WO2023163079A1 - 潅水システムおよび制御装置 - Google Patents

潅水システムおよび制御装置 Download PDF

Info

Publication number
WO2023163079A1
WO2023163079A1 PCT/JP2023/006609 JP2023006609W WO2023163079A1 WO 2023163079 A1 WO2023163079 A1 WO 2023163079A1 JP 2023006609 W JP2023006609 W JP 2023006609W WO 2023163079 A1 WO2023163079 A1 WO 2023163079A1
Authority
WO
WIPO (PCT)
Prior art keywords
water supply
valve
water
supply valve
distribution
Prior art date
Application number
PCT/JP2023/006609
Other languages
English (en)
French (fr)
Inventor
勇一朗 守谷
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023163079A1 publication Critical patent/WO2023163079A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Definitions

  • the disclosure in this specification relates to an irrigation system and control device for controlling the supply of irrigation water to fields.
  • Patent Document 1 discloses an irrigation system.
  • Patent Document 1 discloses a pressure-compensated drip tube that has an emitter inside and achieves a constant water discharge amount. This device controls the supply and stop of irrigation from the drip tube by opening and closing a valve that allows or blocks the supply of water to the drip tube. When the valve is open, water seeps out from the drip tube and the soil in the vicinity of the tube can be watered.
  • Patent Document 1 it is not possible to instantaneously change the amount of water spouted from the tube according to the weather, soil conditions, crop growth conditions, and the like.
  • the purpose of the disclosure in this specification is to provide an irrigation system and control device that can perform both drip irrigation and water irrigation.
  • One of the disclosed irrigation systems includes a distribution tube provided in a field where plants grow, having a plurality of through-holes for spraying irrigation water to the field and having no pressure compensation mechanism, and a distribution tube.
  • a water supply valve that controls the pressure of water flowing down to the distribution tube upstream of the tube, and a control device that controls the valve opening of the water supply valve to control the amount of water discharged from the distribution tube through the through hole. , provided.
  • the irrigation amount is controlled by controlling the valve opening of the water supply valve upstream of the distribution tube, which does not have a pressure compensation mechanism.
  • the valve opening degree By controlling the valve opening degree, it is possible to perform watering by sequentially varying the watering amount.
  • the irrigation system can perform both drip and water irrigation from the distribution tube.
  • One of the disclosed control devices is a water supply valve that controls the pressure of irrigation water flowing down to a distribution tube having a plurality of through holes and no pressure compensating mechanism upstream of the distribution tube. and an output unit for outputting a control signal for controlling the opening of the valve to the water supply valve in order to control the amount of water discharged from the distribution tube through the through hole.
  • the calculation unit determines the opening of the valve, and the output unit outputs a control signal for controlling the opening of the valve to the water supply valve in order to control the amount of sprinkling water.
  • FIG. 3 shows a radio signal; 4 is a flowchart for explaining sensor processing; 4 is a flowchart for explaining update processing; 4 is a flowchart for explaining monitoring processing; 6 is a flowchart for explaining water supply processing; It is a flow chart for explaining irrigation processing.
  • FIG. 8 is a flowchart for explaining user update processing; 4 is a flowchart for explaining forced update processing; It is a cross-sectional view showing a valve device that can be applied as a water supply valve. It is a figure which shows the structure of the drive part with which a valve apparatus is provided. It is a perspective view which shows the valve
  • FIG. 4 is a configuration diagram showing a positional relationship among a distribution tube, a water supply valve, and a water pressure sensor; FIG.
  • FIG. 4 is a diagram for explaining the relationship between expansion of distribution tubes and internal pressure; It is a block diagram which shows the channel
  • FIG. 4 is a diagram showing the relationship between the water spouting position in the distribution tube and the amount of water to be applied. It is a block diagram which shows the channel
  • FIG. 4 is a diagram showing the relationship between the water spouting position in the distribution tube and the amount of water to be applied.
  • FIG. 4 is a diagram showing the relationship between the water spouting position in the distribution tube and the amount of water to be applied.
  • FIG. 4 is a diagram showing the relationship between the water spouting position in the distribution tube and the amount of water to be applied.
  • FIG. 11 is a configuration diagram showing a passage configuration according to a seventh embodiment;
  • FIG. 21 is a configuration diagram showing a passage configuration according to an eighth embodiment;
  • FIG. 1 A first embodiment disclosing an example of an irrigation system will be described with reference to FIGS. 1 to 18.
  • FIG. the three directions that are orthogonal to each other are referred to as x-direction, y-direction, and z-direction.
  • the plane defined by the x-direction and the y-direction is along the horizontal plane in this document.
  • the z-direction is along the vertical direction.
  • description of "direction" is omitted, and x, y, and z are simply described.
  • the irrigation system 10 is applied to an open field 20 cultivated on hills and plains. As shown in FIG. 1, a form in which the irrigation system 10 is applied to a field 20 cultivated in a plain will be described.
  • the area of this field 20 ranges from several tens of square meters to several thousand square kilometers.
  • a field 20 is provided with a plurality of growing places such as ridges extending in the x direction.
  • a plurality of growth sites extending in the x-direction are spaced apart in the y-direction. Seeds and seedlings of the plant 30 are buried in each of these growing places.
  • Plants 30 include, for example, grapes, corn, almonds, raspberries, leafy vegetables, and cotton.
  • a plurality of plants 30 are grown in one growing place.
  • a plurality of plants 30 are aligned in the x-direction to form one row.
  • a plurality of plants 30 arranged in a row in the x direction are hereinafter referred to as a plant group 31 .
  • a plurality of plant groups 31 are lined up with a space in the y direction.
  • the y-direction shortest distance between the plurality of plant groups 31 is longer than the x-direction shortest distance between the plurality of plants 30 included in one plant group 31 .
  • the distance between the plurality of plant groups 31 in the y-direction can be varied according to the type of growing plants 30 and the undulations and climate of the field 20 .
  • the distance between the plurality of plant groups 31 in the y direction is about 1 m to 10 m. Even if the plants 30 are overgrown with foliage in the y direction, at least a width is ensured that allows a person to move between the two plant groups 31 in the x direction.
  • the irrigation system 10 includes a water supply device 100 and a control device 200 .
  • the water supply device 100 supplies irrigation water to the plants 30 in the field 20 .
  • the control device 200 determines the supply time and amount of water to be supplied from the water supply device 100 to the plants 30 during the watering period. Controller 200 determines the irrigation schedule for water supply system 100 .
  • the water supply device 100 has a pump 110 , a water supply pipe 130 and a pipe module 150 .
  • Pump 110 is a water source that supplies irrigation water to water supply pipe 130 .
  • the piping module 150 controls the spout of irrigation water supplied to the water supply piping 130 .
  • Pump 110 is always in a driven state. Alternatively, the pump 110 is in a daytime running state.
  • the pump 110 pumps irrigation water stored in a tank or reservoir and supplies it to the water supply pipe 130 .
  • Irrigated water includes well water, river water, rain water, and city water.
  • the water supply pipe 130 is provided with a plurality of water supply valves 152 . When each of the plurality of water supply valves 152 is in a closed state and there is no leakage of sprinkling water from the water supply pipe 130, the water supply pipe 130 is filled with sprinkling water.
  • the water pressure in the water supply pipe 130 becomes a value (also referred to as pump pressure) that depends on the discharge capacity of the pump 110 .
  • pump pressure also referred to as pump pressure
  • irrigation water is discharged from the water supply pipe 130 to the farm field 20 .
  • the irrigation spout is stabilized on average over time, the water pressure in the water supply pipe 130 becomes a fluid pressure that is lower than the pump pressure.
  • the water supply pipe 130 includes a main pipe 131 and a supply pipe 132 .
  • a main pipe 131 is connected to the pump 110 .
  • the supply pipe 132 is connected to the main pipe 131 .
  • the pump 110 supplies sprinkling water from the main pipe 131 to the supply pipe 132 . Irrigated water is supplied to the field 20 from the supply pipe 132 .
  • the main pipe 131 includes a vertical pipe 133 and a horizontal pipe 134 .
  • the vertical pipe 133 extends in the y direction.
  • the horizontal pipe 134 extends in the x direction.
  • the vertical pipe 133 and the horizontal pipe 134 are connected to each other. Due to such a configuration, water flows in the main pipe 131 in the y-direction and the x-direction.
  • one vertical pipe 133 is connected to one pump 110 .
  • a plurality of horizontal pipes 134 extend in the x direction from the vertical pipes 133 extending in the y direction.
  • the position of the lateral pipe 134 in the z-direction is set to be farther from the ground than the top of the mature plant 30 .
  • the configuration shown in FIG. 1 is merely an example of a passage configuration for irrigation.
  • the position of the pipe 133 in the z direction is not particularly limited.
  • a plurality of horizontal pipes 134 are arranged with a space in the y direction.
  • the y-direction shortest distance between the plurality of lateral pipes 134 is equivalent to the y-direction shortest distance between the plurality of plant groups 31 .
  • One of the multiple lateral pipes 134 is provided to one of the multiple plant groups 31 .
  • the horizontal pipe 134 extends along the direction in which the plants 30 included in the plant group 31 are arranged.
  • a supply pipe 132 is connected to the lateral pipe 134 .
  • a plurality of supply pipes 132 are connected to one horizontal pipe 134 .
  • a plurality of supply pipes 132 connected to one horizontal pipe 134 are spaced apart in the x direction and arranged side by side.
  • supply piping 132 includes connecting piping 135 and distribution tube 136 .
  • the connecting pipe 135 hangs down from the horizontal pipe 134 in the z-direction.
  • Two connecting ports opening in the x direction are formed on the tip side of the connecting pipe 135 .
  • a distribution tube 136 is connected to these two connection ports.
  • the distribution tube 136 does not have a pressure correction mechanism that achieves a constant water discharge rate regardless of changes in water pressure.
  • the amount of water spouted from the through-hole of the distribution tube 136 changes according to the water pressure.
  • Distribution tube 136 includes a first distribution tube 136a connected to one of the two connection ports and a second distribution tube 136b connected to the other of the two connection ports.
  • the first distribution tube 136a and the second distribution tube 136b extend in opposite directions in the x-direction from the connection position with the connection pipe 135. As shown in FIG.
  • Each tube of the first distribution tube 136a and the second distribution tube 136b is formed with a plurality of through-holes that communicate the inside and outside of the tube through which sprinkling water flows.
  • a plurality of through-holes are arranged side by side at predetermined intervals in the axial direction of the tube in each tube.
  • the through-holes may be arranged side by side at predetermined intervals in the circumferential direction of the tube.
  • each of the first distribution tube 136a and the second distribution tube 136b has three through holes arranged in the axial direction.
  • the spacing between the plurality of through-holes and the spacing between the plurality of plants 30 may be different.
  • the number of through holes formed in each tube is not limited to three.
  • the sprinkling water supplied to the vertical pipe 133 by the pump 110 flows in the vertical pipe 133 in the y direction.
  • This sprinkling water is supplied to each of the plurality of horizontal pipes 134 connected to the vertical pipes 133 .
  • Sprinkled water flows in the x-direction through each of the plurality of horizontal pipes 134 .
  • the irrigation water flowing in the horizontal pipe 134 flows down to the distribution tube 136 via the connecting pipe 135 .
  • the irrigation water is discharged from each through-hole in each of the first distribution tube 136a and the second distribution tube 136b and supplied to the plants 30 .
  • each distribution tube is located closer to the ground side of the farm field 20 than to the top side of the plant 30 in the height direction.
  • the irrigation water supplied from the through-holes of the first distribution tube 136a and the second distribution tube 136b is mainly supplied to the trunk of the plant 30 and its roots.
  • the through-hole is provided at a position higher than the portion facing the ground in each tube.
  • the sprinkling water discharged from the through-hole at such a position spreads in a radial direction with respect to the central axis of the tube, and can be sprayed at a position away from the tube.
  • the piping module 150 is provided on the supply piping 132 .
  • the piping module 150 has a storage box 151 , a water supply valve 152 and a water pressure sensor 153 .
  • a water supply valve 152 and a water pressure sensor 153 are housed inside the storage box 151 .
  • the water supply valve 152 is provided in the connecting pipe 135 at a position close to each of the first distribution tube 136a and the second distribution tube 136b. All through-holes are provided between the tip portions of the first distribution tube 136 a and the second distribution tube 136 b respectively, which are separated from the connecting pipe 135 and the water supply valve 152 .
  • the connecting pipe 135 communicates with the through hole. As a result, sprinkling water is discharged from the through holes. Conversely, when the water supply valve 152 is closed, communication between the connecting pipe 135 and the through hole is cut off. This stops sprinkling water from the through holes.
  • the opening degrees of the water supply valve 152 provided on the first distribution tube 136a and the water supply valve 152 provided on the second distribution tube 136b are independently controlled by the control device 200. Such opening degree control independently controls the discharge of sprinkling water from the through hole of the first distribution tube 136a and the discharge of sprinkling water from the through hole of the second distribution tube 136b.
  • the control device 200 arbitrarily controls the opening of the water supply valve 152 from a predetermined opening to full opening.
  • the water supply valve 152 is a flow control valve or pressure control valve that can adjust the downstream or upstream pressure to precisely vary the flow rate.
  • the predetermined opening is set to a value that includes a slightly opened opening or 0% opening, that is, fully closed.
  • the control device 200 controls the discharge flow rate or discharge flow rate per unit time discharged from each through-hole by controlling the valve opening degree of the water supply valve 152 . With this control, the controller 200 can control the splash distance, which is the distance at which the sprinkling water discharged from the distribution tube 136 lands away from the distribution tube 136 .
  • the water splashing distance is the distance between the distribution tube 136 and the ground landing point of the water sprayed from the distribution tube 136 through the through-hole. According to this technology for controlling the distance of water splashing, it is possible to efficiently irrigate areas in need of irrigation, which contributes to saving water.
  • the control device 200 determines the watering distance based on the type of the plant 30 to be watered, the range of the soil layer of the field 20, and the like.
  • Control device 200 controls the valve opening degree of water supply valve 152 so that the determined splash distance is obtained.
  • the valve opening degree of the water supply valve 152 is controlled so as to increase the splash distance when the plant 30 has wide roots or when the soil layer is shallow and wide.
  • the valve opening degree of the water supply valve 152 is controlled so as to keep the splashing distance small when the plant 30 has deep roots or when the plowing layer is located near the distribution tube 136 .
  • the splashing distance can be rephrased as the sprinkling distance.
  • the water pressure sensor 153 is provided near a portion of the connecting pipe 135 where the first distribution tube 136a and the second distribution tube 136b are connected. Each water pressure sensor 153 is a pressure sensor that detects water pressure in the connecting pipe 135 . The water pressure detected by the water pressure sensor 153 is output to the control device 200 . The water pressure sensor 153 is provided between the connection portion of the first distribution tube 136 a to the connection pipe 135 and the water supply valve 152 and between the connection portion of the second distribution tube 136 b to the connection pipe 135 and the water supply valve 152 . may The water pressure sensor 153 may be provided in the vicinity of the connecting portion of the connecting pipe 135 with the lateral pipe 134 . The water pressure sensor 153 may be located closer to the side pipe 134 than the water supply valve 152 in the water flow path of the supply pipe 132 .
  • the water pressure sensor 153 detects the pump pressure.
  • the water supply valve 152 changes from the closed state to the open state, sprinkling water is discharged from the distribution tube 136 .
  • the water pressure sensor 153 detects the flow pressure.
  • the water supply valve 152 changes from the open state to the closed state, the sprinkling water from the water supply pipe 130 stops.
  • the water pressure in the water supply pipe 130 gradually recovers from fluid pressure to pump pressure.
  • the water pressure sensor 153 detects the transitional water pressure in which the flow pressure gradually recovers to the pump pressure.
  • the irrigation system 10 may be configured to include a flow rate sensor that detects the flow rate of the fluid flowing through the passage. The irrigation system 10 feedback-controls the opening degree of the water supply valve 152 using the detection value of the water pressure sensor 153 and the flow sensor.
  • control device 200 includes monitoring section 300 , integrated communication section 400 , information storage section 500 , and integrated operation section 600 .
  • the integrated communication unit 400 is written as an ICD.
  • the control device 200 has a plurality of monitoring units 300 . Each of the multiple monitoring units 300 corresponds to a predetermined divided area in the agricultural field 20 .
  • One monitoring unit 300 is provided corresponding to, for example, one piping module 150 .
  • the monitoring unit 300 and the piping module 150 are electrically connected.
  • the water pressure detected by the water pressure sensor 153 is input to the monitoring unit 300 .
  • the monitoring unit 300 detects environmental values, which are physical quantities related to the environment of the field 20 .
  • Each of the multiple monitoring units 300 outputs the water pressure and the environmental value to the integrated communication unit 400 by wireless communication.
  • the integrated communication unit 400 outputs the water pressure and environmental value input from each monitoring unit 300 to the information storage unit 500 by wireless communication.
  • the information storage unit 500 stores these water pressure and environmental values.
  • An example of the information storage unit 500 is a so-called cloud.
  • the integrated calculation unit 600 reads various information such as water pressure and environmental values stored in the information storage unit 500 .
  • the integrated calculation unit 600 appropriately processes the read information, and displays the information and processing results on the monitor 700 of the user's smart phone or personal computer.
  • the integrated calculation unit 600 is included in the user's smartphone, personal computer, or the like.
  • the integrated operation unit 600 has an information processing operation device 610 , a memory 620 and a communication device 630 .
  • the information processor 610 is denoted by IPCE, the memory 620 by MM, and the communication device 630 by CD.
  • the information processing computing device 610 includes a processor.
  • the information processing arithmetic device 610 performs arithmetic processing related to sprinkling. Such functions are realized by downloading the watering application program to the information processing device 610 .
  • the memory 620 is a non-transitional physical storage medium that non-temporarily stores various programs and various information that can be read by a computer or processor.
  • Memory 620 includes volatile memory and non-volatile memory.
  • the memory 620 stores various information input to the communication device 630 and processing results of the information processing arithmetic device 610 .
  • the information processing arithmetic device 610 executes various arithmetic processing using information stored in the memory 620 .
  • the communication device 630 has a wireless communication function.
  • the communication device 630 converts the received radio signal into an electrical signal and outputs the electrical signal to the information processing device 610 .
  • the communication device 630 outputs the processing result of the information processing device 610 as a radio signal.
  • FIG. 1 The information processing arithmetic device 610 corresponds to a processing arithmetic unit.
  • the user inputs user instructions related to the watering process and watering schedule to the integrated calculation unit 600 using the input device 800 such as a touch panel and keyboard. Based on this user instruction and various information read from the information storage unit 500, the integrated calculation unit 600 outputs a watering treatment command and determines a watering schedule. If there is no instruction from the user, the integrated calculation unit 600 automatically determines the watering schedule based on various information.
  • the integrated calculation unit 600 When the integrated calculation unit 600 detects an irrigation processing command or determines that it is time to start supplying irrigation water in the irrigation schedule, it outputs an instruction signal for controlling the water supply valve 152 to the information storage unit 500 .
  • This instruction signal is input from the information storage section 500 to the monitoring section 300 via the integrated communication section 400 .
  • the monitoring unit 300 controls output and non-output of the water supply signal to the water supply valve 152 based on the instruction signal. Thereby, the open/close state of the water supply valve 152 is controlled. As a result, the supply of irrigation water to the field 20 is controlled. At least one of the instruction signal and the water supply signal corresponds to the control signal.
  • one monitoring unit 300 is provided for one supply pipe 132 .
  • the plurality of monitoring units 300 are arranged in a matrix with the water supply valves 152 and the water pressure sensors 153 of the plurality of piping modules 150 in the field 20 with the x direction as the row direction and the y direction as the column direction. be done.
  • the environment of each of a plurality of divided areas partitioned in the row direction and the column direction is individually monitored by the monitoring unit 300 corresponding to each divided area. Furthermore, the supply of irrigation water in each of the plurality of divided areas is individually controlled by the corresponding monitoring unit 300 and piping module 150 .
  • the monitoring section 300 has an environment sensor 310 and a control section 320 .
  • the water supply valve 152 and the water pressure sensor 153 of the piping module 150 are electrically connected to the controller 320 .
  • the environment sensor 310 is denoted by ES, the water supply valve 152 by WB, and the water pressure sensor 153 by WPS.
  • a plurality of environment sensors 310 are arranged in a matrix in the field 20 together with the piping module 150 .
  • Each environmental sensor 310 detects the environmental value of each of the plurality of divided areas.
  • Each water pressure sensor 153 detects the water pressure of each of the plurality of divided areas. The detected environmental value and water pressure of each of the plurality of divided areas are stored in the information storage unit 500 .
  • the control unit 320 includes a microcomputer 330, a communication unit 340, an RTC 350, and a power generation unit 360.
  • Microcomputer is an abbreviation for microcomputer.
  • RTC is an abbreviation for Real Time Clock.
  • the communication unit 340 is denoted as CDP.
  • Environmental values and water pressure are input to the microcomputer 330.
  • the microcomputer 330 outputs these environmental values and water pressure to the integrated communication section 400 via the communication section 340 .
  • An instruction signal is input to the microcomputer 330 from the integrated communication unit 400 .
  • the microcomputer 330 outputs a water supply signal to the water supply valve 152 based on this instruction signal.
  • the microcomputer 330 corresponds to an arithmetic processing unit.
  • the microcomputer 330 is a control device that controls the operation of the water supply valve 152 .
  • the microcomputer 330 has sleep mode and normal mode as operation modes.
  • the sleep mode is a state in which the microcomputer 330 stops arithmetic processing.
  • the normal mode is a state in which the microcomputer 330 is executing arithmetic processing. Normal mode consumes more power than sleep mode.
  • the communication unit 340 performs wireless communication with the integrated communication unit 400.
  • the communication unit 340 outputs the electrical signal output from the microcomputer 330 to the integrated communication unit 400 as a radio signal.
  • the communication unit 340 receives the radio signal output from the integrated communication unit 400 and converts it into an electrical signal.
  • Communication unit 340 outputs the electrical signal to microcomputer 330 . If the electrical signal contains the instruction signal, the microcomputer 330 switches from sleep mode to normal mode.
  • the RTC 350 has a clock function that keeps time and a timer function that measures time.
  • the RTC 350 outputs a wakeup signal to the microcomputer 330 when a preset time has come or a preset time has elapsed.
  • this wakeup signal is input to the microcomputer 330 in sleep mode, the microcomputer 330 switches from sleep mode to normal mode.
  • the power generation unit 360 converts the light energy obtained by the solar cell into electrical energy.
  • the power generation unit 360 functions as a power supply source for the monitoring unit 300 .
  • Power is continuously supplied from generator 360 to RTC 350 . This prevents the clock function and timer function of the RTC 350 from being impaired.
  • the environment sensor 310 detects the environmental value in the corresponding divided area.
  • the environment sensor 310 includes a soil sensor 311 that detects soil moisture content and the like.
  • a plurality of soil sensors 311 detect the soil moisture content of a plurality of divided areas arranged in the field 20 . In the drawing, the soil sensor 311 is indicated as SMS.
  • each environmental sensor 310 has a solar radiation sensor 312 that detects the amount of solar radiation.
  • a plurality of solar radiation sensors 312 detect the amount of solar radiation in a plurality of divided areas in the agricultural field 20 .
  • the solar radiation sensor 312 is denoted as SRS.
  • the monitor 700 displays a map of the soil moisture content distribution and the solar radiation distribution in the field 20 by arranging the soil moisture content and the solar radiation detected in a plurality of divided areas in a matrix. Similarly, by arranging the water pressure detected by the plurality of water pressure sensors 153 in a matrix on the monitor 700 , the water pressure distribution of the water supply pipe 130 in the field 20 is displayed on the monitor 700 as a map. Such map display processing is performed by the integrated calculation unit 600 .
  • the environmental values in the field 20 include rainfall, temperature, humidity, atmospheric pressure, and wind volume. Sensors that detect these environmental values are a rain sensor 313 , a temperature sensor 314 , a humidity sensor 315 , an air pressure sensor 316 and a wind sensor 317 . These are included in at least one environmental sensor 310 of the plurality of monitoring units 300 .
  • the environment sensor 310 of the monitoring unit 300 includes various sensors that detect environmental values of the entire field 20 .
  • An example of the environment sensor 310 is shown in FIG.
  • the rain sensor 313 is denoted by RS
  • the temperature sensor 314 by TS
  • the humidity sensor 315 by MS
  • the atmospheric pressure sensor 316 by PS
  • the wind sensor 317 by WS.
  • the wind sensor 317 may be configured to detect not only the wind volume but also the wind direction.
  • At least one of the rain sensor 313 , temperature sensor 314 , humidity sensor 315 , atmospheric pressure sensor 316 and wind sensor 317 may be arranged in rows and columns in the field 20 .
  • the amount of rainfall, temperature, humidity, air pressure, and wind volume change greatly for each divided area, for example, because the field 20 is large, the field 20 is rugged, or the climate of the field 20 changes drastically. effective when it is easy to
  • the rainfall amount, temperature, humidity, air pressure, and wind volume detected by these sensors in a matrix, it is possible to display these environmental values on the monitor 700 on a map.
  • Outputs of these sensors are output to the communication unit 340 via the integrated communication unit 400 .
  • the outputs of these sensors are stored in the information storage section 500 via the integrated communication section 400 .
  • the environmental value controlled by the watering system 10 includes the soil water content.
  • the irrigation system 10 controls the supply time and supply amount of irrigation water for each divided area. By doing so, the soil water content for each divided area is individually controlled.
  • the plant 30 is rooted in the soil layer of the field 20.
  • the growth of the plant 30 depends on the amount of water contained in the soil of this plowing layer (also called soil water content). When the soil water content exceeds the growth-inhibiting water point, the plant 30 becomes diseased. If the soil moisture content drops below the permanent wilting point, the plant 30 will not wilt. Although the growth inhibition water point and the permanent wilting point differ depending on the type of plant 30, their values are known. These values are stored in the information storage unit 500 .
  • the current value of the soil moisture content is detected by the soil sensor 311.
  • Physical quantities related to soil water content include soil water content tension (pF value) and soil dielectric constant ( ⁇ ).
  • the soil sensor 311 of this specification detects the pF value.
  • the soil moisture content of the plowing layer increases or decreases due to environmental changes in the field 20 .
  • the soil water content increases.
  • the soil moisture content decreases.
  • the plant 30 absorbs water or water permeates to a lower layer than the plowing layer, the soil water content decreases.
  • a rain sensor 313 detects the amount of rain (rainfall) that falls on the plowed layer.
  • the amount of water that evaporates from the soil layer depends on the amount of solar radiation, temperature, humidity, and airflow. These are detected by solar sensor 312 , temperature sensor 314 , humidity sensor 315 and wind sensor 317 .
  • the amount of water absorbed by the plant 30 per unit time can be estimated in advance depending on the type of the plant 30 .
  • the amount of water permeating into layers below the plowing layer per unit time can be estimated in advance from the water retention capacity of the soil.
  • the environment sensor 310 detects the current value of the soil moisture content of the plowed layer, the predicted value related to the prediction of the increase from the current value of the soil moisture content of the plowed layer due to environmental changes, and the prediction of the decrease. To detect. These are stored in the information storage unit 500 as environment values.
  • the information storage unit 500 stores the growth inhibition water point and permanent wilting point of the plant 30, the amount of water absorbed by the plant 30 per unit time, and the water retention capacity of the soil. Instructions from the user (user instructions) described above are stored in the information storage unit 500 . In this way, the information storage unit 500 stores various information for determining the watering schedule.
  • the microcomputer 330 has an acquisition section 331 , a signal output section 332 , a storage section 333 and a processing section 334 .
  • the acquisition unit 331 is denoted by AD
  • the signal output unit 332 by SOU
  • the storage unit 333 by MU
  • the processing unit 334 by PU.
  • the environmental value detected by the environment sensor 310 is input to the acquisition unit 331 .
  • the water pressure detected by the water pressure sensor 153 is input to the acquisition unit 331 .
  • Acquisition unit 331 and each of environment sensor 310 and water pressure sensor 153 are electrically connected.
  • a wire 160 shown in FIG. 1 is an example of a wire connecting the acquisition unit 331 and the soil sensor 311 and a wire connecting the acquisition unit 331 and the water pressure sensor 153 .
  • the signal output section 332 is electrically connected to the water supply valve 152 .
  • a control signal (water supply signal) for controlling the opening degree of the water supply valve 152 is output from the signal output section 332 to the water supply valve 152 .
  • the water supply valve 152 is closed when the water supply signal is not input.
  • the water supply valve 152 is open when the water supply signal is input.
  • the storage unit 333 is a non-transitional material storage medium that non-temporarily stores programs and data readable by computers and processors.
  • the storage unit 333 has a volatile memory and a nonvolatile memory.
  • the storage unit 333 stores a program for the processing unit 334 to execute arithmetic processing. This program includes at least a portion of the irrigation application program described above.
  • the storage unit 333 temporarily stores data when the processing unit 334 executes arithmetic processing.
  • Storage unit 333 stores various data input to acquisition unit 331 and communication unit 340 and acquisition times of the various data.
  • the processing unit 334 switches from sleep mode to normal mode.
  • the processing unit 334 reads programs and various data stored in the storage unit 333 and executes arithmetic processing. This calculation processing includes calculation of the valve opening necessary for causing the water splashed through the through hole of the distribution tube 136 to reach the desired watering position.
  • the processing unit 334 corresponds to a computing unit.
  • the processing unit 334 reads from the RTC 350 the acquisition times of the various sensor signals input to the acquisition unit 331 and the instruction signal input to the communication unit 340 .
  • the processing unit 334 causes the storage unit 333 to store the instruction signal and the acquisition time.
  • the processing unit 334 stores the environmental value and water pressure input from the environment sensor 310 and the water pressure sensor 153 and their acquisition times in the information storage unit 500 via the communication unit 340 and the integrated communication unit 400 .
  • the processing unit 334 sends a water supply signal to the water supply valve 152 through the signal output unit 332 based on the instruction signal input from the integrated calculation unit 600 through the information storage unit 500, the integrated communication unit 400, and the communication unit 340. Output.
  • the communication unit 340 converts the electrical signal input from the processing unit 334 into a radio signal. Communication unit 340 outputs this radio signal to integrated communication unit 400 . The communication unit 340 converts the radio signal output from the integrated communication unit 400 into an electrical signal. The communication section 340 outputs this electrical signal to the processing section 334 .
  • the radio signal output by the communication unit 340 includes an address 341 and data 342, which are simply shown in FIG. In the drawing, the address 341 is written as ADD, and the data 342 is written as DAT.
  • radio signals are transmitted and received between the plurality of communication units 340 and the integrated communication unit 400 .
  • the address 341 included in the radio signal is an identification code indicating from which one of the plurality of communication units 340 the signal is output.
  • the address included in the radio signal is an identification code indicating from which one of the plurality of processing units 334 the address is output.
  • a unique address 341 is stored in each of the plurality of storage units 333 .
  • the address 341 is also included in the radio signal output from the integrated communication unit 400 .
  • the radio signal data 342 includes the instruction signal.
  • Each of the plurality of communication units 340 receives this radio signal.
  • This radio signal is converted into an electric signal by each of the plurality of communication units 340 .
  • This electrical signal is then input to each of the plurality of processing units 334 .
  • the processing unit 334 having the same address 341 as the address 341 included in the electrical signal executes arithmetic processing based on the electrical signal.
  • the microcomputer 330 intermittently drives the sleep mode and the normal mode alternately. Therefore, wireless communication between the communication unit 340 and the integrated communication unit 400 is not frequently performed.
  • the time interval for wireless communication between the communication unit 340 and the integrated communication unit 400 is lengthened. This makes it possible to increase the amount of data that can be included in the data 342 in one wireless communication.
  • Power generation unit 360 includes solar cell 361 , power storage unit 362 , current sensor 363 , and power sensor 364 .
  • the solar battery 361 is denoted by SB
  • the power storage unit 362 by ESU the power storage unit 362 by ESU
  • the current sensor 363 by CS the power sensor 364 by PS.
  • Solar cell 361 converts light energy into electrical energy.
  • the power storage unit 362 stores the electrical energy (power).
  • the power stored in power storage unit 362 is utilized as driving power for monitoring unit 300 .
  • a current sensor 363 detects the current output from the solar cell 361 to the power storage unit 362 .
  • Power sensor 364 detects power output from power storage unit 362 .
  • the processing unit 334 stores the detected current value and power value in the information storage unit 500 via the communication unit 340 and the integrated communication unit 400 .
  • the driving power of the monitoring section 300 depends on the power generated by the power generation section 360 . Therefore, when the amount of light incident on the power generation section 360 is small, the driving power of the monitoring section 300 may be insufficient. To avoid this, the microcomputer 330 of the monitoring unit 300 is intermittently driven.
  • the RTC 350 outputs a wakeup signal to the microcomputer 330 each time the intermittent drive time interval (driving cycle) elapses.
  • the microcomputer 330 alternately repeats sleep mode and normal mode.
  • the drive cycle described above is determined by the integrated calculation unit 600 according to the amount of electric power stored in the power storage unit 362 (the amount of power stored).
  • the intermittent drive interval is determined by the integrated calculation unit 600 according to the amount of stored electricity.
  • the integrated calculation unit 600 calculates the amount of stored electricity based on the power stored in the information storage unit 500 .
  • the integration calculation unit 600 sets a longer intermittent drive interval as the amount of stored electricity decreases.
  • the integrated calculation unit 600 sets the intermittent drive interval shorter as the amount of stored electricity increases.
  • the integrated calculation unit 600 includes the intermittent drive interval in the instruction signal.
  • the processing unit 334 of the microcomputer 330 acquires this instruction signal, the processing unit 334 adjusts the intermittent drive interval.
  • a processing unit 334 adjusts the drive cycle of the RTC 350 . It is rare for the environment of the field 20 to change drastically in units of seconds. Therefore, the intermittent drive interval is several tens of seconds to several tens of hours. Accordingly, the time interval for performing wireless communication is also in units of several tens of seconds to several tens of hours.
  • cycle tasks and event tasks have processing priorities. When the processing timings of these tasks are the same, the processing of the event task is given priority over the processing of the cycle task.
  • each monitoring unit 300 executes the sensor processing shown in FIG.
  • the integration calculation unit 600 executes the updating process shown in FIG.
  • event tasks each monitoring unit 300 executes the monitoring process shown in FIG. 8 and the water supply process shown in FIG.
  • the integrated calculation unit 600 executes the watering process shown in FIG. 10, the user update process shown in FIG. 11, and the forced update process shown in FIG.
  • step S ⁇ b>10 sensor signals input from various sensors are acquired, and the sensor signal acquisition time is acquired based on the output of the RTC 350 . Further, in step S20, the acquired sensor signal and acquisition time are stored.
  • step S30 the sensor signal as sensor information and the acquisition time are output from the communication section 340 to the integrated communication section 400 by wireless communication.
  • This sensor information is stored in the information storage unit 500 by the integrated communication unit 400 .
  • the microcomputer 330 shifts to sleep mode and terminates sensor processing.
  • the integration calculation unit 600 executes the update process shown in FIG. 7 each time the update period elapses. This update period is approximately the same as the intermittent drive interval of the microcomputer 330 .
  • step S110 various information stored in the information storage unit 500 is read.
  • step S120 the watering schedule for each of the plurality of monitoring units 300 is updated based on the read various information.
  • the integrated calculation unit 600 updates sensor processing in each monitoring unit 300 .
  • the integrated calculation unit 600 updates the intermittent drive interval corresponding to the timing of executing sensor processing.
  • the integrated calculation unit 600 owns the updated watering schedule and intermittent drive interval, stores them in the information storage unit 500, and ends the update process.
  • the cycle task updates the sensor information, irrigation schedule, and intermittent drive interval.
  • Each of the monitoring process, the water supply process, and the watering process is performed during the daytime in order to avoid depletion of the driving power of the monitoring unit 300 . Whether it is daytime or not can be detected based on the current time and the amount of solar radiation detected by the solar radiation sensor 312 .
  • the microcomputer 330 of each monitoring section 300 is in sleep mode.
  • An instruction signal is input to the microcomputer 330 from the integrated calculation unit 600 by wireless communication.
  • the microcomputer 330 switches from the sleep mode to the normal mode and starts executing the monitoring process shown in FIG.
  • step S210 the input instruction signal and its acquisition time are stored.
  • step S220 it is determined whether or not the instruction signal includes a water supply instruction to open the water supply valve 152 from the closed state. If the water supply instruction is included in the instruction signal, the process proceeds to step S230. If the water supply instruction is not included in the instruction signal, the process proceeds to step S240.
  • step S230 the water supply process shown in FIG. 9 is executed. That is, the microcomputer 330 outputs a water supply signal to the water supply valve 152 in accordance with the water supply instruction in step S231.
  • step S232 the microcomputer 330 determines whether or not the water supply time included in the instruction signal has elapsed. If the water supply time has not elapsed, the output of the water supply signal to the water supply valve 152 is continued. If the water supply time has elapsed, the process proceeds to step S233.
  • step S233 the output of the water supply signal is stopped, and the water supply process ends.
  • step S240 it is determined whether or not the instruction signal includes an instruction to update the intermittent drive interval. If the instruction signal includes an instruction to update the intermittent drive interval, the process proceeds to step S250. If the instruction signal does not include an instruction to update the intermittent drive interval, the process proceeds to step S260.
  • the instruction to update the intermittent drive interval described above is periodically or irregularly output as an instruction signal from the integrated calculation section 600 or the information storage section 500 to each monitoring section 300 .
  • step S250 the processing unit 334 of the microcomputer 330 adjusts the time interval for outputting the wakeup signal of the RTC 350.
  • step S260 the sensor processing described based on FIG. 6 is executed.
  • the environment value after water supply is detected in step S260. If the water supply process of step S230 is not executed, the environment value when water is not being supplied is detected in step S260. This environment value is stored in the information storage unit 500 .
  • the microcomputer 330 shifts to the sleep mode and terminates the monitoring processing.
  • the integrated calculation unit 600 executes the watering process shown in FIG. 10 each time it is time to supply water in the watering schedule of each monitoring unit 300 .
  • the integration calculation unit 600 outputs a water supply signal including a water supply instruction to the monitoring unit 300 of the divided area to which water is to be supplied among the plurality of monitoring units 300 .
  • the water supply instruction includes the start of output of the water supply signal and the output time of the water supply signal (water supply time).
  • the monitoring unit 300 executes the monitoring process described with reference to FIG.
  • step S320 the integrated calculation unit 600 enters a standby state until the monitoring process of the monitoring unit 300 is completed. If the monitoring process has ended, the process proceeds to step S330.
  • a determination as to whether or not the monitoring process has ended is made, for example, based on whether or not a period of time in which the monitoring process is expected to end has elapsed. Whether or not the monitoring process has ended can be determined by inquiring of the monitoring unit 300 .
  • a method for determining the end of the monitoring process is not particularly limited.
  • ⁇ User update process> The integrated calculation unit 600 executes the user update process shown in FIG. 11 when a user instruction related to adjustment of the watering schedule and the intermittent drive interval is input from the input device 800 .
  • Integrated calculation unit 600 stores the input user instruction in information storage unit 500 in step S410.
  • the updating process described with reference to FIG. 7 is executed. As described above, the irrigation schedule and the intermittent drive interval are updated based on the user's instructions.
  • the integrated calculation unit 600 executes the forced update process shown in FIG. 12 when a user instruction regarding update of the watering schedule and the intermittent drive interval is input. Integral calculation unit 600 outputs a request signal including a request instruction requesting execution of sensor processing in step S510. This request signal is output to the monitoring unit 300 by wireless communication. In step S520, a standby state is entered until the sensor processing of the monitoring unit 300 is completed.
