WO2023165171A1 - 一种数据传输的方法、终端、基站及存储介质 - Google Patents

一种数据传输的方法、终端、基站及存储介质 Download PDF

Info

Publication number
WO2023165171A1
WO2023165171A1 PCT/CN2022/133310 CN2022133310W WO2023165171A1 WO 2023165171 A1 WO2023165171 A1 WO 2023165171A1 CN 2022133310 W CN2022133310 W CN 2022133310W WO 2023165171 A1 WO2023165171 A1 WO 2023165171A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
uplink
domain resources
downlink
downlink transmission
Prior art date
Application number
PCT/CN2022/133310
Other languages
English (en)
French (fr)
Inventor
赵越
高雪娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210400170.3A external-priority patent/CN116761270A/zh
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023165171A1 publication Critical patent/WO2023165171A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the communication field, and in particular, to a data transmission method, terminal, base station, and storage medium.
  • Non-overlapping Sub-band full duplex divides frequency domain resources into multiple frequency domain ranges (one frequency domain range can be a subband), and does not overlap with each other, and the uplink and downlink frequency domain resources are respectively located in different subbands.
  • the present disclosure provides a data transmission method, a terminal, a base station and a storage medium.
  • a data transmission method provided by an embodiment of the present disclosure is applied to a terminal, and the technical solution of the method is as follows:
  • Data transmission is performed according to the frequency domain resources.
  • the spectrum resource includes a TDD band, an FDD band for uplink, an FDD band for downlink, a carrier, a BWP, or a band for deploying full-duplex.
  • a possible implementation manner, determining the frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource includes:
  • a possible implementation manner, determining the frequency domain resources used for uplink and downlink transmission on the same spectrum resource at the same time includes:
  • radio resource control RRC signaling where the RRC signaling is used to configure the frequency domain resources used for uplink and downlink transmission at the same time in the spectrum resource
  • the RRC signaling determine the frequency domain resources used for uplink and downlink transmission at the same time.
  • the RRC signaling is used to configure frequency domain resources corresponding to a cell level, a terminal group level, or a terminal level.
  • the frequency domain resources include:
  • a plurality of frequency domain resources used for uplink transmission and/or used for downlink transmission are used for uplink transmission and/or used for downlink transmission.
  • a possible implementation manner, determining the frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource includes:
  • the DCI is used to notify the terminal to use one or more of the plurality of frequency domain resources for uplink transmission and/or for downlink transmission for uplink transmission and/or for Frequency domain resources for downlink transmission;
  • One or more frequency domain resources for uplink transmission and/or downlink transmission are determined according to the DCI.
  • determining one or more frequency domain resources used for uplink transmission and/or used for downlink transmission according to the DCI includes:
  • the one or more frequency domain resources used for uplink transmission and/or used for downlink transmission are determined according to the frequency domain resource allocation information of the DCI.
  • the uplink frequency domain resources and the downlink frequency domain resources have an association relationship.
  • the DCI is a DCI used for scheduling a PDSCH or a PUSCH, or a DCI used for configuring uplink and/or downlink frequency domain resources.
  • part of resources are reserved on both sides of the spectrum resource.
  • the granularity of the frequency domain resource used for uplink/downlink transmission includes 6 resource blocks (RB) as a unit.
  • the RB index of the starting resource block of the frequency domain resource used for uplink and/or downlink transmission is an integer multiple of 6.
  • the width of the spectrum resource is greater than or equal to 5 MHz.
  • the frequency domain resources used for uplink and downlink transmission at the same time are valid in some time units.
  • an embodiment of the present disclosure provides a method for data transmission, which is applied to a base station, and the method includes:
  • Data transmission is performed according to the frequency domain resources.
  • the spectrum resource includes a TDD band, an FDD band for uplink, an FDD band for downlink, a carrier, a BWP, or a band for deploying full-duplex.
  • a possible implementation manner, determining the frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource includes:
  • a possible implementation manner after determining frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource, further includes:
  • the frequency domain resource is sent to the terminal through radio resource control RRC signaling.
  • sending the frequency domain resource to the terminal through radio resource control RRC signaling includes:
  • the RRC signaling is at the cell level or at the terminal group level or at the terminal level;
  • the frequency domain resources include:
  • a plurality of frequency domain resources used for uplink transmission and/or used for downlink transmission are used for uplink transmission and/or used for downlink transmission.
  • a possible implementation manner is to determine the frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource, and then further include:
  • the one or more frequency domain resources used for uplink transmission and/or used for downlink transmission are sent to the terminal through downlink control information DCI.
  • sending the one or more frequency domain resources used for uplink transmission and/or used for downlink transmission to the terminal through downlink control information DCI includes:
  • the uplink frequency domain resources and the downlink frequency domain resources have an association relationship.
  • the DCI is a DCI used for scheduling a PDSCH or a PUSCH, or a DCI used for configuring uplink and/or downlink frequency domain resources.
  • part of resources are reserved on both sides of the spectrum resource.
  • the granularity of the frequency domain resource used for uplink/downlink transmission includes 6 resource blocks (RB) as a unit.
  • the RB index of the starting resource block of the frequency domain resource used for uplink and/or downlink transmission is an integer multiple of 6.
  • the width of the spectrum resource is greater than or equal to 5 MHz.
  • the frequency domain resources used for uplink and downlink transmission at the same time are valid in some time units.
  • an embodiment of the present disclosure provides a terminal, including a memory, a transceiver, and a processor;
  • the memory is used to store computer programs; the transceiver is used to send and receive data under the control of the processor; the processor is used to read the computer programs in the memory and perform the following operations:
  • Data transmission is performed according to the frequency domain resource.
  • the spectrum resource includes a TDD band, an FDD band for uplink, an FDD band for downlink, a carrier, a BWP, or a band for deploying full-duplex.
  • the processor is further configured to:
  • the processor is further configured to:
  • radio resource control RRC signaling where the RRC signaling is used to configure the frequency domain resources used for uplink and downlink transmission at the same time in the spectrum resource
  • the RRC signaling determine the frequency domain resources used for uplink and downlink transmission at the same time.
  • the RRC signaling is used to configure frequency domain resources corresponding to a cell level, a terminal group level, or a terminal level.
  • the frequency domain resources include:
  • a plurality of frequency domain resources used for uplink transmission and/or used for downlink transmission are used for uplink transmission and/or used for downlink transmission.
  • the processor is further configured to:
  • the DCI is used to notify the terminal to use one or more of the plurality of frequency domain resources for uplink transmission and/or for downlink transmission for uplink transmission and/or for Frequency domain resources for downlink transmission;
  • one or more frequency domain resources for uplink transmission and/or for downlink transmission are determined.
  • the processor is further configured to:
  • the one or more frequency domain resources used for uplink transmission and/or used for downlink transmission are determined according to the frequency domain resource allocation information of the DCI.
  • the uplink frequency domain resources and the downlink frequency domain resources have an association relationship.
  • the DCI is a DCI used for scheduling a PDSCH or a PUSCH, or a DCI used for configuring uplink and/or downlink frequency domain resources.
  • part of resources are reserved on both sides of the spectrum resource.
  • the granularity of the frequency domain resource used for uplink/downlink transmission includes 6 resource blocks (RB) as a unit.
  • the RB index of the starting resource block of the frequency domain resource used for uplink and/or downlink transmission is an integer multiple of 6.
  • the width of the spectrum resource is greater than or equal to 5 MHz.
  • the frequency domain resources used for uplink and downlink transmission at the same time are valid in some time units.
  • an embodiment of the present disclosure further provides a base station, including a memory, a transceiver, and a processor;
  • the memory is used to store computer programs; the transceiver is used to send and receive data under the control of the processor; the processor is used to read the computer programs in the memory and perform the following operations:
  • Data transmission is performed according to the frequency domain resource.
  • the spectrum resource includes a TDD band, an FDD band for uplink, an FDD band for downlink, a carrier, a BWP, or a band for deploying full-duplex.
  • the processor is further configured to:
  • the processor is further configured to:
  • the frequency domain resources are sent to the terminal through radio resource control RRC signaling.
  • the processor is further configured to:
  • the RRC signaling is at the cell level or at the terminal group level or at the terminal level;
  • the frequency domain resources include:
  • a plurality of frequency domain resources used for uplink transmission and/or used for downlink transmission are used for uplink transmission and/or used for downlink transmission.
  • the processor is further configured to:
  • the terminal After determining the frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource, determine one or more frequency domain resources used by the terminal from the multiple frequency domain resources used for uplink transmission and/or for downlink transmission a frequency domain resource for uplink transmission and/or for downlink transmission;
  • the one or more frequency domain resources used for uplink transmission and/or used for downlink transmission are sent to the terminal through downlink control information DCI.
  • the processor is further configured to:
  • the uplink frequency domain resources and the downlink frequency domain resources have an association relationship.
  • the DCI is a DCI used for scheduling a PDSCH or a PUSCH, or a DCI used for configuring uplink and/or downlink frequency domain resources.
  • part of resources are reserved on both sides of the spectrum resource.
  • the granularity of the frequency domain resource used for uplink/downlink transmission includes 6 resource blocks (RB) as a unit.
  • the RB index of the starting resource block of the frequency domain resource used for uplink and/or downlink transmission is an integer multiple of 6.
  • the width of the spectrum resource is greater than or equal to 5 MHz.
  • the frequency domain resources used for uplink and downlink transmission at the same time are valid in some time units.
  • the embodiment of the present disclosure further provides a terminal, including:
  • a determining unit configured to determine frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource
  • a transmission unit configured to perform data transmission according to the frequency domain resource.
  • the spectrum resource includes a TDD band, an FDD band for uplink, an FDD band for downlink, a carrier, a BWP, or a band for deploying full-duplex.
  • the determining unit is further configured to:
  • the determining unit is further configured to:
  • radio resource control RRC signaling where the RRC signaling is used to configure the frequency domain resources used for uplink and downlink transmission at the same time in the spectrum resource
  • the RRC signaling determine the frequency domain resources used for uplink and downlink transmission at the same time.
  • the RRC signaling is used to configure frequency domain resources corresponding to a cell level, a terminal group level, or a terminal level.
  • the frequency domain resources include:
  • a plurality of frequency domain resources used for uplink transmission and/or used for downlink transmission are used for uplink transmission and/or used for downlink transmission.
  • the determining unit is further configured to:
  • the DCI is used to notify the terminal to use one or more of the plurality of frequency domain resources for uplink transmission and/or for downlink transmission for uplink transmission and/or for Frequency domain resources for downlink transmission;
  • One or more frequency domain resources for uplink transmission and/or downlink transmission are determined according to the DCI.
  • the determining unit is further configured to:
  • the one or more frequency domain resources used for uplink transmission and/or used for downlink transmission are determined according to the frequency domain resource allocation information of the DCI.
  • the uplink frequency domain resources and the downlink frequency domain resources have an association relationship.
  • the DCI is a DCI used for scheduling a PDSCH or a PUSCH, or a DCI used for configuring uplink and/or downlink frequency domain resources.
  • part of resources are reserved on both sides of the spectrum resource.
  • the granularity of the frequency domain resource used for uplink/downlink transmission includes 6 resource blocks (RB) as a unit.
  • the RB index of the starting resource block of the frequency domain resource used for uplink and/or downlink transmission is an integer multiple of 6.
  • the width of the spectrum resource is greater than or equal to 5 MHz.
  • the frequency domain resources used for uplink and downlink transmission at the same time are valid in some time units.
  • an embodiment of the present disclosure further provides a base station, including:
  • a determining unit configured to determine frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource
  • a transmission unit configured to perform data transmission according to the frequency domain resources.
  • the spectrum resource includes a TDD band, an FDD band for uplink, an FDD band for downlink, a carrier, a BWP, or a band for deploying full-duplex.
  • the determining unit is further configured to:
  • the determining unit is further configured to:
  • the frequency domain resources are sent to the terminal through radio resource control RRC signaling.
  • the determining unit is further configured to:
  • the RRC signaling is at the cell level or at the terminal group level or at the terminal level;
  • the frequency domain resources include:
  • a plurality of frequency domain resources used for uplink transmission and/or used for downlink transmission are used for uplink transmission and/or used for downlink transmission.
  • the determining unit is further configured to:
  • the terminal After determining the frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource, determine one or more frequency domain resources used by the terminal from the multiple frequency domain resources used for uplink transmission and/or for downlink transmission a frequency domain resource for uplink transmission and/or for downlink transmission;
  • the one or more frequency domain resources used for uplink transmission and/or used for downlink transmission are sent to the terminal through downlink control information DCI.
  • the determining unit is further configured to:
  • the uplink frequency domain resources and the downlink frequency domain resources have an association relationship.
  • the DCI is a DCI used for scheduling a PDSCH or a PUSCH, or a DCI used for configuring uplink and/or downlink frequency domain resources.
  • part of resources are reserved on both sides of the spectrum resource.
  • the granularity of the frequency domain resource used for uplink/downlink transmission includes 6 resource blocks (RB) as a unit.
  • the RB index of the starting resource block of the frequency domain resource used for uplink and/or downlink transmission is an integer multiple of 6.
  • the width of the spectrum resource is greater than or equal to 5 MHz.
  • the frequency domain resources used for uplink and downlink transmission at the same time are valid in some time units.
  • an embodiment of the present disclosure further provides a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute the method described in the first aspect or the second aspect. The method described in the two aspects.
  • the embodiments of the present disclosure have at least the following technical effects:
  • the terminal by determining the frequency domain resources used for uplink and downlink transmission at the same time in the same spectrum resource, the terminal can determine the frequency domain resources used for uplink and downlink transmission at the same time, and then perform data transmission.
  • the base station can dynamically schedule uplink or downlink frequency domain resources through DCI, compared with the dynamic scheduling method through the full channel bandwidth or within the BWP range in the prior art, DCI overhead can be saved. Improve the reliability of DCI transmission.
  • FIG. 1 is a flowchart of a data transmission method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a preset uplink and downlink resource division method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of another preset uplink and downlink resource division method provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of subband division provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another sub-band division provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a base station provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another terminal provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another base station provided by an embodiment of the present disclosure.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet Wireless business (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G new air interface (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless business
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • UMTS universal mobile telecommunications
  • the terminal device involved in this embodiment of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • a mobile terminal equipment such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in this embodiment of the application.
  • the network device involved in this embodiment of the present application may be a base station, and the base station may include multiple cells that provide services for terminals.
  • the base station can also be called an access point, or it can be a device in the access network that communicates with the wireless terminal device through one or more sectors on the air interface, or other names.
  • the network device can be used to interchange received over-the-air frames with Internet Protocol (IP) packets and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices may also coordinate attribute management for the air interface.
  • the network equipment involved in the embodiment of the present application may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA) ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long-term evolution (long term evolution, LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in the 5G network architecture (next generation system), can also be a home evolved base station (Home evolved Node B, HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., are not limited in this embodiment of the present application.
  • a network device may include a centralized unit (centralized unit, CU) node and a distributed unit (distributed unit, DU) node,
  • Type 0 There are three frequency-domain resource allocation methods in the prior art: Type 0, Type 1, and type 2.
  • Type 2 The above three methods indicate resource allocation within the bandwidth part (Band Width Part, BWP).
  • Type0 indicates the Resource Block Groups (Resource Block Groups, RBGs) allocated to the UE in the form of a bitmap.
  • RBG is a group of continuous virtual resource blocks. or config2) and the size of the bandwidth part (BWP) Determined, as shown in Table 1 below (showing the size P of the standard bandwidth portion).
  • Each bit of the bitmap indicates an RBG, and the bit length of the bitmap is equal to N RBG , where:
  • the lengths of other RBGs are equal to P.
  • Type1 indicates the starting RB (RB start ) and length (L RBs ) allocated to the UE in the activated BWP through the resource indication value (resource indication value, RIV).
  • RIV resource indication value
  • the upper 6 bits of the resource allocation field indicate a set of indices m 0 +l starting with m 0 through RIV.
  • the carrier bandwidth and position are determined by SCS-SpecificCarrier, according to the GuardBand in IntraCellGuardBandsPerSCS (including startCRB and nrofCRBs corresponding and ) Determine the guard band in the carrier, and then determine the starting and ending CRBs of the available RB set according to the following formula, where s ⁇ 0,1,...,N RB-set,x -1 ⁇ ;
  • the BWP contains some or all of the above available RB sets, through the resource allocation field low Bit mapping into RIV RB-set indicates the starting RB set allocated to UE in BWP and the number L RB-set , Indicates the number of RB sets included in the BWP.
  • the specific explanation is as follows:
  • the existing technology dynamically notifies the carrier channel or frequency domain resources within the range of the BWP through DCI.
  • the carrier channel or BWP is divided into multiple sub-bands for uplink and downlink transmission respectively
  • the above-mentioned Frequency domain resource allocation within the full channel or full BWP range does not support frequency domain resource indication for uplink and downlink transmission alone, so that the terminal cannot obtain frequency domain resources for uplink and downlink transmission, and at the same time there will be a corresponding resource allocation field
  • the status is redundant, resulting in the waste of DCI overhead.
  • Embodiments of the present application provide a method for determining frequency domain resources, a terminal, a base station, and a storage medium to solve the technical problem in the prior art that it is difficult for a terminal to determine frequency domain resources corresponding to uplink and downlink transmission.
  • the method and the device are conceived based on the same application. Since the principle of solving problems of the method and the device is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • An embodiment of the present disclosure provides a method for data transmission, which is applied to a terminal. Please refer to FIG. 1.
  • the processing process of the method is as follows:
  • Step 101 Determine frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource
  • Step 102 Perform data transmission according to frequency domain resources.
  • the same moment in step 101 may refer to the same symbol, time slot, subframe, etc., such as frequency domain resources used for uplink and downlink transmission in the same symbol, that is, frequency domain resources used for uplink and downlink transmission at the same moment;
  • the frequency domain resources used for uplink and downlink transmission in the same time slot are the frequency domain resources used for uplink and downlink transmission at the same time;
  • the frequency domain resources used for uplink and downlink transmission in the same subframe are the frequency domain resources used for the same time. Frequency domain resources for uplink and downlink transmission.
  • the frequency domain resources used for uplink and downlink transmission at the same time may be valid in all time units, such as valid in all symbols, time slots, subframes or radio frames; the frequency domain resources used for uplink and downlink transmission at the same time are also valid It can be effective in some time units, such as in some symbols, time slots, subframes or radio frames. It can be pre-defined through the protocol, and the base station can notify the UE of the effective/invalid time unit in a configured manner, so as to solve the problem of spectrum resource division. After the uplink and downlink resources are allocated, some channels/signals cannot be transmitted, such as SSB.
  • the frequency domain resources used for uplink and downlink transmission at the same time may be distributed at the same frequency point within the same spectrum resource, or the interval between uplink and downlink frequency domain resources may be smaller than a certain threshold value .
  • the above spectrum resources include TDD band, FDD band for uplink, FDD band for downlink, carrier (carrier), BWP or band for deploying full duplex.
  • the uplink and downlink frequency domain resources can be distributed at the same frequency point in the TDD band, or can be distributed at different frequency points, and the frequency between different frequency points The point interval is less than a certain threshold value; similarly, the spectrum resources distributed by the uplink and downlink frequency domain resources are FDD band for uplink, FDD band for downlink, carrier carrier, BWP or for deploying full-duplex When the band is selected, the uplink and downlink frequency domain resources are distributed at the same frequency point or different frequency points within the corresponding spectrum resource, and the frequency point interval between different frequency points is smaller than a certain threshold value.
  • the above-mentioned same spectrum resource may be a separate NR working frequency band defined in relevant 3GPP standards, such as a separate NR working frequency band defined in 3GPP TS38.101v h.4.0 protocol version or TS38.104v h.4.0 protocol version. As shown in Table 3, the NR working frequency band in FR1 defined in a certain standard.
  • the above-mentioned width of the spectrum resource needs to meet certain conditions, for example, the width of the spectrum resource is greater than or equal to 5MHz.
  • the width of the spectrum resource is greater than or equal to 5MHz, after the spectrum resources are divided into uplink and downlink resources, the requirements of carrying a random access channel (Random Access Channel, RACH) channel on the uplink resource and carrying SSB on the downlink resource can be met.
  • RACH Random Access Channel
  • the spectrum resource is BWP
  • the width of the BWP supporting uplink and downlink subband division needs to be greater than or equal to 5 MHz.
  • the width of the frequency domain resource for uplink transmission in this embodiment also needs to meet certain conditions, for example, the width of the frequency domain resource for uplink transmission is greater than or equal to 6 RBs.
  • the width of the frequency domain resources for uplink transmission can meet the requirements for carrying RACH channels and the like.
