WO2023165211A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023165211A1
WO2023165211A1 PCT/CN2022/138403 CN2022138403W WO2023165211A1 WO 2023165211 A1 WO2023165211 A1 WO 2023165211A1 CN 2022138403 W CN2022138403 W CN 2022138403W WO 2023165211 A1 WO2023165211 A1 WO 2023165211A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
information
synchronization
time
measurement
Prior art date
Application number
PCT/CN2022/138403
Other languages
English (en)
French (fr)
Inventor
程波
王键
孙德福
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023165211A1 publication Critical patent/WO2023165211A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • the present application relates to the field of communication technologies, and in particular to a communication method and device, which can be applied to fields such as smart driving, smart home, and smart manufacturing.
  • short-distance communication systems have a variety of new business scenarios, such as smart cars, smart manufacturing, or smart homes.
  • the transmission requirements of these new business scenarios include at least one of the following features: low latency, high reliability, high networking density, high concurrency, high security, or large capacity.
  • WIFI wireless fidelity
  • BT bluetooth
  • Nodes in this asynchronous system need to obtain channels by preempting reservations, or execute The interception and avoidance mechanism obtains the channel, which makes the transmission efficiency of the asynchronous system low; especially in the scenario of high networking density, the nodes in the asynchronous system will interfere with each other, resulting in a decrease in the reliability of the asynchronous system and poor user experience. worse.
  • Embodiments of the present application provide a communication method and device, which are used to implement time-frequency synchronization of different nodes, reduce interference between different nodes, and improve transmission performance of a communication system.
  • a communication method which can be applied to a first node, and the method includes: sending first measurement configuration information to a second node, where the first measurement configuration information is used to instruct to measure the third Node synchronization information: receive synchronization information from the second node, and the synchronization information is used to indicate the time synchronization information, frequency synchronization information, synchronous communication domain set information, reference signal received power RSRP, reference signal received quality RSRQ, signal and One or more of Interference-plus-Noise Ratio, SINR, or Received Signal Strength Indicator, RSSI.
  • the foregoing synchronization information may also be referred to as first measurement result information.
  • the above communication method is applicable to a scenario where the first node has established a service.
  • the first node can obtain the synchronization information of the third node on the first channel (ie, the channel to be tested) through the second node.
  • the first channel ie, the channel to be tested
  • synchronization information of nodes in the first channel can be obtained without affecting services of the first node, so as to achieve time-frequency synchronization of multiple nodes.
  • time synchronization information may be understood as information related to time synchronization of the third node.
  • the foregoing time synchronization information includes a first time offset between the third node and the first node.
  • the first time offset can be understood as the degree of difference between the clock values of the first node and the third node at the first moment, or can be understood as the difference between the first node and the third node at the start moment of the time unit transmission error.
  • the first node after the first node receives the time synchronization information, it can directly establish time synchronization with the third node based on the time synchronization information, effectively improving the efficiency of establishing time synchronization between the first node and the third node.
  • the foregoing time synchronization information may include a clock value of the third node and/or a starting moment of transmission of a time unit of the third node.
  • the first node after the first node receives the time synchronization information, it needs to determine the first time offset between the third node and the first node based on the time synchronization information, based on the first time offset and the third node Establish time synchronization. In this way, the first time offset determined by the first node is more accurate, so that the time synchronization established by the first node and the third node is more accurate.
  • the frequency synchronization information may be understood as information related to frequency synchronization of the third node.
  • the frequency synchronization information includes a first frequency offset between the third node and the first node.
  • the first frequency deviation can be understood as the carrier frequency error between the first node and the third node at the first moment
  • the carrier frequency error can be understood as the relative/absolute error of the actual frequency between the first node and the third node.
  • the first node after the first node receives the frequency synchronization information, it can directly establish frequency synchronization with the third node based on the frequency synchronization information, effectively improving the efficiency of establishing frequency synchronization between the first node and the third node.
  • the foregoing frequency synchronization information may include a carrier frequency of the third node.
  • the first node after the first node receives the frequency synchronization information, it needs to determine the first frequency offset between the third node and the first node based on the frequency synchronization information, and based on the first frequency offset and the third node Establish frequency synchronization. In this way, the first frequency offset determined by the first node is more accurate, so that the frequency synchronization established by the first node and the third node is more accurate.
  • the synchronous communication domain set information may be understood as the information of the synchronous communication domain set formed by establishing time-frequency synchronization between nodes in the first channel and other first-type nodes.
  • the first type of nodes may be understood as G nodes and/or T nodes, which are not specifically limited in this embodiment of the present application.
  • the synchronous communication domain set information includes one or more of the following items: the topological relationship of the synchronous communication domain set, the priority information of the third node, and the first type of nodes included in the synchronous communication domain set number, or the synchronization state between the third node and other nodes of the first type except the third node in the set of synchronous communication domains.
  • the topological relationship of the synchronous communication domain set can be understood as the relationship between the root node and the parent node in the synchronous communication domain set, and the topological relationship can be represented by a node identifier.
  • the priority information of the third node may be understood as the priority of establishing time-frequency synchronization between the first node and the third node.
  • the synchronization state can be understood as the synchronization situation between the third node and other nodes of the first type except the third node in the set of synchronous communication domains.
  • the synchronous communication domain set information includes one or more types of information, and when the third node is a plurality of nodes, the first node can make a decision to synchronize the source node according to the synchronous communication domain set information, so that The time-frequency synchronization of the first node is more reasonable.
  • the above-mentioned first measurement configuration information may also be used to indicate the measurement target, the first period corresponding to the measurement resource, the duration of the measurement resource in the first period, and the duration of the measurement resource in the first period.
  • measurement resource can be understood as the time resource used by the second node to measure the synchronization information of the third node in the first channel, and the time unit of the time resource can be, for example, a superframe, a radio frame (radio frame), a symbol ( symbol) or other time units.
  • the duration of the measurement resource in the first period may be understood as the time unit occupied by the measurement resource in the first period.
  • start time domain position number of the measurement resource may be understood as the number corresponding to the time resource indicating that the second node starts measuring, for example, may be the number indicating the superframe where the second node starts measuring.
  • the "number of measurement resources" can be understood as the number of time units corresponding to the time resources used by the second node to measure the synchronization information of the third node in the first channel, for example, it can be a superframe, a radio frame, a symbol or other time units quantity.
  • the first measurement configuration information may indicate one or more measurement targets, so that the measurement of the first channel by the second node is more targeted.
  • the foregoing synchronization information is used for establishing time-frequency synchronization between the first node and the third node.
  • the first node may establish time-frequency synchronization with the third node based on the foregoing synchronization information. In this way, time-frequency synchronization among different nodes can be effectively realized.
  • the above method further includes: sending synchronization adjustment information between the first node and the third node, where the synchronization adjustment information can be used to indicate that the second type of nodes and the third node in the first synchronization area Time-frequency synchronization is established; wherein, the first synchronization area is a synchronization area to which the first node belongs.
  • the first synchronization area can be understood as a set of synchronous communication domains formed by establishing time-frequency synchronization between the first node and the second type of node.
  • the second type of nodes may be T nodes or terminal nodes.
  • the synchronization information includes frequency adjustment information and time adjustment information
  • the first node may send the synchronization information as synchronization adjustment information to the second type of nodes.
  • the synchronization information includes frequency information and time information
  • the first node can further determine the time when the frequency adjustment information, time adjustment information, and synchronization adjustment take effect according to the synchronization information, and combine the frequency adjustment information, time adjustment information, and synchronization The time when the adjustment takes effect is sent to the second type of nodes as synchronous adjustment information.
  • the first node sends synchronization adjustment information to the second-type nodes in the first synchronization area to which it belongs, so that the second-type nodes can establish time-frequency synchronization with the third node, further realizing time-frequency synchronization among multiple nodes. frequency synchronization.
  • the first node may also send second measurement configuration information to the second node, and the second measurement configuration information is used to instruct the third node to measure Updated synchronization information: receiving the updated synchronization information from the second node, where the updated synchronization information is used to indicate a second time offset and/or a second frequency offset between the third node and the first node.
  • the foregoing synchronization information may also be referred to as second measurement result information.
  • the second time offset can be understood as the degree of difference between the clock values of the first node and the third node at the second moment, or can be understood as the difference between the starting moment of the transmission of the time unit of the first node and the third node Error;
  • the second frequency deviation can be understood as the carrier frequency error between the first node and the third node at the second moment.
  • the first node can acquire the updated synchronization information of the third node through the second node again, so as to realize the synchronization tracking of the third node, so that the time-frequency synchronization between the first node and the third node is more accurate.
  • the above method further includes: the first node determines the second node according to service priority and/or load information of the second type of nodes in the first synchronization area.
  • the second node may be one or more nodes.
  • the first node can filter out the second nodes for synchronization information measurement according to the service priority and/or load information of the second type nodes, effectively avoiding the impact of synchronization information measurement on some second type nodes. Business impact, thereby effectively improving user experience.
  • sending the first measurement configuration information to the second node by the first node includes: sending the first measurement configuration information to the second node in response to detecting the first event; where the first event includes One or more of the following: the first node is turned on, the communication quality of the communication system to which the first node belongs is lower than the preset standard, the software module of the first node is started according to the preset configuration, or the first node is not synchronized with any node or, upon reaching the start time domain position of the first period, sending the first measurement configuration information to the second node.
  • the first node may be triggered by a specific event to send the first measurement configuration information to the second node, or the first node may periodically send the first measurement configuration information to the second node, so that the time-frequency of the first node Synchronization makes more sense.
  • the embodiment of the present application also provides a communication method, which can be applied to the second node, and the method includes: receiving a first measurement configuration device, the first measurement configuration information is used to measure the first channel in the first channel Synchronization information of the three nodes; obtain synchronization information, the synchronization information is used to indicate the time synchronization information, frequency synchronization information, synchronous communication domain set information, reference signal received power RSRP, reference signal received quality RSRQ, signal and interference plus noise of the third node One or more of SINR or received signal strength indication RSSI; and sending synchronization information to the first node.
  • the foregoing time synchronization information includes a first time offset between the third node and the first node.
  • the frequency synchronization information includes a first frequency offset between the third node and the first node.
  • the synchronous communication domain set information includes one or more of the following: the topological relationship of the synchronous communication domain set, the priority information of the third node, and the first type of nodes included in the synchronous communication domain set number, or the synchronization state between the third node and other nodes of the first type except the third node in the set of synchronous communication domains.
  • the first measurement configuration information is also used to indicate the measurement target, the first period corresponding to the measurement resource, the duration of the measurement resource in the first period, and the offset of the measurement resource in the first period Quantity, the starting time domain position number of the measurement resource, or the quantity of the measurement resource; wherein, the measurement target includes one or more of the following: reference signal received power, reference signal received quality, signal-to-interference-plus-noise ratio, received signal strength indication, synchronous communication domain set measurement, time adjustment measurement, or frequency adjustment measurement; wherein, the measurement resource is a time resource used to measure the first channel.
  • the foregoing synchronization information is used for establishing time-frequency synchronization between the first node and the third node.
  • the above method further includes: receiving synchronization adjustment information between the first node and the third node, where the synchronization adjustment information is used for establishing time-frequency synchronization between the second node and the third node; wherein, the second The node and the first node belong to the first synchronization area.
  • the above method further includes: receiving second measurement configuration information, where the second measurement configuration information is used to measure the updated synchronization information of the third node; acquiring updated synchronization information; and sending the updated synchronization information to the first node.
  • Synchronization information the updated synchronization information is used to indicate the second time offset and/or the second frequency offset between the third node and the first node.
  • the embodiment of the present application also provides another communication method, which is applied to the first node, and the method includes: receiving first information from the third node, and the first information is used to indicate the third node’s One or more of time synchronization information, frequency synchronization information, synchronous communication domain set information, reference signal received power RSRP, reference signal received quality RSRQ, signal-to-interference-plus-noise ratio SINR, or received signal strength indication RSSI;
  • the third node establishes time-frequency synchronization.
  • the above communication method is applicable to scenarios where the first node has just started up and has not yet established a service, or when the service of the first node is in an idle state (for example, in the early morning or when no terminal node is currently connected).
  • the first node can directly obtain the synchronization information of the third node from the third node, and establish time-frequency synchronization with the third node, effectively improving the efficiency of establishing time-frequency synchronization of the first node.
  • the first information is carried in a broadcast message, a unicast message, or a multicast message. That is to say, the third node may send synchronization information to the first node in various ways.
  • the embodiment of the present application also provides a communication device, including a unit for realizing the method in any one of the above-mentioned first aspect and possible implementation manners of the first aspect, or including a unit for realizing the above-mentioned third aspect.
  • a communication device including a unit for realizing the method in any one of the above-mentioned first aspect and possible implementation manners of the first aspect, or including a unit for realizing the above-mentioned third aspect.
  • a unit of the method in any one of the possible implementation manners of the aspect and the third aspect.
  • the embodiment of the present application further provides a communication device, including a unit for realizing the method in any one of the above-mentioned second aspect and possible implementation manners of the second aspect.
  • the embodiment of the present application also provides a chip system, including at least one processor and an interface circuit, the processor is used to execute instructions and/or data interaction through the interface circuit, so that the chip system performs
  • the chip system performs The above-mentioned first aspect and the method in any one of the possible implementation manners of the first aspect, or perform the method in any one of the above-mentioned third aspect and the possible implementation manners of the third aspect.
  • the embodiment of the present application also provides a chip system, including at least one processor and an interface circuit, the processor is used to execute instructions and/or data interaction through the interface circuit, so that the chip system performs The method of any one of the above-mentioned second aspect and possible implementation manners of the second aspect.
  • the embodiment of the present application further provides a terminal, including the device according to the fourth aspect or the chip system according to the sixth aspect, and/or, the device according to the fifth aspect or the seventh aspect The system-on-a-chip.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores instructions, and when it is run on a computer, the computer executes the above-mentioned first aspect and the first aspect
  • the method in any one of the possible implementation modes, or, execute the method in any one of the above-mentioned second aspect and the possible implementation modes of the second aspect, or, perform the above-mentioned third aspect and any of the possible implementation modes of the third aspect one method.
  • the embodiment of the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when it is run on a computer, the computer executes the above-mentioned first aspect and the first aspect
  • the method in any one of the possible implementation modes, or, execute the method in any one of the above-mentioned second aspect and the possible implementation modes of the second aspect, or, perform the above-mentioned third aspect and any of the possible implementation modes of the third aspect one method.
  • the fourth aspect to the tenth aspect please refer to the relevant description of the first aspect or the third aspect above, and will not repeat them here.
  • FIG. 1 is a schematic diagram of a superframe provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a possible application scenario provided by the embodiment of the present application.
  • FIG. 3 is one of the schematic flowcharts of the first communication method provided by the embodiment of the present application.
  • FIG. 4 is the second schematic flow diagram of the first communication method provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a set of synchronous communication domains provided by an embodiment of the present application.
  • FIG. 6 is the third schematic flow diagram of the first communication method provided by the embodiment of the present application.
  • FIG. 7 is one of the time-frequency synchronization schematic diagrams of the first node provided by the embodiment of the present application.
  • FIG. 8 is the second schematic flow diagram of the second communication method provided by the embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of the device provided by the embodiment of the present application.
  • FIG. 10 is another schematic structural diagram of the device provided by the embodiment of the present application.
  • Time-frequency synchronization includes time synchronization and frequency synchronization.
  • Time synchronization refers to adjusting the clock values of different nodes to a certain degree of accuracy or compliance, or adjusting the error of the initial moment of transmission of time units of different nodes within a certain range.
  • a unit of a time unit may be a superframe, a radio frame (radio frame), a symbol (symbol), or other time units.
  • a super frame is a time unit composed of multiple radio frames
  • a radio frame is a time unit smaller than a super frame
  • a symbol is a time unit smaller than a radio frame.
  • each superframe contains 48 wireless frames
  • the length of each superframe is 1ms.
  • a superframe includes 48 radio frames, and numbers of the 48 radio frames are radio frame #0 to radio frame #47 in sequence.
  • 10 symbols are included in each radio frame. Among the 10 symbols, 4 symbols are used for downlink, 3 symbols are used for uplink, 2 symbols are used as a guard interval (gap, GAP), and 1 symbol is used as a flexible symbol. This flexible symbol can be used for uplink transmission or can be used There is no limitation on downlink transmission or other transmission.
  • uplink usually refers to the direction in which a terminal (terminal, T) node sends data or information to a management (grant, G) node, which can be represented by "T”.
  • Downlink usually refers to the direction in which node G sends data or information to node T, which can be represented by "G”. Since in the vehicle-mounted wireless short-distance communication system, there are usually communication requirements between different T nodes or different G nodes, the communication between different T nodes or different G nodes may occupy the above-mentioned flexible symbols. In the above Figure 1, the flexible symbol is represented as special grant (SG).
  • SG special grant
  • the G node and T node are just a distinction for node functions, and do not limit specific node names.
  • it may be a communication node in the Starlight short-distance communication standard, or a communication node in a short-distance communication system such as Bluetooth.
  • the present application does not specifically limit the type of the communication system.
  • Frequency synchronization means that the carrier frequency error of different nodes is kept within a certain range.
  • the carrier frequency error of different nodes can refer to the relative/absolute error between the actual frequency of the node and the expected frequency, or the relative/absolute error of the actual frequency between different nodes. wait.
  • Frequency synchronization may also be referred to as frequency quadrature. For example, a subcarrier frequency used by node 1 is f0, and a subcarrier frequency used by node 2 is f1.
  • the constraints can be determined according to factors such as system anti-interference capability and service characteristics , the frequencies adopted by node 1 and node 2 are considered to be orthogonal, otherwise they are considered not to be orthogonal.
  • the T node needs to establish time synchronization with the G node, then the T node needs to obtain the start position and end position of the symbol sent by the G node, and its duration is consistent with the understanding of the G node, and the T node and the G node Establish time synchronization.
  • the T node needs to obtain the carrier frequency of the G node, so that the error between the carrier frequency of the T node and the carrier frequency of the G node is kept within a certain range, and the T node and the G node establish frequency synchronization.
  • the carrier frequency error between the T node and the G node may be 100 Hz.
  • the first node may be understood as a node that needs to perform time-frequency synchronization.
  • the first node may be a G node.
  • the second node may be understood as a node used to replace the first node to measure synchronization information of nodes on the first channel.
  • the second node may be a node in the same synchronization area as the first node.
  • the third node may be understood as a node used for measurement by the second node on the first channel.
  • the third node may be one or more nodes, which is not specifically limited in this embodiment of the present application.
  • the measurement configuration information may be understood as information configured by the first node to the second node, and the information may be used to measure synchronization information of nodes in the first channel.