  • step S530 A determination as to whether or not the sensor processing has ended can be made, for example, based on whether or not a period of time in which the sensor processing is expected to end has elapsed. Alternatively, it can be performed by inquiring of the monitoring unit 300 whether or not the sensor processing has ended.
  • the method for determining the end of sensor processing is not particularly limited.
  • step S530 the updating process described with reference to FIG. 7 is executed. As described above, the watering schedule and the intermittent drive interval are updated based on various data at the time of the user's update request.
  • the monitoring unit 300 determines whether or not water is coming out from the distribution tube 136 in the water supply process shown in FIG. 9 and the watering process shown in FIG. 10, and performs processing according to the determination result.
  • the monitoring unit 300 determines whether water is being discharged based on the water pressure detected by the water pressure sensor 153 .
  • the monitoring unit 300 determines that the water pressure detected by the water pressure sensor 153 exceeds the abnormal pressure value, the monitoring unit 300 fully closes the water supply valve 152 during watering to stop watering.
  • the abnormal pressure value is set to a pressure value that is impossible when water is being discharged from the distribution tube 136, or a pressure value when water has no place to go and is not discharged to the outside.
  • the abnormal pressure value is stored in the storage unit 333 in advance.
  • the monitoring unit 300 irrigates from the adjacent distribution tube 136 adjacent to the distribution tube 136 for which irrigation has been stopped.
  • the adjacent distribution tube 136 is adjacent to the distribution tube 136 that has ceased irrigation in a direction perpendicular to the axial direction of the tube.
  • the monitoring unit 300 controls the valve opening degree of the water supply valve 152 capable of supplying water to the adjacent distribution tube 136 to a value that allows the water splash distance to reach the targeted target watering position in the stopped watering.
  • the controller controls the pressure of the water supply flowing down to the adjacent distribution tube 136 adjacent to the distribution tube 136 from which irrigation is not being discharged. to control the valve opening.
  • the controller controls the splash distance of the irrigation water discharged from the adjacent distribution tube 136 so that the target irrigation position aimed at by the irrigation water not discharged is reached. According to this control, it is possible to provide the irrigation system 10 that can solve problems with irrigation due to clogging of the pipes and distribution tubes 136 and failure of the water supply valve 152 .
  • the integrated calculation unit 600 determines the watering schedule for each of the plurality of divided areas.
  • the integrated calculation unit 600 controls the supply of irrigation water based on each irrigation schedule.
  • the watering schedule for each divided area is determined by the integrated calculation unit 600, a configuration may be adopted in which the water supply based on each watering schedule is individually controlled by each monitoring unit 300.
  • ⁇ Independent update> As a further example, a configuration may be adopted in which the corresponding monitoring unit 300 independently determines the watering schedule for each divided area. In such a configuration, each monitoring unit 300 executes update processing shown in FIG.
  • the information storage unit 500 stores the current value of the soil moisture content, the predicted value of the decreasing change, and the user's instruction.
  • the information storage unit 500 stores the growth inhibition water point and permanent wilting point of the plant 30, the amount of water absorbed by the plant 30 per unit time, and the water retention capacity of the soil.
  • the information storage unit 500 stores the weather forecast for the field 20 output and distributed from the external information source 1000 .
  • the external information source 1000 is indicated as ESI.
  • the integrated calculation unit 600 reads various information including the weather forecast from the information storage unit 500 in S110 of the update process shown in FIG.
  • the integrated calculation unit 600 determines the watering schedule for each monitoring unit 300 in step S120.
  • the integrated calculation unit 600 calculates a target value and an estimated value of the soil water content when determining the watering schedule.
  • the target value for soil moisture is naturally set to a value between the stunted water point and the permanent wilting point.
  • the target value of the soil moisture content is set to a value that is somewhat distant from the theoretical values of the growth inhibition moisture point and the permanent wilting point.
  • the integrated calculation unit 600 sets the upper limit target value on the growth inhibition moisture point side and the lower limit target value on the permanent wilting point side as the target value of the soil moisture content.
  • the integrated calculation unit 600 determines the watering schedule so that the estimated value of the soil moisture content is between the upper limit target value and the lower limit target value during the watering period of the watering schedule. Even if the estimated soil moisture content is expected to exceed the upper limit target value due to rainfall, the integrated calculation unit 600 determines the watering schedule so that the estimated soil moisture content does not exceed the growth inhibition moisture point.
  • This upper limit deviation width is determined based on the climate of the farm field 20 while considering the healthy growth of the plant 30 described above.
  • the climate of the field 20 includes the expected value of the average amount of rainfall in the field 20 during the irrigation period of the irrigation schedule and the total amount of rainfall predicted by the weather forecast during the irrigation period.
  • the expected value of the average amount of rainfall in the field 20 during the watering period is stored in the information storage unit 500 .
  • This lower limit range of divergence takes into account the healthy growth of the plant 30, and is determined based on the recovery time expected to be restored when a failure occurs in the water supply device 100, the amount of decrease in soil water content per unit time, and the like. .
  • the lower limit deviation width is determined based on a value obtained by multiplying the recovery time by the amount of decrease in the soil moisture content per unit time.
  • the recovery time is stored in the information storage unit 500.
  • the integrated calculation unit 600 determines the watering schedule for one week. During this week, if the weather forecast does not predict any rainfall, the estimated soil moisture content is expected to gradually decrease over time. The amount of decrease per unit time of the estimated soil moisture content is determined based on the predicted value of the decrease change in the soil moisture content of the plow layer. In order to simplify the notation, the estimated value of the soil moisture content will be simply referred to as an estimated value as needed.
  • the watering schedule is determined based on the estimated soil moisture content based on environmental values and the weather forecast. According to this, it is possible to prevent the soil water content in the outdoor divided area from becoming unsuitable for the plants 30 due to weather changes such as rainfall and dryness. In addition, it is possible to prevent the soil moisture content from exceeding the growth inhibition moisture point or falling below the permanent wilting point.
  • the integrated calculation unit 600 determines the target water supply amount so that the estimated soil moisture amount does not exceed the upper limit target value lower than the growth inhibition moisture point during all the watering periods of the watering schedule.
  • the integrated calculation unit 600 determines the deviation range (upper limit deviation range) between the growth inhibition water point and the upper limit target value based on the climate of the field 20 and the like.
  • the climate of the field 20 includes the expected value of the average amount of rainfall in the field 20 during the watering period and the total amount of rainfall predicted by the weather forecast during the watering period.
  • the integrated calculation unit 600 determines the target water supply amount so that the estimated soil moisture amount in the watering schedule does not fall below the lower limit target value higher than the permanent wilting point.
  • the integrated calculation unit 600 determines the deviation range (lower limit deviation range) between the permanent wilting point and the lower limit target value based on the recovery time and the amount of decrease in the soil moisture content per unit time.
  • the integrated calculation unit 600 waters at the time when the estimated value of the soil moisture content in the watering schedule reaches the lower limit target value. As a result, it is possible to prevent the soil water content from falling below the lower limit target value.
  • the integrated calculation unit 600 makes the rain forecast time and the irrigation water supply time different. According to this, even if there is more rainfall than the rainfall forecast, it is possible to suppress excessive increase in soil water content.
  • FIG. This valve device is a so-called rotary valve device.
  • This valve device has one fluid inlet and three fluid outlets.
  • the valve device is mounted to the irrigation system 10 by connecting a supply line 132 to the fluid inlets and a distribution tube 136 to one of the fluid outlets. Further, a closing member may be attached to the fluid outflow portion to which the distribution tube 136 is not connected to close the passage.
  • the valve device includes a housing 9, a valve 90, a drive section 70, a drive section cover 80, etc., as shown in FIG.
  • the valve device is configured as a ball valve that opens and closes the valve device by rotating the valve 90 around the axis of the shaft 92 .
  • the direction along the axis of the shaft 92 will be described as the axial direction DRa
  • the direction perpendicular to the axial direction DRa and extending radially from the axial direction DRa will be described as the radial direction DRr.
  • the housing 9 is an accommodating portion that accommodates the valve 90 .
  • the housing 9 is made of, for example, a resin member.
  • the housing 9 includes a hollow housing main body portion 21 in which the valve 90 is accommodated, a pipe member 50 for discharging cooling water from the housing main body portion 21 , and a partition wall portion 60 attached to the housing main body portion 21 .
  • the housing main body 21 has a substantially rectangular parallelepiped external appearance and is formed in a bottomed shape having an opening on the other side in the axial direction DRa.
  • the housing main body portion 21 has a housing outer wall portion 22 that constitutes the outer peripheral portion of the housing main body portion 21 .
  • the housing outer wall portion 22 forms a cylindrical valve accommodating space 23 having an axis in the axial direction DRa inside the housing main body portion 21 .
  • An inlet port 251 is formed in the outer wall portion 22 of the housing for allowing cooling water to flow into the valve housing space 23 .
  • the inlet port 251 is formed with a circular opening and is connected to the connecting pipe 135 .
  • the inlet port 251 corresponds to the fluid inlet.
  • a pipe member 50 is attached to the housing outer wall portion 22 .
  • the housing outer wall portion 22 has a first outlet port 261, a second outlet port 262, and a third outlet port 263 for causing the cooling water that has flowed into the valve housing space 23 through the inlet port 251 to flow out to the pipe member 50.
  • a partition wall portion 60 is attached to the housing opening surface 24 of the housing outer wall portion 22 .
  • the housing opening surface 24 is arranged on the other side of the housing body portion 21 in the axial direction DRa.
  • the housing opening surface 24 is formed with a housing opening 241 that allows communication between the valve accommodating space 23 and the outside of the housing main body 21 .
  • the housing opening 241 is closed by attaching the partition wall 60 to the housing opening surface 24 .
  • the pipe member 50 includes a first pipe portion 51, a second pipe portion 52, and a third pipe portion 53, each of which is cylindrical.
  • the first pipe portion 51 , the second pipe portion 52 and the third pipe portion 53 are connected by a pipe connection portion 54 .
  • the pipe connecting portion 54 is a portion that connects the first pipe portion 51 , the second pipe portion 52 and the third pipe portion 53 and attaches the pipe member 50 to the housing outer wall portion 22 .
  • the upstream side of the first pipe portion 51 is arranged inside the first outlet port 261 .
  • the second pipe portion 52 is arranged inside the second outlet port 262 on the upstream side.
  • the third pipe portion 53 is arranged inside the third outlet port 263 on the upstream side.
  • the partition wall 60 closes the housing opening 241 and holds the valve 90 housed in the valve housing space 23 .
  • Partition wall portion 60 is disk-shaped with the plate thickness direction in axial direction DRa, and is arranged to fit into housing opening portion 241 from the other side in axial direction DRa toward one side.
  • the outer peripheral portion of the partition 60 abuts against the inner peripheral surface of the housing, thereby closing the housing opening 241 .
  • the driving section cover 80 accommodates the driving section 70 .
  • the driving section cover 80 is made of resin and has a hollow shape, and a driving section space for accommodating the driving section 70 is formed therein.
  • the driving section cover 80 has a connector section 81 for connecting to the microcomputer 330 .
  • the connector portion 81 connects the valve device to the microcomputer 330 and incorporates terminals to which the driving portion 70 and the rotation angle sensor 73 are connected.
  • the drive unit 70 includes a motor 71 that outputs a torque for rotating the valve 90 , a gear unit 72 that transmits the output of the motor 71 to the valve 90 , and a rotation angle sensor 73 that detects the rotation angle of the gear unit 72 .
  • the motor 71 as shown in FIG. 14, includes a motor body, a motor shaft 711, a worm gear 712, and motor-side terminals.
  • the motor 71 is configured such that the motor body can output power when power is supplied to the motor-side terminals.
  • the motor body is formed in a substantially cylindrical shape, and a motor shaft 711 protrudes from the other end of the motor body. Power output from the motor main body is output to the gear portion 72 via the motor shaft 711 and the worm gear 712 .
  • the gear portion 72 is composed of a speed reduction mechanism having a plurality of resin gears, and is configured to be able to transmit the power output from the worm gear 712 to the shaft 92 .
  • the gear portion 72 includes a first gear 721 , a second gear 722 meshing with the first gear 721 , and a third gear 723 meshing with the second gear 722 .
  • a shaft 92 is connected to the third gear 723 .
  • the outer diameter of the second gear 722 is formed larger than the outer diameter of the first gear 721
  • the outer diameter of the third gear 723 is formed larger than the outer diameter of the second gear 722. ing.
  • the first gear 721 , the second gear 722 , and the third gear 723 are arranged so that their axes are orthogonal to the axis of the worm gear 712 .
  • the third gear 723 is arranged so that the axis of the third gear 723 is coaxial with the axis of the shaft 92 .
  • a shaft 92 is connected to the third gear 723 .
  • the drive unit 70 is configured such that the worm gear 712, the first gear 721, the second gear 722, the third gear 723, and the valve 90 rotate integrally, and the respective rotations are correlated with each other.
  • These gears and the shaft 92 have respective rotation angles that are correlated, and are configured so that the rotation angle of any one of the components having the correlation can be calculated from the rotation angles of the other components.
  • a rotation angle sensor 73 for detecting the rotation angle of the third gear 723 is attached to a portion facing the third gear 723 on the inner peripheral portion of the drive section cover 80 .
  • the rotation angle sensor 73 is a Hall sensor incorporating a Hall element, and is configured to detect the rotation angle of the third gear 723 without contact.
  • the rotation angle sensor 73 is connected to the microcomputer 330 via the connector portion 81 .
  • the detected rotation angle of the third gear 723 is transmitted to the microcomputer 330 .
  • the processing unit 334 of the microcomputer 330 is configured to be able to calculate the rotation angle of the valve 90 based on the rotation angle of the third gear 723 transmitted from the rotation angle sensor 73 .
  • the shaft 92 and the valve 90 will be explained with reference to FIGS. 13 and 15.
  • the shaft 92 is configured to be rotatable about its axis by the rotational force output by the driving section 70 .
  • the shaft 92 is connected to the valve 90, and is configured to be able to rotate the valve 90 integrally with the shaft 92 when the shaft 92 rotates.
  • the shaft 92 is formed in a columnar shape extending along the axis, and penetrates from one side of the valve 90 to the other side.
  • One side of the shaft 92 in the axial direction DRa is connected to the shaft support portion of the housing main body portion 21 , and the other side is connected to the gear portion 72 .
  • a valve 90 is fixed to the outer circumference of the shaft.
  • the valve 90 is configured to be able to adjust the flow rate of the output fluid by rotating around its axis.
  • the valve 90 has a shaft 92 inserted therein, and is housed in the valve housing space 23 so as to rotate integrally with the shaft 92 .
  • the valve 90 has a tubular shape having an axis extending along the axial direction DRa.
  • the valve 90 is formed by connecting a first valve 93, a second valve 94, a third valve 95, a cylindrical connecting portion 914, and a cylindrical valve connecting portion 915, each of which is cylindrical.
  • the valve 90 includes a first valve 93, a tubular connecting portion 914, a second valve 94, a tubular valve connecting portion 915, and a third valve 95 arranged from one side toward the other side in the axial direction DRa. are arranged in this order.
  • the first valve 93 and the second valve 94 are connected via a tubular connecting portion 914 .
  • the second valve 94 and the third valve 95 are connected via a tubular valve connection 915 .
  • the second valve 94 and the cylindrical connecting portion 914 of the valve 90 face the inlet port 251 in the radial direction DRr in the valve accommodating space 23 .
  • the valve 90 has a cylindrical shaft connection portion 916 into which the shaft 92 is inserted in the center. Valve 90 is connected to shaft 92 by inserting shaft 92 into shaft connecting portion 916 .
  • a first valve 93, a second valve 94, a third valve 95, a cylindrical connecting portion 914, a cylindrical valve connecting portion 915, and a shaft connecting portion 916 are integrally formed by injection molding.
  • the valve 90 is a valve body for causing the cooling water that has flowed into the valve 90 to flow out to the first outlet port 261 , the second outlet port 262 and the third outlet port 263 .
  • the valves 90 rotate so that the first valve 93 opens and closes the first outlet port 261, the second valve 94 opens and closes the second outlet port 262, and the third valve 95 opens and closes the third outlet port 263. .
  • the first valve 93 , the second valve 94 and the third valve 95 are arranged so that their axes are coaxial with the axis of the shaft 92 .
  • the central portion in the axial direction DRa bulges outward in the radial direction DRr compared to both end sides.
  • Each of the first valve 93, the second valve 94, and the third valve 95 is configured so that fluid can flow inside.
  • the first valve 93 has a first valve outer peripheral portion 931 forming an outer peripheral portion, and a first flow path portion 961 is formed inside the first valve outer peripheral portion 931 .
  • the first valve 93 is formed with a first inner opening 936 that allows fluid to flow into the first channel portion 961 .
  • the fluid that has flowed into the valve housing space 23 flows into the first channel portion 961 through the first inner opening 936 .
  • the first channel portion 961 corresponds to the channel portion in the valve device.
  • the first valve outer peripheral portion 931 has a first outer peripheral portion that communicates the first flow path portion 961 with the first outlet port 261 via the first seal opening portion 581 when the shaft 92 rotates.
  • An opening 934 is formed.
  • the first valve 93 causes the fluid that has flowed into the first flow path portion 961 to flow out from the first outlet port 261 by connecting the first outer peripheral opening 934 to the first outlet port 261 .
  • a first outer peripheral opening 934 formed in the first valve outer peripheral portion 931 corresponds to an outer peripheral opening formed in the valve outer peripheral portion.
  • the first outer peripheral opening 934 is formed in the first valve outer peripheral portion 931 so as to extend along the circumferential direction of the axis of the shaft 92 .
  • the flow rate of fluid exiting the device from the first valve 93 is adjusted according to the area of overlap between the first outer peripheral opening 934 and the first seal opening 581 when the shaft 92 rotates.
  • the first inner opening 936 functions as a communication passage that communicates the outside of the first valve 93 and the first flow path portion 961 .
  • the second valve 94 has, as shown in FIG.
  • the second valve 94 is formed with a second inner opening 946 that allows the fluid to flow into the second flow path portion 962 on one side in the axial direction DRa.
  • the second valve 94 is configured such that the fluid that has flowed into the valve housing space 23 through the inlet port 251 can flow through the second flow path portion 962 through the second inner opening 946 .
  • the second channel portion 962 corresponds to the channel portion in the valve device.
  • the second valve outer peripheral portion 941 has a second outer peripheral portion that communicates the second flow path portion 962 with the second outlet port 262 via the second seal opening 582 when the shaft 92 rotates.
  • An opening 944 is formed.
  • the second valve 94 causes the fluid that has flowed into the second flow path portion 962 to flow out from the second outlet port 262 by communicating the second outer peripheral opening 944 with the second outlet port 262 .
  • a second outer peripheral opening 944 formed in the second valve outer peripheral portion 941 corresponds to an outer peripheral opening formed in the valve outer peripheral portion.
  • the second outer peripheral opening 944 is formed so as to extend in the circumferential direction of the axis of the shaft 92 .
  • the flow rate of fluid flowing out of the device from the second valve 94 is adjusted according to the overlapping area of the second outer peripheral opening 944 and the second seal opening 582 when the shaft 92 rotates.
  • the second inner opening 946 functions as a communication passage that communicates the outside of the second valve 94 and the second flow path portion 962 .
  • the second inner opening 946 faces the first inner opening 936 .
  • the tubular connecting portion 914 is for connecting the first valve 93 and the second valve 94 .
  • the cylindrical connecting portion 914 forms a first inter-valve space 97 between the outer peripheral portion of the cylindrical connecting portion 914 and the inner peripheral surface of the housing.
  • the first channel portion 961 and the second channel portion 962 communicate with each other via the first inter-valve space 97 .
  • the second valve 94 has a shaft connecting portion 916 that covers the outer peripheral portion of the shaft 92 at substantially the center of the inside.
  • the second valve 94 has a cylindrical valve connecting portion 915 connected to the other side of the second valve outer peripheral portion 941 in the axial direction DRa.
  • the second valve 94 is configured to allow the fluid that has flowed into the second flow path portion 962 to flow into the third valve 95 via the cylindrical valve connecting portion 915 .
  • a second inter-valve space 98 is formed inside the tubular valve connecting portion 915 .
  • the second inter-valve space 98 communicates with the second channel portion 962 and the third channel portion 963 .
  • the cylindrical valve connecting portion 915 has an outer diameter on one side in the axial direction DRa that is the same as the outer diameter of a portion on the other side in the axial direction DRa of the second valve 94 .
  • the cylindrical valve connecting portion 915 has the same outer diameter on the other side in the axial direction DRa as the outer diameter of the portion on the one side in the axial direction DRa of the third valve 95 .
  • the tubular valve connecting portion 915 is formed so as to continue to the second valve outer peripheral portion 941 and the third valve outer peripheral portion 951 .
  • the third valve 95 has a third valve outer peripheral portion 951 that forms the outer peripheral portion of the third valve 95, and a third flow path portion 963 is formed inside the third valve outer peripheral portion 951. It is The third valve 95 is connected to the cylindrical valve connecting portion 915 on one side of the third valve outer peripheral portion 951 in the axial direction DRa. The third valve 95 allows the fluid that has flowed into the second flow path portion 962 to flow into the third flow path portion 963 via the space 98 between the second valves.
  • the third channel portion 963 corresponds to the channel portion in the valve device.
  • the third valve outer peripheral portion 951 has a third outer peripheral portion that communicates the third flow path portion 963 with the third outlet port 263 via the third seal opening portion 583 when the shaft 92 rotates.
  • An opening 954 is formed.
  • the third valve 95 causes the fluid that has flowed into the third channel portion 963 to flow out of the device through the third outlet port 263 by communicating the third outer peripheral opening 954 with the third outlet port 263 .
  • a third outer peripheral opening 954 formed in the third valve outer peripheral portion 951 corresponds to an outer peripheral opening formed in the valve outer peripheral portion.
  • the third outer peripheral opening 954 is formed in the third valve outer peripheral portion 951 so as to extend along the circumferential direction of the axis.
  • the flow rate of the fluid flowing out of the device from the third valve 95 is adjusted according to the overlapping area of the third outer peripheral opening 954 and the third seal opening 583 when the shaft 92 rotates.
  • the shaft connecting portion 916 has a cylindrical shape, and connects the valve 90 and the shaft 92 by fixing the inserted shaft 92 .
  • the shaft connecting portion 916 transmits the rotational force of the shaft 92 to the valve 90 via the shaft connecting portion 916 when the shaft 92 rotates.
  • the shaft connecting portion 916 is formed extending from the second valve 94 to the third valve 95 toward the other side in the axial direction DRa.
  • the microcomputer 330 calculates the rotation angle of the valve 90 for supplying the distribution tube 136 with the required flow rate, that is, the rotation angle of the motor 71 .
  • the microcomputer 330 transmits information on the calculated rotation angle of the motor 71 to the water supply valve 152 .
  • the two fluid outlets that are not connected to the distribution tube 136 are fitted with blocking members.
  • the water supply valve 152 rotates the motor 71 based on the rotation angle information received from the microcomputer 330 .
  • the water supply valve 152 rotates the valve 90 via the gear portion 72 and the shaft 92 by rotating the motor 71 , and the necessary water is supplied from the first outer peripheral opening 934 , the second outer peripheral opening 944 , and the third outer peripheral opening 954 . flow of fluid.
  • the water supply valve 152 rotates the valve 90 to allow the first outer peripheral opening 934 of the first valve 93 to communicate with the first outlet port 261 .
  • the water supply valve 152 adjusts the overlapping area of the first outer peripheral opening 934 and the first seal opening 581 by adjusting the rotational position of the valve 90 .
  • the water supply valve 152 causes the fluid that has flowed into the valve housing space 23 from the inlet port 251 to flow into the first flow path portion 961 through the first inner opening portion 936, and then flows from the first outer peripheral opening portion 934 to the first outlet port 261. let it flow.
  • the microcomputer 330 controls the opening of the valve, which is the overlapping area of the first outer peripheral opening 934 and the first seal opening 581, thereby controlling the splashing distance of sprinkling water and supplying sprinkling water to the required position.
  • the water supply valve 152 connects the second outer peripheral opening 944 of the second valve 94 to the second outlet port 262 by rotating the valve 90 .
  • the water supply valve 152 adjusts the overlapping area of the second outer peripheral opening 944 and the second seal opening 582 by adjusting the rotational position of the valve 90 .
  • the water supply valve 152 causes the fluid that has flowed into the valve housing space 23 from the inlet port 251 to flow into the second flow path portion 962 via the second inner opening 946, and flows from the second outer peripheral opening 944 to the second outlet port 262. let it flow.
  • the microcomputer 330 controls the opening of the valve, which is the overlapping area of the second outer peripheral opening 944 and the second seal opening 582, thereby controlling the splashing distance of sprinkling water and supplying sprinkling water to the required position.
  • the water supply valve 152 rotates the valve 90 to allow the third outer peripheral opening 954 of the third valve 95 to communicate with the third outlet port 263 .
  • the water supply valve 152 adjusts the overlapping area of the third outer peripheral opening 954 and the third seal opening 583 by adjusting the rotational position of the valve 90 .
  • the water supply valve 152 causes the fluid that has flowed into the valve housing space 23 from the inlet port 251 to flow into the third flow path portion 963 via the second flow path portion 962 of the second valve 94, and flows from the third outer peripheral opening 954 to the third flow path portion 963. 3 to exit port 263 .
  • the microcomputer 330 controls the opening of the valve, which is the overlapping area of the third outer peripheral opening 954 and the third seal opening 583, thereby controlling the splashing distance of sprinkling water and supplying sprinkling water to the required position.
  • the water supply valve 152 adjusts the rotation angle of the motor 71 by detecting the rotation angle of the third gear 723 with the rotation angle sensor 73 and feeding back the detected rotation angle information to the microcomputer 330 .
  • the horizontal axis represents the rotation angle RA of the motor 71
  • the vertical axis represents the flow rate FR of the fluid flowing out of the valve device.
  • FO1 is the first valve 93
  • FO2 is the second valve 94
  • FO3 is the third valve 95.
  • FS indicates that the valve opening is fully open
  • FC indicates that the valve opening is fully closed
  • MO indicates that the valve opening is intermediate.
  • the intermediate degree of opening is the degree of opening between the fully closed state and the fully opened state.
  • a solid line graph in FIG. 16 indicates the relationship between the flow rate of the fluid flowing out from the third valve 95 and the rotation angle.
  • a dashed line graph in FIG. 16 indicates the relationship between the flow rate of the fluid flowing out of the second valve 94 and the rotation angle.
  • a dashed-dotted line graph in FIG. 16 shows the relationship between the flow rate of the fluid flowing out from the first valve 93 and the rotation angle.
  • the third valve 95 is fully open, the other valves are fully closed, and the fluid flows out of the device only through the third valve 95 .
  • the third valve 95 shifts to an intermediate opening, and when the rotation angle is further increased, all three valves are fully closed.
  • Each water supply valve 152 in the irrigation system 10 is configured to supply fluid from only one of the three valves, thereby controlling the splash distance and water supply amount to the field 20 according to the rotation angle.
  • FIG. 17 shows an example of the positional relationship among the distribution tube 136, the water supply valve 152, and the water pressure sensor 153.
  • Vertical pipe 133 is connected to a plurality of passages leading to a plurality of distribution tubes 136 .
  • Each of the plurality of passages is a passage that connects distribution tube 136 and vertical pipe 133 .
  • a water supply valve 152 and a water pressure sensor 153a or a flow rate sensor 154a are provided in the passage between each distribution tube 136 and the vertical pipe 133 .
  • the water pressure sensor 153 a or the flow rate sensor 154 a is provided downstream of the water supply valve 152 .
  • the water pressure sensor 153 a and the flow rate sensor 154 a detect water supply information regarding water supply in the upstream passage that flows down toward the through hole of the distribution tube 136 .
  • the signal output unit 332 outputs to the water supply valve a control signal for controlling the valve opening through feedback control using water supply information detected in the upstream passage.
  • the vertical pipe 133 is connected to a passage leading to the inlet port 251 of each water supply valve 152 .
  • Each distribution tube 136 is connected to a passage leading to the first pipe portion 51 which is one of the fluid outflow portions of each water supply valve 152 .
  • the second pipe portion 52 and the third pipe portion 53 which are other fluid outflow portions, are closed by the closing member.
  • the water pressure sensor 153b or the flow rate sensor 154b may be provided downstream of the most downstream through-hole in the distribution tube 136 . Water pressure sensor 153b and flow rate sensor 154b detect water supply information regarding water supply at the downstream end of distribution tube 136 .
  • the signal output unit 332 outputs to the water supply valve a control signal for controlling the valve opening through feedback control using the water supply information detected at the downstream end.
  • the signal output unit 332 outputs to the water supply valve a control signal for controlling the valve opening through feedback control using water supply information detected at the upstream passage and the downstream end.
  • the distribution tube 136 provided in the irrigation system 10 is configured to expand and contract according to the water pressure circulating inside.
  • the distribution tube 136 is made of a material or hardness that can be elastically deformed according to water pressure, for example.
  • FIG. 18 is a diagram for explaining the relationship between the expansion of distribution tube 136 and the internal pressure.
  • (a) shows the tube cross section when the water supply valve 152 is fully closed. In this state, the tube is not filled with water, has almost zero internal pressure, and has a flat shape that is not inflated.
  • (c) shows a tube cross section in which the valve opening degree of the water supply valve 152 is fully open and the tube is fully expanded by the internal pressure.
  • the tube does not expand or contract during spouting water, and the amount of spouted water at the downstream portion of the tube becomes smaller than that at the upstream portion due to water pressure loss. Therefore, the amount of water spouted from the tube varies in the extending direction of the tube.
  • FIG. 18 shows a tube cross-section controlled by internal pressure located between the state of (a) and the state of (c).
  • the tube In this state, the tube is not fully inflated and can be expanded and contracted by a slight change in internal pressure. Therefore, since the tube itself functions as a diaphragm due to changes in the internal pressure of water, there is not much difference in the amount of water spouted between the downstream portion and the upstream portion of the tube. Therefore, the amount of water spouted from the tube is substantially uniform over the entire extension direction of the tube.
  • the valve opening degree of the water supply valve 152 is controlled using the detection value of the water pressure sensor 153 or the like so that the internal pressure is such that the tube can expand and contract as shown in (c) during watering.
  • the water pressure detected by the water pressure sensor 153a and the water pressure sensor 153b is output to the microcomputer 330 of the monitoring unit 300.
  • the microcomputer 330 uses the water pressure detected by the water pressure sensor 153a and the water pressure sensor 153b to feedback-control the valve opening of each water supply valve 152 to the target opening.
  • the microcomputer 330 uses the flow rates detected by the flow rate sensors 154a and 154b to feedback-control the opening degrees of the water supply valves 152 to the target opening degrees.
  • the irrigation system 10 individually controls the amount of water spouted from the corresponding distribution tube 136 and the splashing distance by individually controlling the opening of each water supply valve 152 .
  • the microcomputer 330 can control the flow rate and pressure of each distribution tube due to changes in the height difference of the field 20, fluctuations in the pressure of the water supply source, fluctuations in the amount of water distributed from the vertical pipe 133 to the distribution tubes, and the like. , it is possible to perform sprinkling that satisfies the target discharge amount.
  • the processing unit 334 determines the opening degree of the water supply valve that controls the pressure of the irrigation water flowing down to the distribution tube 136, which does not have a pressure compensation mechanism, upstream of the distribution tube.
  • the signal output unit 332 outputs a control signal for controlling the valve opening to the water supply valve in order to control the amount of water discharged from the distribution tube through the through hole.
  • the signal output unit 332 controls the energization time required to control the valve opening to the target opening by subdividing the energization time into a plurality of stages (subdivided amount), and controls the target opening in stages. do.
  • the signal output unit 332 controls the energization amount (subdivided amount) necessary to control the valve opening to the target opening by subdividing the energization amount (subdivided amount) into a plurality of stages, thereby achieving the target opening in stages.
  • the microcomputer 330 thus controls the valve opening of the water supply valve 152 so as to gradually increase or decrease instead of opening and closing rapidly. According to this control, the water supply valve 152 can suppress abrupt pressure changes and prevent troubles caused by pressure changes. This control contributes, for example, to suppressing damage to passage components due to water hammer.
  • the irrigation system 10 of the first embodiment includes a distribution tube 136 formed with a plurality of through-holes for irrigating the field 20 and having no pressure compensation mechanism.
  • the irrigation system 10 includes a water supply valve 152 that controls the pressure of water flowing down the distribution tube 136 upstream of the distribution tube 136 .
  • the irrigation system 10 includes a control device that controls the opening of the water supply valve 152 to control the amount of irrigation water discharged from the distribution tube 136 through the through holes. According to the irrigation system 10, the irrigation amount is controlled by controlling the valve opening of the water supply valve 152 upstream of the distribution tube 136 which does not have a pressure compensation mechanism.
  • the irrigation system 10 can perform irrigation by sequentially varying the irrigation amount by controlling the valve opening. Therefore, both drip and water irrigation can be performed from distribution tube 136 .
  • the irrigation system 10 includes a water pressure sensor or flow sensor that detects water supply information in the upstream passageway flowing down to the distribution tube through-hole or the downstream end of the distribution tube.
  • the control device controls the valve opening of the water supply valve by feedback control using the detected water supply information. According to this, the water pressure information or the flow rate information detected at the upstream passage or the downstream end of the distribution tube is used to continuously adjust the valve opening to continue controlling the water spout. Therefore, the irrigation system 10 can be constantly controlled to a target water discharge amount according to weather, soil conditions, crop growth conditions, and the like.
  • the water pressure sensor or flow rate sensor detects water supply information at the above-mentioned upstream passage and the above-mentioned downstream end.
  • the control device controls the valve opening through feedback control using water supply information detected at the upstream passage and the downstream end. According to this, the valve opening is continuously adjusted using water pressure information or flow information detected at the upstream passage and the downstream end of the distribution tube.
  • the irrigation system 10 can implement valve opening control that reduces variations in water discharge over the length of the distribution tube by controlling the water supply information of the upstream passage and the downstream end.
  • the control device controls the valve opening of the water supply valve 152 within the water pressure range in which the distribution tube 136 expands and contracts.
  • the valve opening degree of the water supply valve is controlled so that the pressure is controlled to be lower than the pressure at which the distribution tube is fully inflated.
  • This allows the tube itself to act as a diaphragm valve, thus providing a stable water discharge rate to the downstream end of the distribution tube. Therefore, it is possible to irrigate the tube by suppressing the difference in the amount of spouted water between the downstream portion and the upstream portion of the tube.
  • the output unit outputs a control signal to the water supply valve to control the opening of the valve within the range of water pressure in which the distribution tube, which is configured to expand and contract according to the water pressure circulating inside, expands and contracts.
  • the controller controls the valve opening of the water supply valve to control the pressure below the distribution tube fully inflated. According to this control, the tube itself acts as a diaphragm valve, so that a stable water discharge amount can be provided to the downstream end of the distribution tube.
  • FIG. 19 A second embodiment will be described with reference to FIGS. 19 to 20.
  • FIG. 19 The irrigation system 10 of the second embodiment has the configuration shown in FIG. 19 for components related to passage configuration and water supply control. Configurations, actions, and effects that are not specifically described in the second embodiment are the same as those in the above-described embodiment, and different points will be described below.
  • FIG. 19 shows an example of the positional relationship between the distribution tube 137, the water supply valve 152 and the water pressure sensor 153.
  • the passage configuration shown in FIG. 19 differs from the configuration shown in FIG. 17 in the configuration of distribution tubes 137 for discharging sprinkling water.
  • the distribution tubes 137 are arranged in the field 20 to form a U shape.
  • the irrigation system 10 of the second embodiment includes a plurality of distribution tubes 137 connected to vertical pipes 133 through which water from the pump 110 flows.
  • the distribution tube 137 has a first distribution portion 137a, a second distribution portion 137b, and a folded portion connecting the first distribution portion 137a and the second distribution portion 137b.
  • the first distribution portion 137a and the second distribution portion 137b extend in the same direction, for example, the x-direction, and are arranged in the y-direction at a predetermined interval.
  • the distribution tube 137 does not have a pressure correction mechanism that achieves a constant water discharge rate regardless of changes in water pressure.
  • the amount of water spouted from the through-hole of the distribution tube 137 changes according to the water pressure.
  • the distribution tube 137 is configured to expand and contract according to the water pressure circulating inside.
  • the distribution tube 137 is made of a material or hardness that can be elastically deformed according to water pressure, for example.
  • Each tube portion of the first distribution portion 137a and the second distribution portion 137b is formed with a plurality of through holes that communicate the inside and the outside of each distribution portion through which sprinkling water flows.
  • a plurality of through-holes are arranged side by side at predetermined intervals in the axial direction of the tube in each distribution portion. Further, the through-holes may be arranged side by side at predetermined intervals in the circumferential direction of the tube in each distribution portion.
  • the vertical pipe 133 is connected to multiple passages leading to multiple distribution tubes 137 .
  • Each of the plurality of passages is a passage that connects the first distributing portion 137 a or the second distributing portion 137 b and the vertical pipe 133 .
  • a water supply valve 152 and a water pressure sensor 153a or a flow rate sensor 154a are provided in the passage between the first distribution portion 137a and the vertical pipe 133 .
  • a water supply valve 152 and a water pressure sensor 153a or a flow rate sensor 154a are provided in the passage between the second distribution portion 137b and the vertical pipe 133. As shown in FIG.
  • Two water pressure sensors 153a located at both ends of the distribution tube 137 detect water supply information regarding water supply in the upstream passage flowing down toward the through-hole of the distribution tube.
  • the two water pressure sensors 153a also detect water supply information regarding the water supply at the downstream end of the distribution tube.
  • the two water pressure sensors 153a may be replaced with two flow sensors 154a.
  • Each of the first distribution portion 137 a and the second distribution portion 137 b is connected to a passage leading to the first pipe portion 51 , which is one of the fluid outflow portions of the water supply valve 152 .
  • the irrigation system 10 individually controls the amount of water spouted from the corresponding distribution tube 137 and the splashing distance by individually controlling the opening of each water supply valve 152 .
  • the watering system 10 can perform water supply from the first distribution part 137a side or water supply from the second distribution part 137b side.
  • the microcomputer 330 controls the valve opening of the water supply valve 152 between the first distribution portion 137a and the vertical pipe 133 to open when water is discharged from the first distribution portion 137a.
  • the microcomputer 330 controls the valve opening degree of the water supply valve 152 between the second distribution portion 137b and the vertical pipe 133 to open when water is discharged from the second distribution portion 137b.
  • the microcomputer 330 controls the valve on the first distribution section 137a side to open and the valve on the second distribution section 137b side to close. By this control, the sprinkling water supplied from the first distribution portion 137a side is discharged from the through hole of the first distribution portion 137a, flows down the folded portion, and is discharged from the through hole of the second distribution portion 137b.
  • the microcomputer 330 controls the valve on the side of the second distribution portion 137b to open and the valve on the side of the first distribution portion 137a to close. By this control, the sprinkling water supplied from the second distributing portion 137b side is discharged from the through hole of the second distributing portion 137b, flows down the folded portion, and is discharged from the through hole of the first distributing portion 137a.
  • FIG. 20 is a diagram for explaining the relationship between the spouting position in the distribution tube 137 and the amount of irrigation water.
  • the horizontal axis represents the position of the through hole in the distribution tube 137
  • the vertical axis represents the water supply amount.
  • the water discharge position P1 is the position of the through hole closest to the water supply valve 152 in the first distribution portion 137a.
  • the water discharge position P2 is the position of the through hole closest to the folded portion in the first distribution portion 137a.