  • the frequency domain resources used for uplink and downlink transmission at the same time may have only one frequency domain resource for uplink and downlink transmission, or may have multiple frequency domain resources for uplink and/or downlink transmission.
  • Frequency domain resources for uplink and downlink transmission do not overlap with each other, and if there are multiple frequency domain resources for uplink and/or downlink transmission, any two do not overlap with each other.
  • frequency domain resources used for uplink and downlink transmission within the same frequency spectrum resource at the same moment can be determined in a predefined manner, a semi-static manner or a dynamic manner.
  • the first method use the predefined method.
  • the predefined method is used to determine the frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource, it can be achieved in the following ways:
  • the above-mentioned preset uplink and downlink resource division method may be a pre-specified division method in the relevant communication protocol.
  • the frequency domain resource division rules used for uplink and downlink transmission are stipulated, and the base station or terminal uses uplink and downlink When transmitting frequency domain resources, the frequency domain resources used for uplink and downlink transmission at the same time can be directly obtained according to the preset uplink and downlink resource division method.
  • the Xth RB to Yth RB in the spectrum resource are frequency domain resources for uplink transmission.
  • FIG. 2 is a schematic diagram of a preset manner of dividing uplink and downlink resources provided by an embodiment of the present disclosure.
  • the spectrum resources with a size of 5MHz in Figure 2 show the 0th RB to the 24th RB, and the relevant communication protocol pre-specifies that the 10th RB to the 14th RB in the middle are frequency domain resources corresponding to uplink transmission (that is, uplink frequency domain resources), and the remaining frequency domain resources are frequency domain resources corresponding to downlink transmission (that is, downlink frequency domain resources) or TDD mode is deployed.
  • the above-mentioned uplink frequency domain resources and downlink frequency domain resources do not overlap with each other.
  • FIG. 3 is a schematic diagram of another preset uplink and downlink resource division method provided by an embodiment of the present disclosure.
  • Figure 3 is a spectrum resource with a size of 10MHz, showing the 0th RB to the 51st RB.
  • the relevant agreement pre-specifies that the 22nd RB to the 29th RB in the middle are frequency domain resources corresponding to uplink transmission, and the rest Frequency domain resources can be used for static/dynamic TDD deployments.
  • the terminal can determine the frequency domain resources used for uplink and downlink transmission at the same time, and then perform data transmission according to the frequency domain resources used for uplink and downlink transmission at the same time.
  • the uplink and downlink transmission resources here can be applied to a certain terminal, that is, the terminal transmits uplink and downlink on the frequency domain resources of uplink and downlink transmission respectively at the same time; it can also be applied to different terminals, that is, at the same time , terminal 1 transmits uplink data by using frequency domain resources for uplink transmission, and terminal 2 receives downlink data by using frequency domain resources for downlink transmission.
  • some resources may also be reserved on both sides of the spectrum resources, and these resources are not divided into frequency domain resources for uplink and downlink transmission. This suppresses interference between neighboring operators.
  • the terminal can directly use the corresponding frequency domain resource.
  • the terminal determines that within the same spectrum resource, the frequency domain resources used for uplink and downlink transmission at the same time include the uplink frequency domain resources as the sixth RB, and the downlink frequency domain resources as The 8th RB, when the terminal needs to perform uplink data transmission, it can use the frequency domain resources for uplink and downlink transmission at the same time determined in a predefined way (uplink: the 6th RB, downlink: the 8th RB), Directly use the sixth RB for uplink data transmission; when the terminal needs to receive downlink data, it can directly use the eighth RB for downlink data reception.
  • the granularity of the above-mentioned frequency domain resources may be at the RB level, at the RB group level, or at the carrier level.
  • the granularity of frequency domain resources for uplink/downlink transmission includes an integer whose index of the starting resource block (Resource Block, RB) of frequency domain resources for uplink and/or downlink transmission is 6 in units of 6 resource blocks RB times.
  • the frequency domain resources of the core set also known as the control resource set, CORESET
  • the starting RB index of the CORESET is an integer multiple of 6.
  • the granularity of the frequency domain resources used for downlink transmission is 6 RB is the unit, and the initial RB index of the frequency domain resource used for downlink transmission is an integer multiple of 6, which can effectively match the design of the control channel.
  • the granularity of frequency domain resources for uplink transmission is also in units of 6 RBs, and the starting RB index of frequency domain resources for uplink transmission is also Integer multiples of 6.
  • the obtained frequency domain resources used for uplink and downlink transmission at the same time can take effect when the base station instructs duplex switching, or when the base station instructs duplex
  • the kth symbol or time slot after the handover takes effect, k is an integer, and the value of k can be notified through DCI configuration, RRC signaling, or predefined.
  • the second method adopt semi-static method.
  • Receive radio resource control (Radio Resource Control, RRC) signaling RRC signaling is used to configure frequency domain resources used for uplink and downlink transmission at the same time in the spectrum resource; according to RRC signaling, determine the same time for uplink and downlink Frequency domain resources for transmission.
  • RRC Radio Resource Control
  • the base station notifies the terminal through RRC signaling that in the TDD band, the determined frequency domain resources for uplink and downlink transmission at the same time include: the uplink frequency domain resources are the Mth RB to the Nth RB in the TDD band, And/or the downlink frequency domain resource is the Pth RB to the Qth RB in the TDD band, where M, N, P, and Q are non-negative integers, N is greater than M, and Q is greater than P.
  • the terminal After receiving the above RRC signaling, the terminal can determine the frequency domain resources used for uplink and downlink transmission at the same time in the TDD band based on this: the uplink frequency domain resources are the Mth RB to the Nth RB in the TDD band, And/or the downlink frequency domain resource is the Pth RB to the Qth RB in the TDD band.
  • the processing method is similar to when the above-mentioned spectrum resource is TDD band , so no more details.
  • the RRC signaling is used to configure frequency domain resources corresponding to the cell level or the terminal group level or the terminal level. That is, when the base station configures the frequency domain resources used for uplink and downlink transmission at the same time, it can be configured at the cell level, at the UE group level, or at the UE level.
  • the configured frequency domain resources used for uplink and downlink transmission at the same time can be within the range of a frequency band or a carrier or a BWP.
  • the base station sends the configured cell-level or terminal group-level or terminal-level frequency
  • the domain resource is sent to the terminal.
  • the base station can configure frequency domain resources for uplink and downlink transmission at the same time for each cell under its jurisdiction within the same spectrum resource, and can also configure frequency domain resources for uplink and downlink transmission at the same time for each UE group. domain resources, and frequency domain resources used for uplink and downlink transmission at the same time can also be configured for each UE.
  • the base station may notify the terminal of the above configuration result through RRC signaling.
  • the terminal determines frequency domain resources used for uplink and downlink transmission at the same time according to the RRC signaling.
  • some resources may also be reserved on both sides of the spectrum resources, and these resources are not divided into frequency domain resources for uplink and downlink transmission. This suppresses interference between neighboring operators.
  • the uplink frequency domain resource is the Mth RB to the Nth RB of a spectrum resource
  • the downlink frequency domain resource is the Pth RB to the Qth RB of the spectrum resource
  • M and P can be restricted to be greater than K, Where K is greater than or equal to the number of the first RB of the spectrum resource, and P and Q are smaller than the number of the largest RB of the spectrum resource.
  • K is greater than or equal to the number of the first RB of the spectrum resource
  • P and Q are smaller than the number of the largest RB of the spectrum resource.
  • the 2nd to 6th RBs are uplink frequency domain resources
  • the 8th to 12th RBs are downlink frequency domain resources.
  • the 0 ⁇ 1st RB and the 7th RB are not divided into frequency domain resources for uplink and downlink transmission, and the resources of the 7th RB and the 13th RB at both ends of the downlink frequency domain resources are not used for uplink and downlink transmission frequency domain resources, so some resources can be reserved on both sides of uplink frequency domain resources and downlink frequency domain resources to form a guard interval, thereby suppressing interference between operators caused by inconsistent uplink and downlink transmission directions.
  • the third way dynamic way.
  • the frequency domain resources used for uplink and downlink transmission at the same time include multiple frequency domain resources for uplink transmission and/or for downlink transmission.
  • the base station notifies the terminal of one or more frequency domain resources used for uplink transmission and/or downlink transmission among the multiple frequency domain resources used for uplink transmission and/or downlink transmission through DCI.
  • the terminal determines that within the same spectrum resource, the frequency domain resources used for uplink and downlink transmission at the same time include multiple frequency domain resources for uplink transmission and/or for downlink transmission, which can be implemented in the following manner:
  • Receive downlink control information DCI the DCI is used to notify the terminal to use one or more frequency domain resources for uplink transmission and/or for downlink transmission among a plurality of frequency domain resources for uplink transmission and/or for downlink transmission ; According to the DCI, determine one or more frequency domain resources for uplink transmission and/or for downlink transmission. When the terminal needs to perform data transmission, it may perform data transmission according to one or more frequency domain resources used for uplink transmission and/or used for downlink transmission determined by the DCI.
  • the determined frequency domain resources used for uplink and downlink transmission at the same time include one uplink frequency domain resource and one downlink frequency domain resource, and the base station can use the downlink frequency domain resources to send downlink data to terminal 1, while using The uplink frequency domain resource receives the uplink data sent by the terminal 2.
  • the terminal 1 uses the downlink frequency domain resource to receive the downlink data sent by the base station.
  • the terminal 2 uses the uplink frequency domain resource to send the uplink data to the base station. If only terminal 1 needs to receive downlink data of the base station at the current moment, and no terminal sends uplink data, the base station only uses downlink frequency domain resources to send downlink data to terminal 1. If there is neither uplink data transmission nor downlink data transmission at a certain moment, no frequency domain resource in any transmission direction is used at this time.
  • the determined frequency domain resources used for uplink and downlink transmission at the same time include 3 uplink frequency domain resources and 3 downlink frequency domain resources, and the base station notifies terminal 1 to use the uplink frequency domain resource 2 through DCI Perform data transmission with downlink frequency domain resource 2, and notify terminal 2 to use uplink frequency domain resource 3 and downlink frequency domain resource 3 for data transmission through DCI.
  • terminal 1 needs to send uplink data to the base station, and terminal 2 needs to receive
  • terminal 1 uses uplink frequency domain resource 2 to send uplink data to the base station
  • terminal 2 uses downlink frequency domain resource 3 to receive base station downlink data.
  • the dynamic scheme is introduced as follows:
  • the base station when it is determined that there are multiple frequency domain resources used for uplink and downlink transmission at the same time in the same spectrum resource, the base station notifies the terminal of multiple frequency domain resources for uplink transmission and/or for downlink transmission through DCI One or more of the frequency domain resources are used for uplink transmission and/or frequency domain resources used for downlink transmission.
  • the same spectrum resource is divided into multiple uplink/downlink subbands through the above-mentioned predefined method, and the size and number of subbands depend on the size of the spectrum resource or network/base station configuration.
  • the base station dynamically configures the subband specifically used by the UE through the DCI.
  • the size of the subband is k1; for the size of the spectrum resource is less than or equal to L RBs, the size of the subband is k2; or the network/base station passes RRC/
  • the DCI configures the size of the subband.
  • the bandwidth of the spectrum resource in the above formula is the size of the BWP.
  • the spectrum resource can also be divided into multiple intervals (for example, divided into 3 or more intervals), each interval defines a different subband size, and the subband size of each interval can be predetermined and configured by RRC Or DCI configuration.
  • the number of sub-bands in each interval is calculated according to the size of the sub-bands in each interval, and the calculation method is the same as the above-mentioned case of no interval, and will not be repeated here.
  • part of the resources can be reserved on both sides of the spectrum resources, without dividing the frequency domain resources for uplink and downlink transmission.
  • z RBs may be reserved on both sides of the frequency spectrum resource without frequency domain resource division for uplink and downlink transmission, where z is a natural number.
  • z1 and z2 RBs may be reserved on both sides of the frequency spectrum resource respectively without division of frequency domain resources for uplink and downlink transmission.
  • z1 and z2 are natural numbers, and z1 and z2 may be different.
  • FIG. 4 is a schematic diagram of sub-band division provided by an embodiment of the present disclosure.
  • the 0th-1st RB and the 22-24th RB of the BWP are used as part of the reserved frequency domain resources, and other RBs are divided into sub-bands.
  • Each sub-band includes 5 RBs, which are divided into 4 sub-bands: DL-SB0 (2nd-6th RB), UL-SB0 (7th-11th RB), DL-SB1 ( 12-16 RBs), UL-SB1 (17th-21st RBs), so that the interference of adjacent operators can be suppressed by reserving some RBs on both sides of the BWP that do not divide frequency domain resources for uplink and downlink transmission .
  • static or dynamic TDD can also be deployed on the above-mentioned reserved RBs to maintain the alignment of uplink and downlink transmission directions between adjacent operators, and to suppress cross-interference between adjacent operators.
  • the uplink frequency domain resources and the downlink frequency domain resources have an association relationship, and this association relationship may be that the uplink frequency domain resources and the downlink frequency domain resources are configured in pairs Relationship, as shown in Figure 4, UL-SB0 and DL-SB0 can form a sub-band pair (sub-band pair) to form the above association relationship.
  • the base station can configure subband pairs in pairs.
  • the downlink is correspondingly configured as DL-SB0, and the downlink subband is no longer specially configured, and vice versa; when there are multiple subband pairs, For example, UL-SB0 and DL-SB 0 form sub-band pair 0 (denoted as sub-band pair 0), UL-SB1 and DL-SB1 form sub-band pair 1 (denoted as sub-band pair 1), and the base station can pass DCI Indicate the number of the subband pair to notify the terminal of the uplink subband and downlink subband specifically used. According to the received DCI, the terminal can determine the serial number of the subband pair it specifically uses, and then select the corresponding subband according to the serial number for data transmission.
  • the base station dynamically notifies the terminal to use a specific subband in the predefined subband set through DCI. It can schedule the DCI notification of PDSCH or PUSCH, and define a special indication field in the above DCI, such as defining a bit in the above DCI
  • the field with a length of 1 indicates one of the two uplink subbands or downlink subbands in Figure 4 .
  • the base station dynamically notifies the terminal to use a specific subband in the predefined subband set through the DCI, and can also use the Xth bit of the frequency domain resource allocation field in the DCI to indicate, such as using the highest frequency domain resource allocation field.
  • the bit or the lowest bit indicates one of the two uplink or downlink subbands in Figure 4 .
  • How many bits are used in the DCI to indicate the uplink subbands or downlink subbands actually used by the terminal may be determined according to the total number of uplink subbands or the total number of downlink subbands included in the pre-definition.
  • the base station dynamically notifies the terminal to use a specific subband in the predefined subband set through the DCI, and may also use the DCI for configuring uplink and/or downlink frequency domain resources to notify.
  • the terminal can be instructed to use a certain subband in the predefined subband set.
  • the above instruction can take effect immediately, or after a specified interval.
  • the terminal receives the above DCI in slot (slot) n Indicates to immediately update the sub-band of uplink/downlink transmission, that is, the uplink/downlink transmission in slot n will use the sub-band indicated in the DCI.
  • the uplink/downlink transmission in the n+offset time slot uses the DCI indicated sub-band.
  • the value of the above offset is related to the radio frequency capability of the terminal (that is, the time required for sub-band switching), and different offsets can be defined for terminals with different capabilities.
  • the base station can judge whether the UE successfully receives the DCI according to the implementation algorithm.
  • the base station can decide whether to resend the DCI according to the HARQ-ACK feedback corresponding to the transmission block sent on the sub-band, for example, in K consecutive transmissions If all the HARQ-ACKs corresponding to the block are NACK, the base station decides to resend the DCI.
  • the uplink sub-band is scheduled for this DCI.
  • the base station can decide whether to resend the DCI according to the conditions of the transport blocks received on the sub-band. For example, if M consecutive transport blocks fail to be received, then The base station decides to resend the DCI. After successfully receiving the DCI, the terminal performs data transmission according to the frequency domain resource notified by the DCI.
  • the base station After determining multiple frequency domain resources used for uplink and downlink at the same time in the same spectrum resource, the base station sends multiple frequency domain resources used for uplink and downlink at the same time to the terminal through RRC signaling, and dynamically Informing the terminal that one or more of the multiple frequency domain resources used for uplink transmission and/or used for downlink transmission is used.
  • the base station configures the uplink subband set of a spectrum resource to include ⁇ UL-SB0, UL-SB1, ..., UL-SB n ⁇ and the downlink subband set to include ⁇ DL-SB0, DL-SB1, ...
  • DL-SB n ⁇ form frequency domain resources used for uplink and downlink transmission at the same time; among them, UL-SB0 includes the X0th to Y0th RBs in the spectrum resources, and UL-SB1 includes the X1th to Y0th RBs in the spectrum resources Y1 RBs, UL-SBn includes the Xnth to Ynth RBs in the spectrum resources, X0 ⁇ Y0 ⁇ X1 ⁇ Y1... ⁇ Xn ⁇ Yn; DL-SB0 includes the P0th to Q0th RBs in the spectrum resources, DL -SB1 includes the P1-th to Q1-th RBs in the spectrum resources, and DL-SBn includes the Pn-th to Qn-th RBs in the spectrum resources, where P0 ⁇ Q0 ⁇ P1 ⁇ Q1... ⁇ Pn ⁇ Qn, n is a positive integer,
  • the size of n may depend on the size of spectrum resources.
  • the base station can dynamically notify the terminal of the subband it uses through the DCI (for example, the DL-SB1 subband is used for downlink transmission, and the UL-SB1 is used for uplink transmission).
  • the terminal performs data transmission according to the frequency domain resources notified by the DCI.
  • some resources can be set without frequency domain resource division for uplink and downlink transmission.
  • X0 and/or P0 can be limited to be greater than ⁇ , Yn and Qn when setting.
  • Spectrum resources The difference between the inner maximum RB indexes is greater than ⁇ , where ⁇ and ⁇ are greater than or equal to 0.
  • the ⁇ and ⁇ may be specified in the protocol, configured by RRC or configured by DCI.
  • the uplink subband set includes ⁇ UL-SB0, UL-SB1 ⁇
  • the downlink subband set includes ⁇ DL-SB0, DL-SB1 ⁇ .
  • the RB corresponding to the band is shown in Figure 5 below.
  • Figure 5 is a schematic diagram of another sub-band division provided by the embodiment of the present disclosure.
  • the second RB ie, P0
  • the 22nd RB ie, Yn
  • the maximum RB index That is, the difference between 24
  • the difference between 24 is 2 (greater than 1).
  • the above-mentioned uplink subband set and the uplink subband and the downlink in the downlink subband set may have a binding or association relationship, such as UL-SB0 and DL-SB0 form a sub-band pair (sub-band pair), the base station can be
  • the terminal configures the uplink subband and the downlink subband in pairs (if the uplink subband used by the terminal is configured as UL-SB0, then the downlink subband is DL-SB0, and vice versa).
  • the terminal can also form uplink subbands and downlink subbands into subband pairs (for example, UL-SB1 and DL-SB1 form subband pair 1), the base station indicates the number of subband pairs through DCI, and the terminal indicates the number of subbands through DCI
  • the subband pair numbers can determine the uplink subbands and downlink subbands actually used, and then perform data transmission according to the uplink subbands and downlink subbands notified by the DCI.
  • the base station can define fields corresponding to dedicated frequency domain resource allocation information (such as frequency domain resource allocation fields, sub- With indication field, subband allocation field) to send one or more of the above multiple frequency domain resources configured to the terminal, for example, for DCI Format 0_1/Format0_2/Format 1_1/Format 1_2, define a new subband allocation field, specifically used to indicate the uplink subband or downlink subband of the UE.
  • dedicated frequency domain resource allocation information such as frequency domain resource allocation fields, sub- With indication field, subband allocation field
  • the terminal After receiving the DCI for scheduling PDSCH/PUSCH, the terminal determines one or more frequency domain resources for uplink transmission and/or for downlink transmission to perform data transmission according to the field corresponding to the frequency domain resource allocation information in the DCI for scheduling PDSCH/PUSCH .
  • the base station can also use the upper or lower X bits (s) of the corresponding field of the frequency domain allocation information in the DCI for scheduling PDSCH/PUSCH to indicate the position of the subband actually used by the terminal. For example, for DCI Format0_1/Format 0_2/Format 1_1/Format 1_2, use the high/low X bit(s) of the frequency domain resource allocation field to indicate the uplink subband or downlink subband of the UE.
  • the uplink subband or downlink subband allocated by the base station to the terminal can also be determined in a predefined way, for example, the frequency domain allocation field in DCI Format 0_0/DCI Format 1_0 does not indicate the subband position
  • the first or last uplink or downlink subband in the set of uplink or downlink subbands configured by RRC may be predefined as the uplink or downlink subband allocated by the base station to the terminal. In this way, it is not necessary to use the frequency domain allocation field in the DCI to notify the terminal of the frequency domain resources used, thereby saving signaling overhead.
  • the base station notifies the terminal of the frequency domain resource actually used by scheduling all or part of the bits in the frequency domain resource allocation field in the DCI of PDSCH/PUSCH, for example, the Type0/Type1/Type2 method can be used to dynamically notify the terminal of the specific frequency domain resource used , for Type2, M can be predefined as other positive integer values except 5 and 10.
  • the base station can also use the DCI that configures the uplink and/or downlink frequency domain resources to notify the terminal of the specific location of the frequency domain resources used.
  • the newly defined DCI format is used to indicate a certain subband in the subband set configured by RRC.
  • the terminal can The used subbands are updated immediately after receiving the DCI, or the used subbands may be updated after a period of time after receiving the DCI. If the terminal receives the newly defined DCI notification to use subband 1 for uplink transmission at time slot n, it immediately updates the subband for uplink transmission to subband 1; or, the terminal receives the newly defined DCI notification at time slot n to use subband 1 for uplink transmission.
  • the subband for uplink transmission can be updated as subband 1 after an interval of offset time slots, that is, the subband for uplink transmission can be updated as subband 1 in the n+offset th time slot.
  • the above offset may be determined according to the radio frequency capability of the terminal (such as the time required for switching subbands), and different offsets may be set for terminals with different radio frequency capabilities.
  • the offset is predefined, configured by RRC or configured by DCI.
  • the base station may determine whether the UE successfully receives the DCI according to an implementation algorithm.
  • the base station can decide whether to resend the DCI according to the HARQ-ACK feedback corresponding to the transmission block sent on the sub-band, for example, in K consecutive transmissions If all the HARQ-ACKs corresponding to the block are NACK, the base station decides to resend the DCI.
  • the uplink sub-band is scheduled for this DCI.
