WO2023163183A1 - 蓄電デバイス、蓄電デバイスの製造方法 - Google Patents

蓄電デバイス、蓄電デバイスの製造方法 Download PDF

Info

Publication number
WO2023163183A1
WO2023163183A1 PCT/JP2023/007127 JP2023007127W WO2023163183A1 WO 2023163183 A1 WO2023163183 A1 WO 2023163183A1 JP 2023007127 W JP2023007127 W JP 2023007127W WO 2023163183 A1 WO2023163183 A1 WO 2023163183A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
electrode
current collector
lid
electrode body
Prior art date
Application number
PCT/JP2023/007127
Other languages
English (en)
French (fr)
Inventor
美帆 佐々木
紘基 阿久津
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2023552206A priority Critical patent/JP7375995B1/ja
Publication of WO2023163183A1 publication Critical patent/WO2023163183A1/ja
Priority to JP2023177173A priority patent/JP2024009956A/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/16Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/164Lids or covers characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electricity storage device and a method for manufacturing an electricity storage device.
  • Patent Document 1 discloses an all-solid-state battery as an example of an electricity storage device.
  • This all-solid-state battery includes an electrode body, electrode terminals, and an exterior body that seals the electrode body.
  • the exterior body includes an exterior film wound around the electrode body so as to have an opening, and a lid disposed in the opening.
  • An object of the present invention is to provide an electricity storage device capable of protecting a current collector, and a method for manufacturing the electricity storage device.
  • a power storage device includes an electrode body including an electrode, a current collector extending from the electrode, an electrode terminal electrically connected to the electrode body via the current collector, an opening An exterior film wound around the electrode body so as to have a portion, and a lid disposed in the opening, wherein the lid covers at least a portion of the current collector.
  • a power storage device is the power storage device according to the first aspect, wherein the lid body contacts at least part of the current collector.
  • a power storage device includes an electrode body including an electrode, a current collector extending from the electrode, an electrode terminal electrically connected to the electrode body via the current collector, an opening an exterior film wound around the electrode body so as to have a portion; a lid disposed in the opening; and disposed between the lid and the electrode body to protect at least a portion of the current collector. and a protector that
  • the power storage device is the power storage device according to the third aspect, wherein the protector contacts at least one of the current collector, the electrode body, and the exterior film.
  • a method for manufacturing an electricity storage device includes an electrode body including an electrode, a current collector extending from the electrode, and an electrode terminal electrically connected to the electrode body via the current collector. and an exterior film wound around the electrode body so as to have an opening, and a lid disposed in the opening and covering at least a portion of the current collector, wherein connecting the electrode body and the electrode terminal via the current collector; wrapping the electrode body with the exterior film so as to form a space for disposing the lid body; and filling a resin forming the lid.
  • a method for manufacturing an electricity storage device is the method for manufacturing an electricity storage device according to the fifth aspect, wherein the step of filling the space with the resin constituting the lid body is performed after the step of The method further includes molding the lid by pressing a mold against the resin filled in the space.
  • a method for manufacturing an electricity storage device is the method for manufacturing an electricity storage device according to the fifth aspect or the sixth aspect, wherein the step of filling the space with the resin forming the lid is performed before the step of and disposing a protector that protects at least a portion of the current collector.
  • the current collector can be protected.
  • FIG. 1 is a perspective view of an electricity storage device according to a first embodiment
  • FIG. FIG. 2 is a cross-sectional view showing a layer configuration of an exterior film included in the electricity storage device of FIG. 1
  • FIG. 2 is a cross-sectional view taken along line D3-D3 in FIG. 1
  • 2 is a flowchart showing an example of a method for manufacturing the electricity storage device of FIG. 1
  • the figure regarding the 1st process of FIG. The figure regarding the 2nd process of FIG. Another figure about the 2nd process of FIG.
  • 11 is a flowchart showing an example of a method for manufacturing the electricity storage device of FIG. 10; Sectional drawing of the electrical storage device of a modification.
  • FIG. 1 is a plan view schematically showing an electricity storage device 10 of the first embodiment.
  • FIG. 2 is a cross-sectional view showing the layer structure of the exterior film 50 included in the electricity storage device 10 of FIG.
  • FIG. 3 is a cross-sectional view taken along line D3-D3 in FIG.
  • the arrow UD direction indicates the thickness direction of the electricity storage device 10
  • the arrow LR direction indicates the width direction of the electricity storage device 10
  • the arrow FB direction indicates the depth direction of the electricity storage device 10 .
  • the directions indicated by the arrows UDLRFB are also common in the subsequent drawings.
  • the electricity storage device 10 includes an electrode body 20, electrode terminals 30, and an exterior body 40.
  • the electrode body 20 includes, for example, electrodes (a positive electrode and a negative electrode) that constitute a power storage member such as a lithium ion battery, a capacitor, or an all-solid-state battery, a separator, and the like.
  • the shape of the electrode body 20 is a substantially rectangular parallelepiped.
  • substantially rectangular parallelepiped includes, for example, a solid that can be regarded as a rectangular parallelepiped by modifying the shape of a part of the outer surface.
  • the shape of the electrode body 20 may be, for example, a cylindrical shape or a polygonal shape.
  • the electrode assembly 20 includes one or more electrodes 21 (positive and negative electrodes). In this embodiment, the electrode assembly 20 includes multiple electrodes 21 . A current collector 22 extending from each electrode 21 is connected to an electrode terminal 30 .
  • the electricity storage device 10 has two electrode terminals 30 .
  • the electrode terminal 30 is a metal terminal used for power input/output in the electrode body 20 .
  • One end of the electrode terminal 30 is electrically connected to an electrode 21 (positive electrode or negative electrode) included in the electrode assembly 20 via a current collector 22 .
  • the other end of the electrode terminal 30 protrudes outward from the edge of the exterior body 40, for example.
  • the metal material that constitutes the electrode terminal 30 is, for example, aluminum, nickel, copper, or the like.
  • the electrode terminal 30 connected to the positive electrode is usually made of aluminum or the like
  • the electrode terminal 30 connected to the negative electrode is usually made of copper, nickel or the like.
  • the outermost layer of the electrode body 20 does not necessarily have to be an electrode, and may be, for example, a protective tape or a separator.
  • the outer body 40 seals the electrode body 20 .
  • the exterior body 40 includes an exterior film 50 and a lid body 60 .
  • the exterior film 50 is wound around the electrode body 20 so as to have an opening 40A, and a lid body 60 is arranged on the side of the electrode body 20 so as to close the opening 40A.
  • a housing portion (recess) for housing the electrode body 20 in the exterior film 50 through cold forming.
  • the exterior body 40 seals the electrode body 20 by winding the exterior film 50 around the electrode body 20, the electrode body 20 can be easily sealed regardless of the thickness of the electrode body 20.
  • the exterior film 50 was wound so as to be in contact with the outer surface of the electrode assembly 20. condition is preferred. Further, when the electricity storage device 10 is an all-solid-state battery, it is necessary to uniformly apply a high pressure from the outer surface of the battery in order to exhibit the battery performance. Since it is necessary to eliminate the space between them, it is preferable that the exterior film 50 is wound so as to be in contact with the outer surface of the electrode body 20 .
  • the exterior film 50 is, for example, a laminate (laminate film) having a substrate layer 51, a barrier layer 52, and a heat-fusible resin layer 53 in this order.
  • the exterior film 50 need not include all of these layers, and may not include the barrier layer 52, for example. That is, the exterior film 50 may be made of a flexible and easily bendable material, and may be made of a resin film, for example. It should be noted that the exterior film 50 is preferably heat-sealable.
  • the base layer 51 included in the exterior film 50 is a layer that imparts heat resistance to the exterior film 50 and suppresses pinholes that may occur during processing or distribution.
  • the base material layer 51 includes, for example, at least one layer of a stretched polyester resin layer and a stretched polyamide resin layer.
  • the barrier layer 52 can be protected during processing of the exterior film 50, and breakage of the exterior film 50 can be suppressed.
  • the stretched polyester resin layer is preferably a biaxially stretched polyester resin layer
  • the stretched polyamide resin layer is preferably a biaxially stretched polyamide resin layer.
  • the oriented polyester resin layer is more preferably a biaxially oriented polyethylene terephthalate (PET) film, and the oriented polyamide resin layer is a biaxially oriented nylon (ONy) film. more preferred.
  • the base layer 51 may include both layers of a stretched polyester resin layer and a stretched polyamide resin layer.
  • the thickness of the substrate layer 51 is preferably, for example, 5 to 300 ⁇ m, more preferably 20 to 150 ⁇ m, from the viewpoint of film strength.
  • the barrier layer 52 is bonded to the base material layer 51 via an adhesive layer 54, for example.
  • the barrier layer 52 included in the exterior film 50 is made of, for example, aluminum foil in terms of workability such as moisture resistance and extensibility, and cost.
  • the aluminum foil preferably contains iron from the viewpoint of packaging suitability and pinhole resistance when packaging the electrode body 20 .
