往返时延预算,第一上行时延预算;
第一下行时延超过以下之一:数据通道的时延预算,1/2第一往返时延预算,第一下行时延预算;
第三上行时延超过以下之一:数据通道的终端与RAN网元间时延预算,1/2第三往返时延预算,第三上行时延预算;
第三下行时延超过以下之一:数据通道的终端与RAN网元间时延预算,1/2第一往返时延预算,第三下行时延预算。
在一些可选的实施例中,所述第一条件还包括以下至少一项:
所述第一上行时延与第一下行时延的和不超过第一往返时延预算;
所述第三上行时延与第三下行时延的和不超过第三往返时延预算。
在一些可选的实施例中,所述根据时延监控结果和/或第一QoS配置信息进行时延保障,包括以下至少一项:
根据时延监控结果和/或往返时延预算,确定或调整以下至少一项:上行时延预算,下行时延预算,第三往返时延预算;
保障第一往返时延不超过第一往返时延预算;
保障第一上行时延不超过第一上行时延预算;
保障第一下行时延不超过第一下行时延预算。
保障第三往返时延不超过第三往返时延预算;
保障第三上行时延不超过第三上行时延预算;
保障第三下行时延不超过第三下行时延预算;
保障第二往返时延不超过第二往返时延预算;
保障第二上行时延不超过第二上行时延预算;
保障第二下行时延不超过第二下行时延预算。
进一步地,所述时延监控结果包括以下至少一项:上行时延监控结果,下行时延监控结果,往返时延监控结果。
所述往返时延预算包括以下至少一项:第一往返时延预算,第二往返时延预算,第三往返时延预算。
一种实施方式,上行时延监控结果,包括以下至少一项:第一上行时延监控结果;第二上行时延监控结果;第三上行时延监控结果。
一种实施方式,下行时延监控结果,包括以下至少一项:第一下行时延监控结果;第二下行时延监控结果;第三下行时延监控结果。
一种实施方式,往返时延监控结果,包括以下至少一项:第一往返时延监控结果,第二往返时延监控结果,第三往返时延监控结果。
一种实施方式,上行时延预算,包括以下至少一项:第一上行时延预算;第二上行时延预算;第三上行时延预算。
一种实施方式,下行时延预算,包括以下至少一项:第一下行时延预算;第二下行时延预算;第三下行时延预算。
在一些可选的实施例中,根据时延监控结果和/或往返时延预算,确定或调整上行时延预算、下行时延预算和/或第三往返时延预算,包括以下至少一项:
根据第一往返时延预算,第一往返时延监控结果,第一上行时延监控结果,第一下行时延监控结果中的至少一项,确定或调整第一上行时延预算和/或第一下行时延预算;
根据第一往返时延预算,第一往返时延监控结果,第二上行时延监控结果,第二下行时延监控结果,第三上行时延监控结果,第三下行时延监控结果中的至少一项, 确定或调整以下至少一项:第三上行时延预算,第三下行时延预算;
根据第一往返时延预算,第一往返时延监控结果,第二往返时延监控结果,第二上行时延监控结果,第二下行时延监控结果中的至少一项,确定或调整第三往返时延预算。
可选地,所述第一上行时延监控操作包括以下至少一项:
记录T11时间;
记录T1时间;
确定第三上行时延;
为第一上行包添加包头信息,所述包头信息包括以下至少一项:T1时间,T11时间,第三上行时延;
发送所述第一上行包;
接收第一下行包,所述第一下行包的包头信息包括以下至少一项:T2时间,第一上行时延,第二上行时延,所述第一上行包的包头信息;
确定第一上行时延,包括以下之一:T2-T1+第三上行时延得出第一上行时延,T2-T11得出第一上行时延,第二上行时延+第三上行时延,从所述第一下行包的包头信息中直接得到第一上行时延;
其中,
所述T11时间是以下之一:RAN网元调度终端第二上行包的时间,终端发送第二上行包的时间;
所述T1时间是所述第一上行包的发送时间;
所述T2时间为所述第一上行包的接收时间。
可选地,所述第一下行时延监控操作包括以下至少一项:
接收第一下行包,所述第一下行包的包头信息包括:T3时间;
记录T4时间;
确定第三下行时延;
确定第一下行时延,包括:T4-T3+第三下行时延;
其中,
所述T3时间为所述第一下行包的发送时间;
所述T4时间为所述第一下行包的接收时间。
在一些可选的实施例中,所述第一往返时延监控操作包括以下至少一项:
记录T11时间;
记录T1时间;
确定第三上行时延;
为第一上行包添加包头信息,所述包头信息包括以下至少一项:T1时间,T11时间,第三上行时延;
发送所述第一上行包;
接收第一下行包,所述下行包的包头信息包括以下至少一项:T2时间,T3时间,第一上行时延,第二上行时延,所述第一上行包的包头信息;
确定第一往返时延,包括以下之一:((T2-T1)+(T4-T3)+第三下行时延+第三上行时延)得出第一往返时延,((T2-T11)+(T4-T3)+第三下行时延)得出第一往返时延,(第二上行时延+(T4-T3)+第三下行时延+第三上行时延)得出第一往返时延,(第一上行时延+(T4-T3)+第三下行时延)得出第一往返时延;
其中,
所述T11时间是以下之一:RAN网元调度终端第二上行包的时间,终端发送第二上行包的时间;
所述T1时间是所述第一上行包的发送时间;
所述T2时间为所述第一上行包的接收时间;
所述T3时间为所述第一下行包的发送时间;
所述T4时间为所述第一下行包的接收时间。
可选地,所述第二上行时延监控操作包括以下至少一项:
记录T1时间;
为第一上行包添加包头信息,所述包头信息包括以下至少一项:T1时间;
发送所述第一上行包;
接收第一下行包,所述第一下行包的包头信息包括以下至少一项:T2时间,第二上行时延;
确定第二上行时延,包括以下之一:根据T2-T1得出第二上行时延,在所述第一下行包的包头中读取所述第二上行时延;
其中,
所述T1时间是所述第一上行包的发送时间;
所述T2时间为所述第一上行包的接收时间。
在一些可选的实施例中,所述第二下行时延监控操作包括以下至少一项:
接收第一下行包,所述第一下行包的包头信息包括T3时间,所述T3时间是所述第一下行包的发送时间;
记录T4时间,所述T4时间为所述第一下行包的接收时间;
确定第二下行时延,包括:根据T4-T3得出所述第二下行时延。
在一些可选的实施例中,所述第二往返时延监控操作包括以下至少一项:
记录T1时间;
为第一上行包添加包头信息,所述包头信息包括以下至少一项:所述第一上行包用于测量时延的信息,T1时间;
发送所述第一上行包;
接收第一下行包,所述第一下行包的包头信息中包括以下至少一项:T2时间,T3时间,T1时间,第二上行时延,所述第一上行包的包头信息;
记录T4时间,所述T4时间为所述第一下行包的接收时间;
确定第二往返时延,包括以下之一:根据(T4-T3)+(T2-T1)得出所述第二往返时延,根据(T4-T3)+第二上行时延得出所述第二往返时延;
其中,
所述T1时间是所述第一上行包的发送时间,
所述T2时间是所述第一上行包的接收时间,
所述T3时间是所述第一下行包的发送时间。
在一些可选的实施例中,所述根据时延监控结果和/或往返时延预算,确定或调整第一上行时延预算和第一下行时延预算中的至少一项,包括以下至少一项:
根据第二上行时延监控结果和第三上行时延监控结果,确定第一上行时延,根据所述第一上行时延和第一往返时延预算,确定或调整第一上行时延预算和第一下行时延预算中的至少一项;
根据第二下行时延监控结果和第三下行时延监控结果,确定第一下行时延,根据所述第一下行时延和第一往返时延预算,确定或调整第一上行时延预算和第一下行时延预算中的至少一项。
在一些可选的实施例中,所述根据时延监控结果和/或往返时延预算,确定或调整第三往返时延预算,包括以下至少一项:
根据第二往返时延监控结果和第一往返时延预算确定第三往返时延预算;
根据第二往返时延监控结果和第一往返时延预算,确定第三上行时延预算和/或第三下行时延预算。
在一些可选的实施例中,所述保障第一往返时延不超过第一往返时延预算,包括以下至少一项:
第三上行时延和第三下行时延的和不超过第一值,
其中,所述第一值为第一往返时延预算与第二往返时延监控结果的差值。
在一些可选的实施例中,所述保障第一上行时延不超过第一上行时延预算,包括以下至少一项:
第三上行时延或第三上行时延预算不超过第二值,
其中,第二值为第一上行时延预算与第二上行时延监控结果的差值,或第一往返时延预算与第二往返时延监控结果的差值减去第三上行时延监控结果,或第一往返时延预算与第二往返时延监控结果的差值减去第三上行时延预算。
在一些可选的实施例中,所述保障第一下行时延不超过第一下行时延预算,包括以下至少一项:
第三下行时延或第三上行时延预算不超过第三值,
其中,所述第三值为第一下行时延预算与第二下行时延监控结果的差值,或第一往返时延预算与第二往返时延监控结果的差值减去第三上行时延监控结果,或第一往返时延预算与第一往返时延监控结果的差值减去第三上行时延预算。
一种实施方式中,第一通信设备从第一源端获取第一信息,第一源端包括以下至少一项:第四通信设备,第三CN网元(比如但不限于SMF网元)。
通过本发明实施例,第一通信设备获取时延监控配置信息,第一QoS配置信息和第一指示信息中的至少一项,确定以下至少一项:第三往返时延预算,第三上行时延预算,第三下行时延预算;确定第一往返时延预算,执行时延监控操作,和/或,根据时延监控结果和/或第一QoS配置信息进行时延保障,从而第一通信设备可以进行时延调度/控制,保障往返时延。
请参考图3,本发明实施例提供了一种QoS控制方法,应用于第二通信设备。第二通信设备包括但不限于CN网元(比如但不限于锚点网关(如UPF),第二通信设备为CN网元时,可以称为第一CN网元,锚点网关为终结N6接口的网关(N6为网络的网关与数据网(data network)间接口,N6也可以称为其他名称)。所述方法包括:
步骤300、第二通信设备获取第一信息;
其中,所述第一信息包括以下至少一项:
时延监控配置信息;
第一QoS配置信息;
第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障。
其中,所述第一QoS配置信息,包括以下至少一项;
第一往返时延预算,第一上行时延预算,第一下行时延预算;
第三往返时延预算,第三上行时延预算,第三下行时延预算;
数据通道的时延预算;
第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延预算的和;
第三指示信息,所述第三指示信息用于指示以下之一:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第四指示信息,所述第四指示信息用于指示:往返时延不能够超过往返时延预算。
步骤301、所述第二通信设备根据所述第一信息,执行第二操作;
所述第二操作包括以下至少一项:
时延监控操作;
在一些可选的实施例中,所述时延监控配置信息包括:
要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
其中,第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,
第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延。
在一些可选的实施例中,所述要求测量的时延为以下之一:RAN网元负责计算的时延,锚点网关测量后发送给RAN网元的时延。
在一些可选的实施例中,所述第一QoS配置信息是以下之一:第一数据通道的QoS配置信息,第二数据通道和/或第三数据通道的QoS配置信息;
和/或
所述时延监控配置信息是以下之一:第一数据通道的时延监控配置信息,第二数据通道和/或第三数据通道的时延监控配置信息;
其中,所述第一数据通道用于上行和/或下行,所述第二数据通道用于上行,所述第三数据通道用于下行。
在一些可选的实施例中,所述时延监控操作包括以下至少一项:
上行时延监控操作,包括以下至少一项:第一上行时延监控操作;第二上行时延监控操作;第三上行时延监控操作;
下行时延监控操作,包括以下至少一项:第一下行时延监控操作;第二下行时延监控操作;第三下行时延监控操作;
往返时延监控操作,包括以下至少一项:第一往返时延监控操作,第二往返时延监控操作,第三往返时延监控操作;
其中,第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第三往返时延为终端与RAN网元间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,
第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延,
第三上行时延为从终端到RAN网元的上行时延,
第三下行时延为从RAN网元到终端的下行时延。
可选地,所述上行时延监控操作,第一上行时延监控操作和/或第二上行时延监控 操作包括以下至少一项:
记录T2时间,所述T2时间为接收上行包的时间;
接收第一上行包,所述第一上行包的包头信息包括以下至少一项:T1时间,T11时间,第三上行时延;
确定第一上行时延,包括以下之一:根据T2-T11得到所述第一上行时延,根据T2-T1+第三上行时延得到所述第一上行时延;
确定第二上行时延,包括:根据T2-T1得到所述第二上行时延;
为第一下行包添加包头信息,所述包头信息包括以下至少一项:T2时间,第一上行时延,所述上行包的包头信息;
发送所述第一下行包;
其中,
所述T11时间是以下之一:RAN网元调度终端第二上行包的时间,终端发送第二上行包的时间;
所述T1时间是上行包的发送时间。
可选地,所述下行时延监控操作,第一下行时延监控操作和/或第二下行时延监控操作包括以下至少一项:
为第一下行包添加包头信息,所述包头信息包括:T3时间,T3时间为第一下行包的发送时间;
发送所述第一下行包。
可选地,所述往返时延监控操作包括以下至少一项:
记录T2时间,所述T2时间为接收第一上行包的时间;