  • the base station can decide whether to resend the DCI according to the conditions of the transport blocks received on the sub-band. For example, if M consecutive transport blocks fail to be received, then The base station decides to resend the DCI.
  • the base station may also determine that the UE successfully receives the DCI according to the ACK information fed back by the UE for correctly receiving the DCI.
  • the effective time of the DCI can be the moment when the DCI is received; it can also be effective after the DCI is correctly received by the feedback, that is, after the base station receives the feedback that the DCI is correctly received, the base station is on the subband notified by the DCI for data transfer.
  • the effective duration of the subband is configured through the DCI, and the specific duration can be configured through high-level signaling, or the subband configuration can be updated by reconfiguring the subband.
  • the terminal by determining the frequency domain resources used for uplink and downlink transmission at the same time in the same spectrum resource, the terminal can determine the frequency domain resources used for uplink and downlink transmission at the same time, and then perform data transmission.
  • the base station since the base station can dynamically schedule uplink or downlink frequency domain resources through DCI, compared with the dynamic scheduling method in the full channel bandwidth in the prior art, DCI overhead can be saved and DCI transmission can be improved. reliability.
  • an embodiment of the present disclosure also provides a method for data transmission, which is applied to a base station, and the method includes:
  • the above spectrum resources include TDD band, FDD band for uplink, FDD band for downlink, carrier carrier, BWP or band for deploying full duplex.
  • Relevant explanations about the frequency domain resources used for uplink and downlink transmission at the same time and at the same time can be referred to in the description on the terminal side, and will not be repeated here.
  • the frequency domain resources used for uplink and downlink transmission at the same time may be valid in all time units, such as valid in all symbols, time slots, subframes or radio frames; the frequency domain resources used for uplink and downlink transmission at the same time are also valid It can be effective in some time units, such as in some symbols, time slots, subframes or radio frames. It can be pre-defined through the protocol, and the base station can notify the UE of the effective/invalid time unit in a configured manner, so as to solve the problem of spectrum resource division. After the uplink and downlink resources are allocated, some channels/signals cannot be transmitted, such as SSB.
  • the above-mentioned width of the spectrum resource needs to meet certain conditions, for example, the width of the spectrum resource is greater than or equal to 5MHz.
  • the width of the spectrum resource is greater than or equal to 5 MHz.
  • the requirements of carrying the RACH channel on the uplink resource and carrying the SSB on the downlink resource can be met after the spectrum resource is divided into uplink and downlink resources.
  • the spectrum resource is BWP, and the width of the BWP supporting uplink and downlink subband division needs to be greater than or equal to 5 MHz.
  • the width of the frequency domain resource for uplink transmission in this embodiment also needs to meet certain conditions, for example, the width of the frequency domain resource for uplink transmission is greater than or equal to 6 RBs.
  • the width of the frequency domain resources for uplink transmission can meet the requirements for carrying RACH channels and the like.
  • the frequency domain resources used for uplink and downlink transmission at the same time may have only one frequency domain resource for uplink and downlink transmission, or may have multiple frequency domain resources for uplink and/or downlink transmission.
  • Frequency domain resources for uplink and downlink transmission do not overlap with each other, and if there are multiple frequency domain resources for uplink and/or downlink transmission, any two do not overlap with each other.
  • the base station side can also determine the frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource in a predefined way, semi-static way or dynamic way, as follows:
  • Determining the frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource can be achieved in the following ways:
  • the above-mentioned preset uplink and downlink resource division method may be a pre-specified division method in the relevant communication protocol.
  • the frequency domain resource division rules used for uplink and downlink transmission are stipulated, and the base station or terminal uses uplink and downlink When transmitting frequency domain resources, the frequency domain resources used for uplink and downlink transmission at the same time can be directly obtained according to the preset uplink and downlink resource division method.
  • the preset uplink and downlink resource division method For specific embodiments, refer to the description on the terminal side, and details will not be repeated here.
  • part of resources can also be reserved on both sides of the frequency spectrum resource, and this part of resources is not divided into frequency domain resources for uplink and downlink transmission. This suppresses interference between neighboring operators.
  • the base station can directly use the corresponding frequency domain resource.
  • the granularity of the above-mentioned frequency domain resources may be at the RB level, at the RB group level, or at the carrier level.
  • the granularity of frequency domain resources for uplink/downlink transmission includes 6 resource blocks (RBs) as a unit, and the starting RB index of frequency domain resources for uplink and/or downlink transmission is an integer multiple of 6.
  • the frequency domain resource of CORESET is a multiple of 6 RBs
  • the starting RB index of CORESET is an integer multiple of 6. Therefore, the granularity of frequency domain resources used for downlink transmission is 6 RBs as the unit.
  • the starting RB index of the frequency domain resource is an integer multiple of 6, which can effectively match the design of the control channel.
  • the granularity of frequency domain resources for uplink transmission is also 6 RBs, and the starting RB index of frequency domain resources for uplink transmission is also 6 Integer multiples of .
  • the obtained frequency domain resources used for uplink and downlink transmission at the same time can take effect when the base station instructs duplex switching, or when the base station instructs duplex
  • the kth symbol or time slot after the handover takes effect, k is an integer, and the value of k can be notified through DCI configuration, RRC signaling, or predefined.
  • the base station determines the frequency domain resources used for uplink and downlink transmission in the same spectrum resource at the same time, and then the base station passes the RRC signal command to send the frequency domain resource to the terminal.
  • the terminal After receiving the above RRC signaling, the terminal determines frequency domain resources used for uplink and downlink transmission at the same time within the same frequency spectrum resource according to the RRC signaling. In this way, the two parties can perform data transmission according to the above spectrum resources.
  • the frequency domain resource is sent to the terminal through the radio resource control RRC signaling, which may also be implemented in the following manner:
  • the RRC signaling is at the cell level or at the terminal group level or at the terminal level; through the RRC signaling, frequency domain resources at the cell level or at the terminal group level or at the terminal level are sent to the terminal.
  • the base station configures the frequency domain resources used for uplink and downlink transmission at the same time, it can be configured at the cell level, at the UE group level, or at the UE level.
  • the frequency domain resources configured for uplink and downlink transmission at the same time can be within a frequency band or a carrier or a BWP range, and the base station can notify the terminal of the frequency domain resources used for uplink and downlink transmission at the same time through RRC signaling .
  • the base station can configure frequency domain resources for uplink and downlink transmission at the same time for each cell under its jurisdiction within the same spectrum resource, and can also configure frequency domain resources for uplink and downlink transmission at the same time for each UE group , frequency domain resources used for uplink and downlink transmission at the same time may also be configured for each UE.
  • the base station may notify the terminal of the above configuration through RRC signaling.
  • some resources may also be reserved on both sides of the spectrum resources, and these resources are not divided into frequency domain resources for uplink and downlink transmission. This suppresses interference between neighboring operators.
  • the base station first determines the frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource, and the frequency domain resources include multiple frequency domain resources for uplink transmission and/or for downlink transmission; One or more frequency domain resources for uplink transmission and/or downlink transmission used by the terminal are determined among the frequency domain resources for uplink transmission and/or for downlink transmission; and through the downlink control information DCI, one One or more pieces of frequency domain resource information used for uplink transmission and/or used for downlink transmission are sent to the terminal.
  • the base station determines that within the same spectrum resource, the frequency domain resources used for uplink and downlink transmission at the same time may be determined in a self-defined manner or in a semi-static manner.
  • the specific dynamic method scheme is introduced as follows:
  • the base station obtains frequency domain resources used for uplink and downlink transmission at the same time according to a preset uplink and downlink resource division method; wherein, the frequency domain resources are obtained by dividing the spectrum resources according to a predetermined division method, and the frequency domain resources Including multiple frequency domain resources used for uplink transmission and/or used for downlink transmission, the base station determines one or more frequency domain resources used by the terminal from the multiple frequency domain resources used for uplink transmission and/or used for downlink transmission For transmission and/or frequency domain resources used for downlink transmission, position information of one or more frequency domain resources used for uplink transmission and/or downlink transmission is sent to the terminal through DCI.
  • the terminal After receiving the above-mentioned DCI, the terminal obtains frequency domain resources used for uplink and downlink transmission at the same time according to the preset uplink and downlink resource division method; wherein, the frequency domain resources are obtained by dividing the spectrum resources according to the pre-specified division method Yes, the frequency domain resources include multiple frequency domain resources for uplink transmission and/or for downlink transmission (that is, frequency domain resources for uplink and downlink transmission at the same time are determined in a predefined manner), according to the notification in DCI Determine the location information of one or more frequency domain resources used for uplink transmission and/or used for downlink transmission from a plurality of frequency domain resources used for uplink transmission and/or used for downlink transmission.
  • the base station sends the determined frequency domain resources for uplink and downlink transmission at the same time to the terminal through RRC signaling, where the frequency domain resources include multiple frequency domain resources for uplink transmission and/or for downlink transmission. Afterwards, the base station determines one or more frequency domain resources used by the terminal for uplink transmission and/or for downlink transmission from a plurality of frequency domain resources for uplink transmission and/or for downlink transmission, and uses DCI to assign The position information of one or more frequency domain resources used for uplink transmission and/or used for downlink transmission is sent to the terminal.
  • the terminal After receiving the above-mentioned DCI, the terminal determines frequency domain resources used for uplink and downlink transmission at the same time according to the above-mentioned RRC signaling. And according to the location information notified in the DCI, one or more frequency domain resources for uplink transmission and/or downlink transmission are determined from multiple frequency domain resources for uplink transmission and/or downlink transmission.
  • sending one or more frequency domain resources used for uplink transmission and/or used for downlink transmission to the terminal through downlink control information DCI may be implemented in the following manner:
  • the frequency domain resource allocation information includes a frequency domain resource allocation field, a subband indication field, or a subband allocation field indication.
  • the uplink frequency domain resources and the downlink frequency domain resources have an association relationship, and this association relationship may be a relationship in which the uplink frequency domain resources and the downlink frequency domain resources are configured in pairs.
  • this association relationship may be a relationship in which the uplink frequency domain resources and the downlink frequency domain resources are configured in pairs.
  • the DCI is DCI for scheduling PDSCH or PUSCH, or DCI for configuring uplink and/or downlink frequency domain resources.
  • a terminal provided by an embodiment of the present disclosure includes a memory 601, a transceiver 602, and a processor 603;
  • the memory 601 is used to store computer programs; the transceiver 602 is used to send and receive data under the control of the processor 603; the processor 603 is used to read the computer programs in the memory 601 and perform the following operations:
  • Data transmission is performed according to the frequency domain resource.
  • the spectrum resource includes a TDD band, an FDD band for uplink, an FDD band for downlink, a carrier, a BWP, or a band for deploying full-duplex.
  • the processor 603 is further configured to:
  • the processor 603 is further configured to:
  • radio resource control RRC signaling where the RRC signaling is used to configure the frequency domain resources used for uplink and downlink transmission at the same time in the spectrum resource
  • the RRC signaling determine the frequency domain resources used for uplink and downlink transmission at the same time.
  • the RRC signaling is used to configure frequency domain resources corresponding to a cell level, a terminal group level, or a terminal level.
  • the frequency domain resources include:
  • a plurality of frequency domain resources used for uplink transmission and/or used for downlink transmission are used for uplink transmission and/or used for downlink transmission.
  • the processor 603 is further configured to:
  • the DCI is used to notify the terminal to use one or more of the plurality of frequency domain resources for uplink transmission and/or for downlink transmission for uplink transmission and/or for Frequency domain resources for downlink transmission;
  • One or more frequency domain resources for uplink transmission and/or downlink transmission are determined according to the DCI.
  • the processor 603 is further configured to:
  • the one or more frequency domain resources used for uplink transmission and/or used for downlink transmission are determined according to the frequency domain resource allocation information of the DCI.
  • the uplink frequency domain resources and the downlink frequency domain resources have an association relationship.
  • the DCI is a DCI used for scheduling a PDSCH or a PUSCH, or a DCI used for configuring uplink and/or downlink frequency domain resources.
  • part of resources are reserved on both sides of the spectrum resource.
  • the granularity of the frequency domain resource used for uplink/downlink transmission includes 6 resource blocks (RB) as a unit.
  • the RB index of the starting resource block of the frequency domain resource used for uplink and/or downlink transmission is an integer multiple of 6.
  • the width of the spectrum resource is greater than or equal to 5 MHz.
  • the frequency domain resources used for uplink and downlink transmission at the same time are valid in some time units.
  • the transceiver 602 is configured to receive and send data under the control of the processor 603 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 603 and various circuits of the memory represented by the memory 601 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 602 may be a plurality of elements, including transmitters and receivers, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, etc. Transmission medium.
  • the user interface 604 may also be an interface capable of connecting externally and internally to required devices, and the connected devices include but not limited to keypads, displays, speakers, microphones, joysticks, and the like.
  • the processor 603 is responsible for managing the bus architecture and general processing, and the memory 601 can store data used by the processor 600 when performing operations.
  • the processor 603 can be a CPU (central device), ASIC (Application Specific Integrated Circuit, application specific integrated circuit), FPGA (Field-Programmable Gate Array, field programmable gate array) or CPLD (Complex Programmable Logic Device , complex programmable logic device), the processor can also adopt a multi-core architecture.
  • CPU central device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array, field programmable gate array
  • CPLD Complex Programmable Logic Device , complex programmable logic device
  • the processor is used to execute any one of the methods provided in the embodiments of the present application according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • a base station provided by an embodiment of the present disclosure includes a memory 701, a transceiver 702, and a processor 703;
  • the memory 701 is used to store computer programs; the transceiver 702 is used to send and receive data under the control of the processor 703; the processor 703 is used to read the computer programs in the memory and execute Do the following:
  • Data transmission is performed according to the frequency domain resources.
  • the spectrum resource includes a TDD band, an FDD band for uplink, an FDD band for downlink, a carrier, a BWP, or a band for deploying full-duplex.
  • the processor 703 is further configured to:
  • the processor 703 is further configured to:
  • the frequency domain resources are sent to the terminal through radio resource control RRC signaling.
  • the processor 703 is further configured to:
  • the RRC signaling is at the cell level or at the terminal group level or at the terminal level;
  • the frequency domain resources include:
  • a plurality of frequency domain resources used for uplink transmission and/or used for downlink transmission are used for uplink transmission and/or used for downlink transmission.
  • the processor 703 is further configured to:
  • the terminal After determining the frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource, determine one or more frequency domain resources used by the terminal from the multiple frequency domain resources used for uplink transmission and/or for downlink transmission a frequency domain resource for uplink transmission and/or for downlink transmission;
  • the one or more frequency domain resources used for uplink transmission and/or used for downlink transmission are sent to the terminal through downlink control information DCI.
  • the processor 703 is further configured to:
  • the uplink frequency domain resources and the downlink frequency domain resources have an association relationship.
  • the DCI is a DCI used for scheduling a PDSCH or a PUSCH, or a DCI used for configuring uplink and/or downlink frequency domain resources.
  • part of resources are reserved on both sides of the spectrum resource.
  • the granularity of the frequency domain resource used for uplink/downlink transmission includes 6 resource blocks (RB) as a unit.
  • the RB index of the starting resource block of the frequency domain resource used for uplink and/or downlink transmission is an integer multiple of 6.
  • the width of the spectrum resource is greater than or equal to 5 MHz.
  • the frequency domain resources used for uplink and downlink transmission at the same time are valid in some time units.
  • the transceiver 702 is configured to receive and send data under the control of the processor 703 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 703 and various circuits of the memory represented by the memory 701 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 702 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 703 is responsible for managing the bus architecture and general processing, and the memory 701 can store data used by the processor 703 when performing operations.
  • the processor 703 can be a central processing device (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device , CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing device
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • a terminal provided by an embodiment of the present disclosure includes:
  • a determining unit 801 configured to determine frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource
  • the transmission unit 802 is configured to perform data transmission according to the frequency domain resources.
  • the spectrum resource includes a TDD band, an FDD band for uplink, an FDD band for downlink, a carrier, a BWP, or a band for deploying full-duplex.
  • the determining unit 801 is further configured to:
  • the determining unit 801 is further configured to:
  • radio resource control RRC signaling where the RRC signaling is used to configure the frequency domain resources used for uplink and downlink transmission at the same time in the spectrum resource
  • the RRC signaling determine the frequency domain resources used for uplink and downlink transmission at the same time.
  • the RRC signaling is used to configure frequency domain resources corresponding to a cell level, a terminal group level, or a terminal level.
  • the frequency domain resources include:
  • a plurality of frequency domain resources used for uplink transmission and/or used for downlink transmission are used for uplink transmission and/or used for downlink transmission.
  • the determining unit 801 is further configured to:
  • the DCI is used to notify the terminal to use one or more of the plurality of frequency domain resources for uplink transmission and/or for downlink transmission for uplink transmission and/or for Frequency domain resources for downlink transmission;
  • One or more frequency domain resources for uplink transmission and/or downlink transmission are determined according to the DCI.
  • the determining unit 801 is further configured to:
  • the one or more frequency domain resources used for uplink transmission and/or used for downlink transmission are determined according to the frequency domain resource allocation information of the DCI.
  • the uplink frequency domain resources and the downlink frequency domain resources have an association relationship.
  • the DCI is a DCI used for scheduling a PDSCH or a PUSCH, or a DCI used for configuring uplink and/or downlink frequency domain resources.
  • part of resources are reserved on both sides of the spectrum resource.
  • the granularity of the frequency domain resource used for uplink/downlink transmission includes 6 resource blocks (RB) as a unit.
  • the RB index of the starting resource block of the frequency domain resource used for uplink and/or downlink transmission is an integer multiple of 6.
  • the width of the spectrum resource is greater than or equal to 5 MHz.
  • the frequency domain resources used for uplink and downlink transmission at the same time are valid in some time units.
  • a base station provided by an embodiment of the present disclosure includes:
  • a determining unit 901 configured to determine frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource
  • the transmission unit 902 is configured to perform data transmission according to the frequency domain resources.
  • the spectrum resource includes a TDD band, an FDD band for uplink, an FDD band for downlink, a carrier, a BWP, or a band for deploying full-duplex.
  • the determining unit 901 is further configured to:
  • the determining unit 901 is further configured to:
  • the frequency domain resources are sent to the terminal through radio resource control RRC signaling.
  • the determining unit 901 is further configured to:
  • the RRC signaling is at the cell level or at the terminal group level or at the terminal level;
  • the frequency domain resources include:
  • a plurality of frequency domain resources used for uplink transmission and/or used for downlink transmission are used for uplink transmission and/or used for downlink transmission.
  • the determining unit 901 is further configured to:
  • the terminal After determining the frequency domain resources used for uplink and downlink transmission at the same time within the same spectrum resource, determine one or more frequency domain resources used by the terminal from the multiple frequency domain resources used for uplink transmission and/or for downlink transmission a frequency domain resource for uplink transmission and/or for downlink transmission;
  • the one or more frequency domain resources used for uplink transmission and/or used for downlink transmission are sent to the terminal through downlink control information DCI.
  • the determining unit 901 is further configured to:
  • the uplink frequency domain resources and the downlink frequency domain resources have an association relationship.
  • the DCI is a DCI used for scheduling a PDSCH or a PUSCH, or a DCI used for configuring uplink and/or downlink frequency domain resources.
  • part of resources are reserved on both sides of the spectrum resource.
  • the granularity of the frequency domain resource used for uplink/downlink transmission includes 6 resource blocks (RB) as a unit.
  • the RB index of the starting resource block of the frequency domain resource used for uplink and/or downlink transmission is an integer multiple of 6.
  • the width of the spectrum resource is greater than or equal to 5 MHz.
  • the frequency domain resources used for uplink and downlink transmission at the same time are valid in some time units.
  • an embodiment of the present disclosure further provides a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is used to enable the processor to execute the above frequency Domain resource determination method.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including but not limited to magnetic storage (e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (e.g., CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)), etc.
  • magnetic storage e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage e.g., CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the processor-readable memory produce a manufacturing product, the instruction device realizes the functions specified in one or more procedures of the flow chart and/or one or more blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented
  • the executed instructions provide steps for implementing the functions specified in the procedure or procedures of the flowchart and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种数据传输的方法、终端、基站及存储介质,用以解决现有技术中终端难以确定上下行传输对应的频域资源,来进行数据传输的技术问题,该方法包括:确定在频谱资源内,同一时刻用于上行和下行传输的频域资源;根据所述频域资源进行数据传输。

