WO2023164852A1 - 测量方法及装置 - Google Patents

测量方法及装置 Download PDF

Info

Publication number
WO2023164852A1
WO2023164852A1 PCT/CN2022/078905 CN2022078905W WO2023164852A1 WO 2023164852 A1 WO2023164852 A1 WO 2023164852A1 CN 2022078905 W CN2022078905 W CN 2022078905W WO 2023164852 A1 WO2023164852 A1 WO 2023164852A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
information
signal resource
indication information
resource set
Prior art date
Application number
PCT/CN2022/078905
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280000480.4A priority Critical patent/CN116998174A/zh
Priority to PCT/CN2022/078905 priority patent/WO2023164852A1/zh
Publication of WO2023164852A1 publication Critical patent/WO2023164852A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the present disclosure relates to the technical field of communications, and in particular to a measurement method and device.
  • AI artificial intelligence
  • the application of AI technology is becoming more and more extensive, and the research on applying AI technology to wireless network air interface has also attracted the attention of many scholars.
  • applying AI technology to beam management scenarios can reduce airspace overhead and delay.
  • AI recovery based on a specific beam group not only has better recovery performance, but also reduces the complexity of terminal equipment measurement.
  • the embodiment of the first aspect of the present disclosure provides a measurement method, the method is executed by a terminal device, and the method includes: measuring the reference signal carried by the first reference signal resource in the first reference signal resource set, and obtaining the According to the first quality information of the first reference signal resource; according to the first quality information of the first reference signal resource, and according to the first auxiliary information and the first auxiliary information of the first reference signal resource in the first reference signal resource set /or the second auxiliary information of the second reference signal resource in the second reference signal resource set, and determine the second quality information of the second reference signal resource in the second reference signal resource set.
  • the terminal device can obtain the second quality information of each second reference signal resource without measuring the second reference signal resources in the second reference signal resource set, that is, the terminal device can realize The obtained first quality information of each first reference signal resource in the first reference signal resource set recovers the second quality information of each second reference signal resource in the second reference signal resource set, which can reduce the complexity of terminal device measurement Spend.
  • the embodiment of the second aspect of the present disclosure provides another measurement method, the method is executed by a network device, including: sending first indication information to the terminal device, where the first indication information is used to indicate the first reference
  • the reference signal carried by the first reference signal resource in the signal resource set is measured to obtain the first quality information of the first reference signal resource; where the first quality information of the first reference signal resource is used for Determine a second reference signal resource set according to the first auxiliary information of the first reference signal resource in the first reference signal resource set and/or the second auxiliary information of the second reference signal resource in the second reference signal resource set
  • the second quality information of the second reference signal resource in .
  • the embodiment of the third aspect of the present disclosure provides a measurement device, the measurement device has part or all of the functions of the terminal device in the method described in the first aspect above, for example, the function of the measurement device may have part or all of the functions in the present disclosure
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present disclosure.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the embodiment of the fourth aspect of the present disclosure provides another measurement device, which has part or all of the functions of the network device in the method described in the second aspect above, for example, the function of the measurement device may have part or all of the functions in the present disclosure.
  • the functions in all of the embodiments may also have the functions of implementing any one of the embodiments in the present disclosure independently.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the embodiment of the fifth aspect of the present disclosure provides another measurement device, the device includes a processor, and when the processor calls the computer program in the memory, it executes the method described in the first aspect above, or executes the second aspect above the method described.
  • the embodiment of the sixth aspect of the present disclosure provides another measurement device, the device includes a processor and a memory, and a computer program is stored in the memory, and when the computer program is executed by the processor, the above-mentioned first aspect is executed The method described above, or execute the method described in the second aspect above.
  • the embodiment of the seventh aspect of the present disclosure provides another measurement device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make
  • the device executes the method described in the first aspect above, or executes the method described in the second aspect above.
  • the embodiment of the eighth aspect of the present disclosure provides a communication system, the system includes the measurement device described in the third aspect, or, the system includes the measurement device described in the fourth aspect, or, the system includes the measurement device described in the fifth aspect or, the system includes the measuring device described in the sixth aspect, or, the system includes the measuring device described in the seventh aspect.
  • the embodiment of the ninth aspect of the present disclosure provides a computer-readable storage medium for storing instructions used by the above-mentioned terminal device, and when the instructions are executed, the terminal device executes the method described in the above-mentioned first aspect , or, for storing instructions used by the above network equipment, and when the instructions are executed, the network equipment executes the method described in the above second aspect.
  • the embodiment of the tenth aspect of the present disclosure provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above, or causes the computer to execute the method described in the second aspect above Methods.
  • the embodiment of the eleventh aspect of the present disclosure provides a chip system, the chip system includes at least one processor and an interface, used to support the terminal device to realize the functions involved in the first aspect, or to support the network device to realize the second The functions involved in the aspect, for example, determining or processing at least one of the data and information involved in the above methods.
  • the chip system further includes a memory, and the memory is used for storing necessary computer programs and data of the terminal device and the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the embodiment of the twelfth aspect of the present disclosure provides a computer program that, when running on a computer, causes the computer to execute the method described in the first aspect above, or causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic flow chart of a measurement method provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic flow chart of another measurement method provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic flow chart of another measurement method provided by an embodiment of the present disclosure.
  • Fig. 5 is a schematic flow chart of another measurement method provided by an embodiment of the present disclosure.
  • Fig. 6 is a schematic flow chart of another measurement method provided by an embodiment of the present disclosure.
  • Fig. 7 is a schematic flow chart of another measurement method provided by an embodiment of the present disclosure.
  • FIG. 8 is a first schematic diagram of beam pointing in an embodiment of the present disclosure.
  • FIG. 9 is a second schematic diagram of beam pointing in an embodiment of the present disclosure.
  • Fig. 10 is a schematic flow chart of another measurement method provided by an embodiment of the present disclosure.
  • Fig. 11 is a schematic structural diagram of a measuring device provided by an embodiment of the present disclosure.
  • Fig. 12 is a schematic structural diagram of another measuring device provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and shape of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiments of the present disclosure. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 only includes one network device 101 and one terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 101 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission reception point (transmission reception point or transmit receive point, TRP), a next generation base station (next generation NodeB, gNB) in the NR system, or other future mobile A base station in a communication system or an access node in a wireless fidelity (Wireless Fidelity, WiFi) system, etc.
  • eNB evolved base station
  • TRP transmission reception point or transmit receive point
  • next generation NodeB next generation NodeB
  • gNB next generation NodeB
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present disclosure may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), and the CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • AI+PHY physical layer, air interface physical layer
  • Beam management is an important application scenario of AI+PHY.
  • the application of AI technology can reduce the overhead and delay of the airspace.
  • the purpose of beam selection based on AI technology is to:
  • AI restoration based on a specific beam group has better performance than AI restoration based on a randomly selected beam group.
  • AI recovery refers to recovering the quality information of beams in a large set based on the quality information of beams in a small set, for example, recovering the quality information of 32 beams based on the quality information of 8 beams.
  • the choice of a specific beam group i.e., which beams are selected to form a specific beam group also affects the performance of AI. For example, even if the samples are uniformly sampled, the position of the first beam pair is different, and the final results are very different.
  • the present disclosure provides a measuring method and device.
  • FIG. 2 is a schematic flowchart of a measuring method provided by an embodiment of the present disclosure.
  • the measurement method can be executed by a terminal device in the communication system shown in FIG. 1 .
  • the measurement method may include but not limited to the following steps:
  • Step 201 Measure the reference signal carried by the first reference signal resource in the first reference signal resource set to obtain first quality information of the first reference signal resource.
  • the number of first reference signal resources included in the first reference signal resource set may be one, or may be multiple, which is not limited in the present disclosure.
  • the number of first reference signal resources may be 4, 6, 8 and so on.
  • the reference signal carried by the first reference signal resource may at least include a channel state information-reference signal (CSI-RS), or may also include other downlink reference signals, such as synchronization
  • CSI-RS channel state information-reference signal
  • the reference signal is not limited in the present disclosure.
  • the first quality information may include at least a reference signal receiving power (reference signal receiving power, RSRP) or a signal to interference and noise ratio (or called signal to interference plus noise ratio, signal to interference plus noise ratio, SINR).
  • RSRP reference signal receiving power
  • SINR signal to interference plus noise ratio
  • the terminal device may measure the reference signal carried by the first reference signal resource in the first reference signal resource set to obtain the first quality information of the first reference signal resource.
  • Step 202 according to the first quality information of the first reference signal resource, and according to the first auxiliary information of the first reference signal resource in the first reference signal resource set and/or the second reference signal resource in the second reference signal resource set
  • the second auxiliary information is to determine second quality information of the second reference signal resource in the second reference signal resource set.
  • the number of second reference signal resources included in the second reference signal resource set may be one, or may be multiple, which is not limited in the present disclosure.
  • the number of second reference signal resources may be 24, 32, and so on.
  • the number of second reference signal resources may be greater than the number of first reference signal resources, Alternatively, the quantity of the second reference signal resources may also be less than or equal to the quantity of the first reference signal resources, which is not limited in the present disclosure.
  • the first auxiliary information may at least include: beam pointing information of the first reference signal resource in the first reference signal resource set.
  • the second auxiliary information may at least include: beam pointing information corresponding to the second reference signal resource set, and/or, the quantity of the second reference signal resources.
  • the second quality information may include at least RSRP or SINR.
  • the second quality information may be the same as the first quality information, or the second quality information may also be different from the first quality information, which is not limited in the present disclosure.
  • both the second quality information and the first quality information may be RSRP, or both the second quality information and the first quality information may be SINR, or the second quality information may be RSRP, and the first quality information may be SINR,
  • the second quality information may be SINR
  • the first quality information may be RSRP.
  • the terminal device may use the first quality information of the first reference information resource, and the first auxiliary information and/or the second reference signal resource set of the first reference signal resource in the first reference signal resource set
  • the second auxiliary information of the second reference signal resource in the second reference signal resource set determines the second quality information of the second reference signal resource in the second reference signal resource set.
  • the terminal device may determine the second reference signal resource in the second reference signal resource set according to the first quality information of the first reference information resource and the first auxiliary information of the first reference signal resource in the first reference signal resource set.
  • the second quality information of the reference signal resource may be determined according to the first quality information of the first reference information resource and the first auxiliary information of the first reference signal resource in the first reference signal resource set.
  • the terminal device may determine the second reference signal resource in the second reference signal resource set according to the first quality information of the first reference information resource and the second auxiliary information of the second reference signal resource in the second reference signal resource set. Second quality information of the two reference signal resources.
  • the terminal device may use the first quality information of the first reference information resource, and the first auxiliary information of the first reference signal resource in the first reference signal resource set and the second The second auxiliary information of the reference signal resource determines the second quality information of the second reference signal resource in the second reference signal resource set.
  • the terminal device may determine the The second quality information of each second reference signal resource in the second reference signal resource set. For example, the terminal device may use the AI model to determine the second quality information of each second reference signal resource in the second reference signal resource set according to the first quality information and the first auxiliary information and/or the second auxiliary information.
  • the terminal device measures the reference signal carried by the first reference signal resource in the first reference signal resource set to obtain the first quality information of the first reference signal resource, and according to the first reference signal The first quality information of the resource, and according to the first auxiliary information of the first reference signal resource in the first reference signal resource set and/or the second auxiliary information of the second reference signal resource in the second reference signal resource set, determine the second The second quality information of the second reference signal resource in the reference signal resource set. Therefore, the terminal device can obtain the second quality information of each second reference signal resource without measuring the second reference signal resources in the second reference signal resource set, that is, the terminal device can obtain the second quality information based on the measurement.
  • the second quality information of each second reference signal resource in the second reference signal resource set is recovered from the first quality information of each first reference signal resource in a reference signal resource set, which can reduce the complexity of terminal device measurement.
  • FIG. 3 is a schematic flowchart of another measurement method provided by an embodiment of the present disclosure.
  • the measurement method can be executed by the terminal equipment in the communication system shown in Fig. 1 .
  • the measuring method may be executed alone, or may be executed in combination with any embodiment in the present disclosure or a possible implementation manner in the embodiment, and may also be executed in combination with any technical solution in related technologies.
  • the measurement method may include but not limited to the following steps:
  • Step 301 receiving first indication information sent by a network device, wherein the first indication information is used to indicate a first reference signal resource in a first reference signal resource set.
  • each first reference signal resource in the first reference signal resource set may be indicated by the network device, that is, the network device may send the first indication information to the terminal device, and the first indication information is used to indicate the first Each first reference signal resource in the reference signal resource set.
  • Step 302 Measure the reference signal carried by the first reference signal resource in the first reference signal resource set to obtain first quality information of the first reference signal resource.
  • Step 303 according to the first quality information of the first reference signal resource, and according to the first auxiliary information of the first reference signal resource in the first reference signal resource set and/or the second reference signal resource in the second reference signal resource set
  • the second auxiliary information is to determine second quality information of the second reference signal resource in the second reference signal resource set.
  • steps 302 to 303 may be implemented in any one of the embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be repeated here.