  • first measurement configuration information may be used to indicate the first channel, the measurement target, the first period corresponding to the measurement resource, the duration of the measurement resource in the first period, the offset of the measurement resource in the first period, the measurement The initial time-domain position number of the resource, or the quantity of the measurement resource; the second measurement configuration information may be used to indicate to measure the synchronization information updated by the third node in the first channel.
  • the first channel may be understood as a channel to be measured designated by the first node, and in some possible embodiments, the first channel may be characterized by its corresponding channel frequency.
  • the measurement target may be understood as the type of information to be measured in the first channel.
  • the measurement target includes one or more of the following: reference signal received power (received signal reference power, RSRP), reference signal reception quality (received signal reference quality, RSRQ), signal to interference plus noise ratio (signal-to-noise ratio, SINR), received signal strength indicator (received signal strength indicator, RSSI), synchronous communication domain set measurement, time adjustment measurement, or frequency adjustment measurement.
  • a set of synchronous communication domains may also be referred to as a synchronization group, which may be understood as a set formed by establishing time-frequency synchronization of multiple first-type nodes.
  • the first type of nodes may be G nodes and/or T nodes, which are not limited in this embodiment of the present application.
  • the G1 node and the G2 node establish time-frequency synchronization, and the G1 node and the G2 node may form a set of synchronous communication domains.
  • the G1 node and the T1 node establish time-frequency synchronization, and the G1 node and the T1 node may form a set of synchronous communication domains.
  • the synchronous communication domain set measurement may be understood as measuring the synchronous communication domain set information to which the nodes in the first channel belong.
  • the synchronous communication domain set information may be understood as the information of the synchronous communication domain set formed by establishing time-frequency synchronization between nodes in the first channel and other first-type nodes.
  • the synchronous communication domain set information may include but not limited to one or more of the following: the topological relationship of the synchronous communication domain set, the priority information of the third node, the first node included in the synchronous communication domain set The number of nodes of the same type, or the synchronization state between the third node and other nodes of the first type except the third node in the set of synchronous communication domains.
  • the first type of nodes may be understood as G nodes and/or T nodes, which are not specifically limited in this embodiment of the present application.
  • the topological relationship of the synchronous communication domain set can be understood as the relationship between the root node and the parent node in the synchronous communication domain set, and the topological relationship can be represented by the node identifier.
  • the root node is the first node in the synchronous communication domain set, and other nodes in the synchronous communication domain set directly or indirectly join the synchronous communication domain set through the root node.
  • a synchronization path refers to a connected path passing from the root node to the current node. For example, the current node enters the synchronous communication domain set through the parent node, and the parent node enters the synchronous communication domain set through the root node, then the current node-parent node-root node forms a synchronous path.
  • the priority information of the third node may be understood as the priority of establishing time-frequency synchronization between the first node and the third node.
  • the synchronization state can be understood as the synchronization situation between the third node and other nodes of the first type except the third node in the set of synchronous communication domains.
  • the synchronization communication domain set information includes node identifiers, synchronization status and synchronization direction.
  • the node identifiers may specifically refer to the identifiers G1 to G5 in Table 1
  • the synchronization state may be represented by a binary value "0" or "1”.
  • the synchronization state of the G1 node is 1, which may specifically mean that the G1 node maintains time-frequency synchronization with the G1 node and the G2 node respectively, while the G1 node does not maintain direct time-frequency synchronization with the G3 node, the G4 node, and the G5 node.
  • the synchronization direction may refer to the synchronization direction of each node.
  • “1” means that Gx and Gy are time-frequency synchronized, such as G1->G2 is "1", which means that G1 and G2 are time-frequency synchronized, that is, the time frequency of G1 will be adjusted according to the time frequency of G2, and G2 will be The parent node of frequency synchronization, G1 is the child node of time frequency synchronization.
  • “0” means that Gx does not perform time-frequency synchronization with Gy.
  • G2->G1 is "0”, which means that G2 does not perform time-frequency synchronization with G1, that is, the time frequency of G2 will not be adjusted according to the time frequency of G1.
  • the time-frequency synchronization in Table 1 is directional.
  • G1 and G2 perform time-frequency synchronization, that is, the time-frequency of G1 is adjusted according to the time-frequency of G2, and the value of G1->G2 is "1".
  • G2 does not perform time-frequency synchronization with G1, that is, the time-frequency of G2 is not adjusted according to the time-frequency of G1, and the value of G2->G1 is "0".
  • a table is only a form of expression of a relationship. In specific implementation, it is not limited to only using a table, and any other method that can reflect corresponding information can be used in the implementation of the present application.
  • the time adjustment measurement can be understood as measuring the time synchronization information of the nodes in the first channel.
  • the time synchronization information may be understood as information related to time synchronization of the third node.
  • the time synchronization information may include a first time offset between the third node and the first node.
  • the first time offset can be understood as the degree of difference between the clock values of the first node and the third node at the first moment, or the error at the start moment of the transmission of the time unit of the first node and the third node.
  • the time synchronization information may include the clock value of the third node at the first moment and/or the starting moment of transmission of the time unit of the third node.
  • frequency adjustment measurement may be understood as measuring frequency synchronization information of nodes in the first channel.
  • the frequency synchronization information may be understood as information related to frequency synchronization of the third node.
  • the frequency synchronization information may include a first frequency offset between the third node and the first node.
  • the first frequency deviation can be understood as the carrier frequency error between the first node and the third node at the first moment, and the carrier frequency error can be understood as the relative/absolute error of the actual frequency between the first node and the third node.
  • the frequency synchronization information may include the carrier frequency of the third node.
  • measurement resource can be understood as a time resource used by the second node to measure the synchronization information of the third node in the first channel, and the time unit of the time resource can be, for example, a superframe, a radio frame, a symbol or other time units.
  • the duration of the measurement resource in the first period may be understood as the time unit occupied by the measurement resource in the first period.
  • start time domain position number of the measurement resource may be understood as the number corresponding to the time resource indicating that the second node starts measuring, for example, may be the number indicating the superframe where the second node starts measuring.
  • the "number of measurement resources” can be understood as the number of time units corresponding to the time resources used by the second node to measure the synchronization information of the third node in the first channel, for example, it can be a superframe, a radio frame, a symbol or other time units quantity.
  • the synchronization information may be understood as information used to characterize the time-frequency synchronization of the third node.
  • the synchronization information may also be referred to as measurement result information.
  • the synchronization information may be used to indicate one or more items of time synchronization information, frequency synchronization information, synchronous communication domain set information, RSRP, RSRQ, SINR, or RSSI.
  • time synchronization information, frequency synchronization information, and synchronous communication domain set information please refer to the previous description, which will not be repeated here.
  • RSRP Resource Reference Signal
  • RSRQ Radio Service Set
  • SINR Signal-to-Network Reference Signal
  • RSSI Signal-to-Network Reference Signal
  • other parameters may also be used to characterize the signal reception strength of the second node for the information from the third node.
  • the node identifier can be the node's media access control (media access control, MAC) address, or a part of the node's MAC address, for example, the first n digits, the last n digits, and the middle n digits of the node's MAC address, or the node's MAC address Arbitrary n bits in the address, the n bits may be continuous values or discontinuous values in the MAC address, etc., and are not limited. Wherein, the value of n is a positive integer greater than or equal to 1 and less than all the bits of the MAC address.
  • the node ID can be an ID that identifies the identity of the node generated based on the MAC address of the node.
  • the MAC address of the node is used to perform logical operations with preset characters, and the result of the operation is used as the ID of the node.
  • Logical operations can include logical XOR, logical Addition and subtraction etc.
  • the node identifier may be other identifiers or addresses that can identify the identity of the node, such as an index, address, etc. pre-allocated for the node.
  • the node identification may be the identification of the communication domain where the node is located.
  • the resources that the G node sends synchronization signals, broadcast information, G link control information, and resources that the G node can schedule and configure are called the resource set of the G node.
  • the communication domain or the communication domain resources of the G node, the G node is called the G node of the communication domain.
  • a communication domain generally includes one G node and at least one T node.
  • the identifier of the communication domain may be equal to the identifier of the G node, or in other words, the identifier of the G node may be called the identifier of the communication domain where the G node is located.
  • its node identifier can also be understood as the identifier (DomainID) of the communication domain where it is located.
  • the first synchronization area can be understood as a set of synchronous communication domains formed by establishing time-frequency synchronization between the first node and the second type of node.
  • the second type of nodes may be T nodes.
  • Broadcasting is a way of disseminating information. It refers to the way a certain node in the network sends information. The range to which this information can spread is called the broadcast domain, and other nodes in the broadcast domain can receive the information. Information sent in a broadcast manner may be called broadcast information, including but not limited to broadcast channel and/or system information.
  • unicast messages are messages communicated over a network between a single sender and a single receiver.
  • the multicast message is that the sender sends the message to multiple receivers in a specified group.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • Each communication domain includes a group of communication nodes with communication relationship: one G node and at least one T node.
  • the G node manages the time-frequency resources of the communication domain, and has the function of scheduling resources for the communication link between the T nodes.
  • Nodes that do not belong to the communication domain can be referred to as external nodes (including nodes that have not joined the communication domain and nodes that have joined the communication domain and then exited the communication domain).
  • External nodes can be transformed into T nodes of the communication domain through the process of joining the communication domain. node.
  • an external node When an external node joins the communication domain, it must first synchronize time and frequency with the communication domain, and obtain system information such as resource configuration and supported features of the communication domain.
  • the T node In each communication domain, the T node can maintain time-frequency synchronization with its corresponding G node, and this application does not limit the synchronization mode between the T node and the G node.
  • FIG. 2 shows a possible application scenario of this embodiment of the present application.
  • FIG. 2 shows a schematic diagram of a topology relationship of an in-vehicle communication link.
  • there are three communication domains in a specific area for example, a smart car cockpit), which are respectively a first communication domain, a second communication domain and a third communication domain.
  • the mobile phone serves as the G node
  • the headset and the wearable device serve as the T node.
  • the car and machine serve as G nodes
  • microphones, speakers, and mobile phones serve as T nodes.
  • the keyless entry and start system serves as the G node
  • the mobile phone key and car key serve as the T node.
  • time-frequency synchronization needs to be maintained among the three G nodes of the mobile phone, car machine, and keyless entry and start system.
  • the short-distance wireless system includes at least one G node, and each G node accesses at least one T node.
  • the G node can be regarded as the creator of a wireless network, and is an intermediate node of the network.
  • the function of the G node is similar to a base station or a wireless fidelity access point (wireless fidelity access apoint, WIFI AP).
  • T nodes can be considered as terminals connected to wireless networks, such as mobile phones, headsets, notebooks and computers.
  • the mobile phone can be used as a G node, and the headset belonging to the same user as the mobile phone can be used as a T node.
  • multiple G nodes can be arranged in the conference room, and other conference rooms
  • a terminal device may serve as a T node, such as a wireless speaker or a mobile phone, and access any one of the above-mentioned multiple G nodes.
  • multiple G nodes are included in the smart car.
  • the terminal device needs to maintain time-frequency synchronization with the original multiple G nodes in the above-mentioned smart car.
  • the embodiments of the present application provide two communication methods.
  • the first communication method can be applied to the first node and the second node, in this method: the first node can send the first measurement configuration information to the second node, and the first measurement configuration information is used to indicate the measurement of the first channel Synchronization information of the third node; then the second node can obtain the synchronization information, the first node can receive synchronization information from the second node, and the synchronization information is used to indicate the time synchronization information, frequency synchronization information, and One or more of synchronous communication domain set information, RSRP reference signal received power, RSRQ reference signal received quality, SINR signal to interference plus noise ratio, or RSSI received signal strength indication.
  • the above-mentioned first communication method can be applied to the scenario where the first node has established a business, so through the method of the embodiment of this application, the first node can obtain the synchronization of the third node in the first channel through the second node
  • the information can be used to obtain the synchronization information of the nodes in the first channel without affecting the service of the first node, so as to achieve time-frequency synchronization of multiple nodes.
  • the second communication method can be applied to the first node, the method includes: receiving first information from the third node, the first information is used to indicate the time synchronization information, frequency synchronization information, and synchronous communication of the third node One or more of domain set information, RSRP, RSRQ, SINR, or RSSI; establish time-frequency synchronization with the third node.
  • the above-mentioned second communication method can be applied to a scenario where the first node has just started up and has not yet established a service, or a scenario when the service of the first node is in an idle state (for example, in the early morning or when no terminal node is currently connected).
  • the first node can directly obtain the synchronization information of the third node from the third node, and establish time-frequency synchronization with the third node, effectively improving the efficiency of establishing time-frequency synchronization of the first node.
  • FIG. 3 shows a schematic flowchart of the first communication method provided by the embodiment of the present application.
  • the establishment of time-frequency synchronization by the first node in the short-distance communication system is taken as an example for description.
  • the node used to replace the first node to measure the synchronization information of the nodes on the first channel is called the second node
  • the node that establishes time-frequency synchronization with the first node is called the third node.
  • the first node and the third node may be G nodes in the wireless short-distance communication system
  • the second node may be T nodes in the wireless short-distance communication system.
  • the method includes the following steps:
  • the first node sends first measurement configuration information to the second node.
  • the second node receives the first measurement configuration information.
  • the first measurement configuration information is used to indicate to measure the synchronization information of the third node in the first channel, and then the second node can measure the synchronization information of the third node in the first channel according to the first measurement configuration information.
  • the second node may be one or more nodes, which is not specifically limited in this embodiment of the present application.
  • the second node may be a second type of node in the first synchronization area to which the first node belongs.
  • the second type of nodes may be all T nodes or terminal nodes in the first synchronization area.
  • the first node may determine the second node according to the service priority and/or load information of the second type of nodes in the first synchronization area.
  • the service priority of the second type of node may be characterized by the type of service currently being performed by the second type of node (for example, video service, voice service, etc.).
  • the service priority of a node corresponds to the service type of the node.
  • the load information of the second type of nodes may be determined by the number of tasks currently processed by the second type of nodes.
  • the first node determines that there are many situations in the second node, including but not limited to the following situations:
  • the first node may determine the second node according to the service priority of the second type of nodes in the first synchronization area.
  • Example 1 the second type of nodes in the first synchronization area take node T1 and node T2 as examples, wherein, the service type of node T1 is video service, and the service type of node T2 is voice service, then the service priority of node T1 is higher than High, the service priority of the node T2 is low, the first node may determine the node T2 as the second node, and measure the synchronization information of the third node in the first channel through the node T2.
  • Example 2 the second type of nodes in the first synchronization area take node T1, node T2 and node T3 as examples, wherein, the service type of node T1 is video service, and the service type of node T2 and node T3 is voice service, then the node The service priority of T1 is higher, and the service priority of nodes T2 and T3 is lower.
  • the first node can determine the node T2 and node T3 as the second node, and measure the third node in the first channel through the node T2 and node T3. Node synchronization information.
  • the first node may determine the second node according to the load information of the second type of nodes in the first synchronization area.
  • the second type of nodes in the first synchronization area take node T1 and node T2 as examples, wherein, the number of tasks currently processed by node T1 is 10, and the number of tasks currently processed by node T2 is 1, then node T1
  • the load of node T2 is relatively high, and the load of node T2 is relatively low.
  • the first node may determine node T2 as the second node, and use node T2 to measure the synchronization information of the third node in the first channel.
  • the first node may determine the second node according to the service priority and load information of the second type of nodes in the first synchronization area.
  • the first node can filter out the second node suitable for synchronization information measurement according to the service priority and/or load information of the second type of node, which can effectively avoid the synchronization information measurement from affecting some second nodes.
  • the business of similar nodes will be affected, thereby effectively improving user experience.
  • the above-mentioned first channel may be understood as a channel to be measured designated by the first node, and in some possible embodiments, the first channel may be characterized by its corresponding channel frequency. That is to say, the first measurement configuration information may indicate the first channel to be measured by indicating the channel frequency of the first channel.
  • the above-mentioned first measurement configuration information may also be used to indicate the measurement target, the first period corresponding to the measurement resource, the duration of the measurement resource in the first period, and the duration of the measurement resource in the first period.
  • the measurement target may be understood as the type of information to be measured in the first channel.
  • the measurement target includes but not limited to one or more of the following: RSRP, RSRQ, SINR, RSSI, synchronous communication domain set measurement, time adjustment measurement, or frequency adjustment measurement.
  • one or more items of RSRP, RSRQ, SINR, or RSSI are used to characterize the signal reception strength of the second node for the information from the third node.
  • the signal reception strength of the second node for the information from the third node may also be characterized by other parameters.
  • the aforementioned set of synchronous communication domains may also be referred to as a synchronous group, which may be understood as a set formed by establishing time-frequency synchronization of multiple first-type nodes.
  • the first type of nodes may be G nodes and/or T nodes, which are not limited in this embodiment of the present application.
  • the G1 node and the G2 node establish time-frequency synchronization, and the G1 node and the G2 node may form a set of synchronous communication domains.
  • the G1 node and the T1 node establish time-frequency synchronization, and the G1 node and the T1 node may form a set of synchronous communication domains.
  • the synchronous communication domain set measurement may be understood as measuring the synchronous communication domain set information to which the nodes in the first channel belong.
  • the time adjustment measurement may be understood as measuring time synchronization information of nodes in the first channel, and the time synchronization information may be understood as information related to time synchronization of the third node.
  • frequency adjustment measurement may be understood as measuring frequency synchronization information of a node in the first channel, and the frequency synchronization information may be understood as information related to frequency synchronization of a third node.
  • Example 1 if the measurement target includes synchronous communication domain set measurement, after receiving the first measurement configuration information, the second node may measure the synchronous communication domain set to which the third node in the first channel belongs.
  • the measurement target includes time adjustment measurement
  • the second node may measure the time synchronization information of the third node in the first channel
  • the time synchronization information of the third node may include, for example, the first The first time offset between the three nodes and the first node
  • the first time offset can be understood as the difference between the clock values of the first node and the third node at the first moment, or can be understood as the first node and the error of the start moment of the transmission of the time unit of the third node.
  • the time synchronization information may include the clock value of the third node and/or the start moment of transmission of the time unit of the third node.
  • Example 3 if the measurement target includes frequency adjustment measurement, after the second node receives the first measurement configuration information, it may measure the frequency synchronization information of the third node in the first channel, and the frequency synchronization information of the third node may include, for example, the first The first frequency deviation between the three nodes and the first node, the first frequency deviation can be understood as the carrier frequency error between the first node and the third node at the first moment, and the carrier frequency error can be understood as the The relative/absolute error of the actual frequency between the three nodes.
  • the frequency synchronization information may include the carrier frequency of the third node.
  • the measurement target includes RSRP, RSRQ, SINR and RSSI
  • the second node after the second node receives the first measurement configuration information, it can measure the signal strength of the second node for the information from the third node in the first channel, the signal Strength can be characterized by RSRP, RSRQ, SINR and RSSI.