Description

一种数据传输的方法、终端、基站及存储介质
相关申请的交叉引用
本申请要求在2022年03月04日提交中国专利局、申请号为202210210964.3、申请名称为“一种数据传输的方法、终端、基站及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年04月15日提交中国专利局、申请号为202210400170.3、申请名称为“一种数据传输的方法、终端、基站及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信领域,尤其是涉及一种数据传输的方法、终端、基站及存储介质。
背景技术
在新一代无线通信系统中,为了提高上行方向的覆盖率和容量、降低上行方向的时延,在新一代无线通信系统中增加了双工增强特性,在双工增强中的TDD模式下非重叠子带全双工(non-overlapping sub-band full duplex)能较好的适应这一要求。非重叠子带全双工即将频域资源划分为多个频域范围(一个频域范围可以成为一个子带),且互相不重叠,上行和下行频域资源分别位于不同子带。
发明内容
本公开提供一种数据传输的方法、终端、基站及存储介质。
第一方面,本公开实施例提供的一种数据传输的方法,应用于终端,该方法的技术方案如下:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
根据所述频域资源进行数据传输。
一种可能的实施方式,所述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。
一种可能的实施方式,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,包括:
根据预设的上下行资源划分方式,获取所述同一时刻用于上行和下行传输的频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
一种可能的实施方式,确定在同一个频谱资源上,同一时刻用于上行和下行传输的频域资源,包括:
接收无线资源控制RRC信令,所述RRC信令用于在所述频谱资源内配置所述同一时刻用于上行和下行传输的频域资源;
根据所述RRC信令,确定所述同一时刻用于上行和下行传输的频域资源。
一种可能的实施方式,所述RRC信令用于配置小区级或终端组级或终端级对应的频域资源。
一种可能的实施方式,所述频域资源,包括:
多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,包括:
接收下行控制信息DCI,所述DCI用于通知所述终端使用所述多个用于上行传输和/或用于下行传输的频域资源中的一个或多个用于上行传输和/或用于下行传输的频域资源;
根据所述DCI,确定一个或多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,根据所述DCI,确定一个或多个用于上行传输和/或用于下行传输的频域资源,包括:
通过所述DCI的频域资源分配信息,确定所述一个或多个用于上行传输 和/或用于下行传输的频域资源。
一种可能的实施方式,所述多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系。
一种可能的实施方式,所述DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
一种可能的实施方式,所述频谱资源两侧预留部分资源。
一种可能的实施方式,所述用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位。
一种可能的实施方式,所述用于上行和/或下行传输的频域资源的起始资源块RB索引为6的整数倍。
一种可能的实施方式,所述频谱资源的宽度大于或等于5MHz。
一种可能的实施方式,所述同一时刻用于上行和下行传输的频域资源在部分时间单元有效。
第二方面,本公开实施例提供了一种数据传输的方法,应用于基站,该方法包括:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
根据所述频域资源进行数据传输。
一种可能的实施方式,所述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。
一种可能的实施方式,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,包括:
根据预设的上下行资源划分方式,获取同一时刻用于上行和下行传输的频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
一种可能的实施方式,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源之后,还包括:
通过无线资源控制RRC信令,将所述频域资源发送给终端。
一种可能的实施方式,通过无线资源控制RRC信令,将所述频域资源发送给终端,包括:
所述RRC信令是小区级或终端组级或终端级的;
通过所述RRC信令,将所述小区级或终端组级或终端级的频域资源发送给终端。
一种可能的实施方式,所述频域资源,包括:
多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,之后还包括:
从所述多个用于上行传输和/或用于下行传输的频域资源中确定终端使用的一个或多个用于上行传输和/或用于下行传输的频域资源;
通过下行控制信息DCI,将所述一个或多个用于上行传输和/或用于下行传输的频域资源发送给所述终端。
一种可能的实施方式,通过下行控制信息DCI,将所述一个或多个用于上行传输和/或用于下行传输的频域资源送给所述终端,包括:
通过所述DCI的频域资源分配信息,将所述一个或多个用于上行传输和/或用于下行传输的频域资源信息送给所述终端。
一种可能的实施方式,所述多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系。
一种可能的实施方式,所述DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
一种可能的实施方式,所述频谱资源两侧预留部分资源。
一种可能的实施方式,所述用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位。
一种可能的实施方式,所述用于上行和/或下行传输的频域资源的起始资源块RB索引为6的整数倍。
一种可能的实施方式,所述频谱资源的宽度大于或等于5MHz。
一种可能的实施方式,所述同一时刻用于上行和下行传输的频域资源在部分时间单元有效。
第三方面,本公开实施例提供了一种终端,包括存储器,收发机,处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
根据所述频域资源进行数据传输。
一种可能的实施方式,所述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。
一种可能的实施方式,所述处理器还用于:
根据预设的上下行资源划分方式,获取所述同一时刻用于上行和下行传输的频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
一种可能的实施方式,所述处理器还用于:
接收无线资源控制RRC信令,所述RRC信令用于在所述频谱资源内配置所述同一时刻用于上行和下行传输的频域资源;
根据所述RRC信令,确定所述同一时刻用于上行和下行传输的频域资源。
一种可能的实施方式,所述RRC信令用于配置小区级或终端组级或终端级对应的频域资源。
一种可能的实施方式,所述频域资源,包括:
多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述处理器还用于:
接收下行控制信息DCI,所述DCI用于通知所述终端使用所述多个用于上行传输和/或用于下行传输的频域资源中的一个或多个用于上行传输和/或用于下行传输的频域资源;
根据所述DCI,确定一个或多个用于上行传输和/或用于下行传输的频域 资源。
一种可能的实施方式,所述处理器还用于:
通过所述DCI的频域资源分配信息,确定所述一个或多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系。
一种可能的实施方式,所述DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
一种可能的实施方式,所述频谱资源两侧预留部分资源。
一种可能的实施方式,所述用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位。
一种可能的实施方式,所述用于上行和/或下行传输的频域资源的起始资源块RB索引为6的整数倍。
一种可能的实施方式,所述频谱资源的宽度大于或等于5MHz。
一种可能的实施方式,所述同一时刻用于上行和下行传输的频域资源在部分时间单元有效。
第四方面,本公开实施例还提供一种基站,包括存储器,收发机,处理器;
所述存储器,用于存储计算机程序;所述收发机,用于在所述处理器的控制下收发数据;所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
根据所述频域资源进行数据传输。
一种可能的实施方式,所述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。
一种可能的实施方式,所述处理器还用于:
根据预设的上下行资源划分方式,获取同一时刻用于上行和下行传输的 频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
一种可能的实施方式,所述处理器还用于:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源之后,通过无线资源控制RRC信令,将所述频域资源发送给终端。
一种可能的实施方式,所述处理器还用于:
所述RRC信令是小区级或终端组级或终端级的;
通过所述RRC信令,将所述小区级或终端组级或终端级的频域资源发送给终端。
一种可能的实施方式,所述频域资源,包括:
多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述处理器还用于:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源之后,从所述多个用于上行传输和/或用于下行传输的频域资源中确定终端使用的一个或多个用于上行传输和/或用于下行传输的频域资源;
通过下行控制信息DCI,将所述一个或多个用于上行传输和/或用于下行传输的频域资源发送给所述终端。
一种可能的实施方式,所述处理器还用于:
通过所述DCI的频域资源分配信息,将所述一个或多个用于上行传输和/或用于下行传输的频域资源信息送给所述终端。
一种可能的实施方式,所述多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系。
一种可能的实施方式,所述DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
一种可能的实施方式,所述频谱资源两侧预留部分资源。
一种可能的实施方式,所述用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位。
一种可能的实施方式,所述用于上行和/或下行传输的频域资源的起始资源块RB索引为6的整数倍。
一种可能的实施方式,所述频谱资源的宽度大于或等于5MHz。
一种可能的实施方式,所述同一时刻用于上行和下行传输的频域资源在部分时间单元有效。
第五方面,本公开实施例还提供一种终端,包括:
确定单元,用于确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
传输单元,用于根据所述频域资源进行数据传输。
一种可能的实施方式,所述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。
一种可能的实施方式,所述确定单元还用于:
根据预设的上下行资源划分方式,获取所述同一时刻用于上行和下行传输的频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
一种可能的实施方式,所述确定单元还用于:
接收无线资源控制RRC信令,所述RRC信令用于在所述频谱资源内配置所述同一时刻用于上行和下行传输的频域资源;
根据所述RRC信令,确定所述同一时刻用于上行和下行传输的频域资源。
一种可能的实施方式,所述RRC信令用于配置小区级或终端组级或终端级对应的频域资源。
一种可能的实施方式,所述频域资源,包括:
多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述确定单元还用于:
接收下行控制信息DCI,所述DCI用于通知所述终端使用所述多个用于上行传输和/或用于下行传输的频域资源中的一个或多个用于上行传输和/或用于下行传输的频域资源;
根据所述DCI,确定一个或多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述确定单元还用于:
通过所述DCI的频域资源分配信息,确定所述一个或多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系。
一种可能的实施方式,所述DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
一种可能的实施方式,所述频谱资源两侧预留部分资源。
一种可能的实施方式,所述用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位。
一种可能的实施方式,所述用于上行和/或下行传输的频域资源的起始资源块RB索引为6的整数倍。
一种可能的实施方式,所述频谱资源的宽度大于或等于5MHz。
一种可能的实施方式,所述同一时刻用于上行和下行传输的频域资源在部分时间单元有效。
第六方面,本公开实施例还提供一种基站,包括:
确定单元,用于确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
传输单元,用于根据所述频域资源进行数据传输。
一种可能的实施方式,所述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。
一种可能的实施方式,所述确定单元还用于:
根据预设的上下行资源划分方式,获取同一时刻用于上行和下行传输的频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
一种可能的实施方式,所述确定单元还用于:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源之后,通过无线资源控制RRC信令,将所述频域资源发送给终端。
一种可能的实施方式,所述确定单元还用于:
所述RRC信令是小区级或终端组级或终端级的;
通过所述RRC信令,将所述小区级或终端组级或终端级的频域资源发送给终端。
一种可能的实施方式,所述频域资源,包括:
多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述确定单元还用于:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源之后,从所述多个用于上行传输和/或用于下行传输的频域资源中确定终端使用的一个或多个用于上行传输和/或用于下行传输的频域资源;
通过下行控制信息DCI,将所述一个或多个用于上行传输和/或用于下行传输的频域资源发送给所述终端。
一种可能的实施方式,所述确定单元还用于:
通过所述DCI的频域资源分配信息,将所述一个或多个用于上行传输和/或用于下行传输的频域资源信息送给所述终端。
一种可能的实施方式,所述多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系。
一种可能的实施方式,所述DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
一种可能的实施方式,所述频谱资源两侧预留部分资源。
一种可能的实施方式,所述用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位。
一种可能的实施方式,所述用于上行和/或下行传输的频域资源的起始资源块RB索引为6的整数倍。
一种可能的实施方式,所述频谱资源的宽度大于或等于5MHz。
一种可能的实施方式,所述同一时刻用于上行和下行传输的频域资源在部分时间单元有效。
第七方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如第一方面或第二方面所述的方法。
通过本公开实施例的上述一个或多个实施例中的技术方案,本公开实施例至少具有如下技术效果:
在本公开提供的实施例中,通过确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,使终端能够确定同一时刻用于上下行传输的频域资源,进而进行数据传输。
此外,在本公开提供的实施例中,由于基站可以通过DCI动态调度上行或下行频域资源,相较于现有技术中通过全信道带宽或BWP范围内的动态调度方式,可以节约DCI开销,提高DCI传输的可靠性。
附图说明
图1为本公开实施例提供的一种数据传输方法的流程图;
图2为本公开实施例提供的一种预设的上下行资源划分方式的示意图;
图3为本公开实施例提供的另一种预设的上下行资源划分方式的示意图;
图4为本公开实施例提供的一种子带划分示意图;
图5为本公开实施例提供的另一种子带划分示意图;
图6为本公开实施例提供的一种终端的结构示意图;
图7为本公开实施例提供的一种基站的结构示意图;
图8为本公开实施例提供的另一种终端的结构示意图;
图9为本公开实施例提供的另一种基站的结构示意图。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍 式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
现有技术中有三种频域资源分配方法:Type 0、Type1和type2,以上三种方式指示的是带宽部分(Band Width Part,BWP)范围内的资源分配。
上述三种频域资源分配方法做简要介绍:
1、Type0。
Type0是通过位图(bitmap)的形式指示分配给UE的资源块组(Resource Block Groups,RBGs),RBG是一组连续的虚拟资源块,RBG的大小通过高层配置的rbg-Size参数(指示config1或config2)和带宽部分(bandwidth part,BWP)的大小
Figure PCTCN2022133310-appb-000001
确定,如下表1(示出的是标准带宽部分的大小P)所示。
表1
带宽部分的大小 配置1 配置2
1–36 2 4
37–72 4 8
73–144 8 16
145–275 16 16
位图的每个比特指示一个RBG,位图的bit长度等于N RBG,其中:
Figure PCTCN2022133310-appb-000002
其中,
Figure PCTCN2022133310-appb-000003
为位图的首个比特的长度,带宽部分中第一个RBG的长度
Figure PCTCN2022133310-appb-000004
为:
Figure PCTCN2022133310-appb-000005
最后一个RBG的长度
Figure PCTCN2022133310-appb-000006
为:
Figure PCTCN2022133310-appb-000007
if
Figure PCTCN2022133310-appb-000008
带宽部分中出第一个RBG和最后一个RBG外,其它RBG的长度等于P。
2、Type1。
Type1是通过资源指示值(resource indication value,RIV)指示分配给UE在激活BWP内的起始RB(RB start)和长度(L RBs),RIV的定义如下:
if
Figure PCTCN2022133310-appb-000009
then
Figure PCTCN2022133310-appb-000010
else
Figure PCTCN2022133310-appb-000011
where L RBs≥1and shall not exceed
Figure PCTCN2022133310-appb-000012
3、Type2。
对于μ=0,资源分配字段的高6比特位通过RIV指示以m 0为起始索引的一组索引m 0+l。当0≤RIV<M(M+1)/2,对应起始交织(interlace)索引m 0和连续的交织索引个数L,其中l=0,1,…,L-1,m 0∈{0,1,…,M-1}包含CPRB(common resource blocks){m,M+m,2M+m,3M+m,…},M=10,RIV定义为:
if
Figure PCTCN2022133310-appb-000013
then
RIV=M(L-1)+m 0
else
RIV=M(M-L+1)+(M-1-m 0)
当RIV≥M(M+1)/2,对应起始交织(interlace)索引m 0和l的取值集合,具体定义为表2。
表2
RIV-M(M+1)/2 m 0 l
0 0 {0,5}
1 0 {0,1,5,6}
2 1 {0,5}
3 1 {0,1,2,3,5,6,7,8}
4 2 {0,5}
5 2 {0,1,2,5,6,7}
6 3 {0,5}
7 4 {0,5}
对于μ=1,此时M=5,因为m0∈{0,1,…,M-1},此时共有5个交织行,资源分配字段的高5bit通过位图的形式指示分配给UE的交织行,interlace 0to interlace M-1按照从高位到低位的顺序映射到位图。
对于μ=0和μ=1,通过SCS-SpecificCarrier确定载波带宽和位置,根据 IntraCellGuardBandsPerSCS中的GuardBand(包含startCRB和nrofCRBs对应
Figure PCTCN2022133310-appb-000014
Figure PCTCN2022133310-appb-000015
)确定载波中保护带,继而按照下面公式确定可用RB set的起始和结束CRB,其中s∈{0,1,…,N RB-set,x-1};
Figure PCTCN2022133310-appb-000016
and
Figure PCTCN2022133310-appb-000017
BWP中包含部分或全部上述可用RB set,通过资源分配字段低
Figure PCTCN2022133310-appb-000018
比特映射成RIV RB-set指示BWP内分配给UE的起始RB set
Figure PCTCN2022133310-appb-000019
和个数L RB-set
Figure PCTCN2022133310-appb-000020
表示BWP包含的RB set个数,具体解释如下:
if
Figure PCTCN2022133310-appb-000021
then
Figure PCTCN2022133310-appb-000022
else
Figure PCTCN2022133310-appb-000023
