WO2023162995A1 - 新規セレンテラジン誘導体 - Google Patents

新規セレンテラジン誘導体 Download PDF

Info

Publication number
WO2023162995A1
WO2023162995A1 PCT/JP2023/006307 JP2023006307W WO2023162995A1 WO 2023162995 A1 WO2023162995 A1 WO 2023162995A1 JP 2023006307 W JP2023006307 W JP 2023006307W WO 2023162995 A1 WO2023162995 A1 WO 2023162995A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
carbon atoms
represented
hydrocarbon group
group
Prior art date
Application number
PCT/JP2023/006307
Other languages
English (en)
French (fr)
Inventor
昌次郎 牧
昇雄 北田
誠培 金
Original Assignee
国立大学法人電気通信大学
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人電気通信大学, 国立研究開発法人産業技術総合研究所 filed Critical 国立大学法人電気通信大学
Publication of WO2023162995A1 publication Critical patent/WO2023162995A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention relates to novel coelenterazine derivatives.
  • In vivo molecular event visualization technology is an indispensable technology for the diagnosis of various diseases and the development of therapeutic methods.
  • Visualization techniques using bioluminescence are the mainstream of visualization techniques for in vivo molecular events, and techniques that apply the luminescence systems of fireflies and marine organisms have been developed.
  • the luminescence system of marine organisms has attracted attention due to its high luminescence brightness, the small molecular weight of luciferase, and the simplicity of the luminescence system. It is preferably used.
  • nCTZ natural coelenterazine
  • nCTZ natural coelenterazine
  • an object of the present invention is to solve the above-described problems of the prior art and to provide a novel coelenterazine derivative having high luminescence brightness and enzyme specificity.
  • Another object of the present invention is to provide a novel coelenterazine derivative that exhibits high luminescence intensity, emits light on the long wavelength side, and has enzyme specificity.
  • R 1 represents the following general formula (1-1-1), (1-1-2), (1-1-3) or (1-1-4): wherein R 1-1 is a hydrocarbon group having 1 to 4 carbon atoms, R 1-2 is each independently hydrogen or a hydrocarbon group having 1 to 3 carbon atoms, and m is an integer from 2 to 8, R 2 is represented by —R 2′ or —CH 2 —R 2′ , where R 2′ is represented by the following general formulas (1-2-1), (1-2-2), (1- 2-3), (1-2-4) or (1-2-5): wherein R 2-1 is hydrogen, halogen, —N(R 2-1-1 ) 2 or —OR 2-1-1 (wherein R 2-1-1 is are each independently hydrogen or a hydrocarbon group having 1 to 3 carbon atoms.), R 2-2 is a hydrocarbon group having 1 to 4 carbon atoms, and R 2-3 is each independently hydrogen or a hydrocarbon group having 1 to 3 carbon
  • R 4 is hydrogen, -(CH 2 ) n -OR 4-1 , -N(R 4-1 ) 2 or -CF 3 , wherein R 4-1 is , each independently hydrogen or a hydrocarbon group having 1 to 3 carbon atoms, n is an integer of 0 to 3,
  • R 5 is the following general formula (2-5-1), (2-5-2), (2-5-3), (2-5-4) or (2-5-5): wherein R 5-1 is hydrogen, halogen, —N(R 5-1-1 ) 2 or —OH (wherein R 5-1-1 is each independently hydrogen or a hydrocarbon group having 1 to 3 carbon atoms.), R 5-2 is a hydrocarbon group having 1 to 4 carbon atoms, and R 5-3 is each independently hydrogen or 1 to 3 carbon atoms.
  • Such a coelenterazine derivative of the present invention has high luminescence brightness and enzyme specificity.
  • the coelenterazine derivative of the present invention is represented by the above general formula (1), and R 1 is represented by the above general formula (1-1-3). In this case, the emission luminance is improved.
  • the coelenterazine derivative of the present invention is represented by general formula (1) above, wherein R 2 is represented by —CH 2 —R 2′ , wherein R 2′ is represented by general formula (1-2-1) above. is preferably represented by Also in this case, the light emission luminance is improved.
  • the coelenterazine derivative of the present invention is represented by the above general formula (1) and R 3 is represented by the above general formula (1-3-2). Also in this case, the light emission luminance is improved.
  • the coelenterazine derivative of the present invention has the following structural formula (1-1): It is particularly preferred to be represented by In this case, the luminance of light emitted from the light-emitting system using the coelenterazine derivative is particularly high.
  • the coelenterazine derivative of the present invention is preferably represented by the above general formula (2), and R 4 is preferably represented by —(CH 2 ) n —OR 4-1 . In this case, the emission luminance is improved.
  • the coelenterazine derivative of the present invention is preferably represented by the above general formula (2), and R 5 is preferably represented by the above general formula (2-5-1). Also in this case, the light emission luminance is improved.
  • the coelenterazine derivative of the present invention is preferably represented by the above general formula (2), and R 6 is hydrogen. Also in this case, the light emission luminance is improved.
  • the coelenterazine derivative of the present invention has the following structural formula (2-1) or (2-2): It is particularly preferred to be represented by In this case, the luminance of light emitted from the light-emitting system using the coelenterazine derivative is particularly high.
  • 1 is a graph showing the luminescence intensity of each luminescent substrate in living cells when ALuc16 is used as a luciferase.
  • 1 is a graph showing the luminescence intensity of each luminescent substrate in a lysate when ALuc16 is used as a luminescent enzyme. It is an emission spectrum of each luminescent substrate when ALuc16 is used as a luminescent enzyme.
  • 1 is a graph showing the luminescence intensity of each luminescent substrate in living cells when ALuc47 is used as a luciferase.
  • 1 is a graph showing the luminescence intensity of each luminescent substrate in a lysate when ALuc47 is used as a luminescent enzyme.
  • each luminescent substrate when ALuc47 is used as a luminescent enzyme.
  • 4 is a graph showing the luminescence intensity of each luminescent substrate in living cells when RLuc8.6SG is used as a luciferase.
  • 4 is a graph showing the luminescence intensity of each luminescent substrate in a lysate when RLuc8.6SG is used as a luciferase.
  • It is an emission spectrum of each luminescent substrate when RLuc8.6SG is used as a luminescent enzyme.
  • 1 is a graph showing the luminescence intensity of each luminescent substrate in living cells when NanoLuc is used as a luminescent enzyme.
  • 1 is a graph showing the luminescence intensity of each luminescent substrate in a lysate when NanoLuc is used as a luminescent enzyme. It is an emission spectrum of each luminescent substrate when NanoLuc is used as a luminescent enzyme.
  • the coelenterazine derivative of the present invention is characterized by being represented by the above general formula (1) or (2).
  • the coelenterazine derivative of the present invention differs from the natural coelenterazine (nCTZ) in that the hydroxyphenyl group at the 6-position of the imidazopyrazinone skeleton is converted to a bicyclic structure containing oxygen or nitrogen [general formula (1 )], or differs from the natural coelenterazine in that the methylene group in the benzyl group at the 8-position is converted to a thioether [general formula (2)], and based on the difference in chemical structure, the natural coelenterazine It has a different enzymatic specificity than coelenterazine.
  • the coelenterazine derivative of the present invention has an enzyme specificity different from that of the natural coelenterazine, but a decrease in luminescence brightness is suppressed, and luminescence brightness sufficient for in vivo imaging is maintained. It can be used as a luminescent substrate in a luminescent system derived from marine organisms.
  • the mechanism of luminescence using the coelenterazine derivative of the present invention as a luminescence substrate is not particularly limited. Protonated to the anionic state, followed by one electron transfer to triplet oxygen, radical coupling to form a peroxide anion, which cyclizes to form a dioxetanone intermediate, which decomposes It is believed that decarboxylation produces amidopyrazine in a singlet excited state, which transitions to the ground state and emits light.
  • Coelenterazine derivative represented by general formula (1) The coelenterazine derivative of the first embodiment of the present invention is represented by the following general formula (1).
  • R 1 is represented by the following general formula (1-1-1), (1-1-2), (1-1-3) or (1-1-4): is represented by In general formula (1-1-1), (1-1-2), (1-1-3) or (1-1-4) for the 6-position of the imidazopyrazinone skeleton in general formula (1) is not particularly limited.
  • R 1-1 is a hydrocarbon group having 1 to 4 carbon atoms (particularly, a carbon chain)
  • R 1-2 is each independently hydrogen or carbon It is a hydrocarbon group of numbers 1 to 3, and m is an integer of 2 to 8 (especially an even number).
  • R 1-1 in general formula (1-1-4) above is a hydrocarbon group having 1 to 4 carbon atoms
  • the group represented by general formula (1-1-4) is a benzene ring. It has a structure in which 4- to 7-membered rings are condensed.
  • R 1-1 is preferably a straight chain hydrocarbon group having 1 to 4 carbon atoms.
  • a hydrocarbon group having 1 to 4 carbon atoms as R 1-1 is bound to m (2 to 8) substituents R 1-2 , that is, R 1-1 is a carbon It is a 4- to 10-valent hydrocarbon group having a number of 1 to 4.
  • the substituent R 1-2 replaces the hydrogen of the hydrocarbon group.
  • the hydrocarbon group having 1 to 4 carbon atoms as R 1-1 may be saturated or unsaturated.
  • R 1-1 is a hydrocarbon group having 1 carbon atom (when R 1-1 forms a 4-membered ring together with N and a benzene ring)
  • m is preferably 2.
  • the tetravalent hydrocarbon group having 1 carbon atom include a methane-tetrayl group.
  • m is preferably 2 or 4 when R 1-1 is a hydrocarbon group having 2 carbon atoms (when R 1-1 forms a 5-membered ring together with N and a benzene ring). In this case, R 1-1 can be saturated or unsaturated.
  • m is 4 when R 1-1 is saturated and m is 2 when R 1-1 is unsaturated.
  • examples of the tetravalent hydrocarbon group (carbon chain) having 2 carbon atoms include ethene-tetrayl group, and examples of the hexavalent hydrocarbon group (carbon chain) having 2 carbon atoms include ethane-hexayl group.
  • R 1-1 is a hydrocarbon group having 3 carbon atoms (when R 1-1 forms a six-membered ring together with N and a benzene ring), m is preferably 2, 4 or 6. In this case, R 1-1 can be saturated or unsaturated.
  • R 1-1 When R 1-1 is saturated, m is preferably 6, and when R 1-1 is unsaturated, m is preferably 4 or 2.
  • the tetravalent hydrocarbon group having 3 carbon atoms (carbon chain) includes propyne-tetrayl group, and the hexavalent hydrocarbon group having 3 carbon atoms (carbon chain) includes propene-hexayl group, Examples of the octavalent hydrocarbon group (carbon chain) having 3 carbon atoms include a propane-octyl group.
  • R 1-1 when R 1-1 is a hydrocarbon group having 4 carbon atoms (when R 1-1 forms a seven-membered ring together with N and a benzene ring), m may be 2, 4, 6 or 8. preferable.
  • R 1-1 can be saturated or unsaturated.
  • m is preferably 8, and when R 1-1 is unsaturated, m is preferably 6, 4 or 2.
  • the hexavalent hydrocarbon group having 4 carbon atoms (carbon chain) include butadiene-hexayl group
  • examples of the octavalent hydrocarbon group having 4 carbon atoms (carbon chain) include butene-octyl group
  • Examples of the decavalent hydrocarbon group having 4 carbon atoms include a butane-decyl group.
  • R 1-2 in the above general formula (1-1-4) is each independently hydrogen or a hydrocarbon group having 1 to 3 carbon atoms, and the hydrocarbon group having 1 to 3 carbon atoms is Examples include an alkyl group having 1 to 3 carbon atoms and an alkenyl group having 2 to 3 carbon atoms.
  • the alkyl group having 1 to 3 carbon atoms includes methyl group, ethyl group, n-propyl group and isopropyl group.
  • alkenyl groups having 2 to 3 carbon atoms include vinyl groups and allyl groups.
  • R 1 in general formula (1) above is preferably represented by general formula (1-1-3) above.
  • R 1 in general formula (1) is represented by general formula (1-1-3) above, the emission luminance is improved.
  • R 2 is represented by —R 2′ or —CH 2 —R 2′ , where R 2′ is represented by general formulas (1-2-1), (1- 2-2), (1-2-3), (1-2-4) or (1-2-5): is represented by general formula (1-2-1), (1-2-2), (1-2-3), (1-2-4) or The binding site of the benzene ring in (1-2-5) is not particularly limited.
  • R 2-1 is hydrogen, halogen, —N(R 2-1-1 ) 2 or —OR 2-1-1 , where R 2- 1-1 are each independently hydrogen or a hydrocarbon group having 1 to 3 carbon atoms.
  • R 2-2 is a hydrocarbon group having 1 to 4 carbon atoms (especially a carbon chain), and R 2-3 is each independently hydrogen or carbon It is a hydrocarbon group of numbers 1 to 3, and m is an integer of 2 to 8 (especially an even number).
  • Halogen for R 2-1 in the general formula (1-2-1) includes fluorine, chlorine, bromine and the like.
  • each R 2-1-1 is independently hydrogen or a hydrocarbon having 1 to 3 carbon atoms is the base.
  • the hydrocarbon group having 1 to 3 carbon atoms include an alkyl group having 1 to 3 carbon atoms and an alkenyl group having 2 to 3 carbon atoms.
  • the alkyl group having 1 to 3 carbon atoms includes methyl group, ethyl group, n-propyl group and isopropyl group.
  • alkenyl groups having 2 to 3 carbon atoms include vinyl groups and allyl groups.
  • R 2-2 in general formula (1-2-5) above is a hydrocarbon group having 1 to 4 carbon atoms
  • the group represented by general formula (1-2-5) is a benzene ring. It has a structure in which 4- to 7-membered rings are condensed.
  • R 2-2 is preferably a straight chain hydrocarbon group having 1 to 4 carbon atoms.
  • a hydrocarbon group having 1 to 4 carbon atoms as R 2-2 is bound to m (2 to 8) substituents R 2-3 , that is, R 2-2 is a carbon It is a 4- to 10-valent hydrocarbon group having a number of 1 to 4.
  • Substituents R 2-3 replace hydrogen in the hydrocarbon group.
  • the hydrocarbon group having 1 to 4 carbon atoms as R 2-2 may be saturated or unsaturated.
  • R 2-2 is a hydrocarbon group having 1 carbon atom (when R 2-2 forms a 4-membered ring together with N and a benzene ring), m is preferably 2.
  • the tetravalent hydrocarbon group having 1 carbon atom include a methane-tetrayl group.
  • R 2-2 is a hydrocarbon group having 2 carbon atoms (when R 2-2 forms a 5-membered ring together with N and a benzene ring), m is preferably 2 or 4.
  • R 2-2 can be saturated or unsaturated.
  • m is 4 when R 2-2 is saturated and m is 2 when R 2-2 is unsaturated.
  • Examples of the tetravalent hydrocarbon group having 2 carbon atoms (carbon chain) include ethene-tetrayl group, and examples of the hexavalent hydrocarbon group having 2 carbon atoms include ethane-hexayl group.
  • R 2-2 is a hydrocarbon group having 3 carbon atoms (when R 2-2 forms a six-membered ring together with N and a benzene ring), m is preferably 2, 4 or 6. In this case, R 2-2 can be saturated or unsaturated. When R 2-2 is saturated, m is preferably 6, and when R 2-2 is unsaturated, m is preferably 4 or 2.
  • the tetravalent hydrocarbon group having 3 carbon atoms (carbon chain) includes propyne-tetrayl group
  • the hexavalent hydrocarbon group having 3 carbon atoms (carbon chain) includes propene-hexayl group
  • Examples of the octavalent hydrocarbon group (carbon chain) having 3 carbon atoms include a propane-octyl group.
  • R 2-2 is a hydrocarbon group having 4 carbon atoms (when R 2-2 forms a seven-membered ring together with N and a benzene ring)
  • m may be 2, 4, 6 or 8. preferable. In this case, R 2-2 can be saturated or unsaturated.
  • m When R 2-2 is saturated, m is preferably 8, and when R 2-2 is unsaturated, m is preferably 6, 4 or 2.
  • the hexavalent hydrocarbon group having 4 carbon atoms (carbon chain) include butadiene-hexayl group
  • examples of the octavalent hydrocarbon group having 4 carbon atoms (carbon chain) include butene-octyl group
  • Examples of the decavalent hydrocarbon group having 4 carbon atoms include a butane-decyl group.
  • R 2-3 in the above general formula (1-2-5) is each independently hydrogen or a hydrocarbon group having 1 to 3 carbon atoms, and the hydrocarbon group having 1 to 3 carbon atoms is Examples include an alkyl group having 1 to 3 carbon atoms and an alkenyl group having 2 to 3 carbon atoms.
  • the alkyl group having 1 to 3 carbon atoms includes methyl group, ethyl group, n-propyl group and isopropyl group.
  • alkenyl groups having 2 to 3 carbon atoms include vinyl groups and allyl groups.
  • R 2 in general formula (1) above is preferably represented by —CH 2 —R 2′
  • R 2′ is preferably represented by general formula (1-2-1) above. preferably.
  • luminance is improved.
  • R 3 is the following general formula (1-3-1), (1-3-2) or (1-3-3): is represented by In general formula (1-3-2) above, R 3-1 is hydrogen or a hydrocarbon group having 1 to 3 carbon atoms.
  • Examples of the hydrocarbon group having 1 to 3 carbon atoms for R 3-1 in the general formula (1-3-2) include an alkyl group having 1 to 3 carbon atoms and an alkenyl group having 2 to 3 carbon atoms. be done.
  • the alkyl group having 1 to 3 carbon atoms includes methyl group, ethyl group, n-propyl group and isopropyl group.