  • Example 5 if the measurement target includes synchronous communication domain set measurement, time adjustment measurement and frequency adjustment measurement, after the second node receives the first measurement configuration information, it can measure the synchronous communication domain set information of the third node in the first channel , time synchronization information and frequency synchronization information.
  • Example 6 if the measurement target includes RSRP, RSRQ, SINR, RSSI, synchronous communication domain set measurement, time adjustment measurement, and frequency adjustment measurement, after the second node receives the first measurement configuration information, it can measure the first channel. Synchronization communication domain set information, time synchronization information and frequency synchronization information of the third node, and measuring the signal strength of the second node for the information from the third node in the first channel, the signal strength can be passed through RSRP, RSRQ, SINR and RSSI to characterize.
  • measurement resource can be understood as the time resource used by the second node to measure the synchronization information of the third node in the first channel, and the time unit of the time resource can be, for example, a superframe, a radio frame (radio frame), symbol (symbol), or other time units.
  • the "first period corresponding to the measurement resource” may be multiple consecutive time units.
  • the duration of the measurement resource in the first period may be understood as the time unit occupied by the measurement resource in the first period.
  • the “offset of the measurement resource in the first period” may be understood as an adjustable range of the time unit occupied by the measurement resource in the first period.
  • the “start time domain position number of the measurement resource” may be understood as the number corresponding to the time resource indicating that the second node starts measuring, for example, may be the number indicating the superframe where the second node starts measuring.
  • the "number of measurement resources” can be understood as the number of time units corresponding to the time resources used by the second node to measure the synchronization information of the third node in the first channel, for example, it can be a superframe, a radio frame, a symbol or other time units quantity.
  • the first cycle corresponding to the measurement resource may be 50 consecutive superframes, and the duration of the measurement resource in the first cycle may be 20 superframes in the 50 consecutive superframes.
  • the offset within one period may be 10 superframes, the starting time domain position number of the measurement resource may be the number of superframe 10 in 50 consecutive superframes, and the number of measurement resources may be 20.
  • the synchronization process of the first node may be triggered by a first event, or periodically.
  • the process of the first node sending the first measurement configuration information to the second node may be: in response to detecting the first event, sending the first measurement configuration information to the second node; wherein, the first Events include but are not limited to one or more of the following: the first node is turned on, the communication quality of the communication system to which the first node belongs is lower than the preset standard, the software module of the first node is started according to the preset configuration, or the first node is in A state that is not synchronized with any nodes.
  • a specific event can be used to trigger the first node to send the first measurement configuration information to the second node, so that the time-frequency synchronization of the first node meets the service requirements of the first node and does not affect the service of the first node. Influence.
  • the process of the first node sending the first measurement configuration information to the second node may be: the first node sends the first measurement configuration information to the second node after reaching the start time domain position of the first period configuration information.
  • the first node periodically sends the first measurement configuration information to the second node, so that the time-frequency synchronization of the first node is more reasonable.
  • the second node may be one or more nodes.
  • the second node is multiple nodes, and the first node may send the first measurement configuration information to the second node in a multicast or unicast manner.
  • the first measurement configuration information may be sent in a first period.
  • the first measurement configuration information may be carried in a system message.
  • the second node when the second node is one node, the first node may send the first measurement configuration information to the second node in a unicast manner.
  • the second node acquires the synchronization information.
  • step S302 specifically includes:
  • the second node may receive the broadcast information of the third node.
  • the second node determines the synchronization information according to the broadcast information.
  • the broadcast information may contain various information, and the second node may select the information corresponding to the measurement target from the broadcast information as the synchronization information of the third node according to the type of the measurement target indicated by the first measurement configuration information.
  • Example 1 if the measurement target indicated by the first measurement configuration information includes synchronous communication domain set measurement and time adjustment measurement, and the broadcast information received by the second node from the third node includes synchronous communication domain set information and time synchronization information, then The second node uses the synchronous communication domain set information and time synchronization information of the third node as synchronization information.
  • Example 2 if the measurement target indicated by the first measurement configuration information includes frequency adjustment measurement, and the broadcast information received by the second node from the third node includes synchronous communication domain set information, time synchronization information and frequency synchronization information, then the second The node uses the frequency synchronization information of the third node as synchronization information.
  • Example 3 if the measurement target indicated by the first measurement configuration information includes frequency adjustment measurement, the broadcast information received by the second node from the third node includes synchronous communication domain set information, time synchronization information and frequency synchronization information, but the frequency If the synchronization information only includes the carrier frequency of the third node, the second node may determine the frequency adjustment information according to the error between the carrier frequency of the third node and the carrier frequency of the second node, and determine the frequency adjustment information as synchronization information.
  • the second node may receive the broadcast information of the third node, and directly use the broadcast information as the synchronization information of the third node.
  • the broadcast received by the second node from the third node includes RSRP, RSRQ, SINR, RSSI, synchronous communication domain set information, time synchronization information and frequency synchronization information, and the second node uses the broadcast information of the third node as the synchronization information.
  • the second node sends the synchronization information to the first node.
  • the first node receives the synchronization information from the second node.
  • the above synchronization information is used to indicate the time synchronization information, frequency synchronization information, synchronous communication domain set information, RSRP reference signal received power, RSRQ reference signal received quality, SINR signal to interference plus noise ratio, or RSSI received signal of the third node One or more of the strength indications.
  • the synchronous communication domain set information may be understood as the information of the synchronous communication domain set formed by establishing time-frequency synchronization between nodes in the first channel and other first-type nodes.
  • the synchronous communication domain set information may include but not limited to one or more of the following: the topological relationship of the synchronous communication domain set, the priority information of the third node, the first node included in the synchronous communication domain set The number of nodes of the same type, or the synchronization state between the third node and other nodes of the first type except the third node in the set of synchronous communication domains.
  • the first type of nodes please refer to the previous section, and will not repeat them here.
  • the topological relationship of the synchronous communication domain set can be understood as the relationship between the root node and the parent node in the synchronous communication domain set, and the topological relationship can be represented by a node identifier.
  • the root node is the first node in the synchronous communication domain set, and other nodes in the synchronous communication domain set directly or indirectly join the synchronous communication domain set through the root node.
  • a synchronization path refers to a connected path passing from the root node to the current node. For example, the current node enters the synchronous communication domain set through the parent node, and the parent node enters the synchronous communication domain set through the root node, then the current node-parent node-root node forms a synchronous path.
  • the priority information of the third node may be understood as the priority of establishing time-frequency synchronization between the first node and the third node.
  • the priority may be indicated by the sequence of nodes on the synchronization path in the set of synchronization communication domains, the position of nodes or the distance between the current node and the root node.
  • the synchronization state can be understood as a synchronization situation between the third node and other nodes of the first type except the third node in the set of synchronous communication domains.
  • FIG. 5 shows a schematic diagram of a topological relationship of a set of synchronous communication domains, wherein node 1 is the root node, node 2 and node 3 are parent nodes, and the third node is node 4 as an example , node 4 has child node C and child node D; the synchronization path of node 4 is node 4-node 3-node 2-node 1, correspondingly, the priority of node 4 is lower than that of node 3, and the priority of node 3 Lower than the priority of node 2, the priority of node 2 is lower than the priority of node 1, and the synchronization state of node 4 and other nodes in the communication domain set where it is located is directly or directly with node 3, node 2 and node 1 through the synchronization path Time-frequency synchronization is established indirectly.
  • time synchronization information and the frequency synchronization information please refer to the relevant description above, which will not be repeated here.
  • the first node can obtain the synchronization information of the third node on the first channel through the second node, and can obtain the synchronization information without affecting the service of the first node. Synchronization information of nodes in the first channel, so as to achieve time-frequency synchronization of multiple nodes.
  • the above-mentioned first communication method also includes the following steps:
  • the first node establishes time-frequency synchronization with the third node.
  • time-frequency synchronization includes time synchronization and frequency synchronization.
  • the time synchronization information in the synchronization information includes a first time offset between the third node and the first node, and the first node may adjust the clock value of the first node based on the first time offset , so that the difference between the clock values of the first node and the third node at the first moment is within the first preset range; or, the first node can adjust the time unit of the first node based on the first time deviation The starting moment of the transmission, so that the error of the starting moment of the transmission of the time unit of the first node and the third node is within the second preset range.
  • the first preset range is different from the second preset range.
  • the time synchronization information in the above synchronization information includes the clock value of the third node at the first moment and/or the starting moment of the transmission of the time unit of the third node, and the first node may be based on
  • the time synchronization information determines the first time offset between the third node and the first node, and adjusts the clock value of the first node based on the first time offset, so that the first node and the third node at the first moment
  • the degree of difference between the clock values is within a first preset range; or, the first node may adjust the starting moment of the transmission of the time unit of the first node based on the first time deviation, so that the first node and the third node
  • the error of the start moment of the transmission of the time unit is within the second preset range.
  • the first preset range is different from the second preset range.
  • the frequency synchronization information in the synchronization information includes a first frequency deviation between the third node and the first node, and the first node may adjust the carrier frequency of the first node based on the first frequency deviation , so that the error between the carrier frequencies of the first node and the third node at the first moment is within a third preset range.
  • the frequency synchronization information in the above synchronization information includes the carrier frequency of the third node at the first moment, and the first node may determine the frequency between the third node and the first node based on the frequency synchronization information. and adjusting the carrier frequency of the first node based on the first frequency deviation, so that the error between the carrier frequencies of the first node and the third node at the first moment is within a third preset range.
  • the first node sends second measurement configuration information to the second node.
  • the second node receives second measurement configuration information.
  • the second measurement configuration information is used to indicate to measure the synchronization information updated by the third node;
  • the first node may send the second measurement configuration information to the second node in a multicast or unicast manner; when the second node is one node, the first node may Send the second measurement configuration information to the second node in a unicast manner.
  • the second node acquires the synchronization information updated by the third node.
  • the second node sends the updated synchronization information to the first node.
  • the first node receives the updated synchronization information.
  • the updated synchronization information is used to indicate the second time offset and/or the second frequency offset between the third node and the first node.
  • the second time offset can be understood as the degree of difference between the clock values of the first node and the third node at the second moment, or can be understood as the difference between the starting moment of the transmission of the time unit of the first node and the third node Error;
  • the second frequency deviation can be understood as the carrier frequency error between the first node and the third node at the second moment.
  • the first node may re-establish time-frequency synchronization with the third node based on the updated synchronization information.
  • the first node can obtain the updated synchronization information of the third node again through the second node, and realize the synchronization tracking of the third node, so that the time-frequency synchronization between the first node and the third node is more accurate.
  • the third node is used as an example to describe the process of establishing time-frequency synchronization between the first node and the third node. Taking the third node as multiple nodes as an example, the process of establishing time-frequency synchronization between the first node and the third node is introduced below.
  • the first node may select a fourth node from the multiple third nodes, and establish time-frequency synchronization with the fourth node.
  • the first node selects the fourth node from multiple third nodes in many situations, including but not limited to the following situations:
  • Case 1 The first node considers the priorities of multiple third nodes, and the first node may use the node with the highest priority among the multiple third nodes as the fourth node.
  • priorities of different nodes may be preset.
  • the priority can be directly configured for each node.
  • priority can also be configured indirectly for each node.
  • a synchronization sequence is usually configured for each G node, and the synchronization sequence is used for time-frequency synchronization among different nodes.
  • each node can determine its own priority through the synchronization sequence configured for it.
  • the corresponding relationship between the synchronization sequence and the priority can be set in advance, and after the terminal device obtains the synchronization sequence configured for it, it can determine the priority of the node itself according to the synchronization sequence. For example, if the synchronization sequence pre-configured for the node G1 is a synchronization sequence A, and the priority corresponding to the synchronization sequence A is A, then the priority of the node G1 may be A.
  • the priority may be indicated by the sequence of nodes on the synchronization path in the synchronization area, the position of the nodes, or the distance between the current node and the root node.
  • the synchronization path refers to the connection path from the root node to the current node.
  • the current node enters the synchronization area through the parent node, and the parent node enters the synchronization area through the root node, then the current node-parent node-root node forms the synchronization path, so in this example, the priority of the root node can be identified as 0, In the synchronization area and the synchronization path, the root node has the highest priority, then the priority of the above-mentioned parent node is 1 (or in other words, the distance from the root node is 1), second only to the root node, and the current node's The priority is 2 (or, the distance from the root node is 2), second to the parent node.
  • numbers such as 0 and 1 are not limited to be used for identification, and any information that can reflect the size of the priority can be used for identification of the priority. Based on this example, if there are multiple synchronization paths in the synchronization area, multiple different nodes with the same distance from the root node may still have the same priority in different synchronization paths.
  • each node can notify other nodes of its own priority.
  • each node may explicitly indicate its own priority to other nodes.
  • a node may send broadcast information or node information, and the broadcast information or node information includes the priority of the node.
  • each node may implicitly indicate its own priority to other nodes.
  • each node broadcasts and sends a synchronization signal for other nodes to synchronize time and frequency with itself.
  • the synchronization signal includes a synchronization sequence, and the synchronization sequence can be used to implicitly indicate the priority of each node.
  • the synchronous sequence has a corresponding relationship with the node priority
  • the synchronous sequence is used to implicitly indicate the priority of the node as an example, which is not limited to the embodiment of the present application.
  • the information corresponding to the node priority may also be other information, for example, the other information may be the root sequence of the synchronization sequence, that is, other information may also be used to implicitly indicate the priority of the node, such as the root sequence of the synchronization sequence.
  • at least one node indicates its own priority to the first node, that is, the node information sent by at least one node includes the node priority.
  • the first node may select a third node from the plurality of third nodes with the highest priority as the fourth node.
  • the first preset rule may be randomly selecting a node, or based on signal strengths of multiple third nodes and/or the number of nodes included in the synchronization area to which they belong.
  • the multiple third nodes take node A, node B, and node C as examples.
  • the priority of node A is 2, the priorities of nodes B and C are both 1, and priority 1 is higher than priority 2.
  • the first node may select a node among the above-mentioned node B and node C based on the first preset rule as the second node, and so on.
  • Case 2 The first node considers the number of nodes included in the communication domain set to which the third node belongs, and determines the third node with the largest number of nodes included in the communication domain set as the fourth node.
  • the multiple third nodes take node A, node B and node C as examples, the number of nodes included in the communication domain set A to which node A belongs is N1, and the number of nodes included in the communication domain set B to which node B belongs The number is N2, and the number of nodes included in the communication domain set C to which node C belongs is N3.
  • N1, N2, and N3 are all positive integers. If the value of N3 is greater than N1 and N2, the first node may select node C as the fourth node.
  • the first node needs to select a node from node A and node B as the fourth node.
  • the first node may select a node among the nodes that include the largest number of nodes in the communication domain set to which it belongs as the fourth node.
  • the second preset rule may be randomly selecting a node, or based on signal strengths and/or priorities of multiple third nodes.
  • Case 3 The first node considers the signal strengths of multiple third nodes, and the first node may use the node with the highest signal strength among the multiple third nodes as the fourth node.
  • the first node may select the node with the highest signal strength of node information, broadcast information, or other channels or signals among the plurality of third nodes as the fourth node.
  • the signal strength of the node information may specifically refer to the signal strength of the node information received by the first node from other nodes
  • the signal strength of the broadcast information may specifically refer to the signal strength of the broadcast information received by the first node.
  • the broadcast information may be a synchronization signal.
  • the received signal strength of the first node radio frequency transmit power+antenna gain at the transmitting end ⁇ path loss ⁇ attenuation of obstacles+antenna end at the receiving end.
  • Received signal strength can be measured in decibel (dB) or decibel milliwatt (decibel relative to one milliwatt, dBm).
  • dB decibel
  • dBm decibel milliwatt
  • multiple third nodes take Node A and Node B as examples, the first node receives the signal strength of the broadcast information of Node A, that is, the received signal strength is 100 dBm, and receives the signal strength of the broadcast information of Node B, that is, receives If the signal strength is 101 dBm, the first node may select node B as the fourth node.
  • the first node may select one node among the above multiple nodes as the fourth node based on the third preset rule.
  • the third preset rule may be to randomly select a node, or based on the priorities of multiple nodes and/or the number of nodes in the set of synchronous communication domains to which they belong.
  • the first node may also send synchronization adjustment information between the first node and the third node, and the synchronization adjustment information is used to indicate the second type of nodes in the first synchronization area Establish time-frequency synchronization with the third node.
  • the second type of nodes may be one or more nodes. Therefore, when the second node is multiple nodes, the first node may send the synchronization adjustment information to the second type of nodes in a broadcast or multicast manner. When the second node is one node, the first node may send the synchronization adjustment information to the second type of node in a unicast manner.
  • the time synchronization information in the synchronization information includes time adjustment information (for example, the first time offset), and the frequency synchronization information in the synchronization information includes frequency adjustment information (for example, the first time offset). frequency deviation), the first node may send the synchronization information to the second type of node as the synchronization adjustment information and the time when the adjustment takes effect.
  • the time synchronization information in the synchronization information includes time information of the third node (for example, the clock value at the first moment), and the frequency synchronization information in the synchronization information includes frequency information of the three nodes (for example, , carrier frequency), the first node can further determine the frequency adjustment information (for example, the first frequency offset), the time adjustment information (for example, the first time offset) and the time when the synchronization adjustment takes effect according to the synchronization information, and store the frequency adjustment information , the time adjustment information and the time when the synchronization adjustment takes effect are sent to the second type of nodes as the synchronization adjustment information.
  • the first node sends synchronization adjustment information to the second-type nodes in the first synchronization area to which it belongs, so that the second-type nodes can establish time-frequency synchronization with the third node, further realizing time-frequency synchronization among multiple nodes. frequency synchronization.
  • the first node is G1 node as an example
  • the third node is G2 node as an example
  • the second type of nodes is T1 node and T2 node as an example.
  • the G1 node, the T1 node and the T2 node have already established the time-frequency synchronization, forming a first synchronization area.
  • the G1 node After the G1 node receives the synchronization information from the G2 node, if the time synchronization information in the synchronization information includes time adjustment information, and the frequency synchronization information in the synchronization information includes frequency adjustment information, the G1 node can use the synchronization information and the adjustment effective time as The synchronization adjustment information A is sent to the T1 node and the T2 node.
  • the G1 node can further determine the frequency adjustment information and time adjustment information according to the synchronization information, and combine the frequency adjustment information, time adjustment
  • the information and the adjustment effective time are sent as synchronous adjustment information A to the T1 node and the T2 node.
  • the T1 node and the T2 node may establish time-frequency synchronization with the G2 node according to the synchronization adjustment information A.
  • FIG. 8 shows a schematic flowchart of a second communication method provided by an embodiment of the present application.
  • the establishment of time-frequency synchronization by the first node in the short-distance communication system is taken as an example for description.
  • the first node and the third node may be G nodes in the wireless short-distance communication system.
  • the method includes the following steps:
  • the first node receives first information from a third node.