  • the content of iron in the aluminum foil is preferably 0.5 to 5.0% by mass, more preferably 0.7 to 2.0% by mass. When the iron content is 0.5% by mass or more, packaging suitability, excellent pinhole resistance, and extensibility of the exterior film 50 are obtained. In addition, when the iron content is 5.0% by mass or less, excellent flexibility of the exterior film 50 can be obtained.
  • the barrier layer 52 may include a metal foil, a deposited film, and a resin layer having barrier properties. Examples of metal foils include aluminum alloys, stainless steels, titanium steels, and steel plates.
  • the thickness of the barrier layer 52 is preferably, for example, 15 to 100 ⁇ m, more preferably 30 to 80 ⁇ m, from the viewpoint of barrier properties, pinhole resistance and packaging suitability.
  • the thickness of the barrier layer 52 is 15 ⁇ m or more, the exterior film 50 is less likely to break even when stress is applied during packaging.
  • the thickness of the barrier layer 52 is 100 ⁇ m or less, an increase in mass of the exterior film 50 can be reduced, and a decrease in weight energy density of the electricity storage device 10 can be suppressed.
  • the barrier layer 52 is an aluminum foil, it is preferable that at least the surface opposite to the base layer 51 is provided with a corrosion-resistant film in order to prevent dissolution and corrosion.
  • the barrier layer 52 may have a corrosion resistant coating on both sides.
  • the corrosion-resistant film includes, for example, hydrothermal transformation treatment such as boehmite treatment, chemical conversion treatment, anodizing treatment, plating treatment such as nickel or chromium, and corrosion prevention treatment such as applying a coating agent to the barrier layer 52. It refers to a thin film that is formed on the surface and provides the barrier layer 52 with corrosion resistance (for example, acid resistance, alkali resistance, etc.).
  • the corrosion-resistant film specifically means a film that improves the acid resistance of the barrier layer 52 (acid-resistant film), a film that improves the alkali resistance of the barrier layer 52 (alkali-resistant film), and the like.
  • the treatment for forming the corrosion-resistant film one type may be performed, or two or more types may be used in combination. Also, not only one layer but also multiple layers can be used.
  • the hydrothermal transformation treatment and the anodizing treatment are treatments in which the surface of the metal foil is dissolved by a treatment agent to form a metal compound having excellent corrosion resistance. These treatments are sometimes included in the definition of chemical conversion treatment.
  • the barrier layer 52 includes the corrosion-resistant film.
  • the corrosion-resistant coating prevents delamination between the barrier layer 52 (e.g., aluminum alloy foil) and the base layer 51 during molding of the exterior film 50, and prevents hydrogen fluoride generated by the reaction between the electrolyte and moisture. , dissolution and corrosion of the surface of the barrier layer 52, especially dissolution and corrosion of aluminum oxide present on the surface of the barrier layer 52 when the barrier layer 52 is an aluminum alloy foil, and adhesion of the surface of the barrier layer 52 (wettability) is improved to prevent delamination between the base layer 51 and the barrier layer 52 during heat sealing and delamination between the base layer 51 and the barrier layer 52 during molding.
  • the barrier layer 52 e.g., aluminum alloy foil
  • the heat-fusible resin layer 53 is bonded to the barrier layer 52 via an adhesive layer 55, for example.
  • the heat-sealable resin layer 53 included in the exterior film 50 is a layer that imparts sealing properties to the exterior film 50 by heat sealing.
  • polyester resins such as polyethylene terephthalate resins and polybutylene terephthalate resins, polyolefin resins such as polyethylene resins and polypropylene resins, cyclic polyolefin resins, or these polyolefin resins may be used.
  • a resin film made of an acid-modified polyolefin resin obtained by graft-modifying a resin with an acid such as maleic anhydride can be mentioned.
  • the thickness of the heat-fusible resin layer 53 is preferably, for example, 20 to 300 ⁇ m, more preferably 40 to 150 ⁇ m, from the viewpoint of sealing properties and strength.
  • the exterior film 50 has one or more layers having a buffer function (hereinafter referred to as "buffer layers") outside the heat-sealable resin layer 53, more preferably outside the barrier layer 52. preferably.
  • the buffer layer may be laminated on the outside of the base layer 51, and the base layer 51 may also function as a buffer layer.
  • the plurality of buffer layers may be adjacent to each other or laminated via the base layer 51 or the barrier layer 52 or the like.
  • the material that constitutes the cushioning layer can be arbitrarily selected from materials that have cushioning properties.
  • Materials with cushioning properties are, for example, rubber, non-woven fabrics, or foam sheets.
  • Rubber is, for example, natural rubber, fluororubber, or silicone rubber.
  • the rubber hardness is preferably about 20-90.
  • the material constituting the nonwoven fabric is preferably a material having excellent heat resistance.
  • the lower limit of the thickness of the buffer layer is preferably 100 ⁇ m, more preferably 200 ⁇ m, and even more preferably 1000 ⁇ m.
  • the upper limit of the thickness of the buffer layer is preferably 5000 ⁇ m, more preferably 3000 ⁇ m.
  • Preferred ranges for the thickness of the buffer layer are 100 ⁇ m to 5000 ⁇ m, 100 ⁇ m to 3000 ⁇ m, 200 ⁇ m to 5000 ⁇ m, 200 ⁇ m to 3000 ⁇ m, 1000 ⁇ m to 5000 ⁇ m, or 1000 ⁇ m to 3000 ⁇ m.
  • the thickness range of the buffer layer is most preferably 1000 ⁇ m to 3000 ⁇ m.
  • the lower limit of the thickness of the buffer layer is preferably 0.5 mm.
  • the upper limit of the thickness of the buffer layer is preferably 10 mm, more preferably 5 mm, still more preferably 2 mm.
  • the preferred range of thickness of the buffer layer is 0.5 mm to 10 mm, 0.5 mm to 5 mm, or 0.5 mm to 2 mm.
  • the cushioning layer functions as a cushion, thereby suppressing damage to the exterior film 50 due to impact when the electricity storage device 10 is dropped or handling during manufacturing of the electricity storage device 10. be done.
  • the first sealing portion 70 is formed.
  • the first sealing portion 70 extends in the longitudinal direction of the exterior body 40 .
  • the position where the first sealing portion 70 is formed in the exterior body 40 can be arbitrarily selected.
  • the base 70X of the first sealing portion 70 is located on the boundary side 43 between the first surface 41 and the second surface 42 of the exterior body 40 .
  • the first surface 41 has a larger area than the second surface 42 .
  • the base 70X of the first sealing portion 70 may be positioned on any surface of the exterior body 40.
  • FIG. In the present embodiment, the first sealing portion 70 is folded toward the second surface 42 of the exterior body 40, for example.
  • the first sealing portion 70 may protrude outward from the electrode body 20 in plan view, or may be folded toward the first surface 41 .
  • the lid body 60 has, for example, a rectangular parallelepiped shape as a whole, and is made of a resin material. Note that the lid body 60 may be formed by, for example, cold forming the exterior film 50 .
  • the material constituting the lid 60 includes polyester resins such as polyethylene terephthalate resins and polybutylene terephthalate resins, polyolefin resins such as polyethylene resins, fluorine resins, and polypropylene resins, cyclic polyolefin resins, or Acid-modified polyolefin-based resins obtained by graft-modifying these polyolefin-based resins with an acid such as maleic anhydride can be used.
  • the main material of the lid 60 and the heat-sealable resin layer 53 of the exterior film 50 is the same. is preferred.
  • the material forming the lid 60 and the material forming the heat-sealable resin layer 53 may be, for example, polyolefin resins such as polyethylene resins and polypropylene resins, or polyolefin resins thereof.
  • the main material is an acid-modified polyolefin resin obtained by graft-modifying a resin with an acid such as maleic anhydride. Note that the main material is, for example, a material that accounts for 50% or more of the materials contained in the constituent elements.
  • the lid 60 covers at least part of the current collector 22 from the viewpoint of protecting the current collector 22 . It is preferable that the lid 60 is in contact with the current collector 22 that it covers. More preferably, the lid 60 is joined to the current collector 22 that covers it. In this embodiment, the lid 60 covers all the current collectors 22 and is joined to the outermost current collector 22 . Note that the lid body 60 may be arranged so as to fill the gaps between the plurality of current collectors 22 .
  • the second sealing portion 80 is formed by heat-sealing the heat-sealable resin layer 53 of the exterior film 50 and the side surface of the lid 60 (hereinafter referred to as "seal surface 61"). be done.
  • the sealing strength between the heat-fusible resin layer 53 of the exterior film 50 and the sealing surface 61 of the lid 60 may be referred to as the sealing strength of the second sealing portion 80 .
  • the sealing strength of the second sealing portion 80 is determined by the long side portion of the sealing surface 61, that is, the heat-fusible resin layer 53 on the sealing surface 61 extending in the LR (width) direction in FIG. 60 is the seal strength.
  • the seal strength of the second sealing portion 80 is measured based on the distance of the second sealing portion 80 in the FB (depth) direction by pulling the exterior film 50 against the lid 60 in the UD (vertical) direction of FIG. be done. Note that the seal strength of the second sealing portion 80 when the lid body 60 is divided into a plurality of parts including long sides and short sides is seal strength.
  • the seal strength of the second sealing portion 80 is preferably 40 N/15 mm or more, more preferably 50 N/15 mm or more, and even more preferably. is 60 N/15 mm or more, more preferably 70 N/15 mm or more, more preferably 85 N/15 mm or more.
  • the seal strength of the second sealing portion 80 is 40 N/15 mm or more, even if the power storage device 10 is used for several years (less than 10 years), the electrode body 20 is not sealed by the exterior body 40. well maintained.
  • the seal strength of the second sealing portion 80 is 85 N/15 mm or more, the state in which the electrode body 20 is sealed by the exterior body 40 is preferably maintained even when the power storage device 10 is used for 10 years or more, for example. be.
  • the seal strength of the second sealing portion 80 is preferably 150 N/15 mm or less.
  • a preferable range of seal strength of the second sealing portion 80 is 40 N/15 mm to 150 N/15 mm, 50 N/15 mm to 150 N/15 mm, 60 N/15 mm to 150 N/15 mm, 70 N/15 mm to 150 N/15 mm, or 85 N/15 mm to 150 N/15 mm. 15 mm to 150 N/15 mm.
