WO2023163159A1 - Cutting machine - Google Patents

Cutting machine Download PDF

Info

Publication number
WO2023163159A1
WO2023163159A1 PCT/JP2023/006984 JP2023006984W WO2023163159A1 WO 2023163159 A1 WO2023163159 A1 WO 2023163159A1 JP 2023006984 W JP2023006984 W JP 2023006984W WO 2023163159 A1 WO2023163159 A1 WO 2023163159A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
chamber
tool
processing chamber
axis direction
Prior art date
Application number
PCT/JP2023/006984
Other languages
French (fr)
Japanese (ja)
Inventor
晋平 百々
Original Assignee
Dgshape株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dgshape株式会社 filed Critical Dgshape株式会社
Publication of WO2023163159A1 publication Critical patent/WO2023163159A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/08Protective coverings for parts of machine tools; Splash guards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/155Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/155Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling
    • B23Q3/157Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling of rotary tools

Definitions

  • the present invention relates to cutting machines.
  • Patent Literature 1 discloses a cutting machine provided with a tool magazine that stores a plurality of machining tools.
  • the tool magazine is fixed to a drive section that moves a holding device for the workpiece, and is accommodated in the machining area together with the holding device.
  • a tool stocker that stores cutting tools is housed in a processing chamber. Therefore, the cutting powder generated in the machining chamber by cutting the workpiece adheres to the cutting tool as well. If the cutting powder adheres to the cutting tool, there is a risk that problems such as defective machining will occur in the subsequent cutting of the workpiece.
  • the present invention has been made in view of such problems, and its object is to provide a cutting machine in which cutting powder is less likely to adhere to the cutting tools stored in the tool stocker.
  • the cutting machine disclosed herein includes a tool stocker capable of accommodating a plurality of cutting tools, a first chamber accommodating the tool stocker, a second chamber separated from the first chamber, and a A holding device for holding an object to be cut stored therein, and each cutting tool stored in the tool stocker can be gripped, and the object to be cut held by the holding device is cut by the gripped cutting tool.
  • a cutting device and a moving device for moving the cutting device between the first chamber and the second chamber are provided.
  • the tool stocker that stores the cutting tools is stored in the second chamber that is separated from the first chamber that holds the workpiece. Therefore, the cutting powder generated in the first chamber is less likely to adhere to the cutting tools stored in the tool stocker.
  • the moving device moves the cutting device between the first chamber and the second chamber so that the cutting device can grip each cutting tool stored in the tool stocker and cut the workpiece in the second chamber with the gripped cutting tool. configured to be moved to and from the chamber.
  • FIG. 1 is a perspective view of a cutting machine according to one embodiment
  • FIG. FIG. 4 is a plan view of a workpiece and an adapter; It is a longitudinal cross-sectional view of the cutting machine seen from the left. It is a vertical cross-sectional view of the cutting machine seen from the right side. It is a top view of a work holder.
  • FIG. 4 is a vertical cross-sectional view showing the cutting machine during replacement of the adapter;
  • FIG. 4 is a perspective view of a cutting device chamber and a drive device chamber; It is a top view of a tool stocker.
  • FIG. 4 is a partially broken side view of the vicinity of the lower end of the main shaft; FIG.
  • FIG. 4 is a side view of the vicinity of the tip of the cutting device when the cutting tool is replaced; It is a block diagram of a cutting machine.
  • Figure 3 is a flow chart of the overall process; 4 is a flowchart of work cleaning.
  • FIG. 4 is a side view showing the work holder during work cleaning;
  • FIG. 4 is a plan view of the work holder showing the procedure of work cleaning;
  • It is a flow chart of processing chamber cleaning. It is a longitudinal cross-sectional view of the cutting machine during cleaning of the processing chamber.
  • FIG. 1 is a perspective view of a cutting machine 10 according to one embodiment.
  • the side away from the cutting machine 10 is defined as the front
  • the side closer to the cutting machine 10 is defined as the rear.
  • Left, right, top, and bottom mean left, right, top, and bottom, respectively, when the cutting machine 10 is viewed from the front.
  • References F, Rr, L, R, U, and D in the drawings mean front, rear, left, right, up, and down, respectively.
  • the cutting machine 10 is a cutting machine that cuts a disk-shaped workpiece held by an adapter.
  • FIG. 2 is a plan view of the workpiece 1 and the adapter 5.
  • the cutting machine 10 cuts the workpiece 1 to produce dental moldings such as crowns, bridges, copings, inlays, onlays, veneers, custom abutments and other prosthetic crowns, artificial teeth, and the like. , denture base, etc.
  • the cutting machine 10 according to this embodiment is a dry cutting machine that does not use coolant.
  • the workpiece 1 is made of, for example, resins such as PMMA, PEEK, glass fiber reinforced resin, hybrid resin, etc., ceramic materials such as glass ceramics and zirconia, metal materials such as cobalt chromium sinter metal, wax, gypsum, and the like.
  • resins such as PMMA, PEEK, glass fiber reinforced resin, hybrid resin, etc.
  • ceramic materials such as glass ceramics and zirconia
  • metal materials such as cobalt chromium sinter metal, wax, gypsum, and the like.
  • zirconia is used as the material of the object 1 to be cut, for example, semi-sintered zirconia is used.
  • the object to be cut 1 is a plate-like object to be cut having two opposing surfaces.
  • the shape of the object 1 to be cut is disc-shaped.
  • the object 1 to be cut may have another shape, such as a block shape (for example, a cube shape or a rectangular parallelepiped shape).
  • first surface 1A and a second surface 1B are also referred to as a first surface 1A and a second surface 1B, respectively.
  • the second surface 1B is the back surface of the first surface 1A.
  • the distinction between the first surface 1A and the second surface 1B is for convenience, and in the present embodiment, the first surface 1A and the second surface 1B of the workpiece 1 before machining are the same. However, the first surface 1A and the second surface 1B of the workpiece 1 before machining may be configured to be distinguishable.
  • the adapter 5 holds the disc-shaped object 1 to be cut.
  • the adapter 5 is a plate-like adapter in which a substantially circular insertion hole 5a corresponding to the object 1 to be cut is formed in the center.
  • the object 1 to be cut is held by the adapter 5 by being inserted into the insertion hole 5a.
  • the object 1 to be cut is accommodated in the cutting machine 10 while being held by the adapter 5, and processed.
  • FIG. 1 is a box-shaped housing 11 .
  • FIG. 3 is a longitudinal sectional view of the cutting machine 10 viewed from the left.
  • FIG. 4 is a longitudinal sectional view of the cutting machine 10 as seen from the right side.
  • the inside of the housing 11 includes a processing chamber 120 (see also FIG. 3) in which a work holder 20 holding the adapter 5 is accommodated, and a holder moving device 30 (see FIG. 4) for moving the work holder 20. ), a changer chamber 170 in which a workpiece changer 70 is accommodated, and a tool exchange chamber for storing a cutting tool 6 (see FIG. 7) in a tool stocker 80 (also see FIG. 7). 180 and are partitioned into a plurality of spaces.
  • the processing chamber 120 is arranged in the lower left portion of the housing 11. As shown in FIG. 3, the processing chamber 120 extends to the rear end of the housing 11. As shown in FIG. The changer chamber 170 is arranged above the front portion of the processing chamber 120 . The changer chamber 170 extends to the central portion of the housing 11 in the front-rear direction.
  • the drive chamber 130 is arranged to the right of the processing chamber 120 . As shown in FIG. 4 , the drive chamber 130 extends to the rear end of the housing 11 .
  • the tool exchange chamber 180 is arranged above the front portion of the drive chamber 130 . The tool exchange chamber 180 extends to the central portion of the housing 11 in the front-rear direction.
  • the drive device chamber 130 may be arranged on the left side of the processing chamber 120 . In that case, the tool exchange chamber 180 may be arranged to the left of the changer chamber 170 .
  • a front opening 121 (see FIG. 3) of the processing chamber 120 is provided with a processing chamber door 122 that can be opened and closed.
  • a drive-chamber cover 131 is provided at the front opening of the drive-chamber 130 .
  • a changer chamber door 171 is provided at the front opening of the changer chamber 170 so as to be freely opened and closed.
  • a front opening of the tool changing chamber 180 is provided with a tool changing chamber door 181 that can be opened and closed.
  • the processing chamber door 122, the changer chamber door 171, and the tool exchange chamber door 181 are provided with transparent windows 122a, 171a, and 181a, respectively, so that the inside can be visually recognized.
  • An operation panel 110 is provided on the front surface of the driving device chamber cover 131 . As shown in FIGS.
  • the front surface of the housing 11 (here, the front openings of the processing chamber 120, the drive chamber 130, the changer chamber 170, and the tool exchange chamber 180) is inclined with respect to the bottom surface. formed.
  • the front surface of the housing 11 is formed so as to incline backward.
  • the cutting device chamber 150 here occupies almost the entire width of the housing 11 in the left-right direction.
  • the work holder 20 is an example of a holding device that holds the object 1 to be cut.
  • the work holder 20 here holds the workpiece 1 via the adapter 5 .
  • the work holder 20 may directly hold the workpiece 1 without intervening other members.
  • FIG. 5 is a plan view of the work holder 20.
  • the work holder 20 has a pair of left and right arms 21 .
  • the adapter 5 is held by the work holder 20 by being inserted between the pair of arms 21 . The operation of the cutting machine 10 when the adapter 5 is inserted between the pair of arms 21 will be described later.
  • the holder moving device 30 supports and moves the work holder 20.
  • the holder moving device 30 moves the work holder 20 in the front-rear direction. More specifically, as shown in FIG. 4, the holder moving device 30 moves the work holder 20 obliquely forward and backward so as to descend backward. When the work holder 20 is moved forward by the holder moving device 30, it also moves upward. When the work holder 20 is moved backward by the holder moving device 30, it also moves downward.
  • the direction in which the work holder 20 is moved by the holder moving device 30 is also referred to as the X-axis direction. Further, hereinafter, the front in the X-axis direction may be simply referred to as the front, and the rear in the X-axis direction may simply be referred to as the rear, unless otherwise specified.
  • the holder moving device 30 includes a support arm 31 that extends in the left-right direction and supports the work holder 20.
  • the holder moving device 30 includes an X-axis moving body 32 connected to a support arm 31, a pair of X-axis guide rails 33, an X-axis driving motor 34, a ball screw 35, It has The holder moving device 30 moves the work holder 20 in the X-axis direction by moving the support arm 31 in the X-axis direction. At least part of the holder moving device 30 is housed in the driving device chamber 130 .
  • the X-axis direction moving body 32, the pair of X-axis guide rails 33, the X-axis direction drive motor 34, the ball screw 35, and part of the support arm 31 of the holder moving device 30 are accommodated in the drive device chamber 130.
  • the pair of X-axis guide rails 33 extends in the X-axis direction.
  • the X-axis moving body 32 is slidably engaged with a pair of X-axis guide rails 33 .
  • the X-axis direction moving body 32 can move in the X-axis direction along the X-axis guide rails 33 .
  • the ball screw 35 extends in the X-axis direction.
  • the ball screw 35 is meshed with a nut provided on the X-axis moving body 32 .
  • the X-axis direction drive motor 34 rotates the ball screw 35 around the axis.
  • the X-axis direction driving motor 34 When the X-axis direction driving motor 34 is driven to rotate the ball screw 35 , the X-axis direction moving body 32 moves along the X-axis guide rail 33 in the X-axis direction.
  • the X-axis direction drive motor 34 is an example of a drive unit that moves the support arm 31 and the work holder 20 in the X-axis direction by moving the X-axis direction moving body 32 in the X-axis direction.
  • the holder moving device 30 is not limited to having a ball screw mechanism, and may have, for example, a timing belt or a wire.
  • the holder moving device 30 is configured to move the work holder 20 within a predetermined range in the X-axis direction when the workpiece 1 held by the work holder 20 is cut by the cutting device 50 .
  • this predetermined range in the X-axis direction will also be referred to as a "moving range during cutting”.
  • FIG. 3 illustrates a state in which the work holder 20 is positioned within the range of movement during cutting.
  • the support arm 31 includes a rotating shaft 31a that rotates about an axis Axb that extends in the left-right direction, and a rotating shaft 31a that is connected to the rotating shaft 31a so as to be orthogonal to the axis Axb and rotates in the front-rear direction together with the rotating shaft 31a. It has a first arm 31b and a second arm 31c connected to the first arm 31b parallel to the axis Axb (perpendicular to the first arm 31b). As shown in FIG. 4, the X-axis moving body 32 is provided with a B-axis rotating motor 41B that rotates the rotating shaft 31a around the axis Axb.
  • the support arm 31 and the B-axis rotary motor 41B constitute a part of a rotating device 40 that changes the posture of the work holder 20 by rotating the work holder 20 .
  • the B-axis rotating motor 41B is driven to rotate the rotating shaft 31a, the work holder 20 rotates in the front-rear direction.
  • the extending direction of the axis Axb is also referred to as the B axis direction
  • rotation about the axis Axb is also referred to as rotation about the B axis.
  • a device that rotates the work holder 20 around the B-axis is also called a B-axis rotating device 40B.
  • the rotating device 40 also includes an A-axis rotating device 40A that rotates the work holder 20 in the left-right direction.
  • the A-axis rotating device 40A includes an A-axis rotating motor 41A and a rotating shaft 42A.
  • the A-axis rotary motor 41A is fixed to the second arm 31c.
  • the rotary shaft 42A is connected to the A-axis rotary motor 41A and extends in the front-rear direction along the axis Axa.
  • the rotary shaft 42A rotates around the axis Axa.
  • the extension direction of the axis Axa is also referred to as the A-axis direction
  • rotation about the axis Axa is also referred to as rotation about the A-axis.
  • the processing chamber 120 is partitioned by a plurality of walls and accommodates the work holders 20 .
  • the multiple walls include a bottom wall 120D, a left wall 120L (see FIG. 1), a right wall 120R, a rear wall 120Rr, a front wall 120F, and a top wall 120U.
  • the plurality of walls 120D, 120L, 120R, 120Rr, 120F, and 120U are formed here by metal plates.
  • the bottom wall 120 ⁇ /b>D is arranged below the work holder 20 and forms the bottom surface of the processing chamber 120 .
  • the bottom wall 120D is configured to be substantially horizontal when the cutting machine 10 is installed on a horizontal surface.
  • the ceiling wall 120U is arranged above the work holder 20 and forms the ceiling of the processing chamber 120.
  • the left side wall 120L, the right side wall 120R, the rear wall 120Rr, and the front wall 120F are erected to connect the top wall 120U and the bottom wall 120D.
  • the left side wall 120L is connected to the left end of the bottom wall 120D and extends upward.
  • the left side wall 120L is erected to the left of the work holder 20.
  • the right side wall 120R is connected to the right end of the bottom wall 120D and extends upward.
  • the right side wall 120 ⁇ /b>R is erected to the right of the work holder 20 .
  • the rear wall 120Rr is connected to the rear end of the bottom wall 120D and extends upward.
  • the left and right ends of the rear wall 120Rr are connected to the rear ends of the left and right walls 120L and 120R, respectively.
  • the rear wall 120Rr is erected behind the work holder 20.
  • the front wall 120F is connected to the front end of the bottom wall 120D and extends obliquely upward.
  • the front wall 120 ⁇ /b>F is erected forward of the work holder 20 .
  • the front wall 120F extends to tilt rearward.
  • the extending direction of the front wall 120F is a direction orthogonal to the X-axis direction.
  • the left end and right end of the front wall 120F are connected to the front end of the left side wall 120L and the right side wall 120R, respectively.
  • the ceiling wall 120U extends in a direction orthogonal to the front wall 120F, that is, parallel to the X-axis direction.
  • the ceiling wall 120U is inclined downward toward the rear.
  • the ceiling wall 120U is provided non-parallel to the bottom wall 120D.
  • the front end, left end, right end and rear end of the ceiling wall 120U are connected to the upper end of the front wall 120F, left wall 120L, right wall 120R and rear wall 120Rr, respectively. ing.
  • a front opening 121 is formed in the front wall 120F of the processing chamber 120 .
  • the front opening 121 is provided with the processing chamber door 122 that can be opened and closed.
  • the front opening 121 extends upward from a position above the lower end of the front wall 120F.
  • the vicinity of the lower end of the front wall 120F forms a corner that is not open to the outside.
  • the right side wall 120R separates the processing chamber 120 and the driving device chamber 130.
  • the right side wall 120R of the processing chamber 120 is also the left side wall of the drive chamber 130 .
  • the right side wall 120R is formed with a slit 123 extending in the X-axis direction and through which the support arm 31 of the holder moving device 30 passes.
  • the slit 123 is an opening through which the support arm 31 is inserted.
  • a dust-proof plate 36 is fixed to the support arm 31 to prevent cutting powder generated in the machining chamber 120 from entering the driving device chamber 130 .
  • the dustproof plate 36 is provided so as to cover at least part of the slit 123 and moves in the X-axis direction together with the support arm 31 .
  • the dust-proof plate 36 is fixed to a portion of the support arm 31 positioned inside the processing chamber 120 and provided inside the processing chamber 120 .
  • the dustproof plate 36 here is configured to cover different portions of the slit 123 according to the position of the support arm 31 in the X-axis direction.
  • the dust-proof plate 36 is configured to cover the rear end of the slit 123 when the work holder 20 is positioned within the movement range during cutting. At this time, the front end of the slit 123 is not covered with the dustproof plate 36 and is open.
  • the dust-proof plate 36 is configured to be positioned behind the front end of the slit 123 when the work holder 20 is positioned within the movement range during cutting.
  • the dust-proof plate 36 opens more of the front side of the slit 123 as the support arm 31 moves rearward. As will be described later, this is because cutting dust tends to collect behind the work holder 20 due to the flow of air in the processing chamber 120 , and there is less cutting dust in front of the work holder 20 .
  • the length of the dustproof plate 36 is shortened, and the lengthening of the processing chamber 120 toward the front is suppressed.
  • a part of the front side of the slit 123 is open regardless of the position of the work holder 20 . Since a part of the front side of the slit 123 is open, a flow of air from the drive device chamber 130 to the processing chamber 120 is generated. This prevents cutting powder and the like in the processing chamber 120 from entering the driving device chamber 130 .
  • the ceiling wall 120U partitions the processing chamber 120 and the changer chamber 170, and also partitions the processing chamber 120 and the cutting device chamber 150.
  • a front opening 124 that communicates the processing chamber 120 and the changer chamber 170 and a rear opening 125 that communicates the processing chamber 120 and the cutting device chamber 150 are opened in the ceiling wall 120U.
  • the front side portion of the ceiling wall 120U of the processing chamber 120 is also the bottom wall of the changer chamber 170.
  • the front opening 124 is formed below the changer chamber 170 .
  • the front side opening 124 is an opening through which the workpiece 1 conveyed by the conveying device 72 of the work changer 70 can pass.
  • the transport device 72 transports the adapter storage portion 71 containing the adapter 5 from the front side opening portion 124 to the processing chamber 120 .
  • the rear side portion of the ceiling wall 120U of the processing chamber 120 is also the left side portion of the bottom wall of the cutting device chamber 150.
  • the rear opening 125 is formed below the cutting device chamber 150 .
  • the rear opening 125 is an opening through which at least part of the cutting device 50, here, the lower part of the main shaft 51, can pass.
  • the rear opening 125 is an opening through which the cutting tool 6 and the main shaft 51 pass when the main shaft 51 is moved in the Z-axis direction (see FIG. 3) by a Z-axis direction moving device 60Z, which will be described later.
  • the rear side opening 125 extends above the drive device chamber 130 so as to allow the drive device chamber 130 and the cutting device chamber 150 to communicate with each other (see FIG. 7).
  • the bottom wall 120D of the processing chamber 120 includes a substantially horizontal bottom portion 126 and a slope 127 connected to the rear end portion of the bottom portion 126 and extending rearward therefrom. there is The slope 127 is inclined upward toward the rear. The slope 127 and the bottom 126 are connected so as to bend. The slope 127 is connected to the rear wall 120Rr. A space is formed below the slope 127 .
  • An exhaust port 128 is opened in the bottom wall 120D.
  • a dust collector 111 (see FIG. 11) is connected to the exhaust port 128 via an exhaust duct 92 or the like, which will be described later. Air and dust in the processing chamber 120 are discharged from the exhaust port 128 .
  • the exhaust port 128 is provided on the slope 127 . More specifically, the exhaust port 128 opens along the connecting portion of the slope 127 with the rear wall 120Rr. A rear edge of the exhaust port 128 is formed by a rear wall 120Rr.
  • the exhaust port 128 is provided at the rearmost part of the slope 127 .
  • the slope 127 is inclined upward toward the exhaust port 128 .
  • the exhaust port 128 opens to the rear of the work holder 20 .
  • a wind flows from the front to the rear across the work holder 20 .
  • at least a portion of the slope 127 overlaps at least a portion of the work holder 20 in plan view (see also FIG. 3).
  • fragments of the object to be cut 1 dropped by cutting fall onto the slope 127 .
  • larger pieces slide down the slope 127 without being sucked into the exhaust port 128 even by suction from the exhaust port 128 .
  • the larger fragments of the object 1 to be cut are sorted out. Also, for example, even if the workpiece 1 falls from the adapter 5 due to the load of cutting, the dropped workpiece 1 slides down the slope 127 without being sucked into the exhaust port 128 by suction from the exhaust port 128 .
  • the exhaust port 128 is biased to the right of the horizontal center line CL of the processing chamber 120 (which may or may not coincide with the A axis). is provided. In other words, the exhaust port 128 is provided so as to be closer to the driving device chamber 130 than the center line CL of the processing chamber 120 in the left-right direction. As a result, the dust and the like near the driving device chamber 130 are discharged intensively.
  • the exhaust port 128 is a single slit that opens upward.
  • the exhaust port 128 is formed in a substantially rectangular shape whose length in the left-right direction is longer than its length in the front-rear direction.
  • a dust collection chamber 90 is provided below the exhaust port 128 in this embodiment. Dust collection chamber 90 is fixed to the lower surface of slope 127 .
  • the dust collection chamber 90 is a box-shaped member with an open top, and an upward opening 90U is connected to the exhaust port 128 .
  • the dust collection chamber 90 includes an upper opening 90U, a bottom wall 90D, a front wall 90F, and a left side wall 90L.
  • a rear wall and a right side wall of the dust collection chamber 90 are formed by a rear wall 120Rr and a right side wall 120R of the processing chamber 120, respectively.
  • the dust collection chamber 90 may have a rear wall and a right side wall that are not shared with the processing chamber 120 .
  • An internal space is formed in the dust collection chamber 90 by the bottom wall 90D, the front wall 90F, the left wall 90L, the rear wall 120Rr of the processing chamber 120, and the right wall 120R of the processing chamber 120. As shown in FIG. 5, the internal space of the dust collection chamber 90 is larger than the exhaust port 128 in plan view.
  • the duct connection hole 91 is an opening to which the exhaust duct 92 is connected. As shown in FIG. 3 , the cutting machine 10 has an exhaust duct 92 connected to the duct connection hole 91 .
  • the duct connection hole 91 here opens to the rear wall of the dust collection chamber 90 (the rear wall 120Rr of the processing chamber 120).
  • the opening direction of the upper opening 90U (exhaust port 128) and the opening direction of the duct connection hole 91 intersect. However, the duct connection hole 91 may open to another side wall of the dust collection chamber 90 (for example, the right side wall 120R).
  • a front end portion of the exhaust duct 92 is connected to the duct connection hole 91 .
  • the exhaust duct 92 communicates with the exhaust port 128 and the processing chamber 120 via the dust collection chamber 90 .
  • a rear end portion of the exhaust duct 92 extends to the outside of the cutting machine 10 .
  • a dust collector 111 (see FIG. 11) is connected to the rear end of the exhaust duct 92 .
  • the dust collection chamber 90 and the exhaust duct 92 are also positioned to the right of the center line CL in the left-right direction of the processing chamber 120, in other words, the driving device is positioned further to the center line CL in the left-right direction of the processing chamber 120.
  • FIG. It is provided so as to be biased toward the chamber 130 side.
  • the top wall 120U of the processing chamber 120 is provided with a top surface nozzle 93N of the top surface air blow device 93.
  • the top surface air blow device 93 blows air along the top wall 120U of the processing chamber 120, and sends the blown air through the rear wall 120Rr to the exhaust port 128, thereby blowing the top wall 120U of the processing chamber 120 and the rear wall. Clean the wall 120Rr.
  • the ceiling air blow device 93 includes a pipe (not shown) connected to an external air compressor or the like, a valve (not shown) for controlling air flow, and a ceiling nozzle 93N for injecting air along the ceiling wall 120U of the processing chamber 120. and has.
  • the ceiling nozzle 93N jets air along the ceiling wall 120U and the rear wall 120Rr of the processing chamber 120 to reach the exhaust port 128, as indicated by arrow F1 in FIG.
  • the exhaust port 128 opens along the connecting portion of the bottom wall 120D (more specifically, the slope 127) with the rear wall 120Rr. Therefore, the air injected from the top surface nozzle 93N is smoothly sent to the exhaust port 128.
  • the top surface nozzle 93N is provided at a position aligned with the exhaust duct 92 in the left-right direction. Therefore, the top surface nozzle 93N is also provided so as to deviate to the right of the center line CL in the left-right direction of the processing chamber 120 . In other words, the top surface nozzle 93N is also provided so as to be closer to the driving device chamber 130 side than the center line CL of the processing chamber 120 in the left-right direction. Moreover, the top surface nozzle 93N can jet air toward the cutting device 50 when protruding into the processing chamber 120 .
  • the ceiling nozzle 93N jets air so as to pass below the rear opening 125 of the ceiling wall 120U. As a result, the lower portion of the main shaft 51 of the cutting device 50 and the cutting tool 6 are cleaned when they are moved into the processing chamber 120 through the rear side opening 125 .
  • the cutting machine 10 further has a bottom air blow device 94 having a bottom nozzle 94N.
  • the bottom nozzle 94N jets air along the bottom wall 120D of the processing chamber 120 so as to reach the exhaust port 128 .
  • the bottom air blow device 94 cleans the bottom wall 120 ⁇ /b>D of the processing chamber 120 by blowing jetted air along the bottom wall 120 ⁇ /b>D of the processing chamber 120 to the exhaust port 128 .
  • the bottom air blow device 94 includes a pipe (not shown) connected to an external air compressor or the like, a valve (not shown) for controlling the flow of air, a bottom nozzle 94N for injecting air along the bottom wall 120D of the processing chamber 120, It has
  • the bottom nozzle 94N is provided above the bottom wall 120D. Specifically, as shown in FIG. 3, the bottom nozzle 94N is fixed to a mounting plate 95 that is diagonally spanned between the bottom wall 120D and the front wall 120F of the processing chamber 120. As shown in FIG. As indicated by an arrow F2 in FIG. 3, the bottom nozzle 94N jets air obliquely downward toward the bottom wall 120D and toward the exhaust port 128 side. Here, the bottom nozzle 94N jets air obliquely downward and rearward toward the bottom wall 120D. As a result, the air that has collided with the bottom wall 120D spreads in the left-right direction.
  • the bottom nozzle 94N is provided in the central portion of the processing chamber 120 in the left-right direction.
  • the bottom nozzle 94N may be provided so as to deviate to either the left or right of the center line CL of the processing chamber 120 in the left-right direction.
  • the work changer 70 is configured to accommodate a plurality of workpieces 1 to be cut, and is used to replace the workpiece 1 to be machined.
  • the work changer 70 includes an adapter storage section 71 capable of storing a plurality of workpieces 1 (here, the adapters 5 to which the workpieces 1 are attached; see FIG. 2); 71 to the processing chamber 120.
  • the adapter housing portion 71 is housed in the changer chamber 170 except when the workpiece 1 to be cut is changed.
  • the adapter storage section 71 is provided with a plurality of shelf-like storage spaces 71a each accommodating one adapter 5.
  • the plurality of storage spaces 71a are arranged vertically. More specifically, the plurality of storage spaces 71a are arranged side by side in an oblique vertical direction (hereinafter also referred to as the L-axis direction, see FIG. 3) orthogonal to the X-axis direction.
  • the transport device 72 includes a slide arm 72A extending in the L-axis direction, an L-axis direction drive motor 72B, and a ball screw 72C.
  • the slide arm 72A is fixed to the adapter housing portion 71 and can be extended and shortened in the L-axis direction.
  • a ball screw 72 ⁇ /b>C is meshed with the adapter housing portion 71 .
  • the L-axis drive motor 72B is connected to the ball screw 72C and rotates the ball screw 72C. When the L-axis direction drive motor 72B is driven to rotate the ball screw 72C, the slide arm 72A expands and contracts, and the adapter housing portion 71 moves in the L-axis direction.
  • FIG. 6 is a longitudinal sectional view showing the cutting machine 10 during replacement of the adapter 5 (see FIG. 2).
  • the adapter housing portion 71 descends into the processing chamber 120 when the adapter 5 is replaced.
  • the adapter housing portion 71 moves into the processing chamber 120 through the front opening 124 of the processing chamber 120 .
  • the holder moving device 30 moves the work holder 20 forward in the X-axis direction beyond the range of movement during cutting.
  • the rear end of the slit 123 is not covered with the dustproof plate 36 and is open.
  • the dust-proof plate 36 is positioned forward of the rear end of the slit 123 when the work holder 20 is positioned at the transfer position for transferring the workpiece 1 to and from the work changer 70 . ing. As a result, the length of the dustproof plate 36 is shortened, and the rearward lengthening of the processing chamber 120 is suppressed.
  • the adapter 5 is held by the work holder 20 when the work holder 20 advances forward in the X-axis direction and plunges into the storage space 71a (see FIG. 1) of the adapter 5. As shown in FIG.
  • the conveying device 72 conveys a plurality of workpieces 1 to the processing chamber 120 by conveying the adapter storage portion 71 to the processing chamber 120, but the configuration of the conveying device 72 is limited to this. not.
  • the transport device 72 may be configured to transport at least one of the plurality of objects 1 to be cut stored in the adapter storage portion 71 to the processing chamber 120 .
  • the conveying device 72 may be configured to grip and take out the workpiece 1 in the storage space 71 a of the fixed adapter storage portion 71 and transfer it to the work holder 20 .
  • the cutting device 50 and the moving device for the cutting device 50 are housed in the cutting device chamber 150 .
  • the cutting device 50 cuts the workpiece 1 held by the work holder 20 .
  • the cutting device 50 and the spindle moving device 60 are provided above the work holder 20 .
  • the cutting device 50 includes a main shaft 51 that grips and rotates the cutting tool 6 .
  • the main shaft 51 has a spindle unit 52 and a gripping portion 53 provided at the lower end of the spindle unit 52 .
  • the spindle unit 52 extends in a direction orthogonal to the X-axis direction (here, parallel to the L-axis direction).
  • the spindle unit 52 rotates the gripper 53 around an axis parallel to the Z-axis direction.
  • the gripping portion 53 grips the cutting tool 6 so as to protrude downward in the Z-axis direction.
  • the spindle unit 52 here is a unit with a built-in motor. However, the spindle unit 52 may be connected to an external motor and a belt, for example.
  • the gripping part 53 is, for example, an air-driven collet chuck.
  • the method of the grip portion 53 is not particularly limited.
  • the spindle moving device 60 moves the cutting device 50 in the Z-axis direction and the left-right direction.
  • the horizontal direction is a direction orthogonal to the X-axis direction and the Z-axis direction.
  • the left-right direction is also referred to as the Y-axis direction.
  • the spindle moving device 60 moves the cutting device 50 in the Y-axis direction and the Z-axis direction, and the holder moving device 30 moves the work holder 20 in the X-axis direction. changes three-dimensionally.
  • the Z-axis direction is a direction that intersects (here, is perpendicular to) the top wall 120U of the processing chamber 120, and the cutting device 50 appears in the processing chamber 120 or moves into the cutting device chamber by moving in the Z-axis direction.
  • the spindle moving device 60 can move the cutting device 50 to a position where at least part of it is located above the work holder 20 and below the ceiling wall 120U.
  • the spindle movement device 60 includes a Y-axis direction movement device 60Y and a Z-axis direction movement device 60Z.
  • the Y-axis direction moving device 60Y is a device that moves the cutting device 50 in the Y-axis direction.
  • the Z-axis direction moving device 60Z is a device that moves the cutting device 50 in the Z-axis direction.
  • FIG. 7 is a perspective view of the cutter chamber 150 and the drive chamber 130. FIG. In FIG. 7, illustration of some members is omitted so that the insides of the cutting device chamber 150 and the driving device chamber 130 can be seen. As shown in FIG.
  • the Y-axis direction moving device 60Y includes a pair of Y-axis guide rails 61Y extending in the Y-axis direction, a Y-axis direction moving body 62Y slidably engaged with the Y-axis guide rails 61Y, It has a Y-axis direction drive motor 63Y and a ball screw 64Y.
  • a pair of Y-axis guide rails 61Y are provided on the bottom wall of the cutting device chamber 150 .
  • the Y-axis guide rail 61Y extends above the drive device chamber 130 .
  • the Y-axis direction moving body 62Y is movable in the Y-axis direction along the Y-axis guide rail 61Y.
  • the Y-axis moving body 62Y can move up to above the driving device chamber 130 along the Y-axis guide rail 61Y.
  • the Y-axis moving body 62Y supports the Z-axis moving device 60Z.
  • the Z-axis direction moving device 60Z supports the cutting device 50 so as to be movable in the Z-axis direction.
  • the ball screw 64Y extends in the Y-axis direction.
  • the ball screw 64Y is meshed with the Y-axis moving body 62Y.
  • the Y-axis direction drive motor 63Y rotates the ball screw 64Y.
  • the Y-axis direction drive motor 63Y drives and the ball screw 64Y rotates
  • the Y-axis direction moving body 62Y moves in the Y-axis direction along the Y-axis guide rail 61Y.
  • the Z-axis direction moving device 60Z and the cutting device 50 move in the Y-axis direction.
  • the Z-axis direction moving device 60Z includes a pair of Z-axis guide shafts 61Z extending in the Z-axis direction, and a Z-axis guide shaft 61Z slidably engaged with the Z-axis guide shafts 61Z to support the cutting device 50. It has a directional moving body 62Z, a Z-axis direction driving motor 63Z, and a ball screw (not shown). The Z-axis direction moving device 60Z also moves the cutting device 50 in the Z-axis direction in the same manner as the Y-axis direction moving device 60Y moves the Z-axis direction moving device 60Z.
  • bellows may be provided on the left and right sides of the Y-axis direction moving body 62Y. Both ends of the right bellows are connected to the right end of the Y-axis direction moving body 62Y and the right end of the rear opening 125, respectively. Both ends of the left bellows are connected to the left end of the Y-axis direction moving body 62Y and the left end of the rear opening 125, respectively.
  • the bellows prevents dust and the like from entering the cutting device chamber 150 through the rear opening 125 .
  • the ceiling wall 150U of the cutting device chamber 150 has an intake port 152 open.
  • the intake port 152 here is composed of a plurality of slits arranged in the left-right direction. However, the shape of the intake port 152 is not particularly limited.
  • the intake port 152 is an opening for drawing outside air into the cutting machine 10 as the air is discharged from the exhaust port 128 .
  • the intake port 152 communicates with the cutting device chamber 150 .
  • the intake port 152 also communicates with the driving device chamber 130 and the changer chamber 170 via the cutting device chamber 150 .
  • the cutting device chamber 150 and the driving device chamber 130 are communicated with each other through a rear opening 125 opened in the bottom wall of the cutting device chamber 150 (the ceiling wall of the driving device chamber 130).
  • the cutting device chamber 150 and the changer chamber 170 communicate with each other without a partition.
  • the machining chamber 120 communicates with an intake port 152 via a cutting device chamber 150 and a driving device chamber 130 .
  • the drive device chamber 130 and the processing chamber 120 are communicated by a slit 123 opened in the right side wall 120R of the processing chamber 120 (the left side wall of the drive device chamber 130).
  • the machining chamber 120 communicates with the intake port 152 also through the cutting device chamber 150 and the changer chamber 170 .
  • the changer chamber 170 and the processing chamber 120 are communicated with each other through a front opening 124 opened in a ceiling wall 120U of the processing chamber 120 (bottom wall of the changer chamber 170).
  • the air intake port 152 communicates with the cutting device chamber 150 , the cutting device chamber 150 and the processing chamber 120 communicate with each other through the rear opening 125 , and the exhaust duct 92 communicates with the processing chamber 120 , whereby the dust collector 111 is driven, as shown in FIG. 3, a wind flow F3 is generated from the intake port 152 to the machining chamber 120 via the cutting device chamber 150.
  • the internal pressure of the cutting device chamber 150 is higher than the internal pressure of the processing chamber 120 . Therefore, it becomes difficult for cutting dust and the like generated in the processing chamber 120 to enter the cutting device chamber 150 .
  • the intake port 152 communicates with the changer chamber 170 and the changer chamber 170 and the processing chamber 120 communicate with each other through the front opening 124, when the dust collector 111 is driven, as shown in FIG. A wind flow F4 is generated from the intake port 152 to the processing chamber 120 via the changer chamber 170 .
  • the internal pressure of the changer chamber 170 is higher than the internal pressure of the processing chamber 120 . This makes it difficult for cutting powder and the like generated in the processing chamber 120 to enter the changer chamber 170 .
  • the intake port 152 communicates with the driving device chamber 130, and the driving device chamber 130 and the processing chamber 120 communicate with each other through the slit 123, so that when the dust collector 111 is driven, as shown in FIG.
  • a wind flow F5 is generated from 152 (see FIG. 3) toward the processing chamber 120 via the drive chamber 130 .
  • the internal pressure of the drive chamber 130 is higher than the internal pressure of the processing chamber 120 . This makes it difficult for cutting powder and the like generated in the processing chamber 120 to enter the driving device chamber 130 .
  • the tool stocker 80 is housed in the drive chamber 130 in this embodiment.
  • the tool stocker 80 is configured to store a plurality of cutting tools 6 .
  • the plurality of cutting tools 6 are used properly according to, for example, the material of the object 1 to be cut and the type of cutting.
  • the tool stocker 80 is supported by the X-axis moving body 32 .
  • the tool stocker 80 is fixed to the upper surface of the X-axis moving body 32 .
  • the tool stocker was supported by the support arm of the holder moving device. Therefore, in the conventional cutting device, the support arm is easily bent, and a large load cannot be applied to the object 1 to be cut during cutting of the object 1 to be cut.
  • the amount of cutting per hour is limited.
  • the load on the support arm 31 is reduced by supporting the tool stocker 80 on the X-axis moving body 32 .
  • FIG. 8 is a plan view of the tool stocker 80.
  • the tool stocker 80 has a plurality of storage holes 81 that can accommodate the cutting tools 6, respectively.
  • a plurality of storage holes 81 are formed in the upper surface 80U of the tool stocker 80 and recessed downward in the Z-axis direction.
  • the plurality of storage holes 81 are arranged in a zigzag pattern.
  • the tool stocker 80 is formed with rows 81A to 81E in which some of the plurality of storage holes 81 are aligned in a predetermined alignment direction (here, the Y-axis direction).
  • two adjacent columns (eg, column 81A and column 81B) among the plurality of columns 81A to 81E are displaced in the alignment direction.
  • the amount of positional deviation in the alignment direction between two adjacent rows is less than half the pitch of the storage holes 81 in each row 81A to 81E. Due to this zigzag arrangement, the plurality of storage holes 81 are densely arranged. As a result, the storage efficiency of the cutting tool 6 with respect to the space is improved.
  • the plurality of columns 81A to 81E are arranged alternately in the alignment direction.
  • the cutting device 50 is configured to be able to grip each cutting tool 6 stored in the tool stocker 80 , and cuts the workpiece 1 held by the work holder 20 with the gripped cutting tool 6 .
  • the spindle movement device 60 moves the cutting device 50 between the drive device chamber 130 and the processing chamber 120 .
  • the holder moving device 30 moves the tool stocker 80 below the cutting device chamber 150 .
  • the cutting device 50 is provided above the work holder 20 and the tool stocker 80 in this embodiment.
  • the Y-axis direction moving device 60Y of the spindle moving device 60 moves the cutting device 50 in the Y-axis direction so that the cutting device 50 moves between above the driving device chamber 130 and above the processing chamber 120 .
  • the Z-axis direction moving device 60Z of the spindle moving device 60 moves the cutting device 50 in the vertical direction (here, in the Z-axis direction inclined with respect to the vertical direction).
  • the holder moving device 30 is configured to be able to move the tool stocker 80 to a tool gripping position P1 (see FIG. 7) set below the moving path of the cutting device 50 by the Y-axis direction moving device 60Y.
  • the tool gripping position P ⁇ b>1 is a position below the rear side opening 125 .
  • the Z-axis direction moving device 60Z is driven to lower the cutting device 50.
  • the cutting device 50 can grip the cutting tool 6 of the tool stocker 80 .
  • the holder moving device 30 is configured to be able to move the tool stocker 80 to the tool exchange position P2 set ahead of the tool gripping position P1.
  • the tool gripping position P2 is set below the bottom wall 182 of the tool exchange chamber 180.
  • a bottom wall 182 of the tool change chamber 180 separates the tool change chamber 180 and the drive device chamber 130 .
  • the bottom wall 182 of the tool exchange chamber 180 is formed with an opening 183 that opens above the tool exchange position P2.
  • the opening 183 is an opening through which the user inserts and withdraws the cutting tool 6 from the tool stocker 80 .
  • the opening 183 penetrates the bottom wall 182 in the Z-axis direction.
  • the user can access the tool stocker 80 through the opening 183.
  • FIG. By providing the tool exchange chamber 180 in which the opening 183 is formed, the user is prevented from touching the holder moving device 30 when exchanging the cutting tool 6 or the like. In addition, such a configuration prevents foreign matter from entering the driving device chamber 130 when the cutting tool 6 is replaced.
  • the cutting machine 10 further includes a spindle air blow device 55 which is provided on the spindle 51 and ejects air.
  • the main shaft air blow device 55 includes a main shaft nozzle 56 provided on the side of the grip portion 53 of the main shaft 51 .
  • FIG. 9 is a partially broken side view of the vicinity of the lower end of the main shaft 51.
  • the main shaft air blow device 55 includes a main shaft nozzle 56 that injects air, and a nozzle support member 57 that supports the main shaft nozzle 56 .
  • the nozzle support member 57 is provided above the grip portion 53 in the Z-axis direction.
  • the nozzle support member 57 is fixed to a cover that covers the spindle unit 52 here.
  • the nozzle support member 57 supports the main shaft nozzle 56 so as to be movable in the Z-axis direction.
  • the nozzle support member 57 is positioned above the Z-axis direction lower end position Pd (the position shown in FIG. 9, also referred to as the lower end position Pd) and the lower end position Pd in the Z-axis direction. It supports the spindle nozzle 56 so as to be movable between other positions.
  • a lower end position Pd of the spindle nozzle 56 is set to the side of the grip portion 53 . At the lower end position Pd, the grip portion 53 and the spindle nozzle 56 are aligned in the X-axis direction.
  • the nozzle support member 57 includes a guide hole 57a through which the main shaft nozzle 56 is inserted, and a stopper 57b that restricts the main shaft nozzle 56 from moving below the lower end position Pd. ing.
  • the main shaft air blow device 55 also includes a biasing member 58 that biases the main shaft nozzle 56 supported by the nozzle support member 57 to hold the main shaft nozzle 56 at the lower end position Pd.
  • the biasing member 58 is here a coil spring. However, the biasing member 58 is not limited to a coil spring, and may be an air cylinder or the like.
  • the main shaft nozzle 56 has a contact portion 56a that contacts the stopper 57b at the lower end position Pd.
  • the stopper 57b and the biasing member 58 hold the main shaft nozzle 56 at the lower end position Pd. Further, when the spindle nozzle 56 is pushed upward along the Z axis, it moves upward along the Z axis along the guide hole 57a against the biasing force of the biasing member 58 .
  • the spindle nozzle 56 is provided above the work holder 20 and configured to inject air downward (here, vertically downward).
  • the air blowing direction of the main shaft air blow device 55 is downward in the vertical direction.
  • air is obliquely blown against the cutting tool 6 held by the holding portion 53 .
  • the main shaft nozzle 56 may inject air in other directions.
  • the main shaft nozzle 56 has a cut surface 56b formed on the side wall and extending obliquely in the Z-axis direction.
  • the cut surface 56b has an inclination that approaches the grip portion 53 downward in the Z-axis direction.
  • the cut surface 56b extends obliquely upward from the lower end of the spindle nozzle 56. As shown in FIG.
  • FIG. 10 is a side view of the vicinity of the tip of the cutting device 50 when the cutting tool 6 is replaced.
  • FIG. 10 illustrates a state in which the grip portion 53 is positioned at the working position Po. As shown in FIG.
  • the spindle nozzle 56 abuts on the tool stocker 80 when the gripper 53 is positioned at the working position Po in the Z-axis direction. At this time, the spindle nozzle 56 is pushed by the tool stocker 80 and positioned above the lower end position Pd in the Z-axis direction against the biasing force of the biasing member 58 .
  • the spindle nozzle 56 When the spindle nozzle 56 is not in contact with the tool stocker 80, it is positioned at the lower end position Pd lower in the Z-axis direction than when it is in contact with the tool stocker 80. As a result, when the workpiece 1 is machined, cleaned, or when the machining chamber 120 is cleaned (as will be described later, the spindle air blow device 55 is configured to inject air into the machining chamber 120 and the work holder 20). (also used for cleaning the processing chamber 120), the spindle nozzle 56 can be brought close to the cutting edge of the cutting tool 6, the workpiece 1, or the bottom wall 120D of the processing chamber 120.
  • the main shaft air blow device 55 is configured to move upward (shrink) when the main shaft nozzle 56 is pushed upward in the Z-axis direction.
  • the cut surface 56b of the main shaft nozzle 56 is provided so that the main shaft nozzle 56 moves upward when an object pushes the main shaft nozzle 56 from the side.
  • part of the pressing force is converted into an upward force in the Z-axis direction by the cut surface 56b, and the main shaft nozzle 56 moves upward.
  • the configuration in which the spindle nozzle 56 moves in the vertical direction of the Z axis also has an effect on the possibility that an object other than the tool stocker 80 collides with the spindle nozzle 56 .