  • the network device indicates the first reference signal resource in the first reference signal resource set, so that the terminal device can measure the reference signal carried by the indicated first reference signal resource to obtain the first reference signal
  • the first quality information of the resource and according to the first quality information of the first reference signal resource, and according to the first auxiliary information of the first reference signal resource in the first reference signal resource set and/or the second reference signal resource in the second reference signal resource set
  • the second auxiliary information of the two reference signal resources determines the second quality information of the second reference signal resources in the second reference signal resource set. Therefore, the terminal device can obtain the second quality information of each second reference signal resource without measuring the second reference signal resources in the second reference signal resource set, that is, the terminal device can obtain the second quality information based on the measurement.
  • the second quality information of each second reference signal resource in the second reference signal resource set is recovered from the first quality information of each first reference signal resource in a reference signal resource set, which can reduce the complexity of terminal device measurement.
  • FIG. 4 is a schematic flowchart of another measurement method provided by an embodiment of the present disclosure.
  • the measurement method can be executed by a terminal device in the communication system shown in FIG. 1 .
  • the measuring method may be executed alone, or may be executed in combination with any embodiment in the present disclosure or a possible implementation manner in the embodiment, and may also be executed in combination with any technical solution in related technologies.
  • the measurement method may include but not limited to the following steps:
  • Step 401 Receive second indication information sent by the network device, where the second indication information is used to indicate second auxiliary information, where the second auxiliary information includes the number of second reference signal resources included in the second reference signal resource set .
  • the second auxiliary information of the second reference signal resource set may be indicated by the network device, that is, the network device may send the second indication information to the terminal device, where the second indication information is used to indicate the second auxiliary information,
  • the second auxiliary information may include the quantity of the second reference signal resources included in the second reference signal resource set.
  • the number of second reference signal resources may be determined by the network device according to a rule.
  • the foregoing rules may be predefined rules.
  • the network device may determine the quantity of the second reference signal resources according to a predefined rule and/or an AI model.
  • the predefined rule may be: the quantity of the second reference signal resources is a set multiple of the quantity of the first reference signal resources. Assuming that the above setting multiple is 4 and the number of first reference signal resources is x, then the number of second reference signal resources is: x*4.
  • the predefined rule may be: set the quantity of the second reference signal resources as a constant value, such as Y.
  • the corresponding relationship between different AI models and resource quantities can be preset.
  • the above corresponding relationship can be queried according to the AI model actually used by the terminal device, and the resource quantity corresponding to the AI model can be determined, and used as the first 2.
  • the number of reference signal resources For example, the AI model is A, the number of second reference signal resources is z, the AI model is B, and the number of second reference signal resources is y.
  • the AI model actually used by the terminal device may be indicated to the terminal device by the network device, or may be selected by the terminal device itself, which is not limited in the present disclosure.
  • the network device may send indication information to the terminal device, which is recorded as fifth indication information in this disclosure, wherein the fifth indication information may include the index Index of the AI model, which is used for Instructs the end device which AI model to choose.
  • the network device uses separate indication information (that is, the fifth indication information) to instruct the AI model.
  • the index Index of the AI model can also be embedded in some existing indication information (such as In the first indication information, the second indication information, etc.), the present disclosure does not limit this.
  • the corresponding relationship/criteria between different quantities of first reference signal resources, AI models, and quantities of second reference signal resources may be established in advance.
  • the above correspondence/criterion can be queried to determine the number of first reference signal resources included in the first reference signal resource set and the AI model actually used by the terminal device The number of corresponding second reference signal resources.
  • the second indication information may at least be carried in radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the RRC signaling may directly carry the number of second reference signal resources.
  • the RRC signaling may carry a scaling factor, where the scaling factor is a ratio of the quantity of the second reference signal resources to the quantity of the first reference signal resources.
  • Step 402 Measure the reference signal carried by the first reference signal resource in the first reference signal resource set to obtain first quality information of the first reference signal resource.
  • step 401 is executed before step 402.
  • step 401 can also be executed in parallel with step 402, or step 401 It can also be executed after step 402, which is not limited.
  • Step 403 according to the first quality information of the first reference signal resource, and according to the first auxiliary information of the first reference signal resource in the first reference signal resource set and/or the second reference signal resource in the second reference signal resource set
  • the second auxiliary information is to determine second quality information of the second reference signal resource in the second reference signal resource set.
  • steps 402 to 403 may be implemented in any one of the embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be repeated here.
  • the network device indicates the second auxiliary information of the second reference signal resource in the second reference signal resource set, so that the terminal device can measure the reference signal carried by the first reference signal resource to obtain the first The first quality information of the reference signal resource, and according to the first quality information of the first reference signal resource, and according to the first auxiliary information of the first reference signal resource in the first reference signal resource set and/or the second information indicated by the network device
  • the auxiliary information is used to determine the second quality information of the second reference signal resource in the second reference signal resource set. Therefore, the terminal device can obtain the second quality information of each second reference signal resource without measuring the second reference signal resources in the second reference signal resource set, that is, the terminal device can obtain the second quality information based on the measurement.
  • the second quality information of each second reference signal resource in the second reference signal resource set is recovered from the first quality information of each first reference signal resource in a reference signal resource set, which can reduce the complexity of terminal device measurement.
  • FIG. 5 is a schematic flowchart of another measurement method provided by an embodiment of the present disclosure.
  • the measurement method can be executed by a terminal device in the communication system shown in FIG. 1 .
  • the measuring method may be executed alone, or may be executed in combination with any embodiment in the present disclosure or a possible implementation manner in the embodiment, and may also be executed in combination with any technical solution in related technologies.
  • the measurement method may include but not limited to the following steps:
  • Step 501 Receive third indication information sent by the network device, where the third indication information is used to indicate first auxiliary information, where the first auxiliary information includes the first reference signal resource of each first reference signal resource in the first reference signal resource set. A beam is directed at the information.
  • the first auxiliary information of the first reference signal resource set may be indicated by the network device, that is, the network device may send third indication information to the terminal device, where the third indication information is used to indicate the first auxiliary information,
  • the first auxiliary information may include first beam pointing information of each first reference signal resource in the second reference signal resource set.
  • the first beam pointing information may include horizontal direction pointing information and vertical direction pointing information.
  • the first beam pointing information of the first reference signal resource may be displayed and sent by the network device, for example, the horizontal direction pointing information in the first beam pointing information may be The pointing information in the vertical direction may be ⁇ 1.
  • the first beam pointing information may also include beamwidth information, where the beamwidth information may include but not limited to half-power beamwidth, half-power angle, 3dB beamwidth, etc., and the 3dB beamwidth may include Horizontal 3dB width, vertical 3dB width.
  • the third indication information may be carried in reference signal configuration information RS configuration corresponding to the first reference signal resource.
  • the first reference signal resource may have a corresponding RS configuration, and the RS configuration may be configured with first beam pointing information corresponding to the first reference signal resource.
  • the terminal device After receiving the RS configuration sent by the network device, the terminal device can determine the first beam pointing information of the first reference signal resource.
  • the third indication information can also be sent independently of the RS configuration.
  • the third indication information can be indicated by at least one or a combination of the following signaling: RRC signaling; media Access control control element (media access control control element, MAC CE) signaling; downlink control information (downlink control information, DCI) signaling.
  • the beam pointing information corresponding to the activated reference signal RS may be indicated in the MAC CE signaling.
  • the third indication information may include an index index of a reference signal carried by the first reference signal resource; where the index of the reference signal corresponds to the beam pointing.
  • the correspondence between the beam pointing and the index of the reference signal may be predefined, so that in the present disclosure, the terminal device determines the index of the reference signal carried by the first reference signal resource according to the third indication information sent by the network device. After indexing, the above corresponding relationship can be queried according to the index of the reference signal, and the beam pointing corresponding to the index of the reference signal carried by the first reference signal resource is determined, and used as the first beam pointing information of the first reference signal resource.
  • the beam pointing range in the horizontal direction Encode each reference signal with the beam pointing range [ ⁇ 1, ⁇ 2] in the vertical direction, and obtain the beam pointing information corresponding to the index of each reference signal.
  • the beam pointing information corresponding to the reference signal with index 1 is Therefore, according to the index of the reference signal and the beam pointing information, a corresponding relationship between the index of the reference signal and the beam pointing can be established.
  • the third indication information may include a quasi-co-location relationship between the first beam pointing information of the first reference signal resource and the target reference signal of known beam pointing information.
  • the first reference signal resource of the first reference signal resource may be indicated by performing quasi co-location (Quasi Co-Location, QCL) with a target reference signal of known beam pointing information.
  • QCL quasi co-location
  • Beam pointing information may be determined by any of the above methods, or may also be determined by other methods, which is not limited in the present disclosure.
  • Step 502 Measure the reference signal carried by the first reference signal resource in the first reference signal resource set to obtain first quality information of the first reference signal resource.
  • step 501 is executed before step 502.
  • step 501 can also be executed in parallel with step 502, or step 501 It can also be executed after step 502, which is not limited.
  • Step 503 according to the first quality information of the first reference signal resource, and according to the first auxiliary information of the first reference signal resource in the first reference signal resource set and/or the second reference signal resource in the second reference signal resource set
  • the second auxiliary information is to determine second quality information of the second reference signal resource in the second reference signal resource set.
  • steps 502 to 503 may be implemented in any one of the embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be repeated here.
  • the network device indicates the first auxiliary information of the first reference signal resource in the first reference signal resource set, so that the terminal device can measure the reference signal carried by the first reference signal resource to obtain the first The first quality information of the reference signal resource, and according to the first quality information of the first reference signal resource, and according to the first auxiliary information indicated by the network device and/or the second information of the second reference signal resource in the second reference signal resource set
  • the auxiliary information is used to determine the second quality information of the second reference signal resource in the second reference signal resource set. Therefore, the terminal device can obtain the second quality information of each second reference signal resource without measuring the second reference signal resources in the second reference signal resource set, that is, the terminal device can obtain the first quality information based on the measurement.
  • the second quality information of each second reference signal resource in the second reference signal resource set is recovered from the first quality information of each first reference signal resource in a reference signal resource set, which can reduce the complexity of terminal device measurement.
  • FIG. 6 is a schematic flowchart of another measurement method provided by an embodiment of the present disclosure.
  • the measurement method can be executed by a terminal device in the communication system shown in FIG. 1 .
  • the measuring method may be executed alone, or may be executed in combination with any embodiment in the present disclosure or a possible implementation manner in the embodiment, and may also be executed in combination with any technical solution in related technologies.
  • the measurement method may include but not limited to the following steps:
  • Step 601 Receive fourth indication information sent by a network device, where the fourth indication information is used to indicate second auxiliary information, where the second auxiliary information includes second beam pointing information corresponding to the second reference signal resource set.
  • the second auxiliary information of the second reference signal resource set may be indicated by the network device, that is, the network device may send fourth indication information to the terminal device, where the fourth indication information is used to indicate the second auxiliary information,
  • the second auxiliary information may include second beam pointing information corresponding to the second reference signal resource set.
  • the second beam pointing information may include a beam pointing information range in a horizontal direction and a beam pointing information range in a vertical direction.
  • the second beam pointing information may be displayed and sent by the network device.
  • the beam pointing information range in the horizontal direction in the second beam pointing information may be
  • the beam pointing information range in the vertical direction may be [ ⁇ 1, ⁇ 2].
  • the second beam pointing information may also include beamwidth information, where the beamwidth information may include but not limited to half-power beamwidth, half-power angle, 3dB beamwidth, etc., and the 3dB beamwidth may include Horizontal 3dB width, vertical 3dB width.
  • the second beam pointing information is determined by the network device according to the quantity of second reference signal resources.
  • the network device may determine the second beam pointing information of the second reference signal resource set according to the AI model and the quantity of the second reference signal resources.
  • the corresponding relationship/criteria between different AI models, resource quantities, and beam pointing information can be preset.
  • the network device can query the above-mentioned corresponding relationship/criteria to determine and use the AI model and the second reference signal resource.
  • the beam pointing information corresponding to the number is used as the second beam pointing information.
  • the second beam pointing information may be obtained by the network device querying the correspondence between the number of resources and the beam pointing according to the number of second reference signal resources.
  • the correspondence between the beam pointing and the number of resources can be predefined. For example, if the number of resources is 8, the information range of the beam pointing in the horizontal direction is The beam pointing information range in the vertical direction is [ ⁇ 1, ⁇ 2]. For another example, if the number of resources is 24, the beam pointing information range in the horizontal direction is The beam pointing information range in the vertical direction is [ ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4].
  • the network device may query the correspondence between the resource quantity and the beam direction according to the quantity of the second reference signal resources, and determine the second beam direction information corresponding to the quantity of the second reference signal resources.
  • the fourth indication information may include the quantity of resources; where there is a corresponding relationship between the quantity of resources and the direction of the beam.
  • the network device may send the corresponding relationship between the resource quantity and the beam direction to the terminal device in advance, for example, the network device may configure the above corresponding relationship through RRC signaling, for example, the above corresponding relationship may be configured through the RRC table, that is, RRCtable relation. Therefore, in the present disclosure, after receiving the fourth indication information including the resource quantity (that is, the quantity of the second reference signal resource), the terminal device can query the above correspondence according to the resource quantity, and determine the beam pointing information corresponding to the resource quantity, And as the second beam pointing information.