  • the first information is used to indicate one or more of time synchronization information, frequency synchronization information, synchronous communication domain set information, RSRP, RSRQ, SINR, or RSSI of the third node; and the third node Establish time-frequency synchronization.
  • the foregoing first information is carried in a broadcast message, a unicast message, or a multicast message. That is to say, the third node may send synchronization information to the first node in various ways.
  • the first node establishes time-frequency synchronization with the third node.
  • the communication method shown in FIG. 8 is applicable to scenarios where the first node has just started up and has not yet established a service, or when the service of the first node is in an idle state (for example, in the early morning or when no terminal node is currently connected). Therefore, through the method of the embodiment of the present application, the first node can directly obtain the synchronization information of the third node from the third node, and establish time-frequency synchronization with the third node, effectively improving the efficiency of establishing time-frequency synchronization of the first node.
  • the first node may receive first information from multiple third nodes, and the first node may be in this
  • the fourth node is selected from the plurality of third nodes, and time-frequency synchronization is established with the fourth node.
  • the specific process please refer to the relevant description above, which will not be repeated here.
  • Fig. 9 is a schematic block diagram of an apparatus 900 provided by an embodiment of the present application, which is used to realize the functions of the first node or the second node in the above method embodiments.
  • the device may be a software module or a system on a chip.
  • the chip may consist of chips, or may include chips and other discrete devices.
  • the apparatus 900 includes a processing unit 901 and a communication unit 902 .
  • the communication unit 902 is used to communicate with other devices, and may also be called a communication interface, a transceiver unit, or an input/output interface.
  • the device 900 may be the first node, or a chip or a circuit configured in the first node.
  • the processing unit 901 is configured to perform processing-related operations of the first node in the first method embodiment above
  • the communication unit 902 is configured to perform transceiving-related operations of the first node in the first method embodiment above.
  • the communication unit 902 can be used to receive and send the first measurement configuration information to the second node, and the first measurement configuration information is used to indicate the measurement of the first node.
  • Synchronization information of a third node in a channel receiving the synchronization information from the second node, where the synchronization information is used to indicate time synchronization information, frequency synchronization information, synchronous communication domain set information of the third node, One or more of RSRP, RSRQ, SINR, or RSSI.
  • the time synchronization information includes a first time offset between the third node and the first node.
  • the frequency synchronization information includes a first frequency offset between the third node and the first node.
  • the synchronous communication domain set information includes one or more of the following: the topological relationship of the synchronous communication domain set, the priority information of the third node, the first node included in the synchronous communication domain set The number of nodes of the same type, or the synchronization state between the third node and other nodes of the first type except the third node in the set of synchronous communication domains.
  • the first measurement configuration information is further used to indicate the measurement target, the first period corresponding to the measurement resource, the duration of the measurement resource in the first period, the duration of the measurement resource The offset within the first period, the starting time domain position number of the measurement resource, or the quantity of the measurement resource; wherein, the measurement target includes one or more of the following: the reference signal Received power, the reference signal received quality, the signal-to-interference-plus-noise ratio, the received signal strength indication, the synchronous communication domain set measurement, time adjustment measurement, or frequency adjustment measurement; wherein the measurement resource is A time resource used for measuring the first channel.
  • the synchronization information is used for the first node to establish time-frequency synchronization with the third node.
  • the communication unit 902 may also be configured to send synchronization adjustment information between the first node and the third node, where the synchronization adjustment information is used to indicate that the second type of nodes in the first synchronization area and the The third node establishes time-frequency synchronization; wherein, the first synchronization area is a synchronization area to which the first node belongs.
  • the communication unit 902 may also be configured to send second measurement configuration information to the second node after the first node establishes time-frequency synchronization with the third node, and the second measurement configuration information uses Instructing to measure the updated synchronization information of the third node; receiving the updated synchronization information from the second node, the updated synchronization information used to indicate the synchronization between the third node and the first node A second time offset and/or a second frequency offset.
  • the processing unit 901 may determine the second node according to service priorities and/or load information of nodes of the second type in the first synchronization area.
  • the communication unit 902 when configured to send the first measurement configuration information to the second node, it is specifically configured to: send the first event to the second node in response to the processing unit 901 detecting the first event.
  • the first measurement configuration information wherein, the first event includes one or more of the following: the first node is turned on, the communication quality of the communication system to which the first node belongs is lower than a preset standard, and the first The software module of the node is started according to the preset configuration, or the first node is in a state of not being synchronized with any node; or, the initial time domain position of the first cycle is reached, and the second node is sent the First measurement configuration information.
  • the device 900 may be the second node, or a chip or a circuit configured in the second node.
  • the processing unit 901 is configured to execute the processing-related operations of the second node in the first method embodiment above
  • the communication unit 902 is configured to execute the transceiving-related operations of the second node in the first method embodiment above.
  • the communication unit 902 is configured to receive a first measurement configuration device, where the first measurement configuration information is used to measure synchronization information of a third node in the first channel; to obtain the synchronization information, the The synchronization information is used to indicate one or more of time synchronization information, frequency synchronization information, synchronous communication domain set information, RSRP, RSRQ, SINR, or RSSI of the third node; sending the synchronization information to the first node information.
  • the communication unit 902 is further configured to receive synchronization adjustment information between the first node and the third node, where the synchronization adjustment information is used for the second node and the third node.
  • Three nodes establish time-frequency synchronization; wherein, the second node and the first node belong to a first synchronization area.
  • the communication unit 902 is further configured to receive second measurement configuration information, where the second measurement configuration information is used to measure updated synchronization information of the third node; acquire the updated synchronization information; sending the updated synchronization information to the first node, where the updated synchronization information is used to indicate a second time offset and/or a second frequency offset between the third node and the first node.
  • the above-mentioned device 900 is used to realize the function of the first node in the second method embodiment above, and the device 900 may be the first node, or a chip or a circuit configured in the first node.
  • the processing unit 901 is configured to perform processing-related operations of the first node in the method embodiment above
  • the communication unit 902 is configured to perform transceiving-related operations of the first node in the second method embodiment above.
  • the communication unit 902 is configured to receive first information from a third node, where the first information is used to indicate time synchronization information, frequency synchronization information, synchronous communication domain set information, RSRP, RSRQ, SINR, or RSSI of the third node One or more of the items; establishing time-frequency synchronization with the third node.
  • the first information is carried in a broadcast message, a unicast message, or a multicast message. That is to say, the third node may send synchronization information to the first node in various ways.
  • each functional unit may be integrated into one processor, or physically exist separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • FIG. 10 is a schematic diagram of a device 1000 provided by an embodiment of the present application.
  • the device 1000 may be a first node or a second node, or a component of the first node or the second node, such as a chip or an integrated circuit wait.
  • the apparatus 1000 can include at least one processor 1002 and a communication interface 1004 . Further, optionally, the device may further include at least one memory 1001 . Furthermore, optionally, a bus 1003 may also be included. Wherein, the memory 1001 , the processor 1002 and the communication interface 1004 are connected through a bus 1003 .
  • the memory 1001 is used to provide a storage space, and data such as an operating system and computer programs can be stored in the storage space.
  • Memory 1001 can be random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read only memory, EPROM), or portable read-only memory One or more combinations of memory (compact disc read-only memory, CD-ROM), etc.