  • the main shaft nozzle 56 moves upward in the Z-axis. Therefore, it is possible to reduce the risk of damage to the spindle nozzle 56 or the colliding object.
  • the control device 100 is connected to the holder moving device 30, the spindle moving device 60, the cutting device 50, etc., and controls their operations.
  • FIG. 11 is a block diagram of the cutting machine 10. As shown in FIG. As shown in FIG. 11, the control device 100 controls the X-axis direction drive motor 34 of the holder moving device 30, the A-axis rotation motor 41A and the B-axis rotation motor 41B of the rotation device 40, the spindle unit 52 of the cutting device 50 and the a gripping portion 53, a Y-axis direction drive motor 63Y and a Z-axis direction drive motor 63Z of the spindle moving device 60, an L-axis direction drive motor 72B of the work changer 70, a top surface air blow device 93, a bottom air blow device 94, It is connected to the main shaft air blow device 55, the dust collector 111, and the operation panel 110, and controls their operations. Note that the control of the dust collector 111 may be performed not by the control device 100 but by a control device built into the
  • the configuration of the control device 100 is not particularly limited.
  • the control device 100 is, for example, a microcomputer.
  • the hardware configuration of the microcomputer is not particularly limited. processing unit), ROM (read only memory) that stores programs executed by the CPU, RAM (random access memory) that is used as a working area for developing programs, and memory that stores the above programs and various data a storage device;
  • control device 100 includes a cutting control section 101, a work exchange section 102, a tool exchange section 103, a work cleaning section 104, and a processing chamber cleaning section 105.
  • the control device 100 may include other processing units, but illustration and description thereof are omitted here.
  • the cutting control unit 101 controls the X-axis direction driving motor 34 of the holder moving device 30, the A-axis rotating motor 41A and the B-axis rotating motor 41B of the rotating device 40, the spindle unit 52 of the cutting device 50, and the spindle moving device 60.
  • the Y-axis direction driving motor 63Y and the Z-axis direction driving motor 63Z the workpiece 1 is cut into a designated shape.
  • the spindle air blower 55 is appropriately driven to remove cutting powder adhering to the workpiece 1, the adapter 5, and the work holder 20.
  • the work exchange unit 102 controls the L-axis direction driving motor 72B of the work changer 70 and the X-axis direction driving motor 34 of the holder moving device 30 to change the workpiece 1 (adapter 5 holding the workpiece 1). ). As a result, a plurality of objects 1 to be cut are sequentially machined.
  • the tool exchange section 103 controls the X-axis direction drive motor 34 of the holder moving device 30, the Y-axis direction driving motor 63Y and the Z-axis direction driving motor 63Z of the spindle moving device 60, and the gripping portion 53 of the cutting device 50. Then, the cutting tool 6 held by the holding portion 53 is replaced.
  • the work cleaning section 104 cleans the workpiece 1, the adapter 5, and the work holder 20 after the cutting process is completed.
  • the work cleaning section 104 includes a first blow control section 104A, a first attitude control section 104B, a first movement control section 104C, and a reverse control section 104D.
  • the first blow control unit 104A controls the spindle air blow device 55 to blow air toward the work holder 20 after the cutting of the workpiece 1 is finished.
  • the first attitude control unit 104B controls the rotation device 40 after the cutting of the object 1 to be cut is finished and before the main shaft air blow device 55 blows air under the control of the first blow control unit 104A.
  • the attitude of the work holder 20 is controlled so that the two opposing surfaces (the first surface 1A and the second surface 1B) of the object 1 intersect the air injection direction of the spindle air blow device 55 at a predetermined angle. In this embodiment, the predetermined angle is 90 degrees.
  • the angle between the direction of the air jet from the spindle air blower 55 and the two opposing surfaces 1A and 1B of the workpiece 1 is not limited to 90 degrees.
  • the first attitude control section 104B also controls the rotating device 40 after the cutting of the workpiece 1 is finished and before the main shaft air blow device 55 blows air under the control of the first blow control section 104A. Then, the posture of the work holder 20 is controlled so that the first surface 1A of the workpiece 1 faces the spindle nozzle 56. As shown in FIG. As a result, the first surface 1A of the object 1 to be cut is cleaned.
  • the first movement control unit 104C controls the holder movement device 30 and the Y-axis direction movement device 60Y to move the work holder 20 while the spindle air blow device 55 is blowing air under the control of the first blow control unit 104A. moves the position of the spindle nozzle 56 with respect to . As a result, the location of the work holder 20 to which the air is jetted is moved.
  • the holder moving device 30 and the Y-axis direction moving device 60Y function as moving devices that move the position of the spindle nozzle 56 with respect to the work holder 20.
  • the first movement control unit 104C moves the position of the spindle nozzle 56 with respect to the work holder 20 so that the movement path of the spindle nozzle 56 with respect to the work holder 20 draws a scanning line.
  • the reversal control unit 104D controls the rotating device 40 while the main shaft air blow device 55 is injecting air under the control of the first blow control unit 104A, so that the second surface 1B of the workpiece 1 moves toward the main shaft nozzle 56.
  • the posture of the work holder 20 is changed so that it faces the direction of .
  • the second surface 1B is cleaned.
  • the dust collector 111 is driven during work cleaning.
  • the processing chamber cleaning unit 105 cleans the processing chamber 120 after cutting and cleaning the workpiece. However, the processing chamber cleaning unit 105 does not necessarily have to clean the processing chamber 120 before cleaning the workpiece, as long as the cutting processing is completed. As shown in FIG. 11, the processing chamber cleaning section 105 includes a second blow control section 105A, a second attitude control section 105B, and a second movement control section 105C.
  • the second blow control unit 105A controls the spindle air blow device 55 to inject air into the processing chamber 120 after the cutting of the workpiece 1 is finished.
  • the second posture control unit 105B operates to operate the spindle air blow device under the control of the second blow control unit 105A after the cutting of the object 1 to be cut is finished (here, after the work cleaning by the control of the work cleaning unit 104).
  • 55 controls the rotation device 40 before injecting air, and sets the posture of the work holder 20 to a predetermined posture.
  • the control of the main shaft air blow device 55 by the first blow control section 104A and the control of the main shaft air blow device 55 by the control of the second blow control section 105A may be performed continuously. That is, air injection may be continued during the workpiece cleaning and the processing chamber cleaning.
  • the predetermined posture of the work holder 20 is such that the two opposing surfaces 1A and 1B of the workpiece 1 held by the work holder 20 are inclined with respect to the bottom wall 120D of the processing chamber 120. Posture. More specifically, the predetermined attitude of the work holder 20 is such that the two opposing surfaces 1A and 1B of the workpiece 1 held by the work holder 20 are downwardly inclined forward. As a result, the air jetted from the spindle air blow device 55 flows along the workpiece 1 and the adapter 5 held by the work holder 20, and is directed mainly obliquely forward and downward. In cleaning the processing chamber 120 according to this embodiment, the direction of the air flowing through the processing chamber 120 is controlled by controlling the posture of the work holder 20 .
  • the second movement control unit 105C controls the Y-axis direction movement device 60Y to move the main shaft nozzle 56 to the left or right while the main shaft air blow device 55 is blowing air under the control of the second blow control unit 105A. move to As a result, the airflow directed obliquely downward and forward, which is generated by controlling the posture of the work holder 20, moves leftward or rightward. As a result, cleaning of the processing chamber 120 proceeds leftward or rightward.
  • the second blow control unit 105A also controls the top surface air blow device 93 and the bottom surface air blow device 94 to cause them to blow air. Specifically, the second blow control unit 105A controls the top surface air blow device 93 and the bottom surface air blow device 94 to jet air from the top surface nozzle 93N and the bottom surface nozzle 94N, respectively, and then controls the spindle air blow device 55. Air is injected into the processing chamber 120 . Furthermore, the second blow control unit 105A controls the spindle air blow device 55 to blow air into the processing chamber 120, and then controls the top surface air blow device 93 and the bottom surface air blow device 94 to blow air. The second attitude control unit 105B may change the direction of the air once or more by changing the attitude of the work holder 20 once or more during the cleaning of the processing chamber. The dust collector 111 is also driven during the cleaning of the processing chamber.
  • FIG. 12 is a flow chart of the overall process.
  • step S10 of the process of cutting the workpiece 1 the cutting tool 6 is stored in the tool stocker 80.
  • Step S10 is performed by the user. The user opens the tool exchange chamber door 181 and stores the cutting tool 6 in the storage hole 81 of the tool stocker 80 .
  • step S ⁇ b>20 the adapter 5 to which the object 1 to be cut is attached (the step of attaching the object 1 to be cut to the adapter 5 is omitted) is stored in the storage space 71 a of the adapter storage portion 71 .
  • Step S20 is also performed by the user. The user opens the changer chamber door 171 and stores the cutting tool 6 in the adapter storage portion 71 . Steps S10 and S20 may be performed in reverse order.
  • step S30 one of the adapters 5 housed in the work changer 70 is attached to the work holder 20.
  • step S ⁇ b>30 the adapter storage portion 71 is transported into the processing chamber 120 by the transport device 72 .
  • the work holder 20 is moved forward in the X-axis direction by the holder moving device 30 , and the adapter 5 is attached to the work holder 20 .
  • the adapter 5 is attached to the work holder 20
  • the work holder 20 moves rearward in the X-axis direction.
  • the workpiece 1 mounted on the work holder 20 is moved below the cutting device chamber 150 .
  • the adapter storage portion 71 is returned to the changer chamber 170 .
  • step S40 one of the cutting tools 6 stored in the tool stocker 80 is gripped by the gripping portion 53 of the cutting device 50.
  • the holder moving device 30 moves the tool stocker 80 to the tool gripping position P1 (see FIG. 7).
  • the Y-axis direction moving device 60Y moves the cutting device 50 to a position above the tool gripping position P1.
  • the Z-axis direction moving device 60Z is driven to lower the cutting device 50 to the working position Po set as a position where the gripping portion 53 grips or releases the cutting tool 6.
  • FIG. This allows the cutting device 50 to grip the cutting tool 6 of the tool stocker 80 .
  • the spindle nozzle 56 abuts against the tool stocker 80 and is pushed upward in the Z-axis direction by the tool stocker 80 .
  • the main shaft nozzle 56 moves upward in the Z-axis direction against the biasing force of the biasing member 58 .
  • the Z-axis direction moving device 60Z moves the spindle nozzle 56 above the rear side opening 125. This allows the cutting device 50 to move in the Y-axis direction. Also, the main shaft nozzle 56 returns to the lower end position Pd due to the biasing of the biasing member 58 . After that, the cutting device 50 is moved above the processing chamber 120 . Note that steps S30 and S40 may be performed in the reverse order.
  • step S50 the object 1 to be cut is cut, and the object to be machined is cut out.
  • step S50 the holder moving device 30, the Y-axis direction moving device 60Y, and the Z-axis direction moving device 60Z are driven to change the relative position between the cutting tool 6 and the workpiece 1, and the rotating device 40 is driven. and the posture of the object 1 to be cut is changed.
  • the cutting tool 6 is appropriately replaced with a designated one by the same procedure as in step S40. This completes the processed object.
  • step S ⁇ b>50 air is jetted from the spindle air blower 55 so that the cutting dust generated by cutting does not adhere to the workpiece 1 , the adapter 5 and the cutting tool 6 .
  • step S50 the dust collector 111 is driven.
  • step S60 work cleaning is performed.
  • step S70 processing chamber cleaning is performed. Details of steps S60 and S70 will be described later.
  • step S80 the workpiece 1 that has been cut is returned to the changer chamber 170 together with the adapter 5. As shown in FIG. In step S80, each unit operates in the reverse order of step S30. Through these steps S10 to S80, the object to be machined is obtained from the object 1 to be cut, and cutting dust is removed from the object to be machined, the adapter 5, and the machining chamber 120.
  • FIG. 13 is a flowchart of work cleaning.
  • the rotating device 40 is driven so that the first surface 1A and the second surface 1B of the workpiece 1 are orthogonal to the direction of air jetting from the spindle nozzle 56.
  • the attitude of the work holder 20 is changed.
  • FIG. 14 is a side view showing the work holder 20 during work cleaning. As shown in FIG. 14, here, the attitude of the work holder 20 is changed so that the first surface 1A and the second surface 1B of the workpiece 1 are substantially horizontal.
  • FIG. 15 is a plan view of the work holder 20 showing the work cleaning procedure.
  • An arrow L1 in FIG. 15 indicates the movement path of the spindle nozzle 56 with respect to the work holder 20.
  • the position in work cleaning is represented as the position of the adapter 5 overlapping the spindle nozzle 56 in plan view.
  • the work cleaning start position is the left front corner of the adapter 5 .
  • the workpiece cleaning start position may be the front right corner, the rear left corner, or the rear right corner of the adapter 5 .
  • step S63 air is jetted from the main shaft nozzle 56. As shown in FIG.
  • step S64 the spindle nozzle 56 is moved to the right front corner of the adapter 5. As a result, the cutting dust between the left front corner and the right front corner of the adapter 5 is removed.
  • step S65 the work holder 20 is moved forward in the X-axis direction. As a result, the position where the air jetted from the spindle nozzle 56 hits moves to the rear side of the adapter 5 .
  • the amount of movement of the work holder 20 in step S65 is preferably equal to or less than the length of the spindle nozzle 56 in the X-axis direction.
  • step S66 the spindle nozzle 56 is moved leftward until it reaches the left edge of the adapter 5. As shown in FIG.
  • step S67 the rotating device 40 is driven to rotate the work holder 20 by 180 degrees around the A axis.
  • step S68 the reverse operations of steps S64 to S66 are performed, and the spindle nozzle 56 returns to the workpiece cleaning start position while drawing a scanning line. As a result, the entire area on the second surface 1B side of the adapter 5 is cleaned. Work cleaning is thereby completed.
  • FIG. 16 is a flowchart of processing chamber cleaning.
  • the top air blow device 93 and the bottom air blow device 94 are driven, and air is jetted from the top nozzle 93N and the bottom nozzle 94N.
  • the cutting dust adhering to the top wall 120U and the rear wall 120Rr is brushed off, and the cutting dust on the bottom wall 120D is collected toward the exhaust port 128.
  • step S72 the rotation device 40 is driven to change the posture of the work holder 20 so that the two opposing surfaces 1A and 1B of the workpiece 1 are inclined downward toward the front.
  • Step S72 may be performed before step S71.
  • FIG. 17 is a cross-sectional view of the cutting machine 10 during cleaning of the machining chamber. As shown in FIG. 17, step S72 takes the adapter 5 into a predetermined posture in which the front end portion is positioned lower than the rear end portion. As a result, the two opposing surfaces 1A and 1B of the workpiece 1 are inclined with respect to the bottom wall 120D of the processing chamber 120. As shown in FIG. In step S ⁇ b>73 , air is jetted from the spindle nozzle 56 toward the work holder 20 .
  • the air jetted downward from the main shaft nozzle 56 mainly changes its direction obliquely forward and downward.
  • the direction of the air changes so as to scatter.
  • the air that has changed its direction forward and obliquely downward is changed again along the bottom wall 120D by the front wall 120F of the processing chamber 120 and the processing chamber door 122 so as to move rearward.
  • Most of the cutting dust and the like that were collected near the exhaust port 128 in step S71 but were not sucked into the exhaust port 128 are pushed into the exhaust port 128 by the air flow F6 that is turned rearward.
  • step S74 the Y-axis direction moving device 60Y is driven to move the main nozzle 56 to the right.
  • the movement of this spindle nozzle 56 may be to the left. Due to this movement of the spindle nozzle 56 , cutting powder and the like are pushed into the exhaust port 128 over a wide range in the left-right direction of the machining chamber 120 .
  • step S74 the injection of air from the main shaft nozzle 56 is stopped.
  • the posture of the work holder 20 during cleaning of the processing chamber is not limited to the posture described above.
  • the work holder 20 may take another posture such that the two opposing surfaces 1A and 1B of the workpiece 1 are inclined with respect to the bottom wall 120D of the processing chamber 120, for example.
  • the work holder 20 may, for example, be oriented such that the left end or right end of the adapter 5 is positioned lower than the right end or left end. According to such a posture, the air hitting the adapter 5 and the workpiece 1 changes its direction and moves toward the left side wall 120L or the right side wall 120R of the processing chamber 120 . Thereby, the left side wall 120L or the right side wall 120R is cleaned.
  • the posture of the work holder 20 may be changed during cleaning of the processing chamber so that the direction of the wind changes.
  • step S75 the top air blow device 93 and the bottom air blow device 94 are driven again, and air is jetted from the top nozzle 93N and the bottom nozzle 94N. As a result, most of the cutting powder still remaining in the processing chamber 120 is pushed into the exhaust port 128 .
  • step S75 the jetting of air from the top surface nozzle 93N and the bottom surface nozzle 94N is stopped.
  • the processing chamber cleaning ends. The machining chamber cleaning removes most of the cutting powder generated in the machining chamber 120 by cutting the workpiece 1 .
  • the slope 127 is provided for sorting out large fragments of the object 1 to be cut which are generated by cutting the object 1 to be cut. This prevents debris that is too large from moving to the exhaust port 128 and blocking the exhaust port 128 . Similarly, even if the workpiece 1 being cut falls from the adapter 5 , the slope 127 prevents the workpiece 1 from being sucked into the exhaust port 128 . In the present embodiment, the slope 127 prevents objects that are too large or the workpiece 1 to be cut from being sucked into the exhaust port 128, so the exhaust port 128 is not provided with a mesh or the like to prevent foreign matter from passing through. . Therefore, the exhaust capacity of the cutting machine 10 is also improved.
  • the dust collection chamber 90 is provided so that large-sized objects such as large fragments of the workpiece 1 do not directly enter the exhaust duct 92 . If such a large object directly enters the exhaust duct 92, the exhaust duct 92 may be clogged. Dust collection chamber 90 prevents clogging of exhaust duct 92 by, for example, once receiving such objects.
  • the opening direction of the duct connection hole 91 to which the exhaust duct 92 is connected intersects the opening direction of the exhaust port 128 .
  • the exhaust port 128 is configured to be smaller than the internal space of the dust collection chamber 90 in plan view. This increases the speed of the exhaust passing through the exhaust port 128 . Therefore, the exhaust capacity of the cutting machine 10 is improved.
  • a cutting machine 10 includes a work holder 20 that holds an object 1 to be cut, a machining chamber 120 that accommodates the work holder 20, and a cutting device that cuts the object 1 to be cut held by the work holder 20. 50 , a spindle moving device 60 for moving the cutting device 50 , a cutting device chamber 150 , an exhaust duct 92 communicating with the machining chamber 120 , and an air inlet 152 communicating with the cutting device chamber 150 .
  • the cutting device chamber 150 has a wall portion (a ceiling wall 120U of the processing chamber 120) that separates it from the processing chamber 120, and a rear portion that opens to the ceiling wall 120U of the processing chamber 120 and allows at least a portion of the cutting device 50 to pass therethrough.
  • the airflow F3 (see FIG. 3) is generated from the intake port 152 toward the processing chamber 120 via the cutting device chamber 150 .
  • the internal pressure of the cutting device chamber 150 is higher than the internal pressure of the processing chamber 120 . Therefore, cutting powder and the like generated in the processing chamber 120 are prevented from entering the cutting device chamber 150 via the rear opening 125 .
  • the cutting device chamber 150 accommodates the cutting device 50 and the spindle moving device 60 which have movable parts and which should be dust-free as much as possible. According to such a configuration, it is possible to suppress the occurrence of problems in the cutting device 50 or the spindle moving device 60 due to the cutting powder or the like generated in the machining chamber 120 adhering to the cutting device 50 or the spindle moving device 60 .
  • the cutting machine 10 includes an adapter storage portion 71 capable of storing a plurality of objects 1 to be cut, and at least one of the plurality of objects 1 to be cut stored in the adapter storage portion 71. 1 to the processing chamber 120;
  • the cutting machine 10 further includes a wall portion (a ceiling wall 120U of the processing chamber 120) that partitions the processing chamber 120, and an object to be cut that opens into the ceiling wall 120U of the processing chamber 120 and is conveyed by the conveying device 72. 1 and a changer chamber 170 that accommodates the adapter storage portion 71 .
  • the intake port 152 also communicates with the changer chamber 170 .
  • the transport device 72 transports the adapter storage section 71 to the processing chamber 120 .
  • the front side opening 124 for taking the adapter storage section 71 into and out of the processing chamber 120 relatively large. Therefore, there is a high possibility that cutting powder or the like generated in the processing chamber 120 will enter the changer chamber 170 unless special measures are taken. Therefore, for such a configuration, there is a great advantage in generating the air flow F4 from the intake port 152 to the processing chamber 120 via the changer chamber 170 .
  • the cutting machine 10 includes a support arm 31 that supports the work holder 20 and a holder moving device 30 that moves the work holder 20 by moving the support arm 31 .
  • the cutting machine 10 further includes a wall portion (a right side wall 120R of the processing chamber 120) that separates it from the processing chamber 120, and an opening in the right side wall 120R of the processing chamber 120 through which the support arm 31 of the holder moving device 30 is inserted. and a drive chamber 130 that houses at least a portion of the holder moving device 30 .
  • the intake port 152 also communicates with the drive chamber 130 . According to such a configuration, as described above, it becomes difficult for cutting dust and the like generated in the processing chamber 120 to enter the driving device chamber 130 . Therefore, it is possible to suppress the occurrence of problems in the holder moving device 30 due to the cutting powder or the like generated in the processing chamber 120 adhering to the holder moving device 30 .
  • the cutting machine 10 includes a dustproof plate 36 fixed to the support arm 31 of the holder moving device 30 .
  • the dustproof plate 36 is provided so as to cover at least part of the slit 123 and moves in the X-axis direction together with the support arm 31 .
  • the simple configuration of the dust-proof plate 36 can further suppress intrusion of cutting powder and the like generated in the processing chamber 120 into the driving device chamber 130 . Since the structure of the dustproof plate 36 is simple, the cost can be easily reduced.
  • the dust-proof plate 36 is fixed to a portion of the support arm 31 located inside the processing chamber 120 and provided inside the processing chamber 120 . With such a configuration, the dust-proof plate 36 exerts its effect within the processing chamber 120 . Therefore, it is possible to prevent cutting powder and the like from approaching the slit 123 in advance.
  • the exhaust port 128 opens in a portion (here, the rear end portion of the bottom wall 120D) of the plurality of wall portions of the processing chamber 120 located on the rear side of the work holder 20 in the X-axis direction.
  • the dust-proof plate 36 is configured to cover the rear end of the slit 123 when the work holder 20 is positioned within the movement range during cutting. According to this configuration, the rear end of the slit 123 is covered with the dust-proof plate 36 during cutting of the object 1 to be cut.
  • the arrangement of the exhaust port 128 causes the air to flow backward. Therefore, cutting powder is also likely to flow backward from the work holder 20 .
  • the dust-proof plate 36 is positioned rearward of the front end of the slit 123 when the work holder 20 is positioned within the movement range during cutting. That is, at this time, the dust-proof plate 36 does not cover the front portion of the slit 123 . Since the wind flows backward in the processing chamber 120, even if the front portion of the slit 123 is not covered with the dustproof plate 36, the dustproof effect of the dustproof plate 36 is unlikely to be impaired. Conversely, by appropriately opening a part of the slit 123, air flows from the drive device chamber 130 to the processing chamber 120, improving the dustproof effect. Furthermore, according to such a configuration, the length of the dust-proof plate 36 in the X-axis direction can be shortened, so it is possible to suppress the length of the processing chamber 120 in the X-axis direction from increasing.
  • the cutting machine 10 has a top surface air blow device 93 having a top surface nozzle 93N that injects air along the top wall 120U of the processing chamber 120.
  • the top surface air blow device 93 According to the top surface air blow device 93 , the air jetted from the top surface nozzle 93N flows along the top wall 120U of the processing chamber 120 . Therefore, it is possible to effectively remove cutting powder and the like adhering to the ceiling wall 120U of the processing chamber 120, which has been difficult to remove in the conventional art.
  • the exhaust port 128 is open to the bottom wall 120D of the processing chamber 120, and the top surface nozzle 93N is arranged along the top wall 120U and the rear wall 120Rr of the processing chamber 120 so as to reach the exhaust port 128. Inject air. With such a configuration, it is possible to push into the exhaust port 128 the cutting powder and the like adhering to the rear wall 120Rr together with the cutting powder and the like adhering to the ceiling wall 120U.
  • the exhaust port 128 is opened along the connecting portion of the bottom wall 120D with the rear wall 120Rr. According to such a configuration, the air that is jetted from the ceiling nozzle 93N and flows along the ceiling wall 120U and the rear wall 120Rr smoothly flows into the exhaust port 128. As shown in FIG. Therefore, exhaust efficiency is good.
  • the cutting machine 10 has a bottom air blow device 94 having a bottom nozzle 94N for blowing air along the bottom wall 120D of the machining chamber 120 so as to reach the exhaust port 128. According to such a configuration, it is possible to effectively remove cutting dust and the like on the bottom wall 120D of the processing chamber 120. As shown in FIG.
  • the bottom nozzle 94N is provided above the bottom wall 120D of the processing chamber 120, and jets air obliquely downward toward the bottom wall 120D and toward the exhaust port 128 side. do.
  • the air spreads in the width direction (horizontal direction in this embodiment) of the bottom wall 120D by hitting the bottom wall 120D. This makes it possible to clean a wider range than the width of the bottom nozzle 94N in the width direction of the bottom wall 120D.
  • the drive device chamber 130 in which the holder moving device 30 is housed is provided to the right of the processing chamber 120 .
  • the top surface nozzle 93N and the exhaust port 128 are provided so as to deviate to the right of the center line CL of the processing chamber 120 in the left-right direction. According to such a configuration, it is possible to intensively remove cutting dust and the like on the drive device chamber 130 side in which the holder moving device 30 is accommodated. Therefore, even with such a configuration, it is possible to suppress the occurrence of problems in the holder moving device 30 due to the shavings and the like generated in the processing chamber 120 adhering to the holder moving device 30 .
  • the Z-axis direction moving device 60Z can move the cutting device 50 to a position where at least part of it is located above the work holder 20 and below the ceiling wall 120U of the processing chamber 120. configured as possible.
  • the ceiling nozzle 93N injects air toward the cutting device 50 moved to the position described above (that is, projected downward from the ceiling wall 120U). According to such a configuration, air can be jetted to the cutting device 50 on which cutting dust has fallen due to the cutting of the object 1 to remove the cutting dust.
  • the bottom wall 120 ⁇ /b>D of the processing chamber 120 is provided with an exhaust port 128 and has a slope 127 that slopes upward toward the exhaust port 128 .
  • large fragments of the workpiece 1 that have fallen onto the bottom wall 120D of the processing chamber 120 cannot climb the slope 127 even by being sucked from the exhaust port 128, or cannot climb onto the slope 127. Even if it falls, it slides down the slope 127 . Therefore, large fragments are not sucked into the exhaust port 128 . Therefore, according to the cutting machine 10 according to the present embodiment, even if the object 1 to be cut contains large fragments, the exhaust of the machining chamber 120 is less likely to be obstructed.
  • the object 1 to be cut can be prevented from being sucked into the exhaust port 128 .
  • the slope 127 is part of the bottom wall 120D in this embodiment, it may be the entire bottom wall 120D.
  • the bottom wall 120D of the processing chamber 120 has a bottom portion 126 connected to the slope 127 so as to bend with respect to the slope 127 .
  • fragments or the like that have slid down the slope 127 are likely to stop at the boundary between the slope 127 and the bottom portion 126 . Therefore, it is easy for the user to collect debris that has slid down the slope 127 .
  • debris that slides down the slope 127 collects in the lower front corner of the processing chamber 120 formed by the bottom wall 120D and the front wall 120F. Cheap. This makes it difficult for the user to collect debris or the like that has slid down the slope 127 .
  • the bottom portion 126 is configured substantially horizontally. By making the bottom portion 126 substantially horizontal, it is possible to achieve both ease of stopping falling objects and visibility of the boundary portion between the slope 127 and the bottom portion 126 .
  • the bottom portion 126 may be a slope having a gentler upward slope than the slope 127, or a reverse slope that descends rearward, instead of being a substantially horizontal surface.
  • At least part of the slope 127 overlaps at least part of the work holder 20 in plan view. According to such a configuration, fragments of the object to be cut 1 and the object to be processed that have fallen off the work holder 20 fall onto the slope 127 .
  • the slope 127 is connected to the rear wall 120Rr of the processing chamber 120, and the rear edge of the exhaust port 128 is formed by the rear wall 120Rr.
  • the exhaust port 128 is arranged at the rearmost part of the slope 127 and the processing chamber 120 . Therefore, the cutting powder or the like drawn to the exhaust port 128 does not overrun behind the exhaust port 128 . Therefore, cutting powder and the like can be efficiently collected.
  • the cutting machine 10 includes a box-shaped dust collection chamber 90 and an exhaust duct 92 connected to a duct connection hole 91 .
  • An upper opening 90U and a duct connection hole 91 are formed in the dust collection chamber 90 , and the upper opening 90U is connected to the exhaust port 128 .
  • the exhaust port 128 is open upward, and the upper opening 90U of the dust collection chamber 90 is also open upward.
  • a dust collection chamber 90 is provided below the exhaust port 128 . According to such a configuration, cutting powder or the like naturally falls into the dust collection chamber 90 from the exhaust port 128 and the upper opening 90U. Therefore, dust collection efficiency is good.
  • the exhaust port 128 does not necessarily have to be open facing forward, for example, and the dust collection chamber 90 does not necessarily have to be provided above the exhaust port 128, for example.
  • the duct connection hole 91 opens in the side wall (here, the rear wall) of the dust collection chamber. According to such a configuration, the opening direction of the duct connection hole 91 and the opening direction of the exhaust port 128 intersect. Therefore, it is possible to further prevent large-sized objects such as large fragments of the object to be cut 1 from directly entering the exhaust duct 92 .
  • the dust collection chamber 90 has an internal space that is larger than the exhaust port 128 in plan view.
  • the exhaust port 128 is configured to be smaller than the internal space of the dust collection chamber 90 in plan view.
  • the cutting machine 10 includes a spindle air blow device 55 having a spindle nozzle 56 that injects air toward the work holder 20 .
  • a control device 100 of the cutting machine 10 controls a cutting control unit 101 that controls the cutting device 50 to cut the object 1 to be cut, and after the cutting of the object 1 to be cut is completed, controls the spindle air blow device 55 to operate the work holder. and a first blow control unit 104A that injects air toward 20 .
  • the air blow device that injects air toward the work holder 20 is not limited to the device provided in the cutting device 50, and may be provided in any location.
  • the cutting machine 10 includes a holder moving device 30 as a moving device for moving the position of the spindle nozzle 56 with respect to the work holder 20 and a Y-axis direction moving device 60Y.
  • the control device 100 controls the holder moving device 30 and the Y-axis direction moving device 60Y to move the main shaft nozzle to the work holder 20 while the main shaft air blow device 55 is blowing air under the control of the first blow control unit 104A.
  • 104 C of 1st movement control parts which move the position of 56 are provided.
  • the first movement control unit 104C moves the position of the spindle nozzle 56 with respect to the work holder 20 so that the movement path L1 of the spindle nozzle 56 with respect to the work holder 20 draws a scanning line.
  • the position of the work holder 20 that is hit by the air can be moved in a scanning line, so that the work holder 20 and the workpiece 1 do not have areas where the air is not blown.
  • the cutting machine 10 includes a rotating device 40 that changes the posture of the work holder 20 by rotating the work holder 20 .
  • the object 1 to be cut is configured in a flat plate shape having two opposing surfaces 1A and 1B.
  • the main shaft nozzle 56 is configured to inject air in a predetermined injection direction (here, downward).
  • the first attitude control section 104B of the control device 100 controls the rotating device to rotate after the cutting of the workpiece 1 is completed and before the main shaft air blow device 55 injects air under the control of the first blow control section 104A.
  • 40 is controlled to control the posture of the work holder 20 so that the two opposing surfaces 1A and 1B of the workpiece 1 intersect the jetting direction of the spindle nozzle 56 at a predetermined angle.
  • air can be blown to the object 1 to be cut at an angle that facilitates removal of the cutting dust adhering to the two opposing surfaces 1A and 1B of the object 1 to be cut.
  • the predetermined angle is 90 degrees here.
  • the first attitude control section 104B controls the rotating device 40 after the cutting of the workpiece 1 is finished and before the main shaft air blow device 55 injects air under the control of the first blow control section 104A. is controlled to control the posture of the work holder 20 so that the first surface 1A of the workpiece 1 faces the spindle nozzle 56.
  • the reversing control unit 104D controls the rotating device 40 so that the second surface 1B of the workpiece 1 is ejected from the main shaft nozzle 56 while the main shaft air blow device 55 is injecting air under the control of the first blow control unit 104A.
  • the posture of the work holder 20 is changed so that it faces the direction of .
  • both the first surface 1A of the object 1 to be cut and the second surface 1B, which is the back surface of the first surface 1A, can be cleaned.
  • “while the main shaft air blow device 55 is injecting air under the control of the first blow control unit 104A” means that the air injection is continuing at this time, and that the air injection is temporary at this time. It may include the case where it is temporarily stopped.
  • the spindle nozzle 56 of the spindle air blow device 55 is also configured to inject air into the machining chamber 120 .
  • the control device 100 includes a second blow control section 105A that controls the spindle air blow device 55 to inject air into the processing chamber 120 after the cutting of the workpiece 1 is completed.
  • the cutting powder adhering to the processing chamber 120 can be removed, and the processing chamber 120 can be cleaned.
  • processing chamber cleaning is performed after workpiece cleaning.
  • either one of the processing chamber cleaning and the workpiece cleaning may be performed. Even when the processing chamber cleaning and the work cleaning are performed together, the order is not particularly limited.
  • the control device 100 controls the Y-axis direction moving device 60Y while the main shaft air blow device 55 is injecting air under the control of the second blow control unit 105A, thereby moving the main shaft nozzle toward the work holder 20.
  • a second movement control unit 105C for moving the position of 56 is provided.
  • the control device 100 controls the rotating device 40 after the cutting of the workpiece 1 is completed and before the main shaft air blow device 55 blows air under the control of the second blow control section 105A. , and a second posture control unit 105B for setting the posture of the work holder 20 to a predetermined posture.
  • the spindle nozzle 56 is configured to inject air toward the work holder 20 . According to such a configuration, the direction of the air can be changed by applying the air to the work holder 20, as described above in the explanation of the cleaning of the processing chamber. Therefore, air can be blown to a target location in the processing chamber 120 .
  • the posture of the work holder 20 is not changed during cleaning of the processing chamber, but may be changed once or multiple times.
  • the spindle nozzle 56 is provided above the work holder 20 and configured to jet air downward.
  • the predetermined attitude of the work holder 20 is such that the two opposing surfaces 1A and 1B of the workpiece 1 held by the work holder 20 are inclined with respect to the bottom wall 120D of the machining chamber 120. .
  • the direction of the air after hitting the work holder 20 can be made to obliquely cross the bottom wall 120D.
  • cutting powder and the like on the bottom wall 120D can be moved along the bottom wall 120D.
  • the plurality of walls partitioning the processing chamber 120 includes a front wall 120F (which may include a processing chamber door 122) erected forward of the work holder 20, and the work holder
  • the predetermined orientation of 20 is such that the two opposing surfaces 1A and 1B of the workpiece 1 held by the work holder 20 are inclined downward toward the front.
  • the direction of the air after hitting the work holder 20 is initially forward, but changes to the rear by hitting the front wall 120F.
  • the air reaches the front wall 120 ⁇ /b>F, which is the frontmost portion of the processing chamber 120 . Therefore, cleaning can be performed up to the frontmost part of the processing chamber 120 .
  • cutting powder and the like can be sent backward.
  • the second movement control unit 105C controls the Y-axis direction movement device 60Y to move the main shaft nozzle 56 while the main shaft air blow device 55 is blowing air under the control of the second blow control unit 105A. Move left or right. As a result, cleaning up to the frontmost portion of the processing chamber 120 can be performed over a wide range in the left-right direction.
  • the second blow control unit 105A controls the spindle air blow device 55 to inject air into the processing chamber 120, and then controls the top surface air blow device 93 and the bottom surface air blow device 94 to control the top surface nozzles. Air is jetted from 93N and the bottom nozzle 94N. According to such a configuration, the cutting dust and the like that may have been scattered in the machining chamber 120 by the air jet from the spindle air blow device 55 are carried to the exhaust port 128 by the air jet from the top nozzle 93N and the bottom nozzle 94N. be able to. Thereby, the inside of the processing chamber 120 can be further cleaned.
  • the second blow control unit 105A also controls the top surface air blow device 93 and the bottom surface air blow device 94 to blow air before controlling the spindle air blow device 55 to inject air into the processing chamber 120. inject.
  • the air from the spindle nozzle 56 is cleaned. to clean the processing chamber 120.
  • cutting powder adhering to the ceiling wall 120U, the rear wall 120Rr, and the bottom wall 120D is suppressed from being scattered by the air jet from the spindle nozzle 56. Thereby, the inside of the processing chamber 120 can be made cleaner.
  • the tool stocker 80 capable of storing a plurality of cutting tools 6 is housed in the driving device chamber 130 separated from the machining chamber 120 housing the work holder 20 .
  • the cutting device 50 is configured to be able to grip each cutting tool 6 stored in the tool stocker 80 , and cuts the workpiece 1 held by the work holder 20 with the gripped cutting tool 6 .
  • the spindle movement device 60 is configured to move the cutting device 50 between the drive device chamber 130 and the processing chamber 120 . According to such a configuration, it is possible to prevent the cutting powder generated in the machining chamber 120 from adhering to the cutting tools 6 stored in the tool stocker 80 .
  • the tool stocker 80 is housed in the drive chamber 130 in this embodiment, it may be housed in another room separated from the processing chamber 120 .
  • the drive device chamber 130 and the processing chamber 120 are arranged side by side in the Y-axis direction.
  • the holder moving device 30 is connected to a support arm 31 that extends in the Y-axis direction and supports the work holder 20, and is housed in the drive device chamber 130 and is connected to the support arm 31, and is movable in the X-axis direction that intersects the Y-axis direction. and an X-axis direction driving motor 34 for moving the support arm 31 and the work holder 20 in the X-axis direction by moving the X-axis direction moving body 32 in the X-axis direction. ing.
  • the tool stocker 80 is supported by the X-axis moving body 32 .
  • the support arm 31 does not support the tool stocker 80 . Therefore, the support arm 31 is less likely to bend. This improves the accuracy of cutting.
  • the cutting load applied to the support arm 31 through the workpiece 1 can be increased, the amount of cutting per hour can be increased. Thereby, the throughput of cutting can be increased.
  • the cutting device 50 is provided above the work holder 20 and the tool stocker 80.
  • the spindle moving device 60 includes a Y-axis direction moving device 60Y for moving the cutting device 50 in the Y-axis direction so that the cutting device 50 moves between the upper side of the driving device chamber 130 and the upper side of the processing chamber 120. there is
  • the spindle moving device 60 also includes a Z-axis direction moving device 60Z for moving the cutting device 50 in the Z-axis direction.
  • the holder moving device 30 is configured to be able to move the tool stocker 80 to the tool gripping position P1 set below the moving path of the cutting device 50 by the Y-axis direction moving device 60Y. According to this configuration, the cutting tool 6 stored in the tool stocker 80 can be gripped by the cutting device 50 and the cutting tool 6 can be returned to the tool stocker 80 by the procedure described in the embodiment.
  • the holder moving device 30 is configured to be able to move the tool stocker 80 to the tool exchange position P2 set forward of the tool gripping position P1.
  • the cutting machine 10 includes a tool changing chamber 180 having an opening 183 that opens upward from the tool changing position P2.
  • the user stores the cutting tool 6 in the tool stocker 80 or removes the cutting tool 6 from the tool stocker 80 through the opening 183. can be pulled out.
  • the tool exchange chamber 180 is separated from the driving device chamber 130 , it is possible to prevent the user from touching the holder moving device 30 when exchanging the cutting tool 6 .
  • foreign matter is prevented from entering the driving device chamber 130 when the cutting tool 6 is replaced.
  • the tool stocker 80 has a plurality of storage holes 81 each capable of storing the cutting tool 6, and the plurality of storage holes 81 are arranged in a zigzag pattern. More specifically, the tool stocker 80 is formed with a plurality of rows in which some of the plurality of storage holes 81 are aligned in a predetermined alignment direction (here, left-right direction) (here, Five columns 81A to 81E), and two adjacent columns among the plurality of columns 81A to 81E are displaced in the alignment direction. According to such a configuration, it is possible to improve the storage efficiency of the cutting tool 6 with respect to the space.
  • a predetermined alignment direction here, left-right direction
  • the cutting machine 10 includes a gripping portion 53 that grips the cutting tool 6 so as to protrude downward in the Z-axis direction, a nozzle support member 57 that supports the spindle nozzle 56, and the spindle nozzle 56 that is biased. and a biasing member 58 .
  • the nozzle support member 57 has an end position (lower end position) Pd on the lower side in the Z-axis direction set on the side of the grip portion 53, and another position above the lower end position Pd in the Z-axis direction.
  • a spindle nozzle 56 is supported so as to be movable between positions.
  • the biasing member 58 biases the main shaft nozzle 56 supported by the nozzle support member 57 to hold the main shaft nozzle 56 at the lower end position Pd.
  • the spindle nozzle 56 is positioned at the lower end position Pd in the projecting direction of the cutting tool 6 by the biasing force of the biasing member 58 when not pushed by another member. Therefore, at this time, the distance between the spindle nozzle 56 and the cutting tool 6 is short. Therefore, the cutting tool 6 can be strongly blown with air.
  • the spindle nozzle 56 when the spindle nozzle 56 interferes with other members and is pushed upward, the spindle nozzle 56 resists the biasing force of the biasing member 58 and moves upward from the lower end position Pd, that is, in the direction opposite to the projecting direction of the cutting tool 6 . Move to another position in the direction. Therefore, according to the cutting machine 10 of the present embodiment, the spindle nozzle 56 can be brought closer to the cutting tool 6, and the spindle nozzle 56 is less likely to be an obstacle.
  • the spindle nozzle 56 moves from the lower end position Pd at least when the cutting tool 6 stored in the tool stocker 80 is gripped by the gripper 53 or released from the gripper 53 .
  • the Z-axis direction moving device 60Z moves the gripper 53 to a predetermined position (working position Po) in the Z-axis direction set to grip or release the cutting tool 6 stored in the tool stocker 80. It is configured to allow The spindle nozzle 56 contacts the tool stocker 80 when the gripping portion 53 is positioned at the working position Po. The main shaft nozzle 56 is thereby positioned above the lower end position Pd in the Z-axis direction against the biasing force of the biasing member 58 .
  • the spindle nozzle 56 does not interfere.
  • the lower end position Pd can be set at a position where the spindle nozzle 56 contacts the tool stocker 80 , so the spindle nozzle 56 can be brought closer to the lower end of the cutting tool 6 .
  • the main shaft nozzle 56 has a cut surface 56b formed on the side wall and extending obliquely in the Z-axis direction. According to such a configuration, when an object presses the cut surface 56b from the side, part of the pressing force is converted into an upward force in the Z-axis direction by the cut surface 56b. This causes the main shaft nozzle 56 to move upward. According to such a configuration, even when an object pushes the main shaft nozzle 56 from the side, the main shaft nozzle 56 can be moved.
  • the cutting machine has been described above.
  • the technology disclosed herein can also be implemented in other ways.
  • the tool stocker 80 was provided on the X-axis moving body 32 of the holder moving device 30 and moved in the X-axis direction.
  • the tool stocker may be provided on a non-moving member.
  • the tool stocker may be immovably fixed below the path of travel of the cutting device.
  • the configuration of the tool stocker is not particularly limited.
  • the direction in which the cutting tool is inserted into the tool stocker is not limited to directions including the vertical direction, and may be horizontal, for example.
  • the configuration of the cutting machine is not particularly limited.
  • the cutting machine may not have a work changer.
  • the inside of the cutting machine may not be partitioned like the above-described embodiment.
  • the embodiments do not limit the present invention unless otherwise specified.
  • the milling machine need not be a dental milling machine for making dental moldings.
  • the workpiece need not be held by the cutting machine via an adapter, and may be held directly by the cutting machine.

