WO2023162421A1 - Printing device and printing method - Google Patents

Printing device and printing method Download PDF

Info

Publication number
WO2023162421A1
WO2023162421A1 PCT/JP2022/046258 JP2022046258W WO2023162421A1 WO 2023162421 A1 WO2023162421 A1 WO 2023162421A1 JP 2022046258 W JP2022046258 W JP 2022046258W WO 2023162421 A1 WO2023162421 A1 WO 2023162421A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
heater
temperature
flow rate
unit
Prior art date
Application number
PCT/JP2022/046258
Other languages
French (fr)
Japanese (ja)
Inventor
晃澄 岡本
紗也加 北村
芳樹 水野
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2023162421A1 publication Critical patent/WO2023162421A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet

Definitions

  • the present invention relates to a printing device and a printing method.
  • a mechanism for heating the ink is provided for the purpose of keeping the ink temperature constant.
  • Patent Document 1 ink is circulated in a circulation path connected to an ejection head, and the ink flowing through the circulation path is heated by a hot water unit.
  • the temperature of the ink in the ejection head may fluctuate irregularly according to the amount of ink flowing into the ejection head from an ink tank that stores unused ink. For this reason, there is a possibility that the temperature fluctuation range of the ink may become large only by uniformly heating the ink in the ejection head.
  • An object of the present invention is to provide a technique capable of reducing the temperature fluctuation range of the ink in the ejection head even if the amount of ink flowing into the ejection head fluctuates.
  • a first aspect is a printing apparatus, comprising: an ejection head for ejecting ink onto a surface of a substrate; an ink tank capable of storing the ink; An ink supply unit that supplies ink, a heater unit that heats the ink flowing from the ink tank to the ejection head, and a flow rate prediction unit that predicts the flow rate of the ink that will flow from the ink tank to the ejection head after a predetermined time from the present time.
  • a first heater control unit that controls the heater unit based on the flow rate predicted by the flow rate prediction unit; a first temperature measurement unit that measures the temperature of ink flowing from the heater unit to the ejection head; A second heater control section for controlling the heater section based on a difference between the temperature measured by the first temperature measurement section and a preset target temperature.
  • a second aspect is the printing apparatus of the first aspect, wherein the flow rate prediction unit predicts the flow rate based on ejection information indicating the amount of ink ejected from the ejection head.
  • a third aspect is the printing apparatus of the second aspect, further comprising an ejection control section that controls the ejection head based on print data, and the ejection information includes the print data.
  • a fourth aspect is the printing apparatus according to any one of the first aspect to the third aspect, further comprising a second temperature measurement section that measures the temperature of the ink in the ink tank, and the first heater control section controls the heater section based on the difference between the temperature measured by the second temperature measurement section and a preset target temperature.
  • a fifth aspect is the printing apparatus according to any one of the first aspect to the fourth aspect, further comprising a third temperature measurement section for measuring a temperature outside the ink tank, wherein the first heater control section The heater section is controlled based on the temperature measured by the third temperature measurement section.
  • a sixth aspect is the printing apparatus according to any one of the first aspect to the fifth aspect, further comprising a flow rate measuring section for measuring a flow rate of ink supplied from the ink tank to the ejection head,
  • the 1-heater control section controls the heater section based on the flow rate measured by the flow rate measurement section.
  • a seventh aspect is a printing method comprising: a) a prediction step of predicting the flow rate of ink flowing from the ink tank to the ejection head after a predetermined time from the current time; and c) measuring the temperature of the ink flowing from the heater to the ejection head. and b-2) controlling the heater unit based on the difference between the temperature measured in c) and a preset target temperature.
  • the temperature fluctuation width can be reduced by controlling the heater section based on the predicted value of the flow rate of the ink flowing to the ejection head.
  • the flow rate can be accurately predicted based on the ink ejection amount.
  • the flow rate can be accurately predicted based on the print data.
  • the temperature of the ink in the ejection head can be appropriately adjusted.
  • the temperature of the ink inside the ejection head can be appropriately adjusted by controlling the heater section based on the temperature outside the ink tank.
  • FIG. 1 is a diagram showing the configuration of a printing apparatus according to an embodiment
  • FIG. 3 is a block diagram showing connections between a control unit and each unit of the printing apparatus
  • FIG. It is a control block diagram for controlling a heater part.
  • FIG. 5 is a diagram showing temperature fluctuations of ink at the outlet position of the heater section;
  • FIG. 5 is a diagram showing the correspondence relationship between the temperature of ink at the inlet position of the heater section and the width of temperature fluctuation;
  • FIG. 1 is a diagram showing the configuration of a printing apparatus 1 according to an embodiment.
  • the printing device 1 is a device that performs printing using an inkjet method. More specifically, the printing apparatus 1 ejects ink from the plurality of ejection heads 21 to 24 onto the substrate W while transporting the substrate W in the form of a long belt with the plurality of transportation rollers 12. record an image on the surface of the
  • the substrate W is, for example, a flexible medium such as printing paper, resin film, cardboard, or metal thin film.
  • the printing apparatus 1 includes a transport mechanism 10, a printing section 20, a supply section 30, an encoder 60, a camera 70, a plurality of various sensors 80, and a control section 9.
  • the transport mechanism 10 transports the base material W in the transport direction along the longitudinal direction of the base material W along a predetermined transport route.
  • the conveying mechanism 10 has an unwinding roller 11 , a plurality of conveying rollers 12 and a winding roller 13 .
  • a substrate W is stretched over these rollers.
  • the base material W is unwound from the unwinding roller 11 and conveyed along a predetermined conveying path while being supported by the plurality of conveying rollers 12 .
  • Each transport roller 12 guides the substrate W to the downstream side of the transport path by rotating around an axis extending in a direction perpendicular to the transport direction.
  • the substrate W transported by the plurality of transport rollers 12 is wound around the take-up roller 13 .
  • a tension is applied to the substrate W in the transport direction. This suppresses slackness and wrinkles of the base material W during transportation.