  • the processor 1002 is a module for performing arithmetic operations and/or logic operations, and specifically may be a central processing unit (central processing unit, CPU), a picture processor (graphics processing unit, GPU), a microprocessor (microprocessor unit, MPU), Application specific integrated circuit (ASIC), field programmable logic gate array (field programmable gate array, FPGA), complex programmable logic device (complex programmable logic device, CPLD), coprocessor (to assist the central processing unit to complete Corresponding processing and application), microcontroller unit (microcontroller unit, MCU) and other processing modules or a combination of more.
  • CPU central processing unit
  • CPU central processing unit
  • MPU graphics processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable logic gate array
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • coprocessor to assist the central processing unit to complete Corresponding processing and application
  • microcontroller unit microcontroller unit, MCU
  • Communication interface 1004 may be used to provide information input or output to the at least one processor. And/or the communication interface can be used to receive data sent from the outside and/or send data to the outside, which can be a wired link interface such as an Ethernet cable, or a wireless link (Wi-Fi, Bluetooth, General wireless transmission, vehicle short-distance communication technology, etc.) interface.
  • the communication interface 1004 may further include a transmitter (such as a radio frequency transmitter, an antenna, etc.) or a receiver coupled with the interface.
  • the foregoing apparatus 1000 may be the first node or components in the first node in the first method embodiment above, such as a chip or an integrated circuit.
  • the processor 1002 in the apparatus 1000 is configured to read the computer program stored in the memory 1001, and control the first node to perform the following operations: receive and send the first measurement configuration information to the second node, and the first measurement configuration
  • the information is used to indicate to measure synchronization information of a third node in the first channel: the synchronization information is received from the second node, and the synchronization information is used to indicate time synchronization information, frequency synchronization information,
  • RSRP synchronous communication domain set information
  • RSRQ SINR
  • RSSI One or more items of synchronous communication domain set information
  • the above-mentioned apparatus 1000 may be the second node or a component in the second node in the first method embodiment above, such as a chip or an integrated circuit.
  • the processor 1002 in the device 1000 is configured to read the computer program stored in the memory 1001, and control the second node to perform the following operations: receive a first measurement configuration device, and the first measurement configuration information is used to measure the second node Synchronization information of a third node in a channel; obtaining the synchronization information, where the synchronization information is used to indicate time synchronization information, frequency synchronization information, synchronous communication domain set information, RSRP, RSRQ, SINR, or RSSI; sending the synchronization information to the first node.
  • RSRP frequency synchronization information
  • RSRQ synchronous communication domain set information
  • SINR synchronous communication domain set information
  • the above-mentioned apparatus 1000 may be the first node or components in the first node in the second method embodiment above, such as a chip or an integrated circuit.
  • the processor 1002 in the device 1000 is used to read the computer program stored in the memory 1001, and control the second node to perform the following operations: receive first information from the third node, the first information is used to indicate One or more items of time synchronization information, frequency synchronization information, synchronous communication domain set information, RSRP, RSRQ, SINR, or RSSI of the third node; establish time-frequency synchronization with the third node.
  • the embodiment of the present application also provides a terminal, and the terminal may be a smart cockpit device, a smart home device, a smart manufacturing device, or a vehicle. It can also be understood that the above “vehicle wireless short-range communication system” technology can be applied to non-vehicle short-range communication systems.
  • the terminal includes a first node and/or a second node, and the first node and the second node may be the first node and the second node in the above-mentioned embodiment shown in FIG. 3 respectively. Wherein, the types of the first node and the second node may be the same or different.
  • the type of the first node and the second node are different, then the first node can be camera, screen, microphone, audio, radar, electronic key, keyless entry, start system controller and user One or more of the modules such as the equipment UE.
  • the second node may be a base station, a car cockpit domain controller (cockpit domain controller, CDC), etc.
  • the first node and the second node are of the same type, and the first node and the second node may both be base stations or CDCs.
  • both the first node and the second node may be one or more of modules such as a camera, a screen, a microphone, a sound, a radar, an electronic key, a keyless entry, a starting system controller, and a user equipment UE.
  • the terminal may be a drone, a robot, a device in a smart home scene, or a device in a smart manufacturing scene.
  • the embodiment of the present application also provides an apparatus, including a unit for realizing the above-mentioned embodiments.
  • a processor and an interface circuit are included, the processor is configured to communicate with other devices through the interface circuit, and execute the methods in the above method embodiments.
  • the apparatus includes a processor, configured to call a program stored in a memory to execute the methods described in the above-mentioned embodiments.
  • An embodiment of the present application also provides a computer-readable storage medium, including readable instructions, which, when run on a computer, cause the computer to execute the methods described in the above-mentioned embodiments.
  • An embodiment of the present application further provides a system on chip, where the system on chip includes at least one processor and an interface circuit. Further optionally, the chip system may further include a memory or an external memory. The processor is configured to perform instruction and/or data interaction through the interface circuit, so as to implement the methods in the above method embodiments.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • An embodiment of the present application further provides a computer program product, including instructions, which, when run on a computer, cause the computer to execute the method described in the above-mentioned embodiments.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or a coprocessor etc., can implement or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., and may also be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • a memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present invention will be generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).
  • a magnetic medium for example, a floppy disk, a hard disk, or a magnetic tape
  • an optical medium for example, a digital video disc (digital video disc, DVD for short)
  • a semiconductor medium for example, SSD

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及装置,属于通信技术领域。在该方法中:第一节点可以向第二节点发送第一测量配置信息(S301),第一测量配置信息用于指示测量第一信道中的第三节点的同步信息;进而第二节点可以获取该同步信息(S302),第一节点从第二节点接收该同步信息(S303),该同步信息用于可以指示第三节点的时间同步信息、频率同步信息、同步通信域集合信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比 SINR、或接收信号强度指示RSSI中的一项或多项。如此,可实现通信系统中不同节点的时频同步,有效降低不同节点间的干扰,提高系统通信性能。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年03月04日提交中国专利局、申请号为202210211057.0、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置,可以应用于智能驾驶、智能家居、智能制造等领域。
背景技术
随着通信技术的高速发展,短距通信系统有了多种新的业务场景,例如智能汽车、智能制造、或智能家居等。这些新的业务场景的传输要求包括如下至少一项特点:低时延、高可靠性、高组网密度、高并发数、高安全性、或大容量。而在目前的短距通信系统(例如,无线保真(wireless fidelity,WIFI)和蓝牙(bluetooth,BT))中多采用异步系统,该异步系统中的节点需要预约抢占的方式获得信道,或执行侦听避让机制获得信道,使得该异步系统的传输效率较低;尤其在高组网密度的场景下,该异步系统中的节点之间会彼此干扰,导致该异步系统的可靠性降低,用户体验变差。
因此,如何减少节点之间的干扰,提升短距通信系统的传输效率和可靠性,是亟需解决的技术问题。
发明内容
本申请实施例提供一种通信方法及装置,用以实现不同节点的时频同步,减少不同节点之间的干扰,提升通信系统的传输性能。
第一方面,提供一种通信方法,该方法可以应用于第一节点,该方法包括:向第二节点发送第一测量配置信息,第一测量配置信息用于指示测量第一信道中的第三节点的同步信息:从第二节点接收同步信息,同步信息用于指示第三节点的时间同步信息、频率同步信息、同步通信域集合信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、或接收信号强度指示RSSI中的一项或多项。
在一些实施例中,上述同步信息也可以称作第一测量结果信息。
可以理解的是,上述通信方法适用第一节点已建立业务的场景。通过本申请实施例的方法,第一节点可以通过第二节点获得第一信道(即待测信道)上的第三节点的同步信息。如此,可以实现在不影响第一节点的业务的情况下,获取到第一信道中的节点的同步信息,以达成多节点的时频同步。
其中,所述时间同步信息可以理解为与第三节点的时间同步相关的信息。
在一种可能的实施方式中,上述时间同步信息包括第三节点与第一节点之间的第一时间偏差。其中,第一时间偏差可以理解为第一节点和第三节点在第一时刻的时钟值之间的差异度,或者可以理解为第一节点和第三节点的时间单元的传输的起始时刻的误差。在该 实施方式中,第一节点收到该时间同步信息之后,可以直接基于该时间同步信息与第三节点建立时间同步,有效提升第一节点和第三节点建立时间同步的效率。
在另一种可能的实施方式中,上述时间同步信息可以包括第三节点的时钟值和/或第三节点的时间单元的传输的起始时刻。在该实施方式中,第一节点收到该时间同步信息之后,需要基于该时间同步信息,确定第三节点与第一节点之间的第一时间偏差,基于该第一时间偏差与第三节点建立时间同步。如此,第一节点确定的第一时间偏差更为准确,从而使得第一节点和第三节点建立的时间同步更为准确。
其中,频率同步信息,可以理解为与第三节点的频率同步相关的信息。
在一种可能的实施方式中,频率同步信息包括第三节点与第一节点之间的第一频率偏差。其中,第一频率偏差可以理解为第一节点和第三节点在第一时刻的载波频率误差,载波频率误差可以理解为将第一节点和第三节点之间的实际频率的相对/绝对误差。在该实施方式中,第一节点收到该频率同步信息之后,可以直接基于该频率同步信息与第三节点建立频率同步,有效提升第一节点和第三节点建立频率同步的效率。
在另一种可能的实施方式中,上述频率同步信息可以包括第三节点的载波频率。在该实施方式中,第一节点收到该频率同步信息之后,需要基于该频率同步信息,确定第三节点与第一节点之间的第一频率偏差,基于该第一频率偏差与第三节点建立频率同步。如此,第一节点确定的第一频率偏差更为准确,从而使得第一节点和第三节点建立的频率同步更为准确。
其中,同步通信域集合信息,可以理解为第一信道中的节点与其他第一类节点建立时频同步所形成的同步通信域集合的信息。其中,第一类节点可以理解为G节点和/或T节点,本申请实施例不作具体的限制。
在一种可能的实施方式中,上述同步通信域集合信息包括如下一项或多项:同步通信域集合的拓扑关系,第三节点的优先级信息,同步通信域集合内包括的第一类节点数量,或第三节点与同步通信域集合中除第三节点外的其他第一类节点之间的同步状态。其中,同步通信域集合的拓扑关系,可以理解为同步通信域集合中根节点与父节点的关系,可以通过节点标识来表征该拓扑关系。第三节点的优先级信息可以理解为第一节点与第三节点建立时频同步的优先级。同步状态可以理解为第三节点与同步通信域集合中除第三节点外的其他第一类节点之间的同步情况。在该实施方式中,同步通信域集合信息中包括一种或多种信息,在第三节点为多个节点的情况下,第一节点可以根据同步通信域集合信息进行决策同步源节点,从而使得第一节点的时频同步更加合理。
在一种可能的实施方式中,上述第一测量配置信息还可以用于指示测量目标、测量资源对应的第一周期、测量资源在第一周期内的持续时间、测量资源在第一周期内的偏移量、测量资源的起始时域位置编号、或测量资源的数量;其中,测量目标包括如下一项或多项:参考信号接收功率、参考信号接收质量、信号与干扰加噪声比、接收信号强度指示、同步通信域集合测量、时间调整测量、或频率调整测量;其中,所述测量资源是用于测量所述第一信道的时间资源。其中,“测量资源”可以理解为第二节点测量第一信道中的第三节点的同步信息所用的时间资源,该时间资源的时间单元例如可以是超帧、无线帧(radio frame)、符号(symbol)或其它时间单位。“测量资源在第一周期内的持续时间”可以理解为测量资源在第一周期内占用的时间单元。“测量资源的起始时域位置编号”可以理解为指示第二节点开始测量的时间资源对应的编号,例如可以是指示第二节点开始测量的超帧的编号。“测 量资源的数量”可以理解为第二节点测量第一信道中的第三节点的同步信息所用的时间资源对应的时间单元的数量,例如可以是超帧、无线帧、符号或其它时间单位的数量。在该实施方式中,第一测量配置信息可以指示一个或多个测量目标,使得第二节点对第一信道的测量更具有针对性。
在一种可能的实施方式中,上述同步信息用于第一节点与第三节点建立时频同步。相应的,第一节点可以基于上述同步信息与第三节点建立时频同步。如此,可以有效实现不同节点间的时频同步。
在一种可能的实施方式中,上述方法还包括:发送第一节点与第三节点之间的同步调整信息,该同步调整信息可以用于指示第一同步区域内第二类节点与第三节点建立时频同步;其中,第一同步区域为第一节点所属的同步区域。在本申请实施例中,第一同步区域可以理解为第一节点和第二类节点建立时频同步形成的同步通信域集合。其中,第二类节点可以是T节点或终端节点。可以理解的是,在一些实施例中,同步信息包括频率调整信息和时间调整信息,相应的,第一节点可以将同步信息作为同步调整信息发送给第二类节点。在一些实施例中,同步信息包括频率信息和时间信息,第一节点可以根据同步信息,进一步确定频率调整信息、时间调整信息和同步调整生效的时刻,并将频率调整信息、时间调整信息和同步调整生效的时刻作为同步调整信息发送给第二类节点。在该实施方式中,第一节点通过向其所属的第一同步区域内第二类节点发送同步调整信息,使得第二类节点可以与第三节点建立时频同步,进一步实现多节点间的时频同步。