  • the lid 60 When the lid 60 is plate-shaped, the lid 60 has a certain thickness so that the deformation of the exterior body 40 is suppressed even when the power storage devices 10 are stacked. preferably. From another point of view, when the lid body 60 is plate-shaped, when forming the second sealing portion 80, the lid body 60 and the exterior film 50 can be preferably heat-sealed.
  • the sealing surface 61 of 60 preferably has a certain thickness.
  • the minimum thickness of the lid 60 is, for example, 1.0 mm, preferably 3 mm, and even more preferably 4 mm.
  • the maximum thickness of the lid 60 is, for example, 10 mm, preferably 8.0 mm, and even more preferably 7.0 mm.
  • the maximum thickness of the lid 60 may be 10 mm or more.
  • Preferred ranges for the thickness of the material forming the lid 60 are 1.0 mm to 10 mm, 1.0 mm to 8.0 mm, 1.0 mm to 7.0 mm, 3.0 mm to 10 mm, and 3.0 mm to 8.0 mm. , 3.0 mm to 7.0 mm, 4.0 mm to 10 mm, 4.0 mm to 8.0 mm, 4.0 mm to 7.0 mm.
  • the cover 60 when the cover 60 is expressed as a plate, the material constituting the cover 60 does not include the film defined by the JIS (Japanese Industrial Standards) [Packaging Terms] standard.
  • the thickness of the lid 60 may vary depending on the portion of the lid 60 . When the thickness of the lid body 60 differs depending on the part, the thickness of the lid body 60 is the thickness of the thickest part.
  • FIG. 4 is a flowchart showing an example of a method for manufacturing the electricity storage device 10. As shown in FIG. The method for manufacturing the electricity storage device 10 includes, for example, first, second, third, fourth, fifth, sixth, and seventh steps. The first to seventh steps are performed, for example, by a power storage device 10 manufacturing apparatus. In this embodiment, the names of the first to seventh steps are defined for the sake of convenience, and do not mean the order of the steps.
  • FIG. 5 is a diagram relating to the first step of step S11.
  • the manufacturing apparatus electrically connects the electrode body 20 and the electrode terminal 30 via the current collector 22 .
  • the illustration of the current collector 22 is omitted for simplification of the drawings.
  • FIG. 6 and 7 are diagrams relating to the second step of step S12.
  • the second step is performed after the first step.
  • the manufacturing apparatus winds the exterior film 50 around the electrode assembly 20 .
  • the manufacturing apparatus wraps the electrode assembly 20 with the exterior film 50 so that two spaces 90 for placing the lids 60 are formed.
  • the second step may be performed before the first step.
  • the third step of step S13 is performed after the first or second step.
  • the manufacturing apparatus heat-seals the facing heat-sealable resin layers 53 of the exterior film 50 to form the first sealing portion 70 having a partially unsealed portion 71A (see FIG. 7).
  • temporary first sealing portion 71 (Hereinafter referred to as “temporary first sealing portion 71”) is formed.
  • the unsealed portion 71A can be formed, for example, by using a seal bar having a shape such that a portion thereof does not come into contact with the exterior film 50. As shown in FIG. In another example, the unsealed portion 71A can be formed by interposing a fluororesin film or the like between the facing surfaces (the heat-sealable resin layers 53) of the exterior film 50.
  • the electrode body 20 can be held by the exterior film 50 , so that the position of the electrode body 20 with respect to the exterior film 50 is less likely to shift. Therefore, the occurrence of wrinkles is suppressed when forming the second sealing portion 80 .
  • FIG. 8 is a diagram relating to the fourth step of step S14.
  • the fourth step is performed after the third step.
  • the manufacturing apparatus fills one space 90 with the resin 100 forming the lid 60 .
  • the resin 100 is molten and has predetermined fluidity.
  • the resin 100 is, for example, ring-shaped with a hole 100X in the center so that the electrode terminal 30 can pass through.
  • FIG. 9 is a diagram relating to the fifth step of step S15.
  • the fifth step is performed after the fourth step.
  • the manufacturing apparatus presses the mold 110 against the resin 100 filled in one space 90 to form the lid body 60 .
  • the mold 110 has a size that can be accommodated in the space 90, and a hole 110X into which the electrode terminal 30 can be inserted is formed in the center.
  • the current collector 22 is covered with the lid 60, and the lid 60 and the current collector 22 are joined.
  • the sixth step of step S16 is performed after the fifth step or in parallel with the fifth step.
  • the manufacturing apparatus forms the second sealing portion 80 by heat-sealing the exterior film 50 and the sealing surface 61 of the lid 60 .
  • the manufacturing apparatus also performs the fourth, fifth, and sixth steps on the other space 90 .
  • the 7th step of step S17 is performed after the 4th, 5th, and 6th steps are performed on the two spaces 90 .
  • the manufacturing apparatus injects the electrolytic solution from the unsealed portion 71A of the temporary first sealing portion 71, evacuates the exterior film 50, and then heat seals the unsealed portion 71A to obtain the first 1 A sealing portion 70 is formed. Note that if the electricity storage device 10 is an all-solid battery, the step of injecting the electrolytic solution in the seventh step is omitted.
  • the lid 60 covers at least part of the current collector 22 . Therefore, for example, even when an external force acts on the electricity storage device 10 , the current collector 22 is protected by the lid 60 .
  • the power storage device 200 of the second embodiment differs from the first embodiment in that it includes a protector 210, and the rest of the configuration is the same as that of the first embodiment.
  • the power storage device 200 of the second embodiment will be described below, focusing on the parts that differ from the first embodiment.
  • FIG. 10 is a cross-sectional view of the electricity storage device 200.
  • the power storage device 200 includes a protector 210 that is arranged between the lid 60 and the electrode body 20 and protects the current collector 22 .
  • the protector 210 covers at least part of the current collector 22 .
  • the protector 210 is preferably in contact with the current collector 22 it covers. More preferably, the protector 210 is bonded to the current collector 22 that covers it.
  • the protector 210 covers all the current collectors 22 and is joined to the outermost current collectors 22 .
  • the protector 210 may be arranged so as to fill the gaps between the plurality of current collectors 22 .
  • the welded portion 22X of the current collector 22 with the electrode terminal 30 is covered with the lid 60 . Lid 60 is joined to welded portion 22X.
  • the protector 210 can be arbitrarily selected.
  • the protector 210 may be a film or a resin molding. Any resin capable of protecting the current collector 22, such as a polyester resin, a polyolefin resin, a polyamide resin, or a polycarbonate resin, can be used for the protector 210, for example.
  • FIG. 11 is a flow chart showing an example of a method for manufacturing the electricity storage device 200. As shown in FIG. The manufacturing method shown in FIG. 11 further includes an eighth step of step S18 in addition to each step shown in FIG. In the eighth step, the manufacturing apparatus arranges a protector 210 that protects the current collector 22 . The eighth step can be performed at any timing after the first step and before the fourth step.
  • the protector 210 covers at least part of the current collector 22 . Therefore, for example, even when an external force acts on the power storage device 10 , the current collector 22 is protected by the protector 210 .
  • each of the above-described embodiments is an example of a form that can be taken by an electricity storage device and a method for manufacturing an electricity storage device according to the present invention, and is not intended to limit the form.
  • An electric storage device and a method for manufacturing an electric storage device according to the present invention may take forms different from those illustrated in each embodiment.
  • One example is a form in which a part of the configuration of each embodiment is replaced, changed, or omitted, or a form in which a new configuration is added to each embodiment.
  • the two electrode terminals 30 may protrude from one of the two lids 60 .
  • the portion of the exterior body 40 where the other lid body 60 is arranged can be sealed by a known method.
  • the electrode body 20 may be sealed by omitting the other lid body 60 and folding the exterior film 50 .
  • This modification can be similarly applied to the power storage device 200 of the second embodiment.
  • the configuration of the protector 210 can be arbitrarily changed.
  • the protector 210 may be a plate that is arranged between the electrode body 20 and the welded portion 22X and partitions the sections inside the exterior body 40 .
  • the electrode terminals 30 need only be capable of inputting and outputting electric power to and from the electrode body 20 , and for example, do not need to protrude from the exterior body 40 .
  • the electrode terminal 30 may have any shape including a surface that is flush with the surface of the lid 60 that faces the exterior of the exterior body 40 . This modification can also be applied to the electricity storage device 10 of the second embodiment.
  • the fifth step of step S15 shown in FIG. 9 may be omitted.
  • the fluidity of the resin 100 is high, in other words, when the viscosity is low, the space 90 is filled with the resin 100 in the fourth step of step S14 so that the space 90 is filled with the resin 100. spread. Therefore, when the resin 100 has high fluidity, the fifth step can be omitted.
  • This modification can also be applied to the electricity storage device 200 of the second embodiment.
  • the exterior film 50 may be a laminate (laminate film) having the heat-fusible resin layers 53 on both sides of the barrier layer 52 .
  • the first sealing portion 70 may be formed by heat-sealing the heat-sealing resin layers 53 laminated on one side or the other side of the barrier layer 52 .
  • the heat-fusible resin layer 53 laminated on one side and the heat-fusible resin layer 53 laminated on the other side may be heat-sealed.
  • the base 70X of the first sealing portion 70 is positioned on any surface of the exterior body 40 .
  • the base 70X of the first sealing portion 70 is preferably positioned near the boundary side 43 between the first surface 41 and the second surface 42 .
  • the heat-fusible resin layer 53 may be bonded to the barrier layer 52 via an adhesive layer 55, for example. This modification can be similarly applied to the power storage device 200 of the second embodiment.
  • SYMBOLS 10 Electricity storage device 20: Electrode body 21: Electrode 22: Current collector 30: Electrode terminal 50: Exterior film 60: Cover body 100: Resin 110: Mold 200: Electricity storage device 210: Protective body