  • the transport mechanism 10 further has a motor 14 that rotates some rollers (hereinafter referred to as "drive rollers").
  • the transport mechanism 10 may include multiple motors 14 .
  • Motor 14 is electrically connected to controller 9 .
  • a command value for rotating the motors 14 is input to each motor 14 from the control unit 9 .
  • the motor 14 is driven according to the command value, and the drive roller rotates.
  • the base material W is conveyed from the unwinding roller 11 toward the winding roller 13 .
  • the printing unit 20 is a processing unit that ejects ink droplets (hereinafter referred to as "ink droplets") onto the base material W conveyed by the conveying mechanism 10 .
  • the printing unit 20 has a plurality (four in this example) of ejection heads 21-24.
  • the ejection heads 21-24 have the same structure.
  • the ejection heads 21 to 24 are arranged at intervals along the direction in which the substrate W is conveyed. Note that the substrate W moves substantially parallel to the arrangement direction of the plurality of ejection heads 21-24 below the plurality of ejection heads 21-24. At this time, the surface (printing surface) of the base material W faces upward (toward the ejection heads 21 to 24).
  • each of the ejection heads 21-24 has an internal space capable of storing ink and a plurality of nozzles (not shown).
  • a plurality of nozzles are arranged in parallel with the width direction of the substrate W on the lower surface of each of the ejection heads 21-24.
  • each of the plurality of nozzles has a piezo element as a pressure generating element (not shown) and an ejection port communicating with the internal space of each of the ejection heads 21-24.
  • the ink flows down from the internal space to the vicinity of the ejection port.
  • the ink ejection method may be a so-called thermal method in which a heater is used as a pressure generating element to heat the ink in the vicinity of the ejection port to generate bubbles.
  • Each of the ejection heads 21 to 24 directs from a plurality of nozzles toward the upper surface of the base material W, each of K (black), C (cyan), M (magenta), and Y (yellow), which are color components of a multicolor image. of ink droplets are respectively ejected. That is, the ejection head 21 ejects K-color ink droplets as a processing substance onto the upper surface of the base material W at the first printing position P1, which is the processing position on the transport path. The ejection head 22 ejects C-color ink droplets as a processing substance onto the upper surface of the substrate W at a second printing position P2, which is a processing position downstream of the first printing position P1.
  • the ejection head 23 ejects M-color ink droplets as a processing substance onto the upper surface of the substrate W at a third printing position P3, which is a processing position downstream of the second printing position P2.
  • the ejection head 24 ejects Y-color ink droplets as a processing substance onto the upper surface of the substrate W at a fourth printing position P4, which is a processing position downstream of the third printing position P3.
  • the first printing position P1, the second printing position P2, the third printing position P3, and the fourth printing position P4 are arranged at equal intervals along the transport direction of the base material W.
  • the ejection heads 21 to 24 respectively record monochromatic images on the top surface of the substrate W by ejecting ink droplets. Then, a multicolor image is formed on the upper surface of the substrate W by superimposing the four monochromatic images. Further, each of the ejection heads 21 to 24 can print on the upper surface of the base material W by ejecting ink droplets.
  • the supply unit 30 is a unit that supplies ink to the ejection heads 21-24.
  • the supply unit 30 has a plurality (four in this example) of ink supply systems 31 .
  • a plurality of ink supply systems 31 are connected to the ejection heads 21 to 24, respectively, and supply inks of corresponding colors to the ejection heads 21 to 24, respectively.
  • the ink supply system 31 that supplies ink to the ejection head 21 will be described below.
  • the ink supply system 31 has an ink tank 311 , a pipe 321 , a pump 331 , a flow meter 341 , a heater section 351 , an in-tank temperature sensor 361 , an outlet temperature sensor 371 , and a liquid level sensor 381 .
  • the ink tank 311 stores unused ink.
  • One end of the pipe 321 is connected to the internal space of the ejection head 21 .
  • the other end of the pipe 321 is connected to the ink tank 311 .
  • a pump 331 is installed in the pipe 321 .
  • a pump 331 generates a flow of ink from the ink tank 311 toward the ejection head 21 .
  • the pump 331 is, for example, a pump equipped with a brushless motor.
  • the pipe 321 and the pump 331 are an example of an “ink supply unit” that supplies ink from the ink tank 311 to the ejection head 21 .
  • the ink in the ink tank 311 may be sent to the ejection head 21 by a pressurizing mechanism that pressurizes the inside of the ink tank 311 . In this case, the pressure mechanism functions as an "ink supply section".
  • the flow meter 341 is installed in the pipe 321.
  • a flow meter 341 measures the flow rate of ink flowing through the pipe 321 .
  • the flow meter 341 transmits a signal indicating the measured flow rate to the controller 9 .
  • the controller 9 inputs a drive value to the pump 331 according to the decrease in the amount of ink in the ejection head 21 .
  • the pump 331 is driven according to the drive value, and an amount of ink corresponding to the decrease in ink in the ejection head 21 is supplied from the ink tank 311 to the ejection head 21 .
  • the other ejection heads 22-24 are supplied with ink from the corresponding ink supply system 31, respectively.
  • the heater section 351 heats ink supplied to the ejection head 21 .
  • the heater section 351 is installed on the pipe 321 .
  • the heater section 351 is positioned between the pump 331 and the flow meter 341 .
  • the heater section 351 heats the ink flowing through the pipe 321 .
  • the in-tank temperature sensor 361 (second temperature measuring unit) is installed inside the ink tank 311 .
  • the in-tank temperature sensor 361 measures the temperature of the ink stored in the ink tank 311 .
  • the in-tank temperature sensor 361 transmits a signal indicating the measured temperature to the controller 9 .
  • the outlet temperature sensor 371 (first temperature measurement unit) is installed on the pipe 321 .
  • the outlet temperature sensor 371 is positioned between the heater section 351 and the ejection head 21 .
  • the outlet temperature sensor 371 measures the temperature of ink flowing from the heater section 351 to the ejection head 21 via the pipe 321 .