  • the fourth indication information may include the corresponding relationship between the resource quantity and the beam direction, and the resource quantity (that is, the quantity of the second reference signal resources), so that in the present disclosure, the terminal device receives the After four indication information, according to the quantity of the second reference signal resources, the corresponding relationship between the resource quantity and the beam direction can be queried, and the beam direction information corresponding to the quantity of the second reference signal resource can be determined as the second beam direction information.
  • the fourth indication information may be indicated by a combination of at least one or more of the following signalings: RRC signaling; MAC CE signaling; DCI signaling.
  • Step 602 Measure the reference signal carried by the first reference signal resource in the first reference signal resource set to obtain first quality information of the first reference signal resource.
  • step 601 does not limit the execution sequence of steps 601 and 602.
  • FIG. 6 is only an example in which step 601 is executed before step 602. In practical applications, step 601 can also be executed in parallel with step 602, or step 601 It can also be executed after step 602, which is not limited.
  • Step 603 according to the first quality information of the first reference signal resource, and according to the first auxiliary information of the first reference signal resource in the first reference signal resource set and/or the second reference signal resource in the second reference signal resource set
  • the second auxiliary information is to determine second quality information of the second reference signal resource in the second reference signal resource set.
  • steps 602 to 603 may be implemented in any one of the embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be repeated here.
  • the network device indicates the second auxiliary information of the second reference signal resource in the second reference signal resource set, so that the terminal device can measure the reference signal carried by the first reference signal resource to obtain the first The first quality information of the reference signal resource, and according to the first quality information of the first reference signal resource, and according to the first auxiliary information of the first reference signal resource in the first reference signal resource set and/or the second information indicated by the network device
  • the auxiliary information is used to determine the second quality information of the second reference signal resource in the second reference signal resource set. Therefore, the terminal device can obtain the second quality information of each second reference signal resource without measuring the second reference signal resources in the second reference signal resource set, that is, the terminal device can obtain the second quality information based on the measurement.
  • the second quality information of each second reference signal resource in the second reference signal resource set is recovered from the first quality information of each first reference signal resource in a reference signal resource set, which can reduce the complexity of terminal device measurement.
  • FIG. 7 is a schematic flowchart of another measurement method provided by an embodiment of the present disclosure.
  • the measurement method can be executed by a terminal device in the communication system shown in FIG. 1 .
  • the measuring method may be executed alone, or may be executed in combination with any embodiment in the present disclosure or a possible implementation manner in the embodiment, and may also be executed in combination with any technical solution in related technologies.
  • the measurement method may include but not limited to the following steps:
  • Step 701 Measure the reference signal carried by the first reference signal resource in the first reference signal resource set to obtain first quality information of the first reference signal resource.
  • Step 702 according to the first quality information of the first reference signal resource, and according to the first auxiliary information of the first reference signal resource in the first reference signal resource set and/or the second reference signal resource in the second reference signal resource set
  • the second auxiliary information is to determine second quality information of the second reference signal resource in the second reference signal resource set.
  • steps 701 to 702 may be implemented in any one of the embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be repeated here.
  • Step 703 sending indication information of the second quality information to the network device.
  • the indication information of the second quality information includes: an identifier of at least one target reference signal resource determined from each second reference signal resource according to the second quality information of each second reference signal resource; and/or, at least one target The second quality information of the reference signal resource.
  • the terminal device may determine the resource with the highest second quality information from each second reference signal resource according to the second quality information of each second reference signal resource.
  • the target reference signal resource so that the identification (such as ID) of the target reference signal resource and/or the second quality information of the target reference signal resource can be sent to the network device.
  • the terminal device may assign each second reference signal resource according to the second quality
  • the value of the information is sorted from high to low, and a set number of second reference signal resources sorted first are selected as target reference signal resources, so that the identification of each target reference signal resource can be sent to the network device, and/or, Second quality information of each target reference signal resource.
  • the indication information of the second quality information sent to the network device may include the identification of each target reference signal resource , may also include: the second quality information of the target reference signal resources sorted in the first place, and the difference information of the target reference signal resources ranked in the non-first place, the difference information may be the target reference signal resources sorted in the non-first place and the sorted in The difference information of the second quality information between the previous target reference signal resources.
  • the indication information of the second quality information is sent to the network device, wherein the indication information of the second quality information includes: according to the second quality information of each second reference signal resource, from each second reference signal resource An identifier of at least one target reference signal resource determined in the signal resources; and/or, second quality information of the at least one target reference signal resource.
  • the terminal device reports the identifier and/or the second quality information of the second reference signal resource in the second reference signal resource set to the network device.
  • the network device may send The device indicates the quantity (such as 24) of the second reference signal resources included in the second reference signal resource set.
  • the network device may also send the first reference signal resource in the first reference signal resource set to the terminal device, and indicate to the terminal device the first beam pointing information of the first reference signal resource in the first reference signal resource set, for example, When the number of first reference signal resources is 6, the first beam pointing information can be as shown in (1,1), (2,2), (3,3), (3,4), (3,5 ), (4, 6).
  • FIG. 8 there are 6 angles in the horizontal direction (that is, the horizontal direction), and 4 angles in the longitudinal direction (vertical direction) to form beam directions.
  • the terminal device measures each first reference signal resource in the first reference signal resource set, obtains the RSRP of each first reference signal resource in the first reference signal resource set, and predicts the second reference signal resource based on the six measured RSRPs.
  • the RSRPs of the 24 second reference signal resources in the signal resource set for example, the RSRPs of the 24 CSI-RS resources whose beam directions are (1, 1)-(4, 6) in FIG. 8 .
  • CRI CSI-RS resource indicator, channel state information reference signal resource identifier
  • the network device may send the terminal The device indicates the quantity and beamwidth (such as 10°) of the second reference signal resources included in the second reference signal resource set.
  • the network device may also send the first reference signal resource in the first reference signal resource set to the terminal device, and indicate to the terminal device the first beam pointing information and the beam width of the first reference signal resource in the first reference signal resource set ( For example, 20°), for example, the first beam pointing information may be shown as ABCDEF in FIG. 9 .
  • the terminal device may predict the RSRP of the 24 second reference signal resources in the second reference signal resource set based on the measured 6 RSRPs, for example In FIG. 9 , beams point to RSRPs of 24 CSI-RS resources (1, 1)-(4, 6).
  • a CSI reporting configuration is associated with a CSI resource configuration and an AI model, where the AI model may include the number of second reference signal resources included in the second reference signal resource set and the number of First beam pointing information of a first reference signal resource in a reference signal resource set.
  • a CSI reporting configuration is associated with a CSI resource configuration, where the CSI resource configuration may include the index of the first reference signal resource in the first reference signal resource set and the first beam direction information, and implicitly includes the number of first reference signal resources included in the first reference signal resource set; the CSI reporting configuration may include the number of second reference signal resources included in the second reference signal resource set, and may also include the number of second reference signal resources included in the second reference signal resource set Two beam pointing information.
  • a CSI reporting configuration is associated with a CSI resource configuration, where the CSI resource configuration may include the index of the first reference signal resource in the first reference signal resource set and the first beam direction information, and implicitly includes the number of first reference signal resources included in the first reference signal resource set.
  • Each CSI reporting configuration in the CSI aperiodic trigger state table CSI-AperiodicTriggerStateList and/or the CSI semi-persistent trigger state table CSI-SemiPersistentOnPUSCH-TriggerStateList on the Physical Uplink Shared Channel (PUSCH) is associated with an AI model, wherein, the AI model may include a rule for determining the quantity of the second reference signal resources included in the second reference signal resource set.
  • the above information may be reflected in RRC signaling of CSI reporting configuration and/or CSI resource configuration and/or AI configuration, and may also be reflected in MACCE signaling and/or DCI signaling.
  • FIG. 10 is a schematic flowchart of another measurement method provided by an embodiment of the present disclosure.
  • the measurement method can be executed by a network device in the communication system shown in FIG. 1 .
  • the measurement method may include but not limited to the following steps:
  • Step 1001 Send first indication information to the terminal device, where the first indication information is used to indicate to measure the reference signal carried by the first reference signal resource in the first reference signal resource set, so as to obtain the first reference signal resource First quality information.
  • the first quality information of the first reference signal resource is used for the first auxiliary information of the first reference signal resource in the first reference signal resource set and/or the second reference signal resource of the second reference signal resource in the second reference signal resource set.
  • the second auxiliary information is to determine the second quality information of the second reference signal resource in the second reference signal resource set.
  • the reference signal carried by the first reference signal resource includes at least a CSI-RS.
  • the network device may send the second indication information to the terminal device, where the second indication information is used to indicate the second auxiliary information, where the second auxiliary information includes the second The quantity of the second reference signal resources included in the reference signal resource set.
  • the quantity of the second reference signal resources is determined by a rule.
  • the second indication information is at least carried in the RRC signaling.
  • the network device may send third indication information to the terminal device, where the third indication information is used to indicate the first auxiliary information, where the first auxiliary information includes the first The first beam pointing information of each first reference signal resource in the reference signal resource set.
  • the third indication information is indicated by at least one or a combination of multiple signalings in the following signaling: RRC signaling; MAC CE signaling; DCI signaling.
  • the third indication information includes an index of a reference signal; where there is a corresponding relationship between the index of the reference signal and the beam pointing.
  • the third indication information includes a quasi-co-location relationship between the first beam pointing information of the first reference signal resource and the target reference signal of known beam pointing information.
  • the first beam pointing information includes horizontal beam pointing information and vertical beam pointing information.
  • the first beam pointing information further includes beamwidth information, where the beamwidth information includes at least one of a half-power beamwidth, a half-power angle, and a 3dB beamwidth.
  • the network device may send fourth indication information to the terminal device, where the fourth indication information is used to indicate the second auxiliary information, where the second auxiliary information includes the second The second beam pointing information corresponding to the reference signal resource set.
  • the fourth indication information is indicated by at least one or a combination of multiple signalings in the following signaling: RRC signaling; MAC CE signaling; DCI signaling.
  • the second beam pointing information is determined according to the number of second reference signal resources.
  • the second beam pointing information is obtained by querying the correspondence between the number of resources and the beam pointing according to the number of second reference signal resources.
  • the fourth indication information includes a resource quantity; where there is a corresponding relationship between the resource quantity and the beam direction.
  • the second beam pointing information includes a horizontal beam pointing information range and a vertical beam pointing information range.
  • the second beam pointing information further includes beam width information, where the beam width information includes at least one of half power beam width, half power angle, and 3dB beam width.
  • the first quality information and/or the second quality information includes at least SINR or RSRP.
  • the network device may also receive indication information of the second quality information sent by the terminal device; where the indication information of the second quality information includes:
  • the second quality information is an identifier of at least one target reference signal resource determined from each second reference signal resource; and/or, second quality information of at least one target reference signal resource.
  • the network device sends the first indication information to the terminal device, where the first indication information is used to indicate to measure the reference signal carried by the first reference signal resource in the first reference signal resource set , to obtain the first quality information of the first reference signal resource; wherein, the first quality information of the first reference signal resource is used according to the first auxiliary information and/or of the first reference signal resource in the first reference signal resource set
  • the second auxiliary information of the second reference signal resources in the second reference signal resource set determines the second quality information of the second reference signal resources in the second reference signal resource set.
  • the terminal device can obtain the second quality information of each second reference signal resource without measuring the second reference signal resources in the second reference signal resource set, that is, the terminal device can obtain the second quality information based on the measurement.
  • the second quality information of each second reference signal resource in the second reference signal resource set is recovered from the first quality information of each first reference signal resource in a reference signal resource set, which can reduce the complexity of terminal device measurement.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of terminal devices and network devices.
  • the terminal device and the network device may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 11 is a schematic structural diagram of a measurement device 110 provided by an embodiment of the present disclosure.
  • the measurement device 110 shown in FIG. 11 may include a processing unit 1101 and a transceiver unit 1102 .
  • the transceiver unit 1102 may include a sending unit and/or a receiving unit, the sending unit is used to implement a sending function, the receiving unit is used to implement a receiving function, and the sending and receiving unit may implement a sending function and/or a receiving function.
  • the measurement device 110 may be a terminal device, or a device in the terminal device, or a device that can be used in conjunction with the terminal device; or, the measurement device 110 may be a network device, or a device in the network device, or It is a device that can be used with network equipment.
  • the processing unit 1101 is configured to measure the reference signal carried by the first reference signal resource in the first reference signal resource set to obtain the first quality information of the first reference signal resource, and, According to the first quality information of the first reference signal resource, and according to the first auxiliary information of the first reference signal resource in the first reference signal resource set and/or the second auxiliary information of the second reference signal resource in the second reference signal resource set The information is to determine the second quality information of the second reference signal resource in the second reference signal resource set.
  • the transceiving unit 1102 is configured to receive first indication information sent by the network device, where the first indication information is used to indicate the first reference signal resource in the first reference signal resource set.
  • the reference signal carried by the first reference signal resource includes at least a channel state information reference signal CSI-RS.