Abstract

This cutting machine comprises: a tool stocker 80 which can store a plurality of cutting tools 6; a first chamber 130 which accommodates the tool stocker 80; a second chamber 120 separate from the first chamber 130; a holding device 20 which is accommodated in the second chamber 120 and holds a workpiece 1; a cutting device 50 which is configured to be able to grip the cutting tools 6 stored in the tool stocker 80, and cuts, by means of the gripped cutting tools 6, the workpiece 1 held by the holding device 20; and a movement device 60 which moves the cutting device 50 between the first chamber 130 and the second chamber 120.

Description

切削加工機cutting machine
 本発明は、切削加工機に関する。 The present invention relates to cutting machines.
 被切削物を切削加工することによって、例えば歯科用成形品などを作製する切削加工機が従来から知られている。切削加工機の中には、切削の種類などに応じて切削ツールを交換する機能を有するものが存在する。例えば特許文献1には、複数の加工ツールを収納するツールマガジンを備えた切削加工機が開示されている。特許文献1に記載の切削加工機では、ツールマガジンは、被切削物の保持装置を移動させる駆動部に固定され、保持装置とともに加工エリアに収容されている。 Conventionally, there has been known a cutting machine that produces, for example, a dental molding by cutting an object to be cut. Some cutting machines have a function of changing cutting tools according to the type of cutting. For example, Patent Literature 1 discloses a cutting machine provided with a tool magazine that stores a plurality of machining tools. In the cutting machine described in Patent Literature 1, the tool magazine is fixed to a drive section that moves a holding device for the workpiece, and is accommodated in the machining area together with the holding device.
特開2017-142617号公報JP 2017-142617 A
 例えば特許文献1に記載されたような切削加工機においては、切削ツールを収納するツールストッカが加工室に収容されている。そのため、被切削物の切削によって加工室で生じる切削粉が切削ツールにも付着する。切削粉が切削ツールに付着すると、例えば、次の被切削物の切削加工で加工不良が発生する等の問題が起こるおそれがある。 For example, in a cutting machine such as that described in Patent Document 1, a tool stocker that stores cutting tools is housed in a processing chamber. Therefore, the cutting powder generated in the machining chamber by cutting the workpiece adheres to the cutting tool as well. If the cutting powder adheres to the cutting tool, there is a risk that problems such as defective machining will occur in the subsequent cutting of the workpiece.
 本発明はかかる課題に鑑みてなされたものであり、その目的は、ツールストッカに収納された切削ツールに切削粉が付着しにくい切削加工機を提供することである。 The present invention has been made in view of such problems, and its object is to provide a cutting machine in which cutting powder is less likely to adhere to the cutting tools stored in the tool stocker.
 ここに開示する切削加工機は、複数の切削ツールを収納可能なツールストッカと、前記ツールストッカを収容する第1室と、前記第1室と区画された第2室と、前記第2室に収容され、被切削物を保持する保持装置と、前記ツールストッカに収納された各切削ツールを把持可能に構成され、前記把持した切削ツールによって前記保持装置に保持された前記被切削物を切削する切削装置と、前記切削装置を前記第1室と前記第2室との間で移動させる移動装置と、を備える。 The cutting machine disclosed herein includes a tool stocker capable of accommodating a plurality of cutting tools, a first chamber accommodating the tool stocker, a second chamber separated from the first chamber, and a A holding device for holding an object to be cut stored therein, and each cutting tool stored in the tool stocker can be gripped, and the object to be cut held by the holding device is cut by the gripped cutting tool. A cutting device and a moving device for moving the cutting device between the first chamber and the second chamber are provided.
 上記切削加工機によれば、切削ツールを収納するツールストッカは、被切削物が保持される第1室とは区画された第2室に収容されている。そのため、第1室で生成された切削粉が、ツールストッカに収納された切削ツールに付着しにくい。切削装置がツールストッカに収納された各切削ツールを把持し、把持した切削ツールによって第2室の被切削物を切削することができるように、移動装置は、切削装置を第1室と第2室との間で移動させるように構成されている。 According to the above cutting machine, the tool stocker that stores the cutting tools is stored in the second chamber that is separated from the first chamber that holds the workpiece. Therefore, the cutting powder generated in the first chamber is less likely to adhere to the cutting tools stored in the tool stocker. The moving device moves the cutting device between the first chamber and the second chamber so that the cutting device can grip each cutting tool stored in the tool stocker and cut the workpiece in the second chamber with the gripped cutting tool. configured to be moved to and from the chamber.
一実施形態に係る切削加工機の斜視図である。1 is a perspective view of a cutting machine according to one embodiment; FIG. 被切削物およびアダプタの平面図である。FIG. 4 is a plan view of a workpiece and an adapter; 左方から見た切削加工機の縦断面図である。It is a longitudinal cross-sectional view of the cutting machine seen from the left. 右方から見た切削加工機の縦断面図である。It is a vertical cross-sectional view of the cutting machine seen from the right side. ワークホルダの平面図である。It is a top view of a work holder. アダプタを交換中の切削加工機を示す縦断面図である。FIG. 4 is a vertical cross-sectional view showing the cutting machine during replacement of the adapter; 切削装置室および駆動装置室の斜視図である。FIG. 4 is a perspective view of a cutting device chamber and a drive device chamber; ツールストッカの平面図である。It is a top view of a tool stocker. 主軸の下端部付近の一部破断側面図である。FIG. 4 is a partially broken side view of the vicinity of the lower end of the main shaft; 切削ツール交換時の切削装置の先端部付近の側面図である。FIG. 4 is a side view of the vicinity of the tip of the cutting device when the cutting tool is replaced; 切削加工機のブロック図である。It is a block diagram of a cutting machine. プロセス全体のフローチャートである。Figure 3 is a flow chart of the overall process; ワーククリーニングのフローチャートである。4 is a flowchart of work cleaning. ワーククリーニング中のワークホルダを示す側面図である。FIG. 4 is a side view showing the work holder during work cleaning; ワーククリーニングの手順を示すワークホルダの平面図である。FIG. 4 is a plan view of the work holder showing the procedure of work cleaning; 加工室クリーニングのフローチャートである。It is a flow chart of processing chamber cleaning. 加工室クリーニング中の切削加工機の縦断面図である。It is a longitudinal cross-sectional view of the cutting machine during cleaning of the processing chamber.
 以下、図面を参照しながら、一実施形態に係る切削加工機について説明する。なお、ここで説明される実施形態は、当然ながら本発明を限定することを意図したものではない。また、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は適宜省略または簡略化する。 A cutting machine according to one embodiment will be described below with reference to the drawings. It should be noted that the embodiments described herein are, of course, not intended to limit the invention. Further, members and portions having the same function are denoted by the same reference numerals, and overlapping descriptions are appropriately omitted or simplified.
 [切削加工機の構成]
 図1は、一実施形態に係る切削加工機10の斜視図である。以下の説明では、切削加工機10を正面から見たときに、切削加工機10から遠ざかる方を前方、切削加工機10に近づく方を後方とする。左、右、上、下とは、切削加工機10を正面から見たときの左、右、上、下をそれぞれ意味するものとする。また、図面中の符号F、Rr、L、R、U、Dは、それぞれ前、後、左、右、上、下を意味するものとする。
[Configuration of cutting machine]
FIG. 1 is a perspective view of a cutting machine 10 according to one embodiment. In the following description, when the cutting machine 10 is viewed from the front, the side away from the cutting machine 10 is defined as the front, and the side closer to the cutting machine 10 is defined as the rear. Left, right, top, and bottom mean left, right, top, and bottom, respectively, when the cutting machine 10 is viewed from the front. References F, Rr, L, R, U, and D in the drawings mean front, rear, left, right, up, and down, respectively.
 本実施形態に係る切削加工機10は、アダプタに保持されたディスク状の被切削物を切削加工する切削加工機である。図2は、被切削物1およびアダプタ5の平面図である。切削加工機10は、ここでは、被切削物1を切削して、歯科用成形品、例えば、クラウン、ブリッジ、コーピング、インレー、アンレー、ベニア、カスタムアバットメント等の歯冠補綴物や、人工歯、義歯床等を作製する装置である。本実施形態に係る切削加工機10は、クーラントを使用しないドライ式の切削加工機である。 The cutting machine 10 according to this embodiment is a cutting machine that cuts a disk-shaped workpiece held by an adapter. FIG. 2 is a plan view of the workpiece 1 and the adapter 5. FIG. Here, the cutting machine 10 cuts the workpiece 1 to produce dental moldings such as crowns, bridges, copings, inlays, onlays, veneers, custom abutments and other prosthetic crowns, artificial teeth, and the like. , denture base, etc. The cutting machine 10 according to this embodiment is a dry cutting machine that does not use coolant.
 被切削物1は、例えば、PMMA、PEEK、ガラス繊維強化樹脂、ハイブリッドレジン等のレジンや、ガラスセラミックス、ジルコニア等のセラミックス材料、コバルトクロムシンターメタル等の金属材料、ワックス、石膏等で構成されている。被切削物1の材料としてジルコニアを用いるときには、例えば、半焼結したジルコニアが用いられる。被切削物1は、対向する2面を有する平板状の被切削物である。ここでは、被切削物1の形状は、ディスク状(円板状)である。ただし、被切削物1は、他の形状、例えばブロック状(例えば立方体状や直方体状)等であってもよい。以下では、被切削物1の対向する2面をそれぞれ、第1面1Aおよび第2面1Bとも呼ぶ。第2面1Bは、第1面1Aの裏面である。第1面1Aと第2面1Bとの区別は便宜上のものであり、本実施形態では、加工前の被切削物1の第1面1Aと第2面1Bとは同じである。ただし、加工前の被切削物1の第1面1Aと第2面1Bとは区別可能に構成されていてもよい。 The workpiece 1 is made of, for example, resins such as PMMA, PEEK, glass fiber reinforced resin, hybrid resin, etc., ceramic materials such as glass ceramics and zirconia, metal materials such as cobalt chromium sinter metal, wax, gypsum, and the like. there is When zirconia is used as the material of the object 1 to be cut, for example, semi-sintered zirconia is used. The object to be cut 1 is a plate-like object to be cut having two opposing surfaces. Here, the shape of the object 1 to be cut is disc-shaped. However, the object 1 to be cut may have another shape, such as a block shape (for example, a cube shape or a rectangular parallelepiped shape). Below, the two opposing surfaces of the object 1 to be cut are also referred to as a first surface 1A and a second surface 1B, respectively. The second surface 1B is the back surface of the first surface 1A. The distinction between the first surface 1A and the second surface 1B is for convenience, and in the present embodiment, the first surface 1A and the second surface 1B of the workpiece 1 before machining are the same. However, the first surface 1A and the second surface 1B of the workpiece 1 before machining may be configured to be distinguishable.
 アダプタ5は、ディスク状の被切削物1を保持する。アダプタ5は、ここでは、被切削物1に対応する略円形の挿入孔5aが中央部に形成された平板状のアダプタである。被切削物1は、挿入孔5aに挿入されることにより、アダプタ5に保持される。被切削物1は、アダプタ5に保持された状態で切削加工機10に収容され、加工される。 The adapter 5 holds the disc-shaped object 1 to be cut. Here, the adapter 5 is a plate-like adapter in which a substantially circular insertion hole 5a corresponding to the object 1 to be cut is formed in the center. The object 1 to be cut is held by the adapter 5 by being inserted into the insertion hole 5a. The object 1 to be cut is accommodated in the cutting machine 10 while being held by the adapter 5, and processed.
 図1に示すように、切削加工機10は、箱状に構成された筐体11を有している。図3は、左方から見た切削加工機10の縦断面図である。図4は、右方から見た切削加工機10の縦断面図である。図1に示すように、筐体11の内部は、アダプタ5を保持するワークホルダ20が収容された加工室120(図3も参照)と、ワークホルダ20を移動させるホルダ移動装置30(図4参照)が収容された駆動装置室130と、ワークチェンジャ70が収容されたチェンジャ室170と、切削ツール6(図7参照)をツールストッカ80(同じく図7参照)に収納するためのツール交換室180と、を含む複数の空間に区画されている。 As shown in FIG. 1, the cutting machine 10 has a box-shaped housing 11 . FIG. 3 is a longitudinal sectional view of the cutting machine 10 viewed from the left. FIG. 4 is a longitudinal sectional view of the cutting machine 10 as seen from the right side. As shown in FIG. 1, the inside of the housing 11 includes a processing chamber 120 (see also FIG. 3) in which a work holder 20 holding the adapter 5 is accommodated, and a holder moving device 30 (see FIG. 4) for moving the work holder 20. ), a changer chamber 170 in which a workpiece changer 70 is accommodated, and a tool exchange chamber for storing a cutting tool 6 (see FIG. 7) in a tool stocker 80 (also see FIG. 7). 180 and are partitioned into a plurality of spaces.
 図1に示すように、加工室120は、筐体11の左下部分に配置されている。図3に示すように、加工室120は、筐体11の後端部まで延びている。チェンジャ室170は、加工室120の前方側部分の上方に配置されている。チェンジャ室170は、筐体11の前後方向の中央部まで延びている。駆動装置室130は、加工室120の右方に配置されている。図4に示すように、駆動装置室130は、筐体11の後端部まで延びている。ツール交換室180は、駆動装置室130の前方側部分の上方に配置されている。ツール交換室180は、筐体11の前後方向の中央部まで延びている。なお、駆動装置室130は加工室120の左方に配置されていてもよい。その場合、ツール交換室180は、チェンジャ室170の左方に配置されていてもよい。 As shown in FIG. 1, the processing chamber 120 is arranged in the lower left portion of the housing 11. As shown in FIG. 3, the processing chamber 120 extends to the rear end of the housing 11. As shown in FIG. The changer chamber 170 is arranged above the front portion of the processing chamber 120 . The changer chamber 170 extends to the central portion of the housing 11 in the front-rear direction. The drive chamber 130 is arranged to the right of the processing chamber 120 . As shown in FIG. 4 , the drive chamber 130 extends to the rear end of the housing 11 . The tool exchange chamber 180 is arranged above the front portion of the drive chamber 130 . The tool exchange chamber 180 extends to the central portion of the housing 11 in the front-rear direction. In addition, the drive device chamber 130 may be arranged on the left side of the processing chamber 120 . In that case, the tool exchange chamber 180 may be arranged to the left of the changer chamber 170 .
 加工室120の前面開口部121(図3参照)には、加工室扉122が開閉自在に設けられている。駆動装置室130の前面開口部には、駆動装置室カバー131が設けられている。チェンジャ室170の前面開口部には、チェンジャ室扉171が開閉自在に設けられている。ツール交換室180の前面開口部には、ツール交換室扉181が開閉自在に設けられている。加工室扉122、チェンジャ室扉171、およびツール交換室扉181には、それぞれ、内部を視認可能なように透明な窓部122a、171a、および181aが設けられている。駆動装置室カバー131の前面には、操作パネル110が設けられている。図3および図4に示すように、筐体11の前面(ここでは、加工室120、駆動装置室130、チェンジャ室170、およびツール交換室180の前面開口部)は、底面に対して斜めに形成されている。筐体11の前面は、後方に傾くように形成されている。 A front opening 121 (see FIG. 3) of the processing chamber 120 is provided with a processing chamber door 122 that can be opened and closed. A drive-chamber cover 131 is provided at the front opening of the drive-chamber 130 . A changer chamber door 171 is provided at the front opening of the changer chamber 170 so as to be freely opened and closed. A front opening of the tool changing chamber 180 is provided with a tool changing chamber door 181 that can be opened and closed. The processing chamber door 122, the changer chamber door 171, and the tool exchange chamber door 181 are provided with transparent windows 122a, 171a, and 181a, respectively, so that the inside can be visually recognized. An operation panel 110 is provided on the front surface of the driving device chamber cover 131 . As shown in FIGS. 3 and 4, the front surface of the housing 11 (here, the front openings of the processing chamber 120, the drive chamber 130, the changer chamber 170, and the tool exchange chamber 180) is inclined with respect to the bottom surface. formed. The front surface of the housing 11 is formed so as to incline backward.
 図3および図4に示すように、加工室120および駆動装置室130の上方であってチェンジャ室170、およびツール交換室180の後方には、切削装置50と、切削装置50を移動させる主軸移動装置60(後述するが、切削装置50は、回転するスピンドルユニット52を備えた主軸51を有する)と、が収容された切削装置室150が配置されている。切削装置室150は、ここでは、筐体11の左右方向の幅のほぼ全てを占めている。 As shown in FIGS. 3 and 4, above the machining chamber 120 and drive chamber 130 and behind the changer chamber 170 and tool exchange chamber 180 are the cutting device 50 and the spindle movement for moving the cutting device 50 . A cutting device chamber 150 in which a device 60 (which will be described later has a spindle 51 with a rotating spindle unit 52) and a cutting device 50 are arranged. The cutting device chamber 150 here occupies almost the entire width of the housing 11 in the left-right direction.
 ワークホルダ20は、被切削物1を保持する保持装置の一例である。ワークホルダ20は、ここでは、アダプタ5を介して被切削物1を保持する。ただし、ワークホルダ20は、他の部材を介さず、直接に被切削物1を保持してもよい。図5は、ワークホルダ20の平面図である。図5に示すように、ワークホルダ20は、左右一対のアーム21を備えている。アダプタ5は、一対のアーム21の間に挿入されることによってワークホルダ20に保持される。一対のアーム21の間にアダプタ5が挿入される際の切削加工機10の動作については後述する。 The work holder 20 is an example of a holding device that holds the object 1 to be cut. The work holder 20 here holds the workpiece 1 via the adapter 5 . However, the work holder 20 may directly hold the workpiece 1 without intervening other members. FIG. 5 is a plan view of the work holder 20. FIG. As shown in FIG. 5, the work holder 20 has a pair of left and right arms 21 . The adapter 5 is held by the work holder 20 by being inserted between the pair of arms 21 . The operation of the cutting machine 10 when the adapter 5 is inserted between the pair of arms 21 will be described later.
 ホルダ移動装置30は、ワークホルダ20を支持して移動させるものである。本実施形態では、ホルダ移動装置30は、ワークホルダ20を前後方向に移動させる。より詳しくは、図4に示すように、ホルダ移動装置30は、ワークホルダ20を後方に向かって下降するように斜め前後方向に移動させる。ワークホルダ20は、ホルダ移動装置30により前方に移動されると上方にも移動する。ワークホルダ20は、ホルダ移動装置30により後方に移動されると下方にも移動する。図4に示すように、以下では、ホルダ移動装置30によってワークホルダ20が移動される方向をX軸方向とも呼ぶ。また、以下では、特に断る必要がない場合には、X軸方向の前方を単に前方と、X軸方向の後方を単に後方と言うことがある。 The holder moving device 30 supports and moves the work holder 20. In this embodiment, the holder moving device 30 moves the work holder 20 in the front-rear direction. More specifically, as shown in FIG. 4, the holder moving device 30 moves the work holder 20 obliquely forward and backward so as to descend backward. When the work holder 20 is moved forward by the holder moving device 30, it also moves upward. When the work holder 20 is moved backward by the holder moving device 30, it also moves downward. As shown in FIG. 4, hereinafter, the direction in which the work holder 20 is moved by the holder moving device 30 is also referred to as the X-axis direction. Further, hereinafter, the front in the X-axis direction may be simply referred to as the front, and the rear in the X-axis direction may simply be referred to as the rear, unless otherwise specified.
 図5に示すように、ホルダ移動装置30は、左右方向に延びるとともにワークホルダ20を支持する支持アーム31を備えている。図4に示すように、ホルダ移動装置30は、支持アーム31に接続されたX軸方向移動体32と、一対のX軸ガイドレール33と、X軸方向駆動モータ34と、ボールねじ35と、を備えている。ホルダ移動装置30は、支持アーム31をX軸方向に移動させることにより、ワークホルダ20をX軸方向に移動させる。ホルダ移動装置30は、その少なくとも一部が駆動装置室130に収容されている。ここでは、ホルダ移動装置30のX軸方向移動体32、一対のX軸ガイドレール33、X軸方向駆動モータ34、ボールねじ35、および支持アーム31の一部が駆動装置室130に収容されている。 As shown in FIG. 5, the holder moving device 30 includes a support arm 31 that extends in the left-right direction and supports the work holder 20. As shown in FIG. As shown in FIG. 4, the holder moving device 30 includes an X-axis moving body 32 connected to a support arm 31, a pair of X-axis guide rails 33, an X-axis driving motor 34, a ball screw 35, It has The holder moving device 30 moves the work holder 20 in the X-axis direction by moving the support arm 31 in the X-axis direction. At least part of the holder moving device 30 is housed in the driving device chamber 130 . Here, the X-axis direction moving body 32, the pair of X-axis guide rails 33, the X-axis direction drive motor 34, the ball screw 35, and part of the support arm 31 of the holder moving device 30 are accommodated in the drive device chamber 130. there is
 図4に示すように、一対のX軸ガイドレール33は、X軸方向に延びている。X軸方向移動体32は、一対のX軸ガイドレール33に摺動可能に係合している。X軸方向移動体32は、X軸ガイドレール33に沿ってX軸方向に移動することが可能である。ボールねじ35は、X軸方向に延びている。ボールねじ35は、X軸方向移動体32に設けられたナットに噛み合わされている。X軸方向駆動モータ34は、ボールねじ35を軸線周りに回転させる。X軸方向駆動モータ34を駆動してボールねじ35を回転させると、X軸方向移動体32は、X軸ガイドレール33に沿ってX軸方向に移動する。X軸方向駆動モータ34は、X軸方向移動体32をX軸方向に移動させることによって支持アーム31およびワークホルダ20をX軸方向に移動させる駆動部の一例である。なお、ホルダ移動装置30は、ボールねじ機構を有するものには限定されず、例えば、タイミングベルトやワイヤを有していてもよい。 As shown in FIG. 4, the pair of X-axis guide rails 33 extends in the X-axis direction. The X-axis moving body 32 is slidably engaged with a pair of X-axis guide rails 33 . The X-axis direction moving body 32 can move in the X-axis direction along the X-axis guide rails 33 . The ball screw 35 extends in the X-axis direction. The ball screw 35 is meshed with a nut provided on the X-axis moving body 32 . The X-axis direction drive motor 34 rotates the ball screw 35 around the axis. When the X-axis direction driving motor 34 is driven to rotate the ball screw 35 , the X-axis direction moving body 32 moves along the X-axis guide rail 33 in the X-axis direction. The X-axis direction drive motor 34 is an example of a drive unit that moves the support arm 31 and the work holder 20 in the X-axis direction by moving the X-axis direction moving body 32 in the X-axis direction. Note that the holder moving device 30 is not limited to having a ball screw mechanism, and may have, for example, a timing belt or a wire.
 ホルダ移動装置30は、ワークホルダ20に保持された被切削物1が切削装置50によって切削される際、ワークホルダ20をX軸方向の所定の範囲内で移動させるように構成されている。以下、このX軸方向の所定の範囲を「切削加工時の移動範囲」とも呼ぶ。図3は、ワークホルダ20が切削加工時の移動範囲内に位置した状態を図示している。 The holder moving device 30 is configured to move the work holder 20 within a predetermined range in the X-axis direction when the workpiece 1 held by the work holder 20 is cut by the cutting device 50 . Hereinafter, this predetermined range in the X-axis direction will also be referred to as a "moving range during cutting". FIG. 3 illustrates a state in which the work holder 20 is positioned within the range of movement during cutting.
 図5に示すように、支持アーム31は、左右方向に延びる軸線Axb周りに回転する回転シャフト31aと、軸線Axbと直交するように回転シャフト31aに接続され回転シャフト31aとともに前後方向に回転する第1アーム31bと、軸線Axbに平行に(第1アーム31bと直交するように)第1アーム31bに接続された第2アーム31cと、を備えている。図4に示すように、X軸方向移動体32には、回転シャフト31aを軸線Axb周りに回転させるB軸回転モータ41Bが設けられている。支持アーム31とB軸回転モータ41Bとは、ワークホルダ20を回転させることによりワークホルダ20の姿勢を変更する回転装置40の一部を構成している。B軸回転モータ41Bが駆動して回転シャフト31aが回転すると、ワークホルダ20は前後方向に回転する。以下、軸線Axbの伸長方向をB軸方向とも呼び、軸線Axb周りに回転することをB軸周りに回転するとも言う。また、回転装置40のうち、ワークホルダ20をB軸周りに回転させる装置をB軸回転装置40Bとも呼ぶ。 As shown in FIG. 5, the support arm 31 includes a rotating shaft 31a that rotates about an axis Axb that extends in the left-right direction, and a rotating shaft 31a that is connected to the rotating shaft 31a so as to be orthogonal to the axis Axb and rotates in the front-rear direction together with the rotating shaft 31a. It has a first arm 31b and a second arm 31c connected to the first arm 31b parallel to the axis Axb (perpendicular to the first arm 31b). As shown in FIG. 4, the X-axis moving body 32 is provided with a B-axis rotating motor 41B that rotates the rotating shaft 31a around the axis Axb. The support arm 31 and the B-axis rotary motor 41B constitute a part of a rotating device 40 that changes the posture of the work holder 20 by rotating the work holder 20 . When the B-axis rotating motor 41B is driven to rotate the rotating shaft 31a, the work holder 20 rotates in the front-rear direction. Hereinafter, the extending direction of the axis Axb is also referred to as the B axis direction, and rotation about the axis Axb is also referred to as rotation about the B axis. Among the rotating devices 40, a device that rotates the work holder 20 around the B-axis is also called a B-axis rotating device 40B.
 回転装置40は、ワークホルダ20を左右方向に回転させるA軸回転装置40Aも備えている。図5に示すように、A軸回転装置40Aは、A軸回転モータ41Aと、回転軸42Aと、を備えている。A軸回転モータ41Aは、第2アーム31cに固定されている。回転軸42Aは、A軸回転モータ41Aに接続され、軸線Axaに沿って前後方向に延びている。A軸回転モータ41Aを駆動すると、回転軸42Aは、軸線Axa周りに回転する。以下では、軸線Axaの伸長方向をA軸方向とも呼び、軸線Axa周りに回転することをA軸周りに回転するとも言う。 The rotating device 40 also includes an A-axis rotating device 40A that rotates the work holder 20 in the left-right direction. As shown in FIG. 5, the A-axis rotating device 40A includes an A-axis rotating motor 41A and a rotating shaft 42A. The A-axis rotary motor 41A is fixed to the second arm 31c. The rotary shaft 42A is connected to the A-axis rotary motor 41A and extends in the front-rear direction along the axis Axa. When the A-axis rotary motor 41A is driven, the rotary shaft 42A rotates around the axis Axa. Hereinafter, the extension direction of the axis Axa is also referred to as the A-axis direction, and rotation about the axis Axa is also referred to as rotation about the A-axis.
 加工室120は、複数の壁部によって区画され、ワークホルダ20を収容している。図3に示すように、複数の壁部は、底壁120D、左側壁120L(図1参照)、右側壁120R、後壁120Rr、前壁120F、および天壁120Uを含んでいる。複数の壁部120D、120L、120R、120Rr、120F、および120Uは、ここでは金属板によって形成されている。底壁120Dは、ワークホルダ20よりも下方に配置され、加工室120の底面を形成している。底壁120Dは、切削加工機10を水平面に設置したとき略水平になるように構成されている。天壁120Uは、ワークホルダ20よりも上方に配置され、加工室120の天面を形成している。左側壁120L、右側壁120R、後壁120Rr、および前壁120Fは、それぞれ、天壁120Uと底壁120Dとを接続するように立設されている。左側壁120Lは、底壁120Dの左端部に接続され、上方に向かって延びている。左側壁120Lは、ワークホルダ20よりも左方に立設されている。右側壁120Rは、底壁120Dの右端部に接続され、上方に向かって延びている。右側壁120Rは、ワークホルダ20よりも右方に立設されている。後壁120Rrは、底壁120Dの後端部に接続され、上方に向かって延びている。後壁120Rrの左端部および右端部は、それぞれ左側壁120Lの後端部および右側壁120Rの後端部に接続されている。後壁120Rrは、ワークホルダ20よりも後方に立設されている。前壁120Fは、底壁120Dの前端部に接続され、斜め上方に向かって延びている。前壁120Fは、ワークホルダ20よりも前方に立設されている。前壁120Fは、後方に傾くように延びている。前壁120Fの伸長方向は、X軸方向に直交する方向である。前壁120Fの左端部および右端部は、それぞれ左側壁120Lの前端部および右側壁120Rの前端部に接続されている。天壁120Uは、前壁120Fに直交する方向、すなわちX軸方向に平行に延びている。天壁120Uは、後方に向かって下降傾斜している。天壁120Uは、底壁120Dに対して非平行に設けられている。天壁120Uの前端部、左端部、右端部および後端部は、それぞれ前壁120Fの上端部、左側壁120Lの上端部、右側壁120Rの上端部、および後壁120Rrの上端部に接続されている。 The processing chamber 120 is partitioned by a plurality of walls and accommodates the work holders 20 . As shown in FIG. 3, the multiple walls include a bottom wall 120D, a left wall 120L (see FIG. 1), a right wall 120R, a rear wall 120Rr, a front wall 120F, and a top wall 120U. The plurality of walls 120D, 120L, 120R, 120Rr, 120F, and 120U are formed here by metal plates. The bottom wall 120</b>D is arranged below the work holder 20 and forms the bottom surface of the processing chamber 120 . The bottom wall 120D is configured to be substantially horizontal when the cutting machine 10 is installed on a horizontal surface. The ceiling wall 120U is arranged above the work holder 20 and forms the ceiling of the processing chamber 120. As shown in FIG. The left side wall 120L, the right side wall 120R, the rear wall 120Rr, and the front wall 120F are erected to connect the top wall 120U and the bottom wall 120D. The left side wall 120L is connected to the left end of the bottom wall 120D and extends upward. The left side wall 120L is erected to the left of the work holder 20. As shown in FIG. The right side wall 120R is connected to the right end of the bottom wall 120D and extends upward. The right side wall 120</b>R is erected to the right of the work holder 20 . The rear wall 120Rr is connected to the rear end of the bottom wall 120D and extends upward. The left and right ends of the rear wall 120Rr are connected to the rear ends of the left and right walls 120L and 120R, respectively. The rear wall 120Rr is erected behind the work holder 20. As shown in FIG. The front wall 120F is connected to the front end of the bottom wall 120D and extends obliquely upward. The front wall 120</b>F is erected forward of the work holder 20 . The front wall 120F extends to tilt rearward. The extending direction of the front wall 120F is a direction orthogonal to the X-axis direction. The left end and right end of the front wall 120F are connected to the front end of the left side wall 120L and the right side wall 120R, respectively. The ceiling wall 120U extends in a direction orthogonal to the front wall 120F, that is, parallel to the X-axis direction. The ceiling wall 120U is inclined downward toward the rear. The ceiling wall 120U is provided non-parallel to the bottom wall 120D. The front end, left end, right end and rear end of the ceiling wall 120U are connected to the upper end of the front wall 120F, left wall 120L, right wall 120R and rear wall 120Rr, respectively. ing.
 加工室120の前壁120Fには、前面開口部121が形成されている。前述したように、前面開口部121には、加工室扉122が開閉可能に設けられている。前面開口部121は、前壁120Fの下端よりも上方の位置から上方に向かって延びている。前壁120Fの下端部付近は、外部に向かって開放されていない隅部となっている。 A front opening 121 is formed in the front wall 120F of the processing chamber 120 . As described above, the front opening 121 is provided with the processing chamber door 122 that can be opened and closed. The front opening 121 extends upward from a position above the lower end of the front wall 120F. The vicinity of the lower end of the front wall 120F forms a corner that is not open to the outside.
 右側壁120Rは、加工室120と駆動装置室130との間を区画している。加工室120の右側壁120Rは、駆動装置室130の左側壁でもある。図3に示すように、右側壁120Rには、X軸方向に延びるとともにホルダ移動装置30の支持アーム31が通るスリット123が形成されている。スリット123は、支持アーム31が挿通される開口部である。支持アーム31には、加工室120内で発生した切削粉が駆動装置室130に侵入することを防止する防塵板36が固定されている。防塵板36は、スリット123の少なくとも一部を覆うように設けられ、支持アーム31とともにX軸方向に移動する。防塵板36は、支持アーム31のうち加工室120内に位置した部分に固定され、加工室120内に設けられている。防塵板36は、ここでは、支持アーム31のX軸方向の位置に応じて、スリット123の異なる部分を覆うように構成されている。 The right side wall 120R separates the processing chamber 120 and the driving device chamber 130. The right side wall 120R of the processing chamber 120 is also the left side wall of the drive chamber 130 . As shown in FIG. 3, the right side wall 120R is formed with a slit 123 extending in the X-axis direction and through which the support arm 31 of the holder moving device 30 passes. The slit 123 is an opening through which the support arm 31 is inserted. A dust-proof plate 36 is fixed to the support arm 31 to prevent cutting powder generated in the machining chamber 120 from entering the driving device chamber 130 . The dustproof plate 36 is provided so as to cover at least part of the slit 123 and moves in the X-axis direction together with the support arm 31 . The dust-proof plate 36 is fixed to a portion of the support arm 31 positioned inside the processing chamber 120 and provided inside the processing chamber 120 . The dustproof plate 36 here is configured to cover different portions of the slit 123 according to the position of the support arm 31 in the X-axis direction.
 図3に示すように、防塵板36は、ワークホルダ20が切削加工時の移動範囲内に位置しているとき、スリット123の後方側の端部を覆うように構成されている。このとき、スリット123の前方側の端部は、防塵板36に覆われず、開放されている。防塵板36は、ワークホルダ20が切削加工時の移動範囲内に位置しているとき、スリット123の前方側の端部よりも後方に位置するように構成されている。防塵板36は、支持アーム31が後方側に移動するのに従って、スリット123の前方側のより多くの部分を開放する。後述するが、これは、加工室120内の風の流れによりワークホルダ20よりも後方に切削粉が集まる傾向があり、ワークホルダ20よりも前方には切削粉が少ないことによる。これにより、防塵板36の長さが短縮され、加工室120が前方に向かって長くなることが抑制されている。なお、スリット123の前方側の一部は、ワークホルダ20の位置にかかわらず開放されている。スリット123の前方側の一部が開放されていることにより、駆動装置室130から加工室120に向かう風の流れが発生する。これにより、加工室120内の切削粉等が駆動装置室130に侵入することが抑制されている。 As shown in FIG. 3, the dust-proof plate 36 is configured to cover the rear end of the slit 123 when the work holder 20 is positioned within the movement range during cutting. At this time, the front end of the slit 123 is not covered with the dustproof plate 36 and is open. The dust-proof plate 36 is configured to be positioned behind the front end of the slit 123 when the work holder 20 is positioned within the movement range during cutting. The dust-proof plate 36 opens more of the front side of the slit 123 as the support arm 31 moves rearward. As will be described later, this is because cutting dust tends to collect behind the work holder 20 due to the flow of air in the processing chamber 120 , and there is less cutting dust in front of the work holder 20 . As a result, the length of the dustproof plate 36 is shortened, and the lengthening of the processing chamber 120 toward the front is suppressed. A part of the front side of the slit 123 is open regardless of the position of the work holder 20 . Since a part of the front side of the slit 123 is open, a flow of air from the drive device chamber 130 to the processing chamber 120 is generated. This prevents cutting powder and the like in the processing chamber 120 from entering the driving device chamber 130 .
 図3に示すように、天壁120Uは、加工室120とチェンジャ室170との間を区画するとともに、加工室120と切削装置室150との間を区画している。天壁120Uには、加工室120とチェンジャ室170とを連通させる前方側開口部124と、加工室120と切削装置室150とを連通させる後方側開口部125と、が開口している。加工室120の天壁120Uの前方側部分は、チェンジャ室170の底壁でもある。前方側開口部124は、チェンジャ室170の下方に形成されている。前方側開口部124は、ワークチェンジャ70の搬送装置72によって搬送される被切削物1が通過可能な開口部である。後述するが、ここでは、搬送装置72は、アダプタ5を収納したアダプタ収納部71を前方側開口部124から加工室120に搬送する。 As shown in FIG. 3, the ceiling wall 120U partitions the processing chamber 120 and the changer chamber 170, and also partitions the processing chamber 120 and the cutting device chamber 150. A front opening 124 that communicates the processing chamber 120 and the changer chamber 170 and a rear opening 125 that communicates the processing chamber 120 and the cutting device chamber 150 are opened in the ceiling wall 120U. The front side portion of the ceiling wall 120U of the processing chamber 120 is also the bottom wall of the changer chamber 170. As shown in FIG. The front opening 124 is formed below the changer chamber 170 . The front side opening 124 is an opening through which the workpiece 1 conveyed by the conveying device 72 of the work changer 70 can pass. As will be described later, here, the transport device 72 transports the adapter storage portion 71 containing the adapter 5 from the front side opening portion 124 to the processing chamber 120 .
 加工室120の天壁120Uの後方側部分は、切削装置室150の底壁の左側部分でもある。後方側開口部125は、切削装置室150の下方に形成されている。後方側開口部125は、切削装置50の少なくとも一部、ここでは、主軸51の下方部分が通過可能な開口部である。後方側開口部125は、後述するZ軸方向移動装置60Zによって主軸51がZ軸方向(図3参照)に移動される際に、切削ツール6および主軸51が通過する開口部である。詳しくは後述するが、後方側開口部125は、駆動装置室130と切削装置室150とを連通させるように、駆動装置室130の上方まで延びている(図7参照)。 The rear side portion of the ceiling wall 120U of the processing chamber 120 is also the left side portion of the bottom wall of the cutting device chamber 150. The rear opening 125 is formed below the cutting device chamber 150 . The rear opening 125 is an opening through which at least part of the cutting device 50, here, the lower part of the main shaft 51, can pass. The rear opening 125 is an opening through which the cutting tool 6 and the main shaft 51 pass when the main shaft 51 is moved in the Z-axis direction (see FIG. 3) by a Z-axis direction moving device 60Z, which will be described later. Although details will be described later, the rear side opening 125 extends above the drive device chamber 130 so as to allow the drive device chamber 130 and the cutting device chamber 150 to communicate with each other (see FIG. 7).