  • the water discharge position P3 is the position of the through hole closest to the folded portion in the second distribution portion 137b.
  • the water discharge position P4 is the position of the through hole closest to the water supply valve 152 in the second distribution portion 137b.
  • the dashed line graph in FIG. 20 shows irrigation in which the water supply valve 152 on the side of the first distribution section 137a is controlled to open and the water supply valve 152 on the side of the second distribution section 137b is controlled to be closed.
  • the dashed line graph in FIG. 20 shows the relationship between the water spouting position and the amount of water to be supplied only from the water supply valve 152 on the side of the first distributing portion 137a.
  • the water supply amount increases in order of the water discharge position P1, the water discharge position P2, the water discharge position P3, and the water discharge position P4, and decreases as the distance from the water supply valve 152 increases due to water flow resistance.
  • the dashed-dotted line graph in FIG. 20 shows irrigation in which the water supply valve 152 on the side of the first distribution section 137a is controlled to be closed and the water supply valve 152 on the side of the second distribution section 137b is controlled to be open.
  • the dashed-dotted line graph in FIG. 20 shows the relationship between the spouting position and the amount of sprinkling water when water is supplied only from the water supply valve 152 on the side of the second distributing portion 137b.
  • the amount of irrigation water increases in the order of water discharge position P4, water discharge position P3, water discharge position P2, and water discharge position P1, and decreases as the distance from the water supply valve 152 increases due to water flow resistance.
  • the solid line graph in FIG. 20 shows the total amount of watering, which is a combination of the dashed line graph and the dashed line graph. That is, the solid line graph in FIG. 20 indicates the total amount of water supplied from the first distribution unit 137a side and the amount of water supplied from the second distribution unit 137b side.
  • the variation in watering amount in the solid line graph is smaller than the difference in watering amount between upstream and downstream in the dashed line graph and the difference in watering amount between upstream and downstream in the dashed line graph.
  • the irrigation system 10 can suppress variation in the amount of irrigation water depending on the water spouting position by irrigation control that switches between irrigation from the first distribution unit 137a side and irrigation from the second distribution unit 137b side.
  • the distribution tube 137 has a first distribution portion 137a and a second distribution portion 137b each having a plurality of through holes, and a folded portion connecting the first distribution portion and the second distribution portion.
  • the second distributing portion 137b extends along the first distributing portion 137a and is arranged side by side with the first distributing portion 137a with a gap therebetween.
  • the water supply valve 152 controls the pressure of water flowing down toward the end opposite to the folded portion in each of the first distribution section and the second distribution section.
  • the controller can implement controls to switch between the two irrigations. With this switching water supply control, the water supply system 10 can suppress variations in the amount of water spouted due to tube pressure loss in the U-shaped distribution tube.
  • a third embodiment will be described with reference to FIG. 21 for components related to passage configuration and water supply control. Configurations, actions, and effects not specifically described in the third embodiment are the same as those in the above-described embodiment, and different points will be described below.
  • FIG. 21 shows an example of the positional relationship between the distribution tube 136 and the water supply valve 152.
  • FIG. A predetermined number of distribution tubes 136 lined up in the field 20 are connected downstream to a passage in which one water supply valve 152 is installed. In the third embodiment, the predetermined number is 2 or 3, for example.
  • a plurality of passages communicating with a predetermined number of distribution tubes 136 and one water supply valve 152 are connected to the vertical pipe 133 . Each of the plurality of passages is a passage that connects a predetermined number of distribution tubes 136 and one water supply valve 152 with the vertical pipe 133 .
  • a plurality of groups forming irrigation passages each having a predetermined number of distribution tubes 136 and one water supply valve 152 are arranged in the y direction at predetermined intervals in the field 20 .
  • Each water supply valve 152 of this embodiment communicates with the vertical pipe 133 through one fluid inflow portion and communicates with three distribution tubes 136 through three fluid outflow portions.
  • Each distribution tube 136 communicates with a fluid outlet at water supply valve 152 .
  • the water pressure sensor 153 a or the flow rate sensor 154 a is provided in a passage downstream of the water supply valve 152 and between the fluid outlet of the water supply valve 152 and the distribution tube 136 .
  • the first pipe portion 51 of the water supply valve 152 communicates with the distribution tube 136 .
  • the second pipe portion 52 of the water supply valve 152 communicates with the distribution tube 136 .
  • the third pipe portion 53 of the water supply valve 152 communicates with the distribution tube 136 .
  • the irrigation system 10 can individually control irrigation from a predetermined number of distribution tubes 136 communicating with the water supply valves 152 by individually controlling the opening of each water supply valve 152 .
  • the irrigation system 10 of the third embodiment includes one water supply valve 152 provided to communicate with a predetermined number of distribution tubes 136 in the upstream passage. According to this, in a system capable of performing both drip watering and watering watering from the distribution tube, the number of flow control valves can be reduced, and the parts cost and control cost can be suppressed.
  • a fourth embodiment will be described with reference to FIG. 22 for components related to passage configuration and water supply control. Configurations, actions, and effects that are not specifically described in the fourth embodiment are the same as those in the above-described embodiments, and different points will be described below.
  • FIG. 22 shows an example of the positional relationship between the distribution tube 136 and the water supply valve 152.
  • FIG. The irrigation system 10 of the fourth embodiment differs from the third embodiment in that it has a joint member 138 that connects the water supply valve 152 and the plurality of distribution tubes 136 .
  • the joint member 138 is a connecting member that connects one of the fluid outflow portions of the water supply valve 152 and a predetermined number of distribution tubes 136 .
  • the predetermined number is two or more.
  • the vertical pipe 133 is connected to one water supply valve 152 , a plurality of joint members 138 , and a plurality of passages communicating with a predetermined number of distribution tubes 136 connected to each joint member 138 .
  • Each of the plurality of passages is a passage that connects the plurality of distribution tubes 136 , the plurality of joint members 138 , one water supply valve 152 and the vertical pipe 133 .
  • a plurality of groups forming irrigation passages each having a plurality of distribution tubes 136, a plurality of joint members 138, and a single water supply valve 152 are arranged in the y direction in the field 20 at predetermined intervals.
  • the number of distribution tubes 136 communicating with one water supply valve 152 is the number of joint members 138 connected to each water supply valve 152 multiplied by a predetermined number.
  • Each water supply valve 152 communicates with the vertical pipe 133 by one fluid inflow portion, and communicates with a plurality of distribution tubes 136 via a plurality of joint members 138 by three fluid outflow portions.
  • the joint member 138 includes one inflow pipe portion 138a and two branch pipe portions 138b.
  • the inflow pipe portion 138 a communicates with the fluid outflow portion of the water supply valve 152 .
  • Each branch tube portion 138 b communicates with the distribution tube 136 .
  • the water pressure sensor 153a or the flow rate sensor 154a is provided in a passage downstream of the water supply valve 152 and between the fluid outflow portion of the water supply valve 152 and the inflow pipe portion 138a.
  • the first pipe portion 51 of the water supply valve 152 communicates with the inflow pipe portion 138 a of the joint member 138 .
  • the second pipe portion 52 of the water supply valve 152 communicates with the inflow pipe portion 138 a of the joint member 138 .
  • the third pipe portion 53 of the water supply valve 152 communicates with the inflow pipe portion 138 a of the joint member 138 .
  • the irrigation system 10 can control irrigation from a plurality of distribution tubes 136 that communicate with the water supply valves 152 via joint members 138 by individually controlling the opening degree of each water supply valve 152 .
  • the irrigation system 10 of the fourth embodiment includes one water supply valve 152 having a plurality of fluid outlets provided to communicate with a predetermined number of distribution tubes 136 respectively.
  • This system can perform both drip watering and watering watering from the distribution tube, and can reduce the number of flow control valves, thereby reducing the cost of parts and control.
  • a fifth embodiment will be described with reference to FIG. 23 for components related to passage configuration and water supply control. Configurations, actions, and effects that are not specifically described in the fifth embodiment are the same as those in the above-described embodiments, and different points will be described below.
  • FIG. 23 shows an example of the positional relationship between the distribution tube 137 and the water supply valve 152.
  • FIG. The passage configuration shown in FIG. 23 differs from the configuration shown in FIG. 19 in the configuration regarding connection of the water supply valve 152 to the distribution tube 137 .
  • the first distribution tube 137 located closest to the pump 110 has the first distribution portion 137 a connected to the inlet port 251 of the first water supply valve 152 .
  • the water supply valve 152 has the first pipe portion 51 connected to the vertical pipe 133 and the second pipe portion 52 open to the atmosphere.
  • the first water supply valve 152 is a first water supply valve connected so as to communicate with the end portion of the first distribution portion 137a opposite to the folded portion.
  • the second distribution portion 137 b of the first distribution tube 137 is connected to the first pipe portion 51 of the second water supply valve 152 located next to the first water supply valve 152 .
  • the second pipe portion 52 of the second water supply valve 152 is connected to the first distribution portion 137a of the second distribution tube 137 located next to the first distribution tube 137. As shown in FIG.
  • the inlet port 251 of the second water supply valve 152 is connected to the vertical pipe 133 .
  • the second water supply valve 152 is a second water supply valve connected so as to communicate with the ends of the first distribution portion 137a and the second distribution portion 137b opposite to the folded portions.
  • the second distribution portion 137b of the second distribution tube 137 is connected to the inlet port 251 of the third water supply valve 152 located next to the second water supply valve 152.
  • the first pipe portion 51 of the third water supply valve 152 is connected to the vertical pipe 133 .
  • the second pipe portion 52 of the third water supply valve 152 is open to the atmosphere.
  • the third water supply valve 152 is a second water supply valve connected to communicate with the end of the second distribution portion 137b of the second distribution tube 137 opposite to the folded portion.
  • the water pressure sensor 153a or the flow rate sensor 154a is provided in the passage downstream of the second water supply valve 152 .
  • a water pressure sensor 153 a or a flow rate sensor 154 a is provided, for example, between the fluid outlet of the water supply valve 152 and the distribution tube 137 .
  • each of the water supply valves 152 at both ends communicates with the pump 110, one of which is open to the atmosphere and the other is the water supply source. Furthermore, each of the water supply valves 152 at both ends has an inlet port 251 connected to the distribution tube 137 .
  • the water supply valve 152 in the middle has a fluid outlet connected to the first distribution section 137a and the second distribution section 137b, and an inlet port 251 communicating with the pump 110 serving as a water supply source.
  • two adjacent distribution tubes 137 and three water supply valves 152 form one group of watering passages. In the farm field 20, a plurality of irrigation passages forming this group are arranged in the y direction at predetermined intervals.
  • the irrigation system 10 can perform control to irrigate by spouting water from the distribution tube 137 and control to drain water from the fluid outflow part of the water supply valve that is open to the atmosphere via the distribution tube 137 .
  • the microcomputer 330 controls the opening degree of the second water supply valve 152 so that water flows down through the first pipe section 51 .
  • the microcomputer 330 controls the valve opening degree of the first water supply valve 152 so as to block the flow down to the fluid outflow portion. By this control, the water supply flows down from the first pipe portion 51 of the second water supply valve 152 to the first distribution tube 137 , and the irrigated water discharged from each through-hole is supplied to the field 20 .
  • the microcomputer 330 controls the valve opening of the second water supply valve 152 so that water flows down through the first pipe section 51 . Furthermore, the microcomputer 330 controls the valve opening degree of the first water supply valve 152 so that water flows down to the second pipe portion 52 that is open to the atmosphere. By this control, the water supply flows down from the first pipe portion 51 of the second water supply valve 152 to the first distribution tube 137 and is discharged from the second pipe portion 52 . By this drainage control, foreign matter can be discharged together with the drainage in the first distribution tube 137, the water supply valve 152, the piping, and the like.
  • the microcomputer 330 controls the valve opening of the second water supply valve 152 so that water flows down through the second pipe section 52 . Furthermore, the microcomputer 330 controls the valve opening degree of the third water supply valve 152 so as to block the flow down to the fluid outlet. With this control, water flows down from the second pipe portion 52 of the second water supply valve 152 to the second distribution tube 137 , and the irrigated water discharged from each through-hole is supplied to the field 20 .
  • the microcomputer 330 controls the valve opening of the second water supply valve 152 so that water flows down through the second pipe section 52 . Furthermore, the microcomputer 330 controls the valve opening degree of the third water supply valve 152 so that water flows down to the second pipe portion 52 that is open to the atmosphere. By this control, the water supply flows from the second pipe portion 52 of the second water supply valve 152 down to the second distribution tube 137 and is discharged from the second pipe portion 52 . By this drainage control, it is possible to discharge the foreign matter together with the drainage from the inside of the second distribution tube 137, the inside of the water supply valve 152, the inside of the piping, and the like.
  • the irrigation system 10 of the fifth embodiment includes a distribution tube 137 having a first distribution portion 137a, a second distribution portion 137b, and a folded portion, as in FIG.
  • the irrigation system 10 includes a first water supply valve connected to communicate with the end opposite to the folded portion in the first distribution portion, and communicates with the end opposite to the folded portion in the second distribution portion. and a second water supply valve connected as follows.
  • the first water supply valve has a fluid inlet connected to communicate with the first distributor, and an atmosphere opening portion open to the atmosphere.
  • the second water supply valve has a fluid inflow portion communicatively connected to the water supply pipe supplied with water from the water supply source, and a fluid outflow portion communicatively connected to the second distribution portion.
  • the first water supply valve communicating with one distribution tube has the atmosphere release portion. Therefore, water can be drained through the second water supply valve communicating with the water supply pipe, the distribution tube, and the atmosphere opening portion of the first water supply valve, and water can be supplied from the through hole of the distribution tube. Therefore, it is possible to provide the irrigation system 10 having the first water supply valve that functions as both an irrigation valve and a foreign matter discharge valve.
  • FIG. 24 A sixth embodiment will be described with reference to FIGS. 24 to 27.
  • FIG. 24 The irrigation system 10 of the sixth embodiment has the configuration shown in FIG. 24 for components related to passage configuration and water supply control. Configurations, actions, and effects that are not specifically described in the sixth embodiment are the same as those in the above-described embodiments, and different points will be described below.
  • FIG. 24 shows an example of the positional relationship between the distribution tube 136 and the water supply valve 152.
  • FIG. The passage configuration shown in FIG. 24 differs from the configuration shown in FIG.
  • the irrigation system 10 of the sixth embodiment includes a branch pipe 139 through which the water supply from the pump 110 branches and flows down.
  • Branch pipe 139 branches from vertical pipe 133 and communicates with the other end of distribution tube 136 .
  • the other end of the distribution tube 136 is located on the other side in the longitudinal direction with respect to the one end of the distribution tube 136 located on the vertical pipe 133 side.
  • One end of the distribution tube 136 communicates with the fluid outlet of the water supply valve 152 .
  • This water supply valve 152 communicates with the vertical pipe 133 via the inlet port 251, as in the configuration shown in FIG.
  • a water supply valve 152 and a water pressure sensor 153a or a flow rate sensor 154a are provided in the passage between one end of the distribution tube 136 and the vertical pipe 133 .
  • the water pressure sensor 153a or the flow rate sensor 154a is provided at a position closer to one end of the distribution tube 136 than the water supply valve 152 is.
  • the branch pipe 139 is a pipe that branches from a position closer to the pump 110 than the part that communicates with one end of the distribution tube 136 in the vertical pipe 133 .
  • a plurality of passages communicating with one water supply valve 152 and one distribution tube 136 are connected to the branch pipe 139 .
  • Each inlet port 251 of a plurality of water supply valves 152 arranged in the same direction as the plurality of distribution tubes 136 is connected to the branch pipe 139 .
  • the other end of distribution tube 136 communicates with the fluid outlet of water supply valve 152 .
  • the water supply valve 152 communicates with the vertical pipe 133 via the inlet port 251 .
  • a water supply valve 152 and a water pressure sensor 153a or a flow rate sensor 154a are provided in the passage between the other end of the distribution tube 136 and the branch pipe 139 .
  • the water pressure sensor 153a or the flow rate sensor 154a is provided at a position closer to the other end of the distribution tube 136 than the water supply valve 152 is.
  • This irrigation system 10 individually controls the amount of water spouted from the distribution tubes 136 and the splashing distance by individually controlling the opening degree of the water supply valve 152 corresponding to each distribution tube 136 .
  • the irrigation system 10 can be watered from one end of the distribution tube 136, the other end, or both at the same time.
  • the microcomputer 330 controls the valve opening of the water supply valve 152 on the one end side connected to the vertical pipe 133 to open. Furthermore, the microcomputer 330 controls the valve opening degree of the water supply valve 152 on the other end side connected to the branch pipe 139 to the closed state. Under this control, the water supplied from one end through the vertical pipe 133 is discharged from the through-hole of the distribution tube to irrigate the farm field 20 at a flying distance and an irrigation amount according to the opening of the valve.
  • the microcomputer 330 controls the valve opening of the water supply valve 152 on the other end side connected to the branch pipe 139 to open. Further, the microcomputer 330 controls the valve opening degree of the water supply valve 152 on the one end side connected to the vertical pipe 133 to the closed state. Under this control, the water supplied from the other end through the branch pipe 139 is discharged from the through-hole of the distribution tube to irrigate the field 20 at a water splash distance and an irrigation amount according to the opening of the valve.
  • the microcomputer 330 controls the valve of the water supply valve 152 on the other end side and the valve of the water supply valve 152 on the one end side to open. By this control, the water supply supplied from one end through the vertical pipe 133 and the water supply supplied from the other end through the branch pipe 139 are performed at the same time. The water supplied from both sides is mixed in the distribution tube 136 and discharged from the through hole of the distribution tube 136 to irrigate the field 20 .
  • FIG. 25 is a diagram for explaining the relationship between the spouting position in the distribution tube 136 and the irrigation amount.
  • the horizontal axis represents the distance of the through hole from one end of the distribution tube 136
  • the vertical axis represents the water supply amount.
  • the water discharge position P1 is the position of the through hole closest to one end of the distribution tube 136 .
  • Water discharge position P2 is the position of the through hole closest to the other end of distribution tube 136 .
  • the dashed line graph in FIG. 25 shows irrigation in which the water supply valve 152 near one end of the distribution tube 136 is controlled to be open and the water supply valve 152 near the other end is controlled to be closed.
  • the dashed line graph in FIG. 25 shows the relationship between the spouting position and the amount of irrigation water when water is supplied only from the water supply valve 152 on the one end side.
  • the amount of water supplied is smaller at the water discharge position P2, which is farther from the one end to which water is supplied, in the distribution tube 136 than at the water discharge position P1.
  • the amount of water to be sprinkled decreases as the distance from the water discharge position P1 increases due to water flow resistance.
  • the dashed-dotted line graph in FIG. 25 shows irrigation in which the water supply valve 152 near the other end of the distribution tube 136 is controlled to be open and the water supply valve 152 near the one end is controlled to be closed.
  • the dashed-dotted line graph in FIG. 25 shows the relationship between the spouting position and the amount of irrigation water when water is supplied only from the water supply valve 152 on the other end side.
  • the water supply amount is smaller at the water discharge position P1, which is farther from the other end to which water is supplied, in the distribution tube 136 than at the water discharge position P2.
  • the amount of water to be sprinkled decreases with distance from the water discharge position P2 due to water flow resistance.
  • the solid line graph in FIG. 25 shows the total amount of watering, which is a combination of the dashed line graph and the dashed line graph. That is, the solid line graph in FIG. 25 indicates the total amount of water supplied from one end and the amount of water supplied from the other end.
  • the variation in watering amount in the solid line graph is smaller than the difference in watering amount between upstream and downstream indicated by the dashed line graph and the difference in watering amount between upstream and downstream indicated by the dashed line.
  • the irrigation system 10 can suppress variations in the amount of irrigation water depending on the water spouting position by irrigation control that switches between irrigation from one end and irrigation from the other end.
  • FIG. 26 is a diagram for explaining the relationship between the spouting position in the distribution tube 136 and the irrigation amount.
  • the horizontal axis represents the distance of the through-hole from one end of the distribution tube 136
  • the vertical axis represents the water supply amount.
  • the dashed line graph in FIG. 26 is the same as the dashed line graph in FIG. 25, and shows the relationship between the spouting position and the amount of irrigation water when water is supplied only from the water supply valve 152 on the one end side.
  • the solid line graph in FIG. 26 shows the relationship between the water spouting position and the amount of water to be supplied simultaneously from both the one end and the other end.
  • Variation in watering amount in the solid line graph is smaller than the difference in watering amount between upstream and downstream indicated by the dashed line graph.
  • the irrigation system 10 can suppress a reduction in the irrigation amount due to water flow resistance by irrigation control in which water is supplied simultaneously from both one end and the other end, and can suppress variations in the irrigation amount depending on the water spouting position.
  • the thick line in FIG. 27 shows the relationship between the water spouting position of the distribution tube 136 and the amount of irrigation water in a field 20 with a difference in height where the other end side of the ground is higher than the one end side.
  • the thin line in FIG. 27 shows the relationship between the water spouting position of the distribution tube 136 and the amount of irrigation water in the field 20 where the ground level is approximately the same on the other end side and the one end side.
  • the horizontal axis represents the distance of the through hole from one end of the distribution tube 136
  • the vertical axis represents the water supply amount.
  • both the thick line and the thin line show the relationship between the water spouting position and the water supply amount when water is supplied only from the water supply valve 152 on the one end side.
  • the amount of sprinkling water at the water discharge position near the other end is greatly reduced in the thick line than in the thin line.
  • the difference in the amount of sprinkling water at the water spouting position near the other end is AW1 shown in FIG. This is because water is supplied from one end where the ground is low and flows down toward the other end where the ground is high.
  • both the thick line and the thin line show the relationship between the spouting position and the amount of irrigation water when water is supplied only from the water supply valve 152 on the other end side.
  • the amount of irrigation water is larger in the thick line, which is the condition where the ground at the other end is higher, than in the thin line.
  • the thick solid line graph in FIG. 27 indicates the total amount of irrigation that is a combination of the thick dashed line graph and the thick dashed line graph.
  • the thin solid line graph in FIG. 27 indicates the total watering amount obtained by combining the thin dashed line graph and the thin dashed line graph. That is, in the solid line graph in FIG. 27, both the thick line and the thin line indicate the total amount of water supplied from one end and the amount of water supplied from the other end.
  • the irrigation system 10 can suppress variation in the amount of irrigation water depending on the water discharge position in the field 20 having a difference in height by switching between irrigation from one end and irrigation from the other end.
  • the irrigation system 10 of the sixth embodiment includes a water supply valve 152 on one end side and a water supply valve 152 on the other end side.
  • the control device controls the valve opening of the water supply valve 152 so as to switch between control of supplying water from one end and control of supplying water from the other end.
  • the fluid outflow portion of the water supply valve 152 on the one end side is opened and the fluid outflow portion of the water supply valve 152 on the other end side is closed.
  • the fluid outflow portion of the water supply valve 152 on the other end side is opened and the fluid outflow portion of the water supply valve 152 on the one end side is closed.
  • variation in the irrigation amount due to water flow resistance can be suppressed by irrigation control that switches between irrigation by water supply from one end and irrigation by water supply from the other end.
  • this water supply control it is possible to suppress variations in the amount of water supplied depending on the water discharge position in the distribution tubes that are provided so as to have height differences in the lengthwise direction of the tubes.
  • a seventh embodiment will be described with reference to FIG. 28 for components related to passage configuration and water supply control. Configurations, actions, and effects that are not specifically described in the seventh embodiment are the same as in the above-described embodiments, and different points will be described below.
  • FIG. 28 shows an example of the positional relationship between the distribution tube 136 and the water supply valve 152.
  • FIG. The passage configuration shown in FIG. 28 differs from the configuration shown in FIG. 24 of the sixth embodiment in that an on-off valve 140 provided in a branch pipe 139 is provided.
  • the irrigation system 10 of the seventh embodiment includes an on-off valve 140 capable of opening and closing the passage downstream of the connection site with the water supply valve 152 in the branch pipe 139 .
  • the on-off valve 140 has a fluid inflow portion connected to the branch pipe 139 and a fluid outflow portion open to the atmosphere.
  • the on-off valve 140 has a function of controlling the downstream passage in the branch pipe 139 between an open state and a closed state, and can use a flow control valve, an electromagnetic valve, or the like.
  • This irrigation system 10 performs the same control as in the sixth embodiment regarding the valve opening degree control of each water supply valve 152 .
  • the microcomputer 330 controls the opening degree of the on-off valve 140 between the open state and the closed state.
  • the irrigation system 10 can be controlled to irrigate by irrigating the distribution tube 136 and to control the drainage through the distribution tube 136 to the fluid outlet of the water valve open to the atmosphere.
  • the microcomputer 330 controls the corresponding water supply valve on the other end side to open and the water supply valve on the one end side to close. Furthermore, the microcomputer 330 controls the on-off valve 140 to be closed. By this control, the water supply through the branch pipe 139 flows into the distribution tube 136 from the other end and is discharged to the field 20 from each through-hole.
  • the microcomputer 330 controls the corresponding water supply valve on one end to open and the water supply valve on the other end to close, and the on-off valve 140 is closed. Control to close. By this control, the water supply through the branch pipe 139 flows into the distribution tube 136 from one end and is discharged to the field 20 from each through-hole.
  • the microcomputer 330 When draining water through the distribution tube 136, the microcomputer 330 controls the corresponding water supply valve on one end to open and the water supply valve on the other end to close. Furthermore, the microcomputer 330 controls the on-off valve 140 to open. With this control, the water supply flows through the water supply valve on one end, the distribution tube 136 , and the water supply valve on the other end in order, and is discharged from the fluid outlet of the on-off valve 140 via the branch pipe 139 . By this drainage control, foreign substances in the water supply valve on the one end side, the distribution tube 136, the water supply valve on the other end side, the piping, etc. can be discharged together with the water.
  • FIG. 29 An eighth embodiment will be described with reference to FIG. 29 for components related to passage configuration and water supply control. Configurations, actions, and effects that are not specifically described in the eighth embodiment are the same as those of the above-described embodiments, and different points will be described below.
  • FIG. 29 shows an example of the positional relationship between the distribution tube 137 and the water supply valve 14.
  • FIG. The passage configuration shown in FIG. 29 differs from the configuration shown in FIG. 28 in the configuration regarding connection of the water supply valve 14 to the distribution tube 136 .
  • the irrigation system 10 of the eighth embodiment controls the valve opening degree of the water supply valve 14 to irrigate water by spouting water from the distribution tube 136 and drain the water via the distribution tube 136 .
  • the irrigation system 10 of the eighth embodiment includes a plurality of water supply valves 14 that individually control valve opening.
  • the water supply valve 14 has an atmosphere opening portion 142 open to the atmosphere and a plurality of passage connecting portions.
  • the plurality of passage connection portions includes a first passage connection portion 141 , a second passage connection portion 143 and a third passage connection portion 144 .
  • the first passage connecting portion 141 is connected to a passage that communicates with the vertical pipe 133 or the branch pipe 139 through which the water supply from the water supply source flows.
  • the second passage connecting portion 143 is connected to a passage that communicates with one end or the other end of the distribution tube 136 .
  • the third passage connecting portion 144 is connected to a passage that communicates with one end or the other end of the distribution tube 136 .
  • the water supply valve 14 located on one end side of the distribution tube 136 is a flow control valve that communicates the one end of the distribution tube 136 and the vertical pipe 133 .
  • the first passage connecting portion 141 of the water supply valve 14 on the one end side is connected to the vertical pipe 133 .
  • the air release portion 142 of the water supply valve 14 on the one end side is provided so as to be open to the atmosphere.
  • the second passage connection portion 143 of the water supply valve 14 on the one end side is connected to the one end portion of the first distribution tube 136 closest to the pump 110 .
  • the third passage connecting portion 144 of the water supply valve 14 on the one end side is connected to one end of the second distribution tube 136 located next to the first distribution tube 136 .
  • the first distribution tube 136 is the first distribution tube.
  • a second distribution tube 136 is a second distribution tube.
  • the water supply valve 14 located on the other end side of the distribution tube 136 is a flow control valve that communicates the other end of the distribution tube 136 with the branch pipe 139 .
  • the first passage connection portion 141 of the water supply valve 14 on the other end side is connected to the branch pipe 139 .
  • the air release portion 142 of the water supply valve 14 on the other end side is provided so as to be open to the atmosphere.
  • the second passage connecting portion 143 of the water supply valve 14 on the other end side is connected to the other end of the first distribution tube 136 .
  • the third passage connecting portion 144 of the water supply valve 14 on the other end side is connected to the other end of the second distribution tube 136 .
  • the water pressure sensor 153a or the flow rate sensor 154a is provided in the passage downstream of the water supply valve 14 on the one end side.
  • the water pressure sensor 153a or the flow rate sensor 154a is provided in the passage downstream of the water supply valve 14 on the other end side.
  • the water pressure sensor 153a or the flow rate sensor 154a is provided, for example, between the fluid outlet of the water supply valve 14 on the one end side and the distribution tube 136 .
  • the water pressure sensor 153a or the flow rate sensor 154a is provided, for example, between the fluid outlet of the water supply valve 14 on the other end side and the distribution tube 136 .
  • two adjacent distribution tubes 136 and two water supply valves 14 positioned at both ends of the distribution tubes form one group of irrigation passages. A plurality of irrigation passages forming this group are arranged in the y direction at predetermined intervals in the farm field 20 .
  • the irrigation system 10 can perform control to irrigate by spouting water from the distribution tube 136 and control to drain water from the air opening portion of the water supply valve 14 via the distribution tube 136 .
  • the microcomputer 330 controls the opening degree of the valve to open the second passage connecting portion 143 and close the third passage connecting portion 144 of the water supply valve on one end side. Furthermore, the microcomputer 330 controls the opening degree of the valve so as to close the second passage connecting portion 143 and the third passage connecting portion 144 of the water supply valve on the other end side.
  • the water supply flows down from the second passage connection portion 143 of the water supply valve on the one end side to the first distribution tube 136 , and the irrigated water discharged from each through-hole is supplied to the field 20 .
  • the microcomputer 330 controls the opening degree of the valve to open the second passage connection portion 143 and close the third passage connection portion 144 of the water supply valve on the other end side.
  • the microcomputer 330 further controls the valve opening so as to close the second passage connection portion 143 and the third passage connection portion 144 of the water supply valve on the one end side.
  • the microcomputer 330 controls the opening of the valve to open the second passage connecting portion 143 and close the third passage connecting portion 144 of the water supply valve on the one end side. Further, the microcomputer 330 controls the valve opening degree so that the second passage connecting portion 143 of the water supply valve on the other end side is opened and the third passage connecting portion 144 is closed.
  • water is drained from the second passage connecting portion 143 of the water supply valve on one end side through the first distribution tube 136 and from the air release portion 142 of the water supply valve on the other end side.
  • this drainage control foreign matter can be discharged together with drainage from the water supply valve on one end, the first distribution tube 136, the water supply valve on the other end, and the like.
  • the microcomputer 330 controls the opening of the valve to open the second passage connecting portion 143 and close the third passage connecting portion 144 of the water supply valve on the other end side. Further, the microcomputer 330 controls the valve opening so that the second passage connecting portion 143 of the water supply valve on the one end side is opened and the third passage connecting portion 144 is closed.
  • water is drained from the second passage connecting portion 143 of the water supply valve on the other end side through the first distribution tube 136 and from the atmosphere release portion 142 of the water supply valve on the one end side.
  • this drainage control foreign matter can be discharged together with drainage from the water supply valve on the other end side, the first distribution tube 136, the water supply valve on the one end side, and the like.
  • the microcomputer 330 controls the opening of the valve to close the second passage connecting portion 143 and open the third passage connecting portion 144 of the water supply valve on the one end side.
  • the microcomputer 330 further controls the valve opening so as to close the second passage connecting portion 143 and the third passage connecting portion 144 of the water supply valve on the other end side.
  • the water supply flows down from the third passage connecting portion 144 of the water supply valve on the one end side to the second distribution tube 136 , and the irrigated water discharged from each through-hole is supplied to the field 20 .
  • the microcomputer 330 controls the opening of the valve to close the second passage connecting portion 143 and open the third passage connecting portion 144 of the water supply valve on the other end side. Further, the microcomputer 330 controls the opening degree of the valve to close the second passage connecting portion 143 and close the third passage connecting portion 144 of the water supply valve on the one end side. By this control, the water supply flows down from the third passage connection portion 144 of the water supply valve on the other end side to the second distribution tube 136 , and the irrigated water discharged from each through-hole is supplied to the field 20 .
  • the microcomputer 330 controls the opening of the valve to close the second passage connecting portion 143 and open the third passage connecting portion 144 of the water supply valve on one end side.
  • the microcomputer 330 further controls the valve opening so as to close the second passage connection portion 143 and open the third passage connection portion 144 of the water supply valve on the other end side.
  • the microcomputer 330 controls the opening of the valve to close the second passage connecting portion 143 and open the third passage connecting portion 144 of the water supply valve on the other end side.
  • the microcomputer 330 further controls the valve opening so as to close the second passage connecting portion 143 and open the third passage connecting portion 144 of the water supply valve on the one end side.
  • the irrigation system 10 of the eighth embodiment includes a first distribution tube, a second distribution tube adjacent to the first distribution tube, a water supply valve 14 on one end and a water supply valve 14 on the other end. .
  • the water supply valve 14 on the one end side is connected so as to communicate with one end of the first distribution tube and one end of the second distribution tube.
  • the water supply valve on the other end side is connected so as to communicate with the other end of the first distribution tube and the other end of the second distribution tube.
  • the water supply valve 14 on the one end side has an atmosphere release portion 142 open to the atmosphere, a first passage connection portion 141 , a second passage connection portion 143 and a third passage connection portion 144 .
  • the first passage connecting portion 141 is connected to the passage so as to communicate with the water supply pipe 130 supplied with water from the water supply source.
  • the second passage connecting portion 143 is connected to the passage so as to communicate with one end of the first distribution tube.
  • the third passage connector 144 is connected to the passage so as to communicate with one end of the second distribution tube.
  • the water supply valve on the other end has an atmosphere opening portion 142 open to the atmosphere, a first passage connection portion 141, a second passage connection portion 143, and a third passage connection portion 144.
  • the first passage connecting portion 141 is connected to the passage so as to communicate with the branch pipe 139 branching from the water supply pipe 130 .
  • the second passage connecting portion 143 is connected to the passage so as to communicate with the other end of the first distribution tube.
  • the third passage connector 144 is connected to the passage so as to communicate with the other end of the second distribution tube.
  • the irrigation system 10 having a water supply valve that functions as both an irrigation valve and a foreign matter discharge valve.
  • the control device subdivides the energization time or the energization amount required for controlling the valve opening to the target opening by subdivided amounts into a plurality of stages, and controls the target opening in stages.
  • the irrigation system according to any one of technical ideas 1 to 3.
  • the distribution tube is configured to expand and contract according to water pressure circulating inside,
  • the irrigation system according to any one of technical ideas 1 to 4, wherein the control device controls the valve opening of the water supply valve within a water pressure range in which the distribution tube expands and contracts.
  • the distribution tube has a first distribution portion (137a) in which a plurality of through-holes are formed, and a plurality of through-holes formed along the first distribution portion so as to be spaced apart from each other. a second distribution portion (137b) and a folded portion connecting the first distribution portion and the second distribution portion, Technical idea 1 to technical idea 5, wherein the water supply valve controls the pressure of the water supply flowing down toward the end opposite to the folded part in each of the first distribution part and the second distribution part.
  • the distribution tube has a first distribution portion (137a) in which a plurality of through-holes are formed, and a plurality of through-holes formed along the first distribution portion so as to be spaced apart from each other.
  • the water supply valve includes a first water supply valve connected in communication with an end of the first distributing portion opposite to the folded portion, and an end of the second distributing portion opposite to the folded portion.
  • the first water supply valve has a fluid inflow portion (251) connected so as to communicate with the first distribution portion and an atmosphere opening portion (52) open to the atmosphere
  • the second water supply valve communicates with a fluid inflow portion (251) connected to a water supply pipe (130) to which water is supplied from a water supply source (110) and the second distribution portion.
  • Irrigation system according to any one of ideas 1 to 5, having a connected fluid outlet (51).
  • the water supply valve is connected so as to communicate with one end of the distribution tube and a fluid inflow portion (251) connected so as to communicate with a water supply pipe (130) supplied with water from a water supply source (110).
  • a water supply valve on one end side having a fluid outflow part (51) connected to the water supply pipe, and a fluid inflow part (251) connected so as to communicate with a branch pipe (139) branching from the water supply pipe and the distribution tube a water supply valve on the other end side having a fluid outflow part (51) connected so as to communicate with the other end
  • the control device opens the fluid outflow portion of the water supply valve on the one end side and closes the fluid outflow portion of the water supply valve on the other end side to supply water from the one end;
  • the opening degree of the valve is changed so as to switch control between opening the fluid outflow portion of the water supply valve on the end side, closing the fluid outflow portion of the water supply valve on the one end side, and supplying water from the other end.
  • the irrigation system according to any
  • the water supply valve is a one end side water supply valve that is connected so as to communicate with one end of the first distribution tube and one end of the second distribution tube adjacent to the first distribution tube. , a water supply valve on the other end side connected so as to communicate with the other end of the first distribution tube and the other end of the second distribution tube, The water supply valve on the one end side is connected so as to communicate with an atmosphere opening part (142) open to the atmosphere and a water supply pipe (130) to which water is supplied from a water supply source (110). a first passage connection (141), a second passage connection (143) connected in communication with the one end of the first distribution tube, and one end of the second distribution tube.
  • a third passage connection (144) communicatively connected The water supply valve on the other end side has an atmosphere opening part (142) open to the atmosphere and a first passage connection part (141) connected so as to communicate with a branch pipe (139) branching from the water supply pipe. ), a second passage connector (143) communicatively connected to the other end of the first distribution tube, and a communicatively connected to the other end of the second distribution tube.
  • the irrigation system according to any one of technical ideas 1 to 5, having a third passage connection (144).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Nozzles (AREA)