接收第一上行包,所述第一上行包的包头信息包括以下至少一项:T1时间,T11时间,第三上行时延;
确定第一上行时延,包括以下之一:根据T2-T11得到所述第一上行时延,根据T2-T1+第三上行时延得到所述第一上行时延;
为第一下行包添加以下至少一项包头信息:T3时间,T2时间,第一上行时延,第二上行时延,所述第一上行包的包头信息;
发送所述第一下行包;
其中,T3时间为所述第一下行包的发送时间;
所述T11时间是以下之一:RAN网元调度终端第二上行包的时间,终端发送第二上行包的时间;
所述T1时间是所述第一上行包的发送时间。
一种实施方式中,第二通信设备可以从第一源端获取第一信息,第一源端包括以下至少一项:第四通信设备,第三CN网元(比如但不限于SMF网元)。
通过本发明实施例,第二通信设备获取第一信息;其中,所述第一信息包括以下 至少一项:时延监控配置信息;第一QoS配置信息;第一指示信息,从而第二通信设备可以根据第一信息,执行时延监控操作,从而可辅助RAN网元实现往返时延保障。
请参考图4,本发明实施例提供了一种QoS控制方法,应用于第三通信设备。第三通信设备包括但不限于CN网元(比如但不限于PCF网元),第二通信设备为CN网元时,可以称为第二CN网元,所述方法包括:
步骤400、第三通信设备获取第五信息;
步骤401、所述第三通信设备根据所述第五信息,执行第三操作;
所述执行第三操作包括以下至少一项:
确定第二信息;
发送第二信息。
可选地,所述第二信息包括以下至少一项:时延监控策略,第一QoS策略,第一指示信息;
所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障。
可选地,所述第五信息包括以下至少一项:第一业务数据流的描述信息;时延监控要求;第一QoS要求,所述第一QoS要求为所述第一业务数据流的QoS要求;
其中,所述第一QoS要求,包括以下至少一项;
第一往返时延要求;
第一上行时延要求;
第一下行时延要求;
单向时延预算;
第五指示信息,所述第五示信息用于指示以下之一:第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和;
第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延要求。
在一些可选的实施例中,所述第三通信设备根据所述第五信息,确定第二信息,包括:
在所述第五信息包括第一上行时延要求和第一下行时延要求的情况下,所述第三通信设备根据所述第一上行时延要求映射第一上行QoS要求或第一上行QoS预算,所述第三通信设备根据所述第一下行时延要求映射第一下行QoS要求或第一下行QoS预算;
在所述第五信息包括第一往返时延要求的情况下,所述第三通信设备根据预配置的第一往返时延分割经验值或时延监控结果对所述第一往返时延要求或第一往返时 延预算进行分割,得到第一上行QoS要求或第一上行QoS预算,和,第一下行QoS要求或第一下行QoS预算。
可选地,所述第一QoS策略,包括以下至少一项;
第一往返时延预算;
第一上行时延预算;
第一下行时延预算;
单向时延预算;
第五指示信息,所述第五指示信息用于指示以下之一:第一往返时延预算为单向时延预算的两倍取值,第一往返时延预算为第一上行时延要求与第一下行时延预算的和;
第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延预算。
一种实施方式中,所述时延预算由时延预算参数体现,或由QoS标识表示(如5QI),由于QoS标识取值与时延预算一一对应,所以可以体现。
一种实施方式中,单向时延预算代表第一上行时延预算和/或第一下行时延预算,且所述第一上行时延预算和所述第一下行时延预算相同。
在一些可选的实施例中,所述时延监控策略包括:
要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
其中,
第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN网元的下行时延。
可选地,所述要求测量的时延为以下之一:RAN网元负责计算的时延,锚点网关测量后发送给RAN网元的时延。
可选地,所述第一QoS策略是以下之一:第一数据通道的QoS策略,第二数据通道和/或第三数据通道的QoS策略,第一业务数据流的QoS策略;
和/或
所述时延监控策略是以下之一:第一数据通道的时延监控策略,第二数据通道和/或第三数据通道的时延监控策略;
其中,所述第一数据通道用于上行和/或下行,第二数据通道用于上行,第三数据通道用于下行。
一种实施方式中,所述第三通信设备根据第五通信设备的要求为第一通信设备或第二通信设备配置时延监控策略。
一种实施方式中,第三通信设备可以向第一目标端发送第二信息,第一目标端包括以下至少一项:第四通信设备,第三CN网元(比如但不限于SMF网元)。
一种实施方式中,第二CN网元从第二源端获取所述第五信息,第二源端包括以下至少一项:第五通信设备,第四CN网元(比如但不限于AF网元、NEF网元)。
通过本发明实施例,第三通信设备获取第五信息,根据所述第五信息,执行第三操作,所述执行第三操作包括以下至少一项:确定第二信息;发送第二信息,所述第二信息包括以下至少一项:时延监控策略,第一QoS策略,第一指示信息,从而可以向第四通信设备发送第二信息,以实现往返时延保障。
请参考图5,本发明实施例提供了一种QoS控制方法,应用于第四通信设备。第四通信设备包括但不限于CN网元(比如但不限于SMF网元),第二通信设备为CN网元时,可以称为第三CN网元,所述方法包括:
步骤500、第四通信设备获取第二信息,所述第二信息包括以下至少一项:时延监控要求或时延监控策略,第一QoS要求或第一QoS策略,第一指示信息。
步骤501、所述第四通信设备根据所述第二信息,执行第四操作,所述执行第四操作包括以下至少一项:
确定第一信息;
发送第一信息;
其中,所述第一信息包括以下至少一项:
时延监控配置信息;
第一QoS配置信息;
第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障。
其中,所述第一QoS配置信息,包括以下至少一项;
第一往返时延预算,第一上行时延预算,第一下行时延预算;
第三往返时延预算,第三上行时延预算,第三下行时延预算;
数据通道的时延预算;
第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延预算的和;
第三指示信息,所述第三指示信息用于指示:上行时延预算与下行时延预算能够 不相同,上行时延预算与下行时延预只能相同;
第四指示信息,所述第四指示信息用于指示:第一往返时延不能够超过第一往返时延要求;
其中,所述时延监控配置信息,包括以下至少一项:
要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
其中,
第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,
第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延。
可选地,所述第一QoS要求,包括以下至少一项;
第一往返时延要求;
第一上行时延要求;
第一下行时延要求;
单向时延预算;
第五指示信息,所述第五示信息用于指示以下之一:第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和;
第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延要求;
可选地,所述第一QoS策略,包括以下至少一项;
第一往返时延预算;
第一上行时延预算;
第一下行时延预算;
单向时延预算;
第五指示信息,所述第五指示信息用于指示以下之一:第一往返时延预算为单向时延预算的两倍取值,第一往返时延预算为第一上行时延要求与第一下行时延预算的和;
第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返 时延预算。
可选地,时延监控要求或时延监控策略包括以下至少一项:
要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
其中,
第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延。
可选地,所述要求测量的时延为以下之一:RAN网元负责计算的时延,锚点网关测量后发送给RAN网元的时延。
可选地,所述第一QoS配置信息是以下之一:第一数据通道的QoS配置信息,第二数据通道和/或第三数据通道的QoS配置信息;
和/或
所述时延监控配置信息是以下之一:第一数据通道的时延监控配置信息,第二数据通道和/或第三数据通道的时延监控配置信息;
其中,所述第一数据通道用于上行和/或下行,第二数据通道用于上行,第三数据通道用于下行。
一种实施方式中,第四通信设备可以向第二目标端发送第一信息,第二目标端包括以下至少一项:第一通信设备,RAN网元,第二通信设备,第一CN网元(比如但不限于锚点网关);
一种实施方式中,第四通信设备从第三源端获取第二信息,第三源端包括以下至少一项:第三通信设备,第二CN网元(比如但不限于PCF网元)。
通过本发明实施例,第四通信设备获取第二信息,确定和/或发送第一信息,从而可以使得第一通信设备根据第一信息进行时延保障或使得第二通信设备根据第一信息执行时延监控操作,从而实现往返时延保障。
请参考图6,本发明实施例提供了一种QoS控制方法,应用于第五通信设备。第五通信设备包括但不限于CN网元(比如但不限于AF网元、NEF网元),第二通信设备为CN网元时,可以称为第四CN网元。
所述方法包括:
步骤600、第五通信设备发送第五信息,所述第五信息包括以下至少一项:第一业务数据流的描述信息;时延监控要求;第一QoS要求,所述第一QoS要求为所述第一业务数据流的QoS要求。
其中,所述第一QoS要求,包括以下至少一项;
第一往返时延要求;
第一上行时延要求;
第一下行时延要求;
单向时延预算;
第五指示信息,所述第五示信息用于指示以下之一:第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和;
第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延要求;
其中,所述时延监控要求包括以下至少一项:
要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
其中,
第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延。
一种是实施方式中,第一往返时延为第一上行时延与第一下行时延的和。
其中,
第一上行时延要求,用于请求保障所述第一业务数据流的第一上行时延不超过所述第一上行时延要求;
第一下行时延要求,用于请求保障所述第一业务数据流的第一下行时延不超过所述第一下行时延要求;
第一往返时延要求,用于请求保障所述第一业务数据流的第一往返时延不超过所述第一往返时延要求;
其中,
所述第一往返时延要求为第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和。
一种实施方式中,第五通信设备向第三目标端发送第五信息,第三目标端包括以下至少一项:第三通信设备,第二CN网元(比如但不限于PCF网元)。
在本申请实施例中,第五通信设备发送第五信息,第五信息包括包括以下至少一 项:第一业务数据流的描述信息;时延监控要求;第一QoS要求,所述第一QoS要求为所述第一业务数据流的QoS要求,可辅助实现往返时延保障。
下面结合具体应用场景对本发明实施例的QoS控制方法进行说明。
本发明实施例的应用场景1主要描述以下过程:
当RAN网元来执行Round Trip时延控制时,如果RAN获得的是UE到锚点网关间round trip时延(第一往返时延)预算或要求往返时延不超过两倍的数据通道的时延预算,一种方法是RAN网元通过监控N3的round trip时延(第二往返时延)开销来确定UE与RAN网元间的时延(第三往返时延)预算,使得第一上行时延和第二下行时延的和不能超过第一往返时延预算。
AF网元提供1/2的往返时延预算来要求PCF网元映射5QI,但要求单向(上行或下行)超过1/2往返时延时,通过监控和测量上行时延和下行时延,来调整上行和下行的时延预算,使得上行和下行的和不能超过往返时延预算(即两倍的QoS流时延预算)。
锚点网关(如UPF网元)配合RAN网元进行时延测量或监控(比如UPF网元在发现上行时延超额时才发送下行测量包通知RAN网元)。
RAN网元或UPF网元可以在满足第一条件的情况下才开启时延监控,第一条件包括以下至少一项:
第一上行时延超过以下之一:数据通道的时延预算,1/2第一往返时延预算,第一上行时延预算;
第一下行时延超过以下之一:数据通道的时延预算,1/2第一往返时延预算,第一下行时延预算;
第三上行时延超过以下之一:数据通道的终端与RAN网元间时延预算,1/2第三往返时延预算,第三上行时延预算;
第三下行时延超过以下之一:数据通道的终端与RAN网元间时延预算,1/2第一往返时延预算,第三下行时延预算。
PCF网元根据AF网元的要求为RAN网元和UPF网元配置以上时延测量监控策略。
一种实施方式中,AF网元可以直接请求差分的第一上行时延要求和第一下行时延要求(即上行和第一下行时延要求不同)。PCF网元,SMF网元直接映射上行QoS和下行QoS发给RAN网元。
或者另一种实施方式中,AF请求一个第一往返时延要求。PCF网元,SMF网元直接映射第一往返时延发给RAN网元。或者PCF网元将第一往返时延/2来映射QoS5QI,同时指示上下行时延不能超过第一往返时延要求。