  • the transceiver unit 1102 is further configured to receive second indication information sent by the network device, where the second indication information is used to indicate second auxiliary information, where the second auxiliary information includes a second reference signal resource The number of second reference signal resources included in the set.
  • the second indication information is at least carried in RRC signaling.
  • the transceiver unit 1102 is further configured to receive third indication information sent by the network device, where the third indication information is used to indicate the first auxiliary information, where the first auxiliary information includes the first reference signal resource First beam pointing information of each first reference signal resource in the set.
  • the third indication information is indicated by at least one or a combination of the following signalings: RRC signaling; MAC CE signaling; DCI signaling.
  • the third indication information includes an index of the reference signal; wherein, the index of the reference signal has a corresponding relationship with the beam pointing.
  • the third indication information includes a quasi-co-location relationship between the first beam pointing information of the first reference signal resource and the target reference signal of known beam pointing information.
  • the first beam pointing information includes horizontal direction pointing information and vertical direction pointing information.
  • the first beam pointing information further includes beamwidth information, where the beamwidth information includes at least one of half-power beamwidth, half-power angle, and 3dB beamwidth.
  • the transceiver unit 1102 is further configured to receive fourth indication information sent by the network device, where the fourth indication information is used to indicate the second auxiliary information, where the second auxiliary information includes the second reference signal resource Collect corresponding second beam pointing information.
  • the fourth indication information is indicated by at least one or a combination of the following signalings: RRC signaling; MAC CE signaling; DCI signaling.
  • the fourth indication information includes the quantity of resources; wherein, there is a corresponding relationship between the quantity of resources and the direction of the beam.
  • the second beam pointing information includes a horizontal beam pointing information range and a vertical beam pointing information range.
  • the second beam pointing information further includes beam width information, wherein the beam width information includes at least one of half power beam width, half power angle, and 3dB beam width.
  • the first quality information and/or the second quality information includes at least SINR or RSRP.
  • the transceiver unit 1102 is further configured to send indication information of the second quality information to the network device; wherein the indication information of the second quality information includes: according to the second quality information of each second reference signal resource, from An identifier of at least one target reference signal resource determined in each second reference signal resource; and/or second quality information of at least one target reference signal resource.
  • the transceiver unit 1102 is configured to send first indication information to the terminal device, wherein the first indication information is used to indicate the reference to the first reference signal resource bearer in the first reference signal resource set The signal is measured to obtain the first quality information of the first reference signal resource; wherein, the first quality information of the first reference signal resource is used according to the first auxiliary information of the first reference signal resource in the first reference signal resource set and/or the second auxiliary information of the second reference signal resources in the second reference signal resource set, to determine the second quality information of the second reference signal resources in the second reference signal resource set.
  • the reference signal carried by the first reference signal resource includes at least a channel state information reference signal CSI-RS.
  • the transceiving unit 1102 is further configured to send second indication information to the terminal device, where the second indication information is used to indicate second auxiliary information, where the second auxiliary information includes a second reference signal resource set The number of included second reference signal resources.
  • the number of second reference signal resources is determined by a rule.
  • the second indication information is at least carried in RRC signaling.
  • the transceiver unit 1102 is further configured to send third indication information to the terminal device, where the third indication information is used to indicate the first auxiliary information, where the first auxiliary information includes the first reference signal resource set First beam pointing information of each first reference signal resource in .
  • the third indication information is indicated by at least one or a combination of the following signalings: RRC signaling; MAC CE signaling; DCI signaling.
  • the third indication information includes an index of the reference signal; wherein, the index of the reference signal has a corresponding relationship with the beam pointing.
  • the third indication information includes a quasi-co-location relationship between the first beam pointing information of the first reference signal resource and the target reference signal of known beam pointing information.
  • the first beam pointing information includes horizontal beam pointing information and vertical beam pointing information.
  • the first beam pointing information further includes beamwidth information, where the beamwidth information includes at least one of half-power beamwidth, half-power angle, and 3dB beamwidth.
  • the transceiving unit 1102 is further configured to send fourth indication information to the terminal device, where the fourth indication information is used to indicate the second auxiliary information, where the second auxiliary information includes the second reference signal resource set Corresponding second beam pointing information.
  • the fourth indication information is indicated by at least one or a combination of the following signalings: RRC signaling; MAC CE signaling; DCI signaling.
  • the second beam pointing information is determined according to the quantity of second reference signal resources.
  • the second beam pointing information is obtained by querying the correspondence between the number of resources and the beam pointing according to the number of second reference signal resources.
  • the fourth indication information includes the quantity of resources; wherein, there is a corresponding relationship between the quantity of resources and the direction of the beam.
  • the second beam pointing information includes a horizontal beam pointing information range and a vertical beam pointing information range.
  • the second beam pointing information further includes beam width information, wherein the beam width information includes at least one of half power beam width, half power angle, and 3dB beam width.
  • the first quality information and/or the second quality information includes at least SINR or RSRP.
  • the transceiver unit 1102 is further configured to receive indication information of the second quality information sent by the terminal device; wherein, the indication information of the second quality information includes: according to the second quality information of each second reference signal resource, An identifier of at least one target reference signal resource determined from each second reference signal resource; and/or second quality information of at least one target reference signal resource.
  • FIG. 12 is a schematic structural diagram of another measurement device provided by an embodiment of the present disclosure.
  • the measurement device 120 may be a terminal device or a network device, and may also be a chip, a chip system, or a processor that supports the terminal device or network device to implement the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Measurement device 120 may include one or more processors 1201 .