Abstract

潅水システムは、圃場における複数の分割エリアそれぞれの環境が、各分割エリアに対応する監視部によって個別に監視されている。各分割エリアにおける潅水の供給は、対応する監視部と給水弁(152)とによって個別に制御されている。潅水システムは、圃場に潅水を散水するための複数の貫通孔が形成されてかつ圧力補正機構を有していない分配チューブ(136)を備える。潅水システムは、分配チューブ(136)へ流下する給水の圧力を制御する給水弁(152)を備える。監視部のマイコンは、給水弁(152)のバルブ開度を制御して、分配チューブ(136)から貫通孔を介して放出される潅水の飛水距離を制御する。

Description

潅水システムおよび制御装置 関連出願の相互参照
 この出願は、2022年2月28日に日本に出願された特許出願第2022-029004号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 この明細書における開示は、圃場への潅水の供給を制御する潅水システムおよび制御装置に関するものである。
 特許文献1は、潅水システムを開示している。
米国特許第10772266号明細書
 特許文献1は、内部にエミッタを有して一定の吐水量を実現する圧力補正付きの点滴チューブを開示している。この装置は、点滴チューブに対する水の供給を許可または遮断するバルブを開閉することにより、点滴チューブからの潅水の供給と停止を制御する。バルブ開状態では点滴チューブから水が浸み出してチューブ近傍の土壌に潅水できる。しかしながら、特許文献1によれば、天候、土壌状態、作物の生育状況などに応じて、チューブからの潅水の吐水量を瞬時に変更することができない。
 この明細書における開示の目的は、点滴潅水および散水潅水の両方を実施できる潅水システムおよび制御装置を提供することである。
 この明細書に開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。また、特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示す一例であって、技術的範囲を限定するものではない。
 開示された潅水システムの一つは、植物を生育する圃場に設けられて、圃場に潅水を散水するための複数の貫通孔が形成されてかつ圧力補正機構を有していない分配チューブと、分配チューブよりも上流において分配チューブへ流下する給水の圧力を制御する給水弁と、給水弁のバルブ開度を制御して、分配チューブから貫通孔を介して放出される潅水量を制御する制御装置と、を備える。
 この潅水システムによれば、圧力補正機構を有していない分配チューブの上流において給水弁のバルブ開度を制御して潅水量を制御する。このバルブ開度の制御により、潅水量を順次に変動させる潅水を実施できる。したがって、この潅水システムは、分配チューブから点滴潅水および散水潅水の両方を実施できる。
 開示された制御装置の一つは、複数の貫通孔が形成されてかつ圧力補正機構を有していない分配チューブへ流下する潅水の圧力を分配チューブよりも上流で制御する給水弁についてバルブ開度を決定する演算部と、分配チューブから貫通孔を介して放出される潅水量を制御するために、バルブ開度に制御する制御信号を給水弁に出力する出力部とを備える。
 この制御装置によれば、演算部によりバルブ開度を決定し、潅水の潅水量を制御するために出力部がバルブ開度に制御する制御信号を給水弁に出力する。これにより、圧力補正機構を有していない分配チューブから放出される潅水の潅水量を制御でき、潅水量を順次に変動させる潅水を実施できる。したがって、この制御装置は、分配チューブから点滴潅水および散水潅水の両方を実施できる。
圃場に設けられた第1実施形態の潅水システムを示す概念図である。 給水配管と配管モジュールを示す部分図である。 潅水システムの構成図である。 監視部を示すブロック図である。 無線信号を示す図である。 センサ処理を説明するためのフローチャートである。 更新処理を説明するためのフローチャートである。 監視処理を説明するためのフローチャートである。 給水処理を説明するためのフローチャートである。 潅水処理を説明するためのフローチャートである。 ユーザ更新処理を説明するためのフローチャートである。 強制更新処理を説明するためのフローチャートである。 給水弁として適用可能なバルブ装置を示す断面図である。 バルブ装置が備える駆動部の構成を示す図である。 バルブ装置が備えるバルブを示す斜視図である。 バルブ装置における回転角度と流量との関係を示す図である。 分配チューブと給水弁と水圧センサとの位置関係を示す構成図である。 分配チューブの膨張と内圧との関係を説明する図である。 第2実施形態に係る通路構成を示す構成図である。 分配チューブにおける吐水位置と潅水量との関係を示す図である。 第3実施形態に係る通路構成を示す構成図である。 第4実施形態に係る通路構成を示す構成図である。 第5実施形態に係る通路構成を示す構成図である。 第6実施形態に係る通路構成を示す構成図である。 分配チューブにおける吐水位置と潅水量との関係を示す図である。 分配チューブにおける吐水位置と潅水量との関係を示す図である。 分配チューブにおける吐水位置と潅水量との関係を示す図である。 第7実施形態に係る通路構成を示す構成図である。 第8実施形態に係る通路構成を示す構成図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。
 <第1実施形態>
 潅水システムの一例を開示する第1実施形態について図1~図18を参照しながら説明する。以下においては互いに直交の関係にある3方向を、x方向、y方向、z方向と示す。この明細書ではx方向とy方向とによって規定される平面が水平面に沿っている。z方向が鉛直方向に沿っている。図面においては「方向」の記載を省略して、単に、x、y、zと表記している。
 <圃場>
 潅水システム10は丘や平野に開墾された野外の圃場20に適用される。図1に示すように、潅水システム10が平野に開墾された圃場20に適用された形態を説明する。この圃場20の広さは数10平方メートル~数1000平方キロメートルになっている。圃場20にはx方向に延びる畝などの生育場所が複数設けられている。これらx方向に延びる複数の生育場所がy方向で離間して並んでいる。これら複数の生育場所それぞれに植物30の種や苗が埋められる。この植物30としては、例えば、葡萄、トウモロコシ、アーモンド、ラズベリー、葉菜、綿などがある。
 1つの生育場所で複数の植物30が生育される。複数の植物30はx方向で並んで1つの列を成している。以下においてはこのx方向で列を成して並ぶ複数の植物30を植物群31と示す。圃場20では複数の植物群31がy方向で離間して並んでいる。複数の植物群31のy方向の最短離間距離は、1つの植物群31に含まれる複数の植物30のx方向の最短離間距離よりも長くなっている。複数の植物群31のy方向の離間間隔は生育する植物30の種類や圃場20の起伏と気候に応じて種々変更される。複数の植物群31のy方向の離間間隔は1m~10mほどである。たとえ植物30の枝葉がy方向に生い茂ったとしても、少なくとも人が2つの植物群31の間をx方向に移動できる程度の幅が確保されている。
 <潅水システム>
 潅水システム10は給水装置100と制御装置200を備えている。給水装置100は潅水を圃場20の植物30に供給する。制御装置200は潅水期間において給水装置100から植物30に供給される潅水の供給時刻と量を決定する。制御装置200は給水装置100の潅水スケジュールを決定する。
 <給水装置>
 給水装置100は、ポンプ110、給水配管130、および配管モジュール150を有する。ポンプ110は潅水を給水配管130に供給する給水源である。配管モジュール150は給水配管130に供給された潅水の吐水量を制御する。
 <ポンプ>
 ポンプ110は常時駆動状態になっている。あるいは、ポンプ110は昼間駆動状態になっている。ポンプ110はタンクやため池に貯水されている潅水を汲み出し、それを給水配管130に供給する。潅水は井戸水、河川水、雨水、市水などである。後述するように給水配管130には複数の給水弁152が設けられている。これら複数の給水弁152それぞれが閉状態であり、なおかつ、給水配管130からの潅水の漏れが生じていない場合、給水配管130は潅水で満たされる。この際、給水配管130内の水圧は、ポンプ110の吐出能力に依存した値(ポンプ圧ともいう)になる。給水弁152が閉状態から開状態になると、給水配管130から圃場20に潅水が吐出される。潅水の吐水量が時間平均的に安定すると、給水配管130内の水圧は、ポンプ圧よりも水圧の低い流動圧になる。
 <給水配管>
 給水配管130は主配管131と供給用配管132を含む。主配管131はポンプ110に連結されている。供給用配管132は主配管131に連結されている。ポンプ110は、主配管131から供給用配管132に潅水を供給する。潅水は供給用配管132から圃場20に供給される。
 <主配管>
 主配管131は、縦配管133と横配管134を含む。縦配管133はy方向に延びている。横配管134はx方向に延びている。縦配管133と横配管134は互いに連結されている。係る構成のために潅水は主配管131内をy方向およびx方向に流れる。図1に示す一例では、1つのポンプ110に1つの縦配管133が連結されている。このy方向に延びる縦配管133から複数の横配管134がx方向に延びている。横配管134のz方向の位置は成熟した植物30の頂点よりも地面から離間するように設定されている。
 図1に示す構成は、潅水に係る通路構成の一例に過ぎない。圃場20に設けられるポンプ110と縦配管133の数、1つのポンプ110に連結される縦配管133の数、1つの横配管134に連結される縦配管133の数、および、横配管134と縦配管133のz方向の位置は特に限定されない。
 複数の横配管134はy方向で離間して並んでいる。複数の横配管134のy方向の最短離間距離は、複数の植物群31のy方向の最短離間距離と同等になっている。複数の横配管134の1つが複数の植物群31の1つに設けられている。横配管134は植物群31に含まれる複数の植物30の並ぶ方向に沿って延びている。この横配管134に供給用配管132が連結されている。
 <供給用配管>
 供給用配管132は1つの横配管134に複数連結されている。1つの横配管134に連結される複数の供給用配管132はx方向で離間して並んでいる。図2に示すように供給用配管132は、連結配管135と分配チューブ136を含む。連結配管135は横配管134からz方向に垂れ下がって延びている。連結配管135の先端側にはx方向に開口する2つの連結口が形成されている。これら2つの連結口に分配チューブ136が連結されている。
 分配チューブ136は、水圧変化にかかわらず一定の吐水量を実現するような圧力補正機構を有していない。分配チューブ136の貫通孔からの吐水量は、水圧に応じて変化するようになっている。分配チューブ136は、2つの連結口の一方に連結される第1分配チューブ136aと、2つの連結口の他方に連結される第2分配チューブ136bとを含む。第1分配チューブ136aと第2分配チューブ136bは連結配管135との連結位置からx方向において互いに逆向きに延びている。
 第1分配チューブ136aと第2分配チューブ136bの各チューブには、潅水が流動するチューブ内部と外部とを連通する複数の貫通孔が形成されている。複数の貫通孔は、各チューブにおいて、チューブの軸方向に所定間隔をあけて並んで設けられている。また、貫通孔は、各チューブにおいて、チューブの周方向に所定間隔をあけて並んで設けられている構成でもよい。
 複数の貫通孔の軸方向(例えばx方向)における離間間隔は、複数の植物30のx方向における離間間隔と同等になっている。図2に示す一例では、第1分配チューブ136aと第2分配チューブ136bそれぞれには、貫通孔が軸方向に3個並んでいる。また、複数の貫通孔の離間間隔と複数の植物30の離間間隔は異なっていてもよい。各チューブに形成されている貫通孔の数は、3個に限定されない。
 <潅水の流動>
 ポンプ110によって縦配管133に供給された潅水は、縦配管133内をy方向に流れる。この潅水は、縦配管133に連結された複数の横配管134それぞれに供給される。潅水は複数の横配管134内のそれぞれをx方向に流れる。横配管134内を流れる潅水は、連結配管135を介して分配チューブ136に流下する。潅水は、第1分配チューブ136aと第2分配チューブ136bそれぞれにおける各貫通孔から吐出されて、植物30に供給される。
 図1に示す一例では、各分配チューブは、高さ方向において植物30の頂点側よりも圃場20の地面側に位置している。第1分配チューブ136aと第2分配チューブ136bそれぞれの貫通孔から供給された潅水は主として植物30の幹やその根本に供給される。
 貫通孔は、各チューブにおいて地面と面している部分よりも高い位置に設けられていることが好ましい。このような位置の貫通孔から吐出された潅水は、チューブの中心軸に対して放射する方向に広がり、チューブから離れた位置に散水することができる。
 <配管モジュール>
 図2に示すように、配管モジュール150は供給用配管132に設けられている。配管モジュール150は収納箱151、給水弁152、および水圧センサ153を有する。収納箱151の内部には給水弁152と水圧センサ153が収納されている。
 <給水弁>、
 給水弁152は、連結配管135において、第1分配チューブ136aと第2分配チューブ136bそれぞれとの近接位置に設けられている。全ての貫通孔は、第1分配チューブ136aと第2分配チューブ136bそれぞれにおいて連結配管135から離間した先端部分と給水弁152との間に設けられている。
 給水弁152が開状態になると、連結配管135と貫通孔が連通する。これにより貫通孔から潅水が吐出される。逆に、給水弁152が閉状態になると、連結配管135と貫通孔との連通が遮断される。これにより貫通孔からの潅水の吐出が止まる。
 第1分配チューブ136aに設けられた給水弁152と第2分配チューブ136bに設けられた給水弁152は、制御装置200によって独立して開度制御される。係る開度制御により、第1分配チューブ136aの貫通孔からの潅水の吐出と、第2分配チューブ136bの貫通孔からの潅水の吐出とが独立して制御される。
 制御装置200は、給水弁152のバルブ開度を所定の開度から全開の間にわたって任意に制御する。給水弁152は、下流または上流の圧力を調整して、通過する流量を精密に可変できる流量調整バルブまたは圧力調整バルブである。所定の開度は、少し開いた開度、または開度0%、つまり全閉を含む値に設定される。制御装置200は、給水弁152のバルブ開度を制御することにより、各貫通孔から吐出される単位時間当たりの吐出流量、または吐出流速を制御する。この制御により、制御装置200は、分配チューブ136から吐出される潅水が分配チューブ136から離間して着地する距離である飛水距離を制御することができる。飛水距離は、貫通孔を通じて分配チューブ136から飛び出した潅水の土壌着地点と分配チューブ136との距離である。この飛水距離を制御する技術によれば、潅水を必要としている場所への効率的な潅水を実施でき、節水にも寄与する。
 制御装置200は、潅水を供給する植物30の種類、圃場20の作土層の範囲などに基づいて潅水の飛水距離を決定する。制御装置200は、決定した飛水距離が得られるように給水弁152のバルブ開度を制御する。例えば、給水弁152のバルブ開度は、植物30が根を広く張ったり、作土層が浅く広範囲であったりする場合に、飛水距離を大きくするように制御される。また、給水弁152のバルブ開度は、植物30が根を深く張ったり、作土層が分配チューブ136の近くに位置したりする場合に、飛水距離を小さく抑えるように制御される。飛水距離は潅水距離と言い換えることができる。
 <水圧センサ>
 水圧センサ153は、連結配管135において第1分配チューブ136aと第2分配チューブ136bのそれぞれが連結されている部位の近傍に設けられている。各水圧センサ153は、連結配管135内の水圧を検出する圧力センサである。水圧センサ153で検出された水圧は制御装置200に出力される。水圧センサ153は、第1分配チューブ136aにおける連結配管135との連結部位と給水弁152との間や、第2分配チューブ136bにおける連結配管135との連結部位と給水弁152との間に設けられてもよい。水圧センサ153は、連結配管135における横配管134との連結部位近傍に設けられてもよい。水圧センサ153は、供給用配管132の潅水の流動経路における、給水弁152よりも横配管134側であればよい。
 給水弁152が閉状態になり、連結配管135が潅水で満たされると、水圧センサ153でポンプ圧が検出される。給水弁152が閉状態から開状態になると、分配チューブ136から潅水が吐出される。潅水の吐水量が時間平均的に安定すると、水圧センサ153で流動圧が検出される。給水弁152が開状態から閉状態になると、給水配管130からの潅水の吐出が止まる。給水配管130内の水圧は流動圧からポンプ圧へと徐々に回復する。水圧センサ153ではこの流動圧からポンプ圧へと徐々に回復する過渡期の水圧が検出される。
 給水配管130や給水弁152に破損が生じ、その破損個所から潅水が漏れている場合、水圧センサ153で検出される水圧が減少する。これによって破損が生じているか否かを検出することができる。この破損の検出処理は制御装置200で実行される。潅水システム10は、水圧センサ153の代わりに、通路を流れる流体の流量を検出する流量センサを備える構成としてもよい。潅水システム10は、水圧センサ153や流量センサの検出値を用いて、給水弁152のバルブ開度をフィードバック制御する。
 <制御装置>
 図1および図3に示すように制御装置200は、監視部300、統合通信部400、情報格納部500、および統合演算部600を含む。図面では統合通信部400をICDと表記している。制御装置200は監視部300を複数有する。複数の監視部300のそれぞれは、圃場20における所定の分割エリアに対応している。監視部300は、例えば1個の配管モジュール150に対応して1個設けられている。監視部300と配管モジュール150とは電気的に接続されている。
 監視部300には水圧センサ153で検出された水圧が入力される。監視部300は、圃場20の環境に関わる物理量である環境値を検出している。複数の監視部300それぞれは、水圧と環境値とを統合通信部400に無線通信によって出力している。
 統合通信部400は各監視部300から入力された水圧と環境値を情報格納部500に無線通信によって出力する。情報格納部500はこれら水圧と環境値とを格納する。情報格納部500の一例は、いわゆるクラウドである。統合演算部600は情報格納部500に格納された水圧と環境値などの諸情報を読み出す。統合演算部600は読み出した諸情報を適宜処理し、諸情報や処理結果をユーザのスマートフォンやパソコンのモニタ700に表示する。
 統合演算部600はユーザのスマートフォンやパソコンなどに含まれている。統合演算部600は情報処理演算機器610、メモリ620、および通信装置630を有する。図面では情報処理演算機器610をIPCE、メモリ620をMM、通信装置630をCDと表記している。情報処理演算機器610にはプロセッサが含まれている。情報処理演算機器610は潅水処理に関わる演算処理を行う。係る機能は情報処理演算機器610に潅水アプリケーションプログラムがダウンロードされることで実現される。
 メモリ620はコンピュータやプロセッサによって読み取り可能な各種プログラムと各種情報を非一時的に格納する非遷移的実体的記憶媒体である。メモリ620は揮発性メモリと不揮発性メモリとを有している。メモリ620は通信装置630に入力された諸情報や情報処理演算機器610の処理結果を記憶する。情報処理演算機器610は、メモリ620に記憶された情報を用いて各種演算処理を実行する。
 通信装置630は無線通信機能を備えている。通信装置630は受信した無線信号を電気信号に変換して情報処理演算機器610に出力する。通信装置630は情報処理演算機器610の処理結果を無線信号として出力する。以下、情報処理演算機器610、メモリ620、通信装置630を特に区別して表記せずに、総称とする統合演算部600を用いて本実施形態の技術内容を説明する。情報処理演算機器610は処理演算部に相当する。
 ユーザは、潅水処理や潅水スケジュールに関わるユーザ指示を、タッチパネルやキーボードなどの入力機器800を用いて統合演算部600に入力する。統合演算部600は、このユーザ指示、情報格納部500から読み出した諸情報に基づいて、潅水処理指令を出力したり潅水スケジュールを決定したりする。ユーザからの指示がない場合、統合演算部600は諸情報に基づいて潅水スケジュールを自動的に決定する。
 統合演算部600は、潅水処理指令を検出したり、潅水スケジュールにおいて潅水の供給開始時刻であると判定したりすると、給水弁152を制御する指示信号を情報格納部500に出力する。この指示信号は情報格納部500から統合通信部400を介して監視部300に入力される。監視部300は指示信号に基づいて給水弁152への給水信号の出力と非出力を制御する。これにより給水弁152の開閉状態が制御される。この結果、圃場20への潅水の供給が制御される。指示信号と給水信号のうちの少なくとも一方が制御信号に相当する。
 <分割エリア>
 図1に示すように監視部300は、1個の供給用配管132につき1個設けられている。一例として図3に示すように、複数の監視部300は、複数の配管モジュール150の備える給水弁152および水圧センサ153とともに、圃場20においてx方向を行方向、y方向を列方向として、行列配置される。
 係る構成により、行方向と列方向とによって区切られる複数の分割エリアそれぞれの環境が、各分割エリアに対応する監視部300によって個別に監視される。さらに、複数の分割エリアそれぞれにおける潅水の供給は、対応する監視部300と配管モジュール150によって個別に制御される。
 <監視部>
 図3、図4に示すように監視部300は、環境センサ310と制御部320を有する。配管モジュール150の給水弁152と水圧センサ153は、制御部320に電気的に接続されている。図面では環境センサ310をES、給水弁152をWB、水圧センサ153をWPSと表記している。
 複数の環境センサ310は配管モジュール150とともに圃場20で行列配置される。各環境センサ310によって複数の分割エリアそれぞれの環境値が検出される。各水圧センサ153によって複数の分割エリアそれぞれの水圧が検出される。検出された複数の分割エリアそれぞれの環境値および水圧は、情報格納部500に格納される。
 図4に示すように制御部320は、マイコン330、通信部340、RTC350、および発電部360を含む。マイコンはマイクロコンピュータの略である。RTCはReal Time Clockの略である。図面では通信部340をCDPと表記している。
 マイコン330には環境値と水圧が入力される。マイコン330はこれら環境値と水圧を、通信部340を介して統合通信部400に出力する。マイコン330には統合通信部400から指示信号が入力される。マイコン330はこの指示信号に基づいて給水信号を給水弁152に出力する。マイコン330が演算処理部に相当する。マイコン330は、給水弁152の作動を制御する制御装置である。
 マイコン330は動作モードとしてスリープモードと通常モードを有する。スリープモードはマイコン330が演算処理を停止している状態である。通常モードはマイコン330が演算処理を実行している状態である。通常モードはスリープモードよりも消費電力が多くなっている。
 通信部340は統合通信部400と無線通信を行っている。通信部340はマイコン330から出力された電気信号を無線信号として統合通信部400に出力する。それとともに通信部340は統合通信部400から出力された無線信号を受信して電気信号に変換する。通信部340はその電気信号をマイコン330に出力する。電気信号に指示信号が含まれている場合、マイコン330はスリープモードから通常モードに切り換わる。
 RTC350は、時を刻む時計機能と時間を計測するタイマー機能を有する。RTC350は予め設定された時刻になった場合、または予め設定された時間が経過した場合、マイコン330にウェイクアップ信号を出力する。このウェイクアップ信号がスリープモードのマイコン330に入力されると、マイコン330はスリープモードから通常モードに切り換わる。
 発電部360は、太陽電池によって取得した光エネルギーを電気エネルギーに変換している。発電部360は監視部300の電力供給源として機能している。電力供給は、発電部360からRTC350に絶えず行われている。これによりRTC350の時計機能とタイマー機能が損なわれることが抑制されている。
 <環境センサ>
 圃場20の分割エリア毎に異なることが想定される環境値の一つとしては土壌水分量がある。環境センサ310は、対応する分割エリアにおける環境値を検出する。環境センサ310は、土壌水分量等を検出する土壌センサ311を含んでいる。複数の土壌センサ311は、圃場20に配置された複数の分割エリアの土壌水分量を検出する。図面では土壌センサ311をSMSと表記している。
 圃場20の起伏や植物30の育成状況によっては、分割エリア毎に異なることが想定される環境値の一つとして日射量がある。この明細書では、各環境センサ310は日射量を検出する日射センサ312を備えている。複数の日射センサ312は、圃場20における複数の分割エリアの日射量を検出する。図面では日射センサ312をSRSと表記している。
 モニタ700には、複数の分割エリアにおいて検出された土壌水分量と日射量を行列配置することによって、圃場20における土壌水分量分布と日射量分布がマップ表示される。同様にモニタ700には、複数の水圧センサ153で検出された水圧を行列配置することで、圃場20における給水配管130の水圧分布がモニタ700にマップ表示される。係るマップ表示処理は統合演算部600で行われる。
 圃場20における環境値には、降雨量、温度、湿度、気圧、および風量が含まれる。これらの環境値を検出するセンサは、レインセンサ313、温度センサ314、湿度センサ315、気圧センサ316、および風センサ317である。これらは複数の監視部300のうちの少なくとも1つの環境センサ310に含まれている。
 監視部300の環境センサ310には、これら圃場20全体の環境値を検出する各種センサが含まれている。図4に環境センサ310の一例を示す。図面ではレインセンサ313をRS、温度センサ314をTS、湿度センサ315をMS、気圧センサ316をPS、風センサ317をWSと表記している。風センサ317は風量だけではなく風向も検出する構成でもよい。これらレインセンサ313、温度センサ314、湿度センサ315、気圧センサ316、および風センサ317のうちの少なくとも1つが、圃場20で行列配置された構成を採用することもできる。
 係る構成は、例えば、圃場20が広かったり、圃場20の起伏が激しかったり、圃場20の気候変化が激しかったりするために、分割エリア毎に降雨量、温度、湿度、気圧、および風量が大きく変化しやすい場合に有効である。これらセンサで検出された降雨量、温度、湿度、気圧、および風量を行列配置することにより、これら環境値をモニタ700にマップ表示することが可能になる。これらセンサの出力は統合通信部400を介して通信部340に出力される。それとともに、これらセンサの出力は統合通信部400を介して情報格納部500に格納される。
 <土壌水分量>
 これまでに説明した各種環境値のうち、潅水システム10が制御する環境値には、土壌水分量が含まれる。潅水システム10は分割エリア毎に潅水の供給時刻と供給量を制御する。こうすることで分割エリア毎の土壌水分量が個別に制御される。
 植物30は圃場20の作土層に根を張っている。植物30の生育はこの作土層の土壌に含まれる水分量(土壌水分量ともいう)に依存している。土壌水分量が成長阻害水分点を上回ると植物30に病害が発生する。土壌水分量が永久しおれ点を下回ると植物30のしおれが回復しなくなる。これら成長阻害水分点と永久しおれ点とは植物30の種類に応じて異なるものの、その値は既知である。これらの値は情報格納部500に記憶されている。
 土壌水分量の現在値は土壌センサ311で検出される。土壌水分量に関わりのある物理量としては、土壌水分量張力(pF値)や土壌誘電率(ε)がある。この明細書の土壌センサ311はpF値を検出している。
 作土層の土壌水分量は圃場20の環境変化によって増減する。圃場20に雨が降ると土壌水分量が増大する。作土層から水が蒸発すると土壌水分量が減少する。また、植物30が水分を吸収したり、作土層よりも下層へ水が浸透したりすると土壌水分量が減少する。作土層に降り注がれる雨の量(降雨量)はレインセンサ313によって検出される。作土層から蒸発する水分量(蒸発量)は、日射量、温度、湿度、および風量に依存する。これらは、日射センサ312、温度センサ314、湿度センサ315、および風センサ317によって検出される。
 植物30が単位時間あたりに水分を吸収する吸水量は、植物30の種類によって予め推定することができる。単位時間あたりに作土層よりも下層に浸透する水分量は、土壌の水分保持能力によって予め推定することができる。これら推定値は情報格納部500に記憶されている。
 以上に示したように、環境センサ310は、作土層の土壌水分量の現在値、環境変化による作土層の土壌水分量の現在値からの増加、および減少予測に関わる予測値のそれぞれを検出する。これらが環境値として情報格納部500に格納される。情報格納部500には、植物30の成長阻害水分点と永久しおれ点、および植物30が単位時間あたりに水分を吸収する吸水量と土壌の水分保持能力が格納されている。上記したユーザからの指示(ユーザ指示)は情報格納部500に格納される。このように、情報格納部500には潅水スケジュールを決定するための諸情報が格納される。
 <マイコン>
 図4に示すようにマイコン330は、取得部331、信号出力部332、記憶部333、および処理部334を備えている。図面では取得部331をAD、信号出力部332をSOU、記憶部333をMU、処理部334をPUと表記している。
 取得部331には環境センサ310で検出された環境値が入力される。取得部331には水圧センサ153で検出された水圧が入力される。取得部331とこれら環境センサ310および水圧センサ153のそれぞれとは、電気的に接続されている。図1に示すワイヤ160は、取得部331と土壌センサ311とを接続するワイヤ、取得部331と水圧センサ153とを接続するワイヤの一例である。
 信号出力部332は給水弁152と電気的に接続されている。給水弁152のバルブ開度を制御するための制御信号(給水信号)は、信号出力部332から給水弁152に出力される。給水信号の未入力時に給水弁152は閉状態になっている。給水信号の入力時に給水弁152は開状態になっている。
 記憶部333はコンピュータやプロセッサによって読み取り可能なプログラムとデータを非一時的に格納する非遷移的実体的記憶媒体である。記憶部333は揮発性メモリと不揮発性メモリとを有している。記憶部333には処理部334が演算処理を実行するためのプログラムが記憶されている。このプログラムには上記した潅水アプリケーションプログラムの少なくとも一部が含まれている。記憶部333には処理部334が演算処理を実行する際のデータが一時的に記憶される。記憶部333には、取得部331および通信部340のそれぞれに入力される各種データと、その各種データの取得時刻とが記憶される。
 処理部334はRTC350からウェイクアップ信号が入力されるとスリープモードから通常モードになる。通常モードにおいて処理部334は、記憶部333に記憶されているプログラムと各種データとを読み込んで演算処理を実行する。この演算処理は、分配チューブ136の貫通孔を通じて飛水した水を所望の潅水位置に到達させるために必要なバルブ開度の演算を含む。処理部334は演算部に相当する。
 処理部334は取得部331に入力された各種センサ信号、通信部340に入力された指示信号の取得時刻をRTC350から読み出している。処理部334は指示信号と取得時刻とを記憶部333に記憶させる。
 処理部334は、環境センサ310と水圧センサ153から入力された環境値と水圧、およびそれらの取得時刻を通信部340と統合通信部400とを介して情報格納部500に格納する。処理部334は、情報格納部500、統合通信部400、および通信部340を介して統合演算部600から入力された指示信号に基づいて、信号出力部332を介して給水弁152に給水信号を出力する。