从上述内容可以看出,现有技术通过DCI动态通知载波信道或者BWP范围内的频域资源,当把载波信道或者BWP划分成多个sub-band分别用于上行和下行传输时,仍然采用上述全信道或者全BWP范围内的频域资源分配,并不支持单独用于上行和下行传输的频域资源指示,使得终端无法获得上行和下行传输的频域资源,同时还会出现资源分配字段对应的状态富余,导致DCI开销浪费的问题。
本申请实施例提供了一种频域资源确定的方法、终端、基站及存储介质,用以解决现有技术中终端难以确定上下行传输对应的频域资源的技术问题。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供一种数据传输的方法,应用于终端,请参见图1,该方法的处理过程如下:
步骤101:确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
步骤102:根据频域资源进行数据传输。
步骤101中的同一时刻可以是指相同的符号、时隙、子帧等,如同一符号中用于上行和下行传输的频域资源,即为同一时刻用于上行和下行传输的频域资源;同一时隙中用于上行和下行传输的频域资源,即为同一时刻用于上行和下行传输的频域资源;同一子帧中用于上行和下行传输的频域资源,即为同一时刻用于上行和下行传输的频域资源。
同一时刻用于上行和下行传输的频域资源可以是在全部时间单元有效,如在全部的符号、时隙、子帧或无线帧等有效;同一时刻用于上行和下行传输的频域资源也可以在部分时间单元有效,如在部分的符号、时隙、子帧或无线帧等有效,可以通过协议预定义,基站以配置的方式通知UE生效/失效的时间单元,从而解决对频谱资源划分为上下行资源之后,部分信道/信号无法传输的问题,例如SSB。
在本公开提供的实施例中,同一时刻用于上行和下行传输的频域资源可以分布在同一频谱资源内的同一频点,也可以是上行和下行频域资源的间隔小于某一门限值。上述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波(carrier)、BWP或者用于部署全双工的band。
例如,上行和下行频域资源所分布的频谱资源为TDD band时,上行和下行频域资源可以分布在TDD band内的同一频点,也可以分布在不同频点,且不同频点间的频点间隔小于一某一门限值;同理,上行和下行频域资源所分布的频谱资源为用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band时,上行和下行频域资源分布在对应频谱资源内的同一频点,或不同频点,且不同频点间的频点间隔小于某一门限值。
上述同一频谱资源可以是3GPP有关标准中定义的单独的NR工作频段, 如3GPP TS38.101v h.4.0协议版本或TS38.104v h.4.0协议版本中定义的单独的NR工作频段。如表3所示,某标准中定义的FR1中的NR工作频段。
表3
Figure PCTCN2022133310-appb-000024
Figure PCTCN2022133310-appb-000025
可选的,上述频谱资源的宽度需要满足一定的条件,比如频谱资源的宽度大于或等于5MHz。通过将频谱资源的宽度设置为大于或等于5MHz,可以在频谱资源进行上下行资源划分后,满足在上行资源上承载随机接入信道(Random Access Channel,RACH)信道和在下行资源上承载SSB的要求。例如频谱资源为BWP,支持上下行子带划分的BWP宽度需要大于或等于5MHz。
可选的,本实施例中上行传输的频域资源的宽度也需要满足一定的条件,比如上行传输的频域资源的宽度大于或等于6个RB。通过将上行传输的频域资源的宽度设置为大于或等于6个RB,可以使上行传输的频域资源满足承载RACH信道等的要求。
在本公开提供的实施例中,同一时刻用于上行和下行传输的频域资源, 可以只有一个上行和下行传输的频域资源,也可以有多个上行和/或下行传输的频域资源。上行和下行传输的频域资源相互不重叠,若有多个上行和/或下行传输的频域资源,则任意两个相互不重叠。
在本公开提供的实施例中,可以通过预定义方式、半静态方式或动态方式,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源。
第一种:采用预定义方式。
若采用预定义方式,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,可以通过下列方式实现:
根据预设的上下行资源划分方式,获取同一时刻用于上行和下行传输的频域资源;其中,频域资源是根据预先规定的划分方式对频谱资源划分得到的。
上述预设的上下行资源划分方式可以是相关通信协议中预先规定的划分方式,如在未来的通信协议中规定了上下行传输使用的频域资源的划分规则,基站或终端在使用上行和下行传输的频域资源时,可以根据预设的上下行资源划分方式,直接获取同一时刻用于上行和下行传输的频域资源。
如,规定频谱资源内的第X个RB至第Y个RB为上行传输的频域资源。例如,请参见图2为本公开实施例提供的一种预设的上下行资源划分方式的示意图。图2中大小为5MHz的频谱资源,示出了第0个RB~第24个RB,在相关通信协议中预先规定了中间的第10个RB至第14个RB为上行传输对应的频域资源(即上行频域资源),剩余频域资源为下行传输对应的频域资源(即下行频域资源)或者部署TDD模式。上述上行频域资源与下行频域资源互相不交叠。
又如请参见图3为本公开实施例提供的另一种预设的上下行资源划分方式的示意图。图3是大小为10MHz的频谱资源,示出了第0个RB~第51个RB,相关协议中预先规定了中间的第22个RB至第29个RB为上行传输对应的频域资源,其余频域资源可以用于静态/动态TDD部署。
根据上述预设的上下行资源划分方式,终端可以确定出同一时刻用于上 行和下行传输的频域资源,进而根据同一时刻用于上行和下行传输的频域资源进行数据传输。
此处的上行和下行传输资源可以是应用于某一个终端,即该终端在同一时刻分别在上行和下行传输的频域资源上面传输上行和下行;也可以是应用于不同的终端,即同一时刻,终端1用上行传输的频域资源传输上行数据,终端2用下行传输的频域资源接收下行数据。
在本公开提供的实施例中,频谱资源的两侧还可以预留部分资源,这部分资源不做上行和下行传输的频域资源划分。这样可以抑制相邻运营商之间的干扰。
对于同一时刻用于上行和下行传输的频域资源中只有一个上行和下行传输的频域资源的情况,终端可以直接使用对应的频域资源。
例如,终端根据预设的上下行资源划分方式,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源包括上行频域资源为第6个RB,以及下行频域资源为第8个RB,终端在需要进行上行数据传输时,可以根据采用预定义方式确定的同一时刻用于上行和下行传输的频域资源(上行:第6个RB,下行:第8个RB),直接使用第6个RB进行上行数据传输;终端在需要进行下行数据接收时,可以直接使用第8个RB进行下行数据接收。
上述频域资源的粒度可以是RB级别的,也可以是RB组级别的,还可以是载波级别的等。用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位,用于上行和/或下行传输的频域资源的起始资源块(Resource Block,RB)索引为6的整数倍。比如核心集(又称控制资源集,CORESET)的频域资源是6个RB的倍数,以及CORESET的起始RB索引是6的整数倍,因此,用于下行传输的频域资源的粒度以6个RB为单位,同时用于下行传输的频域资源的起始RB索引为6的整数倍,能够有效的匹配控制信道的设计。同时,为了保持用于上行传输和下行传输的频域资源的划分粒度一致,上行传输的频域资源的粒度也以6个RB为单位,以及上行传输的频域资源的起始RB索引也为6的整数倍。
在本公开提供的实施例中,根据预设的上下行资源划分方式,获取的同一时刻用于上行和下行传输的频域资源,可以在基站指示双工切换时生效,也可以在基站指示双工切换后的第k个符号或时隙生效,k为整数,所述k值可以通过DCI配置、RRC信令通知或预定义。
第二种:采用半静态方式。
若采用半静态方式,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,可以通过下列方式实现:
接收无线资源控制(Radio Resource Control,RRC)信令,RRC信令用于在频谱资源内配置同一时刻用于上行和下行传输的频域资源;根据RRC信令,确定同一时刻用于上行和下行传输的频域资源。
例如,基站通过RRC信令通知终端,在TDD band内,确定的同一时刻用于上行和下行传输的频域资源包括:上行频域资源为TDD band内的第M个RB至第N个RB,和/或下行频域资源为TDD band内的第P个RB至第Q个RB,其中M、N、P和Q为非负整数,N大于M,Q大于P。终端接收到上述RRC信令后,可以据此确定TDD band内,同一时刻用于上行和下行传输的频域资源包括:上行频域资源为TDD band内的第M个RB至第N个RB,和/或下行频域资源为TDD band内的第P个RB至第Q个RB。
同理,当频谱资源为用于上行的FDD band,或用于下行的FDD band,或载波carrier,或BWP或者用于部署全双工的band时,处理方式与上述频谱资源为TDD band时类似,故不再赘述。
在本公开提供的实施例中,RRC信令用于配置小区级或终端组级或终端级对应的频域资源。即基站在配置同一时刻用于上行和下行传输的频域资源时,可以按小区级或UE组级,或UE级进行配置。配置的同一时刻用于上行和下行传输的频域资源,可以是在一个频带或一个载波或一个BWP的范围内,基站通过RRC信令,将配置的小区级或终端组级或终端级的频域资源发送给终端。
例如,基站可以在同一频谱资源内,为其所辖的每个小区配置同一时刻 用于上行和下行传输的频域资源,也可以为每个UE组配置同一时刻用于上行和下行传输的频域资源,还可以为每个UE配置同一时刻用于上行和下行传输的频域资源。基站在完成上述配置后,可以通过RRC信令通知终端上述配置结果。终端在接收到上述RRC信令后,根据RRC信令,确定同一时刻用于上行和下行传输的频域资源。在本公开提供的实施例中,频谱资源的两侧还可以预留部分资源,这部分资源不做上行和下行传输的频域资源划分。这样可以抑制相邻运营商之间的干扰。
如,对于上行频域资源为某个频谱资源的第M个RB~第N个RB,和下行频域资源为频谱资源的第P个RB~第Q个RB,可以限制M和P大于K,其中K大于或等于频谱资源的第一个RB的编号,P和Q小于频谱资源的最大RB的编号。如对于5MHz信道对应的频谱资源,规定其中第2个RB至第6个RB为上行频域资源,第8至第12个RB为下行频域资源,这样在上行频域资源的两端有第0~第1个RB、第7个RB这部分资源不做上行和下行传输的频域资源划分,在下行频域资源的两端有第7个RB、第13个RB这部分资源不做上行和下行传输的频域资源划分,因此可以在上行频域资源和下行频域资源的两侧都预留部分资源形成保护间隔,从而可以抑制上下行传输方向不一致导致的运营商之间的干扰。
第三种:动态方式。
当采用上述预定义或半静态的方式,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源包括多个用于上行传输和/或用于下行传输的频域资源时,基站通过DCI通知终端多个用于上行传输和/或用于下行传输的频域资源中使用的一个或多个用于上行传输和/或用于下行传输的频域资源。此时,终端确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源包括多个用于上行传输和/或用于下行传输的频域资源,可以通过下列方式实现:
接收下行控制信息DCI,DCI用于通知终端使用多个用于上行传输和/或用于下行传输的频域资源中的一个或多个用于上行传输和/或用于下行传输的 频域资源;根据DCI,确定一个或多个用于上行传输和/或用于下行传输的频域资源。当终端需要进行数据传输时,可以根据DCI确定的一个或多个用于上行传输和/或用于下行传输的频域资源进行数据传输。
不管使用上述何种方式确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,在使用同一时刻用于上行和下行传输的频域资源时,可以只使用其中一个传输方向的频域资源、也可以同时使用两个传输方向的频域资源或者不使用任意一个传输方向的频域资源。
例如,在TDD band内,确定的同一时刻用于上行和下行传输的频域资源包括一个上行频域资源和一个下行频域资源,基站可以使用下行频域资源向终端1发送下行数据,同时使用上行频域资源接收终端2发送的上行数据,对于终端1而言其使用下行频域资源接收该基站发送的下行数据,对终端2而言,使用上行频域资源向该基站发送上行数据。若在当前时刻只有终端1需要接收该基站的下行数据,没有终端发送上行数据,则基站只用下行频域资源向终端1发送下行数据。若在某一时刻,既没有上行数据传输也没有下行数据传输,此时不使用任意一个传输方向的频域资源。
又如,在BWP内,确定的同一时刻用于上行和下行传输的频域资源包括3个上行频域资源和3个下行频域资源,基站通过DCI通知终端1使用其中的上行频域资源2和下行频域资源2进行数据传输,还通过DCI通知终端2使用上行频域资源3和下行频域资源3进行数据传输,在某一时刻,终端1需要向基站发送上行数据,终端2需要接收基站发送的下行数据,则终端1使用上行频域资源2向基站发送上行数据,同时终端2使用下行频域资源3接收基站下行数据。
动态方式的方案介绍如下:
方案一、基于预定义的动态方式:
若采用预定义方式,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源有多个时,基站通过DCI通知终端多个用于上行传输和/或用于下行传输的频域资源中的一个或多个用于上行传输和/或用于下行传输的 频域资源。
通过上述预定义的方式,将同一个频谱资源划分成多个上/下行子带,子带的大小和个数决于频谱资源的大小或者网络/基站配置。基站通过DCI动态配置UE具体使用的子带。
例如,对于频谱资源的大小大于或等于L个RB,子带的大小(size)为k1;对于频谱资源的大小小于或等于L个RB,子带的大小为k2;或者网络/基站通过RRC/DCI配置子带的大小。子带的个数(记为num)通过频谱资源的大小和子带的大小(记为sub-band size)确定,即num=ceil(频谱资源的带宽/sub-band size),ceil为向上取整的函数,/为除法符号。当频谱资源为BWP时,上述公式中频谱资源的带宽为BWP的大小。进一步,还可以将频谱资源划分成多个区间(如划分为3个或3个以上区间),每个区间定义不同的子带大小,每个区间的子带大小可以是预定的、RRC配置的或者DCI配置的。每个区间的子带个数分别根据每个区间的子带大小计算,计算方法和上述不分区间的情况相同,此处不再赘述。
此外,在频谱资源的两侧还可以预留部分资源,不做上行和下行传输的频域资源划分。如,可以在频谱资源的两侧预留z个RB不做上行和下行传输的频域资源划分,z为自然数。如,可以在频谱资源的两侧分别预留z1和z2个RB不做上行和下行传输的频域资源划分,z1和z2为自然数,z1和z2可以不同。
请参见图4为本公开实施例提供的一种子带划分示意图,BWP的第0-第1个RB及第22-24个RB作为预留的部分频域资源,其它RB划分为sub-band。每个sub-band包括5个RB,共划分为4个sub-band:DL-SB0(第2-第6个RB)、UL-SB0(第7-第11个RB)、DL-SB1(第12-16个RB)、UL-SB1(第17-21个RB),这样通过在BWP的两侧预留部分不做上行和下行传输的频域资源划分的RB来抑制相邻运营商的干扰。
此外,还可以在上述预留RB上面部署静态或动态TDD,来保持相邻运营商之间的上下行传输方向对齐,实现抑制相邻运营商之间的交叉干扰。
在本公开提供的实施例中,多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系,这种关联关系可以是上行频域资源和下行频域资源成对配置的关系,如图4中UL-SB0和DL-SB 0可以组成子带对(sub-band pair)来形成上述关联关系。基站可以成对的配置子带对,如,上行配置了UL-SB0,下行便相应的被配置为DL-SB0,不再专门配置下行子带,反之亦可;当存在多个子带对时,例如UL-SB0和DL-SB 0组成子带对0(记为sub-band pair 0),UL-SB1和DL-SB1组成子带对1(记为sub-band pair 1),基站可以通过DCI指示子带对的编号来通知终端具体使用的上行子带和下行子带。终端根据接收到的DCI可以确定其具体使用的子带对的编号,进而根据该编号选用对应的子带进行数据传输。
基站通过DCI动态通知终端使用预定义的子带集合中的具体使用的某个子带,可以通过调度PDSCH或PUSCH的DCI通知,在上述DCI中定义专门的指示字段,如在上述DCI中定义一个比特长度为1的字段指示图4中2个上行子带或下行子带中的某一个。
基站通过DCI动态通知终端使用预定义的子带集合中的具体使用的某个子带,还可以在DCI种使用频域资源分配字段的第X比特位进行指示,如使用频域资源分配字段的最高位比特位或最低比特位指示图4中2个上行或下行子带中的一个。
DCI中具体用多少个比特位指示终端实际使用的上行子带或下行子带,可以根据预定义中包含的上行子带的总数量或下行子带的总数量确定。
基站通过DCI动态通知终端使用预定义的子带集合中的具体使用的某个子带,还可以用配置上行和/或下行频域资源的DCI通知。在该DCI中可以指示终端使用预定义的子带集合中的某个子带,上述指示可以立即生效,也可以在指定的间隔时长后生效,如终端在时隙(slot)n收到上述DCI的指示,即刻更新上行/下行传输的sub-band,即在slot n传输的上行/下行便采用该DCI中指示的sub-band。也可以根据指定的间隔时长(如间隔offset个时隙),在n+offset时隙更新上行/下行传输的sub-band,即在n+offset时隙传输的上行/ 下行采用该DCI中指示的sub-band。上述offset的取值与终端的射频能力(即切换sub-band所需要的时间)有关系,可以给不同能力的终端定义不同的offset。基站可以根据实现算法判断UE是否成功接收该DCI。对于该DCI调度下行sub-band,sub-band生效后,基站可以根据在该sub-band上面发送的传输块对应的HARQ-ACK反馈情况决定是否重新发送该DCI,例如在连续发送的K个传输块对应的HARQ-ACK全部为NACK,则基站决定重新发送该DCI。对于该DCI调度的是上行sub-band,当sub-band生效后,基站可以根据在该sub-band上面接收的传输块的情况决定是否重新发送该DCI,例如连续M个传输块接收失败,则基站决定重新发送该DCI。终端在成功接收上述DCI后,根据DCI通知的频域资源进行数据传输。
方案二、基于半静态配置的动态方式:
基站确定在同一个频谱资源内,同一时刻用于上行和下行的多个频域资源后,通过RRC信令将同一时刻用于上行和下行的多个频域资源发送给终端,并通过DCI动态通知终端使用的是多个用于上行传输和/或用于下行传输的频域资源中的一个或多个。
基站通过RRC信令配置某个频谱资源的上行子带集合包含{UL-SB0,UL-SB1,……,UL-SB n}和下行子带集合包含{DL-SB0,DL-SB1,……,DL-SB n}组成同一时刻用于上行和下行传输的频域资源;其中,UL-SB0包含频谱资源内的第X0至第Y0个RB,UL-SB1包含频谱资源内的第X1至第Y1个RB,UL-SBn包含频谱资源内的第Xn至第Yn个RB,X0<Y0<X1<Y1…<Xn<Yn;DL-SB0包含频谱资源内的第P0至第Q0个RB,DL-SB1包含频谱资源内的第P1至第Q1个RB,DL-SBn包含频谱资源内的第Pn至第Qn个RB,其中P0<Q0<P1<Q1…<Pn<Qn,n为正整数,可选的,n的大小可以取决于频谱资源的大小。X0,X1,Xn,Y0,Y1,Yn,P0,P1,Pn,Q0,Q1,Qn为非负整数。基站可以通过DCI动态通知终端其使用的子带(如下行传输使用DL-SB1子带,上行传输使用UL-SB1)。终端根据DCI通知的频域资源进行数据传输。
在上述上行子带集合和下行子带集合的两端可以设置部分资源不做上行和下行传输的频域资源划分,具体在设置时可以限制X0和/或P0大于α,Yn和Qn与频谱资源内最大RB索引之差大于β,其中α和β大于等于0。所述α和β可以是协议中规定的、RRC配置的或者DCI配置的。如对于5MHz频谱资源(包括第0个RB~第24个RB),上行子带集合包含{UL-SB0,UL-SB1},下行子带集合包含{DL-SB0,DL-SB1},各个子带对应的RB如下图5所示,图5为本公开实施例提供的另一种子带划分示意图,第2个RB(即P0)大于1,第22个RB(即Yn)与最大RB索引(即24)之差为2(大于1)。通过在频谱资源两侧预留RB,在预留RB范围内部署静态TDD/动态TDD,可以起到抑制相邻运营商之间的干扰作用。
上述上行子带集合与下行子带集合中的上行子带和下行自带可以具有绑定或关联关系,如UL-SB0和DL-SB 0组成子带对(sub-band pair),基站可以为终端成对配置上行子带和下行子带(如终端使用的上行子带配置为UL-SB0,则下行子带即为DL-SB0,反之亦然)。可选的,终端也可以将上行子带和下行子带组成子带对(如将UL-SB1和DL-SB1组成子带对1),基站通过DCI指示子带对编号,终端通过DCI指示的子带对编号可以确定其实际使用的上行子带和下行子带,进而根据DCI通知的上行子带和下行子带进行数据传输。
基于基站配置的同一时刻用于上行和下行传输的多个频域资源后,基站可以通过调度PDSCH/PUSCH的DCI中定义专门的频域资源配信息对应的字段(如频域资源分配字段、子带指示字段、子带分配字段)将配置的上述多个频域资源中的某一个或多个发送给终端,如,针对DCI Format 0_1/Format0_2/Format 1_1/Format 1_2,定义新的子带分配字段,专门用于指示UE的上行子带或下行子带。终端接收到调度PDSCH/PUSCH的DCI后,根据调度PDSCH/PUSCH的DCI中频域资源分配信息对应的字段,确定一个或多个用于上行传输和/或用于下行传输的频域资源进行数据传输。
基站还可以用调度PDSCH/PUSCH的DCI中的频域分配信息对应字段的 高或低X个bit(s)位指示终端实际使用的子带的位置。如,针对DCI Format0_1/Format 0_2/Format 1_1/Format 1_2,利用频域资源分配字段的高/低X位bit(s)指示UE的上行子带或下行子带。
在调度PDSCH/PUSCH的DCI中,还可以通过预定义的方式确定基站分配给终端的上行子带或下行子带,如对于DCI Format 0_0/DCI Format 1_0中的频域分配字段没有指示子带位置,可以预定义RRC配置的上行或下行子带集合中的第一个或最后一个上行或下行子带为基站分配给终端的上行或下行子带。这样就无须使用DCI中的频域分配字段通知终端使用的频域资源,从而可以节约信令开销。
可选的,基站通过调度PDSCH/PUSCH的DCI中频域资源分配字段的全部或部分比特,通知终端实际使用的频域资源,如可以用Type0/Type1/Type2方法动态通知终端具体使用的频域资源,对于Type2,可以预定义M为除了5和10之外的其它正整数值。