由RAN网元来拆分为上行和第一下行时延要求。上行和下行的时延要求不超过第一往返时延要求。
PCF网元要生成时延监控策略、第一QoS策略,SMF网元根据时延监控要求或时延监控策略、第一QoS要求或第一QoS策略,生成时延监控配置信息,第一QoS配置信息。
请参阅图7a所示,包括以下步骤:
步骤1,AF向5GS发送第五信息,第五信息包括以下至少一项:第一业务数据流的描述信息;时延监控要求;第一QoS要求,所述第一QoS要求为所述第一业务数据流的QoS要求。其中,所述第一QoS要求,包括以下至少一项:第一往返时延要求;第一上行时延要求;第一下行时延要求;单向时延预算;第五指示信息,所述第五示信息用于指示以下之一:第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和;第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延要求;
其中,第一上行时延要求为UE到UPF N6端口数据包传送的时延要求。第一下行时延要求为UPF N6端口接收数据包传送给UE的时延要求。第一往返时延要求为第一上行时延要求和第一下行时延要求的和。
步骤5,PCF根据时延监控要求,第一QoS要求,第一业务数据流的描述信息中的至少一项,确定时延监控策略和/或第一QoS策略。
在第一QoS要求包括:第一上行时延要求和第一下行时延要求的情况下,PCF根据第一上行时延要求映射第一上行QoS要求或第一上行QoS预算,所述第三通信设备根据所述第一下行时延要求映射第一下行QoS要求或第一下行QoS预算。
第一QoS要求包括一个第一往返时延要求的情况下,PCF可以根据预配置的第一往返时延分割经验值或QoS监测的结果对第一往返时延要求进行分割成上行QoS要求和下行QoS要求。比如一个游戏业务,上行数据包比较小,往往是用户的动作包,尽快地发给服务器才能避免画面抖动,时延预算小一些。下行数据包则比较大,往往是游戏的背景画面和状态包,时延预算要求则可以大一些。
步骤6,PCF网元向SMF网元发送第二信息,所述第二信息包括以下至少一项:时延监控策略,第一QoS策略,第一指示信息。
步骤7,SMF网元根据第二信息,所述第二信息包括以下至少一项:时延监控要求或时延监控策略,第一QoS要求或第一QoS策略,第一指示信息确定第一QoS配置,确定第一信息,第一信息包括以下至少一项:时延监控配置信息;第一QoS配置信息;第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障。
步骤8,SMF网元将第一信息通过AMF发送给RAN网元。或者,SMF将第一 信息发送给锚点网关。
步骤9,RAN网元根据第一信息执行以下至少一项操作:
确定以下至少一项:第三往返时延预算,第三上行时延预算,第三下行时延预算;
确定第一往返时延预算为以下之一:数据通道的时延预算的两倍取值,第一QoS配置信息中的第一往返时延预算,第一上行时延预算与第一下行时延预算的和;
执行时延监控操作;
根据时延监控结果和/或第一QoS配置信息进行时延保障。
图7b为本申请实施例提供的QoS控制方法的交互示意图之二,如图7b所示,该QoS控制方法包括:
步骤1,第四CN网元向第二CN网元发送第五信息(第五信息包括以下至少一项:第一业务数据流的描述信息;时延监控要求;第一QoS要求);
步骤2,第二CN网元根据第五信息,确定第二信息;
步骤3,第二CN网元向第三CN网元发送第二信息;
步骤4,第三CN网元根据第二信息,确定第一信息;
步骤5a,第三CN网元向RAN网元发送第一信息;
可选的,步骤5b,第三CN网元向第一CN网元发送第一信息
步骤6a,RAN网元根据第一信息,执行第一操作;
可选的,步骤6b,第一CN网元根据第一信息,执行第二操作;
步骤7,第一CN网元向RAN网元发送时延监控结果,以辅助RAN网元根据时延监控结果和/或第一QoS配置信息进行时延保障。
其中,第一信息,第二信息,第五信息,第一操作,第二操作,时延监控结果,第一QoS配置信息均可以参考前述实施例中的描述,在此不再赘述。
本申请实施例提供的QoS控制方法,执行主体可以为QoS控制装置。本申请实施例中以QoS控制装置执行QoS控制方法为例,说明本申请实施例提供的QoS控制装置。
图8为本申请实施例提供的第一通信设备的结构示意图。如图8所示,该第一通信设备800包括:
第一获取单元810,用于获取第一信息;
第一执行单元820,用于根据所述第一信息,执行第一操作;
其中,所述第一信息包括以下至少一项:
时延监控配置信息;
第一QoS配置信息;
第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
其中,所述执行第一操作包括以下至少一项:
确定以下至少一项:第三往返时延预算,第三上行时延预算,第三下行时延预算;
确定第一往返时延预算为以下之一:数据通道的时延预算的两倍取值,第一QoS配置信息中的第一往返时延预算,第一上行时延预算与第一下行时延预算的和;
执行时延监控操作;
根据时延监控结果和/或第一QoS配置信息进行时延保障;
其中,所述第一QoS配置信息,包括以下至少一项;
第一往返时延预算,第一上行时延预算,第一下行时延预算;
第三往返时延预算,第三上行时延预算,第三下行时延预算;
数据通道的时延预算;
第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延预算的和;
第三指示信息,所述第三指示信息用于指示以下之一:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第四指示信息,所述第四指示信息用于指示:往返时延不能够超过往返时延预算;
其中,所述第一往返时延预算为终端与锚点网关间的往返时延预算;
所述第一上行时延预算为从终端到锚点网关的上行时延预算;
所述第一下行时延预算为从锚点网关到终端的下行时延预算;
所述第三上行时延预算为终端到RAN网元的上行时延预算;
所述第三下行时延预算为RAN网元到终端的下行时延预算;
所述第三往返时延预算为终端与RAN网元间的往返时延预算。
在一些可选的实施例中,所述时延监控配置信息包括:
要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
其中,
第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,
第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延。
在一些可选的实施例中,所述要求测量的时延为以下之一:RAN网元负责计算的时延,锚点网关计算后发送给RAN网元的时延。
一种实施方式中,第N上行时延是RAN网元负责计算的,第N下行时延是RAN 网元负责计算的,第N往返时延是RAN网元负责计算的,N可以取值以下之一:一,二。
一种实施方式中,第N上行时延是锚点网关计算后发送给RAN网元的,第N下行时延是锚点网关计算后发送给RAN网元的,第N往返时延是锚点网关计算后发送给RAN网元的,N可以取值以下之一:一,二。
在一些可选的实施例中,所述第一QoS配置信息是以下之一:第一数据通道的QoS配置信息,第二数据通道和/或第三数据通道的QoS配置信息;
和/或
所述时延监控配置信息是以下之一:第一数据通道的时延监控配置信息,第二数据通道和/或第三数据通道的时延监控配置信息;
其中,所述第一数据通道用于上行和/或下行,所述第二数据通道用于上行,所述第三数据通道用于下行。
一种实施方式中,第一QoS配置信息中的上行时延相关的信息(如第一上行时延,第二上行时延)和/或数据通道的时延预算为第二数据通道的QoS配置信息,第一QoS配置信息中下行时延相关的信息(如第一下行时延,第二下行时延)和/或数据通道的时延预算为第三数据通道的QoS配置信息。第一QoS配置信息中往返时延相关信息(如第一往返时延,第二往返时延)、第二指示信息、第三指示信息、第四指示信息中的至少一项是第二数据通道和第三数据通道公共的QoS配置信息。
在一些可选的实施例中,所述时延监控操作包括以下至少一项:
上行时延监控操作,包括以下至少一项:第一上行时延监控操作;第二上行时延监控操作;第三上行时延监控操作;
下行时延监控操作,包括以下至少一项:第一下行时延监控操作;第二下行时延监控操作;第三下行时延监控操作;
往返时延监控操作,包括以下至少一项:第一往返时延监控操作,第二往返时延监控操作,第三往返时延监控操作;
其中,
第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第三往返时延为终端与RAN网元间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,
第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延,
第三上行时延为从终端到RAN网元的上行时延,
第三下行时延为从RAN网元到终端的下行时延。
在一些可选的实施例中,所述执行时延监控操作,和/或,根据时延监控结果和/或第一QoS配置信息进行时延保障包括:
在满足第一条件的情况下,执行时延监控操作,和/或,根据时延监控结果和/或第一QoS配置信息进行时延保障;
其中,所述第一条件包括以下至少一项:
第一上行时延超过以下之一:数据通道的时延预算,1/2第一往返时延预算,第一上行时延预算;
第一下行时延超过以下之一:数据通道的时延预算,1/2第一往返时延预算,第一下行时延预算;
第三上行时延超过以下之一:数据通道的终端与RAN网元间时延预算,1/2第三往返时延预算,第三上行时延预算;
第三下行时延超过以下之一:数据通道的终端与RAN网元间时延预算,1/2第一往返时延预算,第三下行时延预算。
在一些可选的实施例中,所述第一条件还包括以下至少一项:
所述第一上行时延与第一下行时延的和不超过第一往返时延预算;
所述第三上行时延与第三下行时延的和不超过第三往返时延预算。
在一些可选的实施例中,所述根据时延监控结果和/或第一QoS配置信息进行时延保障,包括以下至少一项:
根据时延监控结果和/或往返时延预算,确定或调整以下至少一项:上行时延预算,下行时延预算,第三往返时延预算;
保障第一往返时延不超过第一往返时延预算;
保障第一上行时延不超过第一上行时延预算;
保障第一下行时延不超过第一下行时延预算。
保障第三往返时延不超过第三往返时延预算;
保障第三上行时延不超过第三上行时延预算;
保障第三下行时延不超过第三下行时延预算;
保障第二往返时延不超过第二往返时延预算;
保障第二上行时延不超过第二上行时延预算;
保障第二下行时延不超过第二下行时延预算;
所述时延监控结果包括以下至少一项:上行时延监控结果,下行时延监控结果,往返时延监控结果。
所述往返时延预算包括以下至少一项:第一往返时延预算,第二往返时延预算,第三往返时延预算。
一种实施方式,上行时延监控结果,包括以下至少一项:第一上行时延监控结果;第二上行时延监控结果;第三上行时延监控结果;
一种实施方式,下行时延监控结果,包括以下至少一项:第一下行时延监控结果;第二下行时延监控结果;第三下行时延监控结果;
一种实施方式,往返时延监控结果,包括以下至少一项:第一往返时延监控结果,第二往返时延监控结果,第三往返时延监控结果。
一种实施方式,上行时延预算,包括以下至少一项:第一上行时延预算;第二上行时延预算;第三上行时延预算;
一种实施方式,下行时延预算,包括以下至少一项:第一下行时延预算;第二下行时延预算;第三下行时延预算;
在一些可选的实施例中,根据时延监控结果和/或往返时延预算,确定或调整上行时延预算、下行时延预算和/或第三往返时延预算,包括以下至少一项:
根据第一往返时延预算,第一往返时延监控结果,第一上行时延监控结果,第一下行时延监控结果中的至少一项,确定或调整第一上行时延预算和/或第一下行时延预算;
根据第一往返时延预算,第一往返时延监控结果,第二上行时延监控结果,第二下行时延监控结果,第三上行时延监控结果,第三下行时延监控结果中的至少一项,确定或调整以下至少一项:第三上行时延预算,第三下行时延预算;
根据第一往返时延预算,第一往返时延监控结果,第二往返时延监控结果,第二上行时延监控结果,第二下行时延监控结果中的至少一项,确定或调整第三往返时延预算。
在一些可选的实施例中,所述第一上行时延监控操作包括以下至少一项:
记录T11时间;
记录T1时间;
确定第三上行时延;
为第一上行包添加包头信息,所述包头信息包括以下至少一项:T1时间,T11时间,第三上行时延;
发送所述第一上行包;
接收第一下行包,所述第一下行包的包头信息包括以下至少一项:T2时间,第一上行时延,第二上行时延,所述第一上行包的包头信息;
确定第一上行时延,包括以下之一:T2-T1+第三上行时延得出第一上行时延,
T2-T11得出第一上行时延,第二上行时延+第三上行时延,从所述第一下行包的包头信息中直接得到第一上行时延;
其中,
所述T11时间是以下之一:RAN网元调度终端第二上行包的时间,终端发送第二上行包的时间;
所述T1时间是所述第一上行包的发送时间;
所述T2时间为所述第一上行包的接收时间。
在一些可选的实施例中,所述第一下行时延监控操作包括以下至少一项:
接收第一下行包,所述第一下行包的包头信息包括:T3时间;
记录T4时间;
确定第三下行时延;
确定第一下行时延,包括:T4-T3+第三下行时延;
其中,
所述T3时间为所述第一下行包的发送时间;
所述T4时间为所述第一下行包的接收时间。
在一些可选的实施例中,所述第一往返时延监控操作包括以下至少一项:
记录T11时间;
记录T1时间;
确定第三上行时延;
为第一上行包添加包头信息,所述包头信息包括以下至少一项:T1时间,T11时间,第三上行时延;