  • the processor 1201 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control measurement devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the measuring device 120 may further include one or more memories 1202, on which a computer program 1203 may be stored, and the processor 1201 executes the computer program 1203, so that the measuring device 120 executes the methods described in the above method embodiments.
  • the computer program 1203 may be solidified in the processor 1201, and in this case, the processor 1201 may be implemented by hardware.
  • data may also be stored in the memory 1202 .
  • the measuring device 120 and the memory 1202 can be set separately or integrated together.
  • the measurement device 120 may further include a transceiver 1205 and an antenna 1206 .
  • the transceiver 1205 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1205 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the measurement device 120 may further include one or more interface circuits 1207 .
  • the interface circuit 1207 is used to receive code instructions and transmit them to the processor 1201 .
  • the processor 1201 runs code instructions to enable the measurement device 120 to execute the methods described in the above method embodiments.
  • the measuring device 120 is a terminal device: a processor 1201 configured to execute any method embodiment in FIG. 2 to FIG. 7 described above in the present disclosure.
  • the measurement device 120 is a network device: a processor 1201 configured to execute the method embodiment shown in FIG. 10 above in the present disclosure.
  • the processor 1201 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the measurement device 120 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the measurement device described in the above embodiments may be a terminal device or a network device, but the scope of the measurement device described in the present disclosure is not limited thereto, and the structure of the measurement device may not be limited by FIG. 12 .
  • the measuring device may be a stand-alone device or may be part of a larger device. Examples of measuring devices could be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the measuring device can be a chip or a system on a chip
  • the chip shown in FIG. 13 includes a processor 1301 and an interface 1302 .
  • the number of processors 1301 may be one or more, and the number of interfaces 1302 may be more than one.
  • Interface 1302 used to transmit code instructions to the processor
  • the processor 1301 is configured to run code instructions to execute the method shown in any one of the embodiments in FIG. 2 to FIG. 7 .
  • Interface 1302 used to transmit code instructions to the processor
  • the processor 1301 is configured to run code instructions to execute the method shown in the embodiment of FIG. 10 .
  • the chip further includes a memory 1303 for storing necessary computer programs and data.
  • An embodiment of the present disclosure also provides a communication system, the system includes the measuring device as the terminal device or the network device in the aforementioned embodiment of FIG. 12 , or the system includes the measuring device as the terminal device or the network device in the aforementioned embodiment of FIG. 13 .
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • the word “if” may be construed as “at” or “when” or “in response to a determination.”
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Abstract

提供了一种测量方法及装置,可以应用于在移动通信技术中,方法包括:终端设备对第一参考信号资源集合中的第一参考信号资源承载的参考信号进行测量,得到第一参考信号资源的第一质量信息(S201);根据第一参考信号资源的第一质量信息,以及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息(S202)。由此,可以实现由终端设备基于测量得到的第一参考信号资源集合中各第一参考信号资源的第一质量信息,恢复出第二参考信号资源集合中的各第二参考信号资源的第二质量信息,可以降低终端设备测量的复杂度。

Description

测量方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种测量方法及装置。
背景技术
随着AI(antifcial intelligence,人工智能)技术的不断发展,AI技术的应用越来越广泛,将AI技术应用于无线网络空口中的研究也受到很多学者的关注。比如,将AI技术应用于波束管理场景中,可以降低空域的开销和时延。在波束管理场景中,基于特定波束组进行AI恢复,不仅具有较好的恢复性能,而且还可以降低终端设备测量的复杂度。
发明内容
本公开第一方面实施例提供了一种测量方法,所述方法由终端设备执行,所述方法包括:对第一参考信号资源集合中的第一参考信号资源承载的参考信号进行测量,得到所述第一参考信号资源的第一质量信息;根据所述第一参考信号资源的第一质量信息,以及根据所述第一参考信号资源集合中所述第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定所述第二参考信号资源集合中所述第二参考信号资源的第二质量信息。
在该技术方案中,终端设备无需对第二参考信号资源集合中的各第二参考信号资源进行测量,即可得到各第二参考信号资源的第二质量信息,即可以实现由终端设备基于测量得到的第一参考信号资源集合中各第一参考信号资源的第一质量信息,恢复出第二参考信号资源集合中的各第二参考信号资源的第二质量信息,可以降低终端设备测量的复杂度。
本公开第二方面实施例提供了另一种测量方法,所述方法由网络设备执行,包括:向终端设备发送第一指示信息,其中,所述第一指示信息,用于指示对第一参考信号资源集合中所述第一参考信号资源承载的参考信号进行测量,以得到所述第一参考信号资源的第一质量信息;其中,所述第一参考信号资源的第一质量信息,用于根据所述第一参考信号资源集合中所述第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中所述第二参考信号资源的第二质量信息。
本公开第三方面实施例提供了一种测量装置,该测量装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如测量装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
本公开第四方面实施例提供了另一种测量装置,该测量装置具有实现上述第二方面所述的方法中网络设备的部分或全部功能,比如测量装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
本公开第五方面实施例提供了另一种测量装置,该装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法,或者,执行上述第二方面所述的方法。
本公开第六方面实施例提供了另一种测量装置,该装置包括处理器和存储器,所述存储器中存储有计算机程序,当所述计算机程序被所述处理器执行时,执行上述第一方面所述的方法,或者,执行上述第二方面所述的方法。
本公开第七方面实施例提供了另一种测量装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法,或者,执行上述第二方面所述的方法。
本公开第八方面实施例提供了一种通信系统,该系统包括第三方面所述的测量装置,或者,该系统包括第四方面所述的测量装置,或者,该系统包括第五方面所述的测量装置,或者,该系统包括第六方面所述的测量装置,或者,该系统包括第七方面所述的测量装置。
本公开第九方面实施例提供了一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法,或者,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
本公开第十方面实施例提供了一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法,或者,使得计算机执行上述第二方面所述的方法。
本公开第十一方面实施例提供了一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,或者,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备、网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
本公开第十二方面实施例提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法,或者,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信系统的架构示意图;
图2是本公开实施例提供的一种测量方法的流程示意图;
图3是本公开实施例提供的另一种测量方法的流程示意图;
图4是本公开实施例提供的另一种测量方法的流程示意图;
图5是本公开实施例提供的另一种测量方法的流程示意图;
图6是本公开实施例提供的另一种测量方法的流程示意图;
图7是本公开实施例提供的另一种测量方法的流程示意图;
图8为本公开实施例中的波束指向示意图一;
图9为本公开实施例中的波束指向示意图二;
图10是本公开实施例提供的另一种测量方法的流程示意图;
图11是本公开实施例提供的一种测量装置的结构示意图;
图12是本公开实施例提供的另一种测量装置的结构示意图;
图13是本公开实施例提供的一种芯片的结构示意图。
具体实施方式
为了更好的理解本公开实施例公开的一种测量方法,下面首先对本公开实施例适用的通信系统进行描述。
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统仅以包括一个网络设备101、一个终端设备102为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输接收点(transmission reception point或transmit receive point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
上述通信系统中,在Rel.18中将研究AI+PHY(physical layer,空口物理层)技术,即将AI技术应用于无线网络空口中。其中,波束管理是AI+PHY的一个重要应用场景,应用AI技术可以降低空域的开销和时延。
基于AI技术进行波束选择的目的是:
1、尽量减少终端设备测量的波束对个数,以降低终端设备测量的复杂度;
2、尽量减少终端设备上报的波束及波束质量,以降低终端设备上报的开销(overhead);
3、尽量减少网络设备发送的波束数,以降低参考信号的overhead。
根据一些现有的仿真结果发现,基于特定的波束组(比如均匀选择的波束组)进行AI恢复相较于基于随机选择的波束组进行AI恢复而言,具有更好的性能。其中,AI恢复是指基于小集合中波束的质量信息,恢复出大集合中波束的质量信息,比如基于8个波束的质量信息,恢复出32个波束的质量信息。而且,特定波束组的选择,即选择哪些波束组成特定波束组也会影响AI的性能。比如即使都是均匀抽样,第一个波束对的位置不同,最后得到的结果差距也很大。
因此,如何选择抽样中多个波束的位置,并让终端设备基于这些波束完成AI算法,是需要解决的问题。
针对上述问题,本公开提供了测量方法及装置。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的测量方法及装置进行详细地介绍。
请参见图2,图2是本公开实施例提供的一种测量方法的流程示意图。该测量方法可以由图1所示的通信系统中的终端设备执行。
如图2所示,该测量方法可以包括但不限于如下步骤:
步骤201,对第一参考信号资源集合中的第一参考信号资源承载的参考信号进行测量,得到第一参考信号资源的第一质量信息。
在本公开实施例中,第一参考信号资源集合包含的第一参考信号资源的数量可以为一个,或者,也可以为多个,本公开对此并不做限制。比如,第一参考信号资源的数量可以为4个、6个、8个等等。
在本公开实施例中,第一参考信号资源所承载的参考信号可以至少包括信道状态信息参考信号(channel state information-reference signal,CSI-RS),或者,也可以包括其他下行参考信号,比如同步参考信号,本公开对此并不作限制。
在本公开实施例中,第一质量信息可以至少包括参考信号接收功率(reference signal receiving power,RSRP)或信干噪比(或称为信号噪声干扰比,signal to interference plus noise ratio,SINR)。
在本公开实施例中,终端设备可以对第一参考信号资源集合中的第一参考信号资源承载的参考信号进行测量,得到第一参考信号资源的第一质量信息。
步骤202,根据第一参考信号资源的第一质量信息,以及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。
在本公开实施例中,第二参考信号资源集合包含的第二参考信号资源的数量可以为一个,或者也可以为多个,本公开对此并不做限制。比如,第二参考信号资源的数量可以为24个、32个等等。
在本公开实施例中,对第二参考信号资源的数量与第一参考信号资源的数量之间的大小关系不作限制,比如,第二参考信号资源的数量可以大于第一参考信号资源的数量,或者,第二参考信号资源的数量也可以小于或者等于第一参考信号资源的数量,本公开对此并不做限制。
在本公开实施例中,第一辅助信息可以至少包括:第一参考信号资源集合中的第一参考信号资源的波束指向信息。
在本公开实施例中,第二辅助信息可以至少包括:第二参考信号资源集合对应的波束指向信息,和/或,第二参考信号资源的数量。
在本公开实施例中,第二质量信息可以至少包括RSRP或SINR。其中,第二质量信息与第一质量信息可以相同,或者,第二质量信息与第一质量信息也可以不同,本公开对此并不做限制。比如,第二质量信息和第一质量信息可以均为RSRP,或者,第二质量信息和第一质量信息可以均为SINR,或者,第二质量信息可以为RSRP,第一质量信息可以为SINR,或者,第二质量信息可以为SINR,第一质量信息可以为RSRP。
在本公开实施例中,终端设备可以根据第一参考信息资源的第一质量信息,以及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。