  • the outlet temperature sensor 371 is provided at the outlet position of the heater section 351 . Therefore, the temperature of the ink immediately after passing through the heater section 351 is measured.
  • the outlet temperature sensor 371 may be positioned closer to the ejection head 21 than the heater section 351 .
  • the outlet temperature sensor 371 transmits a signal indicating the measured temperature to the controller 9 .
  • the liquid level sensor 381 is a sensor for measuring the amount of ink in the ejection head 21 and measures the height of the ink liquid level in the ejection head 21 .
  • the liquid level sensor 381 is, for example, a non-contact sensor that detects the height of the liquid level using ultrasonic waves.
  • the liquid level sensor 381 transmits a signal indicating the measured liquid level to the controller 9 .
  • the supply unit 30 has an outside air temperature sensor 39 (third temperature measurement unit).
  • the outside air temperature sensor 39 is positioned outside the ink tank 311 and measures the outside air temperature outside the ink tank 311 .
  • the encoder 60 is attached to the axis of one of the plurality of transport rollers 12 (the transport roller 121 in the example of FIG. 1).
  • the encoder 60 detects the rotation of the transport roller 121 and outputs a continuous pulse signal synchronized with the rotation of the transport roller 121 to the controller 9 .
  • the continuous pulse signal is data that reflects changes over time in the transport speed of the substrate W transported by the plurality of transport rollers 12 including the transport roller 121 .
  • the camera 70 is an imaging device that captures the printed surface (front surface) of the base material W that has passed through the printing unit 20 .
  • the camera 70 is arranged to face the printing surface of the base material W at an imaging position P5 downstream of the four ejection heads 21 to 24 in the transport path.
  • the camera 70 has, for example, a line sensor in which a plurality of imaging devices such as CCDs and CMOSs are arranged in the width direction. While the substrate W is being transported by the transport mechanism 10, the camera 70 acquires image data of the printed substrate W by photographing the printed surface of the substrate W at predetermined intervals. The camera 70 transmits the obtained image data to the control section 9 .
  • a plurality of various sensors 80 are measuring instruments for measuring the transport state of the substrate W, in addition to those listed above.
  • a plurality of various sensors 80 are provided at a plurality of measurement points on the transport path of the substrate W. As shown in FIG. Various sensors 80 acquire measured values at respective measurement locations.
  • the measurement items of the various sensors 80 include, for example, the vertical displacement of the base material W (the amount of displacement in the direction perpendicular to the base material W), the tension applied to the base material W, the position of the edge of the base material W in the width direction, etc. can be included.
  • Various sensors 80 that measure the same item may be arranged at a plurality of positions on the transport route. While the substrate W is being transported by the transport mechanism 10, the plurality of various sensors 80 constantly measure the state of each measurement location. The various sensors 80 then transmit signals indicating the obtained measurement values to the control unit 9 .
  • FIG. 2 is a block diagram showing connections between the control unit 9 and each unit of the printing apparatus 1. As shown in FIG. The control unit 9 controls operations of the printing apparatus 1 .
  • the control unit 9 has a processor 901 configured by a CPU or the like, and a storage unit 903 configured by a RAM, hard disk, or the like. Storage unit 903 stores program 90P and various data.
  • the program 90P is provided by the recording medium M.
  • the program 90P is recorded on the recording medium M so as to be readable by the control section 9, which is a computer.
  • the recording medium M is, for example, a USB (Universal Serial Bus) memory, an optical disk such as a DVD (Digital Versatile Disc), or a magnetic disk.
  • the control unit 9 controls the motor 14 of the transport mechanism 10, the ejection heads 21 to 24 of the printing unit 20, the pump 331 of the supply unit 30, the flow meter 341, the heater unit 351, the tank internal temperature sensor 361, the outlet temperature sensor 371, It is communicably connected to the liquid level sensor 381 and the outside air temperature sensor 39 . Also, the control unit 9 is communicably connected to the encoder 60, the camera 70, and various sensors 80. FIG.
  • the ejection control unit 90, the first heater control unit 91, the second heater control unit 92, the flow rate prediction unit 93, and the learning unit 94 shown in FIG. 2 are functions realized by the processor 901 executing the program 90P. .
  • the ejection control unit 90 controls ejection of ink from the ejection heads 21 to 24 based on print data indicating an image to be printed on the base material W.
  • FIG. The first heater control section 91 and the second heater control section 92 control the heater section 351 . Functions of the first heater control section 91, the second heater control section 92, the flow rate prediction section 93, and the learning section 94 will be described with reference to FIG.
  • FIG. 3 is a control block diagram for controlling the heater section 351. As shown in FIG. In the following description, the case of controlling the heater section 351 of the ink supply system 31 connected to the ejection head 21 will be mainly described. Also in the ink supply system 31 connected to the ejection heads 22-24, control similar to that shown in FIG. 3 is performed.
  • the first heater control section 91 and the second heater control section 92 output heater command values CV1 and CV2 to the heater section 351, respectively.
  • the heater command values CV1 and CV2 are values indicating power values applied to heaters included in the heater section 351 .
  • the heater unit 351 heats the heater according to the sum of the input heater command values CV1 and CV2.
  • the first heater control unit 91 executes feedforward (FF) control.
  • the first heater control unit 91 controls the heater command value CV1 so that the temperature of the ink in the ejection head 21 reaches a preset target temperature Ttg after a predetermined time (for example, after several seconds or several tens of seconds). to output
  • FF feedforward
  • the first heater control section 91 controls the heater section 351 based on the flow rate predicted by the flow rate prediction section 93 .
  • the flow rate prediction unit 93 uses the flow rate prediction model 931 to predict the flow rate Fp1 of the ink flowing into the ejection head 21 after a predetermined period of time.
  • the flow rate Fp1 may be the flow rate at a point in time in the future, or may be a flow rate fluctuation waveform that indicates the time fluctuation of the flow rate.
  • the flow rate prediction model 931 is stored in the storage section 903 .
  • the flow rate prediction model 931 outputs the flow rate Fp1 after a predetermined time from the input variable Vi.