  • Examples of alkenyl groups having 2 to 3 carbon atoms include vinyl groups and allyl groups.
  • R 3 in general formula (1) above is preferably represented by general formula (1-3-2) above.
  • R 3 in general formula (1) is represented by general formula (1-3-2) above, luminance is improved.
  • R 3-1 in general formula (1-3-2) above is preferably hydrogen.
  • R 3 in general formula (1) is represented by general formula (1-3-2) above and R 3-1 is hydrogen, luminance is further improved.
  • the coelenterazine derivative of the present invention has the following structural formula (1-1): It is particularly preferred to be represented by In this case, the luminance of light emitted from the light-emitting system using the coelenterazine derivative is particularly high.
  • Coelenterazine derivative represented by general formula (2) A coelenterazine derivative according to a second embodiment of the present invention is represented by the following general formula (2).
  • R 4 is hydrogen, —(CH 2 ) n —OR 4-1 , —N(R 4-1 ) 2 or —CF 3 , where R 4-1 is , are each independently hydrogen or a hydrocarbon group having 1 to 3 carbon atoms, and n is an integer of 0 to 3.
  • the bonding position of R 4 to the benzene ring bonded to the 6-position of the imidazopyrazinone skeleton in general formula (2) may be o-, m-, or p-.
  • each R 4-1 is independently hydrogen or a hydrocarbon group having 1 to 3 carbon atoms. be.
  • examples of the hydrocarbon group having 1 to 3 carbon atoms include an alkyl group having 1 to 3 carbon atoms and an alkenyl group having 2 to 3 carbon atoms.
  • the alkyl group having 1 to 3 carbon atoms includes methyl group, ethyl group, n-propyl group and isopropyl group.
  • alkenyl groups having 2 to 3 carbon atoms include vinyl groups and allyl groups.
  • R 4 in general formula (2) above is preferably represented by —(CH 2 ) n —OR 4-1 .
  • R 4 in general formula (2) is represented by —(CH 2 ) n —OR 4-1 , luminance is improved.
  • n in —(CH 2 ) n —OR 4-1 is preferably 0, and R 4-1 is preferably hydrogen. That is, R 4 in general formula (2) above is particularly preferably —OH. When R 4 in general formula (2) is —OH, luminance is further improved.
  • R 5 is the following general formula (2-5-1), (2-5-2), (2-5-3), (2-5-4) or (2- 5-5): is represented by General formula (2-5-1), (2-5-2), (2-5-3), (2-5-4) or (2-5-5) for S in general formula (2) ) is not particularly limited.
  • R 5-1 is hydrogen, halogen, —N(R 5-1-1 ) 2 or —OH, wherein R 5-1-1 is Each independently represents hydrogen or a hydrocarbon group having 1 to 3 carbon atoms.
  • R 5-2 is a hydrocarbon group having 1 to 4 carbon atoms (particularly, a carbon chain), and R 5-3 is each independently hydrogen or carbon It is a hydrocarbon group of numbers 1 to 3, and m is an integer of 2 to 8 (especially an even number).
  • Halogen for R 5-1 in the general formula (2-5-1) includes fluorine, chlorine, bromine and the like.
  • each R 5-1-1 is independently hydrogen or a hydrocarbon group having 1 to 3 carbon atoms.
  • the hydrocarbon group having 1 to 3 carbon atoms include an alkyl group having 1 to 3 carbon atoms and an alkenyl group having 2 to 3 carbon atoms.
  • the alkyl group having 1 to 3 carbon atoms includes methyl group, ethyl group, n-propyl group and isopropyl group.
  • alkenyl groups having 2 to 3 carbon atoms include vinyl groups and allyl groups.
  • R 5-2 in the above general formula (2-5-5) is a hydrocarbon group having 1 to 4 carbon atoms
  • the group represented by general formula (2-5-5) is a benzene ring. It has a structure in which 4- to 7-membered rings are condensed.
  • R 5-2 is preferably a straight chain hydrocarbon group having 1 to 4 carbon atoms.
  • a hydrocarbon group having 1 to 4 carbon atoms as R 5-2 is bound to m (2 to 8) substituents R 5-3 , that is, R 5-2 is a carbon It is a 4- to 10-valent hydrocarbon group having a number of 1 to 4.
  • the substituent R 5-3 replaces hydrogen in the hydrocarbon group.
  • the hydrocarbon group having 1 to 4 carbon atoms as R 5-2 may be saturated or unsaturated.
  • R 5-2 is a hydrocarbon group having 1 carbon atom (when R 5-2 forms a 4-membered ring together with N and a benzene ring)
  • m is preferably 2.
  • the tetravalent hydrocarbon group having 1 carbon atom include a methane-tetrayl group.
  • m is preferably 2 or 4 when R 5-2 is a hydrocarbon group having 2 carbon atoms (when R 5-2 forms a 5-membered ring together with N and a benzene ring). In this case, R 5-2 can be saturated or unsaturated.
  • m is preferably 4 when R 5-2 is saturated and m is 2 when R 2-2 is unsaturated.
  • examples of the tetravalent hydrocarbon group having 2 carbon atoms (carbon chain) include ethene-tetrayl group, and examples of the hexavalent hydrocarbon group having 2 carbon atoms include ethane-hexayl group.
  • R 5-2 is a hydrocarbon group having 3 carbon atoms (when R 5-2 forms a six-membered ring together with N and a benzene ring), m is preferably 2, 4 or 6. In this case, R 5-2 can be saturated or unsaturated.
  • R 5-2 When R 5-2 is saturated, m is preferably 6, and when R 5-2 is unsaturated, m is preferably 4 or 2.
  • the tetravalent hydrocarbon group having 3 carbon atoms (carbon chain) includes propyne-tetrayl group, and the hexavalent hydrocarbon group having 3 carbon atoms (carbon chain) includes propene-hexayl group, Examples of the octavalent hydrocarbon group (carbon chain) having 3 carbon atoms include a propane-octyl group.
  • R 5-2 when R 5-2 is a hydrocarbon group having 4 carbon atoms (when R 5-2 forms a seven-membered ring together with N and a benzene ring), m may be 2, 4, 6 or 8. preferable.
  • R 5-2 can be saturated or unsaturated.
  • m is preferably 8, and when R 5-2 is unsaturated, m is preferably 6, 4 or 2.
  • the hexavalent hydrocarbon group having 4 carbon atoms (carbon chain) include butadiene-hexayl group
  • examples of the octavalent hydrocarbon group having 4 carbon atoms (carbon chain) include butene-octyl group
  • Examples of the decavalent hydrocarbon group having 4 carbon atoms include a butane-decyl group.
  • R 5-3 in the above general formula (2-5-5) is each independently hydrogen or a hydrocarbon group having 1 to 3 carbon atoms, and the hydrocarbon group having 1 to 3 carbon atoms is Examples include an alkyl group having 1 to 3 carbon atoms and an alkenyl group having 2 to 3 carbon atoms.
  • the alkyl group having 1 to 3 carbon atoms includes methyl group, ethyl group, n-propyl group and isopropyl group.
  • alkenyl groups having 2 to 3 carbon atoms include vinyl groups and allyl groups.
  • R 5 in general formula (2) above is preferably represented by general formula (2-5-1) above.
  • luminance is improved.
  • R 5-1 in general formula (2-5-1) above is preferably hydrogen or halogen, more preferably hydrogen or fluorine.
  • R 5 in general formula (2) is represented by general formula (2-5-1) and R 5-1 is hydrogen or halogen, the luminance is further improved, and R 5-1 is hydrogen or fluorine. In the case of , the emission luminance is further improved.
  • R 6 is hydrogen or a hydrocarbon group having 1 to 3 carbon atoms.
  • hydrocarbon groups having 1 to 3 carbon atoms include alkyl groups having 1 to 3 carbon atoms and alkenyl groups having 2 to 3 carbon atoms.
  • the alkyl group having 1 to 3 carbon atoms includes methyl group, ethyl group, n-propyl group and isopropyl group.
  • alkenyl groups having 2 to 3 carbon atoms include vinyl groups and allyl groups.
  • R 6 in the general formula (2) is preferably hydrogen.
  • R 6 in general formula (2) is hydrogen, the luminance is improved.
  • the coelenterazine derivative of the present invention has the following structural formula (2-1) or (2-2): It is particularly preferred to be represented by In this case, the luminance of light emitted from the light-emitting system using the coelenterazine derivative is particularly high.
  • the coelenterazine derivative represented by the general formula (1) is not particularly limited, but can be synthesized, for example, as follows.
  • a benzyl compound is synthesized by a coupling reaction using 2-amino-3,5-dibromoaminopyrazine, benzylmagnesium chloride and bis(triphenylphosphine)palladium(II) dichloride.
  • Suzuki-Miyaura coupling is performed using the benzyl compound and boronic acid to synthesize a benzyl compound having a desired ring structure introduced at the 6-position.
  • the coelenterazine derivative represented by the general formula (2) is not particularly limited, but can be synthesized, for example, as follows.
  • the 8-brominated intermediate and thiol are subjected to a substitution reaction with sodium hydride to synthesize a thiol.
  • the thiol form and boron tribromide may be reacted for demethylation.
  • the coelenterazine derivative represented by the general formula (2) which is the desired substance, can be synthesized by condensing the thiol form with the ketoacetal form.
  • the coelenterazine derivative of the present invention emits light through an oxidation reaction catalyzed by a marine bioluminescent enzyme. Therefore, the coelenterazine derivative of the present invention can be used as a luminescent label in biological measurement/detection, and can be used, for example, to label amino acids, polypeptides, proteins, nucleic acids, and the like. Methods for binding the coelenterazine derivative of the present invention to these substances are well known to those skilled in the art. Coelenterazine derivatives of the invention can be conjugated.
  • the coelenterazine derivative of the present invention can also be used for measurement/detection using detection of marine bioluminescent enzyme activity by luminescence of a luminescent substrate.
  • the coelenterazine derivative of the present invention can also be used for measurement/detection using detection of marine bioluminescent enzyme activity by luminescence of a luminescent substrate.
  • the coelenterazine derivative of the present invention by administering the coelenterazine derivative of the present invention to cells or animals into which a marine bioluminescent enzyme gene has been introduced, the in vivo expression of a target gene or protein can be measured/detected.
  • the coelenterazine derivative represented by the above general formula (2) can emit longer wavelength light than natural coelenterazine, and the longer wavelength light is transmitted in vivo. Because of its high efficiency, it is useful as a labeling material for visualizing lesions deep inside the body.
  • luciferase When the coelenterazine derivative of the present invention is used as a luminescent substrate (luciferin), either natural or artificial luminescent enzyme (luciferase) can be used.
  • Natural luminescent enzymes include luciferase (RLuc) from Renilla reniformis, luciferase (Gluc) from Gaussia princeps, luciferase (Oluc) from luminescent shrimp (Oplophorus gracilirostris), and luciferase from sea cactus. etc.
  • Examples of the artificial luminescent enzyme include "NanoLuc” manufactured by Promega, which is an artificial luminescent enzyme derived from luminescent shrimp (Oplophorus gracilirostris), and Renilla luciferase 8.6-, which is an artificial luminescent enzyme derived from sea pansy (Renilla reniformis). 535SG (RLuc8.6SG), and ALuc, which is a group of artificial luciferases derived from luminous plankton developed by Dr. Seungbae Kim et al. of the National Institute of Advanced Industrial Science and Technology.
  • ALuc includes various artificial luciferases, such as ALuc16, ALuc47, and ALuc49.
  • the coelenterazine derivative of the present invention has luciferase specificity, and the luminescence brightness varies greatly depending on the enzyme. Therefore, according to the coelenterazine derivative of the present invention, it is possible to simultaneously visualize multiple in vivo phenomena such as molecular events occurring in vivo and cancer metastasis with high sensitivity and high speed. In the coexistence, it is possible to make only a specific luciferase luminous.
  • these marine bioluminescent enzymes have the advantage that their molecular size is small, so that even if they are introduced into the body, the load on the body is small, and the expression efficiency is high when the gene is introduced into the body.
  • the method of incorporating the gene capable of producing the marine bioluminescence enzyme into the living body is not particularly limited, and for example, a method using a vector can be used.
  • Production of vectors encoding such marine bioluminescent enzymes is not particularly limited, either, and they can be produced by known methods.
  • commercially available products can also be used.
  • ⁇ R-luc8'', ⁇ R-luc8.6_547'' and the like manufactured by the company can also be used.
  • TransIT-LT1 reagent manufactured by Mirus may be used to transiently express a plasmid encoding a marine organism-derived luciferase in living cells.
  • the coelenterazine derivative of the present invention is preferably used as a solution.
  • the solvent used for preparing the solution include alcohols such as methanol and ethanol in addition to water.
  • the concentration of the coelenterazine derivative in the solution can be appropriately selected depending on the purpose, but is preferably in the range of 1 mM to 5 mM, for example.
  • nCTZ natural substrate
  • CTZh known natural analogous substrate 1
  • DRC natural analogous substrate 2
  • DLC natural analogous substrate 2
  • Luminescence measurement in living cells and lysate cells A PerkinElmer IVIS imaging system (Caliper Life Sciences) was used for luminescence measurement.
  • COS-7 cells derived from African green monkey kidney were used as live cells expressing luciferase, and lysate obtained by lysing the live cells was also evaluated.
  • African green monkey kidney-derived COS-7 cells are seeded in 6-well microplates and cultured in a CO 2 incubator until they grow to fill 70% of the bottom area.
  • TransIT-LT1 reagent (Mirus) is used to transiently express plasmids encoding the following marine organism-derived luciferases in each well cell.
  • ALuc16 (ii) ALuc47 (iii) Renilla luciferase 8.6-535SG (RLuc8.6SG)
  • NanoLuc After this lipofection, continue culturing in a CO2 incubator for 1 day. Each cell is then subcultured into a 96-well microplate and cultured for an additional day.
  • each luminescent substrate was first dissolved in methanol (PEG400, 25%) to 5 mM (stock solution), and further diluted to 100 ⁇ M with phosphate-buffered saline (PBS) (hereinafter, diluted luminescence substrate solution).
  • PBS phosphate-buffered saline
  • This "diluted luminescent substrate solution” was previously dispensed into each well of an empty 96-well microplate.
  • 40 ⁇ L of the “diluted luminescent substrate solution” was simultaneously injected into each well of the 96-well black frame microplate containing the aforementioned cell lysate.
  • COS-7 cells are seeded in 6-well microplates and cultured in a CO 2 incubator until they grow to fill 70% of the bottom area.
  • TransIT-LT1 reagent (Mirus) is used to transiently express plasmids encoding the following marine organism-derived luciferases in each well cell.
  • ALuc16 (ii) ALuc47 (iii) Renilla luciferase 8.6-535SG (RLuc8.6SG)
  • NanoLuc After this lipofection, continue culturing in a CO2 incubator for 1 day.
  • the compound represented by the structural formula (2-1) exhibits luminescence activity with respect to ALuc16, RLuc8.6SG and NanoLuc. Ta. Further, as can be seen from FIGS. 3, 9 and 12, the compound represented by the structural formula (2-1) has emission spectra of 538 nm, 573 nm and 507 nm for ALuc16, RLuc8.6SG and NanoLuc, respectively. Indicated. Moreover, as can be seen from FIGS. 4 and 5, the compound represented by the structural formula (2-1) also exhibited luminescence with respect to ALuc47. Further, as can be seen from FIGS.
  • the compound represented by the structural formula (2-2) exhibits luminescence activity with respect to ALuc16 and RLuc8.6SG. And as can be seen from FIG. 11, it showed slight luminescence for ALuc47 and NanoLuc. Thus, it was confirmed that the compound represented by Structural Formula (2-1) or (2-2) also has enzyme specificity. In addition, it was confirmed that the compound represented by the structural formula (2-1) or (2-2) has a longer emission wavelength by about 50 nm compared to natural selanterazine or the like.
  • the coelenterazine derivative of the present invention can be used as a luminescent substrate for luciferases derived from marine organisms.
  • it is widely used in various bioassays because it exhibits unique enzyme specificity, strong luminescence brightness, and long-wavelength luminescence characteristics.
  • the long-wavelength-shifted emission properties facilitate the visualization of molecular events occurring deep within the body.
  • it is brighter than the conventional one, it is possible to improve the detection sensitivity and detection limit of the bioassay.
  • the luminescent substrate of this time exhibits luminescence specificity, it is possible to specifically detect a specific sample among a large number of samples. Such multiplexing dramatically increases the efficiency of bioassays and greatly contributes to the reduction of diagnostic costs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明の課題は、発光輝度が高く、酵素特異性を有する新規セレンテラジン誘導体を提供することであり、その解決手段は、下記一般式(1)又は(2): [一般式(1)中、R1は、特定の二環式構造を有し、R2は、-R2'又は-CH2-R2'で表され、ここで、R2'は、特定の環構造を有し、R3は、特定の環構造を有し、一般式(2)中、R4は、-(CH2)n-OR4-1、-N(R4-1)2、-CF3で表され、ここで、R4-1は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、nは、0~3の整数であり、R5は、特定の環構造を有し、R6は、水素又は炭素数1~3の炭化水素基である。]で表されることを特徴とする、セレンテラジン誘導体である。