发送所述第一上行包;
接收第一下行包,所述下行包的包头信息包括以下至少一项:T2时间,T3时间,第一上行时延,第二上行时延,所述第一上行包的包头信息;
确定第一往返时延,包括以下之一:((T2-T1)+(T4-T3)+第三下行时延+第三上行时延)得出第一往返时延,((T2-T11)+(T4-T3)+第三下行时延)得出第一往返时延,(第二上行时延+(T4-T3)+第三下行时延+第三上行时延)得出第一往返时延,(第一上行时延+(T4-T3)+第三下行时延)得出第一往返时延;
其中,
所述T11时间是以下之一:RAN网元调度终端第二上行包的时间,终端发送第二上行包的时间;
所述T1时间是所述第一上行包的发送时间;
所述T2时间为所述第一上行包的接收时间;
所述T3时间为所述第一下行包的发送时间;
所述T4时间为所述第一下行包的接收时间。
在一些可选的实施例中,所述第二上行时延监控操作包括以下至少一项:
记录T1时间;
为第一上行包添加包头信息,所述包头信息包括以下至少一项:T1时间;
发送所述第一上行包;
接收第一下行包,所述第一下行包的包头信息包括以下至少一项:T2时间,第二上行时延;
确定第二上行时延,包括以下之一:根据T2-T1得出第二上行时延,在所述第一下行包的包头中读取所述第二上行时延;
其中,
所述T1时间是所述第一上行包的发送时间;
所述T2时间为所述第一上行包的接收时间。
在一些可选的实施例中,所述第二下行时延监控操作包括以下至少一项:
接收第一下行包,所述第一下行包的包头信息包括T3时间,所述T3时间是所述第一下行包的发送时间;
记录T4时间,所述T4时间为所述第一下行包的接收时间;
确定第二下行时延,包括:根据T4-T3得出所述第二下行时延。
在一些可选的实施例中,所述第二往返时延监控操作包括以下至少一项:
记录T1时间;
为第一上行包添加包头信息,所述包头信息包括以下至少一项:所述第一上行包用于测量时延的信息,T1时间;
发送所述第一上行包;
接收第一下行包,所述第一下行包的包头信息中包括以下至少一项:T2时间,
T3时间,T1时间,第二上行时延,所述第一上行包的包头信息;
记录T4时间,所述T4时间为所述第一下行包的接收时间;
确定第二往返时延,包括以下之一:根据(T4-T3)+(T2-T1)得出所述第二往返时延,根据(T4-T3)+第二上行时延得出所述第二往返时延;
其中,
所述T1时间是所述第一上行包的发送时间,
所述T2时间是所述第一上行包的接收时间,
所述T3时间是所述第一下行包的发送时间。
在一些可选的实施例中,根据时延监控结果和/或往返时延预算,确定或调整第一上行时延预算和第一下行时延预算中的至少一项,包括以下至少一项:
根据第二上行时延监控结果和第三上行时延监控结果,确定第一上行时延,根据所述第一上行时延和第一往返时延预算,确定或调整第一上行时延预算和第一下行时延预算中的至少一项;
根据第二下行时延监控结果和第三下行时延监控结果,确定第一下行时延,根据所述第一下行时延和第一往返时延预算,确定或调整第一上行时延预算和第一下行时延预算中的至少一项。
在一些可选的实施例中,所述根据时延监控结果和/或往返时延预算,确定或调整第三往返时延预算,包括以下至少一项:
根据第二往返时延监控结果和第一往返时延预算确定第三往返时延预算;
根据第二往返时延监控结果和第一往返时延预算,确定第三上行时延预算和/或第三下行时延预算。
在一些可选的实施例中,所述保障第一往返时延不超过第一往返时延预算,包括以下至少一项:
第三上行时延和第三下行时延的和不超过第一值,
其中,所述第一值为第一往返时延预算与第二往返时延监控结果的差值。
在一些可选的实施例中,所述保障第一上行时延不超过第一上行时延预算,包括以下至少一项:
第三上行时延或第三上行时延预算不超过第二值,
其中,第二值为第一上行时延预算与第二上行时延监控结果的差值,或第一往返时延预算与第二往返时延监控结果的差值减去第三上行时延监控结果,或第一往返时延预算与第二往返时延监控结果的差值减去第三上行时延预算。
在一些可选的实施例中,所述保障第一下行时延不超过第一下行时延预算,包括以下至少一项:
第三下行时延或第三上行时延预算不超过第三值,
其中,所述第三值为第一下行时延预算与第二下行时延监控结果的差值,或第一往返时延预算与第二往返时延监控结果的差值减去第三上行时延监控结果,或第一往返时延预算与第一往返时延监控结果的差值减去第三上行时延预算。
本申请实施例提供的第一通信设备能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图9为本申请实施例提供的第二通信设备的结构示意图。如图9所示,该第二通信设备900包括:
第二获取单元910,用于获取第一信息;
第二执行单元920,用于根据所述第一信息,执行第二操作;
其中,所述第一信息包括以下至少一项:
时延监控配置信息;
第一QoS配置信息;
第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
所述第二操作包括以下至少一项:
时延监控操作;
其中,所述第一QoS配置信息,包括以下至少一项;
第一往返时延预算,第一上行时延预算,第一下行时延预算;
第三往返时延预算,第三上行时延预算,第三下行时延预算;
数据通道的时延预算;
第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延预算的和;
第三指示信息,所述第三指示信息用于指示以下之一:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第四指示信息,所述第四指示信息用于指示:往返时延不能够超过往返时延预算。
可选地,所述时延监控配置信息包括:
要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
其中,第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,
第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延。
可选地,所述要求测量的时延为以下之一:RAN网元负责计算的时延,锚点网关测量后发送给RAN网元的时延。
可选地,所述第一QoS配置信息是以下之一:第一数据通道的QoS配置信息,第二数据通道和/或第三数据通道的QoS配置信息;
和/或
所述时延监控配置信息是以下之一:第一数据通道的时延监控配置信息,第二数据通道和/或第三数据通道的时延监控配置信息;
其中,所述第一数据通道用于上行和/或下行,所述第二数据通道用于上行,所述第三数据通道用于下行。
可选地,所述时延监控操作包括以下至少一项:
上行时延监控操作,包括以下至少一项:第一上行时延监控操作;第二上行时延监控操作;第三上行时延监控操作;
下行时延监控操作,包括以下至少一项:第一下行时延监控操作;第二下行时延监控操作;第三下行时延监控操作;
往返时延监控操作,包括以下至少一项:第一往返时延监控操作,第二往返时延监控操作,第三往返时延监控操作;
其中,第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第三往返时延为终端与RAN网元间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,
第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延,
第三上行时延为从终端到RAN网元的上行时延,
第三下行时延为从RAN网元到终端的下行时延。
可选地,所述上行时延监控操作,第一上行时延监控操作和/或第二上行时延监控操作包括以下至少一项:
记录T2时间,所述T2时间为接收上行包的时间;
接收第一上行包,所述第一上行包的包头信息包括以下至少一项:T1时间,T11时间,第三上行时延;
确定第一上行时延,包括以下之一:根据T2-T11得到所述第一上行时延,根据T2-T1+第三上行时延得到所述第一上行时延;
确定第二上行时延,包括:根据T2-T1得到所述第二上行时延;
为第一下行包添加包头信息,所述包头信息包括以下至少一项:T2时间,第一上行时延,所述上行包的包头信息;
发送所述第一下行包;
其中,
所述T11时间是以下之一:RAN网元调度终端第二上行包的时间,终端发送第二上行包的时间;
所述T1时间是上行包的发送时间。
可选地,所述下行时延监控操作,第一下行时延监控操作和/或第二下行时延监控操作包括以下至少一项:
为第一下行包添加包头信息,所述包头信息包括:T3时间,T3时间为第一下行包的发送时间;
发送所述第一下行包。
可选地,所述往返时延监控操作包括以下至少一项:
记录T2时间,所述T2时间为接收第一上行包的时间;
接收第一上行包,所述第一上行包的包头信息包括以下至少一项:T1时间,T11时间,第三上行时延;
确定第一上行时延,包括以下之一:根据T2-T11得到所述第一上行时延,根据T2-T1+第三上行时延得到所述第一上行时延;
为第一下行包添加以下至少一项包头信息:T3时间,T2时间,第一上行时延,第二上行时延,所述第一上行包的包头信息;
发送所述第一下行包;
其中,T3时间为所述第一下行包的发送时间;
所述T11时间是以下之一:RAN网元调度终端第二上行包的时间,终端发送第二上行包的时间;
所述T1时间是所述第一上行包的发送时间。
本申请实施例提供的第二通信设备能够实现图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图10为本申请实施例提供的第三通信设备的结构示意图。如图10所示,该第三通信设备1000包括:
第三获取单元1010,用于获取第五信息;
第三执行单元1020,用于根据所述第五信息,执行第三操作;
所述执行第三操作包括以下至少一项:
确定第二信息;
发送第二信息;
其中,
所述第二信息包括以下至少一项:时延监控策略,第一QoS策略,第一指示信息;
所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
其中,所述第五信息包括以下至少一项:第一业务数据流的描述信息;时延监控要求;第一QoS要求,所述第一QoS要求为所述第一业务数据流的QoS要求;
其中,所述第一QoS要求,包括以下至少一项;
第一往返时延要求;
第一上行时延要求;
第一下行时延要求;
单向时延预算;
第五指示信息,所述第五示信息用于指示以下之一:第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和;
第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延要求。
可选地,所述第三通信设备根据所述第五信息,确定第二信息,包括:
在所述第五信息包括第一上行时延要求和第一下行时延要求的情况下,所述第三通信设备根据所述第一上行时延要求映射第一上行QoS要求或第一上行QoS预算,所述第三通信设备根据所述第一下行时延要求映射第一下行QoS要求或第一下行QoS预算;
在所述第五信息包括第一往返时延要求的情况下,所述第三通信设备根据预配置的第一往返时延分割经验值或时延监控结果对所述第一往返时延要求或第一往返时延预算进行分割,得到第一上行QoS要求或第一上行QoS预算,和,第一下行QoS要求或第一下行QoS预算。
可选地,所述第一QoS策略包括以下至少一项;
第一往返时延预算;
第一上行时延预算;
第一下行时延预算;
单向时延预算;
第五指示信息,所述第五指示信息用于指示以下之一:第一往返时延预算为单向时延预算的两倍取值,第一往返时延预算为第一上行时延要求与第一下行时延预算的和;
第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延预算。
一种实施方式中,所述时延预算由时延预算参数体现,或由QoS标识表示(如5QI),由于QoS标识取值与时延预算一一对应,所以可以体现。
一种实施方式中,单向时延预算代表第一上行时延预算和/或第一下行时延预算,且所述第一上行时延预算和所述第一下行时延预算相同。
可选地,所述时延监控策略包括以下至少一项:
要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
其中,
第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN网元的下行时延。
可选地,所述要求测量的时延为以下之一:RAN网元负责计算的时延,锚点网关测量后发送给RAN网元的时延。
可选地,所述第一QoS策略是以下之一:第一数据通道的QoS策略,第二数据通道和/或第三数据通道的QoS策略,第一业务数据流的QoS策略;
和/或
所述时延监控策略是以下之一:第一数据通道的时延监控策略,第二数据通道和/或第三数据通道的时延监控策略;
其中,所述第一数据通道用于上行和/或下行,第二数据通道用于上行,第三数据通道用于下行。
一种实施方式中,所述第三通信设备根据第五通信设备的要求为第一通信设备或第二通信设备配置时延监控策略。
本申请实施例提供的第三通信设备能够实现图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图11为本申请实施例提供的第四通信设备的结构示意图。如图11所示,该第四通信设备1100包括:
第四获取单元1110,用于获取第二信息,所述第二信息包括以下至少一项:时延监控要求或时延监控策略,第一QoS要求或第一QoS策略,第一指示信息;
第四执行单元1120,用于根据所述第二信息,执行第四操作,所述执行第四操作包括以下至少一项:
确定第一信息;
发送第一信息;
其中,所述第一信息包括以下至少一项:
时延监控配置信息;
第一QoS配置信息;