  • the input variables Vi are the print pattern indicated by the print data, the head driving waveform output to the ejection head 21 by the control unit 9 to drive the ejection head 21, the ink ejection count, and the or a combination of these information.
  • the print data indicating the print pattern, the head drive waveform, the ink ejection count, and the ink liquid surface height are ejection information indicating the amount of ink ejected from the ejection head 21 .
  • the learning unit 94 performs machine learning to construct the flow rate prediction model 931.
  • the control unit 9 stores the flow rate measured by the flow meter 341 in the storage unit 903 .
  • the learning unit 94 learns the relationship between the input variable Vi and the flow rate measured by the flow meter 341 after a predetermined time from the time corresponding to the input variable Vi based on a supervised machine learning algorithm, thereby forming a flow rate prediction model. Build 931.
  • the machine learning algorithms used in learning section 94 are simple regression algorithms, It may be a decision tree model (random forest or gradient boosting, etc.), a deep learning algorithm (convolutional neural network). Appropriate machine learning algorithms or combinations of input variables Vi may also be selected depending on the type or characteristics of the ink used. Also, the learning unit 94 may update the flow rate prediction model 931 by performing machine learning periodically or based on an instruction input from the user. Accordingly, deterioration of the flow rate prediction model 931 can be suppressed by updating the flow rate prediction model 931 .
  • the flow rate prediction unit 93 may generate the ink discharge amount (consumption amount) as intermediate data from the density information of each color indicated by the image data.
  • the flow rate prediction model 931 may be configured to output the flow rate Fp1 using this intermediate data as an input variable Vi. Also, the flow rate prediction model 931 may be constructed so as to output the flow rate Fp1 with the image data as the input variable Vi. In this case, the flow prediction model 931 may be constructed by a supervised deep learning algorithm.
  • the flow rate prediction model 931 calculates the inclination (differential value) of how the ink decreases from the liquid level height displacement measured during printing. , and the slope may be used as the input variable Vi.
  • the ink characteristics may be included in the model in order to make the model versatile.
  • one model can handle inks with various characteristics.
  • the model may include information about the device configuration (for example, the volume inside the ejection head 21). In this case, one model can correspond to various device configurations.
  • the first heater control section 91 sets the heater command value CV1 so that the heater section 351 is warmed in advance in preparation for the temperature drop due to the flow rate fluctuation. to output
  • the first heater control section 91 may determine the heater command value CV1 based on a lookup table that defines the relationship between the flow rate Fp1 and the temperature difference DT1 and the heater command value CV1.
  • the first heater control unit 91 may determine the heater command value CV1 using an inference model that inputs the flow rate Fp1 and the temperature difference DT1 and outputs the heater command value CV1.
  • This inference model may be constructed using a machine learning algorithm similar to the flow prediction model 931 described above.
  • the first heater control section 91 may output the heater command value CV1 based on the outside air temperature Te2 measured by the outside air temperature sensor 39.
  • the tank internal temperature Te1 is strongly influenced by the temperature outside the ink tank 311 . Therefore, the ink can be appropriately heated by determining the heater command value CV1 in consideration of the outside air temperature Te2.
  • the first heater control section 91 may output the heater command value CV1 based on the flow rate Fc1 measured by the flow meter 341.
  • the first heater control unit 91 can determine the heater command value CV1 according to fluctuations in the flow rate that can occur after the lapse of a predetermined time from the current time, so that the ink can be heated appropriately.
  • the first heater control unit 91 may output the heater command value CV1 based on the thermal properties of the ink (specific heat, thermal conductivity, etc.).
  • the thermal properties of the ink are provided to the first heater controller 91 based on user input. Thermal properties of the ink can play a large role in the amount of heat to be applied. Therefore, the ink can be appropriately heated by determining the heater command value CV1 in consideration of the thermal characteristics of the ink.
  • the first heater control unit 91 may output a negative heater command value VC1 when the predicted flow rate Fp1 decreases.
  • the heating amount of the heater section 351 can be reduced (or set to zero) according to the predicted decrease in the flow rate Fp1. can be done. As a result, it is possible to prevent the ink from being heated more than necessary when the flow rate of the ink to the ejection heads 21 to 24 is reduced.
  • the second heater control unit 92 executes feedback (FB) control.
  • FB control is preferably PID control.
  • FB control may be PI control.
  • FIG. 4 is a diagram showing temperature fluctuations of the ink at the exit position of the heater section 351.
  • the horizontal axis indicates time, and the vertical axis indicates temperature measured by the outlet temperature sensor 371 .
  • a waveform G11 indicates a temperature change when only the FB control by the second heater control section 92 is performed.
  • a waveform G12 indicates a temperature change when FF control is performed by the first heater control unit 91 in addition to FB control.
  • a waveform G2 in FIG. 4 indicates the fluctuation of the ink flow rate Fc1 measured by the flow meter 341.
  • the waveform G11 is out of the allowable temperature range (here, 32° C. ⁇ 0.5° C.), while the waveform G12 is almost within the allowable temperature range.
  • FIG. 5 is a diagram showing the correspondence relationship between the temperature of the ink at the inlet position of the heater section 351 and the width of temperature fluctuation.
  • the horizontal axis indicates the temperature of the ink at the inlet position (that is, the temperature of the ink before being heated by the heater section 351; hereinafter referred to as "heater inlet position temperature")
  • the vertical axis indicates the temperature fluctuation range.
  • the graph G31 shows the correspondence when only the FB control by the second heater control unit 92 is performed
  • the graph G32 shows the correspondence when the FF control is performed by the first heater control unit 91 in addition to the FB control. Show relationship.
  • the heater inlet position temperature is set to a relatively high temperature (eg, approximately 23° C. or higher).
  • the target temperature fluctuation range can be achieved at a relatively low heater inlet temperature (for example, about 16° C. or higher). That is, by combining the FF control by the first heater control section 91 and the FB control by the second heater control section 92, the condition of the heater inlet position temperature can be greatly relaxed.