基站还可以用配置上行和/或下行频域资源的DCI通知终端使用的频域资源的具体位置,如新定义的DCI格式用于指示RRC配置的子带集合中的某个子带,终端在可以在收到该DCI后即时更新所使用的子带,也可以在收到DCI后的一段时间后再更新所使用的子带。如终端在时隙n收到新定义的DCI通知上行传输使用子带1,即刻更新上行传输的子带为子带1;或,终端在时隙n收到新定义的DCI通知上行传输使用子带1,可以在间隔offset个时隙后更新上行传输的子带为子带1,即在第n+offset个时隙更新上行传输的子带为子带1。上述offset可以根据终端的射频能力(如切换子带所需要的时长)确定,可以为具有不同射频能力的终端设置不同的offset。所述offset为预定义的、RRC配置的或者DCI配置的。
可选的,基站可以根据实现算法判断UE是否成功接收该DCI。对于该DCI调度下行sub-band,sub-band生效后,基站可以根据在该sub-band上面发送的传输块对应的HARQ-ACK反馈情况决定是否重新发送该DCI,例如在连续发送的K个传输块对应的HARQ-ACK全部为NACK,则基站决定重新 发送该DCI。对于该DCI调度的是上行sub-band,当sub-band生效后,基站可以根据在该sub-band上面接收的传输块的情况决定是否重新发送该DCI,例如连续M个传输块接收失败,则基站决定重新发送该DCI。
可选的,基站也可以根据UE对该DCI正确接收反馈的ACK信息确定UE成功接收该DCI。可选的,该DCI生效时间可以为接收到该DCI的时刻;也可以为反馈正确接收该DCI之后生效,即基站收到该DCI正确接收的反馈之后,基站再在该DCI通知的子带上面进行数据传输。通过该DCI配置子带的生效时长,可以通过高层信令配置具体时长,也可以通过再次配置子带来更新该子带配置。
在本公开提供的实施例中,通过确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,使终端能够确定同一时刻用于上下行传输的频域资源,进而进行数据传输。此外,在本公开提供的实施例中,由于基站可以通过DCI动态调度上行或下行频域资源,相较于现有技术中通过全信道带宽内的动态调度方式,可以节约DCI开销,提高DCI传输的可靠性。
基于同一发明构思,本公开实施例还提供一种数据传输的方法,应用于基站,该方法包括:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;根据所述频域资源进行数据传输。
上述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。对于上述同一时刻、同一时刻用于上行和下行传输的频域资源的相关解释可以参加终端侧中的描述,在此不做赘述。
同一时刻用于上行和下行传输的频域资源可以是在全部时间单元有效,如在全部的符号、时隙、子帧或无线帧等有效;同一时刻用于上行和下行传输的频域资源也可以在部分时间单元有效,如在部分的符号、时隙、子帧或无线帧等有效,可以通过协议预定义,基站以配置的方式通知UE生效/失效的时间单元,从而解决对频谱资源划分为上下行资源之后,部分信道/信号无 法传输的问题,例如SSB。
可选的,上述频谱资源的宽度需要满足一定的条件,比如频谱资源的宽度大于或等于5MHz。通过将频谱资源的宽度设置为大于或等于5MHz,可以在频谱资源进行上下行资源划分后,满足在上行资源上承载RACH信道和在下行资源上承载SSB的要求。例如频谱资源为BWP,支持上下行子带划分的BWP宽度需要大于或等于5MHz。
可选的,本实施例中上行传输的频域资源的宽度也需要满足一定的条件,比如上行传输的频域资源的宽度大于或等于6个RB。通过将上行传输的频域资源的宽度设置为大于或等于6个RB,可以使上行传输的频域资源满足承载RACH信道等的要求。
在本公开提供的实施例中,同一时刻用于上行和下行传输的频域资源,可以只有一个上行和下行传输的频域资源,也可以有多个上行和/或下行传输的频域资源。上行和下行传输的频域资源相互不重叠,若有多个上行和/或下行传输的频域资源,则任意两个相互不重叠。
与终端侧类似的,基站侧也可以通过预定义方式、半静态方式或动态方式,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,具体如下:
采用预定义的方式:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,可以通过下列方式实现:
根据预设的上下行资源划分方式,获取同一时刻用于上行和下行传输的频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
上述预设的上下行资源划分方式可以是相关通信协议中预先规定的划分方式,如在未来的通信协议中规定了上下行传输使用的频域资源的划分规则,基站或终端在使用上行和下行传输的频域资源时,可以根据预设的上下行资源划分方式,直接获取同一时刻用于上行和下行传输的频域资源。具体的实 施例可以参见终端侧的描述,在此不再赘述。
发明提供的实施例中,频谱资源的两侧还可以预留部分资源,这部分资源不做上行和下行传输的频域资源划分。这样可以抑制相邻运营商之间的干扰。
对于同一时刻用于上行和下行传输的频域资源中只有一个上行和下行传输的频域资源的情况,基站可以直接使用对应的频域资源。
上述频域资源的粒度可以是RB级别的,也可以是RB组级别的,还可以是载波级别的等。用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位,用于上行和/或下行传输的频域资源的起始RB索引为6的整数倍。比如CORESET的频域资源是6个RB的倍数,以及CORESET的起始RB索引是6的整数倍,因此用于下行传输的频域资源的粒度以6个RB为单位,同时用于下行传输的频域资源的起始RB索引为6的整数倍,能够有效的匹配控制信道的设计。同时,为了保持用于上行传输和下行传输的频域资源的划分粒度一致,上行传输的频域资源的粒度也6个RB为单位,以及上行传输的频域资源的起始RB索引也为6的整数倍。
在本公开提供的实施例中,根据预设的上下行资源划分方式,获取的同一时刻用于上行和下行传输的频域资源,可以在基站指示双工切换时生效,也可以在基站指示双工切换后的第k个符号或时隙生效,k为整数,所述k值可以通过DCI配置、RRC信令通知或预定义。
采用半静态的方式:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,即由基站确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,之后基站通过RRC信令,将上述频域资源发送给终端。终端接收到上述RRC信令后,根据RRC信令,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源。这样双方就能根据上述频谱资源进行数据传输。
一种可能的实施方式,通过无线资源控制RRC信令,将频域资源发送给终端,还可以通过下列方式实现:
RRC信令是小区级或终端组级或终端级的;通过RRC信令,将小区级或终端组级或终端级的频域资源发送给终端。
基站在配置同一时刻用于上行和下行传输的频域资源时,可以按小区级或UE组级,或UE级进行配置。配置的同一时刻用于上行和下行传输的频域资源,可以是在一个频带或一个载波或一个BWP的范围内,基站可以通过RRC信令通知终端同一时刻用于上行和下行传输的频域资源。
基站可以在同一频谱资源内,为其所辖的每个小区配置同一时刻用于上行和下行传输的频域资源,也可以为每个UE组配置同一时刻用于上行和下行传输的频域资源,还可以为每个UE配置同一时刻用于上行和下行传输的频域资源。基站在完成上述配置后,可以通过RRC信令通知终端上述配置。
在本公开提供的实施例中,频谱资源的两侧还可以预留部分资源,这部分资源不做上行和下行传输的频域资源划分。这样可以抑制相邻运营商之间的干扰。
采用动态的方式:
基站先确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,该频域资源包括多个用于上行传输和/或用于下行传输的频域资源;之后再从多个用于上行传输和/或用于下行传输的频域资源中确定终端使用的一个或多个用于上行传输和/或用于下行传输的频域资源;并通过下行控制信息DCI,将一个或多个用于上行传输和/或用于下行传输的频域资源信息发送给终端。
上述基站确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源可以是通过自定义的方式或半静态的方式确定的。具体动态方式的方案介绍如下:
基于预定义的动态方式:
基站根据预设的上下行资源划分方式,获取同一时刻用于上行和下行传输的频域资源;其中,频域资源是根据预先规定的划分方式对所述频谱资源划分得到的,该频域资源包括多个用于上行传输和/或用于下行传输的频域资 源,基站从多个用于上行传输和/或用于下行传输的频域资源中确定终端使用的一个或多个用于上行传输和/或用于下行传输的频域资源,通过DCI将一个或多个用于上行传输和/或用于下行传输的频域资源的位置信息发送给终端。
终端接收到上述DCI后,根据预设的上下行资源划分方式,获取同一时刻用于上行和下行传输的频域资源;其中,频域资源是根据预先规定的划分方式对所述频谱资源划分得到的,该频域资源包括多个用于上行传输和/或用于下行传输的频域资源(即采用预定义的方式确定同一时刻用于上行和下行传输的频域资源),根据DCI中通知的位置信息,从多个用于上行传输和/或用于下行传输的频域资源中确定一个或多个用于上行传输和/或用于下行传输的频域资源。
基于半静态的动态方式:
基站通过RRC信令,将确定的同一时刻用于上行和下行传输的频域资源发送给终端,该频域资源包括多个用于上行传输和/或用于下行传输的频域资源。之后,基站根据从多个用于上行传输和/或用于下行传输的频域资源中确定终端使用的一个或多个用于上行传输和/或用于下行传输的频域资源,通过DCI将一个或多个用于上行传输和/或用于下行传输的频域资源的位置信息发送给终端。
终端接收到上述DCI后,根据上述RRC信令,确定同一时刻用于上行和下行传输的频域资源。并根据DCI中通知的位置信息,从多个用于上行传输和/或用于下行传输的频域资源中确定一个或多个用于上行传输和/或用于下行传输的频域资源。
具体的实施例可以参见终端侧对应实施例的描述,在此不再赘述。
在本公开提供的实施例中,通过下行控制信息DCI,将一个或多个用于上行传输和/或用于下行传输的频域资源发送给终端,可以通过下列方式实现:
通过DCI的频域资源分配信息,将一个或多个用于上行传输和/或用于下行传输的频域资源送给终端。上述频域资源分配信息包括频域资源分配字段、子带指示字段,或子带分配字段指示。
可选地,多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系,这种关联关系可以是上行频域资源和下行频域资源成对配置的关系。具体实施例可以参见终端侧中的介绍,在此不再赘述。
可选地,DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
基站侧动态方式的方案介绍可以参见终端侧的介绍,在此不再赘述。
如图6所示,本公开实施例提供的一种终端,包括存储器601,收发机602,处理器603;
存储器601,用于存储计算机程序;收发机602,用于在所述处理器603的控制下收发数据;处理器603,用于读取所述存储器601中的计算机程序并执行以下操作:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
根据所述频域资源进行数据传输。
一种可能的实施方式,所述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。
一种可能的实施方式,所述处理器603还用于:
根据预设的上下行资源划分方式,获取所述同一时刻用于上行和下行传输的频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
一种可能的实施方式,所述处理器603还用于:
接收无线资源控制RRC信令,所述RRC信令用于在所述频谱资源内配置所述同一时刻用于上行和下行传输的频域资源;
根据所述RRC信令,确定所述同一时刻用于上行和下行传输的频域资源。
一种可能的实施方式,所述RRC信令用于配置小区级或终端组级或终端级对应的频域资源。
一种可能的实施方式,所述频域资源,包括:
多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述处理器603还用于:
接收下行控制信息DCI,所述DCI用于通知所述终端使用所述多个用于上行传输和/或用于下行传输的频域资源中的一个或多个用于上行传输和/或用于下行传输的频域资源;
根据所述DCI,确定一个或多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述处理器603还用于:
通过所述DCI的频域资源分配信息,确定所述一个或多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系。
一种可能的实施方式,所述DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
一种可能的实施方式,所述频谱资源两侧预留部分资源。
一种可能的实施方式,所述用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位。
一种可能的实施方式,所述用于上行和/或下行传输的频域资源的起始资源块RB索引为6的整数倍。
一种可能的实施方式,所述频谱资源的宽度大于或等于5MHz。
一种可能的实施方式,所述同一时刻用于上行和下行传输的频域资源在部分时间单元有效。
收发机602,用于在处理器603的控制下接收和发送数据。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器603代表的一个或多个处理器和存储器601代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机602可以是多个元件, 即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口604还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器603负责管理总线架构和通常的处理,存储器601可以存储处理器600在执行操作时所使用的数据。
可选的,处理器603可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本申请实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
如图7所示,本公开实施例提供的一种基站,包括存储器701,收发机702,处理器703;
所述存储器701,用于存储计算机程序;所述收发机702,用于在所述处理器703的控制下收发数据;所述处理器703,用于读取所述存储器中的计算机程序并执行以下操作:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
根据所述频域资源进行数据传输。
一种可能的实施方式,所述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。
一种可能的实施方式,所述处理器703还用于:
根据预设的上下行资源划分方式,获取同一时刻用于上行和下行传输的频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
一种可能的实施方式,所述处理器703还用于:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源之后,通过无线资源控制RRC信令,将所述频域资源发送给终端。
一种可能的实施方式,所述处理器703还用于:
所述RRC信令是小区级或终端组级或终端级的;
通过所述RRC信令,将所述小区级或终端组级或终端级的频域资源发送给终端。
一种可能的实施方式,所述频域资源,包括:
多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述处理器703还用于:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源之后,从所述多个用于上行传输和/或用于下行传输的频域资源中确定终端使用的一个或多个用于上行传输和/或用于下行传输的频域资源;
通过下行控制信息DCI,将所述一个或多个用于上行传输和/或用于下行传输的频域资源发送给所述终端。
一种可能的实施方式,所述处理器703还用于:
通过所述DCI的频域资源分配信息,将所述一个或多个用于上行传输和/或用于下行传输的频域资源信息送给所述终端。
一种可能的实施方式,所述多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系。
一种可能的实施方式,所述DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
一种可能的实施方式,所述频谱资源两侧预留部分资源。
一种可能的实施方式,所述用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位。
一种可能的实施方式,所述用于上行和/或下行传输的频域资源的起始资源块RB索引为6的整数倍。
一种可能的实施方式,所述频谱资源的宽度大于或等于5MHz。
一种可能的实施方式,所述同一时刻用于上行和下行传输的频域资源在部分时间单元有效。
收发机702,用于在处理器703的控制下接收和发送数据。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器703代表的一个或多个处理器和存储器701代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器703负责管理总线架构和通常的处理,存储器701可以存储处理器703在执行操作时所使用的数据。
处理器703可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图8所示,本公开实施例提供的一种终端,包括:
确定单元801,用于确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
传输单元802,用于根据所述频域资源进行数据传输。
一种可能的实施方式,所述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。
一种可能的实施方式,所述确定单元801还用于:
根据预设的上下行资源划分方式,获取所述同一时刻用于上行和下行传输的频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
一种可能的实施方式,所述确定单元801还用于:
接收无线资源控制RRC信令,所述RRC信令用于在所述频谱资源内配置所述同一时刻用于上行和下行传输的频域资源;
根据所述RRC信令,确定所述同一时刻用于上行和下行传输的频域资源。
一种可能的实施方式,所述RRC信令用于配置小区级或终端组级或终端级对应的频域资源。
一种可能的实施方式,所述频域资源,包括:
多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述确定单元801还用于:
接收下行控制信息DCI,所述DCI用于通知所述终端使用所述多个用于上行传输和/或用于下行传输的频域资源中的一个或多个用于上行传输和/或用于下行传输的频域资源;
根据所述DCI,确定一个或多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述确定单元801还用于:
通过所述DCI的频域资源分配信息,确定所述一个或多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系。
一种可能的实施方式,所述DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
一种可能的实施方式,所述频谱资源两侧预留部分资源。
一种可能的实施方式,所述用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位。
一种可能的实施方式,所述用于上行和/或下行传输的频域资源的起始资源块RB索引为6的整数倍。
一种可能的实施方式,所述频谱资源的宽度大于或等于5MHz。
一种可能的实施方式,所述同一时刻用于上行和下行传输的频域资源在部分时间单元有效。
如图9所示,本公开实施例提供的一种基站,包括:
确定单元901,用于确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
传输单元902,用于根据所述频域资源进行数据传输。
一种可能的实施方式,所述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。
一种可能的实施方式,所述确定单元901还用于:
根据预设的上下行资源划分方式,获取同一时刻用于上行和下行传输的频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
一种可能的实施方式,所述确定单元901还用于:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源之后,通过无线资源控制RRC信令,将所述频域资源发送给终端。
一种可能的实施方式,所述确定单元901还用于:
所述RRC信令是小区级或终端组级或终端级的;
通过所述RRC信令,将所述小区级或终端组级或终端级的频域资源发送给终端。
一种可能的实施方式,所述频域资源,包括:
多个用于上行传输和/或用于下行传输的频域资源。
一种可能的实施方式,所述确定单元901还用于:
确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源之后,从所述多个用于上行传输和/或用于下行传输的频域资源中确定终端使用 的一个或多个用于上行传输和/或用于下行传输的频域资源;
通过下行控制信息DCI,将所述一个或多个用于上行传输和/或用于下行传输的频域资源发送给所述终端。
一种可能的实施方式,所述确定单元901还用于:
通过所述DCI的频域资源分配信息,将所述一个或多个用于上行传输和/或用于下行传输的频域资源信息送给所述终端。
一种可能的实施方式,所述多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系。
一种可能的实施方式,所述DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
一种可能的实施方式,所述频谱资源两侧预留部分资源。
一种可能的实施方式,所述用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位。
一种可能的实施方式,所述用于上行和/或下行传输的频域资源的起始资源块RB索引为6的整数倍。
一种可能的实施方式,所述频谱资源的宽度大于或等于5MHz。
一种可能的实施方式,所述同一时刻用于上行和下行传输的频域资源在部分时间单元有效。
基于同一发明构思,本公开实施例还提一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上所述的频域资源确定方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或 计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (62)