作为一种示例,终端设备可以根据第一参考信息资源的第一质量信息,以及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。
作为另一种示例,终端设备可以根据第一参考信息资源的第一质量信息,以及根据第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。
作为又一种示例,终端设备可以根据第一参考信息资源的第一质量信息,以及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。
作为一种可能的实现方式,终端设备可以基于AI算法,根据第一参考信号资源集合中各第一参考信息资源的第一质量信息,以及根据第一辅助信息和/或第二辅助信息,确定第二参考信号资源集合中各第二参考信号资源的第二质量信息。比如,终端设备可以利用AI模型,根据第一质量信息,以及根据第一辅助信息和/或第二辅助信息,确定第二参考信号资源集合中各第二参考信号资源的第二质量信息。
本公开实施例的测量方法,通过终端设备对第一参考信号资源集合中的第一参考信号资源承载的参考信号进行测量,得到第一参考信号资源的第一质量信息,并根据第一参考信号资源的第一质量信息,以及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。由此,终端设备无需对第二参考信号资源集合中的各第二参考信号资源进行测量,即可得到各第二参考信号资源的第二质量信息,即可以实现由终端设备基于测量得到的第一参考信号资源集合中各第一参考信号资源的第一质量信息,恢复出第二参考信号资源集合中的各第二参考信号资源的第二质量信息,可以降低终端设备测量的复杂度。
请参见图3,图3是本公开实施例提供的另一种测量方法的流程示意图。该测量方法可以由图1所 示的通信系统中的终端设备执行。该测量方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图3所示,该测量方法可以包括但不限于如下步骤:
步骤301,接收网络设备发送的第一指示信息,其中,第一指示信息,用于指示第一参考信号资源集合中的第一参考信号资源。
在本公开实施例中,第一参考信号资源集合中的各第一参考信号资源可以由网络设备指示,即网络设备可以向终端设备发送第一指示信息,该第一指示信息用于指示第一参考信号资源集合中的各第一参考信号资源。
步骤302,对第一参考信号资源集合中的第一参考信号资源承载的参考信号进行测量,得到第一参考信号资源的第一质量信息。
步骤303,根据第一参考信号资源的第一质量信息,以及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。
在本公开实施例中,步骤302至303可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例的测量方法,通过网络设备指示第一参考信号资源集合中的第一参考信号资源,从而终端设备可以对指示的第一参考信号资源承载的参考信号进行测量,得到第一参考信号资源的第一质量信息,并根据第一参考信号资源的第一质量信息,以及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。由此,终端设备无需对第二参考信号资源集合中的各第二参考信号资源进行测量,即可得到各第二参考信号资源的第二质量信息,即可以实现由终端设备基于测量得到的第一参考信号资源集合中各第一参考信号资源的第一质量信息,恢复出第二参考信号资源集合中的各第二参考信号资源的第二质量信息,可以降低终端设备测量的复杂度。
需要说明的是,上述的这些可能的实现方式可以单独被执行,也可以结合在一起被执行,本公开实施例并不对此作出限定。
请参见图4,图4是本公开实施例提供的另一种测量方法的流程示意图。该测量方法可以由图1所示的通信系统中的终端设备执行。该测量方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图4所示,该测量方法可以包括但不限于如下步骤:
步骤401,接收网络设备发送的第二指示信息,其中,第二指示信息,用于指示第二辅助信息,其中,第二辅助信息包括第二参考信号资源集合包含的第二参考信号资源的数量。
在本公开实施例中,第二参考信号资源集合的第二辅助信息可以由网络设备指示,即网络设备可以向终端设备发送第二指示信息,该第二指示信息用于指示第二辅助信息,其中,第二辅助信息可以包括第二参考信号资源集合包含的第二参考信号资源的数量。
作为一种可能的实现方式,第二参考信号资源的数量可以由网络设备根据规则确定。其中,上述规则可以为预定义的规则。
作为一种示例,网络设备可以根据预定义的规则和/或AI模型,确定第二参考信号资源的数量。
例如,预定义的规则可以为:第二参考信号资源的数量为第一参考信号资源的数量的设定倍数。假设上述设定倍数为4,第一参考信号资源的数量为x,则第二参考信号资源的数量为:x*4。
再例如,预定义的规则可以为:设定第二参考信号资源的数量为定值,比如为Y。
再例如,可以预先设置不同的AI模型与资源数量之间的对应关系,本公开中,可以根据终端设备实际使用的AI模型查询上述对应关系,确定与该AI模型对应的资源数量,并作为第二参考信号资源的数量。比如,AI模型是A,第二参考信号资源的数量是z,AI模型是B,第二参考信号资源的数量是y。
其中,终端设备实际使用的AI模型可以是网络设备指示给该终端设备的,或者,也可以是终端设备自行选择的,本公开对此并不做限制。当AI模型由网络设备指示给终端设备时,网络设备可以向终端设备发送指示信息,本公开中记为第五指示信息,其中,第五指示信息可以包括AI模型的索引Index, 该Index用于指示终端设备选择哪个AI模型。
需要说明的是,上述仅以网络设备采用单独的指示信息(即第五指示信息)指示AI模型进行示例,实际应用时,AI模型的索引Index也可以嵌入到某个现有的指示信息(比如第一指示信息、第二指示信息等)中,本公开对此并不做限制。
再例如,可以预先建立不同的第一参考信号资源的数量、AI模型与第二参考信号资源的数量之间的对应关系/准则,本公开中,在确定第一参考信号资源集合所包含的第一参考信号资源的数量以及终端设备实际使用的AI模型后,可以查询上述对应关系/准则,确定与第一参考信号资源集合所包含的第一参考信号资源的数量以及终端设备实际使用的AI模型对应的第二参考信号资源的数量。
作为一种可能的实现方式,第二指示信息可以至少携带于无线资源控制(radio resource control,RRC)信令。
作为一种示例,RRC信令中可以直接携带第二参考信号资源的数量。
作为另一种示例,RRC信令中可以携带比例系数,其中,该比例系数是第二参考信号资源的数量与第一参考信号资源的数量之比。
例如,第二参考信号资源的数量为第一参考信号资源的数量的设定倍数,该设定倍数即为比例系数,标记第一参考信号资源的数量为x,第二参考信号资源的数量为y,比例系数为K,则y=K*x,可以通过RRC信令指示K值,或者,也可以通过RRC信令指示y值。
步骤402,对第一参考信号资源集合中的第一参考信号资源承载的参考信号进行测量,得到第一参考信号资源的第一质量信息。
需要说明的是,本公开对步骤401和402的执行时序不作限制,图4仅以步骤401在步骤402之前执行进行示例,实际应用时,步骤401还可以与步骤402并列执行,或者,步骤401还可以在步骤402之后执行,对此不做限制。
步骤403,根据第一参考信号资源的第一质量信息,以及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。
在本公开实施例中,步骤402至403可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例的测量方法,通过网络设备指示第二参考信号资源集合中第二参考信号资源的第二辅助信息,从而终端设备可以对第一参考信号资源承载的参考信号进行测量,得到第一参考信号资源的第一质量信息,并根据第一参考信号资源的第一质量信息,以及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或网络设备指示的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。由此,终端设备无需对第二参考信号资源集合中的各第二参考信号资源进行测量,即可得到各第二参考信号资源的第二质量信息,即可以实现由终端设备基于测量得到的第一参考信号资源集合中各第一参考信号资源的第一质量信息,恢复出第二参考信号资源集合中的各第二参考信号资源的第二质量信息,可以降低终端设备测量的复杂度。
需要说明的是,上述的这些可能的实现方式可以单独被执行,也可以结合在一起被执行,本公开实施例并不对此作出限定。
请参见图5,图5是本公开实施例提供的另一种测量方法的流程示意图。该测量方法可以由图1所示的通信系统中的终端设备执行。该测量方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图5所示,该测量方法可以包括但不限于如下步骤:
步骤501,接收网络设备发送的第三指示信息,其中,第三指示信息,用于指示第一辅助信息,其中,第一辅助信息包括第一参考信号资源集合中各第一参考信号资源的第一波束指向信息。
在本公开实施例中,第一参考信号资源集合的第一辅助信息可以由网络设备指示,即网络设备可以向终端设备发送第三指示信息,该第三指示信息用于指示第一辅助信息,其中,第一辅助信息可以包括第二参考信号资源集合中各第一参考信号资源的第一波束指向信息。
作为一种可能的实现方式,第一波束指向信息可以包括水平方向指向信息和垂直方向指向信息。
作为一种示例,第一参考信号资源的第一波束指向信息可以由网络设备显示发送,比如,第一波束指向信息中的水平方向指向信息可以为
Figure PCTCN2022078905-appb-000001
垂直方向指向信息可以为θ1。
作为一种可能的实现方式,第一波束指向信息还可以包括波束宽度信息,其中,波束宽度信息可以包括但不限于半功率波束宽度、半功率角、3dB波束宽度等等,3dB波束宽度可以包括水平3dB波宽、垂直3dB波宽。
作为一种可能的实现方式,第三指示信息可以携带于第一参考信号资源对应的参考信号配置信息RS configuration中。
即本公开中,针对每个第一参考信号资源,该第一参考信号资源可以具有对应的RS configuration,该RS configuration中可以配置有对应第一参考信号资源的第一波束指向信息。终端设备在接收到网络设备发送的RS configuration后,即可确定第一参考信号资源的第一波束指向信息。
作为一种可能的实现方式,第三指示信息也可以独立于RS configuration单独发送,比如,第三指示信息可以由以下信令中的至少一项或者多项的组合进行指示:RRC信令;媒体接入控制控制单元(media access control control element,MAC CE)信令;下行控制信息(downlink control information,DCI)信令。
例如,可以在MAC CE信令中对激活的参考信号RS对应的波束指向信息进行指示。
作为一种可能的实现方式,第三指示信息可以包括第一参考信号资源承载的参考信号的索引index;其中,参考信号的索引与波束指向存在对应关系。
作为一种示例,可以预定义波束指向与参考信号的index之间的对应关系,从而本公开中,终端设备在根据网络设备发送的第三指示信息,确定第一参考信号资源承载的参考信号的index后,可以根据参考信号的index查询上述对应关系,确定与第一参考信号资源承载的参考信号的index对应的波束指向,并作为第一参考信号资源的第一波束指向信息。
例如,可以根据水平方向的波束指向范围
Figure PCTCN2022078905-appb-000002
和垂直方向的波束指向范围[θ1,θ2]对各参考信号进行编码,得到各参考信号的index对应的波束指向信息,比如,index为1的参考信号对应的波束指向信息为
Figure PCTCN2022078905-appb-000003
从而可以根据参考信号的index和波束指向信息,建立参考信号的索引与波束指向之间的对应关系。
作为一种可能的实现方式,第三指示信息可以包括第一参考信号资源的第一波束指向信息与已知波束指向信息的目标参考信号之间的准共址关系。
例如,针对每个第一参考信号资源,可以通过与某个已知波束指向信息的目标参考信号进行准共址(Quasi Co-Location,QCL)的方式,指示该第一参考信号资源的第一波束指向信息。其中,目标参考信号的波束指向信息可以通过上述任一种方式确定,或者,也可以通过其他方式确定,本公开对此并不做限制。
步骤502,对第一参考信号资源集合中的第一参考信号资源承载的参考信号进行测量,得到第一参考信号资源的第一质量信息。
需要说明的是,本公开对步骤501和502的执行时序不作限制,图5仅以步骤501在步骤502之前执行进行示例,实际应用时,步骤501还可以与步骤502并列执行,或者,步骤501还可以在步骤502之后执行,对此不做限制。
步骤503,根据第一参考信号资源的第一质量信息,以及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。
在本公开实施例中,步骤502至503可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例的测量方法,通过网络设备指示第一参考信号资源集合中第一参考信号资源的第一辅助信息,从而终端设备可以对第一参考信号资源承载的参考信号进行测量,得到第一参考信号资源的第一质量信息,并根据第一参考信号资源的第一质量信息,以及根据网络设备指示的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。由此,终端设备无需对第二参考信号资源集合中的各第二参考信号资源进行测量, 即可得到各第二参考信号资源的第二质量信息,即可以实现由终端设备基于测量得到的第一参考信号资源集合中各第一参考信号资源的第一质量信息,恢复出第二参考信号资源集合中的各第二参考信号资源的第二质量信息,可以降低终端设备测量的复杂度。
需要说明的是,上述的这些可能的实现方式可以单独被执行,也可以结合在一起被执行,本公开实施例并不对此作出限定。
请参见图6,图6是本公开实施例提供的另一种测量方法的流程示意图。该测量方法可以由图1所示的通信系统中的终端设备执行。该测量方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图6所示,该测量方法可以包括但不限于如下步骤:
步骤601,接收网络设备发送的第四指示信息,其中,第四指示信息,用于指示第二辅助信息,其中,第二辅助信息包括第二参考信号资源集合对应的第二波束指向信息。
在本公开实施例中,第二参考信号资源集合的第二辅助信息可以由网络设备指示,即网络设备可以向终端设备发送第四指示信息,该第四指示信息用于指示第二辅助信息,其中,第二辅助信息可以包括第二参考信号资源集合对应的第二波束指向信息。
作为一种可能的实现方式,第二波束指向信息可以包括水平方向的波束指向信息范围和垂直方向的波束指向信息范围。
作为一种示例,第二波束指向信息可以由网络设备显示发送,比如,第二波束指向信息中的水平方向的波束指向信息范围可以为
Figure PCTCN2022078905-appb-000004
垂直方向的波束指向信息范围可以为[θ1,θ2]。
作为一种可能的实现方式,第二波束指向信息还可以包括波束宽度信息,其中,波束宽度信息可以包括但不限于半功率波束宽度、半功率角、3dB波束宽度等等,3dB波束宽度可以包括水平3dB波宽、垂直3dB波宽。
作为一种可能的实现方式,第二波束指向信息是网络设备根据第二参考信号资源的数量确定的。
作为一种示例,网络设备可以根据AI模型和第二参考信号资源的数量,确定第二参考信号资源集合的第二波束指向信息。
比如,可以预先设置不同的AI模型、资源数量与波束指向信息之间的对应关系/准则,本公开中,网络设备可以查询上述对应关系/准则,确定与使用的AI模型和第二参考信号资源的数量对应的波束指向信息,并作为第二波束指向信息。
作为一种可能的实现方式,第二波束指向信息,可以为网络设备根据第二参考信号资源的数量,查询资源数量与波束指向之间的对应关系得到的。
作为一种示例,可以预定义波束指向与资源数量之间的对应关系,比如,资源数量为8,则水平方向的波束指向信息范围为
Figure PCTCN2022078905-appb-000005
垂直方向的波束指向信息范围为[θ1,θ2],再比如,资源数量为24,则水平方向的波束指向信息范围为
Figure PCTCN2022078905-appb-000006
垂直方向的波束指向信息范围为[θ1,θ2,θ3,θ4]。
从而本公开中,网络设备可以根据第二参考信号资源的数量,查询资源数量与波束指向之间的对应关系,确定与第二参考信号资源的数量对应的第二波束指向信息。
作为一种可能的实现方式,第四指示信息可以包括资源数量;其中,资源数量与波束指向之间存在对应关系。
作为一种示例,网络设备可以预先向终端设备发送资源数量与波束指向之间的对应关系,比如,网络设备可以通过RRC信令配置上述对应关系,比如,可以通过RRC表,即RRCtable配置上述对应关系。从而本公开中,终端设备在接收到包含资源数量(即第二参考信号资源的数量)的第四指示信息后,可以根据资源数量,查询上述对应关系,确定与资源数量对应的波束指向信息,并作为第二波束指向信息。
需要说明的是,资源数量与波束指向之间的对应关系也可以通过协议约定,本公开对此并不做限制。
作为另一种示例,第四指示信息中可以同时包含资源数量与波束指向之间的对应关系,以及资源数量(即第二参考信号资源的数量),从而本公开中,终端设备在接收到第四指示信息后,可以根据第二参考信号资源的数量,查询资源数量与波束指向之间的对应关系,确定与第二参考信号资源的数量对应 的波束指向信息,并作为第二波束指向信息。
作为一种可能的实现方式,第四指示信息可以由以下信令中的至少一项或者多项的组合进行指示:RRC信令;MAC CE信令;DCI信令。
步骤602,对第一参考信号资源集合中的第一参考信号资源承载的参考信号进行测量,得到第一参考信号资源的第一质量信息。
需要说明的是,本公开对步骤601和602的执行时序不作限制,图6仅以步骤601在步骤602之前执行进行示例,实际应用时,步骤601还可以与步骤602并列执行,或者,步骤601还可以在步骤602之后执行,对此不做限制。
步骤603,根据第一参考信号资源的第一质量信息,以及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。
在本公开实施例中,步骤602至603可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例的测量方法,通过网络设备指示第二参考信号资源集合中第二参考信号资源的第二辅助信息,从而终端设备可以对第一参考信号资源承载的参考信号进行测量,得到第一参考信号资源的第一质量信息,并根据第一参考信号资源的第一质量信息,以及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或网络设备指示的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。由此,终端设备无需对第二参考信号资源集合中的各第二参考信号资源进行测量,即可得到各第二参考信号资源的第二质量信息,即可以实现由终端设备基于测量得到的第一参考信号资源集合中各第一参考信号资源的第一质量信息,恢复出第二参考信号资源集合中的各第二参考信号资源的第二质量信息,可以降低终端设备测量的复杂度。