  • the temperature control system can be simplified by omitting a heater for heating the ink in the ink tank 311 . However, providing a heater in the ink tank 311 is not prevented.
  • ink is supplied in one direction from the supply unit 30 to each of the ejection heads 21-24.
  • a circulation path for circulating ink may be provided between the supply section 30 and each of the ejection heads 21-24.
  • a circulation path may be provided for circulating the ink within the ejection heads 21 to 24 .
  • a heater section for heating the ink may be provided on the circulation path, and the heater section may be controlled by the first heater control section 91 and the second heater control section 92 .
  • control unit 21-24 ejection head 39 outside temperature sensor 90 ejection control unit 91 first heater control unit 92 second heater control unit 93 flow rate prediction unit 95 motor drive unit 311 ink tank 321 pipe 331 pump 341 flow meter 351 Heater part 361 In-tank temperature sensor 371 Outlet temperature sensor 931 Flow rate prediction model W Base material

Landscapes

  • Ink Jet (AREA)

Abstract

Provided is technology capable of reducing the temperature fluctuation range of ink in a discharge head even if the amount of ink flowing into the discharge head fluctuates. A flow rate prediction unit (93) predicts the flow rate of ink flowing from an ink tank (311) to a discharge head (21) after a predetermined time from the present time. A first heater control unit (91) controls a heater unit (351) on the basis of a flow rate (Fp1) predicted by the flow rate prediction unit (93). An outlet temperature sensor (371) measures a temperature (Te3) of the ink flowing from the heater unit (351) to the discharge head (21). A second heater control unit (92) controls the heater unit (351) on the basis of the difference between the temperature (Te3) measured by the outlet temperature sensor (371) and a preset target temperature (Ttg).

Description

印刷装置および印刷方法Printing device and printing method
 本発明は、印刷装置および印刷方法に関する。 The present invention relates to a printing device and a printing method.
 従来、連帳の基材をロールtoロール方式で搬送しつつ、吐出ヘッドから基材の表面にインクを吐出することによって、基材に画像を形成する印刷装置が知られている。この種の印刷装置では、一般的に、インクの粘度管理が重要となっている。 Conventionally, there has been known a printing apparatus that forms an image on a base material by ejecting ink from an ejection head onto the surface of the base material while conveying the base material in a continuous form by a roll-to-roll method. In this type of printing apparatus, ink viscosity management is generally important.
 例えば、インクの温度が低下した場合、粘度が増大することによって、吐出ムラが発生することで、インクの着弾位置のずれ、または、スジの発生などの不具合が発生する。このため、インク温度を一定にする目的で、インクを加熱する機構が設けられる場合がある。 For example, when the temperature of the ink drops, the viscosity increases, which causes uneven ejection, which causes problems such as deviation of the landing position of the ink and the occurrence of streaks. Therefore, in some cases, a mechanism for heating the ink is provided for the purpose of keeping the ink temperature constant.
 例えば、特許文献1では、吐出ヘッドに接続された循環経路内でインクが循環されるとともに、当該循環経路を流れるインクが温水ユニットで加熱される。 For example, in Patent Document 1, ink is circulated in a circulation path connected to an ejection head, and the ink flowing through the circulation path is heated by a hot water unit.
特開2016-055501号公報JP 2016-055501 A
 しかしながら、吐出ヘッド内のインクの温度は、未使用のインクを貯蔵するインクタンクから吐出ヘッドへ流入するインクの量に応じて、不規則に変動し得る。このため、吐出ヘッド内のインクを一様に加熱するだけでは、インクの温度変動幅が大きくなるおそれがあった。 However, the temperature of the ink in the ejection head may fluctuate irregularly according to the amount of ink flowing into the ejection head from an ink tank that stores unused ink. For this reason, there is a possibility that the temperature fluctuation range of the ink may become large only by uniformly heating the ink in the ejection head.
 本発明の目的は、吐出ヘッドに流入するインクの量が変動しても、吐出ヘッド内のインクの温度変動幅を小さくすることができる技術を提供することにある。 An object of the present invention is to provide a technique capable of reducing the temperature fluctuation range of the ink in the ejection head even if the amount of ink flowing into the ejection head fluctuates.
 上記課題を解決するため、第1態様は、印刷装置であって、基材の表面にインクを吐出する吐出ヘッドと、前記インクを貯蔵可能なインクタンクと、前記インクタンクから前記吐出ヘッドへ前記インクを供給するインク供給部と、前記インクタンクから前記吐出ヘッドへ流れるインクを加熱するヒータ部と、現時点から所定時間後に、前記インクタンクから前記吐出ヘッドへ流れるインクの流量を予測する流量予測部と、前記流量予測部によって予測される流量に基づいて、前記ヒータ部を制御する第1ヒータ制御部と、前記ヒータ部から前記吐出ヘッドへ流れるインクの温度を計測する第1温度計測部と、前記第1温度計測部によって計測される温度と、予め設定される目標温度との差に基づいて、前記ヒータ部を制御する第2ヒータ制御部とを備える。 In order to solve the above problems, a first aspect is a printing apparatus, comprising: an ejection head for ejecting ink onto a surface of a substrate; an ink tank capable of storing the ink; An ink supply unit that supplies ink, a heater unit that heats the ink flowing from the ink tank to the ejection head, and a flow rate prediction unit that predicts the flow rate of the ink that will flow from the ink tank to the ejection head after a predetermined time from the present time. a first heater control unit that controls the heater unit based on the flow rate predicted by the flow rate prediction unit; a first temperature measurement unit that measures the temperature of ink flowing from the heater unit to the ejection head; A second heater control section for controlling the heater section based on a difference between the temperature measured by the first temperature measurement section and a preset target temperature.
 第2態様は、第1態様の印刷装置であって、前記流量予測部は、前記吐出ヘッドにおけるインクの吐出量を示す吐出情報に基づいて流量を予測する。 A second aspect is the printing apparatus of the first aspect, wherein the flow rate prediction unit predicts the flow rate based on ejection information indicating the amount of ink ejected from the ejection head.