 図3に示すように、加工室120の底壁120Dは、略水平に構成された底部126と、底部126の後端部に接続され、そこから後方に向かって延びるスロープ127と、を備えている。スロープ127には、後方に向かう上り勾配がつけられている。スロープ127と底部126とは、屈折するように接続されている。スロープ127は、後壁120Rrに接続されている。スロープ127の下方には、空間が形成されている。 As shown in FIG. 3, the bottom wall 120D of the processing chamber 120 includes a substantially horizontal bottom portion 126 and a slope 127 connected to the rear end portion of the bottom portion 126 and extending rearward therefrom. there is The slope 127 is inclined upward toward the rear. The slope 127 and the bottom 126 are connected so as to bend. The slope 127 is connected to the rear wall 120Rr. A space is formed below the slope 127 .
 底壁120Dには、排気口128が開口している。排気口128には、後述する排気ダクト92等を介して集塵機111(図11参照)が接続される。排気口128からは、加工室120内の空気や粉塵が排出される。排気口128は、スロープ127に設けられている。さらに詳しくは、排気口128は、スロープ127のうち後壁120Rrとの接続部に沿って開口している。排気口128の後縁は、後壁120Rrにより構成されている。排気口128は、スロープ127の最も後部に設けられている。スロープ127には、排気口128に向かう上り勾配がつけられている。 An exhaust port 128 is opened in the bottom wall 120D. A dust collector 111 (see FIG. 11) is connected to the exhaust port 128 via an exhaust duct 92 or the like, which will be described later. Air and dust in the processing chamber 120 are discharged from the exhaust port 128 . The exhaust port 128 is provided on the slope 127 . More specifically, the exhaust port 128 opens along the connecting portion of the slope 127 with the rear wall 120Rr. A rear edge of the exhaust port 128 is formed by a rear wall 120Rr. The exhaust port 128 is provided at the rearmost part of the slope 127 . The slope 127 is inclined upward toward the exhaust port 128 .
 図5に示すように、排気口128は、ワークホルダ20よりも後方に開口している。これにより、ワークホルダ20を挟んで前方から後方に向かう風の流れが発生する。また、図5に示すように、平面視において、スロープ127の少なくとも一部は、ワークホルダ20の少なくとも一部と重なっている(図3も参照)。これにより、切削加工により脱落した被切削物1の破片がスロープ127上に落下する。スロープ127上に落下した被切削物1の破片のうち大きいものは、排気口128からの吸引によっても排気口128に吸い込まれず、スロープ127を滑り落ちる。これにより、被切削物1の破片のうち大きいものが選別される。また、例えば切削加工の負荷により被切削物1がアダプタ5から落下した場合も、落下した被切削物1は、排気口128からの吸引によっても排気口128に吸い込まれず、スロープ127を滑り落ちる。 As shown in FIG. 5 , the exhaust port 128 opens to the rear of the work holder 20 . As a result, a wind flows from the front to the rear across the work holder 20 . Further, as shown in FIG. 5, at least a portion of the slope 127 overlaps at least a portion of the work holder 20 in plan view (see also FIG. 3). As a result, fragments of the object to be cut 1 dropped by cutting fall onto the slope 127 . Among the fragments of the workpiece 1 that have fallen onto the slope 127 , larger pieces slide down the slope 127 without being sucked into the exhaust port 128 even by suction from the exhaust port 128 . As a result, the larger fragments of the object 1 to be cut are sorted out. Also, for example, even if the workpiece 1 falls from the adapter 5 due to the load of cutting, the dropped workpiece 1 slides down the slope 127 without being sucked into the exhaust port 128 by suction from the exhaust port 128 .
 図5に示すように、排気口128は、加工室120の左右方向の中心線CL(A軸とは、一致していなくてもよく、一致していてもよい)よりも右方に偏寄して設けられている。言い換えると、排気口128は、加工室120の左右方向の中心線CLよりも駆動装置室130の側に偏寄して設けられている。これにより、駆動装置室130の近くの粉塵等が重点的に排出されている。排気口128は、上方を向くように開口した1つのスリットである。排気口128は、左右方向の長さが前後方向の長さよりも長い略長方形に形成されている。 As shown in FIG. 5, the exhaust port 128 is biased to the right of the horizontal center line CL of the processing chamber 120 (which may or may not coincide with the A axis). is provided. In other words, the exhaust port 128 is provided so as to be closer to the driving device chamber 130 than the center line CL of the processing chamber 120 in the left-right direction. As a result, the dust and the like near the driving device chamber 130 are discharged intensively. The exhaust port 128 is a single slit that opens upward. The exhaust port 128 is formed in a substantially rectangular shape whose length in the left-right direction is longer than its length in the front-rear direction.
 図3に示すように、本実施形態では、排気口128の下方に集塵チャンバ90が設けられている。集塵チャンバ90は、スロープ127の下面に固定されている。集塵チャンバ90は、上方が開放された箱状の部材であり、上方を向くように開口した上方開口部90Uが排気口128に接続されている。図3および図5に示すように、集塵チャンバ90は、上方開口部90Uと、底壁90Dと、前壁90Fと、左側壁90Lと、を備えている。集塵チャンバ90の後壁および右側壁は、それぞれ、加工室120の後壁120Rrおよび右側壁120Rによって形成されている。ただし、集塵チャンバ90は、加工室120と共用しない後壁および右側壁を備えていてもよい。底壁90D、前壁90F、左側壁90L、加工室120の後壁120Rr、および加工室120の右側壁120Rにより、集塵チャンバ90には、内部空間が形成されている。図5に示すように、集塵チャンバ90の内部空間は、平面視において排気口128よりも大きい。 As shown in FIG. 3, a dust collection chamber 90 is provided below the exhaust port 128 in this embodiment. Dust collection chamber 90 is fixed to the lower surface of slope 127 . The dust collection chamber 90 is a box-shaped member with an open top, and an upward opening 90U is connected to the exhaust port 128 . As shown in FIGS. 3 and 5, the dust collection chamber 90 includes an upper opening 90U, a bottom wall 90D, a front wall 90F, and a left side wall 90L. A rear wall and a right side wall of the dust collection chamber 90 are formed by a rear wall 120Rr and a right side wall 120R of the processing chamber 120, respectively. However, the dust collection chamber 90 may have a rear wall and a right side wall that are not shared with the processing chamber 120 . An internal space is formed in the dust collection chamber 90 by the bottom wall 90D, the front wall 90F, the left wall 90L, the rear wall 120Rr of the processing chamber 120, and the right wall 120R of the processing chamber 120. As shown in FIG. 5, the internal space of the dust collection chamber 90 is larger than the exhaust port 128 in plan view.
 集塵チャンバ90には、上方開口部90Uとダクト接続孔91とが形成されている。ダクト接続孔91は、排気ダクト92が接続される開口部である。図3に示すように、切削加工機10は、ダクト接続孔91に接続される排気ダクト92を備えている。ダクト接続孔91は、ここでは、集塵チャンバ90の後壁(加工室120の後壁120Rr)に開口している。上方開口部90U(排気口128)の開口方向とダクト接続孔91の開口方向とは交差している。ただし、ダクト接続孔91は、集塵チャンバ90の他の側壁(例えば、右側壁120R)に開口していてもよい。排気ダクト92の前端部は、ダクト接続孔91に接続されている。排気ダクト92は、集塵チャンバ90を介して排気口128および加工室120に連通している。排気ダクト92の後端部は、切削加工機10の外部まで延びている。排気ダクト92の後端部には、集塵機111(図11参照)が接続される。図5に示すように、集塵チャンバ90および排気ダクト92も、加工室120の左右方向の中心線CLよりも右方に、言い換えると、加工室120の左右方向の中心線CLよりも駆動装置室130の側に偏寄して設けられている。 An upper opening 90U and a duct connection hole 91 are formed in the dust collection chamber 90 . The duct connection hole 91 is an opening to which the exhaust duct 92 is connected. As shown in FIG. 3 , the cutting machine 10 has an exhaust duct 92 connected to the duct connection hole 91 . The duct connection hole 91 here opens to the rear wall of the dust collection chamber 90 (the rear wall 120Rr of the processing chamber 120). The opening direction of the upper opening 90U (exhaust port 128) and the opening direction of the duct connection hole 91 intersect. However, the duct connection hole 91 may open to another side wall of the dust collection chamber 90 (for example, the right side wall 120R). A front end portion of the exhaust duct 92 is connected to the duct connection hole 91 . The exhaust duct 92 communicates with the exhaust port 128 and the processing chamber 120 via the dust collection chamber 90 . A rear end portion of the exhaust duct 92 extends to the outside of the cutting machine 10 . A dust collector 111 (see FIG. 11) is connected to the rear end of the exhaust duct 92 . As shown in FIG. 5, the dust collection chamber 90 and the exhaust duct 92 are also positioned to the right of the center line CL in the left-right direction of the processing chamber 120, in other words, the driving device is positioned further to the center line CL in the left-right direction of the processing chamber 120. As shown in FIG. It is provided so as to be biased toward the chamber 130 side.
 図3に示すように、加工室120の天壁120Uには、天面エアブロー装置93の天面ノズル93Nが設けられている。天面エアブロー装置93は、加工室120の天壁120Uに沿ってエアを噴射し、噴射したエアを後壁120Rrを経由して排気口128に送り込むことにより、加工室120の天壁120Uと後壁120Rrとをクリーニングする。天面エアブロー装置93は、外部のエアコンプレッサ等に接続された図示しない配管と、エアの流れを制御する図示しないバルブと、加工室120の天壁120Uに沿ってエアを噴射する天面ノズル93Nと、を備えている。天面ノズル93Nは、図3の矢印F1に示すように、加工室120の天壁120Uおよび後壁120Rrに沿って排気口128に到達するようにエアを噴射する。本実施形態では、排気口128は、底壁120D(より詳しくは、スロープ127)のうち後壁120Rrとの接続部に沿って開口している。そのため、天面ノズル93Nから噴射されたエアは、スムーズに排気口128に送り込まれる。 As shown in FIG. 3, the top wall 120U of the processing chamber 120 is provided with a top surface nozzle 93N of the top surface air blow device 93. The top surface air blow device 93 blows air along the top wall 120U of the processing chamber 120, and sends the blown air through the rear wall 120Rr to the exhaust port 128, thereby blowing the top wall 120U of the processing chamber 120 and the rear wall. Clean the wall 120Rr. The ceiling air blow device 93 includes a pipe (not shown) connected to an external air compressor or the like, a valve (not shown) for controlling air flow, and a ceiling nozzle 93N for injecting air along the ceiling wall 120U of the processing chamber 120. and has. The ceiling nozzle 93N jets air along the ceiling wall 120U and the rear wall 120Rr of the processing chamber 120 to reach the exhaust port 128, as indicated by arrow F1 in FIG. In the present embodiment, the exhaust port 128 opens along the connecting portion of the bottom wall 120D (more specifically, the slope 127) with the rear wall 120Rr. Therefore, the air injected from the top surface nozzle 93N is smoothly sent to the exhaust port 128. - 特許庁
 平面図は省略するが、天面ノズル93Nは、左右方向に関して排気ダクト92と揃った位置に設けられている。よって、天面ノズル93Nも、加工室120の左右方向の中心線CLよりも右方に偏寄して設けられている。言い換えると、天面ノズル93Nも、加工室120の左右方向の中心線CLよりも駆動装置室130の側に偏寄して設けられている。また、天面ノズル93Nは、加工室120内に突き出したときの切削装置50に向かってエアを噴射することができる。ここでは、天面ノズル93Nは、天壁120Uの後方側開口部125の下方を通過するようにエアを噴射する。これにより、後方側開口部125を通って加工室120内に移動したときの切削装置50の主軸51の下部および切削ツール6がクリーニングされる。 Although the plan view is omitted, the top surface nozzle 93N is provided at a position aligned with the exhaust duct 92 in the left-right direction. Therefore, the top surface nozzle 93N is also provided so as to deviate to the right of the center line CL in the left-right direction of the processing chamber 120 . In other words, the top surface nozzle 93N is also provided so as to be closer to the driving device chamber 130 side than the center line CL of the processing chamber 120 in the left-right direction. Moreover, the top surface nozzle 93N can jet air toward the cutting device 50 when protruding into the processing chamber 120 . Here, the ceiling nozzle 93N jets air so as to pass below the rear opening 125 of the ceiling wall 120U. As a result, the lower portion of the main shaft 51 of the cutting device 50 and the cutting tool 6 are cleaned when they are moved into the processing chamber 120 through the rear side opening 125 .
 図3に示すように、切削加工機10は、底面ノズル94Nを備えた底面エアブロー装置94をさらに有している。底面ノズル94Nは、加工室120の底壁120Dに沿って排気口128に到達するようにエアを噴射する。底面エアブロー装置94は、噴射したエアを加工室120の底壁120Dに沿って排気口128に送り込むことにより、加工室120の底壁120Dをクリーニングする。底面エアブロー装置94は、外部のエアコンプレッサ等に接続された図示しない配管と、エアの流れを制御する図示しないバルブと、加工室120の底壁120Dに沿ってエアを噴射する底面ノズル94Nと、を備えている。 As shown in FIG. 3, the cutting machine 10 further has a bottom air blow device 94 having a bottom nozzle 94N. The bottom nozzle 94N jets air along the bottom wall 120D of the processing chamber 120 so as to reach the exhaust port 128 . The bottom air blow device 94 cleans the bottom wall 120</b>D of the processing chamber 120 by blowing jetted air along the bottom wall 120</b>D of the processing chamber 120 to the exhaust port 128 . The bottom air blow device 94 includes a pipe (not shown) connected to an external air compressor or the like, a valve (not shown) for controlling the flow of air, a bottom nozzle 94N for injecting air along the bottom wall 120D of the processing chamber 120, It has
 底面ノズル94Nは、底壁120Dよりも上方に設けられている。詳しくは、図3に示すように、底面ノズル94Nは、加工室120の底壁120Dと前壁120Fとの間に斜めに架け渡された取付板95に固定されている。図3の矢印F2に示すように、底面ノズル94Nは、底壁120Dに向かって斜め下方に、かつ、排気口128の側に向かうようにエアを噴射する。ここでは、底面ノズル94Nは、底壁120Dに向かって、後ろ斜め下方にエアを噴射する。これにより、底壁120Dに衝突したエアが左右方向に広がる。その結果、底面ノズル94Nの左右方向の幅を広くしなくても、底壁120Dの左右方向の広い範囲をクリーニングすることができる。本実施形態では、底面ノズル94Nは、加工室120の左右方向の中央部に設けられている。ただし、底面ノズル94Nは、加工室120の左右方向の中心線CLよりも左右いずれかに偏寄して設けられていてもよい。 The bottom nozzle 94N is provided above the bottom wall 120D. Specifically, as shown in FIG. 3, the bottom nozzle 94N is fixed to a mounting plate 95 that is diagonally spanned between the bottom wall 120D and the front wall 120F of the processing chamber 120. As shown in FIG. As indicated by an arrow F2 in FIG. 3, the bottom nozzle 94N jets air obliquely downward toward the bottom wall 120D and toward the exhaust port 128 side. Here, the bottom nozzle 94N jets air obliquely downward and rearward toward the bottom wall 120D. As a result, the air that has collided with the bottom wall 120D spreads in the left-right direction. As a result, a wide range in the horizontal direction of the bottom wall 120D can be cleaned without widening the width in the horizontal direction of the bottom nozzle 94N. In this embodiment, the bottom nozzle 94N is provided in the central portion of the processing chamber 120 in the left-right direction. However, the bottom nozzle 94N may be provided so as to deviate to either the left or right of the center line CL of the processing chamber 120 in the left-right direction.
 ワークチェンジャ70は、複数の被切削物1を収納可能に構成されており、加工する被切削物1を交換するために使用される。図3に示すように、ワークチェンジャ70は、複数の被切削物1(ここでは、被切削物1が装着されたアダプタ5、図2参照)を収納可能なアダプタ収納部71と、アダプタ収納部71を加工室120に搬送する搬送装置72と、を備えている。例えば被切削物1の交換時のような場合を除き、アダプタ収納部71は、チェンジャ室170に収容されている。図1に示すように、アダプタ収納部71には、それぞれ1つのアダプタ5を収納する棚状の収納スペース71aが複数設けられている。複数の収納スペース71aは、上下方向に並んでいる。より詳しくは、複数の収納スペース71aは、X軸方向に直交する斜め上下方向(以下、L軸方向とも呼ぶ、図3参照)に並んで配置されている。 The work changer 70 is configured to accommodate a plurality of workpieces 1 to be cut, and is used to replace the workpiece 1 to be machined. As shown in FIG. 3, the work changer 70 includes an adapter storage section 71 capable of storing a plurality of workpieces 1 (here, the adapters 5 to which the workpieces 1 are attached; see FIG. 2); 71 to the processing chamber 120. For example, the adapter housing portion 71 is housed in the changer chamber 170 except when the workpiece 1 to be cut is changed. As shown in FIG. 1, the adapter storage section 71 is provided with a plurality of shelf-like storage spaces 71a each accommodating one adapter 5. As shown in FIG. The plurality of storage spaces 71a are arranged vertically. More specifically, the plurality of storage spaces 71a are arranged side by side in an oblique vertical direction (hereinafter also referred to as the L-axis direction, see FIG. 3) orthogonal to the X-axis direction.
 搬送装置72は、L軸方向に延びるスライドアーム72Aと、L軸方向駆動モータ72Bと、ボールねじ72Cと、を備えている。スライドアーム72Aは、アダプタ収納部71に固定され、L軸方向に伸長および短縮可能である。アダプタ収納部71には、ボールねじ72Cが噛み合っている。L軸方向駆動モータ72Bは、ボールねじ72Cに接続され、ボールねじ72Cを回転させる。L軸方向駆動モータ72Bが駆動することによりボールねじ72Cが回転すると、スライドアーム72Aが伸縮するとともに、アダプタ収納部71がL軸方向に移動する。 The transport device 72 includes a slide arm 72A extending in the L-axis direction, an L-axis direction drive motor 72B, and a ball screw 72C. The slide arm 72A is fixed to the adapter housing portion 71 and can be extended and shortened in the L-axis direction. A ball screw 72</b>C is meshed with the adapter housing portion 71 . The L-axis drive motor 72B is connected to the ball screw 72C and rotates the ball screw 72C. When the L-axis direction drive motor 72B is driven to rotate the ball screw 72C, the slide arm 72A expands and contracts, and the adapter housing portion 71 moves in the L-axis direction.
 図6は、アダプタ5(図2参照)を交換中の切削加工機10を示す縦断面図である。図6に示すように、アダプタ5の交換時、アダプタ収納部71は、加工室120内に下降する。アダプタ収納部71は、加工室120の前方側開口部124を通って加工室120内に移動する。ホルダ移動装置30は、アダプタ5の交換時には、ワークホルダ20を切削加工時の移動範囲よりもX軸方向の前方に移動させる。図6に示すように、このとき、スリット123の後方側の端部は、防塵板36に覆われず、開放されている。防塵板36は、ワークチェンジャ70との間で被切削物1を受け渡す受け渡し位置にワークホルダ20が位置しているとき、スリット123の後方側の端部よりも前方に位置するように構成されている。これにより、防塵板36の長さが短縮され、加工室120が後方に向かって長くなることが抑制されている。図6に示すように、アダプタ5は、ワークホルダ20がX軸方向の前方側に前進し、アダプタ5の収納スペース71a(図1参照)に突入することにより、ワークホルダ20に保持される。なお、本実施形態では、搬送装置72は、アダプタ収納部71を加工室120に搬送することにより複数の被切削物1を加工室120に搬送するが、搬送装置72の構成は、これに限定されない。搬送装置72は、アダプタ収納部71に収納された複数の被切削物1のうちの少なくとも1つの被切削物1を加工室120に搬送するように構成されていればよい。例えば、搬送装置72は、固定されたアダプタ収納部71の収納スペース71a内の被切削物1を把持して取り出し、ワークホルダ20に受け渡すように構成されていてもよい。 FIG. 6 is a longitudinal sectional view showing the cutting machine 10 during replacement of the adapter 5 (see FIG. 2). As shown in FIG. 6, the adapter housing portion 71 descends into the processing chamber 120 when the adapter 5 is replaced. The adapter housing portion 71 moves into the processing chamber 120 through the front opening 124 of the processing chamber 120 . When the adapter 5 is replaced, the holder moving device 30 moves the work holder 20 forward in the X-axis direction beyond the range of movement during cutting. As shown in FIG. 6, at this time, the rear end of the slit 123 is not covered with the dustproof plate 36 and is open. The dust-proof plate 36 is positioned forward of the rear end of the slit 123 when the work holder 20 is positioned at the transfer position for transferring the workpiece 1 to and from the work changer 70 . ing. As a result, the length of the dustproof plate 36 is shortened, and the rearward lengthening of the processing chamber 120 is suppressed. As shown in FIG. 6, the adapter 5 is held by the work holder 20 when the work holder 20 advances forward in the X-axis direction and plunges into the storage space 71a (see FIG. 1) of the adapter 5. As shown in FIG. In the present embodiment, the conveying device 72 conveys a plurality of workpieces 1 to the processing chamber 120 by conveying the adapter storage portion 71 to the processing chamber 120, but the configuration of the conveying device 72 is limited to this. not. The transport device 72 may be configured to transport at least one of the plurality of objects 1 to be cut stored in the adapter storage portion 71 to the processing chamber 120 . For example, the conveying device 72 may be configured to grip and take out the workpiece 1 in the storage space 71 a of the fixed adapter storage portion 71 and transfer it to the work holder 20 .
 切削装置50および切削装置50の移動装置(主軸移動装置60)は、切削装置室150に収容されている。切削装置50は、ワークホルダ20に保持された被切削物1を切削する。図3に示すように、切削装置50および主軸移動装置60は、ワークホルダ20よりも上方に設けられている。切削装置50は、切削ツール6を把持して回転させる主軸51を備えている。主軸51は、スピンドルユニット52と、スピンドルユニット52の下端部に設けられた把持部53と、を備えている。スピンドルユニット52は、X軸方向と直交する(ここでは、L軸方向と平行な)方向に延びている。以下、この方向をZ軸方向とも呼ぶ。スピンドルユニット52は、把持部53をZ軸方向に平行な軸線周りに回転させる。把持部53は、Z軸方向の下方に突き出すように切削ツール6を把持する。スピンドルユニット52は、ここでは、モータ内蔵のユニットである。ただし、スピンドルユニット52は、例えば、外部のモータとベルト等により接続されていてもよい。把持部53は、例えば、エア駆動式のコレットチャックである。ただし、把持部53の方式は特に限定されない。 The cutting device 50 and the moving device for the cutting device 50 (spindle moving device 60 ) are housed in the cutting device chamber 150 . The cutting device 50 cuts the workpiece 1 held by the work holder 20 . As shown in FIG. 3 , the cutting device 50 and the spindle moving device 60 are provided above the work holder 20 . The cutting device 50 includes a main shaft 51 that grips and rotates the cutting tool 6 . The main shaft 51 has a spindle unit 52 and a gripping portion 53 provided at the lower end of the spindle unit 52 . The spindle unit 52 extends in a direction orthogonal to the X-axis direction (here, parallel to the L-axis direction). Hereinafter, this direction will also be referred to as the Z-axis direction. The spindle unit 52 rotates the gripper 53 around an axis parallel to the Z-axis direction. The gripping portion 53 grips the cutting tool 6 so as to protrude downward in the Z-axis direction. The spindle unit 52 here is a unit with a built-in motor. However, the spindle unit 52 may be connected to an external motor and a belt, for example. The gripping part 53 is, for example, an air-driven collet chuck. However, the method of the grip portion 53 is not particularly limited.
 主軸移動装置60は、切削装置50をZ軸方向および左右方向に移動させる。左右方向は、X軸方向およびZ軸方向に直交する方向である。以下では、左右方向のことをY軸方向とも呼ぶ。主軸移動装置60が切削装置50をY軸方向およびZ軸方向に移動させ、ホルダ移動装置30がワークホルダ20をX軸方向に移動させることにより、切削ツール6と被切削物1との位置関係が三次元的に変化する。Z軸方向は、加工室120の天壁120Uに交差する(ここでは直交する)方向であり、切削装置50は、Z軸方向の移動により、加工室120内に出現し、または、切削装置室150内に退避する。主軸移動装置60は、その少なくとも一部がワークホルダ20よりも上方かつ天壁120Uよりも下方に配置されるような位置に切削装置50を移動させることが可能である。 The spindle moving device 60 moves the cutting device 50 in the Z-axis direction and the left-right direction. The horizontal direction is a direction orthogonal to the X-axis direction and the Z-axis direction. Hereinafter, the left-right direction is also referred to as the Y-axis direction. The spindle moving device 60 moves the cutting device 50 in the Y-axis direction and the Z-axis direction, and the holder moving device 30 moves the work holder 20 in the X-axis direction. changes three-dimensionally. The Z-axis direction is a direction that intersects (here, is perpendicular to) the top wall 120U of the processing chamber 120, and the cutting device 50 appears in the processing chamber 120 or moves into the cutting device chamber by moving in the Z-axis direction. Retreat within 150. The spindle moving device 60 can move the cutting device 50 to a position where at least part of it is located above the work holder 20 and below the ceiling wall 120U.
 主軸移動装置60は、Y軸方向移動装置60Yと、Z軸方向移動装置60Zと、を備えている。Y軸方向移動装置60Yは、切削装置50をY軸方向に移動させる装置である。Z軸方向移動装置60Zは、切削装置50をZ軸方向に移動させる装置である。図7は、切削装置室150および駆動装置室130の斜視図である。図7では、切削装置室150および駆動装置室130の内部が見えるように、一部の部材の図示を省略している。図7に示すように、Y軸方向移動装置60Yは、Y軸方向に延びる一対のY軸ガイドレール61Yと、Y軸ガイドレール61Yに摺動可能に係合したY軸方向移動体62Yと、Y軸方向駆動モータ63Yと、ボールねじ64Yと、を備えている。一対のY軸ガイドレール61Yは、切削装置室150の底壁に設けられている。Y軸ガイドレール61Yは、駆動装置室130の上方まで延びている。Y軸方向移動体62Yは、Y軸ガイドレール61Yに沿ってY軸方向に移動可能である。Y軸方向移動体62Yは、Y軸ガイドレール61Yに沿って駆動装置室130の上方まで移動することができる。Y軸方向移動体62Yは、Z軸方向移動装置60Zを支持している。Z軸方向移動装置60Zは、Z軸方向に移動可能に切削装置50を支持している。 The spindle movement device 60 includes a Y-axis direction movement device 60Y and a Z-axis direction movement device 60Z. The Y-axis direction moving device 60Y is a device that moves the cutting device 50 in the Y-axis direction. The Z-axis direction moving device 60Z is a device that moves the cutting device 50 in the Z-axis direction. FIG. 7 is a perspective view of the cutter chamber 150 and the drive chamber 130. FIG. In FIG. 7, illustration of some members is omitted so that the insides of the cutting device chamber 150 and the driving device chamber 130 can be seen. As shown in FIG. 7, the Y-axis direction moving device 60Y includes a pair of Y-axis guide rails 61Y extending in the Y-axis direction, a Y-axis direction moving body 62Y slidably engaged with the Y-axis guide rails 61Y, It has a Y-axis direction drive motor 63Y and a ball screw 64Y. A pair of Y-axis guide rails 61Y are provided on the bottom wall of the cutting device chamber 150 . The Y-axis guide rail 61Y extends above the drive device chamber 130 . The Y-axis direction moving body 62Y is movable in the Y-axis direction along the Y-axis guide rail 61Y. The Y-axis moving body 62Y can move up to above the driving device chamber 130 along the Y-axis guide rail 61Y. The Y-axis moving body 62Y supports the Z-axis moving device 60Z. The Z-axis direction moving device 60Z supports the cutting device 50 so as to be movable in the Z-axis direction.
 図7に示すように、ボールねじ64Yは、Y軸方向に延びている。ボールねじ64Yは、Y軸方向移動体62Yに噛み合わされている。Y軸方向駆動モータ63Yは、ボールねじ64Yを回転させる。Y軸方向駆動モータ63Yが駆動し、ボールねじ64Yが回転すると、Y軸方向移動体62Yは、Y軸ガイドレール61Yに沿ってY軸方向に移動する。これにより、Z軸方向移動装置60Zおよび切削装置50がY軸方向に移動する。 As shown in FIG. 7, the ball screw 64Y extends in the Y-axis direction. The ball screw 64Y is meshed with the Y-axis moving body 62Y. The Y-axis direction drive motor 63Y rotates the ball screw 64Y. When the Y-axis direction drive motor 63Y drives and the ball screw 64Y rotates, the Y-axis direction moving body 62Y moves in the Y-axis direction along the Y-axis guide rail 61Y. As a result, the Z-axis direction moving device 60Z and the cutting device 50 move in the Y-axis direction.
 図3に示すように、Z軸方向移動装置60Zは、Z軸方向に延びる一対のZ軸ガイドシャフト61Zと、Z軸ガイドシャフト61Zに摺動可能に係合し切削装置50を支持するZ軸方向移動体62Zと、Z軸方向駆動モータ63Zと、図示しないボールねじと、を備えている。Z軸方向移動装置60Zも、Y軸方向移動装置60YがZ軸方向移動装置60Zを移動させるのと同様の仕組みで、切削装置50をZ軸方向に移動させる。 As shown in FIG. 3, the Z-axis direction moving device 60Z includes a pair of Z-axis guide shafts 61Z extending in the Z-axis direction, and a Z-axis guide shaft 61Z slidably engaged with the Z-axis guide shafts 61Z to support the cutting device 50. It has a directional moving body 62Z, a Z-axis direction driving motor 63Z, and a ball screw (not shown). The Z-axis direction moving device 60Z also moves the cutting device 50 in the Z-axis direction in the same manner as the Y-axis direction moving device 60Y moves the Z-axis direction moving device 60Z.
 なお、図示は省略するが、Y軸方向移動体62Yの左右には、それぞれ蛇腹が設けられていてもよい。右側の蛇腹の両端は、それぞれ、Y軸方向移動体62Yの右端および後方側開口部125の右端に連結されている。左側の蛇腹の両端は、それぞれ、Y軸方向移動体62Yの左端および後方側開口部125の左端に連結されている。蛇腹により、後方側開口部125から切削装置室150に粉塵等が侵入することが抑制されている。 Although not shown, bellows may be provided on the left and right sides of the Y-axis direction moving body 62Y. Both ends of the right bellows are connected to the right end of the Y-axis direction moving body 62Y and the right end of the rear opening 125, respectively. Both ends of the left bellows are connected to the left end of the Y-axis direction moving body 62Y and the left end of the rear opening 125, respectively. The bellows prevents dust and the like from entering the cutting device chamber 150 through the rear opening 125 .
 図3に示すように、切削装置室150の天壁150Uには、吸気口152が開口している。吸気口152は、ここでは、左右方向に並んだ複数のスリットから構成されている。ただし、吸気口152の形状は特に限定されない。吸気口152は、排気口128から空気が排出されるのに応じて、切削加工機10内に外部の空気を取り込むための開口部である。吸気口152は、切削装置室150に連通している。さらに吸気口152は、切削装置室150を介して駆動装置室130およびチェンジャ室170にも連通している。切削装置室150と駆動装置室130とは、切削装置室150の底壁(駆動装置室130の天壁)に開口した後方側開口部125によって連通されている。切削装置室150とチェンジャ室170とは、特に仕切なく連通している。加工室120は、切削装置室150および駆動装置室130を介して吸気口152と連通している。駆動装置室130と加工室120とは、加工室120の右側壁120R(駆動装置室130の左側壁)に開口したスリット123によって連通されている。加工室120は、切削装置室150およびチェンジャ室170を介しても吸気口152と連通している。チェンジャ室170と加工室120とは、加工室120の天壁120U(チェンジャ室170の底壁)に開口した前方側開口部124によって連通されている。 As shown in FIG. 3, the ceiling wall 150U of the cutting device chamber 150 has an intake port 152 open. The intake port 152 here is composed of a plurality of slits arranged in the left-right direction. However, the shape of the intake port 152 is not particularly limited. The intake port 152 is an opening for drawing outside air into the cutting machine 10 as the air is discharged from the exhaust port 128 . The intake port 152 communicates with the cutting device chamber 150 . In addition, the intake port 152 also communicates with the driving device chamber 130 and the changer chamber 170 via the cutting device chamber 150 . The cutting device chamber 150 and the driving device chamber 130 are communicated with each other through a rear opening 125 opened in the bottom wall of the cutting device chamber 150 (the ceiling wall of the driving device chamber 130). The cutting device chamber 150 and the changer chamber 170 communicate with each other without a partition. The machining chamber 120 communicates with an intake port 152 via a cutting device chamber 150 and a driving device chamber 130 . The drive device chamber 130 and the processing chamber 120 are communicated by a slit 123 opened in the right side wall 120R of the processing chamber 120 (the left side wall of the drive device chamber 130). The machining chamber 120 communicates with the intake port 152 also through the cutting device chamber 150 and the changer chamber 170 . The changer chamber 170 and the processing chamber 120 are communicated with each other through a front opening 124 opened in a ceiling wall 120U of the processing chamber 120 (bottom wall of the changer chamber 170).
 吸気口152が切削装置室150に連通し、切削装置室150と加工室120とが後方側開口部125によって連通し、さらに、加工室120に排気ダクト92が連通していることにより、集塵機111を駆動させると、図3に示すように、吸気口152から切削装置室150を経由して加工室120に向かう風の流れF3が発生する。切削装置室150の内圧は、加工室120の内圧よりも高くなる。よって、加工室120で発生した切削粉等が切削装置室150に侵入しにくくなる。同様に、吸気口152がチェンジャ室170に連通し、チェンジャ室170と加工室120とが前方側開口部124によって連通していることにより、集塵機111を駆動させると、図3に示すように、吸気口152からチェンジャ室170を経由して加工室120に向かう風の流れF4が発生する。チェンジャ室170の内圧は、加工室120の内圧よりも高くなる。これにより、加工室120で発生した切削粉等がチェンジャ室170に侵入しにくくなる。さらに、吸気口152が駆動装置室130に連通し、駆動装置室130と加工室120とがスリット123によって連通していることにより、集塵機111を駆動させると、図5に示すように、吸気口152(図3参照)から駆動装置室130を経由して加工室120に向かう風の流れF5が発生する。駆動装置室130の内圧は、加工室120の内圧よりも高くなる。これにより、加工室120で発生した切削粉等が駆動装置室130に侵入しにくくなる。 The air intake port 152 communicates with the cutting device chamber 150 , the cutting device chamber 150 and the processing chamber 120 communicate with each other through the rear opening 125 , and the exhaust duct 92 communicates with the processing chamber 120 , whereby the dust collector 111 is driven, as shown in FIG. 3, a wind flow F3 is generated from the intake port 152 to the machining chamber 120 via the cutting device chamber 150. As shown in FIG. The internal pressure of the cutting device chamber 150 is higher than the internal pressure of the processing chamber 120 . Therefore, it becomes difficult for cutting dust and the like generated in the processing chamber 120 to enter the cutting device chamber 150 . Similarly, since the intake port 152 communicates with the changer chamber 170 and the changer chamber 170 and the processing chamber 120 communicate with each other through the front opening 124, when the dust collector 111 is driven, as shown in FIG. A wind flow F4 is generated from the intake port 152 to the processing chamber 120 via the changer chamber 170 . The internal pressure of the changer chamber 170 is higher than the internal pressure of the processing chamber 120 . This makes it difficult for cutting powder and the like generated in the processing chamber 120 to enter the changer chamber 170 . Furthermore, the intake port 152 communicates with the driving device chamber 130, and the driving device chamber 130 and the processing chamber 120 communicate with each other through the slit 123, so that when the dust collector 111 is driven, as shown in FIG. A wind flow F5 is generated from 152 (see FIG. 3) toward the processing chamber 120 via the drive chamber 130 . The internal pressure of the drive chamber 130 is higher than the internal pressure of the processing chamber 120 . This makes it difficult for cutting powder and the like generated in the processing chamber 120 to enter the driving device chamber 130 .
 図7に示すように、本実施形態では、ツールストッカ80は、駆動装置室130に収容されている。ツールストッカ80は、複数の切削ツール6を収納可能に構成されている。複数の切削ツール6は、例えば、被切削物1の材料や切削の種類に応じて使い分けられる。図7に示すように、ツールストッカ80は、X軸方向移動体32に支持されている。詳しくは、ツールストッカ80は、X軸方向移動体32の上面に固定されている。従来、ツールストッカは、ホルダ移動装置の支持アームに支持されていた。そのため、従来の切削装置では、支持アームが撓みやすく、被切削物1の切削において被切削物1にあまり負荷を掛けることができなかった。具体的には、切削による負荷を考慮して、時間当たりの切削量を制限するなどしていた。本実施形態では、ツールストッカ80がX軸方向移動体32に支持されることにより、支持アーム31の負荷が低減されている。 As shown in FIG. 7, the tool stocker 80 is housed in the drive chamber 130 in this embodiment. The tool stocker 80 is configured to store a plurality of cutting tools 6 . The plurality of cutting tools 6 are used properly according to, for example, the material of the object 1 to be cut and the type of cutting. As shown in FIG. 7, the tool stocker 80 is supported by the X-axis moving body 32 . Specifically, the tool stocker 80 is fixed to the upper surface of the X-axis moving body 32 . Conventionally, the tool stocker was supported by the support arm of the holder moving device. Therefore, in the conventional cutting device, the support arm is easily bent, and a large load cannot be applied to the object 1 to be cut during cutting of the object 1 to be cut. Specifically, in consideration of the load due to cutting, the amount of cutting per hour is limited. In this embodiment, the load on the support arm 31 is reduced by supporting the tool stocker 80 on the X-axis moving body 32 .
 図8は、ツールストッカ80の平面図である。図8に示すように、ツールストッカ80は、それぞれ切削ツール6を収納可能な複数の収納孔81を備えている。複数の収納孔81は、ツールストッカ80の上面80Uに形成され、Z軸方向の下方に向かって凹んでいる。図8に示すように、複数の収納孔81は、千鳥状に配置されている。詳しくは、ツールストッカ80には、複数の収納孔81のうちの一部の複数の収納孔81が所定の並び方向(ここでは、Y軸方向)に並んだ列81A~81Eが形成されており、複数の列81A~81Eのうちの隣り合った2つの列(例えば、列81Aと列81B)は、並び方向の位置がずれている。上記隣り合った2つの列の間の並び方向の位置のずれ量は、各列81A~81Eにおける収納孔81のピッチの半分以下である。かかる千鳥配置により、複数の収納孔81の配置が密となっている。その結果、スペースに対する切削ツール6の収納効率が向上している。なお、複数の列81A~81Eは、1つおきに並び方向の位置が揃っている。 FIG. 8 is a plan view of the tool stocker 80. FIG. As shown in FIG. 8, the tool stocker 80 has a plurality of storage holes 81 that can accommodate the cutting tools 6, respectively. A plurality of storage holes 81 are formed in the upper surface 80U of the tool stocker 80 and recessed downward in the Z-axis direction. As shown in FIG. 8, the plurality of storage holes 81 are arranged in a zigzag pattern. Specifically, the tool stocker 80 is formed with rows 81A to 81E in which some of the plurality of storage holes 81 are aligned in a predetermined alignment direction (here, the Y-axis direction). , two adjacent columns (eg, column 81A and column 81B) among the plurality of columns 81A to 81E are displaced in the alignment direction. The amount of positional deviation in the alignment direction between two adjacent rows is less than half the pitch of the storage holes 81 in each row 81A to 81E. Due to this zigzag arrangement, the plurality of storage holes 81 are densely arranged. As a result, the storage efficiency of the cutting tool 6 with respect to the space is improved. It should be noted that the plurality of columns 81A to 81E are arranged alternately in the alignment direction.