  1. 一种数据传输的方法,应用于终端,其特征在于,该方法包括:
    确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
    根据所述频域资源进行数据传输。
  2. 如权利要求1所述的方法,其特征在于,所述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。
  3. 如权利要求1所述的方法,其特征在于,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,包括:
    根据预设的上下行资源划分方式,获取所述同一时刻用于上行和下行传输的频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
  4. 如权利要求1所述的方法,其特征在于,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,包括:
    接收无线资源控制RRC信令,所述RRC信令用于在所述频谱资源内配置所述同一时刻用于上行和下行传输的频域资源;
    根据所述RRC信令,确定所述同一时刻用于上行和下行传输的频域资源。
  5. 如权利要求4所述的方法,其特征在于,所述RRC信令用于配置小区级或终端组级或终端级对应的频域资源。
  6. 如权利要求3或4所述的方法,其特征在于,所述频域资源,包括:
    多个用于上行传输和/或用于下行传输的频域资源。
  7. 如权利要求6所述的方法,其特征在于,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源,包括:
    接收下行控制信息DCI,所述DCI用于通知所述终端使用所述多个用于上行传输和/或用于下行传输的频域资源中的一个或多个用于上行传输和/或用于下行传输的频域资源;
    根据所述DCI,确定一个或多个用于上行传输和/或用于下行传输的频域资源。
  8. 如权利要求7所述的方法,其特征在于,根据所述DCI,确定一个或多个用于上行传输和/或用于下行传输的频域资源,包括:
    通过所述DCI的频域资源分配信息,确定所述一个或多个用于上行传输和/或用于下行传输的频域资源。
  9. 如权利要求6所述的方法,其特征在于,所述多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系。
  10. 如权利要求7所述的方法,其特征在于,所述DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
  11. 如权利要求2-5任一项所述的方法,其特征在于,所述频谱资源两侧预留部分资源。
  12. 如权利要求1所述的方法,其特征在于,所述用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位。
  13. 如权利要求1,6-10任一项所述的方法,其特征在于,所述用于上行和/或下行传输的频域资源的起始资源块RB索引为6的整数倍。
  14. 如权利要求1或2所述的方法,其特征在于,所述频谱资源的宽度大于或等于5MHz。
  15. 如权利要求1所述的方法,其特征在于,所述同一时刻用于上行和下行传输的频域资源在部分时间单元有效。
  16. 一种数据传输的方法,应用于基站,其特征在于,包括:
    确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
    根据所述频域资源进行数据传输。
  17. 如权利要求16所述的方法,其特征在于,所述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。
  18. 如权利要求16所述的方法,其特征在于,确定在同一个频谱资源内, 同一时刻用于上行和下行传输的频域资源,包括:
    根据预设的上下行资源划分方式,获取同一时刻用于上行和下行传输的频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
  19. 如权利要求16所述的方法,其特征在于,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源之后,还包括:
    通过无线资源控制RRC信令,将所述频域资源发送给终端。
  20. 如权利要求19所述的方法,其特征在于,通过无线资源控制RRC信令,将所述频域资源发送给终端,包括:
    所述RRC信令是小区级或终端组级或终端级的;
    通过所述RRC信令,将所述小区级或终端组级或终端级的频域资源发送给终端。
  21. 如权利要求18或19所述的方法,其特征在于,所述频域资源,包括:
    多个用于上行传输和/或用于下行传输的频域资源。
  22. 如权利要求21所述的方法,其特征在于,确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源之后,还包括:
    从所述多个用于上行传输和/或用于下行传输的频域资源中确定终端使用的一个或多个用于上行传输和/或用于下行传输的频域资源;
    通过下行控制信息DCI,将所述一个或多个用于上行传输和/或用于下行传输的频域资源发送给所述终端。
  23. 如权利要求22所述的方法,其特征在于,通过下行控制信息DCI,将所述一个或多个用于上行传输和/或用于下行传输的频域资源送给所述终端,包括:
    通过所述DCI的频域资源分配信息,将所述一个或多个用于上行传输和/或用于下行传输的频域资源信息送给所述终端。
  24. 如权利要求21所述的方法,其特征在于,所述多个上行和下行频域 资源中上行频域资源和下行频域资源具有关联关系。
  25. 如权利要求22所述的方法,其特征在于,所述DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
  26. 如权利要求16-20任一项所述的方法,其特征在于,所述频谱资源两侧预留部分资源。
  27. 如权利要求16所述的方法,其特征在于,所述用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位。
  28. 如权利要求16,21-25任一项所述的方法,其特征在于,所述用于上行和/或下行传输的频域资源的起始资源块RB索引为6的整数倍。
  29. 如权利要求16或17所述的方法,其特征在于,所述频谱资源的宽度大于或等于5MHz。
  30. 如权利要求16所述的方法,其特征在于,所述同一时刻用于上行和下行传输的频域资源在部分时间单元有效。
  31. 一种频域资源确定的终端,其特征在于,包括存储器,收发机,处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
    根据所述频域资源进行数据传输。
  32. 如权利要求31所述的终端,其特征在于,所述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。
  33. 如权利要求31所述的终端,其特征在于,所述处理器用于:
    根据预设的上下行资源划分方式,获取所述同一时刻用于上行和下行传输的频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
  34. 如权利要求31所述的终端,其特征在于,所述处理器还用于:
    接收无线资源控制RRC信令,所述RRC信令用于在所述频谱资源内配置所述同一时刻用于上行和下行传输的频域资源;
    根据所述RRC信令,确定所述同一时刻用于上行和下行传输的频域资源。
  35. 如权利要求34所述的终端,其特征在于,所述RRC信令用于配置小区级或终端组级或终端级对应的频域资源。
  36. 如权利要求33或34所述的终端,其特征在于,所述频域资源,包括:
    多个用于上行传输和/或用于下行传输的频域资源。
  37. 如权利要求36所述的终端,其特征在于,所述处理器还用于:
    接收下行控制信息DCI,所述DCI用于通知所述终端使用所述多个用于上行传输和/或用于下行传输的频域资源中的一个或多个用于上行传输和/或用于下行传输的频域资源;
    根据所述DCI,确定一个或多个用于上行传输和/或用于下行传输的频域资源。
  38. 如权利要求37所述的终端,其特征在于,所述处理器还用于:
    通过所述DCI的频域资源分配信息,确定所述一个或多个用于上行传输和/或用于下行传输的频域资源。
  39. 如权利要求36所述的终端,其特征在于,所述多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系。
  40. 如权利要求37所述的终端,其特征在于,所述DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
  41. 如权利要求32-35任一项所述的终端,其特征在于,所述频谱资源两侧预留部分资源。
  42. 如权利要求31所述的终端,其特征在于,所述用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位。
  43. 如权利要求31,36-40任一项所述的终端,其特征在于,所述用于上行和/或下行传输的频域资源的起始资源块RB索引为6的整数倍。
  44. 如权利要求31或32所述的终端,其特征在于,所述频谱资源的宽度大于或等于5MHz。
  45. 如权利要求31所述的终端,其特征在于,所述同一时刻用于上行和下行传输的频域资源在部分时间单元有效。
  46. 一种基站,其特征在于,包括存储器,收发机,处理器;
    所述存储器,用于存储计算机程序;所述收发机,用于在所述处理器的控制下收发数据;所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
    根据所述频域资源进行数据传输。
  47. 如权利要求46所述的基站,其特征在于,所述频谱资源包括TDD band、用于上行的FDD band、用于下行的FDD band、载波carrier、BWP或者用于部署全双工的band。
  48. 如权利要求46所述的基站,其特征在于,所述处理器还用于:
    根据预设的上下行资源划分方式,获取同一时刻用于上行和下行传输的频域资源;其中,所述频域资源是根据预先规定的划分方式对所述频谱资源划分得到的。
  49. 如权利要求46所述的基站,其特征在于,所述处理器还用于:
    确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源之后,
    通过无线资源控制RRC信令,将所述频域资源发送给终端。
  50. 如权利要求49所述的基站,其特征在于,所述处理器还用于:
    所述RRC信令是小区级或终端组级或终端级的;
    通过所述RRC信令,将所述小区级或终端组级或终端级的频域资源发送给终端。
  51. 如权利要求48或49所述的基站,其特征在于,所述频域资源,包括:
    多个用于上行传输和/或用于下行传输的频域资源。
  52. 如权利要求51所述的基站,其特征在于,所述处理器还用于:
    确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源之后,从所述多个用于上行传输和/或用于下行传输的频域资源中确定终端使用的一个或多个用于上行传输和/或用于下行传输的频域资源;
    通过下行控制信息DCI,将所述一个或多个用于上行传输和/或用于下行传输的频域资源发送给所述终端。
  53. 如权利要求50所述的基站,其特征在于,所述处理器还用于:
    通过所述DCI的频域资源分配信息,将所述一个或多个用于上行传输和/或用于下行传输的频域资源信息送给所述终端。
  54. 如权利要求51所述的基站,其特征在于,所述多个上行和下行频域资源中上行频域资源和下行频域资源具有关联关系。
  55. 如权利要求52所述的基站,其特征在于,所述DCI为用于调度PDSCH或PUSCH的DCI,或用于配置上行和/或下行频域资源的DCI。
  56. 如权利要求47-50任一项所述的基站,其特征在于,所述频谱资源两侧预留部分资源。
  57. 如权利要求46所述的基站,其特征在于,所述用于上行/下行传输的频域资源的粒度包括以6个资源块RB为单位。
  58. 如权利要求46,51-55任一项所述的基站,其特征在于,所述用于上行和/或下行传输的频域资源的起始资源块RB索引为6的整数倍。
  59. 如权利要求46或47所述的基站,其特征在于,所述频谱资源的宽度大于或等于5MHz。
  60. 如权利要求46所述的基站,其特征在于,所述同一时刻用于上行和下行传输的频域资源在部分时间单元有效。
  61. 一种终端或基站,其特征在于,包括:
    确定单元,用于确定在同一个频谱资源内,同一时刻用于上行和下行传输的频域资源;
    传输单元,用于根据所述频域资源进行数据传输。
  62. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至30任一项所述的方法。
PCT/CN2022/133310 2022-03-04 2022-11-21 一种数据传输的方法、终端、基站及存储介质 WO2023165171A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210210964.3 2022-03-04
CN202210210964 2022-03-04
CN202210400170.3 2022-04-15
CN202210400170.3A CN116761270A (zh) 2022-03-04 2022-04-15 一种数据传输的方法、终端、基站及存储介质