 第3態様は、第2態様の印刷装置であって、印刷データに基づいて前記吐出ヘッドを制御する吐出制御部、をさらに備え、前記吐出情報は、前記印刷データを含む。 A third aspect is the printing apparatus of the second aspect, further comprising an ejection control section that controls the ejection head based on print data, and the ejection information includes the print data.
 第4態様は、第1態様から第3態様のいずれか1つの印刷装置であって、前記インクタンク内のインクの温度を計測する第2温度計測部、をさらに備え、前記第1ヒータ制御部は、前記第2温度計測部によって計測される温度と、予め設定される目標温度との差に基づいて、前記ヒータ部を制御する。 A fourth aspect is the printing apparatus according to any one of the first aspect to the third aspect, further comprising a second temperature measurement section that measures the temperature of the ink in the ink tank, and the first heater control section controls the heater section based on the difference between the temperature measured by the second temperature measurement section and a preset target temperature.
 第5態様は、第1態様から第4態様のいずれか1つの印刷装置であって、前記インクタンク外の温度を計測する第3温度計測部、をさらに備え、前記第1ヒータ制御部は、前記第3温度計測部によって計測される温度に基づいて、前記ヒータ部を制御する。 A fifth aspect is the printing apparatus according to any one of the first aspect to the fourth aspect, further comprising a third temperature measurement section for measuring a temperature outside the ink tank, wherein the first heater control section The heater section is controlled based on the temperature measured by the third temperature measurement section.
 第6態様は、第1態様から第5態様のいずれか1つの印刷装置であって、前記インクタンクから前記吐出ヘッドへ供給されるインクの流量を計測する流量計測部、をさらに備え、前記第1ヒータ制御部は、前記流量計測部によって計測される流量に基づいて、前記ヒータ部を制御する。 A sixth aspect is the printing apparatus according to any one of the first aspect to the fifth aspect, further comprising a flow rate measuring section for measuring a flow rate of ink supplied from the ink tank to the ejection head, The 1-heater control section controls the heater section based on the flow rate measured by the flow rate measurement section.
 第7態様は、印刷方法であって、a)現時点から所定時間後にインクタンクから吐出ヘッドへ流れるインクの流量を予測する予測工程と、b)前記インクタンクから前記吐出ヘッドへ流れる前記インクを、ヒータ部で加熱する工程と、c)前記ヒータ部から前記吐出ヘッドへ流れるインクの温度を計測する工程とを含み、前記工程b)は、b-1)前記工程a)によって予測される流量に基づいて、前記ヒータ部を制御する工程と、b-2)前記c)によって計測される温度と、予め設定される目標温度との差に基づいて、前記ヒータ部を制御する工程とを含む。 A seventh aspect is a printing method comprising: a) a prediction step of predicting the flow rate of ink flowing from the ink tank to the ejection head after a predetermined time from the current time; and c) measuring the temperature of the ink flowing from the heater to the ejection head. and b-2) controlling the heater unit based on the difference between the temperature measured in c) and a preset target temperature.
 第1態様から第6態様の印刷装置によれば、吐出ヘッドへ流れるインクの流量の予測値に基づいてヒータ部を制御することによって、温度変動幅を小さくすることができる。 According to the printing apparatuses of the first to sixth aspects, the temperature fluctuation width can be reduced by controlling the heater section based on the predicted value of the flow rate of the ink flowing to the ejection head.
 第2態様の印刷装置によれば、インクの吐出量に基づいて、流量を精度良く予測できる。 According to the printing apparatus of the second aspect, the flow rate can be accurately predicted based on the ink ejection amount.
 第3態様の印刷装置によれば、印刷データに基づいて、流量を精度良く予測できる。 According to the printing device of the third aspect, the flow rate can be accurately predicted based on the print data.
 第4態様の印刷装置によれば、目標温度とインクタンク内のインクの温度との温度差に基づいてヒータ部を制御することによって、吐出ヘッド内のインクの温度を適切に調節できる。 According to the printing apparatus of the fourth aspect, by controlling the heater section based on the temperature difference between the target temperature and the temperature of the ink in the ink tank, the temperature of the ink in the ejection head can be appropriately adjusted.
 第5態様の印刷装置によれば、インクタンク外の温度に基づいてヒータ部を制御することによって、吐出ヘッド内のインクの温度を適切に調節できる。 According to the printing apparatus of the fifth aspect, the temperature of the ink inside the ejection head can be appropriately adjusted by controlling the heater section based on the temperature outside the ink tank.
実施形態に係る印刷装置の構成を示す図である。1 is a diagram showing the configuration of a printing apparatus according to an embodiment; FIG. 制御部と印刷装置の各部との接続を示すブロック図である。3 is a block diagram showing connections between a control unit and each unit of the printing apparatus; FIG. ヒータ部を制御するための制御ブロック線図である。It is a control block diagram for controlling a heater part. ヒータ部の出口位置におけるインクの温度変動を示す図である。FIG. 5 is a diagram showing temperature fluctuations of ink at the outlet position of the heater section; ヒータ部の入口位置におけるインクの温度と、温度変動幅との対応関係を示す図である。FIG. 5 is a diagram showing the correspondence relationship between the temperature of ink at the inlet position of the heater section and the width of temperature fluctuation;
 以下、添付の図面を参照しながら、本発明の実施形態について説明する。なお、この実施形態に記載されている構成要素はあくまでも例示であり、本発明の範囲をそれらのみに限定する趣旨のものではない。図面においては、理解容易のため、必要に応じて各部の寸法や数が誇張又は簡略化して図示されている場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. It should be noted that the constituent elements described in this embodiment are merely examples, and are not intended to limit the scope of the present invention only to them. In the drawings, for ease of understanding, the dimensions and numbers of each part may be exaggerated or simplified as necessary.