Description

新規セレンテラジン誘導体
 本発明は、新規セレンテラジン誘導体に関するものである。
 生体内分子イベントの可視化技術は、様々な疾病の診断と治療法の開発に必要不可欠な技術である。生体内分子イベントの可視化技術としては、生物発光を用いた可視化技術が主流であり、ホタルや海洋生物の発光システムを応用した技術が開発されている。これらの中でも、海洋生物の発光システムは、その発光輝度の高さや、発光酵素の小分子量、発光システムの単純さ等から多岐に渡る応用可能性が注目されており、近年ウイルスの可視化等にも好適に用いられている。例えば、海洋生物の発光システムにおいては、発光基質である天然型のセレンテラジン(nCTZ)が、海洋生物の発光酵素を触媒とした酸化反応により、波長が480nm程度の光を発することが知られている。
 一方、生体内深部で起こる分子イベントの観察には、従来より更に長波長かつ高輝度な発光システムが求められている。生体内深部の病巣を可視化するための標識材料として、生物発光系の発光基質を利用する研究が進められている。例えば、生体内深部の観察には、更に長波長かつ高輝度な発光システムが求められており、従来、構造改変によって発光特性を制御したセレンテラジン誘導体が開発されてきた(特許文献1、非特許文献1~3)。
特開2018-165265号公報
Jiang, T.; Du, L.; Li, M. Photochem. Photobiol. Sci. 2016, 15 (4), 466-480. Kaskova, Z. M.; Tsarkova, A. S.; Yampolsky, I. V. Chem. Soc. Rev. 2016, 45 (21), 6048-6077. Nishihara, R.; Suzuki, H.; Hoshino, E.; Suganuma, S.; Sato, M.; Saitoh, T.; Nishiyama, S.; Iwasawa, N.; Citterio, D.; Suzuki, K. Chem. Commun. (Camb). 2015, 51 (2), 391-394.
 しかしながら、発光基質である天然型のセレンテラジン(nCTZ)の構造を変えることで発光輝度が大幅に低下することが知られている。そのため、発光輝度を保ったまま、発光基質の構造を改変することが求められている。
 また、従来の海洋生物由来の発光システムにおいては、発光輝度や発光波長、発光酵素特異性の制御が難しかった。ここで、発光システムの発光輝度や発光波長、発光酵素特異性を制御することができるようになれば、生体内で起こる分子イベント、癌の転移等、複数の生体内現象を同時に高感度且つ高速に可視化することが可能になる。例えば、多数の発光酵素が共存している中で、特定の発光酵素のみを光らせることは、その発光酵素だけに特異的に発光する発光基質を添加することにより実現できる。
 しかしながら、従来の海洋生物由来の発光システムにおいては、発光システムの発光輝度や発光酵素特異性を制御することが難しかった。
 そこで、本発明は、上記従来技術の問題を解決し、発光輝度が高く、酵素特異性を有する新規セレンテラジン誘導体を提供することを課題とする。
 また、本発明は、発光輝度が高く、長波長側の発光を示し、酵素特異性を有する新規セレンテラジン誘導体を提供することを更なる課題とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定の二環式構造又は特定のチオエーテル構造を有するセレンテラジン誘導体が、発光輝度が高く、酵素特異性を有することを見出し、本発明を完成させる着想に至った。
 即ち、本発明のセレンテラジン誘導体は、下記一般式(1):
Figure JPOXMLDOC01-appb-C000009
[一般式(1)中、Rは、下記一般式(1-1-1)、(1-1-2)、(1-1-3)又は(1-1-4):
Figure JPOXMLDOC01-appb-C000010
で表され、ここで、R1-1は、炭素数1~4の炭化水素基であり、R1-2は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、mは、2~8の整数であり、
 Rは、-R2’又は-CH-R2’で表され、ここで、R2’は、下記一般式(1-2-1)、(1-2-2)、(1-2-3)、(1-2-4)又は(1-2-5):
Figure JPOXMLDOC01-appb-C000011
で表され、ここで、R2-1は、水素、ハロゲン、-N(R2-1-1又は-OR2-1-1であり(ここで、R2-1-1は、それぞれ独立して水素又は炭素数1~3の炭化水素基である。)、R2-2は、炭素数1~4の炭化水素基であり、R2-3は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、mは、2~8の整数であり、
 Rは、下記一般式(1-3-1)、(1-3-2)又は(1-3-3):
Figure JPOXMLDOC01-appb-C000012
で表され、ここで、R3-1は、水素又は炭素数1~3の炭化水素基である。]、又は、
 下記一般式(2):
Figure JPOXMLDOC01-appb-C000013
[一般式(2)中、Rは、水素、-(CH-OR4-1、-N(R4-1又は-CFであり、ここで、R4-1は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、nは、0~3の整数であり、
 Rは、下記一般式(2-5-1)、(2-5-2)、(2-5-3)、(2-5-4)又は(2-5-5):
Figure JPOXMLDOC01-appb-C000014
で表され、ここで、R5-1は、水素、ハロゲン、-N(R5-1-1又は-OHであり(ここで、R5-1-1は、それぞれ独立して水素又は炭素数1~3の炭化水素基である。)、R5-2は、炭素数1~4の炭化水素基であり、R5-3は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、mは、2~8の整数であり、
 Rは、水素又は炭素数1~3の炭化水素基である。]で表されることを特徴とする。
 かかる本発明のセレンテラジン誘導体は、発光輝度が高く、酵素特異性を有する。
 本発明のセレンテラジン誘導体は、上記一般式(1)で表され、Rが、上記一般式(1-1-3)で表されることが好ましい。この場合、発光輝度が向上する。
 本発明のセレンテラジン誘導体は、上記一般式(1)で表され、Rが、-CH-R2’で表され、ここで、R2’が、上記一般式(1-2-1)で表されることが好ましい。この場合も、発光輝度が向上する。
 本発明のセレンテラジン誘導体は、上記一般式(1)で表され、Rが、上記一般式(1-3-2)で表されることが好ましい。この場合も、発光輝度が向上する。
 本発明のセレンテラジン誘導体は、下記構造式(1-1):
Figure JPOXMLDOC01-appb-C000015
で表されることが特に好ましい。この場合、該セレンテラジン誘導体を用いた発光系からの発光輝度が特に高い。
 本発明のセレンテラジン誘導体は、上記一般式(2)で表され、Rが、-(CH-OR4-1で表されることが好ましい。この場合、発光輝度が向上する。
 本発明のセレンテラジン誘導体は、上記一般式(2)で表され、Rが、上記一般式(2-5-1)で表されることが好ましい。この場合も、発光輝度が向上する。
 本発明のセレンテラジン誘導体は、上記一般式(2)で表され、Rが、水素であることが好ましい。この場合も、発光輝度が向上する。
 本発明のセレンテラジン誘導体は、下記構造式(2-1)又は(2-2):
Figure JPOXMLDOC01-appb-C000016
で表されることが特に好ましい。この場合、該セレンテラジン誘導体を用いた発光系からの発光輝度が特に高い。
 本発明によれば、発光輝度が高く、酵素特異性を有する新規セレンテラジン誘導体を提供することができる。
発光酵素としてALuc16を使用した場合の、生細胞における各発光基質の発光輝度を示すグラフである。 発光酵素としてALuc16を使用した場合の、ライセートにおける各発光基質の発光輝度を示すグラフである。 発光酵素としてALuc16を使用した場合の、各発光基質の発光スペクトルである。 発光酵素としてALuc47を使用した場合の、生細胞における各発光基質の発光輝度を示すグラフである。 発光酵素としてALuc47を使用した場合の、ライセートにおける各発光基質の発光輝度を示すグラフである。 発光酵素としてALuc47を使用した場合の、各発光基質の発光スペクトルである。 発光酵素としてRLuc8.6SGを使用した場合の、生細胞における各発光基質の発光輝度を示すグラフである。 発光酵素としてRLuc8.6SGを使用した場合の、ライセートにおける各発光基質の発光輝度を示すグラフである。 発光酵素としてRLuc8.6SGを使用した場合の、各発光基質の発光スペクトルである。 発光酵素としてNanoLucを使用した場合の、生細胞における各発光基質の発光輝度を示すグラフである。 発光酵素としてNanoLucを使用した場合の、ライセートにおける各発光基質の発光輝度を示すグラフである。 発光酵素としてNanoLucを使用した場合の、各発光基質の発光スペクトルである。
 以下に、本発明のセレンテラジン誘導体を、その実施形態に基づき、詳細に例示説明する。
<セレンテラジン誘導体>
 本発明のセレンテラジン誘導体は、上記一般式(1)又は(2)で表されることを特徴とする。
 本発明のセレンテラジン誘導体は、天然型のセレンテラジン(nCTZ)に対して、イミダゾピラジノン骨格の6位のヒドロキシフェニル基が酸素又は窒素を含む二環式構造に変換されている点[一般式(1)]、又は、8位のベンジル基中のメチレン基がチオエーテルに変換されている点[一般式(2)]で、天然型のセレンテラジンと相違し、該化学構造の相違に基づき、天然型のセレンテラジンとは異なる酵素特異性を有する。
 また、本発明のセレンテラジン誘導体は、天然型のセレンテラジンとは異なる酵素特異性を有しつつも、発光輝度の低下が抑制されており、生体内のイメージングに十分な発光輝度を保持しており、海洋生物由来の発光系における発光基質として利用できる。
 なお、本発明のセレンテラジン誘導体を発光基質とする発光のメカニズムは、特に限定されるものではないが、天然型のセレンテラジンと同様に、まず、イミダゾピラジノン骨格が、塩基によって7位のNHが脱プロトン化されアニオン状態となり、続いて、三重項酸素へ一電子移動し、ラジカルカップリングにより過酸化物アニオンを生成し、この過酸化物アニオンが環化してジオキセタノン中間体を生成し、この分解による脱炭酸により一重項励起状態のアミドピラジンが生成し、これが基底状態に遷移して発光するものと考えられる。また、発光酵素(ルシフェラーゼ)の環境によっては、ジオキセタノンアニオンのプロトン化が起き、中性のジオキセタノンからアミドピラジンの中性種の励起分子が生成して、発光する経路もあり得る。
(一般式(1)で表されるセレンテラジン誘導体)
 本発明の第1の実施態様のセレンテラジン誘導体は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000017
 上記一般式(1)中、Rは、下記一般式(1-1-1)、(1-1-2)、(1-1-3)又は(1-1-4):
Figure JPOXMLDOC01-appb-C000018
で表される。一般式(1)中のイミダゾピラジノン骨格の6位に対する、一般式(1-1-1)、(1-1-2)、(1-1-3)又は(1-1-4)中のベンゼン環の結合部位は、特に限定されない。
 上記一般式(1-1-4)中、R1-1は、炭素数1~4の炭化水素基(特には、炭素鎖)であり、R1-2は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、mは、2~8の整数(特には、偶数)である。
 上記一般式(1-1-4)中のR1-1は、炭素数1~4の炭化水素基であるので、一般式(1-1-4)で表される基は、ベンゼン環に4~7員環が縮合した構造を有する。R1-1は、炭素数1~4の直鎖の炭化水素基であることが好ましい。
 R1-1としての、炭素数1~4の炭化水素基には、m個(2~8個)の置換基R1-2が、結合しており、即ち、R1-1は、炭素数1~4の、4~10価の炭化水素基である。置換基R1-2は、炭化水素基の水素を置換するものである。また、R1-1としての、炭素数1~4の炭化水素基は、飽和であってもよいし、不飽和であってもよい。
 R1-1が炭素数1の炭化水素基である場合(R1-1がN及びベンゼン環と共に4員環を形成する場合)、mは2であることが好ましい。炭素数1の4価の炭化水素基としては、メタン-テトライル基が挙げられる。
 また、R1-1が炭素数2の炭化水素基である場合(R1-1がN及びベンゼン環と共に5員環を形成する場合)、mは2又は4であることが好ましい。この場合、R1-1は、飽和にも、不飽和にもなり得る。R1-1が飽和の場合、mは4であり、R1-1が不飽和の場合、mは2であることが好ましい。炭素数2の4価の炭化水素基(炭素鎖)としては、エテン-テトライル基が挙げられ、炭素数2の6価の炭化水素基(炭素鎖)としては、エタン-ヘキサイル基が挙げられる。