第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
其中,
所述第一QoS配置信息,包括以下至少一项;
第一往返时延预算,第一上行时延预算,第一下行时延预算;
第三往返时延预算,第三上行时延预算,第三下行时延预算;
数据通道的时延预算;
第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延预算的和;
第三指示信息,所述第三指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预只能相同;
第四指示信息,所述第四指示信息用于指示:第一往返时延不能够超过第一往返时延要求;
其中,
所述时延监控配置信息,包括以下至少一项:要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
其中,
第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,
第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延。
可选地,第一QoS要求包括以下至少一项:
所述第一QoS要求,包括以下至少一项;
第一往返时延要求;
第一上行时延要求;
第一下行时延要求;
单向时延预算;
第五指示信息,所述第五示信息用于指示以下之一:第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和;
第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延要求;
和/或,
所述第一QoS策略,包括以下至少一项;
第一往返时延预算;
第一上行时延预算;
第一下行时延预算;
单向时延预算;
第五指示信息,所述第五指示信息用于指示以下之一:第一往返时延预算为单向时延预算的两倍取值,第一往返时延预算为第一上行时延要求与第一下行时延预算的和;
第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延预算。
可选地,时延监控要求或时延监控策略包括以下至少一项:
要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
其中,
第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延。
可选地,所述要求测量的时延为以下之一:RAN网元负责计算的时延,锚点网关测量后发送给RAN网元的时延。
可选地,所述第一QoS配置信息是以下之一:第一数据通道的QoS配置信息,第二数据通道和/或第三数据通道的QoS配置信息;
和/或
所述时延监控配置信息是以下之一:第一数据通道的时延监控配置信息,第二数据通道和/或第三数据通道的时延监控配置信息;
其中,所述第一数据通道用于上行和/或下行,第二数据通道用于上行,第三数据通道用于下行。
本申请实施例提供的第四通信设备能够实现图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图12为本申请实施例提供的第五通信设备的结构示意图。如图12所示,该第五通信设备1200包括:
第一发送单元1210,用于发送第五信息,所述第五信息包括以下至少一项:第一业务数据流的描述信息;时延监控要求;第一QoS要求,所述第一QoS要求为所述第一业务数据流的QoS要求;
其中,所述第一QoS要求,包括以下至少一项;
第一往返时延要求;
第一上行时延要求;
第一下行时延要求;
单向时延预算;
第五指示信息,所述第五示信息用于指示以下之一:第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和;
第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延要求;
其中,所述时延监控要求包括以下至少一项:
要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
其中,
第一往返时延为终端与锚点网关间的往返时延,
第二往返时延为RAN网元与锚点网关间的往返时延,
第一上行时延为从终端到锚点网关的上行时延,第一下行时延为从锚点网关到终端的下行时延,
第二上行时延为从RAN网元到锚点网关的上行时延,
第二下行时延为从锚点网关到RAN的下行时延。
可选地,其中,
第一上行时延要求,用于请求保障所述第一业务数据流的第一上行时延不超过所述第一上行时延要求;
第一下行时延要求,用于请求保障所述第一业务数据流的第一下行时延不超过所述第一下行时延要求;
第一往返时延要求,用于请求保障所述第一业务数据流的第一往返时延不超过所述第一往返时延要求。
可选地,其中,
所述第一往返时延要求为以下之一:单向时延预算的两倍取值,第一上行时延要求与第一下行时延要求的和。
本申请实施例提供的第五通信设备能够实现图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301和存储器1302,存储器1302上存储有可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为终端时,该程序或指令被处理器1301执行时实现上述QoS控制方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1300为网络侧设备时,该程序或指令被处理器1301执行时实现上述QoS控制方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,该网络侧设备可以是第一通信设备,第二通信设备,第三通信设备,第四通信设备或第五通信设备,该网络侧设备包括处理器和通信接口,该网络侧设备实施例与上述QoS控制方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图14所示,该网络侧设备1400包括:天线1401、射频装置1402、基带装置1403、处理器1404和存储器1405。天线1401与射频装置1402连接。在上行方向上,射频装置1402通过天线1401接收信息,将接收的信息发送给基带装置1403进行处理。在下行方向上,基带装置1403对要发送的信息进行处理,并发送给射频装置1402,射频装置1402对收到的信息进行处理后经过天线1401发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1403中实现,该基带装置1403包括基带处理器。
基带装置1403例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图14所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1405连接,以调用存储器1405中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1406,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1400还包括:存储在存储器1405上并可在处理器1404上运行的指令或程序,处理器1404调用存储器1405中的指令或程序执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图15所示,该网络侧设备1500包括:处理器1501、网络接口1502和存储器1503。其中,网络接口1502例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1500还包括:存储在存储器1503上并可在处理器1501上运行的指令或程序,处理器1501调用存储器1503中的指令或程序执行图9~图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述QoS控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述QoS控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述QoS控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:第一通信设备,第二通信设备,第三通信设备,第四通信设备,第五通信设备,所述第一通信设备,第二通信设备,第三通信设备,第四通信设备,第五通信设备可用于执行如上所述的QoS控制方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (49)

  1. 一种QoS控制方法,包括:
    第一通信设备获取第一信息;
    所述第一通信设备根据所述第一信息,执行第一操作;
    其中,所述第一信息包括以下至少一项:
    时延监控配置信息;
    第一QoS配置信息;
    第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
    所述执行第一操作包括以下至少一项:
    确定以下至少一项:第三往返时延预算,第三上行时延预算,第三下行时延预算;
    确定第一往返时延预算为以下之一:数据通道的时延预算的两倍取值,第一QoS配置信息中的第一往返时延预算,第一上行时延预算与第一下行时延预算的和;
    执行时延监控操作;
    根据时延监控结果和/或第一QoS配置信息进行时延保障;
    其中,所述第一QoS配置信息,包括以下至少一项;
    第一往返时延预算,第一上行时延预算,第一下行时延预算;
    第三往返时延预算,第三上行时延预算,第三下行时延预算;
    数据通道的时延预算;
    第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延预算的和;
    第三指示信息,所述第三指示信息用于指示以下之一:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
    第四指示信息,所述第四指示信息用于指示:往返时延不能够超过往返时延预算;
    其中,所述第一往返时延预算为终端与锚点网关间的往返时延预算;
    所述第一上行时延预算为从终端到锚点网关的上行时延预算;
    所述第一下行时延预算为从锚点网关到终端的下行时延预算;
    所述第三上行时延预算为终端到RAN网元的上行时延预算;
    所述第三下行时延预算为RAN网元到终端的下行时延预算;
    所述第三往返时延预算为终端与RAN网元间的往返时延预算。
  2. 根据权利要求1所述的方法,其中,所述时延监控配置信息包括:
    要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返 时延,第二上行时延,第二下行时延,第二往返时延;
    其中,
    第一往返时延为终端与锚点网关间的往返时延,
    第二往返时延为RAN网元与锚点网关间的往返时延,
    第一上行时延为从终端到锚点网关的上行时延,
    第一下行时延为从锚点网关到终端的下行时延,
    第二上行时延为从RAN网元到锚点网关的上行时延,
    第二下行时延为从锚点网关到RAN的下行时延。
  3. 根据权利要求2所述的方法,其中,所述要求测量的时延为以下之一:RAN网元负责计算的时延,锚点网关计算后发送给RAN网元的时延。
  4. 根据权利要求1或2所述的方法,其中,所述第一QoS配置信息是以下之一:第一数据通道的QoS配置信息,第二数据通道和/或第三数据通道的QoS配置信息;
    和/或
    所述时延监控配置信息是以下之一:第一数据通道的时延监控配置信息,第二数据通道和/或第三数据通道的时延监控配置信息;
    其中,所述第一数据通道用于上行和/或下行,所述第二数据通道用于上行,所述第三数据通道用于下行。
  5. 根据权利要求1所述的方法,其中,所述时延监控操作包括以下至少一项:
    上行时延监控操作,包括以下至少一项:第一上行时延监控操作;第二上行时延监控操作;第三上行时延监控操作;
    下行时延监控操作,包括以下至少一项:第一下行时延监控操作;第二下行时延监控操作;第三下行时延监控操作;
    往返时延监控操作,包括以下至少一项:第一往返时延监控操作,第二往返时延监控操作,第三往返时延监控操作;
    其中,
    第一往返时延为终端与锚点网关间的往返时延,
    第二往返时延为RAN网元与锚点网关间的往返时延,
    第三往返时延为终端与RAN网元间的往返时延,
    第一上行时延为从终端到锚点网关的上行时延,
    第一下行时延为从锚点网关到终端的下行时延,
    第二上行时延为从RAN网元到锚点网关的上行时延,
    第二下行时延为从锚点网关到RAN的下行时延,
    第三上行时延为从终端到RAN网元的上行时延,
    第三下行时延为从RAN网元到终端的下行时延。
  6. 根据权利要求1所述的方法,其中,所述执行时延监控操作,和/或,根据时 延监控结果和/或第一QoS配置信息进行时延保障包括:
    在满足第一条件的情况下,执行时延监控操作,和/或,根据时延监控结果和/或第一QoS配置信息进行时延保障;
    其中,所述第一条件包括以下至少一项:
    第一上行时延超过以下之一:数据通道的时延预算,1/2第一往返时延预算,第一上行时延预算;
    第一下行时延超过以下之一:数据通道的时延预算,1/2第一往返时延预算,第一下行时延预算;