需要说明的是,上述的这些可能的实现方式可以单独被执行,也可以结合在一起被执行,本公开实施例并不对此作出限定。
请参见图7,图7是本公开实施例提供的另一种测量方法的流程示意图。该测量方法可以由图1所示的通信系统中的终端设备执行。该测量方法可以单独被执行,也可以结合本公开中的任一个实施例或是实施例中的可能的实现方式一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
如图7所示,该测量方法可以包括但不限于如下步骤:
步骤701,对第一参考信号资源集合中的第一参考信号资源承载的参考信号进行测量,得到第一参考信号资源的第一质量信息。
步骤702,根据第一参考信号资源的第一质量信息,以及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。
在本公开实施例中,步骤701至702可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤703,向网络设备发送第二质量信息的指示信息。
其中,第二质量信息的指示信息包括:根据各第二参考信号资源的第二质量信息,从各第二参考信号资源中确定的至少一个目标参考信号资源的标识;和/或,至少一个目标参考信号资源的第二质量信息。
在本公开实施例中,当目标参考信号资源的个数为一个时,终端设备可以根据各第二参考信号资源的第二质量信息,从各第二参考信号资源中确定第二质量信息最高的目标参考信号资源,从而可以向网络设备发送该目标参考信号资源的标识(比如ID),和/或,该目标参考信号资源的第二质量信息。
在本公开实施例中,当目标参考信号资源的个数为多个时,比如目标参考信号资源的个数为设定个数,则终端设备可以将各第二参考信号资源,按照第二质量信息的取值从高至低排序,选取排序在前的设定个数的第二参考信号资源,作为目标参考信号资源,从而可以向网络设备发送各目标参考信号资源的标识,和/或,各目标参考信号资源的第二质量信息。
在本公开实施例的一种可能的实现方式中,当目标参考信号资源的个数为多个时,向网络设备发送的第二质量信息的指示信息中除了可以包括各目标参考信号资源的标识,还可以包括:排序在首位的目 标参考信号资源的第二质量信息,以及排序在非首位的目标参考信号资源的差分信息,该差分信息可以为排序在非首位的目标参考信号资源与排序在其之前的目标参考信号资源之间的第二质量信息的差分信息。
本公开实施例的测量方法,通过向网络设备发送第二质量信息的指示信息,其中,第二质量信息的指示信息包括:根据各第二参考信号资源的第二质量信息,从各第二参考信号资源中确定的至少一个目标参考信号资源的标识;和/或,至少一个目标参考信号资源的第二质量信息。由此,可以实现由终端设备向网络设备上报第二参考信号资源集合中第二参考信号资源的标识和/或第二质量信息。
需要说明的是,上述的这些可能的实现方式可以单独被执行,也可以结合在一起被执行,本公开实施例并不对此作出限定。
在本公开的任意一个实施例之中,在第一参考信号资源集合中的第一参考信号资源和第二参考信号资源集合中的第二参考信号资源的波束宽度一致时,网络设备可以向终端设备指示第二参考信号资源集合包含的第二参考信号资源的数量(比如24)。网络设备还可以向终端设备发送第一参考信号资源集合中的第一参考信号资源,并向终端设备指示该第一参考信号资源集合中的第一参考信号资源的第一波束指向信息,比如,当第一参考信号资源的数量为6时,第一波束指向信息可以如图8中(1,1)、(2,2)、(3,3)、(3,4)、(3,5)、(4,6)所示。
其中,图8中,横向(即水平方向)有6个角度,纵向(垂直方向)有4个角度形成的波束方向。
终端设备对第一参考信号资源集合中的各第一参考信号资源进行测量,得到第一参考信号资源集合中各第一参考信号资源的RSRP,并基于测量得到的6个RSRP,预测第二参考信号资源集合中24个第二参考信号资源的RSRP,例如图8中波束指向为(1,1)~(4,6)的24个CSI-RS资源的RSRP。
终端设备可以基于第二参考信号资源集合中各第二参考信号资源的RSRP,选择波束指向为(2,4)的最优参考信号资源的序号(CRI(CSI-RS resource indicator,信道状态信息参考信号资源标识)=10),并将序号CRI=10上报给网络设备。
在本公开的任意一个实施例之中,当第一参考信号资源集合中的第一参考信号资源和第二参考信号资源集合中的第二参考信号资源的波束宽度不一致时,网络设备可以向终端设备指示第二参考信号资源集合包含的第二参考信号资源的数量和波束宽度(比如10°)。网络设备还可以向终端设备发送第一参考信号资源集合中的第一参考信号资源,并向终端设备指示第一参考信号资源集合中的第一参考信号资源的第一波束指向信息及波束宽度(比如20°),比如,第一波束指向信息可以如图9中的ABCDEF所示。
终端设备在测量得到第一参考信号资源集合中的第一参考信号资源的RSRP后,可以基于测量得到的6个RSRP,预测第二参考信号资源集合中24个第二参考信号资源的RSRP,例如图9中波束指向为(1,1)~(4,6)的24个CSI-RS资源的RSRP。
终端设备可以基于第二参考信号资源集合中的第二参考信号资源的RSRP,选择波束指向为(2,4)的最优参考信号资源的序号(CRI=10),并将序号CRI=10上报给网络设备。
在本公开的任意一个实施例之中,一个CSI上报配置与一个CSI资源配置和一个AI模型关联,其中,AI模型中可以包括第二参考信号资源集合包含的第二参考信号资源的数量和第一参考信号资源集合中的第一参考信号资源的第一波束指向信息。
在本公开的任意一个实施例之中,一个CSI上报配置与一个CSI资源配置关联,其中,CSI资源配置中可以包括第一参考信号资源集合中的第一参考信号资源的index和第一波束指向信息,并隐性的包含了第一参考信号资源集合包含的第一参考信号资源的数量;CSI上报配置中可以包括第二参考信号资源集合包含的第二参考信号资源的数量,还可以包括第二波束指向信息。
在本公开的任意一个实施例之中,一个CSI上报配置与一个CSI资源配置关联,其中,CSI资源配置中可以包括第一参考信号资源集合中的第一参考信号资源的index和第一波束指向信息,并隐性的包含了第一参考信号资源集合包含的第一参考信号资源的数量。
CSI非周期触发状态表CSI-AperiodicTriggerStateList和/或在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)上CSI半持续触发状态表CSI-SemiPersistentOnPUSCH-TriggerStateList中的每个CSI上报配置与一个AI模型关联,其中,AI模型中可以包括用于确定第二参考信号资源集合包含的 第二参考信号资源的数量的规则。
其中,上述信息可以在CSI上报配置和/或CSI资源配置和/或AI配置的RRC信令中体现,还可以在MACCE信令和/或DCI信令中体现。
请参见图10,图10是本公开实施例提供的另一种测量方法的流程示意图。该测量方法可以由图1所示的通信系统中的网络设备执行。
如图10所示,该测量方法可以包括但不限于如下步骤:
步骤1001,向终端设备发送第一指示信息,其中,第一指示信息,用于指示对第一参考信号资源集合中第一参考信号资源承载的参考信号进行测量,以得到第一参考信号资源的第一质量信息。
其中,第一参考信号资源的第一质量信息,用于根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。
在本公开实施例的一种可能的实现方式中,第一参考信号资源所承载的参考信号至少包括CSI-RS。
在本公开实施例的一种可能的实现方式中,网络设备可以向终端设备发送第二指示信息,其中,第二指示信息,用于指示第二辅助信息,其中,第二辅助信息包括第二参考信号资源集合包含的第二参考信号资源的数量。
在本公开实施例的一种可能的实现方式中,第二参考信号资源的数量由规则确定。
在本公开实施例的一种可能的实现方式中,第二指示信息至少携带于RRC信令。
在本公开实施例的一种可能的实现方式中,网络设备可以向终端设备发送第三指示信息,其中,第三指示信息,用于指示第一辅助信息,其中,第一辅助信息包括第一参考信号资源集合中各第一参考信号资源的第一波束指向信息。
在本公开实施例的一种可能的实现方式中,第三指示信息由以下信令中的至少一项或者多项的组合进行指示:RRC信令;MAC CE信令;DCI信令。
在本公开实施例的一种可能的实现方式中,第三指示信息包括参考信号的索引;其中,参考信号的索引与波束指向存在对应关系。
在本公开实施例的一种可能的实现方式中,第三指示信息包括第一参考信号资源的第一波束指向信息与已知波束指向信息的目标参考信号之间的准共址关系。
在本公开实施例的一种可能的实现方式中,第一波束指向信息包括水平波束指向信息和垂直波束指向信息。
在本公开实施例的一种可能的实现方式中,第一波束指向信息还包括波束宽度信息,其中,波束宽度信息包括半功率波束宽度、半功率角和3dB波束宽度中的至少一项。
在本公开实施例的一种可能的实现方式中,网络设备可以向终端设备发送第四指示信息,其中,第四指示信息,用于指示第二辅助信息,其中,第二辅助信息包括第二参考信号资源集合对应的第二波束指向信息。
在本公开实施例的一种可能的实现方式中,第四指示信息由以下信令中的至少一项或者多项的组合进行指示:RRC信令;MAC CE信令;DCI信令。
在本公开实施例的一种可能的实现方式中,述第二波束指向信息是根据第二参考信号资源的数量确定的。
在本公开实施例的一种可能的实现方式中,第二波束指向信息,是根据第二参考信号资源的数量,查询资源数量与波束指向之间的对应关系得到的。
在本公开实施例的一种可能的实现方式中,第四指示信息包括资源数量;其中,资源数量与波束指向之间存在对应关系。
在本公开实施例的一种可能的实现方式中,第二波束指向信息包括水平方向的波束指向信息范围和垂直方向的波束指向信息范围。
在本公开实施例的一种可能的实现方式中,第二波束指向信息还包括波束宽度信息,其中,波束宽度信息包括半功率波束宽度、半功率角和3dB波束宽度中的至少一项。
在本公开实施例的一种可能的实现方式中,第一质量信息和/或第二质量信息至少包括SINR或 RSRP。
在本公开实施例的一种可能的实现方式中,网络设备还可以接收终端设备发送的第二质量信息的指示信息;其中,第二质量信息的指示信息包括:根据各第二参考信号资源的第二质量信息,从各第二参考信号资源中确定的至少一个目标参考信号资源的标识;和/或,至少一个目标参考信号资源的第二质量信息。
需要说明的是,前述任一实施例对终端设备执行的测量方法的解释说明,也适用于该网络设备执行的测量方法,其实现原理类似,在此不做赘述。
本公开实施例的测量方法,通过网络设备向终端设备发送的第一指示信息,其中,第一指示信息,用于指示对第一参考信号资源集合中第一参考信号资源承载的参考信号进行测量,以得到第一参考信号资源的第一质量信息;其中,第一参考信号资源的第一质量信息,用于根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。由此,终端设备无需对第二参考信号资源集合中的各第二参考信号资源进行测量,即可得到各第二参考信号资源的第二质量信息,即可以实现由终端设备基于测量得到的第一参考信号资源集合中各第一参考信号资源的第一质量信息,恢复出第二参考信号资源集合中的各第二参考信号资源的第二质量信息,可以降低终端设备测量的复杂度。
需要说明的是,上述的这些可能的实现方式可以单独被执行,也可以结合在一起被执行,本公开实施例并不对此作出限定。
上述本公开提供的实施例中,从终端设备和网络设备的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,终端设备和网络设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图11,为本公开实施例提供的一种测量装置110的结构示意图。图11所示的测量装置110可包括处理单元1101和收发单元1102。该收发单元1102可包括发送单元和/或接收单元,发送单元用于实现发送功能,接收单元用于实现接收功能,收发单元可以实现发送功能和/或接收功能。
测量装置110可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置,或者,测量装置110可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
当测量装置110为终端设备时:处理单元1101,用于对第一参考信号资源集合中的第一参考信号资源承载的参考信号进行测量,得到第一参考信号资源的第一质量信息,以及,根据第一参考信号资源的第一质量信息,及根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。
在一些实施例中,收发单元1102,用于接收网络设备发送的第一指示信息,其中,第一指示信息,用于指示第一参考信号资源集合中的第一参考信号资源。
在一些实施例中,第一参考信号资源所承载的参考信号至少包括信道状态信息参考信号CSI-RS。
在一些实施例中,收发单元1102,还用于接收网络设备发送的第二指示信息,其中,第二指示信息,用于指示第二辅助信息,其中,第二辅助信息包括第二参考信号资源集合包含的第二参考信号资源的数量。
在一些实施例中,第二指示信息至少携带于RRC信令。
在一些实施例中,收发单元1102,还用于接收网络设备发送的第三指示信息,其中,第三指示信息,用于指示第一辅助信息,其中,第一辅助信息包括第一参考信号资源集合中各第一参考信号资源的第一波束指向信息。
在一些实施例中,第三指示信息由以下信令中的至少一项或者多项的组合进行指示:RRC信令;MAC CE信令;DCI信令。
在一些实施例中,第三指示信息包括参考信号的索引;其中,参考信号的索引与波束指向存在对应关系。
在一些实施例中,第三指示信息包括第一参考信号资源的第一波束指向信息与已知波束指向信息的目标参考信号之间的准共址关系。
在一些实施例中,第一波束指向信息包括水平方向指向信息和垂直方向指向信息。
在一些实施例中,第一波束指向信息还包括波束宽度信息,其中,波束宽度信息包括半功率波束宽度、半功率角和3dB波束宽度中的至少一项。
在一些实施例中,收发单元1102,还用于接收网络设备发送的第四指示信息,其中,第四指示信息,用于指示第二辅助信息,其中,第二辅助信息包括第二参考信号资源集合对应的第二波束指向信息。
在一些实施例中,第四指示信息由以下信令中的至少一项或者多项的组合进行指示:RRC信令;MAC CE信令;DCI信令。
在一些实施例中,第四指示信息包括资源数量;其中,资源数量与波束指向之间存在对应关系。
在一些实施例中,第二波束指向信息包括水平方向的波束指向信息范围和垂直方向的波束指向信息范围。
在一些实施例中,第二波束指向信息还包括波束宽度信息,其中,波束宽度信息包括半功率波束宽度、半功率角和3dB波束宽度中的至少一项。
在一些实施例中,第一质量信息和/或第二质量信息至少包括SINR或RSRP。
在一些实施例中,收发单元1102,还用于向网络设备发送第二质量信息的指示信息;其中,第二质量信息的指示信息包括:根据各第二参考信号资源的第二质量信息,从各第二参考信号资源中确定的至少一个目标参考信号资源的标识;和/或,至少一个目标参考信号资源的第二质量信息。
当测量装置110为网络设备时:收发单元1102,用于向终端设备发送第一指示信息,其中,第一指示信息,用于指示对第一参考信号资源集合中第一参考信号资源承载的参考信号进行测量,以得到第一参考信号资源的第一质量信息;其中,第一参考信号资源的第一质量信息,用于根据第一参考信号资源集合中第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中第二参考信号资源的第二质量信息。
在一些实施例中,第一参考信号资源所承载的参考信号至少包括信道状态信息参考信号CSI-RS。
在一些实施例中,收发单元1102,还用于向终端设备发送第二指示信息,其中,第二指示信息,用于指示第二辅助信息,其中,第二辅助信息包括第二参考信号资源集合包含的第二参考信号资源的数量。
在一些实施例中,第二参考信号资源的数量由规则确定。
在一些实施例中,第二指示信息至少携带于RRC信令。
在一些实施例中,收发单元1102,还用于向终端设备发送第三指示信息,其中,第三指示信息,用于指示第一辅助信息,其中,第一辅助信息包括第一参考信号资源集合中各第一参考信号资源的第一波束指向信息。
在一些实施例中,第三指示信息由以下信令中的至少一项或者多项的组合进行指示:RRC信令;MAC CE信令;DCI信令。
在一些实施例中,第三指示信息包括参考信号的索引;其中,参考信号的索引与波束指向存在对应关系。
在一些实施例中,第三指示信息包括第一参考信号资源的第一波束指向信息与已知波束指向信息的目标参考信号之间的准共址关系。
在一些实施例中,第一波束指向信息包括水平波束指向信息和垂直波束指向信息。
在一些实施例中,第一波束指向信息还包括波束宽度信息,其中,波束宽度信息包括半功率波束宽度、半功率角和3dB波束宽度中的至少一项。
在一些实施例中,收发单元1102,还用于向终端设备发送第四指示信息,其中,第四指示信息,用于指示第二辅助信息,其中,第二辅助信息包括第二参考信号资源集合对应的第二波束指向信息。
在一些实施例中,第四指示信息由以下信令中的至少一项或者多项的组合进行指示:RRC信令;MAC CE信令;DCI信令。
在一些实施例中,第二波束指向信息是根据第二参考信号资源的数量确定的。
在一些实施例中,第二波束指向信息,是根据第二参考信号资源的数量,查询资源数量与波束指向 之间的对应关系得到的。
在一些实施例中,第四指示信息包括资源数量;其中,资源数量与波束指向之间存在对应关系。
在一些实施例中,第二波束指向信息包括水平方向的波束指向信息范围和垂直方向的波束指向信息范围。
在一些实施例中,第二波束指向信息还包括波束宽度信息,其中,波束宽度信息包括半功率波束宽度、半功率角和3dB波束宽度中的至少一项。
在一些实施例中,第一质量信息和/或第二质量信息至少包括SINR或RSRP。
在一些实施例中,收发单元1102,还用于接收终端设备发送的第二质量信息的指示信息;其中,第二质量信息的指示信息包括:根据各第二参考信号资源的第二质量信息,从各第二参考信号资源中确定的至少一个目标参考信号资源的标识;和/或,至少一个目标参考信号资源的第二质量信息。
需要说明的是,前述图2至图7任一实施例中对终端设备侧执行的方法的解释说明,或者,前述图10实施例中对网络设备侧执行的方法的解释说明也适用于该实施例的测量装置110,其实现原理类似,此处不做赘述。
请参见图12,图12是本公开实施例提供的另一种测量装置的结构示意图。测量装置120可以是终端设备或网络设备,还可以是支持终端设备或网络设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
测量装置120可以包括一个或多个处理器1201。处理器1201可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对测量装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,测量装置120中还可以包括一个或多个存储器1202,其上可以存有计算机程序1203,处理器1201执行计算机程序1203,以使得测量装置120执行上述方法实施例中描述的方法。计算机程序1203可能固化在处理器1201中,该种情况下,处理器1201可能由硬件实现。