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

蓄電デバイスは、電極を含む電極体と、前記電極から延びる集電体と、前記集電体を介して前記電極体と電気的に接続される電極端子と、開口部を有するように前記電極体に巻き付けられる外装フィルムと、前記開口部に配置される蓋体と、を備え、前記蓋体は、前記集電体の少なくとも一部を覆う。

Description

蓄電デバイス、蓄電デバイスの製造方法
 本発明は、蓄電デバイス、および、蓄電デバイスの製造方法に関する。
 特許文献1は、蓄電デバイスの一例としての全固体電池を開示している。この全固体電池は、電極体と、電極端子と、電極体を封止する外装体と、を備える。外装体は、開口部を有するように電極体に巻き付けられる外装フィルムと、開口部に配置される蓋体と、を含む。
特開2019-153504号公報
 上記蓄電デバイスは、電極体と電極端子とを接続する集電体を保護する点について、検討されていない。
 本発明は、集電体を保護できる蓄電デバイス、および、蓄電デバイスの製造方法を提供することを目的とする。
 本発明の第1観点に係る蓄電デバイスは、電極を含む電極体と、前記電極から延びる集電体と、前記集電体を介して前記電極体と電気的に接続される電極端子と、開口部を有するように前記電極体に巻き付けられる外装フィルムと、前記開口部に配置される蓋体と、を備え、前記蓋体は、前記集電体の少なくとも一部を覆う。
 本発明の第2観点に係る蓄電デバイスは、第1観点に係る蓄電デバイスであって、前記蓋体は、前記集電体の少なくとも一部と接触する。
 本発明の第3観点に係る蓄電デバイスは、電極を含む電極体と、前記電極から延びる集電体と、前記集電体を介して前記電極体と電気的に接続される電極端子と、開口部を有するように前記電極体に巻き付けられる外装フィルムと、前記開口部に配置される蓋体と、前記蓋体と前記電極体との間に配置され、前記集電体の少なくとも一部を保護する保護体と、を備える。
 本発明の第4観点に係る蓄電デバイスは、第3観点に係る蓄電デバイスであって、前記保護体は、前記集電体、前記電極体、および、前記外装フィルムの少なとも1つと接触する。
 本発明の第5観点に係る蓄電デバイスの製造方法は、電極を含む電極体と、前記電極から延びる集電体と、前記集電体を介して前記電極体と電気的に接続される電極端子と、開口部を有するように前記電極体に巻き付けられる外装フィルムと、前記開口部に配置され、前記集電体の少なくとも一部を覆う蓋体と、を備える蓄電デバイスの製造方法であって、前記集電体を介して前記電極体と前記電極端子とを接続する工程と、前記蓋体を配置する空間が形成されるように前記外装フィルムによって前記電極体を包む工程と、前記空間に前記蓋体を構成する樹脂を充填する工程と、を含む。
 本発明の第6観点に係る蓄電デバイスの製造方法は、第5観点に係る蓄電デバイスの製造方法であって、前記空間に前記蓋体を構成する樹脂を充填する工程よりも後に実施され、前記空間に充填された樹脂に型を押し付けることによって、前記蓋体を成形する工程をさらに含む。
 本発明の第7観点に係る蓄電デバイスの製造方法は、第5観点または第6観点に係る蓄電デバイスの製造方法であって、前記空間に前記蓋体を構成する樹脂を充填する工程よりも前に実施され、前記集電体の少なくとも一部を保護する保護体を配置する工程をさらに含む。
 本発明に関する蓄電デバイス、および、蓄電デバイスの製造方法によれば、集電体を保護できる。
第1実施形態の蓄電デバイスの斜視図。 図1の蓄電デバイスが備える外装フィルムの層構成を示す断面図。 図1のD3-D3線に沿う断面図。 図1の蓄電デバイスの製造方法の一例を示すフローチャート。 図4の第1工程に関する図。 図4の第2工程に関する図。 図4の第2工程に関する別の図。 図4の第4工程に関する図。 図4の第5工程に関する図。 第2実施形態の蓄電デバイスの断面図。 図10の蓄電デバイスの製造方法の一例を示すフローチャート。 変形例の蓄電デバイスの断面図。
 以下、図面を参照しつつ、本発明の一実施形態に係る蓄電デバイスについて説明する。なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。
 [1.第1実施形態]
 <1-1.蓄電デバイスの構成>
 図1は、第1実施形態の蓄電デバイス10を模式的に示す平面図である。図2は、図1の蓄電デバイス10が備える外装フィルム50の層構成を示す断面図である。図3は、図1のD3-D3線に沿う断面図である。なお、図1において、矢印UD方向は蓄電デバイス10の厚み方向を示し、矢印LR方向は蓄電デバイス10の幅方向を示し、矢印FB方向は、蓄電デバイス10の奥行方向を示す。矢印UDLRFBの各々が示す方向は、以後の各図においても共通である。
 蓄電デバイス10は、電極体20と、電極端子30と、外装体40と、を備える。電極体20は、例えば、リチウムイオン電池、キャパシタ、または、全固体電池等の蓄電部材を構成する電極(正極および負極)ならびに、セパレータ等を含む。本実施形態では、電極体20の形状は、略直方体である。なお、「略直方体」とは、完全な直方体の他に、例えば、外面の一部の形状を修正することによって直方体とみなせるような立体を含む。電極体20の形状は、例えば、円柱または多角柱であってもよい。
 図3に示されるように、電極体20は、1または複数の電極21(正極および負極)を含む。本実施形態では、電極体20は、複数の電極21を含む。各電極21から延びる集電体22は、電極端子30に接続される。
 本実施形態では、蓄電デバイス10は、2つの電極端子30を備える。電極端子30は、電極体20における電力の入出力に用いられる金属端子である。電極端子30の一方の端部は、電極体20に含まれる電極21(正極または負極)に集電体22を介して電気的に接続される。電極端子30の他方の端部は、例えば、外装体40の端縁から外側に突出する。
 電極端子30を構成する金属材料は、例えば、アルミニウム、ニッケル、または、銅等である。例えば、電極体20がリチウムイオン電池である場合、正極に接続される電極端子30は、通常、アルミニウム等によって構成され、負極に接続される電極端子30は、通常、銅、ニッケル等によって構成される。なお、電極体20の最外層は、必ずしも電極である必要はなく、例えば、保護テープまたはセパレータであってもよい。
 外装体40は、電極体20を封止する。外装体40は、外装フィルム50および蓋体60を備える。外装フィルム50は、開口部40Aを有するように電極体20に巻き付けられ、開口部40Aを閉じるように電極体20の側方に蓋体60が配置される。
 例えば、冷間成形を通じて外装フィルム50に電極体20を収容する収容部(窪み)を形成する方法がある。しかし、このような方法によって深い収容部を形成することは必ずしも容易ではない。冷間成形によって収納部(窪み)を深く(たとえば成形深さ15mm)形成しようとすると外装フィルム50にピンホールまたはクラックが発生し、電池性能の低下を招く可能性が高くなる。一方、外装体40は、外装フィルム50を電極体20に巻き付けることによって電極体20を封止しているため、電極体20の厚みに拘わらず容易に電極体20を封止することができる。なお、蓄電デバイス10の体積エネルギー密度を向上させるべく電極体20と外装フィルム50との間のデッドスペースを削減するためには、外装フィルム50が電極体20の外表面に接するように巻き付けられた状態が好ましい。また、蓄電デバイス10が全固体電池である場合には、電池性能を発揮させるために高い圧力を電池外面から均一に掛けることが必要とされている観点からも電極体20と外装フィルム50との間の空間を無くすことが必要とされるため、外装フィルム50が電極体20の外表面に接するように巻き付けられた状態が好ましい。