 また、R1-1が炭素数3の炭化水素基である場合(R1-1がN及びベンゼン環と共に六員環を形成する場合)、mは2、4又は6であることが好ましい。この場合、R1-1は、飽和にも、不飽和にもなり得る。R1-1が飽和の場合、mは6であることが好ましく、R1-1が不飽和の場合、mは4又は2であることが好ましい。炭素数3の4価の炭化水素基(炭素鎖)としては、プロピン-テトライル基が挙げられ、炭素数3の6価の炭化水素基(炭素鎖)としては、プロペン-ヘキサイル基が挙げられ、炭素数3の8価の炭化水素基(炭素鎖)としては、プロパン-オクタイル基が挙げられる。
 また、R1-1が炭素数4の炭化水素基である場合(R1-1がN及びベンゼン環と共に七員環を形成する場合)、mは2、4、6又は8であることが好ましい。この場合、R1-1は、飽和にも、不飽和にもなり得る。R1-1が飽和の場合、mは8であることが好ましく、R1-1が不飽和の場合、mは6、4又は2であることが好ましい。炭素数4の6価の炭化水素基(炭素鎖)としては、ブタジエン-ヘキサイル基が挙げられ、炭素数4の8価の炭化水素基(炭素鎖)としては、ブテン-オクタイル基が挙げられ、炭素数4の10価の炭化水素基としては、ブタン-デカイル基が挙げられる。
 上記一般式(1-1-4)中のR1-2は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、炭素数1~3の炭化水素基としては、炭素数1~3のアルキル基、炭素数2~3のアルケニル基等が挙げられる。炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。炭素数2~3のアルケニル基としては、ビニル基、アリル基等が挙げられる。
 ここで、上記一般式(1)中のRは、上記一般式(1-1-3)で表されることが好ましい。一般式(1)中のRは、上記一般式(1-1-3)で表される場合、発光輝度が向上する。
 上記一般式(1)中、Rは、-R2’又は-CH-R2’で表され、ここで、R2’は、下記一般式(1-2-1)、(1-2-2)、(1-2-3)、(1-2-4)又は(1-2-5):
Figure JPOXMLDOC01-appb-C000019
で表される。一般式(1)中のイミダゾピラジノン骨格の8位に対する、一般式(1-2-1)、(1-2-2)、(1-2-3)、(1-2-4)又は(1-2-5)中のベンゼン環の結合部位は、特に限定されない。
 上記一般式(1-2-1)中、R2-1は、水素、ハロゲン、-N(R2-1-1又は-OR2-1-1であり、ここで、R2-1-1は、それぞれ独立して水素又は炭素数1~3の炭化水素基である。
 上記一般式(1-2-5)中、R2-2は、炭素数1~4の炭化水素基(特には、炭素鎖)であり、R2-3は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、mは、2~8の整数(特には、偶数)である。
 上記一般式(1-2-1)中のR2-1に関して、ハロゲンとしては、フッ素、塩素、臭素等が挙げられる。
 R2-1が-N(R2-1-1又は-OR2-1-1である場合、R2-1-1は、それぞれ独立して水素又は炭素数1~3の炭化水素基である。ここで、炭素数1~3の炭化水素基としては、炭素数1~3のアルキル基、炭素数2~3のアルケニル基等が挙げられる。炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。炭素数2~3のアルケニル基としては、ビニル基、アリル基等が挙げられる。
 上記一般式(1-2-5)中のR2-2は、炭素数1~4の炭化水素基であるので、一般式(1-2-5)で表される基は、ベンゼン環に4~7員環が縮合した構造を有する。R2-2は、炭素数1~4の直鎖の炭化水素基であることが好ましい。
 R2-2としての、炭素数1~4の炭化水素基には、m個(2~8個)の置換基R2-3が、結合しており、即ち、R2-2は、炭素数1~4の、4~10価の炭化水素基である。置換基R2-3は、炭化水素基の水素を置換するものである。また、R2-2としての、炭素数1~4の炭化水素基は、飽和であってもよいし、不飽和であってもよい。
 R2-2が炭素数1の炭化水素基である場合(R2-2がN及びベンゼン環と共に4員環を形成する場合)、mは2であることが好ましい。炭素数1の4価の炭化水素基としては、メタン-テトライル基が挙げられる。
 また、R2-2が炭素数2の炭化水素基である場合(R2-2がN及びベンゼン環と共に5員環を形成する場合)、mは2又は4であることが好ましい。この場合、R2-2は、飽和にも、不飽和にもなり得る。R2-2が飽和の場合、mは4であることが好ましく、R2-2が不飽和の場合、mは2であることが好ましい。炭素数2の4価の炭化水素基(炭素鎖)としては、エテン-テトライル基が挙げられ、炭素数2の6価の炭化水素基としては、エタン-ヘキサイル基が挙げられる。
 また、R2-2が炭素数3の炭化水素基である場合(R2-2がN及びベンゼン環と共に六員環を形成する場合)、mは2、4又は6であることが好ましい。この場合、R2-2は、飽和にも、不飽和にもなり得る。R2-2が飽和の場合、mは6であることが好ましく、R2-2が不飽和の場合、mは4又は2であることが好ましい。炭素数3の4価の炭化水素基(炭素鎖)としては、プロピン-テトライル基が挙げられ、炭素数3の6価の炭化水素基(炭素鎖)としては、プロペン-ヘキサイル基が挙げられ、炭素数3の8価の炭化水素基(炭素鎖)としては、プロパン-オクタイル基が挙げられる。
 また、R2-2が炭素数4の炭化水素基である場合(R2-2がN及びベンゼン環と共に七員環を形成する場合)、mは2、4、6又は8であることが好ましい。この場合、R2-2は、飽和にも、不飽和にもなり得る。R2-2が飽和の場合、mは8であることが好ましく、R2-2が不飽和の場合、mは6、4又は2であることが好ましい。炭素数4の6価の炭化水素基(炭素鎖)としては、ブタジエン-ヘキサイル基が挙げられ、炭素数4の8価の炭化水素基(炭素鎖)としては、ブテン-オクタイル基が挙げられ、炭素数4の10価の炭化水素基としては、ブタン-デカイル基が挙げられる。
 上記一般式(1-2-5)中のR2-3は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、炭素数1~3の炭化水素基としては、炭素数1~3のアルキル基、炭素数2~3のアルケニル基等が挙げられる。炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。炭素数2~3のアルケニル基としては、ビニル基、アリル基等が挙げられる。
 ここで、上記一般式(1)中のRは、-CH-R2’で表されることが好ましく、また、該R2’が、上記一般式(1-2-1)で表されることが好ましい。一般式(1)中のRが-CH-R2’で表され、該R2’が、上記一般式(1-2-1)で表される場合、発光輝度が向上する。
 上記一般式(1)中、Rは、下記一般式(1-3-1)、(1-3-2)又は(1-3-3):
Figure JPOXMLDOC01-appb-C000020
で表される。
 上記一般式(1-3-2)中、R3-1は、水素又は炭素数1~3の炭化水素基である。
 上記一般式(1-3-2)中のR3-1に関して、炭素数1~3の炭化水素基としては、炭素数1~3のアルキル基、炭素数2~3のアルケニル基等が挙げられる。炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。炭素数2~3のアルケニル基としては、ビニル基、アリル基等が挙げられる。
 ここで、上記一般式(1)中のRは、上記一般式(1-3-2)で表されることが好ましい。一般式(1)中のRが上記一般式(1-3-2)で表される場合、発光輝度が向上する。
 また、上記一般式(1-3-2)中のR3-1は、水素であることが好ましい。一般式(1)中のRが上記一般式(1-3-2)で表され、R3-1が水素である場合、発光輝度が更に向上する。
 本発明のセレンテラジン誘導体は、下記構造式(1-1):
Figure JPOXMLDOC01-appb-C000021
で表されることが特に好ましい。この場合、該セレンテラジン誘導体を用いた発光系からの発光輝度が特に高い。
(一般式(2)で表されるセレンテラジン誘導体)
 本発明の第2の実施態様のセレンテラジン誘導体は、下記一般式(2)で表される。
Figure JPOXMLDOC01-appb-C000022
 上記一般式(2)中、Rは、水素、-(CH-OR4-1、-N(R4-1又は-CFであり、ここで、R4-1は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、nは、0~3の整数である。一般式(2)中のイミダゾピラジノン骨格の6位に結合しているベンゼン環に対するRの結合位置は、o-でも、m-でも、p-でもよい。
 Rが-(CH-OR4-1又は-N(R4-1である場合、R4-1は、それぞれ独立して水素又は炭素数1~3の炭化水素基である。ここで、炭素数1~3の炭化水素基としては、炭素数1~3のアルキル基、炭素数2~3のアルケニル基等が挙げられる。炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。炭素数2~3のアルケニル基としては、ビニル基、アリル基等が挙げられる。
 ここで、上記一般式(2)中のRは、-(CH-OR4-1で表されることが好ましい。一般式(2)中のRが-(CH-OR4-1で表される場合、発光輝度が向上する。
 また、-(CH-OR4-1中のnは0であることが好ましく、R4-1は水素であることが好ましい。即ち、上記一般式(2)中のRは、-OHであることが特に好ましい。一般式(2)中のRが-OHである場合、発光輝度が更に向上する。
 上記一般式(2)中、Rは、下記一般式(2-5-1)、(2-5-2)、(2-5-3)、(2-5-4)又は(2-5-5):
Figure JPOXMLDOC01-appb-C000023
で表される。一般式(2)中のSに対する、一般式(2-5-1)、(2-5-2)、(2-5-3)、(2-5-4)又は(2-5-5)中のベンゼン環の結合部位は、特に限定されない。
 上記一般式(2-5-1)中、R5-1は、水素、ハロゲン、-N(R5-1-1又は-OHであり、ここで、R5-1-1は、それぞれ独立して水素又は炭素数1~3の炭化水素基である。
 上記一般式(2-5-5)中、R5-2は、炭素数1~4の炭化水素基(特には、炭素鎖)であり、R5-3は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、mは、2~8の整数(特には、偶数)である。
 上記一般式(2-5-1)中のR5-1に関して、ハロゲンとしては、フッ素、塩素、臭素等が挙げられる。
 R5-1が-N(R5-1-1である場合、R5-1-1は、それぞれ独立して水素又は炭素数1~3の炭化水素基である。ここで、炭素数1~3の炭化水素基としては、炭素数1~3のアルキル基、炭素数2~3のアルケニル基等が挙げられる。炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。炭素数2~3のアルケニル基としては、ビニル基、アリル基等が挙げられる。
 上記一般式(2-5-5)中のR5-2は、炭素数1~4の炭化水素基であるので、一般式(2-5-5)で表される基は、ベンゼン環に4~7員環が縮合した構造を有する。R5-2は、炭素数1~4の直鎖の炭化水素基であることが好ましい。
 R5-2としての、炭素数1~4の炭化水素基には、m個(2~8個)の置換基R5-3が、結合しており、即ち、R5-2は、炭素数1~4の、4~10価の炭化水素基である。置換基R5-3は、炭化水素基の水素を置換するものである。また、R5-2としての、炭素数1~4の炭化水素基は、飽和であってもよいし、不飽和であってもよい。
 R5-2が炭素数1の炭化水素基である場合(R5-2がN及びベンゼン環と共に4員環を形成する場合)、mは2であることが好ましい。炭素数1の4価の炭化水素基としては、メタン-テトライル基が挙げられる。
 また、R5-2が炭素数2の炭化水素基である場合(R5-2がN及びベンゼン環と共に5員環を形成する場合)、mは2又は4であることが好ましい。この場合、R5-2は、飽和にも、不飽和にもなり得る。R5-2が飽和の場合、mは4であることが好ましく、R2-2が不飽和の場合、mは2であることが好ましい。炭素数2の4価の炭化水素基(炭素鎖)としては、エテン-テトライル基が挙げられ、炭素数2の6価の炭化水素基としては、エタン-ヘキサイル基が挙げられる。
 また、R5-2が炭素数3の炭化水素基である場合(R5-2がN及びベンゼン環と共に六員環を形成する場合)、mは2、4又は6であることが好ましい。この場合、R5-2は、飽和にも、不飽和にもなり得る。R5-2が飽和の場合、mは6であることが好ましく、R5-2が不飽和の場合、mは4又は2であることが好ましい。炭素数3の4価の炭化水素基(炭素鎖)としては、プロピン-テトライル基が挙げられ、炭素数3の6価の炭化水素基(炭素鎖)としては、プロペン-ヘキサイル基が挙げられ、炭素数3の8価の炭化水素基(炭素鎖)としては、プロパン-オクタイル基が挙げられる。