 <1. 実施形態>
 図1は、実施形態に係る印刷装置1の構成を示す図である。印刷装置1は、インクジェット方式で印刷を行う装置である。より詳細には、印刷装置1は、複数の搬送ローラ12で長尺帯状の基材Wを搬送しつつ、複数の吐出ヘッド21―24から基材Wへインクを吐出することにより、基材Wの表面に画像を記録する。基材Wは、例えば柔軟性を有する媒体であって、例えば、印刷用紙、樹脂製フィルム、段ボールまたは金属薄膜である。
<1. embodiment>
FIG. 1 is a diagram showing the configuration of a printing apparatus 1 according to an embodiment. The printing device 1 is a device that performs printing using an inkjet method. More specifically, the printing apparatus 1 ejects ink from the plurality of ejection heads 21 to 24 onto the substrate W while transporting the substrate W in the form of a long belt with the plurality of transportation rollers 12. record an image on the surface of the The substrate W is, for example, a flexible medium such as printing paper, resin film, cardboard, or metal thin film.
 図1に示すように、印刷装置1は、搬送機構10、印刷部20、供給部30、エンコーダ60、カメラ70、複数の各種センサ80、および制御部9を備えている。 As shown in FIG. 1, the printing apparatus 1 includes a transport mechanism 10, a printing section 20, a supply section 30, an encoder 60, a camera 70, a plurality of various sensors 80, and a control section 9.
 搬送機構10は、所定の搬送経路に沿って、基材Wの長手方向に沿う搬送方向に、基材Wを搬送する。搬送機構10は、巻出ローラ11、複数の搬送ローラ12および巻取ローラ13を有する。基材Wは、これらのローラに掛け渡される。また、基材Wは、巻出ローラ11から繰り出され、複数の搬送ローラ12に支持されつつ、所定の搬送経路に沿って搬送される。各搬送ローラ12は、搬送方向に対して垂直な方向に延びる軸を中心として回転することにより、基材Wを搬送経路の下流側へ案内する。複数の搬送ローラ12によって搬送された基材Wは、巻取ローラ13に巻き取られる。基材Wには、搬送方向の張力が掛けられている。これにより、搬送中における基材Wの弛みや皺が抑制される。 The transport mechanism 10 transports the base material W in the transport direction along the longitudinal direction of the base material W along a predetermined transport route. The conveying mechanism 10 has an unwinding roller 11 , a plurality of conveying rollers 12 and a winding roller 13 . A substrate W is stretched over these rollers. The base material W is unwound from the unwinding roller 11 and conveyed along a predetermined conveying path while being supported by the plurality of conveying rollers 12 . Each transport roller 12 guides the substrate W to the downstream side of the transport path by rotating around an axis extending in a direction perpendicular to the transport direction. The substrate W transported by the plurality of transport rollers 12 is wound around the take-up roller 13 . A tension is applied to the substrate W in the transport direction. This suppresses slackness and wrinkles of the base material W during transportation.
 搬送機構10は、一部のローラ(以下、「駆動ローラ」と称する)を回転させるモータ14をさらに有する。搬送機構10は、複数のモータ14を備えていてもよい。モータ14は、制御部9と電気的に接続されている。モータ14の駆動時には、制御部9から、モータ14を回転駆動させるための指令値が各モータ14へ入力される。そうすると、モータ14が、指令値に応じて駆動し、駆動ローラが回転する。この結果、巻出ローラ11から巻取ローラ13へ向けて、基材Wが搬送される。 The transport mechanism 10 further has a motor 14 that rotates some rollers (hereinafter referred to as "drive rollers"). The transport mechanism 10 may include multiple motors 14 . Motor 14 is electrically connected to controller 9 . When the motors 14 are driven, a command value for rotating the motors 14 is input to each motor 14 from the control unit 9 . Then, the motor 14 is driven according to the command value, and the drive roller rotates. As a result, the base material W is conveyed from the unwinding roller 11 toward the winding roller 13 .
 印刷部20は、搬送機構10により搬送される基材Wに対して、インクの液滴(以下「インク滴」と称する)を吐出する処理部である。印刷部20は、複数(本例では、4つ)吐出ヘッド21―24を有する。吐出ヘッド21―24は、互いに同じ構造を有する。また、吐出ヘッド21―24は、基材Wの搬送方向に沿って、間隔をあけて配列されている。なお、基材Wは、複数の吐出ヘッド21―24の下方において、複数の吐出ヘッド21―24の配列方向と略平行に移動する。このとき、基材Wの表面(印刷面)は、上方(各吐出ヘッド21―24側)に向いている。 The printing unit 20 is a processing unit that ejects ink droplets (hereinafter referred to as "ink droplets") onto the base material W conveyed by the conveying mechanism 10 . The printing unit 20 has a plurality (four in this example) of ejection heads 21-24. The ejection heads 21-24 have the same structure. In addition, the ejection heads 21 to 24 are arranged at intervals along the direction in which the substrate W is conveyed. Note that the substrate W moves substantially parallel to the arrangement direction of the plurality of ejection heads 21-24 below the plurality of ejection heads 21-24. At this time, the surface (printing surface) of the base material W faces upward (toward the ejection heads 21 to 24).
 また、吐出ヘッド21―24はそれぞれ、インクを貯蔵可能な内部空間と、複数のノズル(不図示)とを有する。複数のノズルは、各吐出ヘッド21―24の下面において、基材Wの幅方向と平行に配列されている。また、複数のノズルはそれぞれ、図示を省略した圧力発生素子としてのピエゾ素子と、各吐出ヘッド21―24の内部空間に連通する吐出口とを有する。インク吐出時には、上記内部空間から吐出口付近へインクが流下する。そして、ピエゾ素子の作用により、吐出口付近のインクが加圧されることにより、吐出口から液滴状のインクが吐出される。なお、インクの吐出方式は、圧力発生素子としてヒータを用いることにより、吐出口付近のインクを加熱して泡を発生させる、いわゆるサーマル方式であってもよい。 In addition, each of the ejection heads 21-24 has an internal space capable of storing ink and a plurality of nozzles (not shown). A plurality of nozzles are arranged in parallel with the width direction of the substrate W on the lower surface of each of the ejection heads 21-24. Further, each of the plurality of nozzles has a piezo element as a pressure generating element (not shown) and an ejection port communicating with the internal space of each of the ejection heads 21-24. During ink ejection, the ink flows down from the internal space to the vicinity of the ejection port. Then, the ink in the vicinity of the ejection port is pressurized by the action of the piezo element, thereby ejecting droplets of ink from the ejection port. The ink ejection method may be a so-called thermal method in which a heater is used as a pressure generating element to heat the ink in the vicinity of the ejection port to generate bubbles.