在一种可能的实施方式中,第一节点与第三节点建立时频同步之后,第一节点还可以向第二节点发送第二测量配置信息,第二测量配置信息用于指示测量第三节点更新的同步信息;从第二节点接收该更新的同步信息,该更新的同步信息用于指示第三节点与第一节点之间的第二时间偏差和/或第二频率偏差。在一些实施例中,上述同步信息也可以称作第二测量结果信息。其中,第二时间偏差可以理解为第一节点和第三节点在第二时刻的时钟值之间的差异度,或者可以理解为第一节点和第三节点的时间单元的传输的起始时刻的误差;第二频率偏差可以理解为第一节点和第三节点在第二时刻的载波频率误差。在该实施方式中,第一节点可以通过第二节点再次获取第三节点更新的同步信息,实现第三节点的同步跟踪,使得第一节点与第三节点之间的时频同步更准确。
在一种可能的实施方式中,上述方法还包括:第一节点根据第一同步区域内的第二类节点的业务优先级和/或负载信息,确定第二节点。可以理解的是,第二节点可以是一个或多个节点。在该实施方式中,第一节点可以根据第二类节点的业务优先级和/或负载信息,筛选出用于进行同步信息测量的第二节点,有效避免同步信息测量对部分第二类节点的业务造成影响,从而有效提升用户体验。
在一种可能的实施方式中,第一节点向第二节点发送第一测量配置信息,包括:响应于检测到第一事件,向第二节点发送第一测量配置信息;其中,第一事件包括如下一项或多项:第一节点开机,第一节点所属通信系统的通信质量低于预设标准,第一节点的软件模块按照预设配置启动,或,第一节点处于未与任何节点同步的状态;或者,到达第一周期的起始时域位置,向第二节点发送第一测量配置信息。在该实施方式中,可以通过特定事件触发第一节点向第二节点发送第一测量配置信息,或者第一节点周期性地向第二节点发送第一测量配置信息,使得第一节点的时频同步更合理。
第二方面,本申请实施例还提供了一种通信方法,该方法可以应用于第二节点,该方 法包括:接收第一测量配置装置,第一测量配置信息用于测量第一信道中的第三节点的同步信息;获取同步信息,同步信息用于指示第三节点的时间同步信息、频率同步信息、同步通信域集合信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、或接收信号强度指示RSSI中的一项或多项;向第一节点发送同步信息。
在一种可能的实施方式中,上述时间同步信息包括第三节点与第一节点之间的第一时间偏差。
在一种可能的实施方式中,上述频率同步信息包括第三节点与第一节点之间的第一频率偏差。
在一种可能的实施方式中,是同步通信域集合信息包括如下一项或多项:同步通信域集合的拓扑关系、第三节点的优先级信息,同步通信域集合内包括的第一类节点数量,或第三节点与同步通信域集合中除第三节点外的其他第一类节点之间的同步状态。
在一种可能的实施方式中,第一测量配置信息还用于指示测量目标、测量资源对应的第一周期、测量资源在第一周期内的持续时间、测量资源在第一周期内的偏移量、测量资源的起始时域位置编号、或测量资源的数量;其中,测量目标包括如下一项或多项:参考信号接收功率、参考信号接收质量、信号与干扰加噪声比、接收信号强度指示、同步通信域集合测量、时间调整测量、或频率调整测量;其中,所述测量资源是用于测量所述第一信道的时间资源。
在一种可能的实施方式中,上述同步信息用于第一节点与第三节点建立时频同步。
在一种可能的实施方式中,上述方法还包括:接收第一节点与第三节点之间的同步调整信息,同步调整信息用于第二节点与第三节点建立时频同步;其中,第二节点和第一节点属于第一同步区域。
在一种可能的实施方式中,上述方法还包括:接收第二测量配置信息,第二测量配置信息用于测量第三节点更新的同步信息;获取更新的同步信息;向第一节点发送更新的同步信息,更新的同步信息用于指示第三节点与第一节点之间的第二时间偏差和/或第二频率偏差。
第三方面,本申请实施例还提供了另一种通信方法,应用于第一节点,所述方法包括:接收来自第三节点的第一信息,所述第一信息用于指示第三节点的时间同步信息、频率同步信息、同步通信域集合信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、或接收信号强度指示RSSI中的一项或多项;与所述第三节点建立时频同步。
可以理解的是,上述通信方法适用第一节点刚开机尚未建立业务的场景或者第一节点的业务处于空闲状态时(例如,凌晨或者当前无终端节点接入)的场景。
通过本申请实施例的方法,第一节点可以直接从第三节点获取第三节点的同步信息,并与第三节点建立时频同步,有效提升第一节点建立时频同步的效率。
在一种可能的实施方式中,所述第一信息承载在广播消息、单播消息或者组播消息中。也就是说,第三节点可以通过多种方式向第一节点发送同步信息。
第四方面,本申请实施例还提供了一种通信装置,包括用于实现上述第一方面以及第一方面可能的实施方式中任一项的方法的单元,或者,包括用于实现上述第三方面以及第三方面可能的实施方式中任一项的方法的单元。
第五方面,本申请实施例还提供了一种通信装置,包括用于实现上述第二方面以及第 二方面可能的实施方式中任一项的方法的单元。
第六方面,本申请实施例还提供了一种芯片系统,包括至少一个处理器和接口电路,所述处理器用于通过所述接口电路执行指令和/或数据的交互,使得所述芯片系统执行上述第一方面以及第一方面可能的实施方式中任一项的方法,或者执行上述第三方面以及第三方面可能的实施方式中任一项的方法。
第七方面,本申请实施例还提供了一种芯片系统,包括至少一个处理器和接口电路,所述处理器用于通过所述接口电路执行指令和/或数据的交互,使得所述芯片系统执行上述第二方面以及第二方面可能的实施方式中任一项的方法。
第八方面,本申请实施例还提供了一种终端,包括如第四方面所述的装置或第六方面所述的芯片系统,和/或,如第五方面所述的装置或第七方面所述的芯片系统。
第九方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面以及第一方面可能的实施方式中任一项的方法,或者,执行上述第二方面以及第二方面可能的实施方式中任一项的方法,或者,执行上述第三方面以及第三方面可能的实施方式中任一项的方法。
第十方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面以及第一方面可能的实施方式中任一项的方法,或者,执行上述第二方面以及第二方面可能的实施方式中任一项的方法,或者,执行上述第三方面以及第三方面可能的实施方式中任一项的方法。
上述,第二方面、第四方面至第十方面对应的有效果,请参见前文第一方面或第三方面的相关描述,这里不再赘述。
附图说明
图1为本申请实施例提供的超帧的一种示意图;
图2为本申请实施例提供的一种可能的应用场景示意图;
图3为本申请实施例提供的第一种通信方法的流程示意图之一;
图4为本申请实施例提供的第一种通信方法的流程示意图之二;
图5为本申请实施例提供的同步通信域集合的示意图;
图6为本申请实施例提供的第一种通信方法的流程示意图之三;
图7为本申请实施例提供的第一节点的时频同步示意图之一;
图8为本申请实施例提供的第二种通信方法的流程示意图之二;
图9为本申请实施例提供的装置的一结构示意图;
图10为本申请实施例提供的装置的另一结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1、时频同步
时频同步包括时间同步和频率同步。时间同步是指将不同节点的时钟值调整到一定的 准确度或一定的符合度,或者将不同节点的时间单元的传输的起始时刻的误差调整在一定范围内。时间单元的单位可以为超帧、无线帧(radio frame)、符号(symbol)或其它时间单位等。其中,超帧是由多个无线帧组成的时间单位,无线帧是比超帧更小的时间单位,符号是比无线帧更小的时间单位。如在车载无线短距通信系统中,规定无线帧的长度为1/48ms=20.833us,每个超帧包含48个无线帧,每个超帧的长度为1ms。在一种示例中,如图1所示,一个超帧包括48个无线帧,该48个无线帧的编号依次为无线帧#0至无线帧#47。每个无线帧中包括10个符号。该10个符号中有4个符号用于下行,3个符号用于上行,2个符号作为保护间隔(gap,GAP),1个符号作为灵活符号,该灵活符号可用于上行传输,也可以用于下行传输,或者用于其它传输不作限定。在车载(或者非车载)无线短距通信系统中,上行通常是指终端(terminal,T)节点向管理(grant,G)节点发送数据或信息的方向,可用“T”表示。下行通常是指G节点向T节点发送数据或信息的方向,可用“G”表示。由于在车载无线短距通信系统中,不同T节点之间,或者不同G节点间通常也存在通信需求,不同T节点之间,或者不同G节点之间的通信可占用上述灵活符号。在上述图1中,灵活符号表示为特殊管理(special grant,SG)。上述帧和超帧的解释可以应用于下文的实施例中。这里的G节点和T节点只是针对节点功能进行的一种区分,并不对具体的节点名称进行限定。例如可以为星闪短距通信标准中的通信节点,也可以为蓝牙等短距通信系统中的通信节点。本申请不对通信系统的类型进行具体限定。
频率同步是指不同节点的载波频率误差保持在一定范围内,不同节点的载波频率误差可以指节点的实际频率与期望频率的相对/绝对误差,或者不同节点之间的实际频率的相对/绝对误差等。频率同步还可称为频率正交。例如,节点1使用的一个子载波频率为f0,节点2使用的一个子载波频率为f1。若f1与f0的差是子载波间隔的整数倍或者接近于子载波间隔的整数倍,但两者的差值满足一定的约束条件,该约束条件可根据系统抗干扰能力及业务特征等因素确定,则认为节点1与节点2采用的频率是保持正交的,否则认为两者不正交。
例如,在一种实现方式中,T节点需要与G节点建立时间同步,则T节点需要获取G节点发送符号的起始位置及结束位置,其持续时间与G节点理解一致,T节点与G节点建立时间同步。T节点需要获取G节点的载波频率,使得T节点的载波频率与G节点的载波频率误差保持在一定范围内,T节点与G节点建立频率同步。例如,T节点与G节点的载波频率误差可以是100Hz。
2、第一节点
在本申请实施例中,第一节点可以理解为需要进行时频同步的节点。可选的,在一些实施例中,第一节点可以是G节点。
3、第二节点
在本申请实施例中,第二节点可以理解为用于代替第一节点测量第一信道上的节点的同步信息的节点。可选的,在一些实施例中,第二节点可以为与第一节点处于同一个同步区域的节点。
4、第三节点
在本申请实施例中,第三节点可以理解为用于第二节点在第一信道上测量到的节点。第三节点可以是一个或多个节点,本申请实施例不作具体的限制。
5、测量配置信息
在本申请实施例中,测量配置信息可以理解为第一节点配置给第二节点的信息,该信息可以用于测量第一信道中的节点的同步信息的信息。例如,第一测量配置信息和第二测量配置信息。其中,第一测量配置信息可以用于指示第一信道、测量目标、测量资源对应的第一周期、测量资源在第一周期内的持续时间、测量资源在第一周期内的偏移量、测量资源的起始时域位置编号、或测量资源的数量;第二测量配置信息可以用于指示测量第一信道中的第三节点更新的同步信息。
其中,第一信道可以理解为第一节点指定的待测量的信道,在一些可能的实施例中,第一信道可以通过其对应的信道频率来表征。
其中,测量目标可以理解为第一信道中待测量的信息类型。在一些可能的实施例中,测量目标包括如下一项或多项:参考信号接收功率(received signal reference power,RSRP)、参考信号接收质量(received signal reference quality,RSRQ)、信号与干扰加噪声比(signal-to-noise ratio,SINR)、接收信号强度指示(received signal strength indicator,RSSI)、同步通信域集合测量、时间调整测量、或频率调整测量。
在本申请实施例中,同步通信域集合也可以称作同步组,可以理解为多个第一类节点建立时频同步所形成的集合。其中,第一类节点可以是G节点和/或T节点,本申请实施例不作限制。例如,G1节点和G2节点建立时频同步,G1节点和G2节点可以构成一个同步通信域集合。又例如,G1节点和T1节点建立时频同步,G1节点和T1节点可以构成一个同步通信域集合。相应的,同步通信域集合测量可以理解为测量第一信道中的节点所属的同步通信域集合信息。
其中,同步通信域集合信息,可以理解为第一信道中的节点与其他第一类节点建立时频同步所形成的同步通信域集合的信息。在一些可能的实施例中,同步通信域集合信息可以包括但不限于如下一项或多项:同步通信域集合的拓扑关系,第三节点的优先级信息,同步通信域集合内包括的第一类节点数量,或第三节点与同步通信域集合中除第三节点外的其他第一类节点之间的同步状态。其中,第一类节点可以理解为G节点和/或T节点,本申请实施例不作具体的限制。同步通信域集合的拓扑关系,可以理解为同步通信域集合中根节点与父节点的关系,可以通过节点标识来表征该拓扑关系。其中,根节点为同步通信域集合中的首个节点,同步通信域集合中的其它节点都是直接或者间接通过该根节点加入该同步通信域集合。同步路径是指通过从根节点到当前节点的连通路径。例如当前节点通过父节点进入同步通信域集合,父节点通过根节点进入同步通信域集合,则当前节点-父节点-根节点形成同步路径。第三节点的优先级信息可以理解为第一节点与第三节点建立时频同步的优先级。同步状态可以理解为第三节点与同步通信域集合中除第三节点外的其他第一类节点之间的同步情况。
举例来说,假设同步通信域集合内包括5个G节点,分别为G1、G2、G3、G4和G5。该同步通信域集合信息中包括节点标识、同步状态和同步方向。如表1所示,节点标识可具体指表1中G1至G5的标识,同步状态可以用二进制数值“0”或“1”表示。例如,G1节点的同步状态为1,可具体为G1节点分别与G1节点和G2节点保持时频同步,而G1节点与G3节点、G4节点和G5节点并不保持直接的时频同步。其中,同步方向可指每个节点的同步方向。例如,“1”表示Gx与Gy进行时频同步,如G1->G2是“1”,表示G1与G2进行时频同步,即G1的时频将根据G2的时频进行调整,G2为时频同步的父节点,G1为时频同步的子节点。“0”表示Gx不与Gy进行时频同步,如G2->G1是“0”,表示G2 不与G1进行时频同步,即G2的时频不会根据G1的时频进行调整。
应当指出,表1中的时频同步是具有方向性的。例如,G1与G2进行时频同步,即G1的时频根据G2的时频进行调整,则G1->G2的取值是“1”。但反过来,G2不与G1进行时频同步,即G2的时频不根据G1的时频进行调整,则G2->G1的取值是“0”。这里需要说明的是,表格仅仅是一种关系的表现形式,具体实现中,并不限定仅通过表格的方式,其它任何可以体现相应信息的方式均可以用于本申请实施方式。
表1
  G1 G2 G3 G4 G5
G1 1 1 0 0 0
G2 0 1 1 0 0
G3 0 0 1 1 0
G4 0 0 0 1 1
G5 0 0 0 0 1
以及,时间调整测量可以理解为测量第一信道中的节点的时间同步信息。其中,时间同步信息,可以理解为与第三节点的时间同步相关的信息。在一些可能的实施例中,时间同步信息可以包括第三节点与第一节点之间的第一时间偏差。第一时间偏差可以理解为第一节点和第三节点在第一时刻的时钟值之间的差异度,或者第一节点和第三节点的时间单元的传输的起始时刻的误差。在另一些可能的实施例中,时间同步信息可以包括第三节点在第一时刻的时钟值和/或第三节点的时间单元的传输的起始时刻。
以及,频率调整测量可以理解为测量第一信道中的节点的频率同步信息。其中,频率同步信息,可以理解为与第三节点的频率同步相关的信息。在一些可能的实施例中,频率同步信息可以包括第三节点与第一节点之间的第一频率偏差。第一频率偏差可以理解为第一节点和第三节点在第一时刻的载波频率误差,载波频率误差可以理解为在第一节点和第三节点之间的实际频率的相对/绝对误差。在另一些可能的实施例中,频率同步信息可以包括第三节点的载波频率。
其中,“测量资源”可以理解为第二节点测量第一信道中的第三节点的同步信息所用的时间资源,该时间资源的时间单元例如可以是超帧、无线帧、符号或其它时间单位。“测量资源在第一周期内的持续时间”可以理解为测量资源在第一周期内占用的时间单元。“测量资源的起始时域位置编号”可以理解为指示第二节点开始测量的时间资源对应的编号,例如可以是指示第二节点开始测量的超帧的编号。“测量资源的数量”可以理解为第二节点测量第一信道中的第三节点的同步信息所用的时间资源对应的时间单元的数量,例如可以是超帧、无线帧、符号或其它时间单位的数量。
6、同步信息
在本申请实施例中,同步信息可以理解为用于表征第三节点的时频同步的信息。在一些可能的实施例中,同步信息也可以称作测量结果信息。在一种可能的实施方式中,其中,同步信息可以用于指示时间同步信息、频率同步信息、同步通信域集合信息、RSRP、RSRQ、SINR、或RSSI中的一项或多项。其中,时间同步信息、频率同步信息和同步通信域集合信息请参见前文的描述,这里不再赘述。
可以理解的是,RSRP、RSRQ、SINR、或RSSI中的一项或多项,用于表征第二节点对于来自第三节点的信息的信号接收强度。在其他的实施例中,还可以通过其他的参数来 表征第二节点对于来自第三节点的信息的信号接收强度。
7、节点标识
节点标识可以是节点的媒体接入控制(media access control,MAC)地址,或者节点的部分MAC地址,例如,节点的MAC地址的前n位,后n位,中间n位,或在节点的MAC地址中任意取的n位,该n位可以为MAC地址中的连续取值或非连续取值等,不作限定。其中,n的取值为大于或等于1,小于MAC地址的全部位数的正整数。或者,节点标识可以是根据节点的MAC地址生成的标识节点身份的标识,例如利用节点的MAC地址与预设字符进行逻辑运算,运算结果作为节点的标识等,逻辑运算可包括逻辑异或,逻辑加减等。或者,节点标识可以是能标识节点身份的其它标识或者地址等,例如为节点预分配的索引、地址等。
针对节点标识的一种可能的设计中,节点标识可以是节点所在的通信域的标识。具体的,一个G节点使用的一个载波上,该G节点发送同步信号、广播信息、G链路控制信息的资源,以及该G节点可以调度和配置的资源组成的资源集合称为该G节点的通信域或者说该G节点的通信域资源,该G节点称为该通信域的G节点。一个通信域一般包括一个G节点以及至少一个T节点。那么该通信域的标识可以等同于该G节点的标识,或者说,该G节点的标识可以称为该G节点所在的通信域的标识。那么对于同步通信域集合内的主节点来说,其节点标识也可以理解为其所在的通信域的标识(DomainID)。
8、第一同步区域
在本申请实施例中,第一同步区域可以理解为第一节点和第二类节点建立时频同步形成的同步通信域集合。其中,第二类节点可以是T节点。
9、广播信息
广播是一种信息的传播方式,指网络中的某一个节点发送信息的方式,这个信息所能传播到的范围称为广播域,广播域中的其它节点可以收到该信息。以广播的方式发送的信息,可称为广播信息,包含但不限于广播信道和/或系统信息。相对而言,单播信息是单一发送者和单一接收者之间通过网络通信的信息。相应的,组播信息是发送者将信息发送给指定分组内的多个接收者。
应当指出,为了清楚的描述本申请实施例的技术方案,在本申请实施例的描述中采用“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解,“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也不限定一定不同。并且,在本申请的描述中,除非另有说明,“至少一个”是指一个或多个,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
下面结合附图,对本申请实施例提供的技术方案进行介绍:
需要说明的是,在智能终端所在的无线通信场景中,在一定通信区域或范围内往往会存在多个通信域。每个通信域中包括一组具有通信关系的通信节点:一个G节点和至少一个T节点。其中,G节点管理通信域的时频资源,并具有为T节点间的通信链路调度资源的功能。不属于通信域的节点,可以简称为外部节点(包括未加入过通信域的节点以及加 入过通信域又退出通信域的节点),外部节点可以通过加入通信域的过程转换为该通信域的T节点。外部节点加入通信域的过程中,首先要与通信域时频同步,并获取通信域的资源配置和支持的特性等系统信息。在每个通信域中,T节点可以与其对应的G节点保持时频同步,本申请不对T节点与G节点的同步方式进行限定。在某个区域或场景中存在多个通信域时,需要使多个通信域的G节点保持时频同步,才能降低不同通信域的干扰,提高系统通信能力。
示例性的,请参见图2,图2示出了本申请实施例可能的一种应用场景。如图2所示,图2表示车内通信链路的拓扑关系示意图。如图2所示,在特定区域(例如,智能汽车座舱)中存在三个通信域,分别为第一通信域、第二通信域和第三通信域。在第一通信域中,手机作为G节点,耳机和穿戴设备作为T节点。在第二通信域中,车机作为G节点,麦克、音箱和手机等作为T节点。在第三通信域中,无钥匙进入及启动系统作为G节点,手机钥匙和车钥匙作为T节点。在该示例中,手机、车机和无钥匙进入及启动系统这3个G节点间需要保持时频同步。
需要说明的是,在本申请实施例的另一应用场景中,在短距无线系统中包括至少一个G节点,每个G节点下接入至少一个T节点。其中,G节点,可以认为是一个无线网络的创建者,是网络的中间节点。G节点的功能类似于基站或无线保真接入点(wireless fidelity access apoint,WIFI AP)。T节点,可以认为是连接到无线网络中的终端,例如手机、耳机、笔记本和电脑等。在一些实施例中,手机可以为作为一个G节点,与该手机属于同一个用户的耳机可作为一个T节点,在另一些实施例中,在会议室可以布局多个G节点,会议室的其它终端设备可作为T节点,例如,无线音箱和手机等,接入上述多个G节点中的任一个G节点。或者,在另一些实施例中,智能汽车内包括多个G节点,关于智能汽车内G节点的举例可参见上述图2所示,后续有作为G节点的终端设备(例如手机)移动到上述智能汽车的区域内,则该终端设备需要与上述智能汽车内的原有的多个G节点保持时频同步。
综上所述,如何保持短距无线通信系统中的多个节点之间(例如,多个G节点之间或多个G节点和T节点之间)的时频同步,是本申请实施例待解决的技术问题。
需要说明的是,上述应用场景仅为示意性说明,并不作为对本申请实施例的限定。本领域普通技术人员可知,随着网络演进和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
鉴于上述技术问题,本申请实施例提供了两种通信方法。
其中,第一种通信方法可以应用于第一节点和第二节点,在该方法中:第一节点可以向第二节点发送第一测量配置信息,第一测量配置信息用于指示测量第一信道中的第三节点的同步信息;进而第二节点可以获取该同步信息,第一节点可以从第二节点接收同步信息,该同步信息用于可以指示第三节点的时间同步信息、频率同步信息、同步通信域集合信息、RSRP参考信号接收功率、RSRQ参考信号接收质量、SINR信号与干扰加噪声比、或RSSI接收信号强度指示中的一项或多项。可以理解的是,上述第一种通信方法可以适用第一节点已建立业务的场景,如此通过本申请实施例的方法,第一节点可以通过第二节点获得第一信道中的第三节点的同步信息,可以实现在不影响第一节点的业务的情况下,获取到第一信道中的节点的同步信息,以达成多节点的时频同步。下文将通过实施例一进行详细的介绍。
第二种通信方法,可以应用于第一节点,所述方法包括:接收来自第三节点的第一信息,所述第一信息用于指示第三节点的时间同步信息、频率同步信息、同步通信域集合信息、RSRP、RSRQ、SINR、或RSSI中的一项或多项;与所述第三节点建立时频同步。可以理解的是,上述第二种通信方法可以适用第一节点刚开机尚未建立业务的场景或者第一节点的业务处于空闲状态时(例如,凌晨或者当前无终端节点接入)的场景。如此,通过本申请实施例的方法,第一节点可以直接从第三节点获取第三节点的同步信息,并与第三节点建立时频同步,有效提升第一节点建立时频同步的效率。下文将通过实施例二进行详细的介绍。
下面结合具体的附图介绍本申请实施例的技术特征。
实施例一
请参见图3,图3示出了本申请实施例提供的第一种通信方法的流程示意图。在下文的介绍过程中,以短距通信系统中的第一节点建立时频同步为例,进行描述。且将用于代替第一节点测量第一信道上的节点的同步信息的节点称为第二节点,以及将与第一节点建立时频同步的节点称为第三节点。可选的,第一节点和第三节点可以为无线短距通信系统中的G节点,第二节点可以为无线短距通信系统中的T节点。该方法包括以下步骤:
S301、第一节点向第二节点发送第一测量配置信息。相应的,第二节点接收第一测量配置信息。
其中,该第一测量配置信息用于指示测量第一信道中的第三节点的同步信息,进而第二节点可以根据第一测量配置信息测量第一信道中的第三节点的同步信息。
可以理解的是,第二节点可以是一个或多个节点,本申请实施例不作具体的限制。在一种可能的实施方式中,第二节点可以是第一节点所属的第一同步区域内的第二类节点。其中,第二类节点可以是第一同步区域内的所有T节点或终端节点。
可选的,第一节点可以根据第一同步区域内的第二类节点的业务优先级和/或负载信息,确定第二节点。可选的,第二类节点的业务优先级可以通过第二类节点当前正在进行的业务类型(例如,视频业务、语音业务等)来表征。或者说,节点的业务优先级对应节点的业务类型。可选的,第二类节点的负载信息可以通过第二类节点当前处理的任务数量来确定。相应的,第一节点确定第二节点存在多种情况,包括但不限于以下情况:
情况1、第一节点可以根据第一同步区域内的第二类节点的业务优先级,确定第二节点。