 また、R5-2が炭素数4の炭化水素基である場合(R5-2がN及びベンゼン環と共に七員環を形成する場合)、mは2、4、6又は8であることが好ましい。この場合、R5-2は、飽和にも、不飽和にもなり得る。R5-2が飽和の場合、mは8であることが好ましく、R5-2が不飽和の場合、mは6、4又は2であることが好ましい。炭素数4の6価の炭化水素基(炭素鎖)としては、ブタジエン-ヘキサイル基が挙げられ、炭素数4の8価の炭化水素基(炭素鎖)としては、ブテン-オクタイル基が挙げられ、炭素数4の10価の炭化水素基としては、ブタン-デカイル基が挙げられる。
 上記一般式(2-5-5)中のR5-3は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、炭素数1~3の炭化水素基としては、炭素数1~3のアルキル基、炭素数2~3のアルケニル基等が挙げられる。炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。炭素数2~3のアルケニル基としては、ビニル基、アリル基等が挙げられる。
 ここで、上記一般式(2)中のRは、上記一般式(2-5-1)で表されることが好ましい。一般式(2)中のRが上記一般式(2-5-1)で表される場合、発光輝度が向上する。
 また、上記一般式(2-5-1)中のR5-1は水素又はハロゲンであることが好ましく、水素又はフッ素であることが更に好ましい。一般式(2)中のRが一般式(2-5-1)で表され、R5-1が水素又はハロゲンである場合、発光輝度が更に向上し、R5-1が水素又はフッ素である場合、発光輝度がより一層向上する。
 上記一般式(2)中、Rは、水素又は炭素数1~3の炭化水素基である。
 Rに関して、炭素数1~3の炭化水素基としては、炭素数1~3のアルキル基、炭素数2~3のアルケニル基等が挙げられる。炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。炭素数2~3のアルケニル基としては、ビニル基、アリル基等が挙げられる。
 ここで、上記一般式(2)中のRは、水素であることが好ましい。一般式(2)中のRが水素である場合、発光輝度が向上する。
 本発明のセレンテラジン誘導体は、下記構造式(2-1)又は(2-2):
Figure JPOXMLDOC01-appb-C000024
で表されることが特に好ましい。この場合、該セレンテラジン誘導体を用いた発光系からの発光輝度が特に高い。
(一般式(1)で表されるセレンテラジン誘導体の合成方法)
 上記一般式(1)で表されるセレンテラジン誘導体は、特に限定されるものではないが、例えば、以下のようにして合成することができる。
(i-1)まず、2-アミノ-3,5-ジブロモアミノピラジンとベンジルマグネシウムクロリド及びビス(トリフェニルホスフィン)パラジウム(II)ジクロリドを用いたカップリング反応により、ベンジル体を合成する。
(i-2)次に、ベンジル体とボロン酸を用いて鈴木・宮浦カップリングを行い、6位に所望の環構造を導入したベンジル体を合成する。
(ii-1)或いは、2-アミノ-3,5-ジブロモアミノピラジンとボロン酸を用いて鈴木・宮浦カップリングを行い、フェニル体を合成する。
(ii-2)次に、フェニル体で再度鈴木・宮浦カップリングを行い、6位に所望の環構造を導入したフェニル体を合成する。
(iii)最後に、6位に所望の環構造を導入したベンジル体又はフェニル体をケトアセタール体と縮合環化反応させ、目的物質である一般式(1)で表されるセレンテラジン誘導体を合成することができる。
(一般式(2)で表されるセレンテラジン誘導体の合成方法)
 上記一般式(2)で表されるセレンテラジン誘導体は、特に限定されるものではないが、例えば、以下のようにして合成することができる。
(i)まず、2-アミノ-3,5-ジブロモアミノピラジンとボロン酸を用いて鈴木・宮浦カップリングを行い、6位に所望の環構造を導入した中間体を合成する。
(ii)NBSを用いてブロモ化させ、8位をブロモ化した中間体を合成する。
(iii)8位をブロモ化した中間体とチオールを水素化ナトリウムで置換反応を行い、チオール体を合成する。ここで、所望により、チオール体と三臭化ホウ素を反応させ、脱メチル化反応させてもよい。
(iv)最後に、チオール体をケトアセタール体と縮合環化反応させ、目的物質である一般式(2)で表されるセレンテラジン誘導体を合成することができる。
 本発明のセレンテラジン誘導体は、海洋生物発光酵素を触媒とした酸化反応により、発光する。そのため、本発明のセレンテラジン誘導体は、生物学的測定/検出における発光標識として利用でき、例えば、アミノ酸、ポリペプチド、タンパク質、核酸等を標識するために使用できる。なお、本発明のセレンテラジン誘導体をこれらの物質に結合させる方法は、当業者に周知であり、例えば、当業者に周知の方法を使用して、目的の物質のカルボキシル基やアミノ基に対して本発明のセレンテラジン誘導体を結合させることができる。
 また、本発明のセレンテラジン誘導体は、発光基質の発光によって、海洋生物発光酵素活性を検出することを利用した測定/検出に利用することもできる。例えば、海洋生物発光酵素遺伝子を導入した細胞又は動物に対して、本発明のセレンテラジン誘導体を投与することにより、インビボにおける標的遺伝子又はタンパク質の発現等を測定/検出することができる。
 なお、本発明のセレンテラジン誘導体の中でも、上記一般式(2)で表されるセレンテラジン誘導体は、天然型のセレンテラジンよりも長波長光を発することが可能であり、長波長光は生体内での透過率が高いため、生体内深部の病巣を可視化するための標識材料として有用である。
 本発明のセレンテラジン誘導体を発光基質(ルシフェリン)として用いる場合、発光酵素(ルシフェラーゼ)としては、天然のものでも、人工のものでも使用できる。
 天然の発光酵素としては、ウミシイタケ(Renilla reniformis)由来のルシフェラーゼ(RLuc)、海洋性カイアシ(Gaussia princeps)由来のルシフェラーゼ(Gluc)、発光エビ(Oplophorus gracilirostris)由来のルシフェラーゼ(Oluc)、ウミサボテン由来のルシフェラーゼ等が挙げられる。
 また、人工の発光酵素としては、発光エビ(Oplophorus gracilirostris)由来の人工の発光酵素であるPromega社製の「NanoLuc」、ウミシイタケ(Renilla reniformis)由来の人工の発光酵素であるRenillaルシフェラーゼ8.6-535SG(RLuc8.6SG)、産業技術総合研究所の金誠培博士らによって開発された発光プランクトン由来の人工発光酵素群であるALuc等が挙げられる。ここで、ALucには、種々の人工発光酵素があり、例えば、ALuc16、ALuc47、ALuc49等が挙げられる。
 本発明のセレンテラジン誘導体は、ルシフェラーゼ特異性を有し、酵素により発光輝度が大きく異なる。そのため、本発明のセレンテラジン誘導体によれば、生体内で起こる分子イベント、癌の転移等、複数の生体内現象を同時に高感度且つ高速に可視化することが可能となり、例えば、多数の発光酵素標識が共存している中で、特定の発光酵素のみを光らせることが可能となる。
 なお、これら海洋生物発光酵素は、分子サイズが小さく、生体内に導入しても、生体への負荷が小さく、また、生体内に遺伝子を導入した場合の発現効率が高いという利点もある。
 海洋生物発光酵素を産生可能な遺伝子の生体内への組み込み方法は、特に限定されず、例えば、ベクターを用いた方法を利用することができる。かかる海洋生物発光酵素をコードするベクターの作製も、特に限定されず、公知の方法で作製することができる。また、かかるベクターとしては、市販品を使用することもでき、例えば、Promega社製の「R-luc」や、Stanford,Gambhir lab.製の「R-luc8」、「R-luc8.6_547」等を使用することもできる。また、Mirus社製のTransIT-LT1試薬を用いて、生細胞に海洋生物由来の発光酵素をコードするプラスミドを一過性発現させてもよい。
 なお、本発明のセレンテラジン誘導体は、溶液として使用することが好ましい。ここで、溶液の調製に使用する溶媒としては、水の他、メタノール、エタノール等のアルコールが挙げられる。また、溶液中のセレンテラジン誘導体の濃度は、目的に応じて適宜選択できるが、例えば、1mM~5mMの範囲が好ましい。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
<ケトアセタール体(5)の合成>
 市販されている4-ベンジルオキシベンジルアルコール(3)(2g, 9.33 mmol)を乾燥ジクロロメタン(15 mL)に溶解させ、アルゴン雰囲気下、0℃で攪拌した。混合物に塩化チオニル(1.35 mL, 1.64 mmol)を加え、アルゴン雰囲気下、室温で2時間攪拌した。反応混合物に水を加えた後、ジクロロメタン(100 mL×3)で抽出した。抽出物を硫酸ナトリウムで乾燥させた後、減圧濃縮した。析出した固体をヘキサン洗浄し、化合物(4)を白色固体で得た(1.6 g, 6.84 mmol, 74 %)。
Figure JPOXMLDOC01-appb-C000025
・化合物(4)の同定結果
 1H-NMR (500 MHz, CHLOROFORM-D) δ 7.43-7.37 (m, 4H), 7.34-7.33 (m, 1H), 7.31 (dd, J = 6.6, 2.0 Hz, 2H), 6.95 (dd, J = 6.6, 2.0 Hz, 2H), 5.07 (S, 2H), 4.56 (S, 2H)
 マグネシウム削り状(391 mg, 16.09 mmol)を乳鉢で削り、脱気しアルゴン雰囲気下にした後、超脱水テトラヒドロフラン(10 mL)と1,2-ジブロモエタン(0.2 mL)を加え、1時間攪拌した。この反応混合物に、脱水テトラヒドロフラン(10 mL)で溶解させた化合物(4)(1.5 g, 6.45 mmol)を加え、2時間加熱還流した後、反応混合物(グリニャール試薬)を氷冷した。超脱水テトラヒドロフラン(10 mL)に溶解させたジエトキシ酢酸エチル(1.72 mL, 9.67 mmol)を-80℃に冷却した後、上記グリニャール試薬を20分かけて全て滴下し、-80℃で3時間攪拌した。冷却したまま水でクエンチを行い、室温に戻した後、酢酸エチル(200 mL×3)で抽出した。抽出物を硫酸ナトリウムで乾燥させた後、減圧濃縮した。残渣をエタノール(30 mL)で溶解させ、パラジウム炭素(160 mg)を加え、室温で水素雰囲気下、12時間攪拌した。反応混合物をセライトろ過した後、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(w = 65 g, φ = 4.0 cm, ヘキサン:酢酸エチル = 4 : 1 → 3 : 1)で精製し、ケトアセタール体(5)を薄黄色油状で得た(669 mg, 2.81 mmol, 43 %)。
Figure JPOXMLDOC01-appb-C000026
・ケトアセタール体(5)の同定結果
 1H-NMR (500 MHz, CHLOROFORM-D) δ 7.05 (dd, J = 11.5, 2.9 Hz, 2H), 6.75 (dd, J = 11.5, 3.4 Hz, 2H), 5.58 (S, 1H), 4.65 (S, 1H), 3.82 (S, 2H), 3.73-3.67 (m, 2H), 3.58-3.52 (m, 2H), 1.24 (t, J = 7.2 Hz, 6H)
 HR-ESI-MS: m/z: [M+Na]+ C13H18Na1O4の計算値 261.11141; 実測値 261.11028
<構造式(1-1)で表される化合物の合成>
 塩化亜鉛(2.7 g, 19.77 mmol)と1M ベンジルマグネシウムクロリド-テトラヒドロフラン溶液(22 mL, 19.77 mmol)をアルゴン雰囲気化で1時間攪拌した。この混合物に超脱水テトラヒドロフラン(22 mL)で溶解させたビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(351 mg, 0.49 mmol)と、2-アミノ-3,5-ジブロモピラジン(6)(2.5 g, 9.89 mmol)を加え、4日間室温で攪拌した。反応混合物に水を加え、酢酸エチル(200 mL×3)で抽出した。抽出物を硫酸ナトリウムで乾燥させ、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(w = 170 g, φ = 4.0 cm, ヘキサン:酢酸エチル = 4 : 1 → 3 : 1 )で精製し、化合物(7)を黄色油状で得た(2.1 g, 7.98 mmol, 81 %)。