 <通信部>
 通信部340は処理部334から入力された電気信号を無線信号に変換する。通信部340はこの無線信号を統合通信部400に出力する。通信部340は統合通信部400から出力された無線信号を電気信号に変換する。通信部340はこの電気信号を処理部334に出力する。
 通信部340が出力する無線信号には、図5に簡易的に示すアドレス341とデータ342とが含まれている。図面においてアドレス341をADD、データ342をDATと表記している。
 図3に示すように複数の通信部340と統合通信部400との間で無線信号の送受信が行われる。無線信号に含まれるアドレス341は、複数の通信部340のうちのいずれから出力されたかを示す識別コードである。換言すれば、無線信号に含まれるアドレスは、複数の処理部334のうちのいずれから出力されたかを示す識別コードである。複数の記憶部333それぞれに固有のアドレス341が保存されている。
 統合通信部400から出力される無線信号にもアドレス341が含まれている。そしてこの無線信号のデータ342には指示信号が含まれている。この無線信号を複数の通信部340それぞれが受信する。この無線信号は複数の通信部340それぞれで電気信号に変換される。そしてこの電気信号は複数の処理部334それぞれに入力される。複数の処理部334のうち、その電気信号に含まれるアドレス341と同一のアドレス341を保有する処理部334のみが、その電気信号に基づく演算処理を実行する。
 後述するようにマイコン330はスリープモードと通常モードとを交互に繰り返す間欠駆動をする。そのために通信部340と統合通信部400との間での無線通信は頻繁には行われない。通信部340と統合通信部400との間で無線通信を行う時間間隔が長くなっている。これにより、1回の無線通信でデータ342に含めることのできるデータ量を多くすることが可能になっている。
 <発電部>
 発電部360は太陽電池361、蓄電部362、電流センサ363、および電力センサ364を含む。図面では太陽電池361をSB、蓄電部362をESU、電流センサ363をCS、電力センサ364をPSと表記している。太陽電池361は光エネルギーを電気エネルギーに変換する。蓄電部362はその電気エネルギー(電力)を蓄電する。蓄電部362に蓄電された電力は、監視部300の駆動電力として活用される。
 電流センサ363は太陽電池361から蓄電部362に出力される電流を検出する。電力センサ364は蓄電部362から出力される電力を検出する。処理部334は、検出された電流値と電力値を、通信部340と統合通信部400を介して情報格納部500に格納している。監視部300の駆動電力は発電部360で発電された電力に依存している。このため、発電部360に入射する光量が少ないと、監視部300の駆動電力が不足することがある。これを避けるために監視部300のマイコン330は間欠駆動を行っている。
 <RTC>
 RTC350は、上記した間欠駆動の時間間隔(駆動周期)が経過するごとにウェイクアップ信号をマイコン330に出力している。これによりマイコン330はスリープモードと通常モードとを交互に繰り返している。上記の駆動周期は、蓄電部362に蓄電された電力量(蓄電量)に応じて統合演算部600によって決定される。換言すれば、間欠駆動間隔は、蓄電量に応じて統合演算部600によって決定される。
 統合演算部600は情報格納部500に格納された電力に基づいて蓄電量を算出する。統合演算部600は蓄電量が少ないほどに間欠駆動間隔を長く設定する。統合演算部600は蓄電量が多いほどに間欠駆動間隔を短く設定する。統合演算部600は間欠駆動間隔を指示信号に含ませる。この指示信号をマイコン330の処理部334が取得すると、処理部334は間欠駆動間隔を調整する。処理部334はRTC350の駆動周期を調整する。圃場20の環境が数秒単位で極端に変化することはまれである。そのために間欠駆動間隔は数十秒~数十時間単位になっている。これに応じて、無線通信を行う時間間隔も数十秒~数十時間単位になっている。
 <潅水システムの駆動>
 潅水システム10では、複数の監視部300と統合演算部600との間での信号の送受信、および情報格納部500への各種データの保存が行われている。複数の監視部300と統合演算部600のそれぞれは、駆動周期毎に処理するサイクルタスクと、突発的に処理するイベントタスクとを実行する。
 これらサイクルタスクとイベントタスクとには処理の優先順位がある。これらタスクの処理タイミングが同一になった場合、サイクルタスクよりもイベントタスクの処理が優先される。サイクルタスクとして、各監視部300は図6に示すセンサ処理を実行する。統合演算部600は図7に示す更新処理を実行する。イベントタスクとして、各監視部300は、図8に示す監視処理と図9に示す給水処理を実行する。統合演算部600は、図10に示す潅水処理、図11に示すユーザ更新処理、および図12に示す強制更新処理を実行する。
 以下、図6と図7に基づいて、サイクルタスクとしてのセンサ処理と更新処理を説明する。フローチャートを示す各図面においては、スタートをS、エンドをEで表記している。
 <センサ処理>
 図6に示すスタートの前において、監視部300のマイコン330はスリープモードになっており、このマイコン330にRTC350からウェイクアップ信号が入力される。これによりマイコン330はスリープモードから通常モードに切り換わる。それとともに、マイコン330は図6に示すセンサ処理を実行し始める。このセンサ処理はマイコン330の間欠駆動間隔で実行される。ステップS10では、各種センサから入力されるセンサ信号を取得し、さらにRTC350の出力に基づいてセンサ信号の取得時刻を取得する。さらにステップS20では、取得したセンサ信号と取得時刻それぞれを記憶する。ステップS30では、センサ情報としてのセンサ信号と取得時刻を無線通信によって通信部340から統合通信部400に出力する。このセンサ情報は、統合通信部400によって情報格納部500に格納される。マイコン330はスリープモードに移行し、センサ処理を終了する。
 <更新処理>
 統合演算部600は、図7に示す更新処理を更新周期が経過するごとに実行する。この更新周期はマイコン330の間欠駆動間隔と同程度になっている。ステップS110では、情報格納部500に格納されている諸情報を読み出す。次のステップS120では、読み込んだ諸情報に基づいて、複数の監視部300のそれぞれの潅水スケジュールを更新する。また統合演算部600は各監視部300においてセンサ処理を更新する。統合演算部600はセンサ処理を実行するタイミングに相当する、間欠駆動間隔を更新する。統合演算部600は、その更新した潅水スケジュールと間欠駆動間隔を自身が保有するとともに、情報格納部500に格納し、更新処理を終了する。以上に示したように、サイクルタスクによって、センサ情報、潅水スケジュール、および、間欠駆動間隔が更新される。
 次に図8~図12を参照して、イベントタスクとしての監視処理、給水処理、潅水処理、ユーザ更新処理、および強制更新処理を説明する。監視処理、給水処理、および潅水処理のそれぞれは、監視部300の駆動電力の枯渇を避けるために、昼間に実行される。昼間か否かの判定は、現在時刻と日射センサ312で検出される日射量などによって検出することができる。
 <監視処理>
 図8に示すスタートの前において、各監視部300のマイコン330はスリープモードになっている。マイコン330には、無線通信によって統合演算部600から指示信号が入力される。この結果、マイコン330は、スリープモードから通常モードに切り換わり、図8に示す監視処理を実行し始める。
 ステップS210では、入力された指示信号とそれの取得時刻を記憶する。次のステップS220では、指示信号に給水弁152を閉状態から開状態にする給水指示が含まれているか否かを判定する。給水指示が指示信号に含まれている場合、ステップS230へ進む。給水指示が指示信号に含まれていない場合、ステップS240へ進む。
 ステップS230では、図9に示す給水処理を実行する。すなわちマイコン330は、ステップS231において、給水指示にしたがって、給水弁152に給水信号を出力する。ステップS232でマイコン330は、指示信号に含まれている給水時間が経過したか否かを判定する。給水時間が経過していない場合、給水弁152に対する給水信号の出力を継続する。給水時間が経過した場合、ステップS233へ進む。
 ステップS233では、給水信号の出力を停止して給水処理を終了する。次のステップS240では、指示信号に間欠駆動間隔の更新指示が含まれているか否かを判定する。間欠駆動間隔の更新指示が指示信号に含まれている場合、ステップS250へ進む。間欠駆動間隔の更新指示が指示信号に含まれていない場合、ステップS260へ進む。上記した間欠駆動間隔の更新指示は、統合演算部600若しくは情報格納部500から各監視部300に指示信号として定期的若しくは不定期的に出力されている。
 ステップS250でマイコン330の処理部334は、RTC350のウェイクアップ信号を出力する時間間隔を調整する。次のステップS260では、図6に基づいて説明したセンサ処理を実行する。ステップS230の給水処理を実行した場合、ステップS260において潅水供給後の環境値が検出される。ステップS230の給水処理を実行しなかった場合、ステップS260において潅水が供給されていないときの環境値が検出される。この環境値は情報格納部500に格納される。センサ処理を実行し終えるとマイコン330はスリープモードに移行し、監視処理を終了する。
 <潅水処理>
 統合演算部600は、図10に示す潅水処理を、各監視部300の潅水スケジュールにおいて、潅水を供給するタイミングになるごとに実行する。統合演算部600は、ステップS310で複数の監視部300のうち、潅水を供給する予定である分割エリアの監視部300に向けて、給水指示を含む給水信号を出力する。次のステップS320では、給水指示には、給水信号の出力開始と給水信号の出力時間(給水時間)とが含まれている。この給水指示を受信した監視部300は、図8に基づいて説明した監視処理を実行する。
 ステップS320へ進むと統合演算部600は、監視部300の監視処理が終了するまで待機状態になる。監視処理が終了した場合、ステップS330へ進む。監視処理が終了したか否かの判断は、例えば、監視処理が終了することが見込まれる時間だけ経過したか否かに基づいて行う。監視処理が終了したか否かの判断は、監視部300に対して問い合わせることによって行うことができる。監視処理の終了判断方法については特に限定されない。
 <ユーザ更新処理>
 統合演算部600は、図11に示すユーザ更新処理を、潅水スケジュールや間欠駆動間隔の調整に関わるユーザ指示が入力機器800から入力された際に実行する。統合演算部600は、ステップS410において、入力されたユーザ指示を情報格納部500に格納する。次のステップS420では、図7に基づいて説明した更新処理を実行する。以上により、ユーザ指示に基づいて、潅水スケジュールや間欠駆動間隔が更新される。
 <強制更新処理>
 統合演算部600は、図12に示す強制更新処理を、潅水スケジュールと間欠駆動間隔の更新に関わるユーザ指示が入力された際に実行する。統合演算部600は、ステップS510においてセンサ処理の実行を要求する要求指示を含む要求信号を出力する。この要求信号は無線通信によって監視部300に出力される。ステップS520では、監視部300のセンサ処理が終了するまで待機状態になる。
 センサ処理が終了した場合、ステップS530へ進む。センサ処理が終了したか否かの判断は、例えば、センサ処理が終了することが見込まれる時間だけ経過したか否かに基づいて行うことができる。また、センサ処理が終了したか否かを監視部300に対して問い合わせることによって行うことができる。センサ処理の終了判断方法については特に限定されない。ステップS530では、図7に基づいて説明した更新処理を実行する。以上により、潅水スケジュールと間欠駆動間隔は、ユーザの更新要求時の各種データに基づいて更新される。
 監視部300は、図9に示す給水処理や図10に示す潅水処理において、分配チューブ136から水が出ているか否かを判定し、判定結果に応じた処理を実施する。監視部300は、水圧センサ153によって検出された水圧に基づいて吐水か否かを判定する。監視部300は、水圧センサ153によって検出された水圧が異常圧力値を超えていると判定した場合は、潅水実施中である給水弁152を全閉し潅水を中止する。異常圧力値は、分配チューブ136から吐水できている場合にはありえない圧力値や、水が行き場を失って外部に放出されない場合の圧力値に設定される。異常圧力値は、あらかじめ記憶部333に記憶されている。
 監視部300は、水圧が異常圧力値を超えている場合には、さらに潅水を中止した分配チューブ136に隣接する隣の分配チューブ136から潅水を実施する。例えば隣の分配チューブ136は、潅水を中止した分配チューブ136に対して、チューブの軸方向に直交する方向に隣接している。監視部300は、隣の分配チューブ136に給水可能な給水弁152のバルブ開度を、中止した潅水において狙っていた目標潅水位置まで届く飛水距離が得られる値に制御する。
 このように制御装置は、潅水が分配チューブ136から放出されていない場合には、潅水が放出されていない分配チューブ136に隣接する隣の分配チューブ136へ流下する給水の圧力を制御する給水弁152についてバルブ開度を制御する。制御装置は、バルブ開度の制御により、放出されなかった潅水において狙っていた目標潅水位置に届くように、隣の分配チューブ136から放出される潅水の飛水距離を制御する。この制御によれば、配管や分配チューブ136の目詰まりや、給水弁152の故障による潅水の不具合を解消できる潅水システム10を提供できる。
 <個別潅水処理>
 以上、図6~図12に基づいて説明したように、統合演算部600は、複数の分割エリアそれぞれにおいて潅水スケジュールを決定する。統合演算部600は、各潅水スケジュールに基づく潅水の供給を制御する。また、各分割エリアでの潅水スケジュールが統合演算部600によって決定されるものの、各潅水スケジュールに基づく潅水の供給を各監視部300によって個別に制御する構成を採用してもよい。
 <独立更新>
 さらに例示すると、各分割エリアにおける潅水スケジュールを、対応する監視部300が独立して決定する構成を採用してもよい。係る構成においては、各監視部300は図7に示す更新処理を実行する。
 <天気予報と潅水スケジュール>
 情報格納部500には、土壌水分量の現在値と減少変化の予測値、およびユーザ指示が格納される。情報格納部500には植物30の成長阻害水分点と永久しおれ点、植物30が単位時間あたりに水分を吸収する吸水量と土壌の水分保持能力が格納されている。これらの他に、情報格納部500には外部情報源1000から出力配信される圃場20の天気予報が格納される。図面においては外部情報源1000をESIと表記している。
 統合演算部600は、図7に示す更新処理のS110において、この天気予報を含む諸情報を情報格納部500から読み出す。統合演算部600はステップS120において各監視部300における潅水スケジュールを決定する。
 <目標値と推定値>
 統合演算部600は、潅水スケジュールを決定するにあたって、土壌水分量の目標値と推定値を算出する。土壌水分量の目標値は、当然ながらにして、成長阻害水分点と永久しおれ点との間の値に設定される。植物30の健全な育成を試みるために、土壌水分量の目標値は、理論値である成長阻害水分点と永久しおれ点それぞれからある程度離れた値に設定される。
 統合演算部600は、この土壌水分量の目標値として、成長阻害水分点側の上限目標値と、永久しおれ点側の下限目標値とを設定する。統合演算部600は、潅水スケジュールの潅水期間においては、土壌水分量の推定値が上限目標値と下限目標値との間になるように、潅水スケジュールを決定する。降雨によって土壌水分量の推定値が上限目標値を上回ることが予想された場合でも、統合演算部600は土壌水分量の推定値が成長阻害水分点を超えないように潅水スケジュールを決定する。
 成長阻害水分点と上限目標値との間には乖離がある。この上限乖離幅は、上記した植物30の健全な育成を加味するとともに、圃場20の気候に基づいて決定される。圃場20の気候には、潅水スケジュールの潅水期間での圃場20の平均的な降雨量の期待値や、潅水期間での天気予報によって予測される総降雨量が含まれている。潅水期間での圃場20の平均的な降雨量の期待値は情報格納部500に格納されている。
 永久しおれ点と下限目標値との間には乖離がある。この下限乖離幅は、植物30の健全な育成を加味するとともに、給水装置100で故障が起きた時に復旧の見込まれる復旧時間や土壌水分量の単位時間あたりの減少量などに基づいて決定される。例えば、下限乖離幅は復旧時間と土壌水分量の単位時間あたりの減少量とを乗算した値に基づいて決定される。復旧時間は情報格納部500に格納されている。
 例えば外部情報源1000から1週間分の天気予報が情報格納部500に格納される場合、統合演算部600は1週間分の潅水スケジュールを決定する。この1週間の間において、天気予報によって何ら降雨予報がない場合、土壌水分量の推定値は時間経過とともに漸次低下することが予想される。この土壌水分量の推定値の単位時間あたりの減少量は、作土層の土壌水分量の減少変化の予測値に基づいて決定される。以下、表記を簡便とするため、必要に応じて、土壌水分量の推定値を、単に推定値と表記する。
 上記のように、潅水スケジュールは、環境値などに基づく土壌水分量の推定値と天気予報とに基づいて決定される。これによれば、降雨や乾燥などの天候変化によって野外の分割エリアの土壌水分量が植物30にとって不適になることを抑制できる。また、土壌水分量が成長阻害水分点を上回ったり、永久しおれ点を下回ったりすることを抑制できる。
 統合演算部600は、潅水スケジュールの潅水期間の全てにおいて、土壌水分量の推定値が成長阻害水分点よりも低い上限目標値を上回ることがないように目標給水量を決定している。統合演算部600は、成長阻害水分点と上限目標値との乖離幅(上限乖離幅)を、圃場20の気候などに基づいて決定している。圃場20の気候には、潅水期間での圃場20の平均的な降雨量の期待値や、潅水期間での天気予報によって予測される総降雨量が含まれている。このように上限乖離幅を設定することで、潅水の供給によって土壌水分量を上限目標値に近づけた後、天気予報よりも多めの降雨があったとしても、土壌水分量が成長阻害水分点に到達することが抑制される。
 統合演算部600は、潅水スケジュールにおける土壌水分量の推定値が永久しおれ点よりも高い下限目標値を下回ることがないように目標給水量を決定している。統合演算部600は、永久しおれ点と下限目標値との乖離幅(下限乖離幅)を、復旧時間と土壌水分量の単位時間あたりの減少量などに基づいて決定している。このように下限乖離幅を設定することで、例え土壌水分量が下限目標値に近い際に、給水弁152の故障などによって潅水の供給ができなくなったとしても、その故障が復旧されるまでに、土壌水分量が永久しおれ点に到達することを抑制できる。
 統合演算部600は、潅水スケジュールにおける土壌水分量の推定値が下限目標値に達する時刻に給水を行う。これにより土壌水分量が下限目標値を下回ることを抑制できる。統合演算部600は、降雨予報時刻と潅漑水の供給時刻とを異ならせる。これによれば、降雨予報よりも降雨量が多かったとしても、土壌水分量が過剰に増大することを抑制できる。
 図13~図15を参照して、給水弁152に適用可能なバルブ装置の一例について以下に説明する。このバルブ装置は、いわゆるロータリ式のバルブ装置である。このバルブ装置は、1個の流体流入部と3個の流体流出部を備えている。流体流入部に供給用配管132を接続し、いずれか1個の流体流出部に分配チューブ136を接続することにより、このバルブ装置は潅水システム10に搭載される。さらに分配チューブ136を接続しない流体流出部には閉塞部材を装着することにより、通路を塞ぐように構成すればよい。
 バルブ装置は、図13に示すように、ハウジング9、バルブ90、駆動部70、駆動部カバー80等を備えている。バルブ装置は、バルブ90がシャフト92の軸心を中心に回転することにより、バルブ装置の開閉動作を行うボールバルブとして構成されている。この明細書では、シャフト92の軸心に沿う方向を軸心方向DRa、軸心方向DRaに直交するとともに軸心方向DRaから放射状に延びる方向を径方向DRrとして説明する。
 ハウジング9はバルブ90を収容する収容部である。ハウジング9は、例えば樹脂部材によって形成されている。ハウジング9は、バルブ90が収容される中空形状のハウジング本体部21と、ハウジング本体部21から冷却水を流出させるパイプ部材50と、ハウジング本体部21に取り付けられる隔壁部60とを含んでいる。ハウジング本体部21は、外観が略直方体形状であって、軸心方向DRaの他方側に開口部を有する有底形状に形成されている。ハウジング本体部21は、ハウジング本体部21の外周部分を構成するハウジング外壁部22を有している。ハウジング外壁部22は、ハウジング本体部21の内部に、軸心方向DRaの軸心を有する円柱状のバルブ収容空間23を形成している。
 ハウジング外壁部22には、バルブ収容空間23に冷却水を流入させるための入口ポート251が形成されている。入口ポート251は、円形状に開口して形成され、連結配管135に接続されている。入口ポート251は、流体流入部に相当する。
 ハウジング外壁部22は、パイプ部材50が取り付けられている。ハウジング外壁部22は、入口ポート251を介してバルブ収容空間23に流入した冷却水をパイプ部材50に流出させるための第1出口ポート261と、第2出口ポート262と、第3出口ポート263とを有する。第1出口ポート261、第2出口ポート262、第3出口ポート263は、流体流出部に相当する。
 ハウジング外壁部22におけるハウジング開口面24は、隔壁部60が取り付けられている。ハウジング開口面24は、ハウジング本体部21において、軸心方向DRaの他方側に配置されている。ハウジング開口面24は、バルブ収容空間23とハウジング本体部21の外部とを連通させるハウジング開口部241が形成されている。ハウジング開口部241は、ハウジング開口面24に隔壁部60が取り付けられることによって閉塞される。
 パイプ部材50は、それぞれが円筒状に形成された第1パイプ部51と、第2パイプ部52と、第3パイプ部53とを含んでいる。第1パイプ部51と第2パイプ部52と第3パイプ部53とは、パイプ連結部54によって連結されている。パイプ連結部54は、第1パイプ部51と第2パイプ部52と第3パイプ部53とを連結させ、パイプ部材50をハウジング外壁部22に取り付ける部分である。第1パイプ部51は、上流側が第1出口ポート261の内側に配置されている。第2パイプ部52は、上流側が第2出口ポート262の内側に配置されている。第3パイプ部53は、上流側が第3出口ポート263の内側に配置されている。
 隔壁部60は、ハウジング開口部241を閉塞するとともに、バルブ収容空間23に収容されたバルブ90を保持する。隔壁部60は、軸心方向DRaが板厚方向である円盤状であって、ハウジング開口部241に対して軸心方向DRaの他方側から一方側に向かって嵌め込まれるように配置されている。隔壁部60は、ハウジング開口部241に嵌め込まれた際に、隔壁部60の外周部がハウジング内周面に当接することによって、ハウジング開口部241を閉塞する。
 駆動部カバー80は駆動部70を収容する。駆動部カバー80は、樹脂製の中空形状であって、内部に駆動部70を収容する駆動部空間が形成されている。駆動部カバー80は、マイコン330に接続するためのコネクタ部81を有している。コネクタ部81は、バルブ装置をマイコン330に接続させるものであって、駆動部70および回転角センサ73が接続される端子が内蔵している。
 駆動部70は、バルブ90を回転させるための回転力を出力するモータ71と、モータ71の出力をバルブ90に伝動するギア部72と、ギア部72の回転角度を検出する回転角センサ73を含んでいる。モータ71は、図14に示すように、モータ本体とモータシャフト711とウォームギア712とモータ側端子とを備えている。モータ71は、モータ側端子に電力が供給されることでモータ本体が動力を出力可能に構成されている。モータ本体は、略円筒状に形成され、モータ本体の他方側の端部からモータシャフト711が突出している。モータ本体から出力した動力は、モータシャフト711およびウォームギア712を介してギア部72に出力される。
 ギア部72は、複数の樹脂製の歯車を有する減速機構で構成されており、ウォームギア712から出力された動力をシャフト92に伝動可能に構成されている。ギア部72は、第1ギア721と、第1ギア721と噛み合う第2ギア722と、第2ギア722と噛み合う第3ギア723とを含んでいる。第3ギア723にシャフト92が接続されている。ギア部72は、第1ギア721の外径に比較して第2ギア722の外径が大きく形成され、第2ギア722の外径に比較して第3ギア723の外径が大きく形成されている。
 第1ギア721、第2ギア722、第3ギア723は、それぞれの軸心がウォームギア712の軸心に対して直交するように配置されている。第3ギア723は、第3ギア723の軸心がシャフト92の軸心と同一軸心上になるように配置されている。第3ギア723はシャフト92が接続されている。駆動部70は、ウォームギア712と第1ギア721、第2ギア722および第3ギア723とバルブ90とが一体に回転するように構成されており、それぞれの回転が互いに相関関係を有する。これらのギアとシャフト92とは、それぞれの回転角度が相関関係を有しており、相関関係を有するいずれか1つの構成品の回転角度を他の構成品の回転角度から算出可能に構成されている。
 駆動部カバー80の内周部において、第3ギア723に対向する部位には、第3ギア723の回転角度を検出する回転角センサ73が取り付けられている。回転角センサ73は、ホール素子を内蔵したホール式センサであって、第3ギア723の回転角度を非接触で検出可能に構成されている。回転角センサ73は、コネクタ部81を介してマイコン330に接続されている。検出された第3ギア723の回転角度は、マイコン330に送信される。マイコン330の処理部334は、回転角センサ73から送信された第3ギア723の回転角度に基づいて、バルブ90の回転角度を算出可能に構成されている。
 シャフト92およびバルブ90について図13および図15を参照して説明する。シャフト92は、駆動部70が出力する回転力によって、軸心を中心に回転可能に構成されている。シャフト92は、バルブ90が接続されており、シャフト92が回転する際にバルブ90をシャフト92と一体に回転させることが可能に構成されている。シャフト92は、軸心に沿って円柱状に延びて形成されており、バルブ90の一方側から他方側まで貫通している。シャフト92は、軸心方向DRaの一方側がハウジング本体部21のシャフト支持部に接続され、他方側がギア部72に接続されている。シャフト外周部には、バルブ90が固定されている。
 バルブ90は、軸心を中心に回転することにより、出力する流体の流量を調整可能に構成されている。バルブ90は、内部にシャフト92が挿入されており、バルブ収容空間23においてシャフト92と一体に回転可能に収容されている。バルブ90は、軸心方向DRaに沿って延びる軸心を有する筒状である。バルブ90は、それぞれが筒状の第1バルブ93と第2バルブ94と第3バルブ95と、筒状接続部914と、筒状バルブ接続部915とが連なって形成されている。バルブ90は、第1バルブ93と、筒状接続部914と、第2バルブ94と、筒状バルブ接続部915と、第3バルブ95とが軸心方向DRaの一方側から他方側に向かって、この順に並んで配置されている。第1バルブ93および第2バルブ94は、筒状接続部914を介して接続されている。第2バルブ94および第3バルブ95は、筒状バルブ接続部915を介して接続されている。
 バルブ90は、バルブ収容空間23において、第2バルブ94および筒状接続部914が径方向DRrにおいて、入口ポート251に対向している。バルブ90は、中央にシャフト92が挿入される円筒状のシャフト接続部916を有する。バルブ90は、シャフト接続部916にシャフト92が挿入されることによって、シャフト92に接続される。バルブ90は、例えば、第1バルブ93と第2バルブ94と第3バルブ95と筒状接続部914と筒状バルブ接続部915とシャフト接続部916とが射出成形によって一体成形されている。
 バルブ90は、バルブ90に流入された冷却水を第1出口ポート261、第2出口ポート262、第3出口ポート263に流出させるための弁体である。バルブ90は、回転することで、第1バルブ93が第1出口ポート261を開閉し、第2バルブ94が第2出口ポート262を開閉し、第3バルブ95が第3出口ポート263を開閉する。
 第1バルブ93、第2バルブ94および第3バルブ95は、それぞれの軸心がシャフト92の軸心と同一軸心上に配置されている。第1バルブ93、第2バルブ94、第3バルブ95のそれぞれは、軸心方向DRaにおける中央部分が両端側に比較して径方向DRrの外側に膨らんでいる。第1バルブ93、第2バルブ94、第3バルブ95のそれぞれは、内側を流体が流通可能に構成されている。
 第1バルブ93は、図15に示すように、外周部を形成する第1バルブ外周部931を有し、第1バルブ外周部931の内側に第1流路部961が形成されている。第1バルブ93には、流体を第1流路部961に流入させる第1内側開口部936が形成されている。第1バルブ93は、バルブ収容空間23に流入された流体が、第1内側開口部936を介して第1流路部961に流入する。第1流路部961は、バルブ装置における流路部に相当する。
 第1バルブ外周部931には、図15に示すように、シャフト92が回転した際に第1シール開口部581を介して第1流路部961を第1出口ポート261に連通させる第1外周開口部934が形成されている。第1バルブ93は、第1外周開口部934が第1出口ポート261に連通することによって、第1流路部961に流入した流体を第1出口ポート261から流出させる。第1バルブ外周部931に形成される第1外周開口部934は、バルブ外周部に形成される外周開口部に相当する。第1外周開口部934は、第1バルブ外周部931において、シャフト92の軸心の周方向に沿って延びて形成されている。第1バルブ93から装置の流出する流体の流量は、シャフト92が回転した際における第1外周開口部934と第1シール開口部581とが重なる面積に応じて調整される。第1内側開口部936は、第1バルブ93の外部と第1流路部961とを連通させる連通路として機能する。
 第2バルブ94は、図15に示すように、外周部を形成する第2バルブ外周部941を有し、第2バルブ外周部941の内側に第2流路部962が形成されている。第2バルブ94には、軸心方向DRaの一方側に、流体を第2流路部962に流入させる第2内側開口部946が形成されている。第2バルブ94は、入口ポート251を介してバルブ収容空間23に流入された流体が第2内側開口部946を介して第2流路部962を流通可能に構成されている。第2流路部962は、バルブ装置における流路部に相当する。
 第2バルブ外周部941には、図15に示すように、シャフト92が回転した際に第2シール開口部582を介して第2流路部962を第2出口ポート262に連通させる第2外周開口部944が形成されている。第2バルブ94は、第2外周開口部944が第2出口ポート262と連通することによって、第2流路部962に流入した流体を第2出口ポート262から流出させる。第2バルブ外周部941に形成される第2外周開口部944は、バルブ外周部に形成される外周開口部に相当する。
 第2外周開口部944は、シャフト92の軸心の周方向に延びるように形成されている。第2バルブ94から装置の外部へ流出する流体の流量は、シャフト92が回転した際における第2外周開口部944と第2シール開口部582とが重なる面積に応じて調整される。第2内側開口部946は、第2バルブ94の外部と第2流路部962とを連通させる連通路として機能する。第2内側開口部946は、第1内側開口部936に対向している。筒状接続部914は、第1バルブ93および第2バルブ94を接続するためのものである。筒状接続部914は、筒状接続部914の外周部とハウジング内周面との間に第1バルブ間空間97を形成している。第1流路部961および第2流路部962は、第1バルブ間空間97を介して連通している。