示例1,第一同步区域内的第二类节点以节点T1和节点T2为例,其中,节点T1的业务类型为视频业务,节点T2的业务类型为语音业务,则节点T1的业务优先级较高,节点T2的业务优先级较低,第一节点可以将T2节点确定为第二节点,通过T2节点测量第一信道中的第三节点的同步信息。
示例2,第一同步区域内的第二类节点以节点T1、节点T2和节点T3为例,其中,节点T1的业务类型为视频业务,节点T2和节点T3的业务类型为语音业务,则节点T1的业务优先级较高,节点T2和节点T3的业务优先级较低,第一节点可以将T2节点和节点T3确定为第二节点,通过T2节点和节点T3测量第一信道中的第三节点的同步信息。
情况2、第一节点可以根据第一同步区域内的第二类节点的负载信息,确定第二节点。
示例性的,第一同步区域内的第二类节点以节点T1和节点T2为例,其中,节点T1 当前处理的任务数量为10个,节点T2当前处理的任务数量为1个,则节点T1的负载较高,节点T2的负载较低,第一节点可以将T2节点确定为第二节点,通过T2节点测量第一信道中的第三节点的同步信息。
情况3、第一节点可以根据第一同步区域内的第二类节点的业务优先级和负载信息,确定第二节点。
示例性的,第一同步区域内的第二类节点以节点T1和节点T2为例,第二类节点的业务优先级和负载信息对应的权重系数分别为60%、40%;若节点T1的业务类型为视频业务,节点T1的业务优先级对应的量化值为40分,以及节点T1当前处理的任务数量为5个,节点T1的负载信息对应的量化值为50分,则节点T1对应的分数为40*60%+50*40%=44;若节点T2的业务类型为语音业务,节点T2的业务优先级对应的量化值为80分,以及节点T2当前处理的任务数量为10个,节点T2的负载信息对应的量化值为10分,则节点T2对应的分数为80*60%+10*40%=52;节点T2对应的分数高于节点T1对应的分数,第一节点可以将T2节点确定为第二节点,通过T2节点测量第一信道中的第三节点的同步信息。
可以理解的是,上述情况1至情况3中的第二节点的业务优先级和负载信息对应的量化值、以及第二节点的业务优先级和负载信息对应的权重系数,仅仅是举例而非限定。
在上述情况1至情况3中,第一节点可以根据第二类节点的业务优先级和/或负载信息,筛选出适合进行同步信息测量的第二节点,可以有效避免同步信息测量对部分第二类节点的业务造成影响,从而有效提升用户体验。
在本申请实施例中,上述第一信道可以理解为第一节点指定的待测量的信道,在一些可能的实施例中,第一信道可以通过其对应的信道频率来表征。也就是说,上述第一测量配置信息可以通过指示第一信道的信道频率,来指示待测量的第一信道。
在一种可能的实施方式中,上述第一测量配置信息还可以用于指示测量目标、测量资源对应的第一周期、测量资源在第一周期内的持续时间、测量资源在第一周期内的偏移量、测量资源的起始时域位置编号、或测量资源的数量。
为了便于理解,下面针对测量目标和测量资源进一步介绍。
一、测量目标。
在本申请实施例中,测量目标可以理解为第一信道中待测量的信息类型。在一些可能的实施例中,测量目标包括但不限于如下一项或多项:RSRP、RSRQ、SINR、RSSI、同步通信域集合测量、时间调整测量、或频率调整测量。
其中,RSRP、RSRQ、SINR、或RSSI中的一项或多项,用于表征第二节点对于来自第三节点的信息的信号接收强度。在一些其他的实施例中,第二节点对于来自第三节点的信息的信号接收强度还可以通过其他的参数来表征。
其中,上述同步通信域集合也可以称作同步组,可以理解为多个第一类节点建立时频同步所形成的集合。其中,第一类节点可以是G节点和/或T节点,本申请实施例不作限制。例如,G1节点和G2节点建立时频同步,G1节点和G2节点可以构成一个同步通信域集合。又例如,G1节点和T1节点建立时频同步,G1节点和T1节点可以构成一个同步通信域集合。相应的,同步通信域集合测量可以理解为测量第一信道中的节点所属的同步通信域集合信息。
其中,时间调整测量可以理解为测量第一信道中的节点的时间同步信息,该时间同步信息,可以理解为与第三节点的时间同步相关的信息。
其中,频率调整测量可以理解为测量第一信道中的节点的频率同步信息,该频率同步信息可以理解为与第三节点的频率同步相关的信息。
示例1,若测量目标包括同步通信域集合测量,则第二节点收到第一测量配置信息之后,可以测量第一信道中的第三节点所属的同步通信域集合。
示例2,若测量目标包括时间调整测量,则第二节点收到第一测量配置信息之后,可以测量第一信道中的第三节点的时间同步信息,第三节点的时间同步信息例如可以包括第三节点与第一节点之间的第一时间偏差,该第一时间偏差可以理解为将第一节点和第三节点在第一时刻的时钟值之间的差异度,或者可以理解为第一节点和第三节点的时间单元的传输的起始时刻的误差。又例如,该时间同步信息可以包括第三节点的时钟值和/或第三节点的时间单元的传输的起始时刻。
示例3,若测量目标包括频率调整测量,则第二节点收到第一测量配置信息之后,可以测量第一信道中的第三节点的频率同步信息,第三节点的频率同步信息例如可以包括第三节点与第一节点之间的第一频率偏差,该第一频率偏差可以理解为第一节点和第三节点在第一时刻的载波频率误差,该载波频率误差可以理解为第一节点和第三节点之间的实际频率的相对/绝对误差。又例如,频率同步信息可以包括第三节点的载波频率。
示例4,若测量目标包括RSRP、RSRQ、SINR和RSSI,第二节点收到第一测量配置信息之后,可以测量第二节点对于来自第一信道中的第三节点的信息的信号强度,该信号强度可以通过RSRP、RSRQ、SINR和RSSI来表征。
示例5,若测量目标包括同步通信域集合测量、时间调整测量和频率调整测量,则第二节点收到第一测量配置信息之后,可以测量第一信道中的第三节点的同步通信域集合信息、时间同步信息和频率同步信息。
示例6,若测量目标包括RSRP、RSRQ、SINR、RSSI、同步通信域集合测量、时间调整测量、和频率调整测量,则第二节点收到第一测量配置信息之后,可以测量第一信道中的第三节点的同步通信域集合信息、时间同步信息和频率同步信息,以及测量第二节点对于来自第一信道中的第三节点的信息的信号强度,该信号强度可以通过RSRP、RSRQ、SINR和RSSI来表征。
二、测量资源。
在本申请实施例中,“测量资源”可以理解为第二节点测量第一信道中的第三节点的同步信息所用的时间资源,该时间资源的时间单元例如可以是超帧、无线帧(radio frame)、符号(symbol)或其它时间单位。
相应的,“测量资源对应的第一周期”可以为多个连续的时间单元。“测量资源在第一周期内的持续时间”可以理解为测量资源在第一周期内占用的时间单元。“测量资源在第一周期内的偏移量”可以理解为测量资源在第一周期内占用的时间单元可调整的范围。“测量资源的起始时域位置编号”可以理解为指示第二节点开始测量的时间资源对应的编号,例如可以是指示第二节点开始测量的超帧的编号。“测量资源的数量”可以理解为第二节点测量第一信道中的第三节点的同步信息所用的时间资源对应的时间单元的数量,例如可以是超帧、无线帧、符号或其它时间单位的数量。
示例性的,测量资源对应的第一周期可以是50个连续的超帧,测量资源在第一周期 内的持续时间可以为这50个连续的超帧中的20个超帧,测量资源在第一周期内的偏移量可以为10个超帧,测量资源的起始时域位置编号可以为50个连续的超帧中的超帧10的编号,测量资源的数量可以为20。
需要说明的是,第一节点的同步流程可以通过第一事件触发,或者周期性地触发。
在一种可能的实施方式中,第一节点向第二节点发送第一测量配置信息的过程可以是:响应于检测到第一事件,向第二节点发送第一测量配置信息;其中,第一事件包括但不限于如下一项或多项:第一节点开机,第一节点所属通信系统的通信质量低于预设标准,第一节点的软件模块按照预设配置启动,或,第一节点处于未与任何节点同步的状态。在该实施方式中,可以通过特定事件触发第一节点向第二节点发送第一测量配置信息,使得第一节点的时频同步符合第一节点的业务需求,不会对第一节点的业务造成影响。
在另一种可能的实施方式中,第一节点向第二节点发送第一测量配置信息的过程可以是:到达第一周期的起始时域位置,第一节点向第二节点发送第一测量配置信息。在该实施方式中,第一节点周期性地向第二节点发送第一测量配置信息,使得第一节点的时频同步更合理。
由前文描述可知,第二节点可以是一个或多个节点。情况1中,第二节点为多个节点,第一节点可以通过组播或单播的方式向第二节点发送第一测量配置信息。可选的,第一测量配置信息可以以第一周期发送。可选的,第一测量配置信息可以承载于系统消息中。情况2中,第二节点为1个节点时,第一节点可以通过单播的方式向第二节点发送第一测量配置信息。
S302、第二节点获取该同步信息。
请参见图4,在一种可能的实施方式中,步骤S302具体包括:
S302A、第二节点可以接收第三节点的广播信息。
S302B、第二节点根据该广播信息,确定上述同步信息。
其中,广播信息中可能包含多种信息,第二节点可以根据第一测量配置信息指示的测量目标的类型,从该广播信息中挑选出测量目标对应的信息作为第三节点的同步信息。
示例1,若第一测量配置信息指示的测量目标包括同步通信域集合测量和时间调整测量,第二节点接收到的来自第三节点的广播信息中包括同步通信域集合信息和时间同步信息,则第二节点将第三节点的同步通信域集合信息和时间同步信息作为同步信息。
示例2,若第一测量配置信息指示的测量目标包括频率调整测量,第二节点接收到的来自第三节点的广播信息中包括同步通信域集合信息、时间同步信息和频率同步信息,则第二节点将第三节点的频率同步信息作为同步信息。
示例3,若第一测量配置信息指示的测量目标包括频率调整测量,第二节点接收到的来自第三节点的广播信息中包括同步通信域集合信息、时间同步信息和频率同步信息,但该频率同步信息仅包括第三节点的载波频率,则第二节点可以根据第三节点的载波频率和第二节点的载波频率之间的误差,确定频率调整信息,将频率调整信息确定为同步信息。
在另一种可能的实施方式中,第二节点可以接收第三节点的广播信息,直接将该广播信息作为第三节点的同步信息。
示例性的,若第一测量配置信息指示的测量目标包括RSRP、RSRQ、SINR、RSSI、同步通信域集合测量、时间调整测量、和频率调整测量,第二节点接收到的来自第三节点的广播信息中包括RSRP、RSRQ、SINR、RSSI、同步通信域集合信息、时间同步信息和频率同步信息,则第二节点将第三节点的广播信息作为同步信息。
S303、第二节点向第一节点发送该同步信息。相应的,第一节点从第二节点接收该同步信息。
其中,上述同步信息用于指示第三节点的时间同步信息、频率同步信息、同步通信域集合信息、RSRP参考信号接收功率、RSRQ参考信号接收质量、SINR信号与干扰加噪声比、或RSSI接收信号强度指示中的一项或多项。
在本申请实施例中,同步通信域集合信息,可以理解为第一信道中的节点与其他第一类节点建立时频同步所形成的同步通信域集合的信息。在一些可能的实施例中,同步通信域集合信息可以包括但不限于如下一项或多项:同步通信域集合的拓扑关系,第三节点的优先级信息,同步通信域集合内包括的第一类节点数量,或第三节点与同步通信域集合中除第三节点外的其他第一类节点之间的同步状态。对于第一类节点的描述,请参见前文,这里不再赘述。
其中,同步通信域集合的拓扑关系,可以理解为同步通信域集合中根节点与父节点的关系,可以通过节点标识来表征该拓扑关系。其中,根节点为同步通信域集合中的首个节点,同步通信域集合中的其它节点都是直接或者间接通过该根节点加入该同步通信域集合。同步路径是指通过从根节点到当前节点的连通路径。例如当前节点通过父节点进入同步通信域集合,父节点通过根节点进入同步通信域集合,则当前节点-父节点-根节点形成同步路径。其中,第三节点的优先级信息可以理解为第一节点与第三节点建立时频同步的优先级。所述优先级可以通过同步通信域集合内同步路径上的节点顺序、节点位置或者当前节点与根节点之间的距离指示。其中,同步状态可以理解为第三节点与同步通信域集合中除第三节点外的其他第一类节点之间的同步情况。
示例性的,请参见图5,图5示出了一个同步通信域集合的拓扑关系的示意图,其中,节点1为根节点,节点2和节点3为父节点,第三节点以节点4为例,节点4存在子节点C和子节点D;节点4的同步路径为节点4-节点3-节点2-节点1,相应的,节点4的优先级低于节点3的优先级,节点3的优先级低于节点2的优先级,节点2的优先级低于节点1的优先级,节点4与其所在通信域集合中其他节点的同步状态为通过该同步路径与节点3、节点2和节点1直接或间接地建立时频同步。
其中,时间同步信息和频率同步信息,请参见前文的相关描述,这里不再赘述。
在图3所示的第一种通信方法中,第一节点可以通过第二节点获得第一信道上的第三节点的同步信息,可以实现在不影响第一节点的业务的情况下,获取到第一信道中的节点的同步信息,以达成多节点的时频同步。
可选的,请参见图6,上述第一种通信方法还包括以下步骤:
S304、第一节点与第三节点建立时频同步。
由前文描述可知,时频同步包括时间同步和频率同步。
在一种可能的实施方式中,上述同步信息中的时间同步信息包括第三节点与第一节点 之间的第一时间偏差,第一节点可以基于第一时间偏差,调整第一节点的时钟值,以使第一节点和第三节点在第一时刻的时钟值之间的差异度在第一预设范围内;或者,第一节点可以基于第一时间偏差,调整第一节点的时间单元的传输的起始时刻,以使第一节点和第三节点的时间单元的传输的起始时刻的误差在第二预设范围内。其中,第一预设范围与第二预设范围不同。
在另一种可能的实施方式中,上述同步信息中的时间同步信息包括第三节点在第一时刻的时钟值和/或第三节点的时间单元的传输的起始时刻,第一节点可以基于该时间同步信息,确定第三节点与第一节点之间的第一时间偏差,并基于第一时间偏差,调整第一节点的时钟值,以使第一节点和第三节点在第一时刻的时钟值之间的差异度在第一预设范围内;或者,第一节点可以基于第一时间偏差,调整第一节点的时间单元的传输的起始时刻,以使第一节点和第三节点的时间单元的传输的起始时刻的误差在第二预设范围内。其中,第一预设范围与第二预设范围不同。
在一种可能的实施方式中,上述同步信息中的频率同步信息包括第三节点与第一节点之间的第一频率偏差,第一节点可以基于第一频率偏差,调整第一节点的载波频率,以使第一节点和第三节点在第一时刻的载波频率之间的误差在第三预设范围内。
在另一种可能的实施方式中,上述同步信息中的频率同步信息包括第三节点在第一时刻的载波频率,第一节点可以基于该频率同步信息,确定第三节点与第一节点之间的第一频率偏差,并基于第一频率偏差,调整第一节点的载波频率,以使第一节点和第三节点在第一时刻的载波频率之间的误差在第三预设范围内。
S305、第一节点向第二节点发送第二测量配置信息。相应的,第二节点接收第二测量配置信息。其中,第二测量配置信息用于指示测量第三节点更新的同步信息;
类似的,当第二节点为多个节点时,第一节点可以以组播或单播的方式向第二节点发送第二测量配置信息;当第二节点为1个节点时,第一节点可以以单播的方式向第二节点发送第二测量配置信息。
S306、第二节点获取第三节点更新的同步信息。
可以理解的是,第二节点获取第三节点更新的同步信息的具体实施方式与S302中第二节点获取第三节点的同步信息的具体实施方式类似,请参见前文,这里不再赘述。
S307、第二节点向第一节点发送该更新的同步信息。相应的,第一节点接收该更新的同步信息。
在本申请实施例中,更新的同步信息用于指示第三节点与第一节点之间的第二时间偏差和/或第二频率偏差。其中,第二时间偏差可以理解为第一节点和第三节点在第二时刻的时钟值之间的差异度,或者可以理解为第一节点和第三节点的时间单元的传输的起始时刻的误差;第二频率偏差可以理解为第一节点和第三节点在第二时刻的载波频率误差。
可选的,第一节点接收到该更新的同步信息之后,可以基于该更新的同步信息,与第三节点再次建立时频同步。如此,第一节点可以通过第二节点再次获取第三节点更新的同步信息,实现第三节点的同步跟踪,使得第一节点与第三节点之间的时频同步更准确。
需要说明的是,上述示例中均是以第三节点为一个节点为例,介绍第一节点与第三节点建立时频同步的过程。下面以第三节点为多个节点为例,介绍第一节点与第三节点建立时频同步的过程。可选的,在第一信道中的第三节点为多个节点时,第一节点可以从这多 个第三节点中筛选出第四节点,并与第四节点建立时频同步。
其中,第一节点从多个第三节点中筛选出第四节点有多种情况,包括但不限于以下情况:
情况1、第一节点考虑多个第三节点的优先级,第一节点可以将多个第三节点中优先级最高的节点作为第四节点。
在本申请实施例中,可以预先设置不同节点的优先级。
在一种示例中,可以直接为每个节点配置优先级。或者,也可以间接为每个节点配置优先级。例如,为了便于不同节点的同步,通常会为每个G节点配置同步序列,同步序列用于不同节点间进行时频同步。在本申请实施例中,每个节点可以通过为其配置的同步序列,确定自身的优先级。例如,可以预先设置同步序列与优先级的对应关系,终端设备获得为其配置的同步序列后,可根据该同步序列,确定节点自身的优先级等。例如,预先为节点G1配置的同步序列为同步序列A,且该同步序列A对应的优先级为A,那么节点G1的优先级可以为A。
又一种示例中,所述优先级可以通过同步区域内同步路径上的节点顺序、节点位置或者当前节点与根节点之间的距离指示。根据上文的阐述,同步路径是指从根节点到当前节点的连通路径。例如当前节点通过父节点进入同步区域,父节点通过根节点进入同步区域,则当前节点-父节点-根节点形成所述同步路径,那么在该示例中,根节点的优先级可以标识为0,在该同步区域和该同步路径中,根节点的优先级最高,那么上述父节点的优先级为1(或者说,与根节点之间的距离为1),仅次于根节点,当前节点的优先级为2(或者说,与根节点之前的距离为2),次于父节点。这里不限定用0、1等数字用来标识,任何可以体现优先级大小的信息都可以用于进行优先级的标识。基于该示例,在同步区域中若存在多条同步路径,则对于与根节点距离相同的多个不同的节点,在不同的同步路径中仍然可以具有相同的优先级。
可选的,每个节点可以将自己的优先级,通知其它节点。例如,在一种实现方式中,每个节点可以显式地向其它节点指示自己的优先级。例如,节点可发送广播信息或节点信息,该广播信息或节点信息中包括该节点的优先级。或者,在另一种实现方式中,每个节点可以隐式地向其它节点指示自己的优先级。具体的,每个节点为了其它节点与自己时频同步,广播发送同步信号,该同步信号中包括同步序列,利用同步序列可以隐示指示每个节点的优先级。当然,在上述描述中,是以同步序列与节点优先级存在对应关系,利用同步序列隐示指示节点的优先级为例描述的,并不作为对本申请实施例中的限定。与节点优先级存在对应关系的信息还可以为其它信息,例如,其它信息可以为同步序列的根序列等,即还可以利用其它信息隐示指示节点的优先级,比如同步序列的根序列等。在以下示例的描述中,是以至少一个节点显示向第一节点指示自己的优先级,即至少一个节点发送的节点信息中包括节点的优先级为例进行描述的。
可以理解的是,在情况1下,可能会出现多个第三节点的优先级相同,且优先级最高。第一节点可以基于第一预设规则,从上述多个优先级最高的第三节点中,选择一个第三节点,作为第四节点。该第一预设规则可以为随机选择一个节点,或者,基于多个第三节点的信号强度和/或其所属同步区域中包括节点的数量等。示例性的,多个第三节点以节点A、节点B和节点C为例。节点A的优先级为2,节点B和节点C的优先级均为1,优先级1高于优先级2。第一节点可以基于第一预设规则,在上述节点B和节点C中,选择一个节 点,作为第二节点等。
情况2、第一节点考虑第三节点所属通信域集合内包括的节点数量,将通信域集合内包括的节点数量最多的第三节点确定为第四节点。
示例性的,多个第三节点以节点A、节点B和节点C为例,节点A所属的通信域集合A内包括节点的数量为N1,节点B所属的通信域集合B内包括的节点的数量为N2,节点C所属的通信域集合C内包括的节点数量为N3。N1、N2和N3均为正整数,若N3的取值大于N1和N2,则第一节点可选择节点C作为第四节点。
可以理解的是,在上述情况2下,可能会出现多个第三节点所属的通信域集合内包括节点的数量相同且最多的情况。仍沿用上述举例,若N1与N2的取值相同,且大于N3的取值,则第一节点需要在节点A和节点B中,选择一个节点,作为第四节点。第一节点可以基于第二预设规则,在上述所属通信域集合中包括节点数量最多的节点中,选择一个节点,作为第四节点。第二预设规则,可以为随机选择一个节点,或者,基于多个第三节点的信号强度和/或优先级等。
情况3、第一节点考虑多个第三节点的信号强度,第一节点可以将多个第三节点中信号强度最大的节点作为第四节点。
第一节点可在多个第三节点中,选择节点信息、广播信息或其它信道或信号的信号强度最大的节点,作为第四节点。其中,节点信息的信号强度可具体指第一节点接收其它节点的节点信息的信号强度,上述广播信息的信号强度可具体指第一节点接收广播信息的信号强度。具体的,所述广播信息可以为同步信号。可选的,第一节点的接收信号强度=射频发射功率+发射端天线增益-路径损耗-障碍物衰减+接收端天线端。接收信号强度可以用分贝(decibel,dB)或分贝毫瓦(decibel relative to one milliwatt,dBm)度量。示例性的,多个第三节点以节点A和节点B为例,第一节点接收节点A的广播信息的信号强度,即接收信号强度为100dBm,接收节点B的广播信息的信号强度,即接收信号强度为101dBm,则第一节点可以选择节点B作为第四节点。
可以理解的是,在上述情况3下,可能会出现多个第三节点的接收信号强度相同且最高的情况。第一节点可以基于第三预设规则,在上述多个节点中,选择一个节点,作为第四节点。该第三预设规则可以为随机选择一个节点,或者,基于多个节点的优先级和/或其所属同步通信域集合包括节点的数量等。
在一种可能的实施方式中,第一节点接收到同步信息之后,还可以发送第一节点与第三节点之间的同步调整信息,同步调整信息用于指示第一同步区域内第二类节点与第三节点建立时频同步。由前文描述可知,第二类节点可以是一个或多个节点。因此,第二节点为多个节点时,第一节点可以通过广播或组播的方式向第二类节点发送同步调整信息。第二节点为1个节点时,第一节点可以通过单播的方式向第二类节点发送同步调整信息。
可以理解的是,在一些实施例中,上述同步信息中的时间同步信息包括时间调整信息(例如,第一时间偏差),以及上述同步信息中的频率同步信息包括频率调整信息(例如,第一频率偏差),第一节点可以将同步信息作为同步调整信息和调整生效的时刻发送给第二类节点。在另一些实施例中,上述同步信息中的时间同步信息包括第三节点的时间信息(例如,第一时刻的时钟值),以及上述同步信息中的频率同步信息包括三节点的频率信息(例如,载波频率),第一节点可以根据同步信息,进一步确定频率调整信息(例如,第一频率偏差)、时间调整信息(例如,第一时间偏差)和同步调整生效的时刻,并将频 率调整信息、时间调整信息和同步调整生效的时刻作为同步调整信息发送给第二类节点。在该实施方式中,第一节点通过向其所属的第一同步区域内第二类节点发送同步调整信息,使得第二类节点可以与第三节点建立时频同步,进一步实现多节点间的时频同步。
示例性的,请参见图7,在图7中,第一节点以G1节点为例,第三节点以G2节点为例,第二类节点以T1节点和T2节点为例,在G1节点与G2节点建立时频同步之前,G1节点、T1节点和T2节点就已建立了时频同步,形成了第一同步区域。因此,在G1节点接收到G2节点的同步信息之后,若同步信息中的时间同步信息包括时间调整信息,同步信息中的频率同步信息包括频率调整信息,G1节点可以将同步信息和调整生效时刻作为同步调整信息A发送给T1节点和T2节点。或者,若同步信息中的时间同步信息包括时间信息,同步信息中的频率同步信息包括频率信息,G1节点可以根据同步信息,进一步确定频率调整信息和时间调整信息,并将频率调整信息、时间调整信息和调整生效时刻作为同步调整信息A发送给T1节点和T2节点。相应的,T1节点和T2节点接收到同步调整信息A之后,可以根据同步调整信息A与G2节点建立时频同步。
实施例二
请参见图8,图8示出了本申请实施例提供的第二种通信方法的流程示意图。在下文的介绍过程中,以短距通信系统中的第一节点建立时频同步为例,进行描述。可选的,第一节点和第三节点可以为无线短距通信系统中的G节点。该方法包括以下步骤:
S801、第一节点接收来自第三节点的第一信息。
其中,所述第一信息用于指示第三节点的时间同步信息、频率同步信息、同步通信域集合信息、RSRP、RSRQ、SINR、或RSSI中的一项或多项;与所述第三节点建立时频同步。
在一种可能的实施方式中,上述第一信息承载在广播消息、单播消息或者组播消息中。也就是说,第三节点可以通过多种方式向第一节点发送同步信息。
S802、第一节点与第三节点建立时频同步。
其中,第一节点与第三节点建立时频同步的具体过程请参见前文的S304的相关描述,只需将“同步信息”替换为“第一信息”即可,这里不再赘述。
可以理解的是,图8所示的通信方法适用第一节点刚开机尚未建立业务的场景或者第一节点的业务处于空闲状态时(例如,凌晨或者当前无终端节点接入)的场景。因此,通过本申请实施例的方法,第一节点可以直接从第三节点获取第三节点的同步信息,并与第三节点建立时频同步,有效提升第一节点建立时频同步的效率。
可以理解的是,在图8所示的实施例中,第三节点可能有多个,也就是说第一节点可能会接收到来自多个第三节点的第一信息,第一节点可以在这个多个第三节点中筛选出第四节点,并与第四节点建立时频同步,具体过程请参见前文的相关描述,这里不再赘述。
以上详细说明了本申请实施例提供的通信方法。以下结合具体的附图详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应。因此,未详细描述的内容可相互参见。