 図2に示されるように、外装フィルム50は、例えば、基材層51、バリア層52、および、熱融着性樹脂層53をこの順に有する積層体(ラミネートフィルム)である。なお、外装フィルム50には、これらの層がすべて含まれている必要はなく、例えば、バリア層52が含まれていなくてもよい。すなわち、外装フィルム50は、フレキシブル性を有し曲げやすい材料で構成されていればよく、例えば、樹脂フィルムで構成されていてもよい。なお、外装フィルム50は、ヒートシール可能であることが好ましい。
 外装フィルム50に含まれる基材層51は、耐熱性を外装フィルム50に付与し、加工または流通の際に起こり得るピンホールの発生を抑制するための層である。基材層51は、例えば、延伸ポリエステル樹脂層および延伸ポリアミド樹脂層の少なくとも一層を含んで構成される。例えば、基材層51が延伸ポリエステル樹脂層および延伸ポリアミド樹脂層の少なくとも一層を含むことにより、外装フィルム50の加工時にバリア層52を保護し、外装フィルム50の破断を抑制することができる。また、外装フィルム50の引張伸びを大きくする観点から、延伸ポリエステル樹脂層は二軸延伸ポリエステル樹脂層であることが好ましく、延伸ポリアミド樹脂層は二軸延伸ポリアミド樹脂層であることが好ましい。さらに、突刺強度または衝撃強度に優れる点から、延伸ポリエステル樹脂層は二軸延伸ポリエチレンテレフタレート(PET)フィルムであることがより好ましく、延伸ポリアミド樹脂層は二軸延伸ナイロン(ONy)フィルムであることがより好ましい。なお、基材層51は、延伸ポリエステル樹脂層および延伸ポリアミド樹脂層の両層を含んで構成されていてもよい。基材層51の厚さは、フィルム強度の点から、例えば5~300μmであることが好ましく、20~150μmであることがより好ましい。
 バリア層52は、例えば、接着層54を介して基材層51と接合される。外装フィルム50に含まれるバリア層52は、防湿性、延展性等の加工性およびコストの面から、例えばアルミニウム箔から構成される。アルミニウム箔は、電極体20を包装する際の包装適性および耐ピンホール性の観点から、鉄を含むことが好ましい。アルミニウム箔中の鉄の含有量としては、0.5~5.0質量%であることが好ましく、0.7~2.0質量%であることがより好ましい。鉄の含有量が0.5質量%以上であることにより、外装フィルム50の包装適性、優れた耐ピンホール性および延展性が得られる。また、鉄の含有量が5.0質量%以下であることにより、外装フィルム50の優れた柔軟性が得られる。バリア層52は、バリア性を有する金属箔、蒸着膜、および、樹脂層を含んでいてもよい。金属箔としては、例えば、アルミニウム合金、ステンレス鋼、チタン鋼、または、鋼板等が挙げられる。
 バリア層52の厚さは、バリア性、耐ピンホール性および包装適性の点から、例えば15~100μmであることが好ましく、30~80μmであることがより好ましい。バリア層52の厚さが15μm以上であることによって、包装加工により応力がかかっても外装フィルム50が破断しにくくなる。バリア層52の厚さが100μm以下であることにより、外装フィルム50の質量増加を低減でき、蓄電デバイス10の重量エネルギー密度低下を抑制することができる。
 また、バリア層52がアルミニウム箔の場合は、溶解や腐食の防止などのために、少なくとも基材層51と反対側の面に耐腐食性皮膜を備えていることが好ましい。バリア層52は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、ニッケルやクロムなどのメッキ処理、コーティング剤を塗工する腐食防止処理をバリア層52の表面に行ない、バリア層52に耐腐食性(例えば耐酸性、耐アルカリ性など)を備えさせる薄膜をいう。耐腐食性皮膜は、具体的には、バリア層52の耐酸性を向上させる皮膜(耐酸性皮膜)、バリア層52の耐アルカリ性を向上させる皮膜(耐アルカリ性皮膜)などを意味している。耐腐食性皮膜を形成する処理としては、1種類を行なってもよいし、2種類以上を組み合わせて行なってもよい。また、1層だけではなく多層化することもできる。さらに、これらの処理のうち、熱水変成処理および陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、バリア層52が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めてバリア層52とする。
 耐腐食性皮膜は、外装フィルム50の成形時において、バリア層52(例えば、アルミニウム合金箔)と基材層51との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、バリア層52表面の溶解、腐食、特にバリア層52がアルミニウム合金箔である場合にバリア層52表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、バリア層52表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層51とバリア層52とのデラミネーション防止、成形時の基材層51とバリア層52とのデラミネーション防止の効果を示す。
 熱融着性樹脂層53は、例えば、接着層55を介してバリア層52と接合される。外装フィルム50に含まれる熱融着性樹脂層53は、外装フィルム50にヒートシールによる封止性を付与する層である。熱融着性樹脂層53としては、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂などのポリエステル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂等のポリオレフィン系樹脂、環状ポリオレフィン系樹脂、または、これらのポリオレフィン系樹脂を無水マレイン酸等の酸でグラフト変性させた酸変性ポリオレフィン系樹脂からなる樹脂フィルムが挙げられる。熱融着性樹脂層53の厚さは、シール性および強度の点から、例えば20~300μmであることが好ましく、40~150μmであることがより好ましい。
 外装フィルム50は、熱融着性樹脂層53よりも外側に、より好ましくは、バリア層52よりも外側に1または複数の緩衝機能を有する層(以下では、「緩衝層」という)を有していることが好ましい。緩衝層は、基材層51の外側に積層されてもよく、基材層51が緩衝層の機能を兼ね備えてもよい。外装フィルム50が複数の緩衝層を有する場合、複数の緩衝層は、隣接していてもよく、基材層51またはバリア層52等を介して積層されてもよい。
 緩衝層を構成する材料は、クッション性を有する材料から任意に選択可能である。クッション性を有する材料は、例えば、ゴム、不織布、または、発泡シートである。ゴムは、例えば、天然ゴム、フッ素ゴム、または、シリコンゴムである。ゴム硬度は、20~90程度であることが好ましい。不織布を構成する材料は、耐熱性に優れる材料であることが好ましい。緩衝層が不織布によって構成される場合、緩衝層の厚さの下限値は、好ましくは、100μm、さらに好ましくは、200μm、さらに好ましくは、1000μmである。緩衝層が不織布によって構成される場合、緩衝層の厚さの上限値は、好ましくは、5000μm、さらに好ましくは、3000μmである。緩衝層の厚さの好ましい範囲は、100μm~5000μm、100μm~3000μm、200μm~5000μm、200μm~3000μm、1000μm~5000μm、または、1000μm~3000μmである。この中でも、緩衝層の厚さの範囲は、1000μm~3000μmが最も好ましい。
 緩衝層がゴムによって構成される場合、緩衝層の厚さの下限値は、好ましくは、0.5mmである。緩衝層がゴムによって構成される場合、緩衝層の厚さの上限値は、好ましくは、10mm、さらに好ましくは、5mm、さらに好ましくは、2mmである。緩衝層がゴムによって構成される場合、緩衝層の厚さの好ましい範囲は、0.5mm~10mm、0.5mm~5mm、または、0.5mm~2mmである。