Publications (1)

Publication Number Publication Date
WO2023165171A1 true WO2023165171A1 (zh) 2023-09-07

Family

ID=87882880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133310 WO2023165171A1 (zh) 2022-03-04 2022-11-21 一种数据传输的方法、终端、基站及存储介质

Country Status (2)

Country Link
TW (1) TW202337265A (zh)
WO (1) WO2023165171A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021202185A1 (en) * 2020-03-30 2021-10-07 Qualcomm Incorporated Configuration of frequency bands for full-duplex slots
WO2021230998A1 (en) * 2020-05-12 2021-11-18 Qualcomm Incorporated Joint shared channel frequency allocation in downlink control information
CN113924757A (zh) * 2019-06-03 2022-01-11 高通股份有限公司 未配对频谱中的频分双工

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113924757A (zh) * 2019-06-03 2022-01-11 高通股份有限公司 未配对频谱中的频分双工
WO2021202185A1 (en) * 2020-03-30 2021-10-07 Qualcomm Incorporated Configuration of frequency bands for full-duplex slots
WO2021230998A1 (en) * 2020-05-12 2021-11-18 Qualcomm Incorporated Joint shared channel frequency allocation in downlink control information

Also Published As

Publication number Publication date
TW202337265A (zh) 2023-09-16

Similar Documents

Publication Publication Date Title
WO2018228561A1 (zh) 资源分配的方法、网络设备和终端设备
US11129143B2 (en) Wireless communication method, network device, user equipment, and system
US10531442B2 (en) Method and apparatus for transmitting and receiving uplink data channel on basis of sub-physical resource block for MTC terminal
CN106162888B (zh) 载波聚合中的pucch资源配置方法及其设备
WO2013002685A1 (en) Scheduling of a user equipment in a radio communication system
US11659534B2 (en) Resource configuration method, network device, and terminal
CN111867116B (zh) 一种通信方法及装置
WO2022078204A1 (zh) Pucch重复传输次数的确定方法、终端及基站
US20230199740A1 (en) Communication method and apparatus
KR20220050157A (ko) 리소스 다중화 방법 및 장치
WO2019137299A1 (zh) 通信的方法和通信设备
US11546123B2 (en) Wireless communication method and device
JP7205557B2 (ja) リソーススケジューリング指示方法及びその装置、通信システム
WO2023165171A1 (zh) 一种数据传输的方法、终端、基站及存储介质
WO2022156567A1 (zh) 信息传输方法、装置、终端设备、网络设备及存储介质
EP4192163A1 (en) Data transmission time domain parameter indication method, ue, and base station
CN116761270A (zh) 一种数据传输的方法、终端、基站及存储介质
CN114765505B (zh) 解调参考信号dmrs的发送方法、接收方法和装置
WO2024088174A1 (zh) 保护间隔的确定方法及装置
TWI754301B (zh) 資源配置、確定方法、裝置及電腦存儲介質
JP7484934B2 (ja) リソース確定方法、リソーススケジューリング方法及び装置
WO2024027603A1 (zh) 非授权频谱中直通链路资源分配方法、装置及存储介质
WO2023024930A1 (zh) 信道调度方法、设备、装置及存储介质
WO2023045709A1 (zh) 动态数据传输方法、装置及存储介质
WO2023134575A1 (zh) 物理下行控制信道pdcch监听方法、装置、设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929599

Country of ref document: EP

Kind code of ref document: A1