 第2バルブ94は、内部の略中央にシャフト92の外周部を覆うシャフト接続部916が配置されている。第2バルブ94は、第2バルブ外周部941の軸心方向DRaの他方側に筒状バルブ接続部915が接続されている。第2バルブ94は、第2流路部962に流入された流体を筒状バルブ接続部915を介して第3バルブ95に流入可能に構成されている。
 筒状バルブ接続部915は、内側に第2バルブ間空間98が形成されている。第2バルブ間空間98は、第2流路部962および第3流路部963に連通している。筒状バルブ接続部915は、軸心方向DRaの一方側の外径が第2バルブ94の軸心方向DRaの他方側の部位の外径と同じ大きさである。筒状バルブ接続部915は、軸心方向DRaの他方側の外径が第3バルブ95の軸心方向DRaの一方側の部位の外径と同じ大きさである。筒状バルブ接続部915は、第2バルブ外周部941および第3バルブ外周部951に連なって形成されている。
 第3バルブ95は、図15に示すように、第3バルブ95の外周部を形成する第3バルブ外周部951を有し、第3バルブ外周部951の内側に第3流路部963が形成されている。第3バルブ95は、第3バルブ外周部951における軸心方向DRaの一方側が筒状バルブ接続部915に接続されている。第3バルブ95は、第2流路部962に流入された流体が第2バルブ間空間98を介して第3流路部963に流入する。第3流路部963は、バルブ装置における流路部に相当する。
 第3バルブ外周部951には、図15に示すように、シャフト92が回転した際に第3シール開口部583を介して第3流路部963を第3出口ポート263に連通させる第3外周開口部954が形成されている。第3バルブ95は、第3外周開口部954が第3出口ポート263に連通することによって、第3流路部963に流入した流体を第3出口ポート263から装置の外部に流出させる。第3バルブ外周部951に形成される第3外周開口部954は、バルブ外周部に形成される外周開口部に相当する。
 第3外周開口部954は、第3バルブ外周部951において、軸心の周方向に沿って延びて形成されている。第3バルブ95から装置の外部へ流出する流体の流量は、シャフト92が回転した際における第3外周開口部954と第3シール開口部583とが重なる面積に応じて、調整される。シャフト接続部916は、筒状であって、挿入されたシャフト92が固定されることによりバルブ90とシャフト92とを接続している。シャフト接続部916は、シャフト92が回転した際に、シャフト92の回転力をシャフト接続部916を介してバルブ90に伝動する。シャフト接続部916は、第2バルブ94から第3バルブ95まで軸心方向DRaの他方側に向かって延びて形成されている。
 給水弁152の作動について説明する。マイコン330は、分配チューブ136に対して必要な流量を給水するためのバルブ90の回転角度、すなわちモータ71の回転角度を算出する。マイコン330は、算出したモータ71の回転角度の情報を給水弁152に送信する。このとき、分配チューブ136に接続しない2個の流体流出部には閉塞部材を装着している。
 給水弁152は、マイコン330から受信した回転角度の情報に基づいて、モータ71を回転させる。給水弁152は、モータ71を回転させることで、ギア部72およびシャフト92を介してバルブ90を回転させ、第1外周開口部934、第2外周開口部944、第3外周開口部954から必要な流量の流体を流出させる。
 例えば、分配チューブ136に連通させる流体流出部として第1出口ポート261を採用した場合について説明する。給水弁152は、バルブ90を回転させることで、第1バルブ93の第1外周開口部934を第1出口ポート261に連通させる。給水弁152は、バルブ90の回転位置を調整することによって、第1外周開口部934と第1シール開口部581との重なる面積を調整する。給水弁152は、入口ポート251からバルブ収容空間23に流入した流体を第1内側開口部936を介して第1流路部961に流入させ、第1外周開口部934から第1出口ポート261へ流出させる。マイコン330は、第1外周開口部934と第1シール開口部581との重なり面積であるバルブ開度を制御することにより潅水の飛水距離を制御して、必要な位置に潅水を供給する。
 例えば、分配チューブ136に連通させる流体流出部として第2出口ポート262を採用した場合について説明する。給水弁152は、バルブ90を回転させることで、第2バルブ94の第2外周開口部944を第2出口ポート262に連通させる。給水弁152は、バルブ90の回転位置を調整することによって、第2外周開口部944と第2シール開口部582との重なる面積を調整する。給水弁152は、入口ポート251からバルブ収容空間23に流入した流体を第2内側開口部946を介して第2流路部962に流入させ、第2外周開口部944から第2出口ポート262へ流出させる。マイコン330は、第2外周開口部944と第2シール開口部582との重なり面積であるバルブ開度を制御することにより潅水の飛水距離を制御して、必要な位置に潅水を供給する。
 例えば、分配チューブ136に連通させる流体流出部として第3出口ポート263を採用した場合について説明する。給水弁152は、バルブ90を回転させることで、第3バルブ95の第3外周開口部954を第3出口ポート263に連通させる。給水弁152は、バルブ90の回転位置を調整することによって、第3外周開口部954と第3シール開口部583との重なる面積を調整する。給水弁152は、入口ポート251からバルブ収容空間23に流入した流体を第2バルブ94の第2流路部962を介して第3流路部963に流入させ、第3外周開口部954から第3出口ポート263へ流出させる。マイコン330は、第3外周開口部954と第3シール開口部583との重なり面積であるバルブ開度を制御することにより潅水の飛水距離を制御して、必要な位置に潅水を供給する。
 給水弁152は、回転角センサ73が第3ギア723の回転角度を検出し、検出した回転角度の情報をマイコン330にフィードバックすることによって、モータ71の回転角度を調整する。
 図16のグラフを参照して、シャフト92の回転角度とバルブ装置の流量との関係を説明する。図16は、モータ71の回転角度RAを横軸とし、バルブ装置から流出する流体の流量FRを縦軸としている。図16において、FO1は第1バルブ93であり、FO2は第2バルブ94であり、FO3は第3バルブ95である。図16において、FSはバルブ開度が全開状態であることを示し、FCはバルブ開度が全閉状態であることを示し、MOはバルブ開度が中間開度であることを示している。中間開度は、全閉状態と全開状態の間の開度である。図16における実線のグラフは、第3バルブ95から流出する流体の流量と回転角度との関係を示している。図16における破線のグラフは、第2バルブ94から流出する流体の流量と回転角度との関係を示している。図16における一点鎖線のグラフは、第1バルブ93から流出する流体の流量と回転角度との関係を示している。
 図16に示すように、回転角度0度付近では第3バルブ95が全開状態で、他のバルブは全閉状態であり、第3バルブ95のみを通じて流体が装置外部へ流出する。この状態から回転角度を大きくしていくと第3バルブ95が中間開度に移行し、さらに回転角度を大きくすると3個のバルブすべてが全閉状態になる。
 3個のバルブすべてが全閉状態から回転角度を大きくしていくと、第2バルブ94のみが中間開度を介して全開状態に移行する。さらに回転角度を大きくすると、第1バルブ93が中間開度を介して全開状態に移行して、第1バルブ93と第2バルブ94が全開状態になる。この状態から回転角度を大きくすると、第2バルブ94が中間開度を介して全閉状態に移行して、第2バルブ94と第3バルブ95が全閉状態になる。さらに回転角度を大きくしていくと、第1バルブ93が中間開度を介して全閉状態に移行して、すべてのバルブが全閉状態になる。
 以上のように、回転角度に応じて、各バルブの開度が変移して各バルブから流出する流体流量が変化するようになる。潅水システム10における各給水弁152は、3個のバルブのうちの一つのみから流体を供給する構成により、回転角度に応じて圃場20への飛水距離および給水量を制御する。
 次に、潅水システム10が備える通路構成と給水制御に関係する構成部品とに係る一例について、図17および図18を用いて説明する。図17は、分配チューブ136と給水弁152と水圧センサ153との位置関係の一例を示している。縦配管133は、複数の分配チューブ136に至る複数の通路に接続されている。複数の通路のそれぞれは、分配チューブ136と縦配管133とを連結する通路である。各分配チューブ136と縦配管133との間の通路には、給水弁152と、水圧センサ153aまたは流量センサ154aとが設けられている。水圧センサ153aまたは流量センサ154aは、給水弁152よりも下流に設けられている。水圧センサ153a、流量センサ154aは、分配チューブ136の貫通孔へ向けて流下する上流通路において給水に関する給水情報を検出する。信号出力部332は、上流通路において検出された給水情報を用いたフィードバック制御によってバルブ開度を制御する制御信号を給水弁に出力する。
 縦配管133は、各給水弁152の入口ポート251に至る通路に連結されている。各分配チューブ136は、各給水弁152における流体流出部の一つである第1パイプ部51に至る通路に連結されている。この場合、他の流体流出部である第2パイプ部52と第3パイプ部53は、閉塞部材によって閉塞されている。また、水圧センサ153bまたは流量センサ154bは、分配チューブ136において最下流に位置する貫通孔よりもさらに下流に設けられている構成でもよい。水圧センサ153b、流量センサ154bは、分配チューブ136の下流末端において給水に関する給水情報を検出する。信号出力部332は、下流末端において検出された給水情報を用いたフィードバック制御によってバルブ開度を制御する制御信号を給水弁に出力する。信号出力部332は、上流通路と下流末端とにおいて検出された給水情報を用いたフィードバック制御によってバルブ開度を制御する制御信号を給水弁に出力する。
 潅水システム10が備える分配チューブ136は、内部を流通する水圧に応じて伸縮するように構成されている。分配チューブ136は、例えば水圧に応じて弾性変形可能な材質や硬度を有して形成されている。図18は、分配チューブ136の膨張と内圧との関係を説明するための図である。(a)は、給水弁152のバルブ開度が全閉のときのチューブ断面を示している。この状態のチューブは、内部に水が満たされていない内圧がほぼゼロであり、膨らんでいない扁平形状である。(c)は、給水弁152のバルブ開度が全開で内圧によって最大限に膨張しきっているチューブ断面を示している。この状態では、チューブから吐水中にチューブは伸縮することなく、通水圧損によってチューブの下流部位での吐水量は上流部位よりも少なくなる。したがって、チューブからの吐水量は、チューブの延長方向においてばらついている。
 図18における(b)は、(a)の状態と(c)の状態との間に位置する内圧に制御されたチューブ断面を示している。この状態では、チューブは膨張しきっておらず、内圧のわずかな変化によって伸縮可能な状態である。このため、チューブ自体が通水の内圧変化によってダイヤフラムとして機能するので、チューブの下流部位と上流部位とにおいて吐水量にあまり差がない。したがって、チューブからの吐水量は、チューブの延長方向全体においてほぼ均等になっている。給水弁152のバルブ開度は、潅水実施中において(c)のようにチューブが伸縮可能である内圧になるように、水圧センサ153などの検出値を用いて制御されている。
 監視部300のマイコン330には、水圧センサ153aや水圧センサ153bで検出された水圧が出力される。マイコン330は、水圧センサ153aや水圧センサ153bによって検出された水圧を用いて、各給水弁152のバルブ開度をフィードバック制御して目標開度に制御する。マイコン330は、流量センサ154aや流量センサ154bによって検出された流量を用いて、各給水弁152のバルブ開度をフィードバック制御して目標開度に制御する。潅水システム10は、給水弁152毎に個別にバルブ開度を制御することにより、対応する分配チューブ136からの吐水量や飛水距離を個別に制御する。このような制御により、マイコン330は、圃場20の高低差、給水源圧力の変動、縦配管133から分配チューブへの潅水分配量の変動などによって、各分配チューブの流量や圧力が変化しても、狙いとする吐水量を満足する潅水を実施できる。
 処理部334は、圧力補正機構を有していない分配チューブ136へ流下する潅水の圧力を分配チューブよりも上流で制御する給水弁についてバルブ開度を決定する。信号出力部332は、分配チューブから貫通孔を介して放出される潅水量を制御するために、このバルブ開度に制御する制御信号を給水弁に出力する。信号出力部332は、バルブ開度を目標開度に制御するために必要な通電時間を複数の段階に細分化した細分化時間(細分化量)ずつ制御して段階的に目標開度に制御する。信号出力部332は、バルブ開度を目標開度に制御するために必要な通電量(細分化量)を複数の段階に細分化した細分化通電量ずつ制御して段階的に目標開度に制御する。マイコン330は、このように給水弁152のバルブ開度を急激に開閉するのではなく徐々に大きくしたり小さくしたりするように制御する。この制御によれば、給水弁152は急激な圧力変化を抑え、圧力変化に伴う不具合を防ぐことができる。この制御は、例えばウォータハンマによる通路構成部品の破損を抑制することに寄与する。
 第1実施形態の潅水システム10は、圃場20に潅水を散水するための複数の貫通孔が形成されてかつ圧力補正機構を有していない分配チューブ136を備える。潅水システム10は、分配チューブ136よりも上流において分配チューブ136へ向けて流下する給水の圧力を制御する給水弁152を備える。潅水システム10は、給水弁152のバルブ開度を制御して、分配チューブ136から貫通孔を介して放出される潅水量を制御する制御装置を備える。潅水システム10によれば、圧力補正機構を有していない分配チューブ136の上流において給水弁152のバルブ開度を制御して潅水量を制御する。潅水システム10は、このバルブ開度の制御によって、潅水量を順次に変動させる潅水を実施できる。したがって、分配チューブ136から点滴潅水および散水潅水の両方を実施できる。
 潅水システム10は、分配チューブの貫通孔へ向けて流下する上流通路または分配チューブの下流末端において給水情報を検出する、水圧センサまたは流量センサを備える。制御装置は、検出された給水情報を用いたフィードバック制御によって給水弁のバルブ開度を制御する。これによれば、分配チューブに対して上流通路または下流末端において検出した水圧情報または流量情報を用いてバルブ開度を調整し続けて吐水量を制御し続ける。したがって、潅水システム10は、天候、土壌状態、作物の生育状況などに応じた、目標とする吐水量に定常的に制御することができる。
 水圧センサまたは流量センサは、前述の上流通路と前述の下流末端とにおいて給水情報を検出する。制御装置は、上流通路と下流末端とにおいて検出された給水情報を用いたフィードバック制御によってバルブ開度を制御する。これによれば、分配チューブに対して上流通路と下流末端とにおいて検出した水圧情報または流量情報を用いてバルブ開度を調整し続ける。潅水システム10は、上流通路と下流末端との給水情報を反映した制御により、分配チューブの長さ全体にわたって吐水量のばらつきを抑えるバルブ開度制御を実施できる。
 制御装置は、分配チューブ136が伸縮する水圧の範囲で、給水弁152のバルブ開度を制御する。この制御によれば、分配チューブが膨らみ切るよりも低い圧力に制御するように給水弁のバルブ開度を制御する。これにより、チューブ自体がダイヤフラム弁の役割を果たすため、分配チューブの下流末端まで安定した吐水量を提供できる。したがって、チューブの下流部位と上流部位とで吐水量の差を抑えた潅水を実現できる。
 出力部は、内部を流通する水圧に応じて伸縮するように構成されている分配チューブが伸縮する水圧の範囲で、バルブ開度を制御する制御信号を給水弁に出力する。この制御装置は、分配チューブが膨らみ切るよりも低い圧力に制御するように給水弁のバルブ開度を制御する。この制御によれば、チューブ自体がダイヤフラム弁の役割を果たす作用により、分配チューブの下流末端まで安定した吐水量を提供できる。
 <第2実施形態>
 第2実施形態について図19~図20を参照して説明する。第2実施形態の潅水システム10は、通路構成と給水制御に関係する構成部品について図19に示す構成を有している。第2実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下、異なる点について説明する。
 図19は、分配チューブ137と給水弁152と水圧センサ153との位置関係の一例を示している。図19に示す通路構成は、図17に示す構成に対して、潅水を吐出する分配チューブ137の構成が相違している。分配チューブ137は、圃場20において、U字状を形成して配置されている。第2実施形態の潅水システム10は、ポンプ110からの給水が流通する縦配管133に接続されている複数の分配チューブ137を備える。分配チューブ137は、第1分配部137aと、第2分配部137bと、第1分配部137aと第2分配部137bとを連結する折り返し部とを有している。第1分配部137aと第2分配部137bは、同一の方向である、例えばx方向に延びる形状であり、所定間隔をあけてy方向に並んでいる。
 分配チューブ137は、水圧変化にかかわらず一定の吐水量を実現するような圧力補正機構を有していない。分配チューブ137の貫通孔からの吐水量は、水圧に応じて変化するようになっている。分配チューブ137は、第1実施形態の分配チューブ136と同様に、内部を流通する水圧に応じて伸縮するように構成されている。分配チューブ137は、例えば水圧に応じて弾性変形可能な材質や硬度を有して形成されている。第1分配部137aと第2分配部137bの各チューブ部分には、潅水が流動する各分配部の内部と外部とを連通する複数の貫通孔が形成されている。複数の貫通孔は、各分配部において、チューブの軸方向に所定間隔をあけて並んで設けられている。また、貫通孔は、各分配部において、チューブの周方向に所定間隔をあけて並んで設けられている構成でもよい。
 縦配管133は、複数の分配チューブ137に至る複数の通路に接続されている。複数の通路のそれぞれは、第1分配部137aや第2分配部137bと縦配管133とを連結する通路である。第1分配部137aと縦配管133との間の通路には、給水弁152と、水圧センサ153aまたは流量センサ154aとが設けられている。第2分配部137bと縦配管133との間の通路には、給水弁152と、水圧センサ153aまたは流量センサ154aとが設けられている。
 分配チューブ137の両端に位置する2個の水圧センサ153aは、分配チューブの貫通孔へ向けて流下する上流通路において給水に関する給水情報を検出する。また、この2個の水圧センサ153aは、分配チューブの下流末端において給水に関する給水情報を検出する。この2個の水圧センサ153aは、2個の流量センサ154aに置き換える構成としてもよい。第1分配部137aと第2分配部137bのそれぞれは、給水弁152における流体流出部の一つである第1パイプ部51に至る通路に連結されている。潅水システム10は、給水弁152毎に個別にバルブ開度を制御することにより、対応する分配チューブ137からの吐水量や飛水距離を個別に制御する。
 この潅水システム10は、分配チューブ137の潅水において、第1分配部137a側から給水する場合と第2分配部137b側から給水する場合とのいずれかを実施できる。マイコン330は、第1分配部137aから吐水する場合は第1分配部137aと縦配管133との間にある給水弁152のバルブ開度を開状態に制御する。マイコン330は、第2分配部137bから吐水する場合は第2分配部137bと縦配管133との間にある給水弁152のバルブ開度を開状態に制御する。
 第1分配部137aのみから吐水する場合、マイコン330は第1分配部137a側のバルブを開、第2分配部137b側のバルブを閉に制御する。この制御により、第1分配部137a側から供給された潅水は、第1分配部137aの貫通孔から吐水し、折り返し部を流下して第2分配部137bの貫通孔から吐水する。第2分配部137bのみから吐水する場合、マイコン330は第2分配部137b側のバルブを開に制御し第1分配部137a側のバルブを閉に制御する。この制御により、第2分配部137b側から供給された潅水は、第2分配部137bの貫通孔から吐水し、折り返し部を流下して第1分配部137aの貫通孔から吐水する。
 図20は、分配チューブ137における吐水位置と潅水量との関係を説明するための図である。図20は、分配チューブ137における貫通孔の位置を横軸とし、潅水量を縦軸としている。吐水位置P1は、第1分配部137aにおいて給水弁152に最も近い貫通孔の位置である。吐水位置P2は、第1分配部137aにおいて折り返し部に最も近い貫通孔の位置である。吐水位置P3は、第2分配部137bにおいて折り返し部に最も近い貫通孔の位置である。吐水位置P4は、第2分配部137bにおいて給水弁152に最も近い貫通孔の位置である。
 図20の破線グラフは、第1分配部137a側の給水弁152を開状態に制御して第2分配部137b側の給水弁152を閉状態に制御した潅水を示している。つまり、図20の破線グラフは、第1分配部137a側の給水弁152のみから給水する潅水において吐水位置と潅水量との関係を示している。破線グラフによると、潅水量は、吐水位置P1、吐水位置P2、吐水位置P3、吐水位置P4の順に多く、通水抵抗のため給水弁152から遠くなるほど少なくなる。
 図20の一点鎖線グラフは、第1分配部137a側の給水弁152を閉状態に制御して第2分配部137b側の給水弁152を開状態に制御した潅水を示している。つまり、図20の一点鎖線グラフは、第2分配部137b側の給水弁152のみから給水する潅水において吐水位置と潅水量との関係を示している。一点鎖線グラフによると、潅水量は、吐水位置P4、吐水位置P3、吐水位置P2、吐水位置P1の順に多く、通水抵抗のため給水弁152から遠くなるほど少なくなる。
 図20の実線グラフは、破線のグラフと一点鎖線のグラフとを合わせた合計の潅水量を示している。つまり、図20の実線グラフは、第1分配部137a側からの給水による潅水量と第2分配部137b側からの給水による潅水量との合計潅水量を示している。実線グラフにおける潅水量のばらつきは、破線グラフにおける上流と下流との潅水量の差や、一点鎖線グラフにおける上流と下流との潅水量の差よりも小さい。潅水システム10は、第1分配部137a側からの潅水と第2分配部137b側からの潅水とを切り換える潅水制御により、吐水位置による潅水量のばらつきを抑制できる。
 第2実施形態の潅水システム10がもたらす作用効果について説明する。分配チューブ137は、それぞれ貫通孔が複数形成された第1分配部137aおよび第2分配部137bと、第1分配部と第2分配部とを連結する折り返し部とを有する。第2分配部137bは、第1分配部137aに沿うように延びて間隔をあけて第1分配部と並んでいる。給水弁152は、第1分配部と第2分配部のそれぞれにおいて折り返し部とは反対側の端部に向けて流下する給水の圧力を制御する。
 これによれば、第2分配部側の給水弁を閉じて第1分配部側の給水弁の開度を制御することで第1分配部から第2分配部へ流下する潅水を実施できる。さらに第1分配部側の給水弁を閉じて第2分配部側の給水弁の開度を制御することにより第2分配部から第1分配部へ流下する潅水を実施できる。制御装置は、この2つの潅水を切り換える制御を実施できる。この切り換える潅水制御により、潅水システム10は、U字状の分配チューブにおいて、チューブ圧損による吐水量のばらつきを抑制することができる。
 <第3実施形態>
 第3実施形態について図21を参照して説明する。第3実施形態の潅水システム10は、通路構成と給水制御に関係する構成部品について図21に示す構成を有している。第3実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下、異なる点について説明する。
 図21は、分配チューブ136と給水弁152との位置関係の一例を示している。圃場20に並ぶ所定数の分配チューブ136は、1個の給水弁152が設置された通路に対して下流において接続されている。第3実施形態では所定数は、例えば2個または3個である。縦配管133には、所定数の分配チューブ136および1個の給水弁152に連通する通路が複数接続されている。複数の通路のそれぞれは、所定数の分配チューブ136および1個の給水弁152と縦配管133とを連結する通路である。所定数の分配チューブ136と1個の給水弁152を有する潅水用通路をなすグループは、圃場20において所定間隔をあけてy方向に複数個並んでいる。
 この実施形態の各給水弁152は、1個の流体流入部によって縦配管133に連通し、3個の流体流出部によって3個の分配チューブ136に連通している。各分配チューブ136は、給水弁152における流体流出部に連通している。水圧センサ153aまたは流量センサ154aは、給水弁152よりも下流の通路であって、給水弁152の流体流出部と分配チューブ136との間に設けられている。給水弁152の第1パイプ部51は、分配チューブ136に連通している。給水弁152の第2パイプ部52は、分配チューブ136に連通している。給水弁152の第3パイプ部53は、分配チューブ136に連通している。潅水システム10は、給水弁152毎にバルブ開度を個別に制御することにより、給水弁152に連通する所定数の分配チューブ136からの潅水を個別に制御できる。
 第3実施形態の潅水システム10は、上流の通路において所定数の分配チューブ136に連通するように設けられた1個の給水弁152を備える。これによれば、分配チューブから点滴潅水および散水潅水の両方を実施できるシステムにおいて、流量調整バルブの個数を低減でき、部品コストや制御コストを抑制できる。
 <第4実施形態>
 第4実施形態について図22を参照して説明する。第4実施形態の潅水システム10は、通路構成と給水制御に関係する構成部品について図22に示す構成を有している。第4実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下、異なる点について説明する。
 図22は、分配チューブ136と給水弁152との位置関係の一例を示している。第4実施形態の潅水システム10は、第3実施形態に対して、給水弁152と複数の分配チューブ136とを連結する継手部材138を有する点が相違する。継手部材138は、給水弁152の流体流出部の一つと所定数の分配チューブ136とを連結する連結用部材である。第4実施形態では所定数は、2個以上の個数である。
 縦配管133には、1個の給水弁152、複数の継手部材138、および各継手部材138に接続された所定数の分配チューブ136に連通する通路が複数接続されている。複数の通路のそれぞれは、複数の分配チューブ136、複数の継手部材138および1個の給水弁152と縦配管133とを連結する通路である。複数の分配チューブ136と複数の継手部材138と1個の給水弁152を有する潅水用通路をなすグループは、圃場20において所定間隔をあけてy方向に複数個並んでいる。1個の給水弁152に連通する分配チューブ136の個数は、各給水弁152に接続される継手部材138の個数に所定数を乗じた個数になる。
 各給水弁152は、1個の流体流入部によって縦配管133に連通し、3個の流体流出部によって複数の継手部材138を介して複数の分配チューブ136に連通する。継手部材138は、1個の流入管部138aと2個の分岐管部138bとを備えている。流入管部138aは、給水弁152における流体流出部に連通している。各分岐管部138bは、分配チューブ136に連通している。水圧センサ153aまたは流量センサ154aは、給水弁152よりも下流の通路であって、給水弁152の流体流出部と流入管部138aとの間に設けられている。給水弁152の第1パイプ部51は、継手部材138の流入管部138aに連通している。給水弁152の第2パイプ部52は、継手部材138の流入管部138aに連通している。給水弁152の第3パイプ部53は、継手部材138の流入管部138aに連通している。潅水システム10は、給水弁152毎にバルブ開度を個別に制御することで継手部材138を介して給水弁152に連通する複数の分配チューブ136からの潅水を制御できる。
 第4実施形態の潅水システム10は、所定数の分配チューブ136にそれぞれ連通するように設けられた複数の流体流出部を有する1個の給水弁152を備える。このシステムは、分配チューブから点滴潅水および散水潅水の両方を実施できるとともに、流量調整バルブの個数を低減でき、部品コストや制御コストを抑制できる。
 <第5実施形態>
 第5実施形態について図23を参照して説明する。第5実施形態の潅水システム10は、通路構成と給水制御に関係する構成部品について図23に示す構成を有している。第5実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下、異なる点について説明する。
 図23は、分配チューブ137と給水弁152との位置関係の一例を示している。図23に示す通路構成は、図19に示す構成に対して、分配チューブ137に対する給水弁152の接続に関する構成が相違している。
 図23に示すように、ポンプ110に最も近い位置にある1番目の分配チューブ137は、第1分配部137aが1番目の給水弁152の入口ポート251に接続されている。この給水弁152は、第1パイプ部51が縦配管133に接続され第2パイプ部52が大気に対して開放されている。1番目の給水弁152は、第1分配部137aにおいて折り返し部とは反対側の端部に連通するように接続された第1給水弁である。1番目の分配チューブ137の第2分配部137bは、1番目の給水弁152の隣に位置する2番目の給水弁152における第1パイプ部51に接続されている。2番目の給水弁152の第2パイプ部52は、1番目の分配チューブ137の隣に位置する2番目の分配チューブ137における第1分配部137aに接続されている。2番目の給水弁152の入口ポート251は縦配管133に接続されている。2番目の給水弁152は、第1分配部137aと第2分配部137bのそれぞれにおいて折り返し部とは反対側の端部に連通するように接続された第2給水弁である。
 2番目の分配チューブ137の第2分配部137bは、2番目の給水弁152の隣に位置する3番目の給水弁152における入口ポート251に接続されている。3番目の給水弁152の第1パイプ部51は、縦配管133に接続されている。3番目の給水弁152の第2パイプ部52は大気に対して開放されている。3番目の給水弁152は、2番目の分配チューブ137の第2分配部137bにおいて折り返し部とは反対側の端部に連通するように接続された第2給水弁である。水圧センサ153aまたは流量センサ154aは、2番目の給水弁152よりも下流の通路に設けられている。水圧センサ153aまたは流量センサ154aは、例えば給水弁152の流体流出部と分配チューブ137との間に設けられている。
 このように隣り合う3個の給水弁152のうち両端の給水弁152のそれぞれは、流体流出部の一つが大気に開放しもう一つが給水源であるポンプ110に連通する。さらに両端の給水弁152のそれぞれは、入口ポート251が分配チューブ137に接続されている。真ん中の給水弁152は、流体流出部が第1分配部137aと第2分配部137bに接続し入口ポート251が給水源であるポンプ110に連通する。以上述べたように、隣り合う2個の分配チューブ137と3個の給水弁152は、潅水用通路に係る1つのグループを構成する。圃場20には、このグループをなす潅水用通路が所定間隔をあけてy方向に複数個並んでいる。
 潅水システム10は、分配チューブ137から吐水して潅水する制御と、分配チューブ137を介して大気開放した給水弁の流体流出部から排水する制御とを実施できる。1番目の分配チューブ137から潅水する場合、マイコン330は、第1パイプ部51を介して水が流下するように2番目の給水弁152のバルブ開度を制御する。さらにマイコン330は、流体流出部への流下を遮断するように1番目の給水弁152のバルブ開度を制御する。この制御により、給水は、2番目の給水弁152の第1パイプ部51から1番目の分配チューブ137へと流下し、各貫通孔から吐水した潅水が圃場20に供給される。