Figure JPOXMLDOC01-appb-C000027
・化合物(7)の同定結果
 1H-NMR (500 MHz, CHLOROFORM-D) δ 8.03 (s, 1H), 7.34-7.21 (m, 5H), 4.41 (s, 2H), 4.08 (s, 2H)
 HR-ESI-MS: m/z: [M+H]+ C11H11 79Br1N3の計算値 264.01363; 実測値 264.01253
 HR-ESI-MS: m/z: [M+H]+ C11H11 81Br1N3の計算値 266.01103; 実測値 266.01159
 化合物(7)(150 mg, 0.567 mmol)と市販されている1,4-ベンゾジオキサン-6-ボロン酸(133 mg, 0.741 mmol)を1,4-ジオキサン(5 mL)に溶解し、簡易脱気した後、アルゴン雰囲気下にした。この混合物にテトラキス(トリフェニルホスフィン)パラジウム(0)(32 mg, 0.028 mmol)と、2 M炭酸ナトリウム水溶液(5 mL)を加え、110℃で1.5時間攪拌した。反応混合物を室温に戻した後、水を加え酢酸エチル(60 mL×2)で抽出した。抽出物を硫酸ナトリウムで乾燥させた後、減圧濃縮した。残渣をシリカゲルクロマトグラフィーで(w = 60 g, φ = 3.0 cm, ヘキサン:酢酸エチル = 1 : 1 → 酢酸エチル)精製し、化合物(8)を薄黄色固体で得た(142 mg, 0.444 mmol, 78 %)。
Figure JPOXMLDOC01-appb-C000028
・化合物(8)の同定結果
 1H-NMR (500 MHz, ACETONE-D6) δ 8.35 (s, 1H), 7.48 (d, J = 2.3 Hz, 1H), 7.45 (dd, J = 8.3, 2.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 2H), 7.30 (t, J = 7.7 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 6.87 (d, J = 8.6 Hz, 1H), 5.54 (s, 1H), 4.29 (s, 4H), 4.16 (s, 2H)
 HR-ESI-MS: m/z: [M+H]+ C19H18N3O2の計算値 320.13956; 実測値 320.13990
 基質(8)(30 mg, 0.094 mmol)とケトアセタール体(5)(33 mg, 0.14 mmol)をエタノール(2 mL)で溶解させた後、12 M塩酸(100μL)加え、60℃で12時間攪拌した。反応混合物を減圧濃縮し、自動分取中圧カラムクロマトグラフィー(クロロホルム : メタノール = 99 : 1→85 : 15 )で精製し、構造式(1-1)で表される化合物(26 mg, 0.056 mmol, 60 %)を黄色固体で得た。
Figure JPOXMLDOC01-appb-C000029
・構造式(1-1)で表される化合物の同定結果
 1H-NMR (500 MHz, METHANOL-D4, 0.5% TFA-D) δ 8.39 (s, 1H), 7.44 (d, J = 1.7 Hz, 1H), 7.41-7.38 (m, 3H), 7.32-7.29 (m, 2H), 7.26-7.23 (m, 1H), 7.10 (dd, J = 11.5, 2.9 Hz, 2H), 6.95 (d, J = 8.6 Hz, 1H), 6.73 (dd, J = 11.5, 2.9 Hz, 2H), 4.52 (s, 2H), 4.29 (m, 4H), 4.17 (s, 2H)
 HR-ESI-MS: m/z: [M+H]+ C28H24N3O4の計算値 466.17655; 実測値 466.17668
<構造式(2-1)で表される化合物の合成>
 市販されている2-アミノ-5-ジブロモピラジン(9)(2.0 g, 11.49 mmol)と市販されている4-メトキシフェニルボロン酸(2.6 g, 17.24 mmol)を1,4-ジオキサン(30 mL)に溶解し、簡易脱気した後、アルゴン雰囲気下にした。この混合物にテトラキス(トリフェニルホスフィン)パラジウム(0)(654 mg, 0.86 mmol)と、2 M炭酸ナトリウム水溶液(30 mL)を加え、110℃で1.5時間攪拌した。反応混合物を室温に戻した後、水を加え、酢酸エチル(200 mL×2)で抽出した。抽出物を硫酸ナトリウムで乾燥させた後、減圧濃縮した。残渣をシリカゲルクロマトグラフィーで(w = 100 g, φ = 4.0 cm, ヘキサン:酢酸エチル = 2 : 1 → 1 : 1)精製し、化合物(10)を薄黄色固体で得た(2.62 g, 13.03 mmol, 113 %)。
Figure JPOXMLDOC01-appb-C000030
・化合物(10)の同定結果
 1H-NMR (500 MHz, CHLOROFORM-D) δ 8.40 (d, J = 1.7 Hz, 1H), 8.04 (d, J = 1.7 Hz, 1H), 7.81 (td, J = 6.0, 3.4 Hz, 2H), 6.98 (td, J = 6.0, 3.4 Hz, 2H), 4.54 (s, 2H), 3.86 (s, 3H)
 HR-ESI-MS: m/z: [M+H]+ C16H14N3O1の計算値 202.09755; 実測値 202.09804
 化合物(10)(2.62 g, 13.02 mmol)をクロロホルム(70 mL)で溶解させた後、N-ブロモスクシンイミド(3.01 g, 16.93 mmol)を加え、室温で1時間攪拌した。反応混合物を氷冷した後、水でクエンチし、クロロホルム(100 mL×2)で抽出した。抽出物を硫酸ナトリウムで乾燥させた後、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(w = 50 g, φ = 4.0 cm, ヘキサン:酢酸エチル = 3 : 1 → 2 : 1)で精製し、化合物(11)を赤褐色固体で得た(2.04 g, 7.31 mmol, 56%)。
Figure JPOXMLDOC01-appb-C000031
・化合物(11)の同定結果
 1H-NMR (500 MHz, CHLOROFORM-D) δ 8.34 (s, 1H), 7.81 (td, J = 6.0, 3.4 Hz, 2H), 6.97 (td, J = 6.0, 3.4 Hz, 2H), 4.99 (s, 2H), 3.85 (s, 3H)
 HR-ESI-MS: m/z: [M+H]+ C11H11 79Br1N3O1の計算値 280.00907; 実測値 280.00855
 HR-ESI-MS: m/z: [M+H]+ C11H11 81Br1N3O1の計算値 282.00530; 実測値 251.00650
 ベンゼンチオール(273 μL, 2.68 mmol)を乾燥N,N-ジメチルホルムアミド(20 mL)で溶解させ、氷冷した後水素化ナトリウム(178 mg, 4.46 mmol)を加え、アルゴン雰囲気下、0℃で1時間攪拌した。この混合物に化合物(11)(500 mg, 1.78 mmol)を加え、100℃で2時間攪拌した。反応混合物を室温に戻した後、水を加え、酢酸エチル(200 mL×3)で抽出した。抽出物を硫酸ナトリウムで乾燥させ、トルエンを加え、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(w = 90 g, φ = 3.0 cm, ヘキサン:酢酸エチル = 2 : 1 → 1 : 1)で精製し、化合物(12)を褐色固体で得た(441 mg, 1.43 mmol, 80 %)。
Figure JPOXMLDOC01-appb-C000032
・化合物(12)の同定結果
 1H-NMR (500 MHz, CHLOROFORM-D) δ 8.30 (s, 1H), 7.71 (dd, J = 6.6, 2.0 Hz, 2H), 7.49 (dd, J = 8.3, 1.4 Hz, 2H), 7.40-7.35 (m, 3H), 6.91 (dd, J = 6.9, 2.3 Hz, 2H), 4.84 (s, 2H), 3.83 (s, 3H)
 HR-ESI-MS: m/z: [M+H]+ C17H16N3O1S1の計算値 310.10158; 実測値 310.10141
 化合物(12)(150 mg, 0.48 mmol)をアルゴン雰囲気下にし、超脱水ジクロロメタン(8 mL)を加え、-80℃で冷却した。反応混合物に三臭化ホウ素(4.8 mL, 4.85 mmol)を加え、室温に戻し、12時間攪拌した。反応混合物を氷冷し、飽和炭酸水素ナトリウム水溶液でクエンチを行い、クロロホルム(50 mL×3)で抽出した。抽出物を硫酸ナトリウムで乾燥させ、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(w = 50 g, φ = 2.0 cm, ヘキサン : 酢酸エチル = 3 : 1 → 1 : 1)で精製し、化合物(13)を赤褐色固体で得た(115 mg, 0.39 mmol, 81 %)。
Figure JPOXMLDOC01-appb-C000033
・化合物(13)の同定結果
 1H-NMR (500 MHz, ACETONE-D6) δ 8.31 (s, 1H), 7.64 (dd, J = 6.9, 2.3 Hz, 2H), 7.51 (dt, J = 8.2, 1.9 Hz, 2H), 7.42-7.35 (m, 3H), 6.80 (dd, J = 6.6, 2.0 Hz, 2H), 5.75 (s, 2H)
 HR-ESI-MS: m/z: [M+H]+ C16H14N3O1S1の計算値 296.08613; 実測値 296.08576
 化合物(13)(30 mg, 0.101 mmol)とケトアセタール体(5)(36 mg, 0.153 mmol)をエタノール(2 mL)で溶解させた後、12 M塩酸(100μL)加え、60℃で12時間攪拌した。反応混合物を減圧濃縮し、自動分取中圧カラムクロマトグラフィー(クロロホルム : メタノール = 99 : 1→85 : 15 )で精製し、構造式(2-1)で表される化合物(23 mg, 0.052 mmol, 51 %)を赤褐色固体で得た。
Figure JPOXMLDOC01-appb-C000034
・構造式(2-1)で表される化合物の同定結果
 1H-NMR (500 MHz, METHANOL-D4) δ 8.16 (s, 1H), 7.66 (dd, J = 7.2, 2.0 Hz, 2H), 7.53-7.49 (m, 5H), 7.11 (d, J = 8.6 Hz, 2H), 6.72 (d, J = 4.6 Hz, 2H), 6.70 (d, J = 4.0 Hz, 2H), 4.03 (s, 2H)
 HR-ESI-MS: m/z: [M+H]+ C25H20N3O3S1の計算値 442.12153; 実測値 442.12254
<構造式(2-2)で表される化合物の合成>
 構造式(2-1)で表される化合物の合成の項と同様にして、化合物(11)を合成した。
 4-フルオロベンゼンチオール(285 μL, 2.14 mmol)を乾燥N,N-ジメチルホルムアミド(20 mL)で溶解させ、氷冷した後、水素化ナトリウム(178 mg, 4.46 mmol)を加え、アルゴン雰囲気下、0℃で1時間攪拌した。この混合物に、化合物(11)(500 mg, 1.78 mmol)を加え、100℃で2.5時間攪拌した。反応混合物を室温に戻した後、水を加え、酢酸エチル(200 mL×3)で抽出した。抽出物を硫酸ナトリウムで乾燥させ、トルエンを加え、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(w = 95 g, φ = 3.0 cm, クロロホルム : 酢酸エチル= 2 : 1 → 1 : 1)で精製し、化合物(14)を薄橙色固体で得た(396 mg, 1.21 mmol, 68 %)。
Figure JPOXMLDOC01-appb-C000035
・化合物(14)の同定結果
 1H-NMR (500 MHz, CHLOROFORM-D) δ 8.26 (s, 1H), 7.65 (dd, J = 6.9, 2.3 Hz, 2H), 7.54-7.51 (m, 2H), 7.12-7.08 (m, 2H), 6.89 (dd, J = 6.9, 1.7 Hz, 2H), 4.89 (s, 2H), 3.82 (s, 3H)
 HR-ESI-MS: m/z: [M+H]+ C17H15F1N3O1S1の計算値 328.09432; 実測値 328.09199