 切削装置50は、ツールストッカ80に収納された各切削ツール6を把持可能に構成され、把持した切削ツール6によってワークホルダ20に保持された被切削物1を切削する。これを可能とするように、主軸移動装置60は、切削装置50を駆動装置室130と加工室120との間で移動させる。また、ホルダ移動装置30は、ツールストッカ80を切削装置室150の下方に移動させる。 The cutting device 50 is configured to be able to grip each cutting tool 6 stored in the tool stocker 80 , and cuts the workpiece 1 held by the work holder 20 with the gripped cutting tool 6 . To enable this, the spindle movement device 60 moves the cutting device 50 between the drive device chamber 130 and the processing chamber 120 . Also, the holder moving device 30 moves the tool stocker 80 below the cutting device chamber 150 .
 図3および図7に示すように、本実施形態では、切削装置50は、ワークホルダ20およびツールストッカ80よりも上方に設けられている。主軸移動装置60のY軸方向移動装置60Yは、切削装置50が駆動装置室130の上方と加工室120の上方との間を移動するように、切削装置50をY軸方向に移動させる。主軸移動装置60のZ軸方向移動装置60Zは、切削装置50を上下方向(ここでは、鉛直方向に対して傾斜したZ軸方向)に移動させる。ホルダ移動装置30は、Y軸方向移動装置60Yによる切削装置50の移動経路の下方に設定されたツール把持位置P1(図7参照)にツールストッカ80を移動させることが可能に構成されている。ツール把持位置P1は、後方側開口部125の下方の位置である。ツール把持位置P1にツールストッカ80を移動させ、かつ、切削装置50をツール把持位置P1の上方の位置に移動させた状態でZ軸方向移動装置60Zを駆動して切削装置50を下降させることにより、切削装置50にツールストッカ80の切削ツール6を把持させることができる。 As shown in FIGS. 3 and 7, the cutting device 50 is provided above the work holder 20 and the tool stocker 80 in this embodiment. The Y-axis direction moving device 60Y of the spindle moving device 60 moves the cutting device 50 in the Y-axis direction so that the cutting device 50 moves between above the driving device chamber 130 and above the processing chamber 120 . The Z-axis direction moving device 60Z of the spindle moving device 60 moves the cutting device 50 in the vertical direction (here, in the Z-axis direction inclined with respect to the vertical direction). The holder moving device 30 is configured to be able to move the tool stocker 80 to a tool gripping position P1 (see FIG. 7) set below the moving path of the cutting device 50 by the Y-axis direction moving device 60Y. The tool gripping position P<b>1 is a position below the rear side opening 125 . By moving the tool stocker 80 to the tool gripping position P1 and moving the cutting device 50 to a position above the tool gripping position P1, the Z-axis direction moving device 60Z is driven to lower the cutting device 50. , the cutting device 50 can grip the cutting tool 6 of the tool stocker 80 .
 ホルダ移動装置30は、ツール把持位置P1よりも前方に設定されたツール交換位置P2にツールストッカ80を移動させることが可能に構成されている。図7に示すように、ツール把持位置P2は、ツール交換室180の底壁182の下方に設定されている。ツール交換室180の底壁182は、ツール交換室180と駆動装置室130とを区画している。図7に示すように、ツール交換室180の底壁182には、ツール交換位置P2の上方に開口した開口部183が形成されている。開口部183は、ユーザがツールストッカ80に切削ツール6を抜き差しするための開口部である。開口部183は、底壁182をZ軸方向に貫通している。ホルダ移動装置30を駆動してツールストッカ80をツール交換位置P2に移動させると、ユーザは、開口部183を通してツールストッカ80にアクセスすることができる。開口部183が形成されたツール交換室180を設けることにより、切削ツール6の交換時などにユーザがホルダ移動装置30に触れてしまうことが防止されている。また、かかる構成により、切削ツール6の交換時などに駆動装置室130に外部の異物が侵入することが抑制されている。 The holder moving device 30 is configured to be able to move the tool stocker 80 to the tool exchange position P2 set ahead of the tool gripping position P1. As shown in FIG. 7, the tool gripping position P2 is set below the bottom wall 182 of the tool exchange chamber 180. As shown in FIG. A bottom wall 182 of the tool change chamber 180 separates the tool change chamber 180 and the drive device chamber 130 . As shown in FIG. 7, the bottom wall 182 of the tool exchange chamber 180 is formed with an opening 183 that opens above the tool exchange position P2. The opening 183 is an opening through which the user inserts and withdraws the cutting tool 6 from the tool stocker 80 . The opening 183 penetrates the bottom wall 182 in the Z-axis direction. When the holder moving device 30 is driven to move the tool stocker 80 to the tool exchange position P2, the user can access the tool stocker 80 through the opening 183. FIG. By providing the tool exchange chamber 180 in which the opening 183 is formed, the user is prevented from touching the holder moving device 30 when exchanging the cutting tool 6 or the like. In addition, such a configuration prevents foreign matter from entering the driving device chamber 130 when the cutting tool 6 is replaced.
 図3に示すように、本実施形態に係る切削加工機10は、主軸51に設けられ、エアを噴射する主軸エアブロー装置55をさらに備えている。主軸エアブロー装置55は、主軸51の把持部53の側方に設けられた主軸ノズル56を備えている。図9は、主軸51の下端部付近の一部破断側面図である。図9に示すように、主軸エアブロー装置55は、エアが噴射される主軸ノズル56と、主軸ノズル56を支持するノズル支持部材57と、を備えている。ノズル支持部材57は、把持部53よりもZ軸方向の上方に設けられている。ノズル支持部材57は、ここでは、スピンドルユニット52を覆うカバーに固定されている。ノズル支持部材57は、Z軸方向に移動可能なように主軸ノズル56を支持している。詳しくは、ノズル支持部材57は、Z軸方向下方側のエンド位置Pd(図9に示した位置、下方側エンド位置Pdとも呼ぶ)と下方側エンド位置PdよりもZ軸方向の上方側にある他の位置との間を移動可能なように主軸ノズル56を支持している。主軸ノズル56の下方側エンド位置Pdは、把持部53の側方に設定されている。下方側エンド位置Pdでは、把持部53と主軸ノズル56とは、X軸方向に並んでいる。 As shown in FIG. 3, the cutting machine 10 according to the present embodiment further includes a spindle air blow device 55 which is provided on the spindle 51 and ejects air. The main shaft air blow device 55 includes a main shaft nozzle 56 provided on the side of the grip portion 53 of the main shaft 51 . FIG. 9 is a partially broken side view of the vicinity of the lower end of the main shaft 51. As shown in FIG. As shown in FIG. 9 , the main shaft air blow device 55 includes a main shaft nozzle 56 that injects air, and a nozzle support member 57 that supports the main shaft nozzle 56 . The nozzle support member 57 is provided above the grip portion 53 in the Z-axis direction. The nozzle support member 57 is fixed to a cover that covers the spindle unit 52 here. The nozzle support member 57 supports the main shaft nozzle 56 so as to be movable in the Z-axis direction. Specifically, the nozzle support member 57 is positioned above the Z-axis direction lower end position Pd (the position shown in FIG. 9, also referred to as the lower end position Pd) and the lower end position Pd in the Z-axis direction. It supports the spindle nozzle 56 so as to be movable between other positions. A lower end position Pd of the spindle nozzle 56 is set to the side of the grip portion 53 . At the lower end position Pd, the grip portion 53 and the spindle nozzle 56 are aligned in the X-axis direction.
 図9に示すように、ノズル支持部材57は、主軸ノズル56が挿通されたガイド孔57aと、主軸ノズル56が下方側エンド位置Pdよりも下方に移動することを規制するストッパ57bと、を備えている。また、主軸エアブロー装置55は、ノズル支持部材57に支持された主軸ノズル56を付勢して、主軸ノズル56を下方側エンド位置Pdに保持する付勢部材58を備えている。付勢部材58は、ここでは、コイルスプリングである。ただし、付勢部材58は、コイルスプリングには限定されず、例えば、エアシリンダ等であってもよい。主軸ノズル56は、下方側エンド位置Pdでストッパ57bに当接する当接部56aを備えている。ストッパ57bと付勢部材58とにより、主軸ノズル56は、下方側エンド位置Pdに保持される。また、主軸ノズル56は、Z軸の上方に向かって押されると、付勢部材58の付勢力に抗して、ガイド孔57aに沿ってZ軸の上方に移動する。 As shown in FIG. 9, the nozzle support member 57 includes a guide hole 57a through which the main shaft nozzle 56 is inserted, and a stopper 57b that restricts the main shaft nozzle 56 from moving below the lower end position Pd. ing. The main shaft air blow device 55 also includes a biasing member 58 that biases the main shaft nozzle 56 supported by the nozzle support member 57 to hold the main shaft nozzle 56 at the lower end position Pd. The biasing member 58 is here a coil spring. However, the biasing member 58 is not limited to a coil spring, and may be an air cylinder or the like. The main shaft nozzle 56 has a contact portion 56a that contacts the stopper 57b at the lower end position Pd. The stopper 57b and the biasing member 58 hold the main shaft nozzle 56 at the lower end position Pd. Further, when the spindle nozzle 56 is pushed upward along the Z axis, it moves upward along the Z axis along the guide hole 57a against the biasing force of the biasing member 58 .
 主軸ノズル56は、ワークホルダ20よりも上方に設けられており、下方(ここでは、鉛直方向下方)に向かってエアを噴射するように構成されている。主軸エアブロー装置55によるエアの噴射方向は、鉛直方向下方である。これにより、把持部53に把持された切削ツール6に対して斜めにエアが吹きつけられる。ただし、主軸ノズル56は、その他の方向にエアを噴射してもよい。主軸ノズル56は、側壁に形成されZ軸方向に斜交するように延びるカット面56bを備えている。カット面56bは、Z軸方向の下方に向かうにつれて把持部53に近づくような傾斜を有している。ここでは、カット面56bは、主軸ノズル56の下端から斜め上方に向かって延びている。 The spindle nozzle 56 is provided above the work holder 20 and configured to inject air downward (here, vertically downward). The air blowing direction of the main shaft air blow device 55 is downward in the vertical direction. As a result, air is obliquely blown against the cutting tool 6 held by the holding portion 53 . However, the main shaft nozzle 56 may inject air in other directions. The main shaft nozzle 56 has a cut surface 56b formed on the side wall and extending obliquely in the Z-axis direction. The cut surface 56b has an inclination that approaches the grip portion 53 downward in the Z-axis direction. Here, the cut surface 56b extends obliquely upward from the lower end of the spindle nozzle 56. As shown in FIG.
 主軸51に装着した切削ツール6をツールストッカ80に戻すときや、ツールストッカ80の切削ツール6を主軸51に装着する際には、Z軸方向移動装置60Zは、ツールストッカ80に収納された切削ツール6を把持または解放するように設定されたZ軸方向の所定位置(以下、作業位置Poとも呼ぶ)に把持部53を移動させる。図10は、切削ツール6の交換時の切削装置50の先端部付近の側面図である。図10は、把持部53が作業位置Poに位置した状態を図示している。図10に示すように、主軸ノズル56は、把持部53がZ軸方向の作業位置Poに位置した状態ではツールストッカ80に当接する。このとき、主軸ノズル56は、ツールストッカ80に押され、付勢部材58の付勢力に抗して下方側エンド位置PdよりもZ軸方向の上方に位置する。 When the cutting tool 6 attached to the spindle 51 is returned to the tool stocker 80 or when the cutting tool 6 of the tool stocker 80 is attached to the spindle 51, the Z-axis direction moving device 60Z moves the cutting tool stored in the tool stocker 80. The gripping part 53 is moved to a predetermined position in the Z-axis direction (hereinafter also referred to as a working position Po) set to grip or release the tool 6 . FIG. 10 is a side view of the vicinity of the tip of the cutting device 50 when the cutting tool 6 is replaced. FIG. 10 illustrates a state in which the grip portion 53 is positioned at the working position Po. As shown in FIG. 10, the spindle nozzle 56 abuts on the tool stocker 80 when the gripper 53 is positioned at the working position Po in the Z-axis direction. At this time, the spindle nozzle 56 is pushed by the tool stocker 80 and positioned above the lower end position Pd in the Z-axis direction against the biasing force of the biasing member 58 .
 主軸ノズル56は、ツールストッカ80に当接していないときには、ツールストッカ80に当接しているときよりもZ軸方向の下方の下方側エンド位置Pdに位置する。これにより、被切削物1の加工時、クリーニング時、または加工室120のクリーニング時(後述するが、主軸エアブロー装置55は、加工室120内やワークホルダ20にエアを噴射するように構成されており、加工室120のクリーニングにも使用される)、切削ツール6の先端の刃部、被切削物1、または加工室120の底壁120Dに主軸ノズル56を近づけることができる。一方で、主軸ノズル56が下方側エンド位置Pdにあると、主軸51に装着した切削ツール6をツールストッカ80に戻すときや、ツールストッカ80の切削ツール6を主軸51に装着する際には、長い主軸ノズル56がツールストッカ80や切削ツール6と干渉する。そこで、本実施形態では、主軸エアブロー装置55は、主軸ノズル56がZ軸方向の上方に押されると上方に移動する(縮む)ように構成されている。 When the spindle nozzle 56 is not in contact with the tool stocker 80, it is positioned at the lower end position Pd lower in the Z-axis direction than when it is in contact with the tool stocker 80. As a result, when the workpiece 1 is machined, cleaned, or when the machining chamber 120 is cleaned (as will be described later, the spindle air blow device 55 is configured to inject air into the machining chamber 120 and the work holder 20). (also used for cleaning the processing chamber 120), the spindle nozzle 56 can be brought close to the cutting edge of the cutting tool 6, the workpiece 1, or the bottom wall 120D of the processing chamber 120. On the other hand, when the spindle nozzle 56 is at the lower end position Pd, when the cutting tool 6 attached to the spindle 51 is returned to the tool stocker 80 or when the cutting tool 6 in the tool stocker 80 is attached to the spindle 51, Long spindle nozzle 56 interferes with tool stocker 80 and cutting tool 6 . Therefore, in this embodiment, the main shaft air blow device 55 is configured to move upward (shrink) when the main shaft nozzle 56 is pushed upward in the Z-axis direction.
 主軸ノズル56のカット面56bは、物体が側方から主軸ノズル56を押したときに主軸ノズル56が上方に移動するために設けられたものである。物体が側方からカット面56bを押すと、その押圧力の一部はカット面56bによってZ軸方向の上方向きの力に変換され、主軸ノズル56が上方に移動する。 The cut surface 56b of the main shaft nozzle 56 is provided so that the main shaft nozzle 56 moves upward when an object pushes the main shaft nozzle 56 from the side. When an object presses the cut surface 56b from the side, part of the pressing force is converted into an upward force in the Z-axis direction by the cut surface 56b, and the main shaft nozzle 56 moves upward.
 なお、主軸ノズル56がZ軸の上下方向に移動する構成は、ツールストッカ80以外の物体が主軸ノズル56に衝突する可能性に対しても効果を奏する。かかる構成によれば、何らかの物体が主軸ノズル56に衝突すると主軸ノズル56がZ軸の上方に移動する。そのため、主軸ノズル56または衝突した物体が破損するおそれを低減することができる。 It should be noted that the configuration in which the spindle nozzle 56 moves in the vertical direction of the Z axis also has an effect on the possibility that an object other than the tool stocker 80 collides with the spindle nozzle 56 . According to such a configuration, when some object collides with the main shaft nozzle 56, the main shaft nozzle 56 moves upward in the Z-axis. Therefore, it is possible to reduce the risk of damage to the spindle nozzle 56 or the colliding object.
 制御装置100は、ホルダ移動装置30、主軸移動装置60、切削装置50などに接続され、それらの動作を制御している。図11は、切削加工機10のブロック図である。図11に示すように、制御装置100は、ホルダ移動装置30のX軸方向駆動モータ34と、回転装置40のA軸回転モータ41AおよびB軸回転モータ41Bと、切削装置50のスピンドルユニット52および把持部53と、主軸移動装置60のY軸方向駆動モータ63YおよびZ軸方向駆動モータ63Zと、ワークチェンジャ70のL軸方向駆動モータ72Bと、天面エアブロー装置93と、底面エアブロー装置94と、主軸エアブロー装置55と、集塵機111と、操作パネル110と、に接続され、それらの動作を制御している。なお、集塵機111の制御は、制御装置100ではなく、集塵機111に内蔵された制御装置または外部の装置によって行われてもよい。 The control device 100 is connected to the holder moving device 30, the spindle moving device 60, the cutting device 50, etc., and controls their operations. FIG. 11 is a block diagram of the cutting machine 10. As shown in FIG. As shown in FIG. 11, the control device 100 controls the X-axis direction drive motor 34 of the holder moving device 30, the A-axis rotation motor 41A and the B-axis rotation motor 41B of the rotation device 40, the spindle unit 52 of the cutting device 50 and the a gripping portion 53, a Y-axis direction drive motor 63Y and a Z-axis direction drive motor 63Z of the spindle moving device 60, an L-axis direction drive motor 72B of the work changer 70, a top surface air blow device 93, a bottom air blow device 94, It is connected to the main shaft air blow device 55, the dust collector 111, and the operation panel 110, and controls their operations. Note that the control of the dust collector 111 may be performed not by the control device 100 but by a control device built into the dust collector 111 or an external device.
 制御装置100の構成は特に限定されない。制御装置100は、例えばマイクロコンピュータである。マイクロコンピュータのハードウェア構成は特に限定されないが、例えば、ホストコンピュータ等の外部機器から切削データ等を受信するインターフェイス(I/F)と、制御プログラムの命令を実行する中央演算処理装置(CPU:central processing unit)と、CPUが実行するプログラムを格納したROM(read only memory)と、プログラムを展開するワーキングエリアとして使用されるRAM(random access memory)と、上記プログラムや各種データを格納するメモリ等の記憶装置と、を備えている。 The configuration of the control device 100 is not particularly limited. The control device 100 is, for example, a microcomputer. The hardware configuration of the microcomputer is not particularly limited. processing unit), ROM (read only memory) that stores programs executed by the CPU, RAM (random access memory) that is used as a working area for developing programs, and memory that stores the above programs and various data a storage device;
 図11に示すように、制御装置100は、切削制御部101と、ワーク交換部102と、ツール交換部103と、ワーククリーニング部104と、加工室クリーニング部105と、を備えている。制御装置100は、他の処理部を備えていてもよいが、ここでは図示および説明を省略する。 As shown in FIG. 11, the control device 100 includes a cutting control section 101, a work exchange section 102, a tool exchange section 103, a work cleaning section 104, and a processing chamber cleaning section 105. The control device 100 may include other processing units, but illustration and description thereof are omitted here.
 切削制御部101は、ホルダ移動装置30のX軸方向駆動モータ34と、回転装置40のA軸回転モータ41AおよびB軸回転モータ41Bと、切削装置50のスピンドルユニット52と、主軸移動装置60のY軸方向駆動モータ63YおよびZ軸方向駆動モータ63Zとを制御して、被切削物1を指定された形状に切削する。被切削物1の切削加工中には、適宜に主軸エアブロー装置55が駆動され、被切削物1、アダプタ5、およびワークホルダ20に付着した切削粉が除去される。被切削物1の切削加工中には、集塵機111が駆動される。 The cutting control unit 101 controls the X-axis direction driving motor 34 of the holder moving device 30, the A-axis rotating motor 41A and the B-axis rotating motor 41B of the rotating device 40, the spindle unit 52 of the cutting device 50, and the spindle moving device 60. By controlling the Y-axis direction driving motor 63Y and the Z-axis direction driving motor 63Z, the workpiece 1 is cut into a designated shape. During the cutting of the workpiece 1, the spindle air blower 55 is appropriately driven to remove cutting powder adhering to the workpiece 1, the adapter 5, and the work holder 20. FIG. During cutting of the workpiece 1, the dust collector 111 is driven.
 ワーク交換部102は、ワークチェンジャ70のL軸方向駆動モータ72Bと、ホルダ移動装置30のX軸方向駆動モータ34とを制御して、被切削物1(被切削物1が保持されたアダプタ5)を交換する。これにより、複数の被切削物1が順次加工される。ツール交換部103は、ホルダ移動装置30のX軸方向駆動モータ34と、主軸移動装置60のY軸方向駆動モータ63YおよびZ軸方向駆動モータ63Zと、切削装置50の把持部53と、を制御して、把持部53に把持される切削ツール6を交換する。 The work exchange unit 102 controls the L-axis direction driving motor 72B of the work changer 70 and the X-axis direction driving motor 34 of the holder moving device 30 to change the workpiece 1 (adapter 5 holding the workpiece 1). ). As a result, a plurality of objects 1 to be cut are sequentially machined. The tool exchange section 103 controls the X-axis direction drive motor 34 of the holder moving device 30, the Y-axis direction driving motor 63Y and the Z-axis direction driving motor 63Z of the spindle moving device 60, and the gripping portion 53 of the cutting device 50. Then, the cutting tool 6 held by the holding portion 53 is replaced.
 ワーククリーニング部104は、切削加工終了後に、被切削物1、アダプタ5、およびワークホルダ20をクリーニングする。図10に示すように、ワーククリーニング部104は、第1ブロー制御部104Aと、第1姿勢制御部104Bと、第1移動制御部104Cと、反転制御部104Dと、を備えている。 The work cleaning section 104 cleans the workpiece 1, the adapter 5, and the work holder 20 after the cutting process is completed. As shown in FIG. 10, the work cleaning section 104 includes a first blow control section 104A, a first attitude control section 104B, a first movement control section 104C, and a reverse control section 104D.
 第1ブロー制御部104Aは、被切削物1の切削が終了した後に、主軸エアブロー装置55を制御してワークホルダ20に向かってエアを噴射する。第1姿勢制御部104Bは、被切削物1の切削が終了した後であって第1ブロー制御部104Aの制御によって主軸エアブロー装置55がエアを噴射する前に回転装置40を制御し、被切削物1の対向する2面(第1面1Aおよび第2面1B)が主軸エアブロー装置55によるエアの噴射方向と所定の角度で交差するようにワークホルダ20の姿勢を制御する。本実施形態では、上記所定の角度は90度である。ただし、主軸エアブロー装置55によるエアの噴射方向と被切削物1の対向する2面1A、1Bとのなす角度は、90度に限定されるわけではない。第1姿勢制御部104Bは、また、被切削物1の切削が終了した後であって第1ブロー制御部104Aの制御によって主軸エアブロー装置55がエアを噴射する前に、回転装置40を制御して、被切削物1の第1面1Aが主軸ノズル56の方を向くようにワークホルダ20の姿勢を制御する。これにより、被切削物1の第1面1Aがクリーニングされる。 The first blow control unit 104A controls the spindle air blow device 55 to blow air toward the work holder 20 after the cutting of the workpiece 1 is finished. The first attitude control unit 104B controls the rotation device 40 after the cutting of the object 1 to be cut is finished and before the main shaft air blow device 55 blows air under the control of the first blow control unit 104A. The attitude of the work holder 20 is controlled so that the two opposing surfaces (the first surface 1A and the second surface 1B) of the object 1 intersect the air injection direction of the spindle air blow device 55 at a predetermined angle. In this embodiment, the predetermined angle is 90 degrees. However, the angle between the direction of the air jet from the spindle air blower 55 and the two opposing surfaces 1A and 1B of the workpiece 1 is not limited to 90 degrees. The first attitude control section 104B also controls the rotating device 40 after the cutting of the workpiece 1 is finished and before the main shaft air blow device 55 blows air under the control of the first blow control section 104A. Then, the posture of the work holder 20 is controlled so that the first surface 1A of the workpiece 1 faces the spindle nozzle 56. As shown in FIG. As a result, the first surface 1A of the object 1 to be cut is cleaned.
 第1移動制御部104Cは、第1ブロー制御部104Aの制御によって主軸エアブロー装置55がエアを噴射しているときに、ホルダ移動装置30およびY軸方向移動装置60Yを制御して、ワークホルダ20に対する主軸ノズル56の位置を移動させる。これにより、エアが噴射されるワークホルダ20の場所が移動する。ホルダ移動装置30およびY軸方向移動装置60Yは、ワークホルダ20に対する主軸ノズル56の位置を移動させる移動装置として機能する。本実施形態では、第1移動制御部104Cは、ワークホルダ20に対する主軸ノズル56の移動経路が走査線を描くように、ワークホルダ20に対する主軸ノズル56の位置を移動させる。 The first movement control unit 104C controls the holder movement device 30 and the Y-axis direction movement device 60Y to move the work holder 20 while the spindle air blow device 55 is blowing air under the control of the first blow control unit 104A. moves the position of the spindle nozzle 56 with respect to . As a result, the location of the work holder 20 to which the air is jetted is moved. The holder moving device 30 and the Y-axis direction moving device 60Y function as moving devices that move the position of the spindle nozzle 56 with respect to the work holder 20. As shown in FIG. In this embodiment, the first movement control unit 104C moves the position of the spindle nozzle 56 with respect to the work holder 20 so that the movement path of the spindle nozzle 56 with respect to the work holder 20 draws a scanning line.
 反転制御部104Dは、第1ブロー制御部104Aの制御によって主軸エアブロー装置55がエアを噴射している途中で、回転装置40を制御して、被切削物1の第2面1Bが主軸ノズル56の方を向くようにワークホルダ20の姿勢を変更する。これにより、被切削物1の第1面1Aのクリーニングの後に、第2面1Bがクリーニングされる。ワーククリーニングの間、集塵機111は駆動されている。 The reversal control unit 104D controls the rotating device 40 while the main shaft air blow device 55 is injecting air under the control of the first blow control unit 104A, so that the second surface 1B of the workpiece 1 moves toward the main shaft nozzle 56. The posture of the work holder 20 is changed so that it faces the direction of . As a result, after cleaning the first surface 1A of the object 1 to be cut, the second surface 1B is cleaned. The dust collector 111 is driven during work cleaning.
 加工室クリーニング部105は、切削加工およびワーククリーニングの終了後に、加工室120をクリーニングする。ただし、加工室クリーニング部105は、切削加工の終了後であれば、ワーククリーニングの前に加工室120をクリーニングしてはいけないわけではない。図11に示すように、加工室クリーニング部105は、第2ブロー制御部105Aと、第2姿勢制御部105Bと、第2移動制御部105Cと、を備えている。 The processing chamber cleaning unit 105 cleans the processing chamber 120 after cutting and cleaning the workpiece. However, the processing chamber cleaning unit 105 does not necessarily have to clean the processing chamber 120 before cleaning the workpiece, as long as the cutting processing is completed. As shown in FIG. 11, the processing chamber cleaning section 105 includes a second blow control section 105A, a second attitude control section 105B, and a second movement control section 105C.
 第2ブロー制御部105Aは、被切削物1の切削が終了した後に、主軸エアブロー装置55を制御して、加工室120内にエアを噴射する。第2姿勢制御部105Bは、被切削物1の切削が終了した後(ここではさらに、ワーククリーニング部104の制御によるワーククリーニングの後)であって第2ブロー制御部105Aの制御によって主軸エアブロー装置55がエアを噴射する前に回転装置40を制御し、ワークホルダ20の姿勢を予め定められた姿勢とする。なお、第1ブロー制御部104Aによる主軸エアブロー装置55の制御と第2ブロー制御部105Aの制御による主軸エアブロー装置55の制御とは連続的に行われてもよい。すなわち、ワーククリーニングおよび加工室クリーニングの間、エアの噴射は継続されていてもよい。 The second blow control unit 105A controls the spindle air blow device 55 to inject air into the processing chamber 120 after the cutting of the workpiece 1 is finished. The second posture control unit 105B operates to operate the spindle air blow device under the control of the second blow control unit 105A after the cutting of the object 1 to be cut is finished (here, after the work cleaning by the control of the work cleaning unit 104). 55 controls the rotation device 40 before injecting air, and sets the posture of the work holder 20 to a predetermined posture. The control of the main shaft air blow device 55 by the first blow control section 104A and the control of the main shaft air blow device 55 by the control of the second blow control section 105A may be performed continuously. That is, air injection may be continued during the workpiece cleaning and the processing chamber cleaning.
 本実施形態では、ワークホルダ20の予め定められた姿勢は、ワークホルダ20に保持された被切削物1の対向する2面1A、1Bが加工室120の底壁120Dに対して傾斜するような姿勢である。さらに詳しくは、ワークホルダ20の予め定められた姿勢は、ワークホルダ20に保持された被切削物1の対向する2面1A、1Bが前方に向かって下降傾斜するような姿勢である。これにより、主軸エアブロー装置55から噴射されたエアは、ワークホルダ20に保持された被切削物1およびアダプタ5に沿って流れ、主として前斜め下方に向かう。本実施形態に係る加工室120のクリーニングでは、ワークホルダ20の姿勢を制御することにより、加工室120内を流れるエアの方向を制御している。 In this embodiment, the predetermined posture of the work holder 20 is such that the two opposing surfaces 1A and 1B of the workpiece 1 held by the work holder 20 are inclined with respect to the bottom wall 120D of the processing chamber 120. Posture. More specifically, the predetermined attitude of the work holder 20 is such that the two opposing surfaces 1A and 1B of the workpiece 1 held by the work holder 20 are downwardly inclined forward. As a result, the air jetted from the spindle air blow device 55 flows along the workpiece 1 and the adapter 5 held by the work holder 20, and is directed mainly obliquely forward and downward. In cleaning the processing chamber 120 according to this embodiment, the direction of the air flowing through the processing chamber 120 is controlled by controlling the posture of the work holder 20 .
 第2移動制御部105Cは、第2ブロー制御部105Aの制御によって主軸エアブロー装置55がエアを噴射しているときにY軸方向移動装置60Yを制御して、主軸ノズル56を左方または右方に移動させる。これにより、ワークホルダ20の姿勢を制御することによって発生させた前斜め下方向きの風の流れが、左方または右方に移動する。これにより、加工室120のクリーニングが左方または右方に向かって進行する。 The second movement control unit 105C controls the Y-axis direction movement device 60Y to move the main shaft nozzle 56 to the left or right while the main shaft air blow device 55 is blowing air under the control of the second blow control unit 105A. move to As a result, the airflow directed obliquely downward and forward, which is generated by controlling the posture of the work holder 20, moves leftward or rightward. As a result, cleaning of the processing chamber 120 proceeds leftward or rightward.
 加工室クリーニングでは、第2ブロー制御部105Aは、天面エアブロー装置93および底面エアブロー装置94も制御して、それらにエアを噴射させる。詳しくは、第2ブロー制御部105Aは、天面エアブロー装置93および底面エアブロー装置94を制御してそれぞれ天面ノズル93Nおよび底面ノズル94Nからエアを噴射させ、その後に主軸エアブロー装置55を制御して加工室120内にエアを噴射する。さらに、第2ブロー制御部105Aは、主軸エアブロー装置55を制御して加工室120内にエアを噴射した後に、天面エアブロー装置93および底面エアブロー装置94を制御してエアを噴射させる。第2姿勢制御部105Bは、加工室クリーニングの途中で、1回または複数回ワークホルダ20の姿勢を変えることにより、1回または複数回、風の向きを変えてもよい。加工室クリーニングの間も、集塵機111は駆動されている。 In the processing chamber cleaning, the second blow control unit 105A also controls the top surface air blow device 93 and the bottom surface air blow device 94 to cause them to blow air. Specifically, the second blow control unit 105A controls the top surface air blow device 93 and the bottom surface air blow device 94 to jet air from the top surface nozzle 93N and the bottom surface nozzle 94N, respectively, and then controls the spindle air blow device 55. Air is injected into the processing chamber 120 . Furthermore, the second blow control unit 105A controls the spindle air blow device 55 to blow air into the processing chamber 120, and then controls the top surface air blow device 93 and the bottom surface air blow device 94 to blow air. The second attitude control unit 105B may change the direction of the air once or more by changing the attitude of the work holder 20 once or more during the cleaning of the processing chamber. The dust collector 111 is also driven during the cleaning of the processing chamber.
 [全体プロセス]
 以下では、被切削物1および切削ツール6の切削加工機10へのセッティング、被切削物1の加工、被切削物1および加工室120のクリーニングを含むプロセスについて説明する。図12は、プロセス全体のフローチャートである。図12に示すように、被切削物1の切削加工のプロセスのステップS10では、切削ツール6がツールストッカ80に収納される。ステップS10は、ユーザにより行われる。ユーザは、ツール交換室扉181を開けて、ツールストッカ80の収納孔81に切削ツール6を収納する。ステップS20では、被切削物1が装着されたアダプタ5(被切削物1をアダプタ5に装着するステップは記載を省略する)をアダプタ収納部71の収納スペース71aに収納する。ステップS20も、ユーザにより行われる。ユーザは、チェンジャ室扉171を開けて、アダプタ収納部71に切削ツール6を収納する。ステップS10とS20とは、逆の順序で行われてもよい。
[Overall process]
A process including setting the workpiece 1 and the cutting tool 6 to the cutting machine 10, machining the workpiece 1, and cleaning the workpiece 1 and the machining chamber 120 will be described below. FIG. 12 is a flow chart of the overall process. As shown in FIG. 12, in step S10 of the process of cutting the workpiece 1, the cutting tool 6 is stored in the tool stocker 80. As shown in FIG. Step S10 is performed by the user. The user opens the tool exchange chamber door 181 and stores the cutting tool 6 in the storage hole 81 of the tool stocker 80 . In step S<b>20 , the adapter 5 to which the object 1 to be cut is attached (the step of attaching the object 1 to be cut to the adapter 5 is omitted) is stored in the storage space 71 a of the adapter storage portion 71 . Step S20 is also performed by the user. The user opens the changer chamber door 171 and stores the cutting tool 6 in the adapter storage portion 71 . Steps S10 and S20 may be performed in reverse order.
 続くステップS30では、ワークチェンジャ70に収納されたアダプタ5のうちの1つがワークホルダ20に装着される。ステップS30では、搬送装置72によってアダプタ収納部71が加工室120内に搬送される。その後、ホルダ移動装置30によってワークホルダ20がX軸方向の前方に移動され、アダプタ5がワークホルダ20に装着される。アダプタ5がワークホルダ20に装着されると、ワークホルダ20は、X軸方向の後方に移動する。これにより、ワークホルダ20に装着された被切削物1が切削装置室150の下方に移動される。その後、アダプタ収納部71は、チェンジャ室170に戻される。 In the following step S30, one of the adapters 5 housed in the work changer 70 is attached to the work holder 20. In step S<b>30 , the adapter storage portion 71 is transported into the processing chamber 120 by the transport device 72 . After that, the work holder 20 is moved forward in the X-axis direction by the holder moving device 30 , and the adapter 5 is attached to the work holder 20 . When the adapter 5 is attached to the work holder 20, the work holder 20 moves rearward in the X-axis direction. As a result, the workpiece 1 mounted on the work holder 20 is moved below the cutting device chamber 150 . After that, the adapter storage portion 71 is returned to the changer chamber 170 .
 ステップS40では、ツールストッカ80に収納された切削ツール6のうちの1つが切削装置50の把持部53に把持される。ステップS40では、ホルダ移動装置30により、ツールストッカ80をツール把持位置P1(図7参照)に移動させる。さらに、Y軸方向移動装置60Yによって、切削装置50をツール把持位置P1の上方の位置に移動させる。その状態で、Z軸方向移動装置60Zを駆動して、把持部53が切削ツール6を把持または解放する位置として設定された作業位置Poまで切削装置50を下降させる。これにより、切削装置50にツールストッカ80の切削ツール6を把持させることができる。このとき、図10に示すように、主軸ノズル56は、ツールストッカ80に当接し、ツールストッカ80によってZ軸方向の上方に押される。これにより、主軸ノズル56は、付勢部材58の付勢力に抗してZ軸方向の上方に移動する。 In step S40, one of the cutting tools 6 stored in the tool stocker 80 is gripped by the gripping portion 53 of the cutting device 50. In step S40, the holder moving device 30 moves the tool stocker 80 to the tool gripping position P1 (see FIG. 7). Furthermore, the Y-axis direction moving device 60Y moves the cutting device 50 to a position above the tool gripping position P1. In this state, the Z-axis direction moving device 60Z is driven to lower the cutting device 50 to the working position Po set as a position where the gripping portion 53 grips or releases the cutting tool 6. FIG. This allows the cutting device 50 to grip the cutting tool 6 of the tool stocker 80 . At this time, as shown in FIG. 10, the spindle nozzle 56 abuts against the tool stocker 80 and is pushed upward in the Z-axis direction by the tool stocker 80 . As a result, the main shaft nozzle 56 moves upward in the Z-axis direction against the biasing force of the biasing member 58 .
 切削ツール6の把持が終了すると、Z軸方向移動装置60Zは、主軸ノズル56を後方側開口部125よりも上方に移動させる。これにより、切削装置50は、Y軸方向に移動可能となる。また、主軸ノズル56は、付勢部材58の付勢により、下方側エンド位置Pdに戻る。その後、切削装置50は、加工室120の上方に移動される。なお、ステップS30とS40とは、逆の順序で行われてもよい。 When the cutting tool 6 is completely gripped, the Z-axis direction moving device 60Z moves the spindle nozzle 56 above the rear side opening 125. This allows the cutting device 50 to move in the Y-axis direction. Also, the main shaft nozzle 56 returns to the lower end position Pd due to the biasing of the biasing member 58 . After that, the cutting device 50 is moved above the processing chamber 120 . Note that steps S30 and S40 may be performed in the reverse order.
 ステップS50では、被切削物1が切削加工され、加工目的物が削り出される。ステップS50では、ホルダ移動装置30、Y軸方向移動装置60Y、およびZ軸方向移動装置60Zが駆動されて切削ツール6と被切削物1との相対位置が変更されるとともに、回転装置40が駆動されて被切削物1の姿勢が変更される。切削ツール6は、ステップS40と同様の手順により、適宜、指定されたものに交換される。これにより、加工目的物が完成する。ステップS50では、切削加工により生じた切削粉が被切削物1、アダプタ5、および切削ツール6に付着しないように、主軸エアブロー装置55からエアが噴射される。また、ステップS50の間は、集塵機111が駆動される。 In step S50, the object 1 to be cut is cut, and the object to be machined is cut out. In step S50, the holder moving device 30, the Y-axis direction moving device 60Y, and the Z-axis direction moving device 60Z are driven to change the relative position between the cutting tool 6 and the workpiece 1, and the rotating device 40 is driven. and the posture of the object 1 to be cut is changed. The cutting tool 6 is appropriately replaced with a designated one by the same procedure as in step S40. This completes the processed object. In step S<b>50 , air is jetted from the spindle air blower 55 so that the cutting dust generated by cutting does not adhere to the workpiece 1 , the adapter 5 and the cutting tool 6 . Also, during step S50, the dust collector 111 is driven.