 1番目の分配チューブ137を介した排水を行う場合、マイコン330は、第1パイプ部51を介して水が流下するように2番目の給水弁152のバルブ開度を制御する。さらにマイコン330は、大気開放された第2パイプ部52へ水が流下するように1番目の給水弁152のバルブ開度を制御する。この制御により、給水は、2番目の給水弁152の第1パイプ部51から1番目の分配チューブ137へ流下して第2パイプ部52から排水される。この排水制御により、1番目の分配チューブ137内、給水弁152内、配管内など排水とともに異物を排出することができる。
 2番目の分配チューブ137から潅水する場合、マイコン330は、第2パイプ部52を介して水が流下するように2番目の給水弁152のバルブ開度を制御する。さらにマイコン330は、流体流出部への流下を遮断するように3番目の給水弁152のバルブ開度を制御する。この制御により、給水は、2番目の給水弁152の第2パイプ部52から2番目の分配チューブ137へと流下し、各貫通孔から吐水した潅水が圃場20に供給される。
 2番目の分配チューブ137を介した排水を行う場合、マイコン330は、第2パイプ部52を介して水が流下するように2番目の給水弁152のバルブ開度を制御する。さらにマイコン330は、大気開放された第2パイプ部52へ水が流下するように3番目の給水弁152のバルブ開度を制御する。この制御により、給水は、2番目の給水弁152の第2パイプ部52から2番目の分配チューブ137へ流下して第2パイプ部52から排水される。この排水制御により、2番目の分配チューブ137内、給水弁152内、配管内などから排水とともに異物を排出することができる。
 第5実施形態の潅水システム10は、図19と同様に、第1分配部137a、第2分配部137b、および折り返し部を有する分配チューブ137を備える。潅水システム10は、第1分配部において折り返し部とは反対側の端部に連通するように接続された第1給水弁と、第2分配部において折り返し部とは反対側の端部に連通するように接続された第2給水弁とを含む。第1給水弁は、第1分配部に連通するように接続された流体流入部と、大気に対して開放された大気開放部とを有する。第2給水弁は、給水源からの給水が供給される給水配管に連通するように接続された流体流入部と、第2分配部に連通するように接続された流体流出部とを有する。この構成によれば、1つの分配チューブに連通する第1給水弁が大気開放部を有する。このため、給水配管に連通する第2給水弁、分配チューブおよび第1給水弁の大気開放部を介した排水と、分配チューブの貫通孔からの潅水とを実施できる。したがって、潅水用バルブと異物排出用バルブとの両方の機能をもつ第1給水弁を有する潅水システム10を提供できる。
 <第6実施形態>
 第6実施形態について図24~図27を参照して説明する。第6実施形態の潅水システム10は、通路構成と給水制御に関係する構成部品について図24に示す構成を有している。第6実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下、異なる点について説明する。
 図24は、分配チューブ136と給水弁152の位置関係の一例を示している。図24に示す通路構成は、図17に示す構成に対して、分配チューブ136に対する給水経路に係る構成が相違している。第6実施形態の潅水システム10は、ポンプ110からの給水が分岐して流下する分岐配管139を備える。分岐配管139は、縦配管133から分岐して分配チューブ136の他方端部に連通している。分配チューブ136の他方端部は、分配チューブ136において縦配管133側に位置する一方端部に対して、長手方向の他方側に位置する端部である。
 分配チューブ136の一方端部は、給水弁152の流体流出部に連通している。この給水弁152は、図19に示す構成と同様に、入口ポート251を介して縦配管133に連通している。分配チューブ136の一方端部と縦配管133との間の通路には、給水弁152と、水圧センサ153aまたは流量センサ154aとが設けられている。水圧センサ153aまたは流量センサ154aは、給水弁152よりも分配チューブ136の一方端部寄りの位置に設けられている。
 分岐配管139は、縦配管133において分配チューブ136の一方端部に連通する部位よりもポンプ110寄りの位置から分岐している配管である。分岐配管139には、1個の給水弁152および1個の分配チューブ136に連通する通路が複数接続されている。分岐配管139には、複数の分配チューブ136と同方向に並んでいる複数の給水弁152における各入口ポート251が接続されている。分配チューブ136の他方端部は、給水弁152の流体流出部に連通している。この給水弁152は、入口ポート251を介して縦配管133に連通している。分配チューブ136の他方端部と分岐配管139との間の通路には、給水弁152と、水圧センサ153aまたは流量センサ154aとが設けられている。水圧センサ153aまたは流量センサ154aは、給水弁152よりも分配チューブ136の他方端部寄りの位置に設けられている。
 この潅水システム10は、分配チューブ136毎に対応する給水弁152のバルブ開度を個別に制御することで分配チューブ136からの吐水量や飛水距離を個別に制御する。潅水システム10は、分配チューブ136の一方端部から給水する場合と、他方端部から給水する場合と、両方から同時に給水する場合とを実施できる。一方端部から給水する場合、マイコン330は縦配管133に接続された一方端部側の給水弁152のバルブ開度を開状態に制御する。さらにマイコン330は、分岐配管139に接続された他方端部側の給水弁152のバルブ開度を閉状態に制御する。この制御により縦配管133を通じて一方端部から供給された給水は、バルブ開度に応じた飛水距離と潅水量で分配チューブの貫通孔から吐水して圃場20に潅水される。
 他方端部から給水する場合、マイコン330は、分岐配管139に接続された他方端部側の給水弁152のバルブ開度を開状態に制御する。さらにマイコン330は縦配管133に接続された一方端部側の給水弁152のバルブ開度を閉状態に制御する。この制御により分岐配管139を通じて他方端部から供給された給水は、バルブ開度に応じた飛水距離と潅水量で分配チューブの貫通孔から吐水して圃場20に潅水される。
 一方端部と他方端部の両方から同時給水する場合、マイコン330は他方端部側の給水弁152のバルブと一方端部側の給水弁152のバルブとを開状態に制御する。この制御により、縦配管133を通じて一方端部から供給された給水と分岐配管139を通じて他方端部から供給された給水とが同時に行われる。この両側からの給水は、分配チューブ136内で混合し、分配チューブ136の貫通孔から吐水して圃場20に潅水される。
 図25は、分配チューブ136における吐水位置と潅水量との関係を説明するための図である。図25は、分配チューブ136における一方端部からの貫通孔の距離を横軸とし、潅水量を縦軸としている。吐水位置P1は、分配チューブ136の一方端部に最も近い貫通孔の位置である。吐水位置P2は、分配チューブ136の他方端部に最も近い貫通孔の位置である。
 図25の破線グラフは、分配チューブ136の一方端部に近い給水弁152を開状態に制御して他方端部に近い給水弁152を閉状態に制御した潅水を示している。つまり、図25の破線グラフは、一方端部側の給水弁152のみから給水する潅水において吐水位置と潅水量との関係を示している。破線グラフによると、潅水量は、分配チューブ136において、給水される一方端部から遠い距離にある吐水位置P2の方が吐水位置P1よりも少なくなる。また、潅水量は、通水抵抗のため、吐水位置P1から遠ざかるほど少なくなる。
 図25の一点鎖線グラフは、分配チューブ136の他方端部に近い給水弁152を開状態に制御して一方端部に近い給水弁152を閉状態に制御した潅水を示している。つまり、図25の一点鎖線グラフは、他方端部側の給水弁152のみから給水する潅水において吐水位置と潅水量との関係を示している。一点鎖線グラフによると、潅水量は、分配チューブ136において、給水される他方端部から遠い距離にある吐水位置P1の方が吐水位置P2よりも少なくなる。また、潅水量は、通水抵抗のため、吐水位置P2から遠ざかるほど少なくなる。
 図25の実線グラフは、破線のグラフと一点鎖線のグラフとを合わせた合計の潅水量を示している。つまり、図25の実線グラフは、一方端部からの給水による潅水量と他方端部からの給水による潅水量との合計潅水量を示している。実線グラフにおける潅水量のばらつきは、破線グラフが示す上流と下流との潅水量の差や、一点鎖線グラフが示す上流と下流との潅水量の差よりも小さい。潅水システム10は、一方端部からの潅水と他方端部からの潅水とを切り換える潅水制御により、吐水位置による潅水量のばらつきを抑制できる。
 図26は、分配チューブ136における吐水位置と潅水量との関係を説明するための図である。図26は、分配チューブ136における一方端部からの貫通孔の距離を横軸とし、潅水量を縦軸としている。図26の破線グラフは、図25の破線グラフと同じであり、一方端部側の給水弁152のみから給水する潅水において吐水位置と潅水量との関係を示している。図26の実線グラフは、一方端部と他方端部の両方から同時給水する潅水における吐水位置と潅水量との関係を示している。実線グラフにおける潅水量のばらつきは、破線グラフが示す上流と下流との潅水量の差よりも小さくなる。潅水システム10は、一方端部と他方端部の両方から同時給水する潅水制御によって通水抵抗による潅水量低減を抑制でき、吐水位置による潅水量のばらつきを抑制できる。
 図27の太線は、地面の高さが他方端部側の方が一方端部側よりも高い高低差のある圃場20における分配チューブ136の吐水位置と潅水量との関係を示している。図27の細線は、他方端部側と一方端部側とで地面の高さが同程度である圃場20において、分配チューブ136の吐水位置と潅水量との関係を示している。図27は、分配チューブ136における一方端部からの貫通孔の距離を横軸とし、潅水量を縦軸としている。
 図27の破線グラフは、太線と細線の両方とも、一方端部側の給水弁152のみから給水する潅水における吐水位置と潅水量との関係を示している。破線グラフによると、他方端部に近い吐水位置の潅水量は、太線の方が細線よりも大きく減っている。他方端部近傍の吐水位置における潅水量の差は、図27に図示するAW1である。これは、地面が低い一方端部から給水が行い、地面が高い他方端部へ向けて流下するからである。図27の一点鎖線グラフは、太線と細線の両方とも、他方端部側の給水弁152のみから給水する潅水において吐水位置と潅水量との関係を示している。一点鎖線グラフによると、潅水量は、他方端部の地面が高い条件である太線の方が細線よりも大きくなる。
 図27における太線の実線グラフは、太線の破線グラフと太線の一点鎖線グラフとを合わせた合計の潅水量を示している。図27における細線の実線グラフは、細線の破線グラフと細線の一点鎖線グラフとを合わせた合計の潅水量を示している。つまり、図27の実線グラフは、太線と細線の両方とも、一方端部からの給水による潅水量と他方端部からの給水による潅水量との合計潅水量を示している。潅水システム10は、一方端部からの潅水と他方端部からの潅水とを切り換える制御により、高低差のある圃場20において吐水位置による潅水量のばらつきを抑制できる。
 第6実施形態の潅水システム10は、一方端部側の給水弁152と、他方端部側の給水弁152とを含む。制御装置は、一方端部から給水する制御と、他方端部から給水する制御とを切り換えるように、給水弁152のバルブ開度を制御する。一方端部から給水する制御では、一方端部側の給水弁152における流体流出部を開放し他方端部側の給水弁152における流体流出部を閉塞する。他方端部から給水する制御では、他方端部側の給水弁152における流体流出部を開放し一方端部側の給水弁152における流体流出部を閉塞する。潅水システム10によれば、一方端部からの給水による潅水と他方端部からの給水による潅水とを切り換える潅水制御によって通水抵抗による潅水量のばらつきを抑制できる。また、この潅水制御によれば、チューブ長さ方向に高低差があるように設けられた分配チューブにおいて、吐水位置による潅水量のばらつきを抑制できる。
 <第7実施形態>
 第7実施形態について図28を参照して説明する。第7実施形態の潅水システム10は、通路構成と給水制御に関係する構成部品について図28に示す構成を有している。第7実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下、異なる点について説明する。
 図28は、分配チューブ136と給水弁152の位置関係の一例を示している。図28に示す通路構成は、第6実施形態の図24に示す構成に対して、分岐配管139に設けられた開閉弁140を備える点が相違している。第7実施形態の潅水システム10は、分岐配管139における給水弁152との接続部位よりも下流の通路を開閉可能な開閉弁140を備える。開閉弁140は、流体流入部が分岐配管139に接続され、流体流出部が大気に開放されている。開閉弁140は、分岐配管139における下流通路を開状態と閉状態とにわたって制御できる機能を有し、流量調整バルブ、電磁弁などを用いることができる。
 この潅水システム10は、各給水弁152のバルブ開度制御について、第6実施形態と同様の制御を行う。マイコン330は、開閉弁140のバルブ開度を開状態と閉状態とにわたって制御する。潅水システム10は、分配チューブ136から吐水して潅水する制御と、分配チューブ136を介して大気開放した給水弁の流体流出部から排水する制御とを実施できる。
 分配チューブ136の他方端部から給水し潅水する場合、マイコン330は、対応する他方端部側の給水弁を開状態に制御し一方端部側の給水弁を閉状態に制御する。さらにマイコン330は、開閉弁140を閉状態に制御する。この制御により、分岐配管139を介した給水は、他方端部から分配チューブ136に流入して各貫通孔から圃場20に吐水される。分配チューブ136の一方端部から給水し潅水する場合、マイコン330は、対応する一方端部側の給水弁を開状態に、他方端部側の給水弁を閉状態に制御し、開閉弁140を閉状態に制御する。この制御により、分岐配管139を介した給水は、一方端部から分配チューブ136に流入して各貫通孔から圃場20に吐水される。
 分配チューブ136を介して排水する場合、マイコン330は、対応する一方端部側の給水弁を開状態に制御し他方端部側の給水弁を閉状態に制御する。さらにマイコン330は開閉弁140を開状態に制御する。この制御により、給水は、一方端部側の給水弁、分配チューブ136、他方端部側の給水弁を順に流下して、分岐配管139を介して開閉弁140の流体流出部から排水される。この排水制御により、一方端部側の給水弁内、分配チューブ136内、他方端部側の給水弁内、配管内などの異物を排水とともに排出できる。
 <第8実施形態>
 第8実施形態について図29を参照して説明する。第8実施形態の潅水システム10は、通路構成と給水制御に関係する構成部品について図29に示す構成を有している。第8実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下、異なる点について説明する。
 図29は、分配チューブ137と給水弁14との位置関係の一例を示している。図29に示す通路構成は、図28に示す構成に対して、分配チューブ136に対する給水弁14の接続に関する構成が相違している。第8実施形態の潅水システム10は、給水弁14のバルブ開度を制御して、分配チューブ136からの吐水による潅水と分配チューブ136を介した排水とを実施する。
 第8実施形態の潅水システム10は、それぞれ個別にバルブ開度を制御する複数の給水弁14を備えている。給水弁14は、大気に開放されている大気開放部142と、複数の通路接続部とを有している。複数の通路接続部は、第1通路接続部141と第2通路接続部143と第3通路接続部144とを含んでいる。第1通路接続部141は、給水源からの給水が流下する縦配管133または分岐配管139に連通する通路に接続されている。第2通路接続部143は、分配チューブ136の一方端部または他方端部に連通する通路に接続されている。第3通路接続部144は、分配チューブ136の一方端部または他方端部に連通する通路に接続されている。
 図29に示すように、分配チューブ136の一方端部側に位置する給水弁14は、分配チューブ136の一方端部と縦配管133とを連通する流量調整バルブである。一方端部側の給水弁14の第1通路接続部141は、縦配管133に接続されている。一方端部側の給水弁14の大気開放部142は、大気に開放するように設けられている。一方端部側の給水弁14の第2通路接続部143は、ポンプ110に最も近い位置にある1番目の分配チューブ136の一方端部に接続されている。一方端部側の給水弁14の第3通路接続部144は、1番目の分配チューブ136の隣に位置する2番目の分配チューブ136の一方端部に接続されている。1番目の分配チューブ136は第1の分配チューブである。2番目の分配チューブ136は第2の分配チューブである。
 分配チューブ136の他方端部側に位置する給水弁14は、分配チューブ136の他方端部と分岐配管139とを連通する流量調整バルブである。他方端部側の給水弁14の第1通路接続部141は、分岐配管139に接続されている。他方端部側の給水弁14の大気開放部142は、大気に開放するように設けられている。他方端部側の給水弁14の第2通路接続部143は、1番目の分配チューブ136の他方端部に接続されている。他方端部側の給水弁14の第3通路接続部144は、2番目の分配チューブ136の他方端部に接続されている。
 水圧センサ153aまたは流量センサ154aは、一方端部側の給水弁14よりも下流の通路に設けられている。水圧センサ153aまたは流量センサ154aは、他方端部側の給水弁14よりも下流の通路に設けられている。水圧センサ153aまたは流量センサ154aは、例えば一方端部側の給水弁14の流体流出部と分配チューブ136との間に設けられている。水圧センサ153aまたは流量センサ154aは、例えば他方端部側の給水弁14の流体流出部と分配チューブ136との間に設けられている。以上述べたように、隣り合う2個の分配チューブ136と分配チューブの両端部に位置する2個の給水弁14は、潅水用通路に係る1つのグループを構成する。このグループをなす潅水用通路は、圃場20において所定間隔をあけてy方向に複数個並んでいる。
 潅水システム10は、分配チューブ136から吐水して潅水する制御と、分配チューブ136を介して給水弁14の大気開放部から排水する制御とを実施できる。1番目の分配チューブから潅水する場合、マイコン330はバルブ開度を制御して一方端部側の給水弁の第2通路接続部143を開放し第3通路接続部144を閉塞する。さらにマイコン330は、他方端部側の給水弁の第2通路接続部143と第3通路接続部144とを閉塞するようにバルブ開度を制御する。この制御により、給水は一方端部側の給水弁の第2通路接続部143から1番目の分配チューブ136へと流下し、各貫通孔から吐水した潅水が圃場20に供給される。
 1番目の分配チューブから潅水する場合、マイコン330はバルブ開度を制御して他方端部側の給水弁の第2通路接続部143を開放し第3通路接続部144を閉塞する。マイコン330は、さらに一方端部側の給水弁の第2通路接続部143と第3通路接続部144とを閉塞するようにバルブ開度を制御する。この制御により、給水は他方端部側の給水弁の第2通路接続部143から1番目の分配チューブ136へと流下し、各貫通孔から吐水した潅水が圃場20に供給される。
 1番目の分配チューブを介した排水の場合、マイコン330はバルブ開度を制御して一方端部側の給水弁の第2通路接続部143を開放し第3通路接続部144を閉塞する。さらにマイコン330は、他方端部側の給水弁の第2通路接続部143を開放し第3通路接続部144を閉塞するようにバルブ開度を制御する。この制御により、給水は一方端部側の給水弁の第2通路接続部143から1番目の分配チューブ136を介して他方端部側の給水弁の大気開放部142から排水される。この排水制御により、一方端部側の給水弁内、1番目の分配チューブ136内、他方端部側の給水弁内などから排水とともに異物を排出できる。
 1番目の分配チューブを介した排水の場合、マイコン330はバルブ開度を制御して他方端部側の給水弁の第2通路接続部143を開放し第3通路接続部144を閉塞する。マイコン330は、さらに一方端部側の給水弁の第2通路接続部143を開放し第3通路接続部144を閉塞するようにバルブ開度を制御する。この制御により、給水は他方端部側の給水弁の第2通路接続部143から1番目の分配チューブ136を介して一方端部側の給水弁の大気開放部142から排水される。この排水制御により、他方端部側の給水弁内、1番目の分配チューブ136内、一方端部側の給水弁内などから排水とともに異物を排出できる。
 2番目の分配チューブから潅水する場合、マイコン330はバルブ開度を制御して一方端部側の給水弁の第2通路接続部143を閉塞し第3通路接続部144を開放する。マイコン330は、さらに他方端部側の給水弁の第2通路接続部143と第3通路接続部144とを閉塞するようにバルブ開度を制御する。この制御により、給水は一方端部側の給水弁の第3通路接続部144から2番目の分配チューブ136へと流下し、各貫通孔から吐水した潅水が圃場20に供給される。
 2番目の分配チューブから潅水する場合、マイコン330はバルブ開度を制御して他方端部側の給水弁の第2通路接続部143を閉塞し第3通路接続部144を開放する。さらにマイコン330は、バルブ開度を制御して一方端部側の給水弁の第2通路接続部143を閉塞し第3通路接続部144を閉塞する。この制御により、給水は他方端部側の給水弁の第3通路接続部144から2番目の分配チューブ136へと流下し、各貫通孔から吐水した潅水が圃場20に供給される。
 2番目の分配チューブを介した排水の場合、マイコン330はバルブ開度を制御して一方端部側の給水弁の第2通路接続部143を閉塞し第3通路接続部144を開放する。マイコン330は、さらに他方端部側の給水弁の第2通路接続部143を閉塞し第3通路接続部144を開放するようにバルブ開度を制御する。この制御により、給水は一方端部側の給水弁の第2通路接続部143から2番目の分配チューブ136を介して他方端部側の給水弁の大気開放部142から排水される。この排水制御により、一方端部側の給水弁内、2番目の分配チューブ136内、他方端部側の給水弁内などから排水とともに異物を排出できる。
 2番目の分配チューブを介した排水の場合、マイコン330はバルブ開度を制御して他方端部側の給水弁の第2通路接続部143を閉塞し第3通路接続部144を開放する。マイコン330は、さらに一方端部側の給水弁の第2通路接続部143を閉塞し第3通路接続部144を開放するようにバルブ開度を制御する。この制御により、給水は他方端部側の給水弁の第3通路接続部144から2番目の分配チューブ136を介して一方端部側の給水弁の大気開放部142から排水される。この排水制御により、他方端部側の給水弁内、2番目の分配チューブ136内、一方端部側の給水弁内などから排水とともに異物を排出できる。
 第8実施形態の潅水システム10は、第1の分配チューブと第1の分配チューブに隣り合う第2の分配チューブと一方端部側の給水弁14と他方端部側の給水弁14とを含む。一方端部側の給水弁14は、第1の分配チューブにおける一方端部と第2の分配チューブにおける一方端部とに連通するように接続されている。他方端部側の給水弁は、第1の分配チューブにおける他方端部と第2の分配チューブにおける他方端部とに連通するように接続されている。一方端部側の給水弁14は、大気に開放されている大気開放部142と第1通路接続部141と第2通路接続部143と第3通路接続部144とを有する。第1通路接続部141は、給水源からの給水が供給される給水配管130に連通するように通路に接続されている。第2通路接続部143は、第1の分配チューブの一方端部に連通するように通路に接続されている。第3通路接続部144は、第2の分配チューブの一方端部に連通するように通路に接続されている。他方端部側の給水弁は、大気に開放されている大気開放部142と第1通路接続部141と第2通路接続部143と第3通路接続部144とを有する。第1通路接続部141は、給水配管130から分岐する分岐配管139に連通するように通路に接続されている。第2通路接続部143は、第1の分配チューブの他方端部に連通するように通路に接続されている。第3通路接続部144は、第2の分配チューブの他方端部に連通するように通路に接続されている。
 このシステムによれば、一方端部からの給水による潅水と他方端部からの給水による潅水とを切り換える潅水制御によって、通水抵抗による潅水量のばらつきを抑制できる。さらにこのシステムは、分配チューブおよび給水弁14の大気開放部を介した排水と、分配チューブの貫通孔からの潅水とを実施できる。したがって、潅水用バルブと異物排出用バルブとの両方の機能をもつ給水弁を有する潅水システム10を提供できる。
 <他の実施形態>
 この明細書の開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品、要素の組み合わせに限定されず、種々変形して実施することが可能である。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品、要素が省略されたものを包含する。開示は、一つの実施形態と他の実施形態との間における部品、要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示される技術的範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内での全ての変更を含むものと解されるべきである。
 (技術的思想の開示)
 この明細書は、以下に列挙する複数の項に記載された複数の技術的思想を開示している。いくつかの項は、後続の項において先行する項を択一的に引用する多項従属形式(a multiple dependent form)により記載されている場合がある。さらに、いくつかの項は、他の多項従属形式の項を引用する多項従属形式(a multiple dependent form referring to another multiple dependent form)により記載されている場合がある。これらの多項従属形式で記載された項は、複数の技術的思想を定義している。
 (技術的思想1)
 植物(30)を生育する圃場(20)に設けられて、前記圃場に潅水を散水するための複数の貫通孔が形成されてかつ圧力補正機構を有していない分配チューブ(136,137)と、
 前記分配チューブよりも上流において前記分配チューブへ流下する給水の圧力を制御する給水弁(152)と、
 前記給水弁のバルブ開度を制御して、前記分配チューブから前記貫通孔を介して放出される潅水量を制御する制御装置(330)と、
 を備える潅水システム。
 (技術的思想2)
 前記分配チューブの前記貫通孔へ向けて流下する上流通路においてまたは前記分配チューブの下流末端において給水に関する給水情報を検出する、水圧センサ(153a,153b)または流量センサ(154a,154b)を備え、
 前記制御装置は、検出された前記給水情報を用いたフィードバック制御によって前記バルブ開度を制御する技術的思想1に記載の潅水システム。
 (技術的思想3)
 前記水圧センサまたは前記流量センサは、前記上流通路と前記下流末端とにおいて前記給水情報を検出し、
 前記制御装置は、前記上流通路と前記下流末端とにおいて検出された前記給水情報を用いたフィードバック制御によって前記バルブ開度を制御する技術的思想2に記載の潅水システム。
 (技術的思想4)
 前記制御装置は、前記バルブ開度を目標開度に制御するために必要な通電時間または必要な通電量を複数の段階に細分化した細分化量ずつ制御して、段階的に前記目標開度に制御する技術的思想1から技術的思想3のいずれか一項に記載の潅水システム。
 (技術的思想5)
 前記分配チューブは、内部を流通する水圧に応じて伸縮するように構成されており、
 前記制御装置は、前記分配チューブが伸縮する水圧の範囲で、前記給水弁の前記バルブ開度を制御する技術的思想1から技術的思想4のいずれか一項に記載の潅水システム。
 (技術的思想6)
 前記分配チューブは、前記貫通孔が複数形成された第1分配部(137a)と、前記第1分配部に沿うように延びて間隔をあけて前記第1分配部と並び前記貫通孔が複数形成された第2分配部(137b)と、前記第1分配部と前記第2分配部とを連結する折り返し部とを有しており、
 前記給水弁は、前記第1分配部と前記第2分配部のそれぞれにおいて前記折り返し部とは反対側の端部に向けて流下する給水の圧力を制御する技術的思想1から技術的思想5のいずれか一項に記載の潅水システム。
 (技術的思想7)
 1個の前記給水弁は、前記分配チューブよりも上流の通路において所定数の前記分配チューブに連通するように設けられている技術的思想1から技術的思想5のいずれか一項に記載の潅水システム。
 (技術的思想8)
 1個の前記給水弁は、所定数の前記分配チューブにそれぞれ連通するように設けられた複数の流体流出部を有する技術的思想7に記載の潅水システム。
 (技術的思想9)
 前記分配チューブは、前記貫通孔が複数形成された第1分配部(137a)と、前記第1分配部に沿うように延びて間隔をあけて前記第1分配部と並び前記貫通孔が複数形成された第2分配部(137b)と、前記第1分配部と前記第2分配部とを連結する折り返し部とを有しており、
 前記給水弁は、前記第1分配部において前記折り返し部とは反対側の端部に連通するように接続された第1給水弁と、前記第2分配部において前記折り返し部とは反対側の端部に連通するように接続された第2給水弁とを含み、
 前記第1給水弁は、前記第1分配部に連通するように接続された流体流入部(251)と、大気に対して開放された大気開放部(52)とを有し、
 前記第2給水弁は、給水源(110)からの給水が供給される給水配管(130)に連通するように接続された流体流入部(251)と、前記第2分配部に連通するように接続された流体流出部(51)とを有する技術的思想1から技術的思想5のいずれか一項に記載の潅水システム。
 (技術的思想10)
 前記給水弁は、給水源(110)からの給水が供給される給水配管(130)に連通するように接続された流体流入部(251)と前記分配チューブの一方端部に連通するように接続された流体流出部(51)とを有する一方端部側の給水弁と、前記給水配管から分岐する分岐配管(139)に連通するように接続された流体流入部(251)と前記分配チューブの他方端部に連通するように接続された流体流出部(51)とを有する他方端部側の給水弁とを含み、
 前記制御装置は、前記一方端部側の給水弁における前記流体流出部を開放し前記他方端部側の給水弁における前記流体流出部を閉塞して前記一方端部から給水する制御と、前記他方端部側の給水弁における前記流体流出部を開放し前記一方端部側の給水弁における前記流体流出部を閉塞して前記他方端部から給水する制御とを切り換えるように、前記バルブ開度を制御する技術的思想1から技術的思想5のいずれか一項に記載の潅水システム。
 (技術的思想11)
 前記分岐配管における前記他方端部側の給水弁との接続部位よりも下流の通路を開閉可能な開閉弁(140)を備え、
 前記開閉弁は、流体流入部が前記分岐配管に接続され流体流出部が大気に開放されて、設けられている技術的思想10に記載の潅水システム。
 (技術的思想12)
 前記給水弁は、第1の分配チューブにおける一方端部と前記第1の分配チューブに隣り合う第2の分配チューブにおける一方端部とに連通するように接続された一方端部側の給水弁と、前記第1の分配チューブにおける他方端部と前記第2の分配チューブにおける他方端部とに連通するように接続された他方端部側の給水弁とを含み、
 前記一方端部側の給水弁は、大気に開放されている大気開放部(142)と、給水源(110)からの給水が供給される給水配管(130)に連通するように接続された第1通路接続部(141)と、前記第1の分配チューブの前記一方端部に連通するように接続された第2通路接続部(143)と、前記第2の分配チューブの前記一方端部に連通するように接続された第3通路接続部(144)とを有し、
 前記他方端部側の給水弁は、大気に開放されている大気開放部(142)と、前記給水配管から分岐する分岐配管(139)に連通するように接続された第1通路接続部(141)と、前記第1の分配チューブの前記他方端部に連通するように接続された第2通路接続部(143)と、前記第2の分配チューブの前記他方端部に連通するように接続された第3通路接続部(144)とを有している技術的思想1から技術的思想5のいずれか一項に記載の潅水システム。