 外装フィルム50が緩衝層を有する場合、緩衝層がクッションとして機能するため、蓄電デバイス10が落下したときの衝撃、または、蓄電デバイス10の製造時のハンドリングによって、外装フィルム50が破損することが抑制される。
 本実施形態では、開口部40Aを有するように電極体20の周囲に外装フィルム50が巻き付けられた状態で、外装フィルム50の互いに向き合う面(熱融着性樹脂層53)同士がヒートシールされることによって、第1封止部70が形成される。本実施形態において、第1封止部70は、外装体40の長手方向に延びる。外装体40において、第1封止部70が形成される位置は、任意に選択可能である。本実施形態では、第1封止部70の根本70Xは、外装体40の第1面41と第2面42との境界の辺43上に位置する。第1面41は、第2面42よりも面積が大きい。第1封止部70の根本70Xは、外装体40の任意の面上に位置していてもよい。本実施形態では、第1封止部70は、例えば、外装体40の第2面42に向けて折り畳まれている。第1封止部70は、平面視において、電極体20よりも外側に張り出していてもよく、第1面41に向けて折り畳まれていてもよい。
 蓋体60は、全体として、例えば、直方体形状であり、樹脂材料によって構成される。なお、蓋体60は、外装フィルム50を例えば冷間成形することによって形成されてもよい。蓋体60を構成する材料としては、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂などのポリエステル系樹脂、ポリエチレン系樹脂、フッ素系樹脂、ポリプロピレン系樹脂等のポリオレフィン系樹脂、環状ポリオレフィン系樹脂、または、これらのポリオレフィン系樹脂を無水マレイン酸等の酸でグラフト変性させた酸変性ポリオレフィン系樹脂等が挙げられる。蓋体60と外装フィルム50とを好適にヒートシールする観点から、蓋体60を構成する材料と、外装フィルム50の熱融着性樹脂層53を構成する材料とは、主材料が同じであることが好ましい。本実施形態では、蓋体60を構成する材料、および、熱融着性樹脂層53を構成する材料としては、例えばポリエチレン系樹脂、ポリプロプロピレン系樹脂等のポリオレフィン系樹脂、または、これらのポリオレフィン系樹脂を無水マレイン酸等の酸でグラフト変性させた酸変性ポリオレフィン系樹脂が主材料である。なお、主材料とは、例えば、構成要素に含まれる材料のうち、50%以上を占める材料をいう。
 本実施形態では、集電体22を保護する観点から、蓋体60は、集電体22の少なくとも一部を覆う。蓋体60は、覆っている集電体22と接触していることが好ましい。蓋体60は、覆っている集電体22と接合されていることがさらに好ましい。本実施形態では、蓋体60は、全ての集電体22を覆い、最も外側の集電体22と接合されている。なお、蓋体60は、複数の集電体22の隙間を埋めるように配置されてもよい。
 本実施形態では、外装フィルム50の熱融着性樹脂層53と蓋体60の側面(以下では、「シール面61」という)とがヒートシールされることによって、第2封止部80が形成される。以下では、外装フィルム50の熱融着性樹脂層53と蓋体60のシール面61とのシール強度を、第2封止部80のシール強度と称する場合がある。なお、第2封止部80のシール強度は、シール面61のうちの長辺の部分、すなわち、図1におけるLR(幅)方向に延びるシール面61における熱融着性樹脂層53と蓋体60とのシール強度である。第2封止部80のシール強度は、蓋体60に対して外装フィルム50を図1のUD(上下)方向に引っ張り、FB(奥行)方向における第2封止部80の距離に基づいて測定される。なお、蓋体60が、長辺および短辺を含む複数のパーツに分割されている場合の第2封止部80のシール強度は、複数のパーツのシール面61のうちの長辺の部分におけるシール強度である。
 外装体40によって電極体20が密封された状態を好適に維持する観点から、第2封止部80のシール強度は、好ましくは、40N/15mm以上、さらに好ましくは、50N/15mm以上、さらに好ましくは、60N/15mm以上、さらに好ましくは、70N/15mm以上、さらに好ましくは、85N/15mm以上である。第2封止部80のシール強度が40N/15mm以上である場合、蓄電デバイス10を、例えば、数年間(10年未満)使用しても、外装体40によって電極体20が密封された状態が好適に維持される。第2封止部80のシール強度が85N/15mm以上である場合、蓄電デバイス10を、例えば、10年以上使用しても、外装体40によって電極体20が密封された状態が好適に維持される。第2封止部80のシール強度は、好ましくは、150N/15mm以下である。第2封止部80のシール強度の好ましい範囲は、40N/15mm~150N/15mm、50N/15mm~150N/15mm、60N/15mm~150N/15mm、70N/15mm~150N/15mm、または、85N/15mm~150N/15mmである。
 蓋体60が板状である場合、蓄電デバイス10が重ねて配置された場合であっても、外装体40が変形することが抑制されるように、蓋体60は、ある程度の厚さを有していることが好ましい。別の観点では、蓋体60が板状である場合、第2封止部80を形成する際に、蓋体60のシール面61と外装フィルム50とを好適にヒートシールできるように、蓋体60のシール面61は、ある程度の厚さを有していることが好ましい。蓋体60の厚さの最小値は、例えば、1.0mmであり、3mmがより好ましく、4mmがさらに好ましい。蓋体60の厚さの最大値は、例えば、10mmであり、8.0mmがより好ましく、7.0mmがさらに好ましい。蓋体60の厚さの最大値は、10mm以上であってもよい。蓋体60を構成する材料の厚さの好ましい範囲は、1.0mm~10mm、1.0mm~8.0mm、1.0mm~7.0mm、3.0mm~10mm、3.0mm~8.0mm、3.0mm~7.0mm、4.0mm~10mm、4.0mm~8.0mm、4.0mm~7.0mmである。本実施形態において、蓋体60が板状と表現される場合、蓋体60を構成する材料としてJIS(日本工業規格)の[包装用語]規格によって規定されるフィルムは含まれない。なお、蓋体60の厚さは、蓋体60の部位によって異なっていてもよい。蓋体60の厚さが部位によって異なる場合、蓋体60の厚さは、最も厚い部分の厚さである。
 <1-2.蓄電デバイスの製造方法>
 図4は、蓄電デバイス10の製造方法の一例を示すフローチャートである。蓄電デバイス10の製造方法は、例えば、第1工程、第2工程、第3工程、第4工程、第5工程、第6工程、および、第7工程を含む。第1工程~第7工程は、例えば、蓄電デバイス10の製造装置によって実施される。なお、本実施形態において、第1工程~第7工程は、各工程の名称を便宜的に規定したものであって、各工程の順序を意味するものではない。
 図5は、ステップS11の第1工程に関する図である。第1工程では、製造装置は、電極体20と電極端子30とを集電体22を介して電気的に接続する。なお、図5~図9では、図面の簡略化のため、集電体22の図示を省略している。
 図6および図7は、ステップS12の第2工程に関する図である。第2工程は、第1工程の後に実施される。第2工程では、製造装置は、外装フィルム50を電極体20に巻き付ける。図7に示されるように、第2工程では、製造装置は、蓋体60を配置する2つの空間90が形成されるように外装フィルム50によって電極体20を包む。なお、第2工程は、第1工程の前に実施されてもよい。