 ステップS60では、ワーククリーニングが実行される。ステップS70では、加工室クリーニングが実行される。ステップS60およびS70の詳細については後述する。ステップS80では、切削加工が終了した被切削物1がアダプタ5とともにチェンジャ室170に戻される。ステップS80では、ステップS30の逆の手順で各部の動作が行われる。これらのステップS10~S80により、被切削物1から加工目的物が得られ、また、加工目的物、アダプタ5、および加工室120から切削粉が除去される。 In step S60, work cleaning is performed. In step S70, processing chamber cleaning is performed. Details of steps S60 and S70 will be described later. In step S80, the workpiece 1 that has been cut is returned to the changer chamber 170 together with the adapter 5. As shown in FIG. In step S80, each unit operates in the reverse order of step S30. Through these steps S10 to S80, the object to be machined is obtained from the object 1 to be cut, and cutting dust is removed from the object to be machined, the adapter 5, and the machining chamber 120. FIG.
 [ワーククリーニングのプロセス]
 以下では、ステップS60のワーククリーニングの詳細について説明する。図13は、ワーククリーニングのフローチャートである。図13に示すように、ワーククリーニングのステップS61では、回転装置40が駆動され、被切削物1の第1面1Aおよび第2面1Bが主軸ノズル56のエアの噴射方向に直交するように、ワークホルダ20の姿勢が変更される。図14は、ワーククリーニング中のワークホルダ20を示す側面図である。図14に示すように、ここでは、被切削物1の第1面1Aおよび第2面1Bが略水平となるように、ワークホルダ20の姿勢が変更される。
[Work cleaning process]
Details of the workpiece cleaning in step S60 will be described below. FIG. 13 is a flowchart of work cleaning. As shown in FIG. 13, in the work cleaning step S61, the rotating device 40 is driven so that the first surface 1A and the second surface 1B of the workpiece 1 are orthogonal to the direction of air jetting from the spindle nozzle 56. The attitude of the work holder 20 is changed. FIG. 14 is a side view showing the work holder 20 during work cleaning. As shown in FIG. 14, here, the attitude of the work holder 20 is changed so that the first surface 1A and the second surface 1B of the workpiece 1 are substantially horizontal.
 図13に示すように、続くステップS62では、ワークホルダ20および主軸ノズル56がワーククリーニングの開始位置に移動される。なお、ステップS61とS62とは、順番が逆でもよい。図15は、ワーククリーニングの手順を示すワークホルダ20の平面図である。図15の矢印L1は、ワークホルダ20に対する主軸ノズル56の移動経路を示している。以下、ワーククリーニングにおける位置は、主軸ノズル56と平面視において重なるアダプタ5の位置として表す。図15に示すように、ワーククリーニングの開始位置は、アダプタ5の左前方の隅である。ただし、ワーククリーニングの開始位置は、アダプタ5の右前方、左後方、または右後方の隅でもよい。ステップS63では、主軸ノズル56からエアが噴射される。 As shown in FIG. 13, in the subsequent step S62, the workpiece holder 20 and the spindle nozzle 56 are moved to the workpiece cleaning start position. The order of steps S61 and S62 may be reversed. FIG. 15 is a plan view of the work holder 20 showing the work cleaning procedure. An arrow L1 in FIG. 15 indicates the movement path of the spindle nozzle 56 with respect to the work holder 20. As shown in FIG. Hereinafter, the position in work cleaning is represented as the position of the adapter 5 overlapping the spindle nozzle 56 in plan view. As shown in FIG. 15, the work cleaning start position is the left front corner of the adapter 5 . However, the workpiece cleaning start position may be the front right corner, the rear left corner, or the rear right corner of the adapter 5 . In step S63, air is jetted from the main shaft nozzle 56. As shown in FIG.
 ステップS64では、主軸ノズル56がアダプタ5の右前方の隅まで移動される。これにより、アダプタ5の左前方の隅から右前方の隅までの間の切削粉が除去される。ステップS65では、ワークホルダ20がX軸方向の前方に移動される。これにより、主軸ノズル56から噴射されたエアが当たる位置がアダプタ5の後方側に移動する。ステップS65におけるワークホルダ20の移動量は、好適には、主軸ノズル56のX軸方向の長さ以下であるとよい。ステップS66では、主軸ノズル56がアダプタ5の左縁に到達するまで左方向に移動される。これにより、主軸ノズル56の移動経路L1に沿って、アダプタ5の右縁から左縁までの間の切削粉が除去される。以下、図示は省略するが、アダプタ5の全領域上を走査するまで、上記動きが繰り返される。このように、ワーククリーニングでは、ワークホルダ20に対する主軸ノズル56の移動経路L1が走査線を描くように、ワークホルダ20に対する主軸ノズル56の位置を移動させる。これにより、アダプタ5の第1面1A側の全領域がクリーニングされる。 In step S64, the spindle nozzle 56 is moved to the right front corner of the adapter 5. As a result, the cutting dust between the left front corner and the right front corner of the adapter 5 is removed. In step S65, the work holder 20 is moved forward in the X-axis direction. As a result, the position where the air jetted from the spindle nozzle 56 hits moves to the rear side of the adapter 5 . The amount of movement of the work holder 20 in step S65 is preferably equal to or less than the length of the spindle nozzle 56 in the X-axis direction. In step S66, the spindle nozzle 56 is moved leftward until it reaches the left edge of the adapter 5. As shown in FIG. As a result, cutting dust is removed from the right edge to the left edge of the adapter 5 along the moving path L1 of the spindle nozzle 56 . Although not shown, the above motion is repeated until the entire area of the adapter 5 is scanned. Thus, in the work cleaning, the position of the spindle nozzle 56 is moved with respect to the work holder 20 so that the movement path L1 of the spindle nozzle 56 with respect to the work holder 20 draws a scanning line. As a result, the entire area of the adapter 5 on the side of the first surface 1A is cleaned.
 続くステップS67では、回転装置40が駆動され、ワークホルダ20がA軸周りに180度回転される。これにより、アダプタ5が反転され、被切削物1の第2面1Bが主軸ノズル56の方を向く。ステップS68では、ステップS64~S66の逆動作が行われ、主軸ノズル56は、走査線を描きながらワーククリーニングの開始位置に戻る。これにより、アダプタ5の第2面1B側の全領域がクリーニングされる。ワーククリーニングはこれにより終了する。 In the subsequent step S67, the rotating device 40 is driven to rotate the work holder 20 by 180 degrees around the A axis. As a result, the adapter 5 is turned over so that the second surface 1B of the workpiece 1 faces the spindle nozzle 56 . In step S68, the reverse operations of steps S64 to S66 are performed, and the spindle nozzle 56 returns to the workpiece cleaning start position while drawing a scanning line. As a result, the entire area on the second surface 1B side of the adapter 5 is cleaned. Work cleaning is thereby completed.
 [加工室クリーニングのプロセス]
 次に、ステップS70の加工室クリーニングの詳細について説明する。図16は、加工室クリーニングのフローチャートである。図16に示すように、加工室クリーニングのステップS71では、天面エアブロー装置93および底面エアブロー装置94が駆動され、天面ノズル93Nおよび底面ノズル94Nからエアが噴射される。これにより、天壁120Uおよび後壁120Rrに付着した切削粉が払い落とされるとともに、底壁120D上の切削粉が排気口128の方に集められる。天壁120Uおよび後壁120Rrから払い落とされた切削粉、および、集められた底壁120D上の切削粉の多くは、底壁120Dと後壁120Rrとの接続部に沿って形成された排気口128に吸い込まれる。ステップS71の終了時には、天面ノズル93Nおよび底面ノズル94Nからのエアの噴射が停止される。
[Process of cleaning the processing chamber]
Next, the details of the processing chamber cleaning in step S70 will be described. FIG. 16 is a flowchart of processing chamber cleaning. As shown in FIG. 16, in the processing chamber cleaning step S71, the top air blow device 93 and the bottom air blow device 94 are driven, and air is jetted from the top nozzle 93N and the bottom nozzle 94N. As a result, the cutting dust adhering to the top wall 120U and the rear wall 120Rr is brushed off, and the cutting dust on the bottom wall 120D is collected toward the exhaust port 128. Most of the shavings removed from the ceiling wall 120U and the rear wall 120Rr, and most of the collected shavings on the bottom wall 120D, pass through the exhaust port formed along the connecting portion between the bottom wall 120D and the rear wall 120Rr. Sucked into 128. At the end of step S71, the jetting of air from the top nozzle 93N and the bottom nozzle 94N is stopped.
 続くステップS72では、回転装置40が駆動され、被切削物1の対向する2面1Aおよび1Bが前方に向かって下降傾斜するように、ワークホルダ20の姿勢が変更される。ステップS72は、ステップS71よりも先に行われてもよい。図17は、加工室クリーニング中の切削加工機10の断面図である。図17に示すように、ステップS72により、アダプタ5は、前端部が後端部よりも下方に位置する所定の姿勢とされる。これにより、被切削物1の対向する2面1Aおよび1Bは、加工室120の底壁120Dに対して傾斜する。ステップS73では、主軸ノズル56からワークホルダ20に向かってエアが噴射される。ワークホルダ20に向かってエアが噴射されると、図17の矢印F6に示すように、ワークホルダ20、ワークホルダ20の保持されたアダプタ5、およびアダプタ5に保持された被切削物1に沿って、エアの方向が変化する。ここでは、ワークホルダ20は、被切削物1の対向する2面1Aおよび1Bが前方に向かって下降傾斜するような姿勢をとっている。そのため、図17の風の流れF6に示すように、主軸ノズル56から下方に向かって噴射されたエアは、主に前斜め下方向きに向きを変える。その他、ワークホルダ20、アダプタ5、および被切削物1の形状に応じて、エアは散乱するように方向を変える。前斜め下方向きに向きを変えたエアは、加工室120の前壁120Fおよび加工室扉122により、底壁120Dに沿って後方に向かうように再び向きを変える。後方に向きを変えた風の流れF6により、ステップS71で排気口128付近に集められたものの排気口128には吸い込まれなかった切削粉等の多くが、排気口128に押し込まれる。 In the subsequent step S72, the rotation device 40 is driven to change the posture of the work holder 20 so that the two opposing surfaces 1A and 1B of the workpiece 1 are inclined downward toward the front. Step S72 may be performed before step S71. FIG. 17 is a cross-sectional view of the cutting machine 10 during cleaning of the machining chamber. As shown in FIG. 17, step S72 takes the adapter 5 into a predetermined posture in which the front end portion is positioned lower than the rear end portion. As a result, the two opposing surfaces 1A and 1B of the workpiece 1 are inclined with respect to the bottom wall 120D of the processing chamber 120. As shown in FIG. In step S<b>73 , air is jetted from the spindle nozzle 56 toward the work holder 20 . When the air is jetted toward the work holder 20, as shown by arrow F6 in FIG. , the direction of the air changes. Here, the work holder 20 is oriented such that the two opposing surfaces 1A and 1B of the workpiece 1 are inclined downward toward the front. Therefore, as shown by the air flow F6 in FIG. 17, the air jetted downward from the main shaft nozzle 56 mainly changes its direction obliquely forward and downward. In addition, depending on the shape of the work holder 20, the adapter 5, and the workpiece 1, the direction of the air changes so as to scatter. The air that has changed its direction forward and obliquely downward is changed again along the bottom wall 120D by the front wall 120F of the processing chamber 120 and the processing chamber door 122 so as to move rearward. Most of the cutting dust and the like that were collected near the exhaust port 128 in step S71 but were not sucked into the exhaust port 128 are pushed into the exhaust port 128 by the air flow F6 that is turned rearward.
 ステップS74では、Y軸方向移動装置60Yが駆動され、主軸ノズル56が右方に移動される。この主軸ノズル56の移動は、左方に向かってでもよい。この主軸ノズル56の移動により、加工室120の左右方向の広い範囲にわたって、切削粉等が排気口128に押し込まれる。ステップS74の終了時には、主軸ノズル56からのエアの噴射が停止される。 In step S74, the Y-axis direction moving device 60Y is driven to move the main nozzle 56 to the right. The movement of this spindle nozzle 56 may be to the left. Due to this movement of the spindle nozzle 56 , cutting powder and the like are pushed into the exhaust port 128 over a wide range in the left-right direction of the machining chamber 120 . At the end of step S74, the injection of air from the main shaft nozzle 56 is stopped.
 ただし、加工室クリーニングにおけるワークホルダ20の姿勢は、上記した姿勢には限定されない。加工室クリーニングにおいて、ワークホルダ20は、例えば、被切削物1の対向する2面1Aおよび1Bが加工室120の底壁120Dに対して傾斜するような他の姿勢とされてもよい。加工室クリーニングにおいて、ワークホルダ20は、例えば、アダプタ5の左端部または右端部が右端部または左端部よりも下方に位置するような姿勢とされてもよい。かかる姿勢によれば、アダプタ5および被切削物1に当たったエアは、向きを変えて加工室120の左側壁120Lまたは右側壁120Rに向かう。これにより、左側壁120Lまたは右側壁120Rがクリーニングされる。ワークホルダ20の姿勢は、風の向きが変わるように、加工室クリーニングの途中で変更されてもよい。 However, the posture of the work holder 20 during cleaning of the processing chamber is not limited to the posture described above. During cleaning of the processing chamber, the work holder 20 may take another posture such that the two opposing surfaces 1A and 1B of the workpiece 1 are inclined with respect to the bottom wall 120D of the processing chamber 120, for example. During cleaning of the processing chamber, the work holder 20 may, for example, be oriented such that the left end or right end of the adapter 5 is positioned lower than the right end or left end. According to such a posture, the air hitting the adapter 5 and the workpiece 1 changes its direction and moves toward the left side wall 120L or the right side wall 120R of the processing chamber 120 . Thereby, the left side wall 120L or the right side wall 120R is cleaned. The posture of the work holder 20 may be changed during cleaning of the processing chamber so that the direction of the wind changes.
 ステップS75では、再び、天面エアブロー装置93および底面エアブロー装置94が駆動され、天面ノズル93Nおよび底面ノズル94Nからエアが噴射される。これにより、加工室120内にまだ残っている切削粉の多くが排気口128に押し込まれる。ステップS75の終了時には、天面ノズル93Nおよび底面ノズル94Nからのエアの噴射が停止される。ステップS75をもって、加工室クリーニングは終了する。加工室クリーニングにより、被切削物1の切削加工によって加工室120内に生成された切削粉の大部分が除去される。 In step S75, the top air blow device 93 and the bottom air blow device 94 are driven again, and air is jetted from the top nozzle 93N and the bottom nozzle 94N. As a result, most of the cutting powder still remaining in the processing chamber 120 is pushed into the exhaust port 128 . At the end of step S75, the jetting of air from the top surface nozzle 93N and the bottom surface nozzle 94N is stopped. With step S75, the processing chamber cleaning ends. The machining chamber cleaning removes most of the cutting powder generated in the machining chamber 120 by cutting the workpiece 1 .
 [スロープおよび集塵チャンバの機能]
 以下では、スロープ127および集塵チャンバ90の機能について説明する。前述したように、スロープ127は、被切削物1の切削加工により生じる被切削物1の破片のうち大きいものを選別するために設けられている。これにより、大き過ぎる破片が排気口128に移動し、排気口128を塞いでしまうことが防止されている。同様に、加工中の被切削物1がアダプタ5から落下した場合にも、スロープ127は、被切削物1が排気口128に吸い込まれることを防止する。本実施形態では、スロープ127により大き過ぎる物体や被切削物1が排気口128に吸い込まれることが抑制されているため、排気口128には、異物の通過を防止するメッシュ等が設けられていない。このため、切削加工機10の排気能力も向上している。
[Function of slope and dust collection chamber]
The functions of the slope 127 and the dust collection chamber 90 are described below. As described above, the slope 127 is provided for sorting out large fragments of the object 1 to be cut which are generated by cutting the object 1 to be cut. This prevents debris that is too large from moving to the exhaust port 128 and blocking the exhaust port 128 . Similarly, even if the workpiece 1 being cut falls from the adapter 5 , the slope 127 prevents the workpiece 1 from being sucked into the exhaust port 128 . In the present embodiment, the slope 127 prevents objects that are too large or the workpiece 1 to be cut from being sucked into the exhaust port 128, so the exhaust port 128 is not provided with a mesh or the like to prevent foreign matter from passing through. . Therefore, the exhaust capacity of the cutting machine 10 is also improved.
 集塵チャンバ90は、被切削物1の大きな破片のようなサイズの大きい物体が直接排気ダクト92に入らないように設けられている。このような大きな物体が直接に排気ダクト92に入ると排気ダクト92が詰まるおそれがある。集塵チャンバ90は、例えばこのような物体をいったん受けることにより、排気ダクト92の詰まりを抑制している。排気ダクト92の詰まりをより抑制するため、排気ダクト92が接続されるダクト接続孔91の開口方向は、排気口128の開口方向と交差している。また、本実施形態では、排気口128は、平面視において集塵チャンバ90の内部空間よりも小さく構成されている。これにより、排気口128を通過する排気の速度が上昇する。そのため、切削加工機10の排気能力が向上している。 The dust collection chamber 90 is provided so that large-sized objects such as large fragments of the workpiece 1 do not directly enter the exhaust duct 92 . If such a large object directly enters the exhaust duct 92, the exhaust duct 92 may be clogged. Dust collection chamber 90 prevents clogging of exhaust duct 92 by, for example, once receiving such objects. In order to further suppress clogging of the exhaust duct 92 , the opening direction of the duct connection hole 91 to which the exhaust duct 92 is connected intersects the opening direction of the exhaust port 128 . Further, in this embodiment, the exhaust port 128 is configured to be smaller than the internal space of the dust collection chamber 90 in plan view. This increases the speed of the exhaust passing through the exhaust port 128 . Therefore, the exhaust capacity of the cutting machine 10 is improved.
 [実施形態の作用効果]
 以下に、本実施形態に係る切削加工機10の作用効果を説明する。
[Action and effect of the embodiment]
The effects of the cutting machine 10 according to this embodiment will be described below.
 本実施形態に係る切削加工機10は、被切削物1を保持するワークホルダ20と、ワークホルダ20を収容する加工室120と、ワークホルダ20に保持された被切削物1を切削する切削装置50と、切削装置50を移動させる主軸移動装置60と、切削装置室150と、加工室120に連通した排気ダクト92と、切削装置室150に連通した吸気口152と、を備えている。切削装置室150は、加工室120との間を区画する壁部(加工室120の天壁120U)と、加工室120の天壁120Uに開口し切削装置50の少なくとも一部が通過可能な後方側開口部125と、を備えており、主軸移動装置60を収容している。かかる構成によれば、前述したように、吸気口152から切削装置室150を経由して加工室120に向かう風の流れF3(図3参照)が発生する。切削装置室150の内圧は、加工室120の内圧よりも高くなる。よって、加工室120で発生した切削粉等が後方側開口部125を経由して切削装置室150に侵入することが抑制される。切削装置室150には、可動部を有し、できるだけ粉塵を避けたい切削装置50および主軸移動装置60が収容されている。かかる構成によれば、加工室120で発生した切削粉等が切削装置50または主軸移動装置60に付着し、切削装置50または主軸移動装置60に問題が発生することを抑制できる。 A cutting machine 10 according to this embodiment includes a work holder 20 that holds an object 1 to be cut, a machining chamber 120 that accommodates the work holder 20, and a cutting device that cuts the object 1 to be cut held by the work holder 20. 50 , a spindle moving device 60 for moving the cutting device 50 , a cutting device chamber 150 , an exhaust duct 92 communicating with the machining chamber 120 , and an air inlet 152 communicating with the cutting device chamber 150 . The cutting device chamber 150 has a wall portion (a ceiling wall 120U of the processing chamber 120) that separates it from the processing chamber 120, and a rear portion that opens to the ceiling wall 120U of the processing chamber 120 and allows at least a portion of the cutting device 50 to pass therethrough. and a side opening 125 to accommodate the spindle movement device 60 . According to such a configuration, as described above, the airflow F3 (see FIG. 3) is generated from the intake port 152 toward the processing chamber 120 via the cutting device chamber 150 . The internal pressure of the cutting device chamber 150 is higher than the internal pressure of the processing chamber 120 . Therefore, cutting powder and the like generated in the processing chamber 120 are prevented from entering the cutting device chamber 150 via the rear opening 125 . The cutting device chamber 150 accommodates the cutting device 50 and the spindle moving device 60 which have movable parts and which should be dust-free as much as possible. According to such a configuration, it is possible to suppress the occurrence of problems in the cutting device 50 or the spindle moving device 60 due to the cutting powder or the like generated in the machining chamber 120 adhering to the cutting device 50 or the spindle moving device 60 .
 本実施形態に係る切削加工機10は、複数の被切削物1を収納可能なアダプタ収納部71と、アダプタ収納部71に収納された複数の被切削物1のうちの少なくとも1つの被切削物1を加工室120に搬送する搬送装置72と、を備えたワークチェンジャ70を備えている。切削加工機10は、さらに、加工室120との間を区画する壁部(加工室120の天壁120U)と、加工室120の天壁120Uに開口し搬送装置72によって搬送される被切削物1が通過可能な前方側開口部124と、を備え、アダプタ収納部71を収容するチェンジャ室170を有している。吸気口152は、チェンジャ室170にも連通している。かかる構成によれば、前述したように、加工室120で発生した切削粉等がチェンジャ室170に侵入しにくくなる。よって、加工室120で発生した切削粉等がワークチェンジャ70に付着し、ワークチェンジャ70に問題が発生することを抑制できる。 The cutting machine 10 according to the present embodiment includes an adapter storage portion 71 capable of storing a plurality of objects 1 to be cut, and at least one of the plurality of objects 1 to be cut stored in the adapter storage portion 71. 1 to the processing chamber 120; The cutting machine 10 further includes a wall portion (a ceiling wall 120U of the processing chamber 120) that partitions the processing chamber 120, and an object to be cut that opens into the ceiling wall 120U of the processing chamber 120 and is conveyed by the conveying device 72. 1 and a changer chamber 170 that accommodates the adapter storage portion 71 . The intake port 152 also communicates with the changer chamber 170 . According to such a configuration, as described above, it becomes difficult for the cutting powder and the like generated in the processing chamber 120 to enter the changer chamber 170 . Therefore, it is possible to suppress the occurrence of problems in the work changer 70 due to adhesion of cutting powder or the like generated in the processing chamber 120 to the work changer 70 .
 本実施形態では、搬送装置72は、アダプタ収納部71を加工室120に搬送する。かかる構成では、アダプタ収納部71を加工室120に出し入れするための前方側開口部124を比較的大きく構成する必要がある。そのため、特に対策しなければ、加工室120で発生した切削粉等がチェンジャ室170に侵入するおそれが大きい。よって、かかる構成に対しては、吸気口152からチェンジャ室170を経由して加工室120に向かう風の流れF4を発生させるメリットが大きい。 In this embodiment, the transport device 72 transports the adapter storage section 71 to the processing chamber 120 . In such a configuration, it is necessary to configure the front side opening 124 for taking the adapter storage section 71 into and out of the processing chamber 120 relatively large. Therefore, there is a high possibility that cutting powder or the like generated in the processing chamber 120 will enter the changer chamber 170 unless special measures are taken. Therefore, for such a configuration, there is a great advantage in generating the air flow F4 from the intake port 152 to the processing chamber 120 via the changer chamber 170 .
 本実施形態に係る切削加工機10は、ワークホルダ20を支持する支持アーム31を備え、支持アーム31を移動させることによりワークホルダ20を移動させるホルダ移動装置30を備えている。切削加工機10は、さらに、加工室120との間を区画する壁部(加工室120の右側壁120R)と、加工室120の右側壁120Rに開口しホルダ移動装置30の支持アーム31が挿通されたスリット123と、を備え、ホルダ移動装置30の少なくとも一部を収容する駆動装置室130を有している。吸気口152は、駆動装置室130にも連通している。かかる構成によれば、前述したように、加工室120で発生した切削粉等が駆動装置室130に侵入しにくくなる。そのため、加工室120で発生した切削粉等がホルダ移動装置30に付着し、ホルダ移動装置30に問題が発生することを抑制できる。 The cutting machine 10 according to this embodiment includes a support arm 31 that supports the work holder 20 and a holder moving device 30 that moves the work holder 20 by moving the support arm 31 . The cutting machine 10 further includes a wall portion (a right side wall 120R of the processing chamber 120) that separates it from the processing chamber 120, and an opening in the right side wall 120R of the processing chamber 120 through which the support arm 31 of the holder moving device 30 is inserted. and a drive chamber 130 that houses at least a portion of the holder moving device 30 . The intake port 152 also communicates with the drive chamber 130 . According to such a configuration, as described above, it becomes difficult for cutting dust and the like generated in the processing chamber 120 to enter the driving device chamber 130 . Therefore, it is possible to suppress the occurrence of problems in the holder moving device 30 due to the cutting powder or the like generated in the processing chamber 120 adhering to the holder moving device 30 .
 本実施形態に係る切削加工機10は、ホルダ移動装置30の支持アーム31に固定された防塵板36を備えている。防塵板36は、スリット123の少なくとも一部を覆うように設けられ、支持アーム31とともにX軸方向に移動する。かかる構成によれば、防塵板36という簡易な構成により、加工室120で発生した切削粉等が駆動装置室130に侵入するのをさらに抑制することができる。防塵板36の構成は簡易なため、コストも低減しやすい。 The cutting machine 10 according to this embodiment includes a dustproof plate 36 fixed to the support arm 31 of the holder moving device 30 . The dustproof plate 36 is provided so as to cover at least part of the slit 123 and moves in the X-axis direction together with the support arm 31 . According to such a configuration, the simple configuration of the dust-proof plate 36 can further suppress intrusion of cutting powder and the like generated in the processing chamber 120 into the driving device chamber 130 . Since the structure of the dustproof plate 36 is simple, the cost can be easily reduced.
 本実施形態では、防塵板36は、支持アーム31のうち加工室120内に位置した部分に固定され、加工室120内に設けられている。かかる構成によれば、防塵板36は加工室120内でその効果を発揮する。よって、切削粉等がスリット123に接近するのを予め抑制することができる。 In this embodiment, the dust-proof plate 36 is fixed to a portion of the support arm 31 located inside the processing chamber 120 and provided inside the processing chamber 120 . With such a configuration, the dust-proof plate 36 exerts its effect within the processing chamber 120 . Therefore, it is possible to prevent cutting powder and the like from approaching the slit 123 in advance.
 本実施形態では、排気口128は、加工室120の複数の壁部のうちワークホルダ20よりもX軸方向の後方側にある部分(ここでは、底壁120Dの後端部)に開口しており、防塵板36は、ワークホルダ20が切削加工時の移動範囲内に位置しているとき、スリット123の後方の端部を覆うように構成されている。かかる構成によれば、被切削物1の切削中、スリット123の後方側の端部は、防塵板36によって覆われる。加工室120では、排気口128の配置により、風は後方に向かって流れる。従って、切削粉もワークホルダ20より後方に流されやすい。被切削物1の切削中にスリット123の後方側の端部を覆っておくことにより、切削粉等が駆動装置室130に侵入することを抑制する効果を高めることができる。 In the present embodiment, the exhaust port 128 opens in a portion (here, the rear end portion of the bottom wall 120D) of the plurality of wall portions of the processing chamber 120 located on the rear side of the work holder 20 in the X-axis direction. The dust-proof plate 36 is configured to cover the rear end of the slit 123 when the work holder 20 is positioned within the movement range during cutting. According to this configuration, the rear end of the slit 123 is covered with the dust-proof plate 36 during cutting of the object 1 to be cut. In the processing chamber 120, the arrangement of the exhaust port 128 causes the air to flow backward. Therefore, cutting powder is also likely to flow backward from the work holder 20 . By covering the rear end of the slit 123 while the object 1 is being cut, the effect of suppressing the intrusion of cutting dust and the like into the drive device chamber 130 can be enhanced.
 一方で、防塵板36は、ワークホルダ20が切削加工時の移動範囲内に位置しているとき、スリット123の前方側の端部よりも後方側に位置する。つまり、このとき、防塵板36は、スリット123の前方部分を覆わない。加工室120では風は後方に向かって流れるため、スリット123の前方部分が防塵板36によって覆われなくても、防塵板36の防塵効果は損なわれにくい。逆に、スリット123の一部が適度に開口することにより、駆動装置室130から加工室120に風が流れ、防塵効果が向上する。さらに、かかる構成によれば、防塵板36のX軸方向の長さを短くできるため、加工室120のX軸方向の長さが長くなることを抑制できる。 On the other hand, the dust-proof plate 36 is positioned rearward of the front end of the slit 123 when the work holder 20 is positioned within the movement range during cutting. That is, at this time, the dust-proof plate 36 does not cover the front portion of the slit 123 . Since the wind flows backward in the processing chamber 120, even if the front portion of the slit 123 is not covered with the dustproof plate 36, the dustproof effect of the dustproof plate 36 is unlikely to be impaired. Conversely, by appropriately opening a part of the slit 123, air flows from the drive device chamber 130 to the processing chamber 120, improving the dustproof effect. Furthermore, according to such a configuration, the length of the dust-proof plate 36 in the X-axis direction can be shortened, so it is possible to suppress the length of the processing chamber 120 in the X-axis direction from increasing.
 本実施形態に係る切削加工機10は、加工室120の天壁120Uに沿ってエアを噴射する天面ノズル93Nを備えた天面エアブロー装置93を有している。天面エアブロー装置93によれば、天面ノズル93Nから噴射されたエアは、加工室120の天壁120Uに沿って流れる。そのため、従来であれば除去しにくかった加工室120の天壁120Uに付着した切削粉等を効果的に除去することができる。 The cutting machine 10 according to this embodiment has a top surface air blow device 93 having a top surface nozzle 93N that injects air along the top wall 120U of the processing chamber 120. According to the top surface air blow device 93 , the air jetted from the top surface nozzle 93N flows along the top wall 120U of the processing chamber 120 . Therefore, it is possible to effectively remove cutting powder and the like adhering to the ceiling wall 120U of the processing chamber 120, which has been difficult to remove in the conventional art.
 本実施形態では、排気口128は加工室120の底壁120Dに開口しており、天面ノズル93Nは、加工室120の天壁120Uおよび後壁120Rrに沿って排気口128に到達するようにエアを噴射する。かかる構成によれば、天壁120Uに付着した切削粉等とともに後壁120Rrに付着した切削粉等も、排気口128に押し込むことができる。 In this embodiment, the exhaust port 128 is open to the bottom wall 120D of the processing chamber 120, and the top surface nozzle 93N is arranged along the top wall 120U and the rear wall 120Rr of the processing chamber 120 so as to reach the exhaust port 128. Inject air. With such a configuration, it is possible to push into the exhaust port 128 the cutting powder and the like adhering to the rear wall 120Rr together with the cutting powder and the like adhering to the ceiling wall 120U.
 本実施形態では、排気口128は、底壁120Dのうち後壁120Rrとの接続部に沿って開口している。かかる構成によれば、天面ノズル93Nから噴射され天壁120Uおよび後壁120Rrに沿って流れるエアが、排気口128にスムーズに流れ込む。よって、排気効率がよい。 In this embodiment, the exhaust port 128 is opened along the connecting portion of the bottom wall 120D with the rear wall 120Rr. According to such a configuration, the air that is jetted from the ceiling nozzle 93N and flows along the ceiling wall 120U and the rear wall 120Rr smoothly flows into the exhaust port 128. As shown in FIG. Therefore, exhaust efficiency is good.
 本実施形態に係る切削加工機10は、加工室120の底壁120Dに沿って排気口128に到達するようにエアを噴射する底面ノズル94Nを備えた底面エアブロー装置94を有している。かかる構成によれば、加工室120の底壁120D上にある切削粉等を効果的に除去することができる。 The cutting machine 10 according to this embodiment has a bottom air blow device 94 having a bottom nozzle 94N for blowing air along the bottom wall 120D of the machining chamber 120 so as to reach the exhaust port 128. According to such a configuration, it is possible to effectively remove cutting dust and the like on the bottom wall 120D of the processing chamber 120. As shown in FIG.
 本実施形態では、底面ノズル94Nは、加工室120の底壁120Dよりも上方に設けられており、底壁120Dに向かって斜め下方に、かつ、排気口128の側に向かうようにエアを噴射する。かかる構成によれば、前述したように、底壁120Dに当たることにより、エアが底壁120Dの幅方向(本実施形態では、左右方向)に広がる。これにより、底壁120Dの幅方向に関して、底面ノズル94Nの幅よりも広い範囲をクリーニングすることができる。 In this embodiment, the bottom nozzle 94N is provided above the bottom wall 120D of the processing chamber 120, and jets air obliquely downward toward the bottom wall 120D and toward the exhaust port 128 side. do. According to such a configuration, as described above, the air spreads in the width direction (horizontal direction in this embodiment) of the bottom wall 120D by hitting the bottom wall 120D. This makes it possible to clean a wider range than the width of the bottom nozzle 94N in the width direction of the bottom wall 120D.
 本実施形態では、ホルダ移動装置30が収容された駆動装置室130は、加工室120よりも右方に設けられている。天面ノズル93Nおよび排気口128は、加工室120の左右方向の中心線CLよりも右方に偏寄して設けられている。かかる構成によれば、ホルダ移動装置30が収容された駆動装置室130の側にある切削粉等を重点的に除去することができる。よって、かかる構成によっても、加工室120で発生した切削粉等がホルダ移動装置30に付着し、ホルダ移動装置30に問題が発生することを抑制できる。 In this embodiment, the drive device chamber 130 in which the holder moving device 30 is housed is provided to the right of the processing chamber 120 . The top surface nozzle 93N and the exhaust port 128 are provided so as to deviate to the right of the center line CL of the processing chamber 120 in the left-right direction. According to such a configuration, it is possible to intensively remove cutting dust and the like on the drive device chamber 130 side in which the holder moving device 30 is accommodated. Therefore, even with such a configuration, it is possible to suppress the occurrence of problems in the holder moving device 30 due to the shavings and the like generated in the processing chamber 120 adhering to the holder moving device 30 .
 本実施形態では、Z軸方向移動装置60Zは、その少なくとも一部がワークホルダ20よりも上方かつ加工室120天壁120Uよりも下方に配置されるような位置に切削装置50を移動させることが可能に構成されている。天面ノズル93Nは、上記位置に移動された(つまり、天壁120Uよりも下方に突き出した)状態の切削装置50に向かってエアを噴射する。かかる構成によれば、被切削物1の切削加工により切削粉が降りかかった切削装置50にエアを噴射し、切削粉を除去することができる。 In this embodiment, the Z-axis direction moving device 60Z can move the cutting device 50 to a position where at least part of it is located above the work holder 20 and below the ceiling wall 120U of the processing chamber 120. configured as possible. The ceiling nozzle 93N injects air toward the cutting device 50 moved to the position described above (that is, projected downward from the ceiling wall 120U). According to such a configuration, air can be jetted to the cutting device 50 on which cutting dust has fallen due to the cutting of the object 1 to remove the cutting dust.
 本実施形態では、加工室120の底壁120Dは、排気口128が設けられるとともに排気口128に向かう上り勾配がつけられたスロープ127を備えている。かかる構成によれば、加工室120の底壁120D上に落下した被切削物1の破片のうち大きいものは、排気口128からの吸引によってもスロープ127を登れないか、または、スロープ127上に落ちてもスロープ127を滑り落ちる。そのため、大きい破片は、排気口128に吸い寄せられない。よって、本実施形態に係る切削加工機10によれば、被切削物1の破片に大きいものが含まれていた場合でも、加工室120の排気が阻害されにくい。また、かかる構成によれば、アダプタ5から被切削物1が脱落した場合にも、被切削物1が排気口128に吸い込まれることを防止できる。なお、本実施形態では、スロープ127は底壁120Dの一部であるが、底壁120Dの全部であってもよい。 In this embodiment, the bottom wall 120</b>D of the processing chamber 120 is provided with an exhaust port 128 and has a slope 127 that slopes upward toward the exhaust port 128 . According to such a configuration, large fragments of the workpiece 1 that have fallen onto the bottom wall 120D of the processing chamber 120 cannot climb the slope 127 even by being sucked from the exhaust port 128, or cannot climb onto the slope 127. Even if it falls, it slides down the slope 127 . Therefore, large fragments are not sucked into the exhaust port 128 . Therefore, according to the cutting machine 10 according to the present embodiment, even if the object 1 to be cut contains large fragments, the exhaust of the machining chamber 120 is less likely to be obstructed. Moreover, according to such a configuration, even if the object 1 to be cut falls off the adapter 5 , the object 1 to be cut can be prevented from being sucked into the exhaust port 128 . Although the slope 127 is part of the bottom wall 120D in this embodiment, it may be the entire bottom wall 120D.
 本実施形態では、加工室120の底壁120Dは、スロープ127に対して屈折するようにスロープ127に接続された底部126を備えている。かかる構成によれば、スロープ127を滑り落ちた破片等は、スロープ127と底部126との境界部で止まりやすい。そのため、スロープ127を滑り落ちた破片等をユーザが回収しやすい。例えば、加工室120の底壁120Dの全部がスロープ127である場合には、スロープ127を滑り落ちた破片等は、底壁120Dと前壁120Fとによって形成される加工室120の前下隅に溜まりやすい。これでは、スロープ127を滑り落ちた破片等をユーザが回収しにくい。ここでは、底部126は、略水平に構成されている。底部126を略水平にすることにより、落下物の止まりやすさと、スロープ127と底部126との境界部の視認性とを両立できる。ただし、底部126は、略水平な面ではなく、スロープ127よりも緩い上り勾配を有するスロープや、後方に向かって下がる逆向きのスロープであってもよい。 In this embodiment, the bottom wall 120D of the processing chamber 120 has a bottom portion 126 connected to the slope 127 so as to bend with respect to the slope 127 . With such a configuration, fragments or the like that have slid down the slope 127 are likely to stop at the boundary between the slope 127 and the bottom portion 126 . Therefore, it is easy for the user to collect debris that has slid down the slope 127 . For example, when the entire bottom wall 120D of the processing chamber 120 is the slope 127, debris that slides down the slope 127 collects in the lower front corner of the processing chamber 120 formed by the bottom wall 120D and the front wall 120F. Cheap. This makes it difficult for the user to collect debris or the like that has slid down the slope 127 . Here, the bottom portion 126 is configured substantially horizontally. By making the bottom portion 126 substantially horizontal, it is possible to achieve both ease of stopping falling objects and visibility of the boundary portion between the slope 127 and the bottom portion 126 . However, the bottom portion 126 may be a slope having a gentler upward slope than the slope 127, or a reverse slope that descends rearward, instead of being a substantially horizontal surface.