Claims (15)

  1.  植物(30)を生育する圃場(20)に設けられて、前記圃場に潅水を散水するための複数の貫通孔が形成されてかつ圧力補正機構を有していない分配チューブ(136,137)と、
     前記分配チューブよりも上流において前記分配チューブへ流下する給水の圧力を制御する給水弁(152)と、
     前記給水弁のバルブ開度を制御して、前記分配チューブから前記貫通孔を介して放出される潅水量を制御する制御装置(330)と、
     を備える潅水システム。
  2.  前記分配チューブの前記貫通孔へ向けて流下する上流通路においてまたは前記分配チューブの下流末端において給水に関する給水情報を検出する、水圧センサ(153a,153b)または流量センサ(154a,154b)を備え、
     前記制御装置は、検出された前記給水情報を用いたフィードバック制御によって前記バルブ開度を制御する請求項1に記載の潅水システム。
  3.  前記水圧センサまたは前記流量センサは、前記上流通路と前記下流末端とにおいて前記給水情報を検出し、
     前記制御装置は、前記上流通路と前記下流末端とにおいて検出された前記給水情報を用いたフィードバック制御によって前記バルブ開度を制御する請求項2に記載の潅水システム。
  4.  前記制御装置は、前記バルブ開度を目標開度に制御するために必要な通電時間または必要な通電量を複数の段階に細分化した細分化量ずつ制御して、段階的に前記目標開度に制御する請求項1から請求項3のいずれか一項に記載の潅水システム。
  5.  前記分配チューブは、内部を流通する水圧に応じて伸縮するように構成されており、
     前記制御装置は、前記分配チューブが伸縮する水圧の範囲で、前記給水弁の前記バルブ開度を制御する請求項1から請求項3のいずれか一項に記載の潅水システム。
  6.  前記分配チューブは、前記貫通孔が複数形成された第1分配部(137a)と、前記第1分配部に沿うように延びて間隔をあけて前記第1分配部と並び前記貫通孔が複数形成された第2分配部(137b)と、前記第1分配部と前記第2分配部とを連結する折り返し部とを有しており、
     前記給水弁は、前記第1分配部と前記第2分配部のそれぞれにおいて前記折り返し部とは反対側の端部に向けて流下する給水の圧力を制御する請求項1から請求項3のいずれか一項に記載の潅水システム。
  7.  1個の前記給水弁は、前記分配チューブよりも上流の通路において所定数の前記分配チューブに連通するように設けられている請求項1から請求項3のいずれか一項に記載の潅水システム。
  8.  1個の前記給水弁は、所定数の前記分配チューブにそれぞれ連通するように設けられた複数の流体流出部を有する請求項7に記載の潅水システム。
  9.  前記分配チューブは、前記貫通孔が複数形成された第1分配部(137a)と、前記第1分配部に沿うように延びて間隔をあけて前記第1分配部と並び前記貫通孔が複数形成された第2分配部(137b)と、前記第1分配部と前記第2分配部とを連結する折り返し部とを有しており、
     前記給水弁は、前記第1分配部において前記折り返し部とは反対側の端部に連通するように接続された第1給水弁と、前記第2分配部において前記折り返し部とは反対側の端部に連通するように接続された第2給水弁とを含み、
     前記第1給水弁は、前記第1分配部に連通するように接続された流体流入部(251)と、大気に対して開放された大気開放部(52)とを有し、
     前記第2給水弁は、給水源(110)からの給水が供給される給水配管(130)に連通するように接続された流体流入部(251)と、前記第2分配部に連通するように接続された流体流出部(51)とを有する請求項1から請求項3のいずれか一項に記載の潅水システム。
  10.  前記給水弁は、給水源(110)からの給水が供給される給水配管(130)に連通するように接続された流体流入部(251)と前記分配チューブの一方端部に連通するように接続された流体流出部(51)とを有する一方端部側の給水弁と、前記給水配管から分岐する分岐配管(139)に連通するように接続された流体流入部(251)と前記分配チューブの他方端部に連通するように接続された流体流出部(51)とを有する他方端部側の給水弁とを含み、
     前記制御装置は、前記一方端部側の給水弁における前記流体流出部を開放し前記他方端部側の給水弁における前記流体流出部を閉塞して前記一方端部から給水する制御と、前記他方端部側の給水弁における前記流体流出部を開放し前記一方端部側の給水弁における前記流体流出部を閉塞して前記他方端部から給水する制御とを切り換えるように、前記バルブ開度を制御する請求項1から請求項3のいずれか一項に記載の潅水システム。
  11.  前記分岐配管における前記他方端部側の給水弁との接続部位よりも下流の通路を開閉可能な開閉弁(140)を備え、
     前記開閉弁は、流体流入部が前記分岐配管に接続され流体流出部が大気に開放されて、設けられている請求項10に記載の潅水システム。
  12.  前記給水弁は、第1の分配チューブにおける一方端部と前記第1の分配チューブに隣り合う第2の分配チューブにおける一方端部とに連通するように接続された一方端部側の給水弁と、前記第1の分配チューブにおける他方端部と前記第2の分配チューブにおける他方端部とに連通するように接続された他方端部側の給水弁とを含み、
     前記一方端部側の給水弁は、大気に開放されている大気開放部(142)と、給水源(110)からの給水が供給される給水配管(130)に連通するように接続された第1通路接続部(141)と、前記第1の分配チューブの前記一方端部に連通するように接続された第2通路接続部(143)と、前記第2の分配チューブの前記一方端部に連通するように接続された第3通路接続部(144)とを有し、
     前記他方端部側の給水弁は、大気に開放されている大気開放部(142)と、前記給水配管から分岐する分岐配管(139)に連通するように接続された第1通路接続部(141)と、前記第1の分配チューブの前記他方端部に連通するように接続された第2通路接続部(143)と、前記第2の分配チューブの前記他方端部に連通するように接続された第3通路接続部(144)とを有している請求項1から請求項3のいずれか一項に記載の潅水システム。
  13.  複数の貫通孔が形成されてかつ圧力補正機構を有していない分配チューブ(136)へ流下する潅水の圧力を前記分配チューブよりも上流で制御する給水弁(152)についてバルブ開度を決定する演算部(334)と、
     前記分配チューブから前記貫通孔を介して放出される潅水量を制御するために、前記バルブ開度に制御する制御信号を前記給水弁に出力する出力部(332)と、
     を備える制御装置。
  14.  前記出力部は、前記バルブ開度を目標開度に制御するために必要な通電時間または必要な通電量を複数の段階に細分化した細分化量ずつ制御して、段階的に前記目標開度に制御する制御信号を前記給水弁に出力する請求項13に記載の制御装置。
  15.  前記出力部は、内部を流通する水圧に応じて伸縮するように構成されている前記分配チューブが伸縮する水圧の範囲で、前記バルブ開度を制御する制御信号を前記給水弁に出力する請求項13または請求項14に記載の制御装置。
PCT/JP2023/006609 2022-02-28 2023-02-23 潅水システムおよび制御装置 WO2023163079A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-029004 2022-02-28
JP2022029004 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023163079A1 true WO2023163079A1 (ja) 2023-08-31

Family

ID=87766041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006609 WO2023163079A1 (ja) 2022-02-28 2023-02-23 潅水システムおよび制御装置

Country Status (1)

Country Link
WO (1) WO2023163079A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224214A (ja) * 1986-03-24 1987-10-02 鹿島建設株式会社 植栽方式
JPH11210029A (ja) * 1998-01-22 1999-08-03 Kawamoto Pump Mfg Co Ltd 給水装置
JP2005341839A (ja) * 2004-06-01 2005-12-15 Mkv Platech Co Ltd 散水幅自動可変制御装置およびそれを用いた散水システム
JP2010022264A (ja) * 2008-07-18 2010-02-04 Kitz Corp 散水システム
JP2014057568A (ja) * 2012-08-22 2014-04-03 Panasonic Corp 散水システム、およびこれを用いた農業用ハウス
JP2015146799A (ja) * 2014-01-07 2015-08-20 パナソニックIpマネジメント株式会社 給水装置、および給水システム
JP2017064572A (ja) * 2015-09-28 2017-04-06 株式会社タカギ 散水装置
JP2019069408A (ja) * 2017-10-06 2019-05-09 Ckd株式会社 液体希釈混合装置
US20200146230A1 (en) * 2017-07-20 2020-05-14 Netafim, Ltd. Irrigation system and method for controlling liquid flow in adjacent field zones

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224214A (ja) * 1986-03-24 1987-10-02 鹿島建設株式会社 植栽方式
JPH11210029A (ja) * 1998-01-22 1999-08-03 Kawamoto Pump Mfg Co Ltd 給水装置
JP2005341839A (ja) * 2004-06-01 2005-12-15 Mkv Platech Co Ltd 散水幅自動可変制御装置およびそれを用いた散水システム
JP2010022264A (ja) * 2008-07-18 2010-02-04 Kitz Corp 散水システム
JP2014057568A (ja) * 2012-08-22 2014-04-03 Panasonic Corp 散水システム、およびこれを用いた農業用ハウス
JP2015146799A (ja) * 2014-01-07 2015-08-20 パナソニックIpマネジメント株式会社 給水装置、および給水システム
JP2017064572A (ja) * 2015-09-28 2017-04-06 株式会社タカギ 散水装置
US20200146230A1 (en) * 2017-07-20 2020-05-14 Netafim, Ltd. Irrigation system and method for controlling liquid flow in adjacent field zones
JP2019069408A (ja) * 2017-10-06 2019-05-09 Ckd株式会社 液体希釈混合装置

Similar Documents

Publication Publication Date Title
US8457799B2 (en) Automatic gated pipe actuator
US5870302A (en) Evapotranspiration remote irrigation control system
US20100324744A1 (en) Automatic gated pipe actuator
US6947811B2 (en) Automatic adjustment of irrigation schedule according to condition of plants
AU2009201923A1 (en) Irrigation systems and methods
CA2612114A1 (en) Multi-zone sprinkler system with moisture sensors and configurable spray pattern
US12114617B2 (en) Systems and methods of irrigation need assessment
WO2023248984A1 (ja) 潅水システムおよび制御装置
Chaudhry et al. Smart irrigation techniques for water resource management
JP2005117999A (ja) 全自動植物栽培制御装置
CN206101104U (zh) 采用太阳能发电喷灌的系统
WO2023163079A1 (ja) 潅水システムおよび制御装置
WO2023163081A1 (ja) 潅水システムおよび制御装置
WO2023163080A1 (ja) 潅水システムおよび制御装置
CN117426289A (zh) 一种农田智能浇灌系统
WO2023223999A1 (ja) 潅水システムおよび制御装置
CN111034511A (zh) 一种植物栽培系统及采用该系统的植物栽培方法
KR102166145B1 (ko) 시설원예용 양액 공급 장치
CN115362922A (zh) 一种灌溉系统及灌溉方法
JP2001086886A (ja) 灌水装置
CN205756149U (zh) 一种智能水阀控制器
JP2024000135A (ja) 潅水システムおよび制御装置
JP7418293B2 (ja) 圃場水管理装置
AU2017203202A1 (en) Modulated cyclic flow (MCF) drip irrigation systems
Muthuminal et al. An Outlook Over Smart Irrigation System for Sustainable Rural Development

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760078

Country of ref document: EP

Kind code of ref document: A1