 化合物(14)(50 mg, 0.15 mmol)をアルゴン雰囲気下にし、超脱水ジクロロメタン(5 mL)を加え、-80℃で冷却した。反応混合物に三臭化ホウ素(0.9 mL, 1.21 mmol)を加え、室温に戻し、12時間攪拌した。反応混合物を氷冷し、飽和炭酸水素ナトリウム水溶液でクエンチを行い、クロロホルム(15 mL×3)で抽出した。抽出物を硫酸ナトリウムで乾燥させ、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(w = 30 g, φ = 1.5 cm, ヘキサン : 酢酸エチル = 3 : 1 → 1 : 1)で精製し、化合物(15)を黄色固体で得た(38 mg, 0.12 mmol, 76 %)。
Figure JPOXMLDOC01-appb-C000036
・化合物(15)の同定結果
 1H-NMR (500 MHz, METHANOL-D4) δ 8.15 (s, 1H), 7.57 (td, J = 5.9, 2.5 Hz, 2H), 7.50 (dd, J = 6.6, 2.0 Hz, 2H), 7.20-7.16 (m, 2H), 6.73 (dd, J = 6.6, 2.0 Hz, 2H)
 HR-ESI-MS: m/z: [M+H]+ C16H13F1N3O1S1の計算値 314.07754; 実測値 314.07634
 化合物(15)(30 mg, 0.096 mmol)とケトアセタール体(5)(34 mg, 0.14 mmol)をエタノール(2 mL)で溶解させた後、12 M塩酸(100μL)加え、60℃で12時間攪拌した。反応混合物を減圧濃縮し、自動分取中圧カラムクロマトグラフィー(クロロホルム : メタノール = 99 : 1→85 : 15 )で精製し、構造式(2-2)で表される化合物(22 mg, 0.049 mmol, 51 %)を褐色固体で得た。
Figure JPOXMLDOC01-appb-C000037
・構造式(2-2)で表される化合物の同定結果
 1H-NMR (500 MHz, METHANOL-D4) δ 8.10 (s, 1H), 7.65 (qd, J = 5.7, 3.0 Hz, 2H), 7.46 (dd, J = 6.9, 2.3 Hz, 2H), 7.24-7.21 (m, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.71 (d, J = 8.6 Hz, 2H), 6.69 (dd, J = 6.6, 2.0 Hz, 2H), 4.02 (s, 2H)
 HR-ESI-MS: m/z: [M+H]+ C25H19F1N3O3S1の計算値 460.11304; 実測値 460.11311
<比較化合物(17)の合成>
 構造式(1-1)で表される化合物の合成の項と同様にして、化合物(7)を合成した。
 1,4-ベンゾジオキサン-6-ボロン酸に代えて、3-ピリジルボロン酸を使用し、構造式(1-1)で表される化合物の合成と同様にして、比較化合物(17)を合成した。
 以下に反応スキームを示す。
Figure JPOXMLDOC01-appb-C000038
・比較化合物(17)の同定結果
 1H-NMR (500 MHz, METHANOL-D4) δ 8.96 (s, 1H), 8.57 (dd, J = 4.9, 1.4 Hz, 1H), 8.21 (d, J = 8.0 Hz, 1H), 8.06 (s, 1H), 7.52 (dd, J = 8.0, 5.2 Hz, 1H), 7.39 (d, J = 7.4 Hz, 2H), 7.28 (t, J = 7.4 Hz, 2H), 7.22-7.19 (m, 1H), 7.13 (d, J = 8.6 Hz, 2H), 6.69 (d, J = 8.6 Hz, 2H), 4.41 (s, 2H), 4.07 (s, 2H)
 HR-ESI-MS: m/z: [M+H]+ C25H21N4O2の計算値 409.16635; 実測値 409.16645
<比較化合物(19)の合成>
 構造式(1-1)で表される化合物の合成の項と同様にして、化合物(7)を合成した。
 1,4-ベンゾジオキサン-6-ボロン酸に代えて、4-ピリジルボロン酸を使用し、構造式(1-1)で表される化合物の合成と同様にして、比較化合物(19)を合成した。
 以下に反応スキームを示す。
Figure JPOXMLDOC01-appb-C000039
・比較化合物(19)の同定結果
 1H-NMR (500 MHz, METHANOL-D4) δ 9.17 (s, 1H), 8.90 (d, J = 6.9 Hz, 2H), 8.72 (d, J = 6.9 Hz, 2H), 7.42 (d, J = 6.9 Hz, 2H), 7.31-7.28 (m, 2H), 7.24-7.21 (m, 1H), 7.11 (dd, J = 11.5, 2.9 Hz, 2H), 6.71 (dd, J = 6.6, 2.0 Hz, 2H), 4.55 (s, 2H), 4.17 (s, 2H)
 HR-ESI-MS: m/z: [M+H]+ C25H21N4O2の計算値 409.16614; 実測値 409.16645
<比較化合物(22)の合成>
 ベンジルマグネシウムクロリドに代えて、フェニルボロン酸を使用し、また、1,4-ベンゾジオキサン-6-ボロン酸に代えて、4-ヒドロキシボロン酸を使用し、構造式(1-1)で表される化合物の合成と同様にして、比較化合物(22)を合成した。
 以下に反応スキームを示す。
Figure JPOXMLDOC01-appb-C000040
・比較化合物(22)の同定結果
 1H-NMR (500 MHz, METHANOL-D4) δ 8.01 (d, J = 5.2 Hz, 2H), 7.65 (s, 1H), 7.60-7.55 (m, 3H), 7.13 (d, J = 8.6 Hz, 2H), 6.90 (dd, J = 6.6, 2.0 Hz, 2H), 6.66 (dd, J = 6.6, 2.0 Hz, 2H), 4.03 (s, 2H)
 HR-ESI-MS: m/z: [M+H]+ C25H20N3O3の計算値 410.14906; 実測値 410.15047
 また、その他の比較基質として、以下に示す天然基質(nCTZ)と、公知の天然類似基質1(CTZh、Coelenterazine h)及び天然類似基質2(DBC、DeepBLueC)を使用した。
Figure JPOXMLDOC01-appb-C000041
<発光スペクトル測定>
 ATTO株式会社製発光スペクトル装置AB-1850を用いて測定した。
 測定したスペクトルは全て検出器の特性を補正したスペクトルである。
<生細胞及びライセート細胞での発光測定>
 発光測定には、PerkinElmer社製IVISイメージングシステム(Caliper Life Sciences)を用いた。
 また、発光酵素を発現する生細胞(Live cells)としては、アフリカミドリザル腎臓由来のCOS-7細胞を使用し、また、該生細胞を溶解したライセート(Lysate)でも評価した。
<発光輝度の評価>
 アフリカミドリザル腎臓由来のCOS-7細胞を6穴マイクロプレートに植え、70%の底面積を埋めるほど生えた時点までCOインキュベーターで培養する。TransIT-LT1試薬(Mirus)を用いて各ウェル細胞に、以下の海洋生物由来の各発光酵素をコードするプラスミドを一過性発現させる。
(i)ALuc16
(ii)ALuc47
(iii)Renillaルシフェラーゼ8.6-535SG(RLuc8.6SG)
(iv)NanoLuc
 このリポフェクション後、1日間、COインキュベーターで継続培養する。それから、各細胞を96穴マイクロプレートにサブカルチャーし、更に1日間培養する。
 同一プラスミドを導入した細胞ウェルを任意に2つに分け、1つはライセートに、もう一方は生細胞実験に充てる。ライセートのためには、まず、96穴マイクロプレートから細胞培地を除去してから、Promega製の細胞溶解試薬(ライセート)を各ウェル40mLずつインジェクトし、15分間インキュベーションした。一方、生細胞実験のためには、細胞培地だけを完全に除去した後、ただちに蓋をかけ発光測定までに乾燥しないように処置する。
 一方、各発光基質は、最初にメタノール(PEG400、25%)で5mMになるように溶解し(ストック溶液)、さらにリン酸緩衝生理食塩水(PBS)で100μMにまで希釈した(以下、希釈発光基質溶液と称する)。事前に、この「希釈発光基質溶液」を何も入っていない96穴マイクロプレートの各ウェルにそれぞれ分注しておいた。前述した細胞溶解液(ライセート)の入った96穴ブラックフレームマイクロプレートの各ウェルに40μLの「希釈発光基質溶液」が同時に入るように、12チャンネルマイクロピペットを用いて、同時に注入した。希釈発光基質溶液注入後、直ちにIVISイメージングシステム(Xenogen、USA)にプレートを移し、96穴ブラックフレームマイクロプレートからの生物発光輝度を測定し、専用ソフトウェアLiving Image ver.4.7で分析した。
 結果を図1、図2、図4、図5、図7、図8、図10及び図11に示す。図1、図2、図4、図5、図7、図8、図10及び図11中、構造式(1-1)で表される化合物を「(1-1)」と表記し、構造式(2-1)で表される化合物を「(2-1)」と表記し、構造式(2-2)で表される化合物を「(2-2)」と表記し、比較化合物(17)を「(17)」と表記し、比較化合物(19)を「(19)」と表記し、比較化合物(22)を「(22)」と表記した。
<生物発光スペクトルの評価>
 COS-7細胞を6穴マイクロプレートに植え、70%の底面積を埋めるほど生えた時点までCOインキュベーターで培養する。TransIT-LT1試薬(Mirus)を用いて各ウェル細胞に、以下の海洋生物由来の各発光酵素をコードするプラスミドを一過性発現させる。
(i)ALuc16
(ii)ALuc47
(iii)Renillaルシフェラーゼ8.6-535SG(RLuc8.6SG)
(iv)NanoLuc
 このリポフェクション後、1日間、COインキュベーターで継続培養する。6穴マイクロプレートの細胞培地を完全に除去した後、各ウェルにPromega製の細胞溶解試薬(ライセート)を200μLずつ加え、15分間室温でインキュベーションする。
 このライセート20μLをPCRチューブにそれぞれ分注し、発光輝度評価時の100μM希釈発光基質溶液20μL添加した。PCRチューブを直ちに分光光度計(AB-1850、ATTO)に入れ、高感度モードの0.5秒、5秒、10秒、30秒の積算モードより生物発光スペクトルを測定した。
 結果を図3、図6、図9及び図12に示す。図3、図6、図9及び図12中、構造式(1-1)で表される化合物を「(1-1)」と表記し、構造式(2-1)で表される化合物を「(2-1)」と表記し、構造式(2-2)で表される化合物を「(2-2)」と表記した。
<結果>
 図1及び図2から分かるように、構造式(1-1)で表される化合物は、ALuc16に対して高輝度で発光を示した。また、図4、図5、図7及び図8から分かるように、構造式(1-1)で表される化合物は、ALuc47及びRLuc8.6SGに対して僅かに発光を示した。一方、図10及び図11から分かるように、構造式(1-1)で表される化合物は、NanoLucに対しても発光活性を示さなかった。
 このように、構造式(1-1)で表される化合物は、ALuc16に酵素特異性を有することが確認された。
 図1、図2、図7、図8、図10及び図11から分かるように、構造式(2-1)で表される化合物は、ALuc16、RLuc8.6SG、NanoLucに対して発光活性を示した。また、図3、図9及び図12から分かるように、構造式(2-1)で表される化合物は、ALuc16、RLuc8.6SG、NanoLucに対して、それぞれ538nm、573nm、507nmの発光スペクトルを示した。また、図4及び図5から分かるように、構造式(2-1)で表される化合物は、ALuc47に対しても発光を示した。
 また、図1、図2、図7及び図8から分かるように、構造式(2-2)で表される化合物は、ALuc16、RLuc8.6SGに対して発光活性を示し、図4、図10及び図11から分かるように、ALuc47及びNanoLucに対して僅かに発光を示した。
 このように、構造式(2-1)又は(2-2)で表される化合物も、酵素特異性を有することが確認された。
 また、構造式(2-1)又は(2-2)で表される化合物は、天然のセランテラジン等に比べて、発光波長が50nm程度長波長化することが確認された。
 本発明のセレンテラジン誘導体は、海洋生物由来の発光酵素類における発光基質として利用できる。また、独特な酵素特異性、強い発光輝度、長波長発光特性を示すことから、様々なバイオアッセイにおいて、広く用いられる。例えば、長波長シフトした発光特性のおかげで、生体深部で起こる分子イベントを容易に可視化できる。また、従来と比較して明るいため、バイオアッセイの検出感度や検出限界を改善することができる。また、今回の発光基質が発光特異性を示すことから、多数の検体の中で特定検体を特異的に検出することができる。このようなマルチプレックス性は、バイオアッセイの効率を飛躍的にあげ、診断コスト削減にも大きく貢献する。