 ステップS13の第3工程は、第1工程または第2工程の後に実施される。第3工程では、製造装置は、外装フィルム50の対向する熱融着性樹脂層53同士をヒートシールすることによって、一部に未シール部71A(図7参照)を有する第1封止部70(以下では、「仮の第1封止部71」という)を形成する。なお、未シール部71Aは、例えば、一部が外装フィルム50と接触しないような形状のシールバーを用いることによって形成することができる。別の例では、未シール部71Aは、外装フィルム50の互いに向き合う面(熱融着性樹脂層53)同士の間にフッ素樹脂フィルム等を介在させることによって形成することができる。仮の第1封止部71を第2封止部80よりも先に形成することによって、外装フィルム50によって電極体20を保持できるため、外装フィルム50に対する電極体20の位置がずれにくい。このため、第2封止部80を形成するときに、しわが発生することが抑制される。
 図8は、ステップS14の第4工程に関する図である。第4工程は、第3工程の後に実施される。第4工程では、製造装置は、一方の空間90に蓋体60を構成する樹脂100を充填する。樹脂100は、溶融しており、所定の流動性を有する。樹脂100は、例えば、電極端子30が通過できるように中央に孔100Xを有するリング状である。
 図9は、ステップS15の第5工程に関する図である。第5工程は、第4工程の後に実施される。第5工程では、製造装置は、一方の空間90に充填された樹脂100に型110を押し付けることによって、蓋体60を成形する。型110は、空間90に収容可能な大きさであり、中央に電極端子30を挿入可能な孔110Xが形成されている。第5工程が完了することによって、蓋体60によって集電体22が覆われ、蓋体60と集電体22とが接合される。
 ステップS16の第6工程は、第5工程の後、または、第5工程と並行して実施される。第6工程では、製造装置は、外装フィルム50と蓋体60のシール面61とをヒートシールすることによって、第2封止部80を形成する。なお、製造装置は、他方の空間90に対しても、第4工程、5工程、および、第6工程を実施する。
 ステップS17の第7工程は、2つの空間90に第4工程、5工程、および、第6工程が実施された後に実施される。第7工程では、製造装置は、仮の第1封止部71の未シール部71Aから電解液を注入し、外装フィルム50を真空引きした後、未シール部71Aをヒートシールすることによって、第1封止部70を形成する。なお、蓄電デバイス10が全固体電池の場合、第7工程において、電解液を注入する工程は、省略される。
 <1-3.蓄電デバイスの作用および効果>
 蓄電デバイス10によれば、蓋体60は、集電体22の少なくとも一部を覆っている。このため、例えば、蓄電デバイス10に外力が作用した場合であっても、集電体22が蓋体60によって保護される。
 [2.第2実施形態]
 第2実施形態の蓄電デバイス200は、保護体210を備える点において、第1実施形態と異なり、その他の構成は、第1実施形態と同様である。以下では、第2実施形態の蓄電デバイス200について、第1実施形態と異なる部分を中心に説明する。
 <2-1.蓄電デバイスの構成>
 図10は、蓄電デバイス200の断面図である。蓄電デバイス200は、蓋体60と電極体20との間に配置され、集電体22を保護する保護体210を備える。保護体210は、集電体22の少なくとも一部を覆う。保護体210は、覆っている集電体22と接触していることが好ましい。保護体210は、覆っている集電体22と接合されていることがさらに好ましい。本実施形態では、保護体210は、全ての集電体22を覆い、最も外側の集電体22と接合されている。なお、保護体210は、複数の集電体22の隙間を埋めるように配置されてもよい。本実施形態では、集電体22のうちの電極端子30との溶接部22Xは、蓋体60によって覆われている。蓋体60は、溶接部22Xと接合されている。
 保護体210は、任意に選択可能である。保護体210は、フィルムであってもよく、樹脂成形体であってもよい。保護体210は、例えば、ポリエステル系樹脂、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂等、集電体22を保護可能である任意の樹脂を用いることができる。
 <2-2.蓄電デバイスの製造方法>
 図11は、蓄電デバイス200の製造方法の一例を示すフローチャートである。図11に示される製造方法は、図4に示される各工程に加えて、ステップS18の第8工程をさらに含む。第8工程では、製造装置は、集電体22を保護する保護体210を配置する。第8工程は、第1工程よりも後、かつ、第4工程よりも前の任意のタイミングで実施できる。
 <2-3.蓄電デバイスの作用および効果>
 蓄電デバイス10によれば、保護体210は、集電体22の少なくとも一部を覆っている。このため、例えば、蓄電デバイス10に外力が作用した場合であっても、集電体22が保護体210によって保護される。
 <3.変形例>
 上記各実施形態は本発明に関する蓄電デバイス、および、蓄電デバイスの製造方法が取り得る形態の例示であり、その形態を制限することを意図していない。本発明に関する蓄電デバイス、および、蓄電デバイスの製造方法は、各実施形態に例示された形態とは異なる形態を取り得る。その一例は、各実施形態の構成の一部を置換、変更、もしくは、省略した形態、または、各実施形態に新たな構成を付加した形態である。以下に各実施形態の変形例の幾つかの例を示す。なお、上記各実施形態および以下の変形例は、技術的に矛盾しない限り互いに組み合わせることができる。
 <3-1>
 第1実施形態の蓄電デバイス10において、2つの電極端子30は、2つの蓋体60のうちの一方から突出してもよい。この変形例では、外装体40において、他方の蓋体60が配置されている部分は、公知の方法で封止することができる。例えば、他方の蓋体60を省略し、外装フィルム50を折り畳むことによって電極体20を封止してもよい。この変形例は、第2実施形態の蓄電デバイス200についても同様に適用できる。
 <3-2>
 第2実施形態の蓄電デバイス200において、保護体210の構成は、任意に変更可能である。例えば、図12に示されるように、保護体210は、電極体20と溶接部22Xとの間に配置され、外装体40内の区間を仕切る板であってもよい。
 <3-3>
 第1実施形態の蓄電デバイス10において、電極端子30は、電極体20の電力の入出力が可能であればよく、例えば、外装体40から突出していなくてもよい。例えば、電極端子30は、蓋体60のうちの外装体40の外部と面する面と面一の面を含む任意の形状であってもよい。この変形例は、第2実施形態の蓄電デバイス10にも適用できる。
 <3-4>
 第1実施形態の蓄電デバイス10において、図9に示されるステップS15の第5工程を省略してもよい。例えば、樹脂100の流動性が高い場合、換言すれば、粘度が低い場合、ステップS14の第4工程において、樹脂100が空間90に充填されることによって、樹脂100は、空間90を埋めるように広がる。このため、樹脂100の流動性が高い場合、第5工程を省略できる。この変形例は、第2実施形態の蓄電デバイス200にも適用できる。
 <3-5>
 第1実施形態の蓄電デバイス10において、外装フィルム50は、バリア層52の両面に熱融着性樹脂層53を有する積層体(ラミネートフィルム)であってもよい。この変形例では、第1封止部70は、バリア層52に対して一方または他方に積層される熱融着性樹脂層53同士がヒートシールされることによって形成されてもよく、バリア層52に対して一方に積層される熱融着性樹脂層53と他方に積層される熱融着性樹脂層53とがヒートシールされることによって形成されてもよい。この変形例では、第1封止部70の根本70Xは、外装体40の任意の面上に位置する。この変形例では、第1封止部70の根本70Xは、第1面41と第2面42との境界の辺43の近傍に位置することが好ましい。この変形例では、熱融着性樹脂層53は、例えば、接着層55を介してバリア層52と接合されてもよい。この変形例は、第2実施形態の蓄電デバイス200についても同様に適用できる。
 10 :蓄電デバイス
 20 :電極体
 21 :電極
 22 :集電体
 30 :電極端子
 50 :外装フィルム
 60 :蓋体
 100:樹脂
 110:型
 200:蓄電デバイス
 210:保護体