    第三上行时延超过以下之一:数据通道的终端与RAN网元间时延预算,1/2第三往返时延预算,第三上行时延预算;
    第三下行时延超过以下之一:数据通道的终端与RAN网元间时延预算,1/2第一往返时延预算,第三下行时延预算。
  7. 根据权利要求6所述的方法,其中,所述第一条件还包括以下至少一项:
    所述第一上行时延与第一下行时延的和不超过第一往返时延预算;
    所述第三上行时延与第三下行时延的和不超过第三往返时延预算。
  8. 根据权利要求1所述的方法,其中,所述根据时延监控结果和/或第一QoS配置信息进行时延保障,包括以下至少一项:
    根据时延监控结果和/或往返时延预算,确定或调整以下至少一项:上行时延预算,下行时延预算,第三往返时延预算;
    保障第一往返时延不超过第一往返时延预算;
    保障第一上行时延不超过第一上行时延预算;
    保障第一下行时延不超过第一下行时延预算。
    保障第三往返时延不超过第三往返时延预算;
    保障第三上行时延不超过第三上行时延预算;
    保障第三下行时延不超过第三下行时延预算;
    保障第二往返时延不超过第二往返时延预算;
    保障第二上行时延不超过第二上行时延预算;
    保障第二下行时延不超过第二下行时延预算;
    其中,
    所述时延监控结果包括以下至少一项:上行时延监控结果,下行时延监控结果,往返时延监控结果;
    所述往返时延预算包括以下至少一项:第一往返时延预算,第二往返时延预算,第三往返时延预算。
  9. 根据权利要求8所述的方法,其中,根据时延监控结果和/或往返时延预算,确定或调整上行时延预算、下行时延预算和/或第三往返时延预算,包括以下至少一项:
    根据第一往返时延预算,第一往返时延监控结果,第一上行时延监控结果,第一下行时延监控结果中的至少一项,确定或调整第一上行时延预算和/或第一下行时延预算;
    根据第一往返时延预算,第一往返时延监控结果,第二上行时延监控结果,第二下行时延监控结果,第三上行时延监控结果,第三下行时延监控结果中的至少一项,确定或调整以下至少一项:第三上行时延预算,第三下行时延预算;
    根据第一往返时延预算,第一往返时延监控结果,第二往返时延监控结果,第二上行时延监控结果,第二下行时延监控结果中的至少一项,确定或调整第三往返时延预算。
  10. 根据权利要求5所述的方法,其中,所述第一上行时延监控操作包括以下至少一项:
    记录T11时间;
    记录T1时间;
    确定第三上行时延;
    为第一上行包添加包头信息,所述包头信息包括以下至少一项:T1时间,T11时间,第三上行时延;
    发送所述第一上行包;
    接收第一下行包,所述第一下行包的包头信息包括以下至少一项:T2时间,第一上行时延,第二上行时延,所述第一上行包的包头信息;
    确定第一上行时延,包括以下之一:T2-T1+第三上行时延得出第一上行时延,T2-T11得出第一上行时延,第二上行时延+第三上行时延,从所述第一下行包的包头信息中直接得到第一上行时延;
    其中,
    所述T11时间是以下之一:RAN网元调度终端第二上行包的时间,终端发送第二上行包的时间;
    所述T1时间是所述第一上行包的发送时间;
    所述T2时间为所述第一上行包的接收时间。
  11. 根据权利要求5所述的方法,其中,所述第一下行时延监控操作包括以下至少一项:
    接收第一下行包,所述第一下行包的包头信息包括:T3时间;
    记录T4时间;
    确定第三下行时延;
    确定第一下行时延,包括:T4-T3+第三下行时延;
    其中,
    所述T3时间为所述第一下行包的发送时间;
    所述T4时间为所述第一下行包的接收时间。
  12. 根据权利要求5所述的方法,其中,所述第一往返时延监控操作包括以下至少一项:
    记录T11时间;
    记录T1时间;
    确定第三上行时延;
    为第一上行包添加包头信息,所述包头信息包括以下至少一项:T1时间,T11时间,第三上行时延;
    发送所述第一上行包;
    接收第一下行包,所述下行包的包头信息包括以下至少一项:T2时间,T3时间,第一上行时延,第二上行时延,所述第一上行包的包头信息;
    确定第一往返时延,包括以下之一:((T2-T1)+(T4-T3)+第三下行时延+第三上行时延)得出第一往返时延,((T2-T11)+(T4-T3)+第三下行时延)得出第一往返时延,(第二上行时延+(T4-T3)+第三下行时延+第三上行时延)得出第一往返时延,(第一上行时延+(T4-T3)+第三下行时延)得出第一往返时延;
    其中,
    所述T11时间是以下之一:RAN网元调度终端第二上行包的时间,终端发送第二上行包的时间;
    所述T1时间是所述第一上行包的发送时间;
    所述T2时间为所述第一上行包的接收时间;
    所述T3时间为所述第一下行包的发送时间;
    所述T4时间为所述第一下行包的接收时间。
  13. 根据权利要求5所述的方法,其中,所述第二上行时延监控操作包括以下至少一项:
    记录T1时间;
    为第一上行包添加包头信息,所述包头信息包括以下至少一项:T1时间;
    发送所述第一上行包;
    接收第一下行包,所述第一下行包的包头信息包括以下至少一项:T2时间,第二上行时延;
    确定第二上行时延,包括以下之一:根据T2-T1得出第二上行时延,在所述第一下行包的包头中读取所述第二上行时延;
    其中,
    所述T1时间是所述第一上行包的发送时间;
    所述T2时间为所述第一上行包的接收时间。
  14. 根据权利要求5所述的方法,其中,所述第二下行时延监控操作包括以下至 少一项:
    接收第一下行包,所述第一下行包的包头信息包括T3时间,所述T3时间是所述第一下行包的发送时间;
    记录T4时间,所述T4时间为所述第一下行包的接收时间;
    确定第二下行时延,包括:根据T4-T3得出所述第二下行时延。
  15. 根据权利要求5所述的方法,其中,所述第二往返时延监控操作包括以下至少一项:
    记录T1时间;
    为第一上行包添加包头信息,所述包头信息包括以下至少一项:所述第一上行包用于测量时延的信息,T1时间;
    发送所述第一上行包;
    接收第一下行包,所述第一下行包的包头信息中包括以下至少一项:T2时间,T3时间,T1时间,第二上行时延,所述第一上行包的包头信息;
    记录T4时间,所述T4时间为所述第一下行包的接收时间;
    确定第二往返时延,包括以下之一:根据(T4-T3)+(T2-T1)得出所述第二往返时延,根据(T4-T3)+第二上行时延得出所述第二往返时延;
    其中,
    所述T1时间是所述第一上行包的发送时间,
    所述T2时间是所述第一上行包的接收时间,
    所述T3时间是所述第一下行包的发送时间。
  16. 根据权利要求8所述的方法,其中,根据时延监控结果和/或往返时延预算,确定或调整第一上行时延预算和第一下行时延预算中的至少一项,包括以下至少一项:
    根据第二上行时延监控结果和第三上行时延监控结果,确定第一上行时延,根据所述第一上行时延和第一往返时延预算,确定或调整第一上行时延预算和第一下行时延预算中的至少一项;
    根据第二下行时延监控结果和第三下行时延监控结果,确定第一下行时延,根据所述第一下行时延和第一往返时延预算,确定或调整第一上行时延预算和第一下行时延预算中的至少一项。
  17. 根据权利要求8所述的方法,其中,所述根据时延监控结果和/或往返时延预算,确定或调整第三往返时延预算,包括以下至少一项:
    根据第二往返时延监控结果和第一往返时延预算确定第三往返时延预算;
    根据第二往返时延监控结果和第一往返时延预算,确定第三上行时延预算和/或第三下行时延预算。
  18. 根据权利要求8所述的方法,其中,所述保障第一往返时延不超过第一往返时延预算,包括以下至少一项:
    第三上行时延和第三下行时延的和不超过第一值,
    其中,所述第一值为第一往返时延预算与第二往返时延监控结果的差值。
  19. 根据权利要求8所述的方法,其中,所述保障第一上行时延不超过第一上行时延预算,包括以下至少一项:
    第三上行时延或第三上行时延预算不超过第二值,
    其中,第二值为第一上行时延预算与第二上行时延监控结果的差值,或第一往返时延预算与第二往返时延监控结果的差值减去第三上行时延监控结果,或第一往返时延预算与第二往返时延监控结果的差值减去第三上行时延预算。
  20. 根据权利要求8所述的方法,其中,所述保障第一下行时延不超过第一下行时延预算,包括以下至少一项:
    第三下行时延或第三上行时延预算不超过第三值,
    其中,所述第三值为第一下行时延预算与第二下行时延监控结果的差值,或第一往返时延预算与第二往返时延监控结果的差值减去第三上行时延监控结果,或第一往返时延预算与第一往返时延监控结果的差值减去第三上行时延预算。
  21. 一种QoS控制方法,包括:
    第二通信设备获取第一信息;
    所述第二通信设备根据所述第一信息,执行第二操作;
    其中,所述第一信息包括以下至少一项:
    时延监控配置信息;
    第一QoS配置信息;
    第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
    所述第二操作包括以下至少一项:
    时延监控操作;
    其中,所述第一QoS配置信息,包括以下至少一项;
    第一往返时延预算,第一上行时延预算,第一下行时延预算;
    第三往返时延预算,第三上行时延预算,第三下行时延预算;
    数据通道的时延预算;
    第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延预算的和;
    第三指示信息,所述第三指示信息用于指示以下之一:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
    第四指示信息,所述第四指示信息用于指示:往返时延不能够超过往返时延预算。
  22. 根据权利要求21所述的方法,其中,所述时延监控配置信息包括:
    要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
    其中,第一往返时延为终端与锚点网关间的往返时延,
    第二往返时延为RAN网元与锚点网关间的往返时延,
    第一上行时延为从终端到锚点网关的上行时延,
    第一下行时延为从锚点网关到终端的下行时延,
    第二上行时延为从RAN网元到锚点网关的上行时延,
    第二下行时延为从锚点网关到RAN的下行时延。
  23. 根据权利要求22所述的方法,其中,所述要求测量的时延为以下之一:RAN网元负责计算的时延,锚点网关测量后发送给RAN网元的时延。
  24. 根据权利要求21或22所述的方法,其中,所述第一QoS配置信息是以下之一:第一数据通道的QoS配置信息,第二数据通道和/或第三数据通道的QoS配置信息;
    和/或
    所述时延监控配置信息是以下之一:第一数据通道的时延监控配置信息,第二数据通道和/或第三数据通道的时延监控配置信息;
    其中,所述第一数据通道用于上行和/或下行,所述第二数据通道用于上行,所述第三数据通道用于下行。
  25. 根据权利要求21所述的方法,其中,所述时延监控操作包括以下至少一项:
    上行时延监控操作,包括以下至少一项:第一上行时延监控操作;第二上行时延监控操作;第三上行时延监控操作;
    下行时延监控操作,包括以下至少一项:第一下行时延监控操作;第二下行时延监控操作;第三下行时延监控操作;
    往返时延监控操作,包括以下至少一项:第一往返时延监控操作,第二往返时延监控操作,第三往返时延监控操作;
    其中,第一往返时延为终端与锚点网关间的往返时延,
    第二往返时延为RAN网元与锚点网关间的往返时延,
    第三往返时延为终端与RAN网元间的往返时延,
    第一上行时延为从终端到锚点网关的上行时延,
    第一下行时延为从锚点网关到终端的下行时延,
    第二上行时延为从RAN网元到锚点网关的上行时延,
    第二下行时延为从锚点网关到RAN的下行时延,
    第三上行时延为从终端到RAN网元的上行时延,
    第三下行时延为从RAN网元到终端的下行时延。
  26. 根据权利要求25所述的方法,其中,所述上行时延监控操作,第一上行时延监控操作和/或第二上行时延监控操作包括以下至少一项:
    记录T2时间,所述T2时间为接收上行包的时间;
    接收第一上行包,所述第一上行包的包头信息包括以下至少一项:T1时间,T11时间,第三上行时延;
    确定第一上行时延,包括以下之一:根据T2-T11得到所述第一上行时延,根据T2-T1+第三上行时延得到所述第一上行时延;
    确定第二上行时延,包括:根据T2-T1得到所述第二上行时延;
    为第一下行包添加包头信息,所述包头信息包括以下至少一项:T2时间,第一上行时延,所述上行包的包头信息;
    发送所述第一下行包;
    其中,
    所述T11时间是以下之一:RAN网元调度终端第二上行包的时间,终端发送第二上行包的时间;
    所述T1时间是上行包的发送时间。
  27. 根据权利要求25所述的方法,其中,所述下行时延监控操作,第一下行时延监控操作和/或第二下行时延监控操作包括以下至少一项:
    为第一下行包添加包头信息,所述包头信息包括:T3时间,T3时间为第一下行包的发送时间;
    发送所述第一下行包。