 本実施形態では、平面視において、スロープ127の少なくとも一部は、ワークホルダ20の少なくとも一部と重なっている。かかる構成によれば、ワークホルダ20から脱落した被切削物1の破片や加工目的物が、スロープ127上に落下する。 In this embodiment, at least part of the slope 127 overlaps at least part of the work holder 20 in plan view. According to such a configuration, fragments of the object to be cut 1 and the object to be processed that have fallen off the work holder 20 fall onto the slope 127 .
 本実施形態では、スロープ127は、加工室120の後壁120Rrに接続されており、排気口128の後縁は後壁120Rrにより構成されている。かかる構成によれば、排気口128は、スロープ127および加工室120の最も後部に配置される。よって、排気口128に引き寄せられる切削粉等が排気口128よりも後方にオーバーランすることがない。そのため、切削粉等を効率的に回収することができる。 In this embodiment, the slope 127 is connected to the rear wall 120Rr of the processing chamber 120, and the rear edge of the exhaust port 128 is formed by the rear wall 120Rr. With such a configuration, the exhaust port 128 is arranged at the rearmost part of the slope 127 and the processing chamber 120 . Therefore, the cutting powder or the like drawn to the exhaust port 128 does not overrun behind the exhaust port 128 . Therefore, cutting powder and the like can be efficiently collected.
 本実施形態に係る切削加工機10は、箱状の集塵チャンバ90と、ダクト接続孔91に接続された排気ダクト92と、を備えている。集塵チャンバ90には、上方開口部90Uとダクト接続孔91とが形成され、上方開口部90Uは、排気口128に接続されている。かかる構成によれば、前述したように、例えば被切削物1の大きな破片のようなサイズの大きい物体が直接に排気ダクト92に入ることを防止できる。その結果、排気ダクト92の詰まりを抑制することができる。 The cutting machine 10 according to this embodiment includes a box-shaped dust collection chamber 90 and an exhaust duct 92 connected to a duct connection hole 91 . An upper opening 90U and a duct connection hole 91 are formed in the dust collection chamber 90 , and the upper opening 90U is connected to the exhaust port 128 . With such a configuration, as described above, it is possible to prevent large-sized objects such as large fragments of the object 1 to be cut from directly entering the exhaust duct 92 . As a result, clogging of the exhaust duct 92 can be suppressed.
 本実施形態では、排気口128は、上方を向くように開口しており、集塵チャンバ90の上方開口部90Uも上方を向くように開口している。集塵チャンバ90は、排気口128の下方に設けられている。かかる構成によれば、切削粉等は、排気口128および上方開口部90Uから自然に集塵チャンバ90の中に落下する。よって、集塵効率がよい。なお、排気口128は、例えば前方を向くように開口していてはいけないわけではなく、集塵チャンバ90は、例えば排気口128の上方に設けられていてはいけないわけではない。 In this embodiment, the exhaust port 128 is open upward, and the upper opening 90U of the dust collection chamber 90 is also open upward. A dust collection chamber 90 is provided below the exhaust port 128 . According to such a configuration, cutting powder or the like naturally falls into the dust collection chamber 90 from the exhaust port 128 and the upper opening 90U. Therefore, dust collection efficiency is good. Note that the exhaust port 128 does not necessarily have to be open facing forward, for example, and the dust collection chamber 90 does not necessarily have to be provided above the exhaust port 128, for example.
 本実施形態では、ダクト接続孔91は、集塵チャンバの側壁(ここでは、後壁)に開口している。かかる構成によれば、ダクト接続孔91の開口方向と排気口128の開口方向とが交差する。そのため、例えば被切削物1の大きな破片のようなサイズの大きい物体が直接に排気ダクト92に入ることをより抑制できる。 In this embodiment, the duct connection hole 91 opens in the side wall (here, the rear wall) of the dust collection chamber. According to such a configuration, the opening direction of the duct connection hole 91 and the opening direction of the exhaust port 128 intersect. Therefore, it is possible to further prevent large-sized objects such as large fragments of the object to be cut 1 from directly entering the exhaust duct 92 .
 本実施形態では、集塵チャンバ90には、平面視において排気口128よりも大きい内部空間が形成されている。言い換えると、排気口128は、平面視において集塵チャンバ90の内部空間よりも小さく構成されている。これにより、前述したように、排気口128を通過する排気の速度が上昇し、切削加工機10の排気能力が向上する。 In this embodiment, the dust collection chamber 90 has an internal space that is larger than the exhaust port 128 in plan view. In other words, the exhaust port 128 is configured to be smaller than the internal space of the dust collection chamber 90 in plan view. As a result, as described above, the speed of the exhaust gas passing through the exhaust port 128 is increased, and the exhaust capacity of the cutting machine 10 is improved.
 本実施形態に係る切削加工機10は、ワークホルダ20に向かってエアを噴射する主軸ノズル56を備えた主軸エアブロー装置55を備えている。切削加工機10の制御装置100は、切削装置50を制御して被切削物1を切削する切削制御部101と、被切削物1の切削が終了した後に主軸エアブロー装置55を制御してワークホルダ20に向かってエアを噴射する第1ブロー制御部104Aと、を備えている。かかる構成によれば、被切削物1の切削が終了した後に、被切削物1およびワークホルダ20に付着した切削粉を除去し、被切削物1およびワークホルダ20をクリーニングすることができる。なお、ワークホルダ20に向かってエアを噴射するエアブロー装置は、切削装置50に設けられたものには限定されず、どのような場所に設けられたものであってもよい。 The cutting machine 10 according to the present embodiment includes a spindle air blow device 55 having a spindle nozzle 56 that injects air toward the work holder 20 . A control device 100 of the cutting machine 10 controls a cutting control unit 101 that controls the cutting device 50 to cut the object 1 to be cut, and after the cutting of the object 1 to be cut is completed, controls the spindle air blow device 55 to operate the work holder. and a first blow control unit 104A that injects air toward 20 . According to such a configuration, after the cutting of the object 1 to be cut is finished, the cutting dust adhering to the object 1 to be cut and the work holder 20 can be removed, and the object 1 to be cut and the work holder 20 can be cleaned. Note that the air blow device that injects air toward the work holder 20 is not limited to the device provided in the cutting device 50, and may be provided in any location.
 本実施形態に係る切削加工機10は、ワークホルダ20に対する主軸ノズル56の位置を移動させる移動装置としてのホルダ移動装置30およびY軸方向移動装置60Yを備えている。制御装置100は、第1ブロー制御部104Aの制御によって主軸エアブロー装置55がエアを噴射しているときに、ホルダ移動装置30およびY軸方向移動装置60Yを制御して、ワークホルダ20に対する主軸ノズル56の位置を移動させる第1移動制御部104Cを備えている。かかる構成によれば、エアが当たるワークホルダ20の位置を移動させることができるため、ワークホルダ20および被切削物1の広い範囲をクリーニングすることができる。 The cutting machine 10 according to this embodiment includes a holder moving device 30 as a moving device for moving the position of the spindle nozzle 56 with respect to the work holder 20 and a Y-axis direction moving device 60Y. The control device 100 controls the holder moving device 30 and the Y-axis direction moving device 60Y to move the main shaft nozzle to the work holder 20 while the main shaft air blow device 55 is blowing air under the control of the first blow control unit 104A. 104 C of 1st movement control parts which move the position of 56 are provided. With this configuration, the position of the work holder 20 that is hit by the air can be moved, so that a wide range of the work holder 20 and the object 1 to be cut can be cleaned.
 本実施形態では、第1移動制御部104Cは、ワークホルダ20に対する主軸ノズル56の移動経路L1が走査線を描くように、ワークホルダ20に対する主軸ノズル56の位置を移動させる。かかる構成によれば、エアが当たるワークホルダ20の位置を走査線状に移動させることができるため、エアが吹きつけられない領域がワークホルダ20および被切削物1に残らない。 In this embodiment, the first movement control unit 104C moves the position of the spindle nozzle 56 with respect to the work holder 20 so that the movement path L1 of the spindle nozzle 56 with respect to the work holder 20 draws a scanning line. With such a configuration, the position of the work holder 20 that is hit by the air can be moved in a scanning line, so that the work holder 20 and the workpiece 1 do not have areas where the air is not blown.
 本実施形態に係る切削加工機10は、ワークホルダ20を回転させることによりワークホルダ20の姿勢を変更する回転装置40を備えている。被切削物1は、対向する2面1Aおよび1Bを有する平板状に構成されている。主軸ノズル56は所定の噴射方向(ここでは下方)に向かってエアを噴射するように構成されている。さらに、制御装置100の第1姿勢制御部104Bは、被切削物1の切削が終了した後であって第1ブロー制御部104Aの制御によって主軸エアブロー装置55がエアを噴射する前に、回転装置40を制御し、被切削物1の対向する2面1Aおよび1Bが主軸ノズル56の噴射方向と所定の角度で交差するようにワークホルダ20の姿勢を制御する。かかる構成によれば、被切削物1の対向する2面1Aおよび1Bに付着した切削粉等を除去しやすい角度で、被切削物1にエアを吹きつけることができる。上記所定の角度は、ここでは、90度である。被切削物1の対向する2面1Aおよび1Bにエアを垂直に吹きつけることにより、エアの風速、風圧、または風量を最も無駄なく利用することができる。ただし、被切削物1の対向する2面1Aおよび1Bと主軸ノズル56の噴射方向との間の角度は、90度には限定されない。 The cutting machine 10 according to this embodiment includes a rotating device 40 that changes the posture of the work holder 20 by rotating the work holder 20 . The object 1 to be cut is configured in a flat plate shape having two opposing surfaces 1A and 1B. The main shaft nozzle 56 is configured to inject air in a predetermined injection direction (here, downward). Further, the first attitude control section 104B of the control device 100 controls the rotating device to rotate after the cutting of the workpiece 1 is completed and before the main shaft air blow device 55 injects air under the control of the first blow control section 104A. 40 is controlled to control the posture of the work holder 20 so that the two opposing surfaces 1A and 1B of the workpiece 1 intersect the jetting direction of the spindle nozzle 56 at a predetermined angle. According to such a configuration, air can be blown to the object 1 to be cut at an angle that facilitates removal of the cutting dust adhering to the two opposing surfaces 1A and 1B of the object 1 to be cut. The predetermined angle is 90 degrees here. By blowing the air perpendicularly onto the two opposing surfaces 1A and 1B of the object 1 to be cut, the wind speed, wind pressure, or air volume of the air can be utilized most efficiently. However, the angle between the two opposing surfaces 1A and 1B of the workpiece 1 and the injection direction of the spindle nozzle 56 is not limited to 90 degrees.
 本実施形態では、第1姿勢制御部104Bは、被切削物1の切削が終了した後であって第1ブロー制御部104Aの制御によって主軸エアブロー装置55がエアを噴射する前に、回転装置40を制御して、被切削物1の第1面1Aが主軸ノズル56の方を向くようにワークホルダ20の姿勢を制御する。反転制御部104Dは、第1ブロー制御部104Aの制御によって主軸エアブロー装置55がエアを噴射している途中で、回転装置40を制御して、被切削物1の第2面1Bが主軸ノズル56の方を向くようにワークホルダ20の姿勢を変更する。かかる構成によれば、被切削物1の第1面1Aと、第1面1Aの裏面である第2面1Bとをともにクリーニングすることができる。なお、「第1ブロー制御部104Aの制御によって主軸エアブロー装置55がエアを噴射している途中」とは、このときにエアの噴射が継続されている場合と、このときにエアの噴射が一時的に停止されている場合とを含んでいてもよい。 In the present embodiment, the first attitude control section 104B controls the rotating device 40 after the cutting of the workpiece 1 is finished and before the main shaft air blow device 55 injects air under the control of the first blow control section 104A. is controlled to control the posture of the work holder 20 so that the first surface 1A of the workpiece 1 faces the spindle nozzle 56. The reversing control unit 104D controls the rotating device 40 so that the second surface 1B of the workpiece 1 is ejected from the main shaft nozzle 56 while the main shaft air blow device 55 is injecting air under the control of the first blow control unit 104A. The posture of the work holder 20 is changed so that it faces the direction of . With such a configuration, both the first surface 1A of the object 1 to be cut and the second surface 1B, which is the back surface of the first surface 1A, can be cleaned. Note that "while the main shaft air blow device 55 is injecting air under the control of the first blow control unit 104A" means that the air injection is continuing at this time, and that the air injection is temporary at this time. It may include the case where it is temporarily stopped.
 本実施形態では、主軸エアブロー装置55の主軸ノズル56は、加工室120内にエアを噴射するようにも構成されている。制御装置100は、被切削物1の切削が終了した後に主軸エアブロー装置55を制御して加工室120内にエアを噴射する第2ブロー制御部105Aを備えている。かかる構成によれば、被切削物1の切削が終了した後に、加工室120に付着した切削粉を除去し、加工室120をクリーニングすることができる。本実施形態では、加工室クリーニングは、ワーククリーニングの後に行われる。ただし、加工室クリーニングおよびワーククリーニングは、いずれか一方だけが行われてもよい。加工室クリーニングおよびワーククリーニングがともに行われる場合でも、その順番は特に限定されない。 In this embodiment, the spindle nozzle 56 of the spindle air blow device 55 is also configured to inject air into the machining chamber 120 . The control device 100 includes a second blow control section 105A that controls the spindle air blow device 55 to inject air into the processing chamber 120 after the cutting of the workpiece 1 is completed. According to such a configuration, after the cutting of the object 1 to be cut is finished, the cutting powder adhering to the processing chamber 120 can be removed, and the processing chamber 120 can be cleaned. In this embodiment, processing chamber cleaning is performed after workpiece cleaning. However, either one of the processing chamber cleaning and the workpiece cleaning may be performed. Even when the processing chamber cleaning and the work cleaning are performed together, the order is not particularly limited.
 本実施形態に係る制御装置100は、第2ブロー制御部105Aの制御によって主軸エアブロー装置55がエアを噴射しているときに、Y軸方向移動装置60Yを制御して、ワークホルダ20に対する主軸ノズル56の位置を移動させる第2移動制御部105Cを備えている。かかる構成によれば、エアが当たる加工室120の場所を移動させることができるため、加工室120の広い範囲をクリーニングすることができる。 The control device 100 according to the present embodiment controls the Y-axis direction moving device 60Y while the main shaft air blow device 55 is injecting air under the control of the second blow control unit 105A, thereby moving the main shaft nozzle toward the work holder 20. A second movement control unit 105C for moving the position of 56 is provided. With such a configuration, the location of the processing chamber 120 that is hit by the air can be moved, so that a wide range of the processing chamber 120 can be cleaned.
 本実施形態に係る制御装置100は、被切削物1の切削が終了した後であって第2ブロー制御部105Aの制御によって主軸エアブロー装置55がエアを噴射する前に、回転装置40を制御し、ワークホルダ20の姿勢を予め定められた姿勢とする第2姿勢制御部105Bを備えている。主軸ノズル56は、ワークホルダ20に向かってエアを噴射するように構成されている。かかる構成によれば、加工室クリーニングの説明において前述したように、ワークホルダ20にエアを当てることによりエアの向きを変えることができる。そのため、加工室120の狙った場所にエアを吹きつけることができる。なお、本実施形態では、ワークホルダ20の姿勢は加工室クリーニングの間変更されないが、1回または複数回変更されてもよい。 The control device 100 according to the present embodiment controls the rotating device 40 after the cutting of the workpiece 1 is completed and before the main shaft air blow device 55 blows air under the control of the second blow control section 105A. , and a second posture control unit 105B for setting the posture of the work holder 20 to a predetermined posture. The spindle nozzle 56 is configured to inject air toward the work holder 20 . According to such a configuration, the direction of the air can be changed by applying the air to the work holder 20, as described above in the explanation of the cleaning of the processing chamber. Therefore, air can be blown to a target location in the processing chamber 120 . In this embodiment, the posture of the work holder 20 is not changed during cleaning of the processing chamber, but may be changed once or multiple times.
 本実施形態では、主軸ノズル56は、ワークホルダ20よりも上方に設けられるとともに下方に向かってエアを噴射するように構成されている。また、ワークホルダ20の予め定められた姿勢は、ワークホルダ20に保持された被切削物1の対向する2面1Aおよび1Bが加工室120の底壁120Dに対して傾斜するような姿勢である。これにより、ワークホルダ20に当てた後のエアの向きを、底壁120Dに斜交する向きとすることができる。これにより、底壁120D上の切削粉等を底壁120Dに沿って移動させることができる。 In this embodiment, the spindle nozzle 56 is provided above the work holder 20 and configured to jet air downward. The predetermined attitude of the work holder 20 is such that the two opposing surfaces 1A and 1B of the workpiece 1 held by the work holder 20 are inclined with respect to the bottom wall 120D of the machining chamber 120. . As a result, the direction of the air after hitting the work holder 20 can be made to obliquely cross the bottom wall 120D. As a result, cutting powder and the like on the bottom wall 120D can be moved along the bottom wall 120D.
 本実施形態では、加工室120を区画する複数の壁部は、ワークホルダ20よりも前方に立設された前壁120F(加工室扉122を含んでいてもよい)を含んでおり、ワークホルダ20の予め定められた姿勢は、ワークホルダ20に保持された被切削物1の対向する2面1Aおよび1Bが前方に向かって下降傾斜するような姿勢である。かかる構成によれば、ワークホルダ20に当てた後のエアの向きは当初前方向きであるが、前壁120Fに当たることにより、後方向きに変わる。これにより、加工室120の最前方である前壁120Fまでエアが到達する。よって、加工室120の最前方までクリーニングを行うことができる。かつ、その後、切削粉等を後方に向けて送ることができる。 In this embodiment, the plurality of walls partitioning the processing chamber 120 includes a front wall 120F (which may include a processing chamber door 122) erected forward of the work holder 20, and the work holder The predetermined orientation of 20 is such that the two opposing surfaces 1A and 1B of the workpiece 1 held by the work holder 20 are inclined downward toward the front. According to such a configuration, the direction of the air after hitting the work holder 20 is initially forward, but changes to the rear by hitting the front wall 120F. As a result, the air reaches the front wall 120</b>F, which is the frontmost portion of the processing chamber 120 . Therefore, cleaning can be performed up to the frontmost part of the processing chamber 120 . In addition, after that, cutting powder and the like can be sent backward.
 本実施形態では、第2移動制御部105Cは、第2ブロー制御部105Aの制御によって主軸エアブロー装置55がエアを噴射しているときに、Y軸方向移動装置60Yを制御して主軸ノズル56を左方または右方に移動させる。これにより、上記した加工室120の最前方までのクリーニングを、左右方向の広範囲にわたって行うことができる。 In this embodiment, the second movement control unit 105C controls the Y-axis direction movement device 60Y to move the main shaft nozzle 56 while the main shaft air blow device 55 is blowing air under the control of the second blow control unit 105A. Move left or right. As a result, cleaning up to the frontmost portion of the processing chamber 120 can be performed over a wide range in the left-right direction.
 本実施形態では、第2ブロー制御部105Aは、主軸エアブロー装置55を制御して加工室120内にエアを噴射した後に、天面エアブロー装置93および底面エアブロー装置94を制御してそれぞれ天面ノズル93Nおよび底面ノズル94Nからエアを噴射させる。かかる構成によれば、主軸エアブロー装置55からのエアの噴射により加工室120内に飛散したかも知れない切削粉等を、天面ノズル93Nおよび底面ノズル94Nからのエアの噴射によって排気口128に運ぶことができる。これにより、加工室120内をさらに清浄にすることができる。 In this embodiment, the second blow control unit 105A controls the spindle air blow device 55 to inject air into the processing chamber 120, and then controls the top surface air blow device 93 and the bottom surface air blow device 94 to control the top surface nozzles. Air is jetted from 93N and the bottom nozzle 94N. According to such a configuration, the cutting dust and the like that may have been scattered in the machining chamber 120 by the air jet from the spindle air blow device 55 are carried to the exhaust port 128 by the air jet from the top nozzle 93N and the bottom nozzle 94N. be able to. Thereby, the inside of the processing chamber 120 can be further cleaned.
 本実施形態では、第2ブロー制御部105Aは、主軸エアブロー装置55を制御して加工室120内にエアを噴射する前にも、天面エアブロー装置93および底面エアブロー装置94を制御してエアを噴射させる。かかる構成によれば、天面ノズル93Nおよび底面ノズル94Nからのエアの噴射によって加工室120の天壁120U、後壁120Rr、および底壁120Dを概ね清浄にした後で、主軸ノズル56からのエアの噴射により加工室120をクリーニングする。このように段階を踏むことで、天壁120U、後壁120Rr、および底壁120Dに付着した切削粉が主軸ノズル56からのエアの噴射によって舞うことが抑制される。これにより、加工室120内をより清浄にすることができる。 In this embodiment, the second blow control unit 105A also controls the top surface air blow device 93 and the bottom surface air blow device 94 to blow air before controlling the spindle air blow device 55 to inject air into the processing chamber 120. inject. According to such a configuration, after the ceiling wall 120U, the rear wall 120Rr, and the bottom wall 120D of the processing chamber 120 are generally cleaned by jetting air from the top nozzle 93N and the bottom nozzle 94N, the air from the spindle nozzle 56 is cleaned. to clean the processing chamber 120. By performing steps in this way, cutting powder adhering to the ceiling wall 120U, the rear wall 120Rr, and the bottom wall 120D is suppressed from being scattered by the air jet from the spindle nozzle 56. Thereby, the inside of the processing chamber 120 can be made cleaner.
 本実施形態に係る切削加工機10では、複数の切削ツール6を収納可能なツールストッカ80は、ワークホルダ20を収容する加工室120とは区画された駆動装置室130に収容されている。切削装置50は、ツールストッカ80に収納された各切削ツール6を把持可能に構成され、把持した切削ツール6によってワークホルダ20に保持された被切削物1を切削する。主軸移動装置60は、切削装置50を駆動装置室130と加工室120との間で移動させるように構成されている。かかる構成によれば、加工室120で生成された切削粉がツールストッカ80に収納された切削ツール6に付着することが抑制される。これにより、切削ツール6に付着した切削粉に起因する不具合、例えば加工不良を抑制することができる。なお、本実施形態では、ツールストッカ80は駆動装置室130に収容されているが、加工室120と区画された他の部屋に収容されていてもよい。 In the cutting machine 10 according to this embodiment, the tool stocker 80 capable of storing a plurality of cutting tools 6 is housed in the driving device chamber 130 separated from the machining chamber 120 housing the work holder 20 . The cutting device 50 is configured to be able to grip each cutting tool 6 stored in the tool stocker 80 , and cuts the workpiece 1 held by the work holder 20 with the gripped cutting tool 6 . The spindle movement device 60 is configured to move the cutting device 50 between the drive device chamber 130 and the processing chamber 120 . According to such a configuration, it is possible to prevent the cutting powder generated in the machining chamber 120 from adhering to the cutting tools 6 stored in the tool stocker 80 . As a result, defects caused by the cutting powder adhering to the cutting tool 6, such as poor machining, can be suppressed. Although the tool stocker 80 is housed in the drive chamber 130 in this embodiment, it may be housed in another room separated from the processing chamber 120 .
 本実施形態では、駆動装置室130と加工室120とは、Y軸方向に並んで配置されている。ホルダ移動装置30は、Y軸方向に延びワークホルダ20を支持する支持アーム31と、駆動装置室130に収容され支持アーム31が接続されるとともにY軸方向に交差するX軸方向に移動可能に構成されたX軸方向移動体32と、X軸方向移動体32をX軸方向に移動させることによって支持アーム31およびワークホルダ20をX軸方向に移動させるX軸方向駆動モータ34と、を備えている。ツールストッカ80は、X軸方向移動体32に支持されている。かかる構成によれば、支持アーム31はツールストッカ80を支持していない。そのため、支持アーム31が撓みにくい。これにより、切削加工の精度が向上する。また、被切削物1を介して支持アーム31に加わる切削加工の負荷を高くすることができるため、時間当たりの切削量を大きくすることができる。これにより、切削のスループットを高めることができる。 In this embodiment, the drive device chamber 130 and the processing chamber 120 are arranged side by side in the Y-axis direction. The holder moving device 30 is connected to a support arm 31 that extends in the Y-axis direction and supports the work holder 20, and is housed in the drive device chamber 130 and is connected to the support arm 31, and is movable in the X-axis direction that intersects the Y-axis direction. and an X-axis direction driving motor 34 for moving the support arm 31 and the work holder 20 in the X-axis direction by moving the X-axis direction moving body 32 in the X-axis direction. ing. The tool stocker 80 is supported by the X-axis moving body 32 . With such a configuration, the support arm 31 does not support the tool stocker 80 . Therefore, the support arm 31 is less likely to bend. This improves the accuracy of cutting. In addition, since the cutting load applied to the support arm 31 through the workpiece 1 can be increased, the amount of cutting per hour can be increased. Thereby, the throughput of cutting can be increased.
 本実施形態では、切削装置50は、ワークホルダ20およびツールストッカ80よりも上方に設けられている。主軸移動装置60は、切削装置50が駆動装置室130の上方と加工室120の上方との間を移動するように、切削装置50をY軸方向に移動させるY軸方向移動装置60Yを備えている。主軸移動装置60は、また、切削装置50をZ軸方向に移動させるZ軸方向移動装置60Zを備えている。ホルダ移動装置30は、Y軸方向移動装置60Yによる切削装置50の移動経路の下方に設定されたツール把持位置P1にツールストッカ80を移動させることが可能に構成されている。かかる構成によれば、実施形態で説明したような手順により、ツールストッカ80に収納された切削ツール6を切削装置50に把持させること、および、切削ツール6をツールストッカ80に戻すことができる。 In this embodiment, the cutting device 50 is provided above the work holder 20 and the tool stocker 80. The spindle moving device 60 includes a Y-axis direction moving device 60Y for moving the cutting device 50 in the Y-axis direction so that the cutting device 50 moves between the upper side of the driving device chamber 130 and the upper side of the processing chamber 120. there is The spindle moving device 60 also includes a Z-axis direction moving device 60Z for moving the cutting device 50 in the Z-axis direction. The holder moving device 30 is configured to be able to move the tool stocker 80 to the tool gripping position P1 set below the moving path of the cutting device 50 by the Y-axis direction moving device 60Y. According to this configuration, the cutting tool 6 stored in the tool stocker 80 can be gripped by the cutting device 50 and the cutting tool 6 can be returned to the tool stocker 80 by the procedure described in the embodiment.
 本実施形態では、ホルダ移動装置30は、ツール把持位置P1よりも前方に設定されたツール交換位置P2にツールストッカ80を移動させることが可能に構成されている。本実施形態に係る切削加工機10は、ツール交換位置P2の上方に開口した開口部183を有するツール交換室180を備えている。ホルダ移動装置30を駆動してツールストッカ80をツール交換位置P2に移動させると、ユーザは、開口部183を通して、ツールストッカ80に切削ツール6を収納し、または、ツールストッカ80から切削ツール6を抜くことができる。かかる構成によれば、ツール交換室180が駆動装置室130と仕切られているため、ユーザが切削ツール6を交換するときに、ホルダ移動装置30に触れてしまうことを防止できる。また、切削ツール6の交換時などに駆動装置室130に外部の異物が侵入することが抑制されている。 In this embodiment, the holder moving device 30 is configured to be able to move the tool stocker 80 to the tool exchange position P2 set forward of the tool gripping position P1. The cutting machine 10 according to this embodiment includes a tool changing chamber 180 having an opening 183 that opens upward from the tool changing position P2. When the holder moving device 30 is driven to move the tool stocker 80 to the tool exchange position P2, the user stores the cutting tool 6 in the tool stocker 80 or removes the cutting tool 6 from the tool stocker 80 through the opening 183. can be pulled out. According to such a configuration, since the tool exchange chamber 180 is separated from the driving device chamber 130 , it is possible to prevent the user from touching the holder moving device 30 when exchanging the cutting tool 6 . In addition, foreign matter is prevented from entering the driving device chamber 130 when the cutting tool 6 is replaced.
 本実施形態では、ツールストッカ80は、それぞれ切削ツール6を収納可能な複数の収納孔81を備えており、複数の収納孔81は、千鳥状に配置されている。詳しくは、ツールストッカ80には、複数の収納孔81のうちの一部の複数の収納孔81が所定の並び方向(ここでは左右方向)に並んだ列が複数形成されており(ここでは、5つの列81A~81E)、複数の列81A~81Eのうちの隣り合った2つの列は、並び方向の位置がずれている。かかる構成によれば、スペースに対する切削ツール6の収納効率を向上させることができる。 In this embodiment, the tool stocker 80 has a plurality of storage holes 81 each capable of storing the cutting tool 6, and the plurality of storage holes 81 are arranged in a zigzag pattern. More specifically, the tool stocker 80 is formed with a plurality of rows in which some of the plurality of storage holes 81 are aligned in a predetermined alignment direction (here, left-right direction) (here, Five columns 81A to 81E), and two adjacent columns among the plurality of columns 81A to 81E are displaced in the alignment direction. According to such a configuration, it is possible to improve the storage efficiency of the cutting tool 6 with respect to the space.
 本実施形態に係る切削加工機10は、Z軸方向の下方に突き出すように切削ツール6を把持する把持部53と、主軸ノズル56を支持するノズル支持部材57と、主軸ノズル56を付勢する付勢部材58と、を備えている。ノズル支持部材57は、把持部53の側方に設定されたZ軸方向の下方側のエンド位置(下方側エンド位置)Pdと、下方側エンド位置PdよりもZ軸方向の上方にある他の位置との間を移動可能なように主軸ノズル56を支持している。付勢部材58は、ノズル支持部材57に支持された主軸ノズル56を付勢して、主軸ノズル56を下方側エンド位置Pdに保持している。かかる構成によれば、主軸ノズル56は、他の部材によって押されていないときには、付勢部材58の付勢により、切削ツール6の突き出し方向である下方側エンド位置Pdに位置している。そのため、このときには、主軸ノズル56と切削ツール6との間の距離が近い。よって、切削ツール6にエアを強く吹きつけることができる。かつ、主軸ノズル56は、他の部材と干渉して上方に押されると、付勢部材58の付勢力に抗して、下方側エンド位置Pdよりも上方、すなわち切削ツール6の突き出し方向の逆方向にある他の位置に移動する。よって、本実施形態に係る切削加工機10によれば、主軸ノズル56を切削ツール6により近接させることができるとともに、主軸ノズル56が邪魔となりにくい。 The cutting machine 10 according to the present embodiment includes a gripping portion 53 that grips the cutting tool 6 so as to protrude downward in the Z-axis direction, a nozzle support member 57 that supports the spindle nozzle 56, and the spindle nozzle 56 that is biased. and a biasing member 58 . The nozzle support member 57 has an end position (lower end position) Pd on the lower side in the Z-axis direction set on the side of the grip portion 53, and another position above the lower end position Pd in the Z-axis direction. A spindle nozzle 56 is supported so as to be movable between positions. The biasing member 58 biases the main shaft nozzle 56 supported by the nozzle support member 57 to hold the main shaft nozzle 56 at the lower end position Pd. According to such a configuration, the spindle nozzle 56 is positioned at the lower end position Pd in the projecting direction of the cutting tool 6 by the biasing force of the biasing member 58 when not pushed by another member. Therefore, at this time, the distance between the spindle nozzle 56 and the cutting tool 6 is short. Therefore, the cutting tool 6 can be strongly blown with air. In addition, when the spindle nozzle 56 interferes with other members and is pushed upward, the spindle nozzle 56 resists the biasing force of the biasing member 58 and moves upward from the lower end position Pd, that is, in the direction opposite to the projecting direction of the cutting tool 6 . Move to another position in the direction. Therefore, according to the cutting machine 10 of the present embodiment, the spindle nozzle 56 can be brought closer to the cutting tool 6, and the spindle nozzle 56 is less likely to be an obstacle.
 本実施形態では、主軸ノズル56は、ツールストッカ80に収納された切削ツール6を把持部53に把持させ、または把持部53から解放する際には少なくとも、下方側エンド位置Pdから移動する。本実施形態では、Z軸方向移動装置60Zは、ツールストッカ80に収納された切削ツール6を把持または解放するように設定されたZ軸方向の所定位置(作業位置Po)に把持部53を移動させるように構成されている。主軸ノズル56は、把持部53が作業位置Poに位置した状態ではツールストッカ80に当接する。主軸ノズル56は、これにより、付勢部材58の付勢力に抗して下方側エンド位置PdよりもZ軸方向の上方に位置する。そのため、ツールストッカ80に収納された切削ツール6を把持部53に把持させ、または把持部53から解放する際に、主軸ノズル56が邪魔にならない。言い換えると、主軸ノズル56がツールストッカ80に当接するような位置に下方側エンド位置Pdを設定することができるため、主軸ノズル56を切削ツール6の下端により接近させることができる。 In this embodiment, the spindle nozzle 56 moves from the lower end position Pd at least when the cutting tool 6 stored in the tool stocker 80 is gripped by the gripper 53 or released from the gripper 53 . In this embodiment, the Z-axis direction moving device 60Z moves the gripper 53 to a predetermined position (working position Po) in the Z-axis direction set to grip or release the cutting tool 6 stored in the tool stocker 80. It is configured to allow The spindle nozzle 56 contacts the tool stocker 80 when the gripping portion 53 is positioned at the working position Po. The main shaft nozzle 56 is thereby positioned above the lower end position Pd in the Z-axis direction against the biasing force of the biasing member 58 . Therefore, when the cutting tool 6 stored in the tool stocker 80 is gripped by the gripper 53 or released from the gripper 53, the spindle nozzle 56 does not interfere. In other words, the lower end position Pd can be set at a position where the spindle nozzle 56 contacts the tool stocker 80 , so the spindle nozzle 56 can be brought closer to the lower end of the cutting tool 6 .
 本実施形態では、主軸ノズル56は、側壁に形成されZ軸方向に斜交するように延びるカット面56bを備えている。かかる構成によれば、物体が側方からカット面56bを押すと、その押圧力の一部はカット面56bによってZ軸方向の上方向きの力に変換される。これにより、主軸ノズル56が上方に移動する。かかる構成によれば、このように、物体が側方から主軸ノズル56を押す場合でも、主軸ノズル56を移動させることができる。 In this embodiment, the main shaft nozzle 56 has a cut surface 56b formed on the side wall and extending obliquely in the Z-axis direction. According to such a configuration, when an object presses the cut surface 56b from the side, part of the pressing force is converted into an upward force in the Z-axis direction by the cut surface 56b. This causes the main shaft nozzle 56 to move upward. According to such a configuration, even when an object pushes the main shaft nozzle 56 from the side, the main shaft nozzle 56 can be moved.
 [他の実施形態]
 以上、一実施形態に係る切削加工機について説明した。しかし、ここに開示する技術は、他の態様により実施することもできる。例えば、上記した実施形態では、ツールストッカ80は、ホルダ移動装置30のX軸方向移動体32に設けられ、X軸方向に移動した。しかし、ツールストッカは、移動しない部材に設けられてもよい。例えば、ツールストッカは、切削装置の移動経路の下方に移動不能に固定されていてもよい。
[Other embodiments]
The cutting machine according to one embodiment has been described above. However, the technology disclosed herein can also be implemented in other ways. For example, in the embodiment described above, the tool stocker 80 was provided on the X-axis moving body 32 of the holder moving device 30 and moved in the X-axis direction. However, the tool stocker may be provided on a non-moving member. For example, the tool stocker may be immovably fixed below the path of travel of the cutting device.
 ツールストッカの構成は特に限定されない。例えば、切削ツールのツールストッカへの挿入方向は、上下方向を含む方向には限定されず、例えば、横向きであってもよい。 The configuration of the tool stocker is not particularly limited. For example, the direction in which the cutting tool is inserted into the tool stocker is not limited to directions including the vertical direction, and may be horizontal, for example.
 切削加工機の構成は特に限定されない。例えば、切削加工機は、ワークチェンジャを備えていなくてもよい。また、例えば、切削加工機の内部は、上記した実施形態のように区画されていなくてもよい。 The configuration of the cutting machine is not particularly limited. For example, the cutting machine may not have a work changer. Also, for example, the inside of the cutting machine may not be partitioned like the above-described embodiment.
 その他、特に言及されない限りにおいて、実施形態は本発明を限定しない。例えば、切削加工機は、歯科用成形品を作製するデンタル用の切削加工機でなくてもよい。被切削物は、アダプタを介して切削加工機に保持されなくてもよく、切削加工機によって直接保持されてもよい。 In addition, the embodiments do not limit the present invention unless otherwise specified. For example, the milling machine need not be a dental milling machine for making dental moldings. The workpiece need not be held by the cutting machine via an adapter, and may be held directly by the cutting machine.
1   被切削物
6   切削ツール
10  切削加工機
20  ワークホルダ(保持装置)
30  ホルダ移動装置(駆動装置)
31  支持アーム(支持部)
32  X軸方向移動体(移動体)
34  X軸方向駆動モータ(駆動部)
50  切削装置
60  主軸移動装置(移動装置)
60Y Y軸方向移動装置(第1移動装置)
60Z Z軸方向移動装置(第2移動装置)
80  ツールストッカ
81  収納孔
120 加工室(第2室)
130 駆動装置室(第1室)
180 ツール交換室(第3室)
183 開口部
P1  ツール把持位置
P2  ツール交換位置
1 workpiece 6 cutting tool 10 cutting machine 20 work holder (holding device)
30 holder moving device (driving device)
31 support arm (support part)
32 X-axis moving body (moving body)
34 X-axis direction drive motor (drive unit)
50 cutting device 60 spindle moving device (moving device)
60Y Y-axis movement device (first movement device)
60Z Z-axis movement device (second movement device)
80 tool stocker 81 storage hole 120 processing chamber (second chamber)
130 drive room (1st room)
180 Tool exchange room (3rd room)
183 Opening P1 Tool gripping position P2 Tool exchange position