Claims (7)

  1.  電極を含む電極体と、
     前記電極から延びる集電体と、
     前記集電体を介して前記電極体と電気的に接続される電極端子と、
     開口部を有するように前記電極体に巻き付けられる外装フィルムと、
     前記開口部に配置される蓋体と、を備え、
     前記蓋体は、前記集電体の少なくとも一部を覆う
     蓄電デバイス。
  2.  前記蓋体は、前記集電体の少なくとも一部と接触する
     請求項1に記載の蓄電デバイス。
  3.  電極を含む電極体と、
     前記電極から延びる集電体と、
     前記集電体を介して前記電極体と電気的に接続される電極端子と、
     開口部を有するように前記電極体に巻き付けられる外装フィルムと、
     前記開口部に配置される蓋体と、
     前記蓋体と前記電極体との間に配置され、前記集電体の少なくとも一部を保護する保護体と、を備える
     蓄電デバイス。
  4.  前記保護体は、前記集電体、前記電極体、および、前記外装フィルムの少なとも1つと接触する
     請求項3に記載の蓄電デバイス。
  5.  蓄電デバイスの製造方法であって、
     前記蓄電デバイスは、
     電極を含む電極体と、
     前記電極から延びる集電体と、
     前記集電体を介して前記電極体と電気的に接続される電極端子と、
     開口部を有するように前記電極体に巻き付けられる外装フィルムと、
     前記開口部に配置され、前記集電体の少なくとも一部を覆う蓋体と、を備え、
     前記蓄電デバイスの製造方法は、
     前記集電体を介して前記電極体と前記電極端子とを接続する工程と、
     前記蓋体を配置する空間が形成されるように前記外装フィルムによって前記電極体を包む工程と、
     前記空間に前記蓋体を構成する樹脂を充填する工程と、を含む
     蓄電デバイスの製造方法。
  6.  前記空間に前記蓋体を構成する樹脂を充填する工程よりも後に実施され、前記空間に充填された樹脂に型を押し付けることによって、前記蓋体を成形する工程をさらに含む
     請求項5に記載の蓄電デバイスの製造方法。
  7.  前記空間に前記蓋体を構成する樹脂を充填する工程よりも前に実施され、前記集電体の少なくとも一部を保護する保護体を配置する工程をさらに含む
     請求項5または6に記載の蓄電デバイスの製造方法。
PCT/JP2023/007127 2022-02-26 2023-02-27 蓄電デバイス、蓄電デバイスの製造方法 WO2023163183A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023552206A JP7375995B1 (ja) 2022-02-26 2023-02-27 蓄電デバイス、蓄電デバイスの製造方法
JP2023177173A JP2024009956A (ja) 2022-02-26 2023-10-13 蓄電デバイス、蓄電デバイスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-028729 2022-02-26
JP2022028729 2022-02-26

Publications (1)

Publication Number Publication Date
WO2023163183A1 true WO2023163183A1 (ja) 2023-08-31

Family

ID=87766255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007127 WO2023163183A1 (ja) 2022-02-26 2023-02-27 蓄電デバイス、蓄電デバイスの製造方法

Country Status (2)

Country Link
JP (2) JP7375995B1 (ja)
WO (1) WO2023163183A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041724A (ja) * 2012-08-21 2014-03-06 Toyota Industries Corp 蓄電装置、及び電極組立体の製造方法
JP2018116917A (ja) * 2017-01-20 2018-07-26 トヨタ自動車株式会社 全固体電池
JP2019153504A (ja) * 2018-03-05 2019-09-12 トヨタ自動車株式会社 全固体電池
WO2021157731A1 (ja) * 2020-02-07 2021-08-12 大日本印刷株式会社 蓄電デバイス、及び、蓄電デバイスの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934992Y2 (ja) * 1979-03-28 1984-09-27 松下電器産業株式会社 電気二重層キャパシタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041724A (ja) * 2012-08-21 2014-03-06 Toyota Industries Corp 蓄電装置、及び電極組立体の製造方法
JP2018116917A (ja) * 2017-01-20 2018-07-26 トヨタ自動車株式会社 全固体電池
JP2019153504A (ja) * 2018-03-05 2019-09-12 トヨタ自動車株式会社 全固体電池
WO2021157731A1 (ja) * 2020-02-07 2021-08-12 大日本印刷株式会社 蓄電デバイス、及び、蓄電デバイスの製造方法

Also Published As

Publication number Publication date
JP2024009956A (ja) 2024-01-23
JPWO2023163183A1 (ja) 2023-08-31
JP7375995B1 (ja) 2023-11-08

Similar Documents

Publication Publication Date Title
JP7459902B2 (ja) 蓄電デバイス、及び、蓄電デバイスの製造方法
KR101216422B1 (ko) 실링부의 절연성이 향상된 이차전지
EP2434564B1 (en) Rechargeable lithium battery in pouch form
KR20100090141A (ko) 배터리 팩 및 그 제조 방법
KR20190042802A (ko) 다종 금속 차단층을 포함하는 전지케이스 및 이를 포함하고 있는 전지셀
KR20170058047A (ko) 일회용 가스 포집부를 포함하고 있는 파우치형 전지케이스 및 이를 포함하는 이차전지의 제조방법
CN112585799B (zh) 蓄电模块及蓄电模块的制造方法
WO2023163183A1 (ja) 蓄電デバイス、蓄電デバイスの製造方法
JP6915567B2 (ja) 蓄電モジュール
KR101546002B1 (ko) 전기화학 에너지 저장 장치
JP7327717B1 (ja) 蓋体、蓄電デバイス、蓄電デバイスの製造方法
JP7100537B2 (ja) 蓄電モジュール
WO2023113042A1 (ja) 蓄電デバイス、蓋体、蓄電デバイスの製造方法
WO2023163188A1 (ja) 蓋体、蓋体ユニット、蓄電デバイス、蓋体ユニットの製造方法、蓄電デバイスの製造方法
JP7513183B2 (ja) 蓋体、蓋体ユニット、蓄電デバイス、蓋体ユニットの製造方法、蓄電デバイスの製造方法
JP7501816B1 (ja) 蓄電デバイス、補強パーツ、および、蓄電デバイスの製造方法
WO2023127912A1 (ja) 蓄電デバイス
JP7042204B2 (ja) 蓄電モジュール
JP7116632B2 (ja) 蓄電モジュール
JP2019079677A (ja) 蓄電モジュール
JP6858165B2 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
KR20220067981A (ko) 플렉시블 배터리용 외장재
JP2020087542A (ja) 蓄電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023552206

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760181

Country of ref document: EP

Kind code of ref document: A1