图9是本申请实施例提供的装置900的示意性框图,用于实现上文方法实施例中第一节点或第二节点的功能。例如,该装置可以为软件模块或芯片系统。所述芯片可以由芯片 构成,也可以包括芯片和其他分立器件。该装置900包括处理单元901和通信单元902。通信单元902用于与其它设备进行通信,还可以称为通信接口、收发单元或输入\输出接口等。
情况1中,上述装置900用于实现上文方法实施例一中第一节点的功能时,装置900可以是第一节点,或者配置于第一节点中的芯片或电路等。处理单元901用于执行上文方法实施例一中第一节点的处理相关操作,通信单元902用于执行上文方法实施例一中第一节点的收发相关操作。
在装置900用于实现上文方法实施例一中第一节点的功能时,通信单元902可以用于接收向第二节点发送第一测量配置信息,所述第一测量配置信息用于指示测量第一信道中的第三节点的同步信息:从所述第二节点接收所述同步信息,所述同步信息用于指示所述第三节点的时间同步信息、频率同步信息、同步通信域集合信息、RSRP、RSRQ、SINR、或RSSI中的一项或多项。
可选的,所述时间同步信息包括所述第三节点与所述第一节点之间的第一时间偏差。
可选的,所述频率同步信息包括所述第三节点与所述第一节点之间的第一频率偏差。
可选的,所述同步通信域集合信息包括如下一项或多项:所述同步通信域集合的拓扑关系,所述第三节点的优先级信息,所述同步通信域集合内包括的第一类节点数量,或所述第三节点与所述同步通信域集合中除所述第三节点外的其他第一类节点之间的同步状态。
在一种可能的实现方式中,所述第一测量配置信息还用于指示测量目标、测量资源对应的第一周期、所述测量资源在所述第一周期内的持续时间、所述测量资源在所述第一周期内的偏移量、所述测量资源的起始时域位置编号、或所述测量资源的数量;其中,所述测量目标包括如下一项或多项:所述参考信号接收功率、所述参考信号接收质量、所述信号与干扰加噪声比、所述接收信号强度指示、所述同步通信域集合测量、时间调整测量、或频率调整测量;其中,所述测量资源是用于测量所述第一信道的时间资源。
在一种可能的实现方式中,所述同步信息用于所述第一节点与所述第三节点建立时频同步。
可选的,通信单元902,还可以用于发送所述第一节点与所述第三节点之间的同步调整信息,所述同步调整信息用于指示第一同步区域内第二类节点与所述第三节点建立时频同步;其中,所述第一同步区域为所述第一节点所属的同步区域。
可选的,通信单元902,还可以用于所述第一节点与所述第三节点建立时频同步之后,向所述第二节点发送第二测量配置信息,所述第二测量配置信息用于指示测量所述第三节点更新的同步信息;从所述第二节点接收所述更新的同步信息,所述更新的同步信息用于指示所述第三节点与所述第一节点之间的第二时间偏差和/或第二频率偏差。
在一种可能的实现方式中,处理单元901可以根据所述第一同步区域内的第二类节点的业务优先级和/或负载信息,确定所述第二节点。
在一种可能的实现方式中,通信单元902在用于向第二节点发送第一测量配置信息时,具体用于:响应于处理单元901检测到第一事件,向所述第二节点发送所述第一测量配置信息;其中,所述第一事件包括如下一项或多项:所述第一节点开机,所述第一节点所属通信系统的通信质量低于预设标准,所述第一节点的软件模块按照预设配置启动,或,所述第一节点处于未与任何节点同步的状态;或者,到达所述第一周期的起始时域位置,向 所述第二节点发送所述第一测量配置信息。
情况2中,上述装置900用于实现上文方法实施例一中第二节点的功能时,装置900可以是第二节点,或者配置于第二节点中的芯片或电路等。处理单元901用于执行上文方法实施例一中第二节点的处理相关操作,通信单元902用于执行上文方法实施例一中第二节点的收发相关操作。
在一种可能的实现方式中,通信单元902用于接收第一测量配置装置,所述第一测量配置信息用于测量第一信道中的第三节点的同步信息;获取所述同步信息,所述同步信息用于指示所述第三节点的时间同步信息、频率同步信息、同步通信域集合信息、RSRP、RSRQ、SINR、或RSSI中的一项或多项;向第一节点发送所述同步信息。
在一种可能的实现方式中,通信单元902还用于接收所述第一节点与所述第三节点之间的同步调整信息,所述同步调整信息用于所述第二节点与所述第三节点建立时频同步;其中,所述第二节点和所述第一节点属于第一同步区域。
在一种可能的实现方式中,通信单元902还用于接收第二测量配置信息,所述第二测量配置信息用于测量所述第三节点更新的同步信息;获取所述更新的同步信息;向所述第一节点发送所述更新的同步信息,所述更新的同步信息用于指示所述第三节点与所述第一节点之间的第二时间偏差和/或第二频率偏差。
情况3中,上述装置900用于实现上文方法实施例二中第一节点的功能,装置900可以是第一节点,或者配置于第一节点中的芯片或电路等。处理单元901用于执行上文方法实施例中第一节点的处理相关操作,通信单元902用于执行上文方法实施例二中第一节点的收发相关操作。
通信单元902用于接收来自第三节点的第一信息,所述第一信息用于指示述第三节点的时间同步信息、频率同步信息、同步通信域集合信息、RSRP、RSRQ、SINR、或RSSI中的一项或多项;与所述第三节点建立时频同步。
在一种可能的实施方式中,所述第一信息承载在广播消息、单播消息或者组播消息中。也就是说,第三节点可以通过多种方式向第一节点发送同步信息。
本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请实施例中各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
请参见图10,图10为本申请实施例提供的装置1000的示意图,该装置1000可以为第一节点或第二节点,或者第一节点或第二节点中的一部件,例如芯片或集成电路等。该装置1000可包括至少一个处理器1002和通信接口1004。进一步,可选的,所述装置还可以包括至少一个存储器1001。更进一步,可选的,还可以包含总线1003。其中,存储器1001、处理器1002和通信接口1004通过总线1003相连。
其中,存储器1001用于提供存储空间,存储空间中可以存储操作系统和计算机程序等数据。存储器1001可以是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only  memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)等等中的一种或者多种的组合。
处理器1002是进行算术运算和/或逻辑运算的模块,具体可以是中央处理器(central processing unit,CPU)、图片处理器(graphics processing unit,GPU)、微处理器(microprocessor unit,MPU)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程逻辑门阵列(field programmable gate array,FPGA)、复杂可编程逻辑器件(complex programmable logic device,CPLD)、协处理器(协助中央处理器完成相应处理和应用)、微控制单元(microcontroller unit,MCU)等处理模块中的一种或者多种的组合。
通信接口1004可以用于为所述至少一个处理器提供信息输入或者输出。和/或所述通信接口可以用于接收外部发送的数据和/或向外部发送数据,可以为包括诸如以太网电缆等的有线链路接口,也可以是无线链路(Wi-Fi、蓝牙、通用无线传输、车载短距通信技术等)接口。可选的,通信接口1004还可以包括与接口耦合的发射器(如射频发射器、天线等),或者接收器等。
在一些实施例中,上述装置1000可以为上文方法实施例一中的第一节点或者第一节点中的部件,例如芯片或者集成电路。该装置1000中的处理器1002用于读取所述存储器1001中存储的计算机程序,控制所述第一节点执行以下操作:接收向第二节点发送第一测量配置信息,所述第一测量配置信息用于指示测量第一信道中的第三节点的同步信息:从所述第二节点接收所述同步信息,所述同步信息用于指示所述第三节点的时间同步信息、频率同步信息、同步通信域集合信息、RSRP、RSRQ、SINR、或RSSI中的一项或多项。关于具体细节,可参见上文方法实施例中的记载,不再赘述。
在另一些实施例中,上述装置1000可以为上文方法实施例一中的第二节点或者第二节点中的部件,例如芯片或者集成电路。该装置1000中的处理器1002用于读取所述存储器1001中存储的计算机程序,控制所述第二节点执行以下操作:接收第一测量配置装置,所述第一测量配置信息用于测量第一信道中的第三节点的同步信息;获取所述同步信息,所述同步信息用于指示所述第三节点的时间同步信息、频率同步信息、同步通信域集合信息、RSRP、RSRQ、SINR、或RSSI中的一项或多项;向第一节点发送所述同步信息。关于具体细节,可参见上文方法实施例中的记载,不再赘述。
在另一些实施例中,上述装置1000可以为上文方法实施例二中的第一节点或者第一节点中的部件,例如芯片或者集成电路。该装置1000中的处理器1002用于读取所述存储器1001中存储的计算机程序,控制所述第二节点执行以下操作:接收来自第三节点的第一信息,所述第一信息用于指示述第三节点的时间同步信息、频率同步信息、同步通信域集合信息、RSRP、RSRQ、SINR、或RSSI中的一项或多项;与所述第三节点建立时频同步。关于具体细节,可参见上文方法实施例中的记载,不再赘述。
本申请实施例还提供一种终端,所述终端可以为智能座舱设备、智能家居设备、智能制造设备或者车辆等。也可以理解为上文中的“车载无线短距通信系统”的技术可以应用于非车载领域的短距通信系统。所述终端包括第一节点和/或第二节点,该第一节点和第二节点可分别为上述图3所示实施例中的第一节点和第二节点。其中,第一节点与第二节点的类型可相同或不同。例如,在一些实施例中,第一节点与第二节点的类型不同,则所述第一节点可以为摄像头、屏幕、麦克风、音响、雷达、电子钥匙、无钥匙进入、启动系统控制器以及用户设备UE等模块中的一个或者多个。所述第二节点可以为基站、汽车座舱域 控制器(cockpit domain controller,CDC)等。或者,在一些实施例中,第一节点与第二节点的类型相同,则所述第一节点和第二节点可均为基站或CDC等。或者,所述第一节点和第二节点可均为摄像头、屏幕、麦克风、音响、雷达、电子钥匙、无钥匙进入、启动系统控制器以及用户设备UE等模块中的一个或者多个。可选的,所述终端可以为无人机、机器人、智能家居场景中的设备、或智能制造场景中的设备等。
进一步的,本申请实施例还提供一种装置,包括用于实现上文所示实施例的单元。或者,包括处理器和接口电路,所述处理器用于通过所述接口电路与其它装置通信,并执行上文方法实施例中的方法。或者,所述装置包括处理器,用于调用存储器中存储的程序,以执行上文所示实施例所描述的方法。
本申请实施例还提供一种计算机可读存储介质,包括可读指令,当其在计算机上运行时,使得计算机执行上文所示实施例所描述的方法。
本申请实施例还提供一种芯片系统,该芯片系统包括至少一个处理器和接口电路。进一步可选的,所述芯片系统还可以包括存储器或者外接存储器。所述处理器用于通过所述接口电路执行指令和/或数据的交互,以实现上文方法实施例中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行上文所示实施例所描述的方法。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件、协处理器等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如, 软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种通信方法,其特征在于,应用于第一节点,所述方法包括:
    向第二节点发送第一测量配置信息,所述第一测量配置信息用于指示测量第一信道中的第三节点的同步信息;
    从所述第二节点接收所述同步信息,所述同步信息用于指示所述第三节点的时间同步信息、频率同步信息、同步通信域集合信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、或接收信号强度指示RSSI中的一项或多项。
  2. 如权利要求1所述的方法,其特征在于,所述时间同步信息包括所述第三节点与所述第一节点之间的第一时间偏差。
  3. 如权利要求1或2所述的方法,其特征在于,所述频率同步信息包括所述第三节点与所述第一节点之间的第一频率偏差。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述同步通信域集合信息包括如下一项或多项:所述同步通信域集合的拓扑关系,所述第三节点的优先级信息,所述同步通信域集合内包括的第一类节点数量,或所述第三节点与所述同步通信域集合中除所述第三节点外的其他第一类节点之间的同步状态。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第一测量配置信息还用于指示测量目标、测量资源对应的第一周期、所述测量资源在所述第一周期内的持续时间、所述测量资源在所述第一周期内的偏移量、所述测量资源的起始时域位置编号、或所述测量资源的数量;
    其中,所述测量目标包括如下一项或多项:所述参考信号接收功率、所述参考信号接收质量、所述信号与干扰加噪声比、所述接收信号强度指示、所述同步通信域集合测量、时间调整测量、或频率调整测量;其中,所述测量资源是用于测量所述第一信道的时间资源。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述同步信息用于所述第一节点与所述第三节点建立时频同步。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    发送所述第一节点与所述第三节点之间的同步调整信息,所述同步调整信息用于指示第一同步区域内第二类节点与所述第三节点建立时频同步;
    其中,所述第一同步区域为所述第一节点所属的同步区域。
  8. 如权利要求6或7所述的方法,其特征在于,所述第一节点与所述第三节点建立时频同步之后,所述方法还包括:
    向所述第二节点发送第二测量配置信息,所述第二测量配置信息用于指示测量所述第三节点更新的同步信息;
    从所述第二节点接收所述更新的同步信息,所述更新的同步信息用于指示所述第三节点与所述第一节点之间的第二时间偏差和/或第二频率偏差。
  9. 如权利要求7或8所述的方法,其特征在于,所述方法还包括:
    根据所述第一同步区域内的第二类节点的业务优先级和/或负载信息,确定所述第二节点。
  10. 如权利要求5-9任一项所述的方法,其特征在于,所述向第二节点发送第一测量配 置信息,包括:
    响应于检测到第一事件,向所述第二节点发送所述第一测量配置信息;
    其中,所述第一事件包括如下一项或多项:所述第一节点开机,所述第一节点所属通信系统的通信质量低于预设标准,所述第一节点的软件模块按照预设配置启动,或,所述第一节点处于未与任何节点同步的状态;或者,
    到达所述第一周期的起始时域位置,向所述第二节点发送所述第一测量配置信息。
  11. 一种通信方法,其特征在于,应用于第二节点,包括:
    接收第一测量配置装置,所述第一测量配置信息用于测量第一信道中的第三节点的同步信息;
    获取所述同步信息,所述同步信息用于指示所述第三节点的时间同步信息、频率同步信息、同步通信域集合信息、参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR、或接收信号强度指示RSSI中的一项或多项;
    向第一节点发送所述同步信息。
  12. 如权利要求11所述的方法,其特征在于,所述时间同步信息包括所述第三节点与所述第一节点之间的第一时间偏差。
  13. 如权利要求11或12所述的方法,其特征在于,所述频率同步信息包括所述第三节点与所述第一节点之间的第一频率偏差。
  14. 如权利要求11-13任一项所述的方法,其特征在于,所述同步通信域集合信息包括如下一项或多项:所述同步通信域集合的拓扑关系、所述第三节点的优先级信息,所述同步通信域集合内包括的第一类节点数量,或所述第三节点与所述同步通信域集合中除所述第三节点外的其他第一类节点之间的同步状态。
  15. 如权利要求11-14任一项所述的方法,其特征在于,所述第一测量配置信息还用于指示测量目标、测量资源对应的第一周期、所述测量资源在所述第一周期内的持续时间、所述测量资源在所述第一周期内的偏移量、所述测量资源的起始时域位置编号、或所述测量资源的数量;
    其中,所述测量目标包括如下一项或多项:所述参考信号接收功率、所述参考信号接收质量、所述信号与干扰加噪声比、所述接收信号强度指示、所述同步通信域集合测量、时间调整测量、或频率调整测量;其中,所述测量资源是用于测量所述第一信道的时间资源。
  16. 如权利要求11-15任一项所述的方法,其特征在于,所述同步信息用于所述第一节点与所述第三节点建立时频同步。
  17. 如权利要求11-16任一项所述的方法,其特征在于,所述方法还包括:
    接收所述第一节点与所述第三节点之间的同步调整信息,所述同步调整信息用于所述第二节点与所述第三节点建立时频同步;
    其中,所述第二节点和所述第一节点属于第一同步区域。
  18. 如权利要求11-17任一项所述的方法,其特征在于,所述方法还包括:
    接收第二测量配置信息,所述第二测量配置信息用于测量所述第三节点更新的同步信息;
    获取所述更新的同步信息;
    向所述第一节点发送所述更新的同步信息,所述更新的同步信息用于指示所述第三节 点与所述第一节点之间的第二时间偏差和/或第二频率偏差。
  19. 一种通信装置,其特征在于,包括用于实现权利要求1至10中任一项的方法的单元。
  20. 一种通信装置,其特征在于,包括用于实现权利要求11至18中任一项所述方法的单元。
  21. 一种芯片系统,其特征在于,包括至少一个处理器和接口电路,所述处理器用于通过所述接口电路执行指令和/或数据的交互,使得所述芯片系统执行权利要求1至10中任一项所述的方法。
  22. 一种芯片系统,其特征在于,包括至少一个处理器和接口电路,所述处理器用于通过所述接口电路执行指令和/或数据的交互,使得所述芯片系统执行权利要求11至18中任一项所述的方法。
  23. 一种终端,其特征在于,包括如权利要求19所述的装置或权利要求21所述的芯片系统,和/或,如权利要求20所述的装置或权利要求22所述的芯片系统。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行权利要求1至10中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行权利要求11至18中任一项所述的方法。
PCT/CN2022/138403 2022-03-04 2022-12-12 一种通信方法及装置 WO2023165211A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210211057.0 2022-03-04
CN202210211057.0A CN116744326A (zh) 2022-03-04 2022-03-04 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023165211A1 true WO2023165211A1 (zh) 2023-09-07

Family

ID=87882930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138403 WO2023165211A1 (zh) 2022-03-04 2022-12-12 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116744326A (zh)
WO (1) WO2023165211A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111201818A (zh) * 2017-09-28 2020-05-26 中兴通讯股份有限公司 侧行链路通信中载波聚合的方法和装置
CN113141596A (zh) * 2020-01-17 2021-07-20 大唐高鸿数据网络技术股份有限公司 一种v2x系统的同步方法、装置及设备
WO2021154138A1 (en) * 2020-01-31 2021-08-05 Telefonaktiebolaget Lm Ericsson (Publ) First network node, second network node, third network node and methods performed thereby, for handling a measurement configuration
WO2022000182A1 (zh) * 2020-06-29 2022-01-06 华为技术有限公司 数据传输方法和装置
CN114449570A (zh) * 2022-01-26 2022-05-06 深圳Tcl新技术有限公司 通信域量测方法、存储介质及无线通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111201818A (zh) * 2017-09-28 2020-05-26 中兴通讯股份有限公司 侧行链路通信中载波聚合的方法和装置
CN113141596A (zh) * 2020-01-17 2021-07-20 大唐高鸿数据网络技术股份有限公司 一种v2x系统的同步方法、装置及设备
WO2021154138A1 (en) * 2020-01-31 2021-08-05 Telefonaktiebolaget Lm Ericsson (Publ) First network node, second network node, third network node and methods performed thereby, for handling a measurement configuration
WO2022000182A1 (zh) * 2020-06-29 2022-01-06 华为技术有限公司 数据传输方法和装置
CN114449570A (zh) * 2022-01-26 2022-05-06 深圳Tcl新技术有限公司 通信域量测方法、存储介质及无线通信装置

Also Published As

Publication number Publication date
CN116744326A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
US9913109B2 (en) Apparatus, system and method of NAN multicast group
US9485778B2 (en) WiFi real-time streaming and bluetooth coexistence
JP6392338B2 (ja) ワイヤレスネットワークにおいて応答インジケーション延期を動的に設定するためのシステム、方法、及びデバイス
JP6772256B2 (ja) Wlan rtt測定のためのブロードキャストレンジングメッセージ
US20160353253A1 (en) Traffic advertisement in a network
US9998879B2 (en) Apparatus, system and method of communicating traffic to a plurality of wireless devices
US20170339533A1 (en) Apparatus, system and method of terminating a neighbor awareness networking (nan) path
WO2022027496A1 (zh) 资源配置方法、装置、通信设备和存储介质
WO2021036910A1 (zh) 数据传输方法及装置
WO2020192481A1 (zh) 通信方法和装置
WO2022117087A1 (zh) 副链路sl上的定位方法、装置及终端
WO2020135179A1 (zh) 功率控制方法及装置
WO2021072662A1 (zh) 一种混合自动重传请求反馈方法及装置
WO2021254482A1 (zh) 一种覆盖增强等级的确定方法及装置
US20230180192A1 (en) Communication method and apparatus, and readable storage medium
WO2023165211A1 (zh) 一种通信方法及装置
WO2023115354A1 (zh) 通信方法及装置
WO2022099539A1 (zh) 一种通信方法及装置
WO2021159274A1 (zh) 通信方法、装置及系统
WO2022165653A1 (zh) 一种短距通信方法及装置
CN113767683A (zh) 波束管理方法及装置、通信设备及存储介质
WO2024108585A1 (zh) 用于侧行通信的方法、终端设备以及网络设备
WO2024027313A1 (zh) 一种通信方法、装置及设备
WO2024021981A1 (zh) 一种通信方法及装置
WO2022161153A1 (zh) 侧行链路通信的资源协商方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929638

Country of ref document: EP

Kind code of ref document: A1