Claims (6)

  1.  複数の切削ツールを収納可能なツールストッカと、
     前記ツールストッカを収容する第1室と、
     前記第1室と区画された第2室と、
     前記第2室に収容され、被切削物を保持する保持装置と、
     前記ツールストッカに収納された各切削ツールを把持可能に構成され、前記把持した切削ツールによって前記保持装置に保持された前記被切削物を切削する切削装置と、
     前記切削装置を前記第1室と前記第2室との間で移動させる移動装置と、を備えた、
    切削加工機。
    A tool stocker that can store multiple cutting tools,
    a first chamber accommodating the tool stocker;
    a second chamber separated from the first chamber;
    a holding device that is housed in the second chamber and holds an object to be cut;
    a cutting device configured to be able to grip each cutting tool stored in the tool stocker, and for cutting the workpiece held by the holding device with the gripped cutting tool;
    a moving device for moving the cutting device between the first chamber and the second chamber,
    cutting machine.
  2.  前記第1室と前記第2室とは、所定の第1方向に並んで配置され、
     前記第1方向に延び前記保持装置を支持する支持部と、前記第1室に収容され前記支持部が接続されるとともに前記第1方向に交差する第2方向に移動可能に構成された移動体と、前記移動体を前記第2方向に移動させることによって前記支持部および前記保持装置を前記第2方向に移動させる駆動部と、を備えた駆動装置をさらに備え、
     前記ツールストッカは、前記移動体に支持されている、
    請求項1に記載の切削加工機。
    The first chamber and the second chamber are arranged side by side in a predetermined first direction,
    a support portion that extends in the first direction and supports the holding device; and a moving body that is housed in the first chamber, connected to the support portion, and configured to be movable in a second direction that intersects the first direction. and a drive unit configured to move the support unit and the holding device in the second direction by moving the movable body in the second direction,
    The tool stocker is supported by the moving body,
    The cutting machine according to claim 1.
  3.  前記切削装置は、前記保持装置および前記ツールストッカよりも上方に設けられ、
     前記移動装置は、
      前記切削装置が前記第1室の上方と前記第2室の上方との間を移動するように、前記切削装置を前記第1方向に移動させる第1移動装置と、
      前記切削装置を上下方向に移動させる第2移動装置と、を備え、
     前記駆動装置は、前記第1移動装置による前記切削装置の移動経路の下方に設定されたツール把持位置に前記ツールストッカを移動させることが可能に構成されている、
    請求項2に記載の切削加工機。
    The cutting device is provided above the holding device and the tool stocker,
    The moving device
    a first moving device for moving the cutting device in the first direction so that the cutting device moves between above the first chamber and above the second chamber;
    a second moving device for moving the cutting device in the vertical direction,
    The driving device is configured to be able to move the tool stocker to a tool gripping position set below the movement path of the cutting device by the first moving device.
    The cutting machine according to claim 2.
  4.  前記駆動装置は、前記ツール把持位置よりも前方に設定されたツール交換位置に前記ツールストッカを移動させることが可能に構成され、
     前記ツール交換位置の上方に開口した開口部を有する第3室をさらに備えた、
    請求項3に記載の切削加工機。
    The driving device is configured to be capable of moving the tool stocker to a tool exchange position set forward of the tool gripping position,
    further comprising a third chamber having an opening that opens above the tool exchange position,
    The cutting machine according to claim 3.
  5.  前記ツールストッカは、それぞれ切削ツールを収納可能な複数の収納孔を備え、
     前記複数の収納孔は、千鳥状に配置されている、
    請求項1~4のいずれか一つに記載の切削加工機。
    The tool stocker has a plurality of storage holes each capable of storing a cutting tool,
    The plurality of storage holes are arranged in a zigzag pattern,
    A cutting machine according to any one of claims 1 to 4.
  6.  前記ツールストッカには、前記複数の収納孔のうちの一部の複数の収納孔が所定の並び方向に並んだ列が複数形成されており、
     前記複数の列のうちの隣り合った2つの列は、前記並び方向の位置がずれている、
    請求項5に記載の切削加工機。
    The tool stocker is formed with a plurality of rows in which some of the plurality of storage holes are aligned in a predetermined alignment direction,
    two adjacent columns among the plurality of columns are misaligned in the alignment direction;
    The cutting machine according to claim 5.
PCT/JP2023/006984 2022-02-28 2023-02-27 Cutting machine WO2023163159A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-029560 2022-02-28
JP2022029560A JP2023125458A (en) 2022-02-28 2022-02-28 cutting machine

Publications (1)

Publication Number Publication Date
WO2023163159A1 true WO2023163159A1 (en) 2023-08-31

Family

ID=87766230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006984 WO2023163159A1 (en) 2022-02-28 2023-02-27 Cutting machine

Country Status (2)

Country Link
JP (1) JP2023125458A (en)
WO (1) WO2023163159A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105173A (en) * 2006-09-29 2008-05-08 Nippei Toyama Corp Machine tool
JP2012206208A (en) * 2011-03-29 2012-10-25 Canon Electronics Inc Machining apparatus and three-dimensional machining apparatus
US8308621B2 (en) * 2009-10-13 2012-11-13 Shenq Fang Yuan Technology Co., Ltd. Multi-spindle machining machine with tool changing mechanism
WO2018047301A1 (en) * 2016-09-09 2018-03-15 株式会社牧野フライス製作所 Machine tool
JP2020028933A (en) * 2018-08-21 2020-02-27 Dgshape株式会社 Cutting device
JP2021126765A (en) * 2020-02-14 2021-09-02 イボクラール ビバデント アクチェンゲゼルシャフト Holding device for tool on machine tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105173A (en) * 2006-09-29 2008-05-08 Nippei Toyama Corp Machine tool
US8308621B2 (en) * 2009-10-13 2012-11-13 Shenq Fang Yuan Technology Co., Ltd. Multi-spindle machining machine with tool changing mechanism
JP2012206208A (en) * 2011-03-29 2012-10-25 Canon Electronics Inc Machining apparatus and three-dimensional machining apparatus
WO2018047301A1 (en) * 2016-09-09 2018-03-15 株式会社牧野フライス製作所 Machine tool
JP2020028933A (en) * 2018-08-21 2020-02-27 Dgshape株式会社 Cutting device
JP2021126765A (en) * 2020-02-14 2021-09-02 イボクラール ビバデント アクチェンゲゼルシャフト Holding device for tool on machine tool

Also Published As

Publication number Publication date
JP2023125458A (en) 2023-09-07

Similar Documents

Publication Publication Date Title
KR100890990B1 (en) Computerized numerical control with high-speed cutter with chip and dust collecting system for removing chip and dust
CZ20014711A3 (en) Milling machine
JP3697697B1 (en) Horizontal machining center and machining method using the same
CN1931551B (en) Cutting apparatus and processing method
WO2023163159A1 (en) Cutting machine
WO2023163158A1 (en) Cutting machine
WO2023163126A1 (en) Cutting machine
WO2023163130A1 (en) Cutting machine
WO2023163127A1 (en) Cutting machine
WO2023163157A1 (en) Cutting machine
WO2023163132A1 (en) Cutting machine
JP4284593B2 (en) Modular system for machine tools
JP2023125454A (en) cutting machine
JP3008391B2 (en) Powder beam processing machine
WO2018168096A1 (en) Machine tool
TWI675730B (en) Cutting device
JP2002273594A (en) Dust collector for thermal cutting and working device
WO2023163166A1 (en) Cutting machine
JP5265963B2 (en) Machine Tools
JP6957706B1 (en) Machine Tools
JP2023125346A (en) cutting machine
JP2004209534A (en) Combined laser punch machine, and method for cleaning work chip
KR100538699B1 (en) Cutting machine
JP2003179002A (en) Dicing machine
JP6876134B2 (en) Machine Tools

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760157

Country of ref document: EP

Kind code of ref document: A1