  28. 根据权利要求25所述的方法,其中,所述往返时延监控操作包括以下至少一项:
    记录T2时间,所述T2时间为接收第一上行包的时间;
    接收第一上行包,所述第一上行包的包头信息包括以下至少一项:T1时间,T11时间,第三上行时延;
    确定第一上行时延,包括以下之一:根据T2-T11得到所述第一上行时延,根据T2-T1+第三上行时延得到所述第一上行时延;
    为第一下行包添加以下至少一项包头信息:T3时间,T2时间,第一上行时延,第二上行时延,所述第一上行包的包头信息;
    发送所述第一下行包;
    其中,T3时间为所述第一下行包的发送时间;
    所述T11时间是以下之一:RAN网元调度终端第二上行包的时间,终端发送第二上行包的时间;
    所述T1时间是所述第一上行包的发送时间。
  29. 一种QoS控制方法,包括:
    第三通信设备获取第五信息;
    所述第三通信设备根据所述第五信息,执行第三操作;
    所述执行第三操作包括以下至少一项:
    确定第二信息;
    发送第二信息;
    其中,
    所述第二信息包括以下至少一项:时延监控策略,第一QoS策略,第一指示信息;
    所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
    其中,所述第五信息包括以下至少一项:第一业务数据流的描述信息;时延监控要求;第一QoS要求,所述第一QoS要求为所述第一业务数据流的QoS要求;
    其中,所述第一QoS要求,包括以下至少一项;
    第一往返时延要求;
    第一上行时延要求;
    第一下行时延要求;
    单向时延预算;
    第五指示信息,所述第五示信息用于指示以下之一:第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和;
    第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
    第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延要求。
  30. 根据权利要求29所述的方法,其中,所述第三通信设备根据所述第五信息,确定第二信息,包括:
    在所述第五信息包括第一上行时延要求和第一下行时延要求的情况下,所述第三通信设备根据所述第一上行时延要求映射第一上行QoS要求或第一上行QoS预算,所述第三通信设备根据所述第一下行时延要求映射第一下行QoS要求或第一下行QoS预算;
    在所述第五信息包括第一往返时延要求的情况下,所述第三通信设备根据预配置的第一往返时延分割经验值或时延监控结果对所述第一往返时延要求或第一往返时延预算进行分割,得到第一上行QoS要求或第一上行QoS预算,和,第一下行QoS要求或第一下行QoS预算。
  31. 根据权利要求29所述的方法,其中,所述第一QoS策略包括以下至少一项;
    第一往返时延预算;
    第一上行时延预算;
    第一下行时延预算;
    单向时延预算;
    第五指示信息,所述第五指示信息用于指示以下之一:第一往返时延预算为单向时延预算的两倍取值,第一往返时延预算为第一上行时延要求与第一下行时延预算的和;
    第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
    第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延预算。
  32. 根据权利要求29所述的方法,其中,所述时延监控策略包括以下至少一项:
    要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
    其中,
    第一往返时延为终端与锚点网关间的往返时延,
    第二往返时延为RAN网元与锚点网关间的往返时延,
    第一上行时延为从终端到锚点网关的上行时延,第一下行时延为从锚点网关到终端的下行时延,
    第二上行时延为从RAN网元到锚点网关的上行时延,
    第二下行时延为从锚点网关到RAN网元的下行时延。
  33. 根据权利要求32所述的方法,其中,所述要求测量的时延为以下之一:RAN网元负责计算的时延,锚点网关测量后发送给RAN网元的时延。
  34. 根据权利要求31或32所述的方法,其中,所述第一QoS策略是以下之一:第一数据通道的QoS策略,第二数据通道和/或第三数据通道的QoS策略,第一业务数据流的QoS策略;
    和/或
    所述时延监控策略是以下之一:第一数据通道的时延监控策略,第二数据通道和/或第三数据通道的时延监控策略;
    其中,所述第一数据通道用于上行和/或下行,第二数据通道用于上行,第三数据通道用于下行。
  35. 一种QoS控制方法,包括:
    第四通信设备获取第二信息,所述第二信息包括以下至少一项:时延监控要求或 时延监控策略,第一QoS要求或第一QoS策略,第一指示信息;
    所述第四通信设备根据所述第二信息,执行第四操作,所述执行第四操作包括以下至少一项:
    确定第一信息;
    发送第一信息;
    其中,所述第一信息包括以下至少一项:
    时延监控配置信息;
    第一QoS配置信息;
    第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
    其中,
    所述第一QoS配置信息,包括以下至少一项;
    第一往返时延预算,第一上行时延预算,第一下行时延预算;
    第三往返时延预算,第三上行时延预算,第三下行时延预算;
    数据通道的时延预算;
    第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延预算的和;
    第三指示信息,所述第三指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预只能相同;
    第四指示信息,所述第四指示信息用于指示:第一往返时延不能够超过第一往返时延要求;
    其中,
    所述时延监控配置信息,包括以下至少一项:要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
    其中,
    第一往返时延为终端与锚点网关间的往返时延,
    第二往返时延为RAN网元与锚点网关间的往返时延,
    第一上行时延为从终端到锚点网关的上行时延,
    第一下行时延为从锚点网关到终端的下行时延,
    第二上行时延为从RAN网元到锚点网关的上行时延,
    第二下行时延为从锚点网关到RAN的下行时延。
  36. 根据权利要求35所述的方法,其中,第一QoS要求包括以下至少一项:
    第一往返时延要求;
    第一上行时延要求;
    第一下行时延要求;
    单向时延预算;
    第五指示信息,所述第五示信息用于指示以下之一:第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和;
    第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
    第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延要求;
    和/或,
    所述第一QoS策略,包括以下至少一项;
    第一往返时延预算;
    第一上行时延预算;
    第一下行时延预算;
    单向时延预算;
    第五指示信息,所述第五指示信息用于指示以下之一:第一往返时延预算为单向时延预算的两倍取值,第一往返时延预算为第一上行时延要求与第一下行时延预算的和;
    第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
    第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延预算。
  37. 根据权利要求35所述的方法,其中,时延监控要求或时延监控策略包括以下至少一项:
    要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
    其中,
    第一往返时延为终端与锚点网关间的往返时延,
    第二往返时延为RAN网元与锚点网关间的往返时延,
    第一上行时延为从终端到锚点网关的上行时延,第一下行时延为从锚点网关到终端的下行时延,
    第二上行时延为从RAN网元到锚点网关的上行时延,
    第二下行时延为从锚点网关到RAN的下行时延。
  38. 根据权利要求37所述的方法,其中,所述要求测量的时延为以下之一:RAN 网元负责计算的时延,锚点网关测量后发送给RAN网元的时延。
  39. 根据权利要求36或37所述的方法,其中,所述第一QoS配置信息是以下之一:第一数据通道的QoS配置信息,第二数据通道和/或第三数据通道的QoS配置信息;
    和/或
    所述时延监控配置信息是以下之一:第一数据通道的时延监控配置信息,第二数据通道和/或第三数据通道的时延监控配置信息;
    其中,所述第一数据通道用于上行和/或下行,第二数据通道用于上行,第三数据通道用于下行。
  40. 一种QoS控制方法,包括:
    第五通信设备发送第五信息,所述第五信息包括以下至少一项:第一业务数据流的描述信息;时延监控要求;第一QoS要求,所述第一QoS要求为所述第一业务数据流的QoS要求;
    其中,所述第一QoS要求,包括以下至少一项;
    第一往返时延要求;
    第一上行时延要求;
    第一下行时延要求;
    单向时延预算;
    第五指示信息,所述第五示信息用于指示以下之一:第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和;
    第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
    第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延要求;
    其中,所述时延监控要求包括以下至少一项:
    要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
    其中,
    第一往返时延为终端与锚点网关间的往返时延,
    第二往返时延为RAN网元与锚点网关间的往返时延,
    第一上行时延为从终端到锚点网关的上行时延,第一下行时延为从锚点网关到终端的下行时延,
    第二上行时延为从RAN网元到锚点网关的上行时延,
    第二下行时延为从锚点网关到RAN的下行时延。
  41. 根据权利要求40所述的方法,其中,
    第一上行时延要求,用于请求保障所述第一业务数据流的第一上行时延不超过所述第一上行时延要求;
    第一下行时延要求,用于请求保障所述第一业务数据流的第一下行时延不超过所述第一下行时延要求;
    第一往返时延要求,用于请求保障所述第一业务数据流的第一往返时延不超过所述第一往返时延要求。
  42. 根据权利要求40所述的方法,其中,
    所述第一往返时延要求为以下之一:单向时延预算的两倍取值,第一上行时延要求与第一下行时延要求的和。
  43. 一种通信设备,所述通信设备为第一通信设备,包括:
    第一获取单元,用于获取第一信息;
    第一执行单元,用于根据所述第一信息,执行第一操作;
    其中,所述第一信息包括以下至少一项:
    时延监控配置信息;
    第一QoS配置信息;
    第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
    其中,所述执行第一操作包括以下至少一项:
    确定以下至少一项:第三往返时延预算,第三上行时延预算,第三下行时延预算;
    确定第一往返时延预算为以下之一:数据通道的时延预算的两倍取值,第一QoS配置信息中的第一往返时延预算,第一上行时延预算与第一下行时延预算的和;
    执行时延监控操作;
    根据时延监控结果和/或第一QoS配置信息进行时延保障;
    其中,所述第一QoS配置信息,包括以下至少一项;
    第一往返时延预算,第一上行时延预算,第一下行时延预算;
    第三往返时延预算,第三上行时延预算,第三下行时延预算;
    数据通道的时延预算;
    第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延预算的和;
    第三指示信息,所述第三指示信息用于指示以下之一:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
    第四指示信息,所述第四指示信息用于指示:往返时延不能够超过往返时延预算;
    其中,所述第一往返时延预算为终端与锚点网关间的往返时延预算;
    所述第一上行时延预算为从终端到锚点网关的上行时延预算;
    所述第一下行时延预算为从锚点网关到终端的下行时延预算;
    所述第三上行时延预算为终端到RAN网元的上行时延预算;
    所述第三下行时延预算为RAN网元到终端的下行时延预算;
    所述第三往返时延预算为终端与RAN网元间的往返时延预算。
  44. 一种通信设备,所述通信设备为第二通信设备,包括:
    第二获取单元,用于获取第一信息;
    第二执行单元,用于根据所述第一信息,执行第二操作;
    其中,所述第一信息包括以下至少一项:
    时延监控配置信息;
    第一QoS配置信息;
    第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
    所述第二操作包括以下至少一项:
    时延监控操作;
    其中,所述第一QoS配置信息,包括以下至少一项;
    第一往返时延预算,第一上行时延预算,第一下行时延预算;
    第三往返时延预算,第三上行时延预算,第三下行时延预算;
    数据通道的时延预算;
    第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延预算的和;
    第三指示信息,所述第三指示信息用于指示以下之一:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
    第四指示信息,所述第四指示信息用于指示:往返时延不能够超过往返时延预算。
  45. 一种通信设备,所述通信设备为第三通信设备,包括:
    第三获取单元,用于获取第五信息;
    第三执行单元,用于根据所述第五信息,执行第三操作;
    所述执行第三操作包括以下至少一项:
    确定第二信息;
    发送第二信息;
    其中,
    所述第二信息包括以下至少一项:时延监控策略,第一QoS策略,第一指示信息;
    所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
    其中,所述第五信息包括以下至少一项:第一业务数据流的描述信息;时延监控要求;第一QoS要求,所述第一QoS要求为所述第一业务数据流的QoS要求;
    其中,所述第一QoS要求,包括以下至少一项;
    第一往返时延要求;
    第一上行时延要求;
    第一下行时延要求;
    单向时延预算;
    第五指示信息,所述第五示信息用于指示以下之一:第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和;
    第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
    第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延要求。
  46. 一种通信设备,所述通信设备为第四通信设备,包括:
    第四获取单元,用于获取第二信息,所述第二信息包括以下至少一项:时延监控要求或时延监控策略,第一QoS要求或第一QoS策略,第一指示信息;
    第四执行单元,用于根据所述第二信息,执行第四操作,所述执行第四操作包括以下至少一项:
    确定第一信息;
    发送第一信息;
    其中,所述第一信息包括以下至少一项:
    时延监控配置信息;
    第一QoS配置信息;
    第一指示信息,所述第一指示信息用于指示以下之一:根据时延监控结果和/或第一QoS配置信息进行时延保障;根据时延监控结果和/或第三往返时延预算进行时延保障;
    其中,
    所述第一QoS配置信息,包括以下至少一项;
    第一往返时延预算,第一上行时延预算,第一下行时延预算;
    第三往返时延预算,第三上行时延预算,第三下行时延预算;
    数据通道的时延预算;
    第二指示信息,所述第二指示信息用于指示以下之一:第一往返时延预算为数据 通道的时延预算的两倍取值,第一往返时延预算为第一上行时延预算与第一下行时延预算的和;
    第三指示信息,所述第三指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预只能相同;
    第四指示信息,所述第四指示信息用于指示:第一往返时延不能够超过第一往返时延要求;
    其中,
    所述时延监控配置信息,包括以下至少一项:要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
    其中,
    第一往返时延为终端与锚点网关间的往返时延,
    第二往返时延为RAN网元与锚点网关间的往返时延,
    第一上行时延为从终端到锚点网关的上行时延,
    第一下行时延为从锚点网关到终端的下行时延,
    第二上行时延为从RAN网元到锚点网关的上行时延,
    第二下行时延为从锚点网关到RAN的下行时延。
  47. 一种通信设备,所述通信设备为第五通信设备,包括:
    第一发送单元,用于发送第五信息,所述第五信息包括以下至少一项:第一业务数据流的描述信息;时延监控要求;第一QoS要求,所述第一QoS要求为所述第一业务数据流的QoS要求;
    其中,所述第一QoS要求,包括以下至少一项;
    第一往返时延要求;
    第一上行时延要求;
    第一下行时延要求;
    单向时延预算;
    第五指示信息,所述第五示信息用于指示以下之一:第一往返时延要求为单向时延预算的两倍取值,第一往返时延要求为第一上行时延要求与第一下行时延要求的和;
    第六指示信息,所述第六指示信息用于指示:上行时延预算与下行时延预算能够不相同,上行时延预算与下行时延预算只能相同;
    第七指示信息,所述第七指示信息用于指示:第一往返时延不能够超过第一往返时延要求;
    其中,所述时延监控要求包括以下至少一项:
    要求测量的时延,包括以下至少一项:第一上行时延,第一下行时延,第一往返时延,第二上行时延,第二下行时延,第二往返时延;
    其中,
    第一往返时延为终端与锚点网关间的往返时延,
    第二往返时延为RAN网元与锚点网关间的往返时延,
    第一上行时延为从终端到锚点网关的上行时延,第一下行时延为从锚点网关到终端的下行时延,
    第二上行时延为从RAN网元到锚点网关的上行时延,
    第二下行时延为从锚点网关到RAN的下行时延。
  48. 一种通信设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至20中任一项所述的QoS控制方法的步骤,或者,实现如权利要求21至28中任一项所述的QoS控制方法的步骤,或者,实现如权利要求29至34中任一项所述的QoS控制方法的步骤,或者,实现如权利要求35至39中任一项所述的QoS控制方法的步骤,或者,实现如权利要求40至42中任一项所述的QoS控制方法的步骤。
  49. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至20中任一项所述的QoS控制方法的步骤,或者,实现如权利要求21至28中任一项所述的QoS控制方法的步骤,或者,实现如权利要求29至34中任一项所述的QoS控制方法的步骤,或者,实现如权利要求35至39中任一项所述的QoS控制方法的步骤,或者,实现如权利要求40至42中任一项所述的QoS控制方法的步骤。
PCT/CN2023/079306 2022-03-04 2023-03-02 QoS控制方法及通信设备 WO2023165564A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210210309.8 2022-03-04
CN202210210309.8A CN116744358A (zh) 2022-03-04 2022-03-04 QoS控制方法及通信设备

Publications (1)

Publication Number Publication Date
WO2023165564A1 true WO2023165564A1 (zh) 2023-09-07

Family

ID=87883058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079306 WO2023165564A1 (zh) 2022-03-04 2023-03-02 QoS控制方法及通信设备

Country Status (2)

Country Link
CN (1) CN116744358A (zh)
WO (1) WO2023165564A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110062426A (zh) * 2019-04-02 2019-07-26 腾讯科技(深圳)有限公司 通信方法、装置、计算机可读介质及电子设备
CN110636547A (zh) * 2019-09-27 2019-12-31 腾讯科技(深圳)有限公司 终端执行的方法以及相应的终端、计算机可读存储介质
WO2021233419A1 (zh) * 2020-05-21 2021-11-25 维沃移动通信有限公司 支持数据传输的方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110062426A (zh) * 2019-04-02 2019-07-26 腾讯科技(深圳)有限公司 通信方法、装置、计算机可读介质及电子设备
CN110636547A (zh) * 2019-09-27 2019-12-31 腾讯科技(深圳)有限公司 终端执行的方法以及相应的终端、计算机可读存储介质
WO2021233419A1 (zh) * 2020-05-21 2021-11-25 维沃移动通信有限公司 支持数据传输的方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Deterministic Delay QoS Class for Time Synchronization Support of 3GPP Network", 3GPP DRAFT; S2-1811210_WAS_S2-1810338 DETERMINISTC DELAY QOS CLASS FOR TIME SYNCHRONIZATION SUPPORT OF 3GPP NETWORK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRAN, vol. SA WG2, no. Dongguan, China; 20181015 - 20181019, 17 October 2018 (2018-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051503364 *

Also Published As

Publication number Publication date
CN116744358A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2019032124A1 (en) USER EQUIPMENT CATEGORY SIGNALING IN LTE-5G CONFIGURATION
US11889587B2 (en) Method for supporting time-sensitive communication and communications device
US20220210850A1 (en) Information transmission method and communications device
US20230345308A1 (en) Quality of service guarantee method and apparatus, and communications device
WO2023165564A1 (zh) QoS控制方法及通信设备
US20220131720A1 (en) Method for supporting port association, gateway selection method, and communications device
WO2023241446A1 (zh) 信息处理方法及通信设备
WO2023143549A1 (zh) QoS的控制方法及通信设备
WO2023143437A1 (zh) 信息公开方法及通信设备
CN112532503A (zh) 信息传输方法及通信设备
WO2024051544A1 (zh) 信息处理方法、设备及可读存储介质
WO2023208142A1 (zh) 数据的处理方法及通信设备
WO2023241445A1 (zh) 数据包集合时延的处理方法、装置及通信设备
WO2023155798A1 (zh) 信息公开的方法及通信设备
WO2024067452A1 (zh) 信息处理方法及通信设备
WO2023165496A1 (zh) 信息处理方法、装置、通信设备及可读存储介质
WO2023179730A1 (zh) 信息控制方法及通信设备
WO2023143441A1 (zh) 通知方法、第一网络功能及第二网络功能
WO2023169473A1 (zh) 业务处理方法、装置、通信设备及可读存储介质
WO2024027579A1 (zh) 数据处理方法及装置
WO2023208115A1 (zh) 数据的控制方法、装置及通信设备
WO2023045839A1 (zh) 通信方法、装置、核心网设备及通信设备
WO2023061274A1 (zh) 服务确定方法、装置、网络功能及可读存储介质
WO2024045970A1 (zh) 路由选择策略执行结果处理方法、装置及设备
WO2024067877A1 (zh) 信息处理方法及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762962

Country of ref document: EP

Kind code of ref document: A1