可选的,存储器1202中还可以存储有数据。测量装置120和存储器1202可以单独设置,也可以集成在一起。
可选的,测量装置120还可以包括收发器1205、天线1206。收发器1205可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1205可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,测量装置120中还可以包括一个或多个接口电路1207。接口电路1207用于接收代码指令并传输至处理器1201。处理器1201运行代码指令以使测量装置120执行上述方法实施例中描述的方法。
测量装置120为终端设备:处理器1201,用于执行本公开上述图2至图7任一方法实施例。
测量装置120为网络设备:处理器1201,用于执行本公开上述图10所示的方法实施例。
需要说明的是,前述图2至图10任一实施例中对测量方法的解释说明,也适用于该实施例的测量装置120,其实现原理类似,此处不做赘述。
在一种实现方式中,处理器1201中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,测量装置120可以包括电路,电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的测量装置可以是终端设备或网络设备,但本公开中描述的测量装置的范围并不限于此,而且测量装置的结构可以不受图12的限制。测量装置可以是独立的设备或者可以是较大设备的一部分。例如测量装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于测量装置可以是芯片或芯片系统的情况,可参见图13所示的芯片的结构示意图。图13所示的芯片包括处理器1301和接口1302。其中,处理器1301的数量可以是一个或多个,接口1302的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口1302,用于代码指令并传输至处理器;
处理器1301,用于运行代码指令以执行如图2至图7中任一实施例所示的方法。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口1302,用于代码指令并传输至处理器;
处理器1301,用于运行代码指令以执行如图10实施例所示的方法。
可选的,芯片还包括存储器1303,存储器1303用于存储必要的计算机程序和数据。
需要说明的是,前述图2至图10任一实施例中对测量方法的解释说明,也适用于该实施例的芯片,其实现原理类似,此处不做赘述。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种通信系统,该系统包括前述图12实施例中作为终端设备或网络设备的测量装置,或者,该系统包括前述图13实施例中作为终端设备或网络设备的测量装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种测量方法,其特征在于,所述方法由终端设备执行,包括:
    对第一参考信号资源集合中的第一参考信号资源承载的参考信号进行测量,得到所述第一参考信号资源的第一质量信息;
    根据所述第一参考信号资源的第一质量信息,以及根据所述第一参考信号资源集合中所述第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定所述第二参考信号资源集合中所述第二参考信号资源的第二质量信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的第一指示信息,其中,所述第一指示信息,用于指示所述第一参考信号资源集合中的所述第一参考信号资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一参考信号资源所承载的参考信号至少包括信道状态信息参考信号CSI-RS。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的第二指示信息,其中,所述第二指示信息,用于指示所述第二辅助信息,其中,所述第二辅助信息包括所述第二参考信号资源集合包含的所述第二参考信号资源的数量。
  5. 根据权利要求4所述的方法,其特征在于,所述第二指示信息至少携带于无线资源控制RRC信令。
  6. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的第三指示信息,其中,所述第三指示信息,用于指示所述第一辅助信息,其中,所述第一辅助信息包括所述第一参考信号资源集合中各所述第一参考信号资源的第一波束指向信息。
  7. 根据权利要求6所述的方法,其特征在于,所述第三指示信息由以下信令中的至少一项或者多项的组合进行指示:
    无线资源控制RRC信令;
    媒体接入控制控制单元MAC CE信令;
    下行控制信息DCI信令。
  8. 根据权利要求6所述的方法,其特征在于,所述第三指示信息包括参考信号的索引;其中,所述参考信号的索引与波束指向存在对应关系。
  9. 根据权利要求6所述的方法,其特征在于,所述第三指示信息包括所述第一参考信号资源的第一波束指向信息与已知波束指向信息的目标参考信号之间的准共址关系。
  10. 根据权利要求6-9中任一项所述的方法,其特征在于,所述第一波束指向信息包括水平方向指向信息和垂直方向指向信息。
  11. 根据权利要求6-10中任一项所述的方法,其特征在于,所述第一波束指向信息还包括波束宽度信息,其中,所述波束宽度信息包括半功率波束宽度、半功率角和3dB波束宽度中的至少一项。
  12. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的第四指示信息,其中,所述第四指示信息,用于指示所述第二辅助信息,其中,所述第二辅助信息包括所述第二参考信号资源集合对应的第二波束指向信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第四指示信息由以下信令中的至少一项或者多项的组合进行指示:
    无线资源控制RRC信令;
    媒体接入控制控制单元MAC CE信令;
    下行控制信息DCI信令。
  14. 根据权利要求12所述的方法,其特征在于,所述第四指示信息包括资源数量;其中,所述资源数量与波束指向之间存在对应关系。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于,所述第二波束指向信息包括水平方向的波束指向信息范围和垂直方向的波束指向信息范围。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述方法还包括:
    向网络设备发送所述第二质量信息的指示信息;
    其中,所述第二质量信息的指示信息包括:
    根据各所述第二参考信号资源的第二质量信息,从各所述第二参考信号资源中确定的至少一个目标参考信号资源的标识;和/或,所述至少一个目标参考信号资源的第二质量信息。
  17. 一种测量方法,其特征在于,所述方法由网络设备执行,包括:
    向终端设备发送第一指示信息,其中,所述第一指示信息,用于指示对第一参考信号资源集合中所述第一参考信号资源承载的参考信号进行测量,以得到所述第一参考信号资源的第一质量信息;
    其中,所述第一参考信号资源的第一质量信息,用于根据所述第一参考信号资源集合中所述第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中所述第二参考信号资源的第二质量信息。
  18. 根据权利要求17所述的方法,其特征在于,所述第一参考信号资源所承载的参考信号至少包括信道状态信息参考信号CSI-RS。
  19. 根据权利要求17或18所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二指示信息,其中,所述第二指示信息,用于指示所述第二辅助信息,其中,所述第二辅助信息包括所述第二参考信号资源集合包含的所述第二参考信号资源的数量。
  20. 根据权利要求19所述的方法,其特征在于,所述第二参考信号资源的数量由规则确定。
  21. 根据权利要求19所述的方法,其特征在于,所述第二指示信息至少携带于无线资源控制RRC信令。
  22. 根据权利要求17或18所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三指示信息,其中,所述第三指示信息,用于指示所述第一辅助信息,其中,所述第一辅助信息包括所述第一参考信号资源集合中各所述第一参考信号资源的第一波束指向信息。
  23. 根据权利要求22所述的方法,其特征在于,所述第三指示信息由以下信令中的至少一项或者多项的组合进行指示:
    无线资源控制RRC信令;
    媒体接入控制控制单元MAC CE信令;
    下行控制信息DCI信令。
  24. 根据权利要求22所述的方法,其特征在于,所述第三指示信息包括参考信号的索引;其中,所述参考信号的索引与波束指向存在对应关系。
  25. 根据权利要求22所述的方法,其特征在于,所述第三指示信息包括所述第一参考信号资源的第一波束指向信息与已知波束指向信息的目标参考信号之间的准共址关系。
  26. 根据权利要求22-25中任一项所述的方法,其特征在于,所述第一波束指向信息包括水平波束指向信息和垂直波束指向信息。
  27. 根据权利要求22-26中任一项所述的方法,其特征在于,所述第一波束指向信息还包括波束宽度信息,其中,所述波束宽度信息包括半功率波束宽度、半功率角和3dB波束宽度中的至少一项。
  28. 根据权利要求17或18所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第四指示信息,其中,所述第四指示信息,用于指示所述第二辅助信息,其中,所述第二辅助信息包括所述第二参考信号资源集合对应的第二波束指向信息。
  29. 根据权利要求28所述的方法,其特征在于,所述第四指示信息由以下信令中的至少一项或者多项的组合进行指示:
    无线资源控制RRC信令;
    媒体接入控制控制单元MAC CE信令;
    下行控制信息DCI信令。
  30. 根据权利要求28所述的方法,其特征在于,所述第二波束指向信息是根据所述第二参考信号资源的数量确定的。
  31. 根据权利要求28所述的方法,其特征在于,所述第二波束指向信息,是根据所述第二参考信 号资源的数量,查询资源数量与波束指向之间的对应关系得到的。
  32. 根据权利要求28所述的方法,其特征在于,所述第四指示信息包括资源数量;其中,所述资源数量与波束指向之间存在对应关系。
  33. 根据权利要求28-32中任一项所述的方法,其特征在于,所述第二波束指向信息包括水平方向的波束指向信息范围和垂直方向的波束指向信息范围。
  34. 根据权利要求17-33中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的所述第二质量信息的指示信息;
    其中,所述第二质量信息的指示信息包括:
    根据各所述第二参考信号资源的第二质量信息,从各所述第二参考信号资源中确定的至少一个目标参考信号资源的标识;和/或,所述至少一个目标参考信号资源的第二质量信息。
  35. 一种测量装置,其特征在于,应用于终端设备,包括:
    处理单元,用于对第一参考信号资源集合中的第一参考信号资源承载的参考信号进行测量,得到所述第一参考信号资源的第一质量信息,以及,根据所述第一参考信号资源的第一质量信息,及根据所述第一参考信号资源集合中所述第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定所述第二参考信号资源集合中所述第二参考信号资源的第二质量信息。
  36. 一种测量装置,其特征在于,应用于网络设备,包括:
    收发单元,用于向终端设备发送第一指示信息,其中,所述第一指示信息,用于指示对第一参考信号资源集合中所述第一参考信号资源承载的参考信号进行测量,以得到所述第一参考信号资源的第一质量信息;
    其中,所述第一参考信号资源的第一质量信息,用于根据所述第一参考信号资源集合中所述第一参考信号资源的第一辅助信息和/或第二参考信号资源集合中第二参考信号资源的第二辅助信息,确定第二参考信号资源集合中所述第二参考信号资源的第二质量信息。
  37. 一种测量装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,当所述计算机程序被所述处理器执行时,执行如权利要求1至16中任一项所述的方法,或者,执行如权利要求17至34中任一项所述的方法。
  38. 一种测量装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至16中任一项所述的方法,或者,执行如权利要求17至34中任一项所述的方法。
  39. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至16中任一项所述的方法,或者,执行如权利要求17至34中任一项所述的方法。
PCT/CN2022/078905 2022-03-02 2022-03-02 测量方法及装置 WO2023164852A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000480.4A CN116998174A (zh) 2022-03-02 2022-03-02 测量方法及装置
PCT/CN2022/078905 WO2023164852A1 (zh) 2022-03-02 2022-03-02 测量方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/078905 WO2023164852A1 (zh) 2022-03-02 2022-03-02 测量方法及装置

Publications (1)

Publication Number Publication Date
WO2023164852A1 true WO2023164852A1 (zh) 2023-09-07

Family

ID=87882806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078905 WO2023164852A1 (zh) 2022-03-02 2022-03-02 测量方法及装置

Country Status (2)

Country Link
CN (1) CN116998174A (zh)
WO (1) WO2023164852A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431687A (zh) * 2019-01-10 2020-07-17 华为技术有限公司 一种资源指示方法及装置
CN112119597A (zh) * 2020-08-21 2020-12-22 北京小米移动软件有限公司 波束失败确定方法、装置、设备及存储介质
EP3800802A1 (en) * 2019-10-02 2021-04-07 Comcast Cable Communications LLC Transmission and reception point configuration for beam failure recovery
WO2021072657A1 (zh) * 2019-10-15 2021-04-22 华为技术有限公司 一种传输信道状态信息的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431687A (zh) * 2019-01-10 2020-07-17 华为技术有限公司 一种资源指示方法及装置
EP3800802A1 (en) * 2019-10-02 2021-04-07 Comcast Cable Communications LLC Transmission and reception point configuration for beam failure recovery
WO2021072657A1 (zh) * 2019-10-15 2021-04-22 华为技术有限公司 一种传输信道状态信息的方法及装置
CN112119597A (zh) * 2020-08-21 2020-12-22 北京小米移动软件有限公司 波束失败确定方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN116998174A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
WO2023000149A1 (zh) 一种中继终端设备测量上报的方法及其装置
WO2023184457A1 (zh) 生效时间确定方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023164852A1 (zh) 测量方法及装置
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2023115405A1 (zh) 测量能力信息生成方法及装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2023245683A1 (zh) 基向量类型的指示方法和装置
WO2024065544A1 (zh) 一种信息上报方法及其装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2023283964A1 (zh) 多载波小区的移动性测量的配置方法及装置
WO2022233001A1 (zh) 波束失败恢复bfr方法、非周期csi-rs的发送方法及装置
WO2023044621A1 (zh) 一种波束测量和上报的方法及其装置
WO2023010475A1 (zh) 一种服务小区测量方法及其装置
WO2023130479A1 (zh) 一种测量报告上报方法和装置
WO2023102945A1 (zh) 测量间隔配置方法及装置
WO2023010571A1 (zh) 一种定位测量的方法及其装置
WO2023283827A1 (zh) 一种定时误差的上报方法及其装置
WO2023150918A1 (zh) 一种波束管理的方法及其装置
WO2023010428A1 (zh) 准共址配置方法、准共址qcl信息确定方法及其装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023115279A1 (zh) 数据传输方法及装置
WO2023050235A1 (zh) 一种探测参考信号srs的发送方法及其装置
WO2023168574A1 (zh) 一种天线切换能力上报方法及其装置
WO2023197187A1 (zh) 一种信道状态信息的处理方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000480.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929303

Country of ref document: EP

Kind code of ref document: A1