Claims (9)

  1.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、Rは、下記一般式(1-1-1)、(1-1-2)、(1-1-3)又は(1-1-4):
    Figure JPOXMLDOC01-appb-C000002
    で表され、ここで、R1-1は、炭素数1~4の炭化水素基であり、R1-2は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、mは、2~8の整数であり、
     Rは、-R2’又は-CH-R2’で表され、ここで、R2’は、下記一般式(1-2-1)、(1-2-2)、(1-2-3)、(1-2-4)又は(1-2-5):
    Figure JPOXMLDOC01-appb-C000003
    で表され、ここで、R2-1は、水素、ハロゲン、-N(R2-1-1又は-OR2-1-1であり(ここで、R2-1-1は、それぞれ独立して水素又は炭素数1~3の炭化水素基である。)、R2-2は、炭素数1~4の炭化水素基であり、R2-3は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、mは、2~8の整数であり、
     Rは、下記一般式(1-3-1)、(1-3-2)又は(1-3-3):
    Figure JPOXMLDOC01-appb-C000004
    で表され、ここで、R3-1は、水素又は炭素数1~3の炭化水素基である。]、又は、
     下記一般式(2):
    Figure JPOXMLDOC01-appb-C000005
    [一般式(2)中、Rは、水素、-(CH-OR4-1、-N(R4-1又は-CFであり、ここで、R4-1は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、nは、0~3の整数であり、
     Rは、下記一般式(2-5-1)、(2-5-2)、(2-5-3)、(2-5-4)又は(2-5-5):
    Figure JPOXMLDOC01-appb-C000006
    で表され、ここで、R5-1は、水素、ハロゲン、-N(R5-1-1又は-OHであり(ここで、R5-1-1は、それぞれ独立して水素又は炭素数1~3の炭化水素基である。)、R5-2は、炭素数1~4の炭化水素基であり、R5-3は、それぞれ独立して水素又は炭素数1~3の炭化水素基であり、mは、2~8の整数であり、
     Rは、水素又は炭素数1~3の炭化水素基である。]で表されることを特徴とする、セレンテラジン誘導体。
  2.  上記一般式(1)で表され、
     Rが、上記一般式(1-1-3)で表される、請求項1に記載のセレンテラジン誘導体。
  3.  上記一般式(1)で表され、
     Rが、-CH-R2’で表され、ここで、R2’が、上記一般式(1-2-1)で表される、請求項1又は2に記載のセレンテラジン誘導体。
  4.  上記一般式(1)で表され、
     Rが、上記一般式(1-3-2)で表される、請求項1~3のいずれか一項に記載のセレンテラジン誘導体。
  5.  下記構造式(1-1):
    Figure JPOXMLDOC01-appb-C000007
    で表される、請求項1~4のいずれか一項に記載のセレンテラジン誘導体。
  6.  上記一般式(2)で表され、
     Rが、-(CH-OR4-1で表される、請求項1に記載のセレンテラジン誘導体。
  7.  上記一般式(2)で表され、
     Rが、上記一般式(2-5-1)で表される、請求項1又は6に記載のセレンテラジン誘導体。
  8.  上記一般式(2)で表され、
     Rが、水素である、請求項1、6及び7のいずれか一項に記載のセレンテラジン誘導体。
  9.  下記構造式(2-1)又は(2-2):
    Figure JPOXMLDOC01-appb-C000008
    で表される、請求項1及び6~8のいずれか一項に記載のセレンテラジン誘導体。
PCT/JP2023/006307 2022-02-28 2023-02-21 新規セレンテラジン誘導体 WO2023162995A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-030488 2022-02-28
JP2022030488 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023162995A1 true WO2023162995A1 (ja) 2023-08-31

Family

ID=87765962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006307 WO2023162995A1 (ja) 2022-02-28 2023-02-21 新規セレンテラジン誘導体

Country Status (2)

Country Link
JP (1) JP2023126161A (ja)
WO (1) WO2023162995A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007314A1 (en) * 2009-07-13 2011-01-20 Università Degli Studi Di Siena IMIDAZO[1,2-α]PYRAZIN-3(7H)-ONE DERIVATIVES BEARING A NEW ELECTRON-RICH STRUCTURE
CN105968114A (zh) * 2016-05-27 2016-09-28 山东大学 一种腔肠素类似物及其制备方法与应用
JP2018165265A (ja) * 2017-03-28 2018-10-25 国立大学法人電気通信大学 新規セレンテラジン誘導体
JP2019524763A (ja) * 2016-07-28 2019-09-05 プロメガ コーポレイションPromega Corporation セレンテラジン類縁体
CN111116594A (zh) * 2019-12-03 2020-05-08 山东大学 一种C-6位改造NanoLuc类型类似物及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007314A1 (en) * 2009-07-13 2011-01-20 Università Degli Studi Di Siena IMIDAZO[1,2-α]PYRAZIN-3(7H)-ONE DERIVATIVES BEARING A NEW ELECTRON-RICH STRUCTURE
CN105968114A (zh) * 2016-05-27 2016-09-28 山东大学 一种腔肠素类似物及其制备方法与应用
JP2019524763A (ja) * 2016-07-28 2019-09-05 プロメガ コーポレイションPromega Corporation セレンテラジン類縁体
JP2018165265A (ja) * 2017-03-28 2018-10-25 国立大学法人電気通信大学 新規セレンテラジン誘導体
CN111116594A (zh) * 2019-12-03 2020-05-08 山东大学 一种C-6位改造NanoLuc类型类似物及其制备方法与应用

Also Published As

Publication number Publication date
JP2023126161A (ja) 2023-09-07

Similar Documents

Publication Publication Date Title
JP5582505B2 (ja) セレンテラジン類縁体及びその製造方法
Wang et al. A general approach to spirolactonized Si-rhodamines
Kele et al. Clickable fluorophores for biological labeling—with or without copper
Liu et al. Synthesis, crystal structure and living cell imaging of a Cu 2+-specific molecular probe
EP1731898A1 (en) Fluorescent probes
Liu et al. A novel near-infrared fluorescent platform with good photostability and the application for a reaction-based Cu2+ probe in living cells
JP5464311B2 (ja) ルシフェラーゼの発光基質
JP2016050296A (ja) 蛍光色素結合セレンテラジン
JP5550035B2 (ja) 波長が制御されたルシフェラーゼの発光基質および製造方法
Zhang et al. A profluorescent ratiometric probe for intracellular pH imaging
Kim et al. Novel intramolecular π–π-interaction in a BODIPY system by oxidation of a single selenium center: Geometrical stamping and spectroscopic and spectrometric distinctions
WO2007105529A1 (ja) 化学発光性化合物及びそれから成る標識剤
Wang et al. Design, synthesis, cell imaging, kinetics and thermodynamics of reaction-based turn-on fluorescent probes for the detection of biothiols
JP2010215795A5 (ja)
WO2023162995A1 (ja) 新規セレンテラジン誘導体
JP5585960B2 (ja) チオールの検出方法
JP2009014369A (ja) 生体分子標識用蛍光試薬
WO2019168199A1 (ja) カルボキシペプチダーゼ活性検出用蛍光プローブ
Woydziak et al. Efficient and scalable synthesis of 4-carboxy-pennsylvania green methyl ester: a hydrophobic building block for fluorescent molecular probes
JP7204728B2 (ja) 血清中で安定なプロセレンテラジン類似体
JP2013184909A (ja) ルシフェラーゼの発光基質
Li et al. Photostable fluorescent probes based on multifunctional group substituted naphthalimide dyes for imaging of lipid droplets in live cells
CN114989068B (zh) 一种可调控电子密度的硫化氢响应荧光探针及其制备工艺与应用
JP7255828B2 (ja) 新規複素環式化合物及びその塩、並びに、発光基質組成物
JP2010090268A (ja) ケイ光ソルバトクロミック色素

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23758214

Country of ref document: EP

Kind code of ref document: A1