 各吐出ヘッド21―24は、複数のノズルから基材Wの上面へ向けて、多色画像の色成分となるK(ブラック)、C(シアン)、M(マゼンタ)、Y(イエロー)の各色のインク滴を、それぞれ吐出する。すなわち、吐出ヘッド21は、搬送経路上の処理位置である第1印刷位置P1において、基材Wの上面に、処理物質としてのK色のインク滴を吐出する。吐出ヘッド22は、第1印刷位置P1よりも下流側の処理位置である第2印刷位置P2において、基材Wの上面に、処理物質としてのC色のインク滴を吐出する。吐出ヘッド23は、第2印刷位置P2よりも下流側の処理位置である第3印刷位置P3において、基材Wの上面に、処理物質としてのM色のインク滴を吐出する。吐出ヘッド24は、第3印刷位置P3よりも下流側の処理位置である第4印刷位置P4において、基材Wの上面に、処理物質としてのY色のインク滴を吐出する。 Each of the ejection heads 21 to 24 directs from a plurality of nozzles toward the upper surface of the base material W, each of K (black), C (cyan), M (magenta), and Y (yellow), which are color components of a multicolor image. of ink droplets are respectively ejected. That is, the ejection head 21 ejects K-color ink droplets as a processing substance onto the upper surface of the base material W at the first printing position P1, which is the processing position on the transport path. The ejection head 22 ejects C-color ink droplets as a processing substance onto the upper surface of the substrate W at a second printing position P2, which is a processing position downstream of the first printing position P1. The ejection head 23 ejects M-color ink droplets as a processing substance onto the upper surface of the substrate W at a third printing position P3, which is a processing position downstream of the second printing position P2. The ejection head 24 ejects Y-color ink droplets as a processing substance onto the upper surface of the substrate W at a fourth printing position P4, which is a processing position downstream of the third printing position P3.
 本実施形態では、第1印刷位置P1、第2印刷位置P2、第3印刷位置P3、および第4印刷位置P4は、基材Wの搬送方向に沿って、等間隔に配列されている。吐出ヘッド21―24は、インク滴を吐出することによって、基材Wの上面に、それぞれ単色画像を記録する。そして、4つの単色画像の重ね合わせにより、基材Wの上面に、多色画像が形成される。また、各吐出ヘッド21―24は、インク滴を吐出することによって、基材Wの上面に、印字を行うこともできる。 In this embodiment, the first printing position P1, the second printing position P2, the third printing position P3, and the fourth printing position P4 are arranged at equal intervals along the transport direction of the base material W. The ejection heads 21 to 24 respectively record monochromatic images on the top surface of the substrate W by ejecting ink droplets. Then, a multicolor image is formed on the upper surface of the substrate W by superimposing the four monochromatic images. Further, each of the ejection heads 21 to 24 can print on the upper surface of the base material W by ejecting ink droplets.
 供給部30は、インクを吐出ヘッド21―24に供給するユニットである。供給部30は、複数(本例では、4つ)のインク供給系統31を有する。複数のインク供給系統31は、吐出ヘッド21―24にそれぞれ接続されており、対応する色のインクを吐出ヘッド21―24にそれぞれ供給する。以下、吐出ヘッド21にインクを供給するインク供給系統31について説明する。 The supply unit 30 is a unit that supplies ink to the ejection heads 21-24. The supply unit 30 has a plurality (four in this example) of ink supply systems 31 . A plurality of ink supply systems 31 are connected to the ejection heads 21 to 24, respectively, and supply inks of corresponding colors to the ejection heads 21 to 24, respectively. The ink supply system 31 that supplies ink to the ejection head 21 will be described below.
 インク供給系統31は、インクタンク311と、配管321と、ポンプ331と、流量計341と、ヒータ部351と、タンク内温度センサ361と、出口温度センサ371と、液面センサ381を有する。 The ink supply system 31 has an ink tank 311 , a pipe 321 , a pump 331 , a flow meter 341 , a heater section 351 , an in-tank temperature sensor 361 , an outlet temperature sensor 371 , and a liquid level sensor 381 .
 インクタンク311は、未使用のインクを貯蔵する。配管321の一端は、吐出ヘッド21の内部空間に接続されている。配管321の他端は、インクタンク311に接続されている。ポンプ331は、配管321に設置されている。ポンプ331は、インクタンク311から吐出ヘッド21へと向かうインクの流れを発生させる。ポンプ331は、例えばブラシレスモータが搭載されたポンプである。配管321およびポンプ331は、インクタンク311から吐出ヘッド21へインクを供給する「インク供給部」の一例である。なお、インクタンク311内を加圧する加圧機構によって、インクタンク311のインクが吐出ヘッド21へ送られてもよい。この場合、加圧機構が「インク供給部」として機能する。 The ink tank 311 stores unused ink. One end of the pipe 321 is connected to the internal space of the ejection head 21 . The other end of the pipe 321 is connected to the ink tank 311 . A pump 331 is installed in the pipe 321 . A pump 331 generates a flow of ink from the ink tank 311 toward the ejection head 21 . The pump 331 is, for example, a pump equipped with a brushless motor. The pipe 321 and the pump 331 are an example of an “ink supply unit” that supplies ink from the ink tank 311 to the ejection head 21 . The ink in the ink tank 311 may be sent to the ejection head 21 by a pressurizing mechanism that pressurizes the inside of the ink tank 311 . In this case, the pressure mechanism functions as an "ink supply section".
 流量計341は、配管321に設置されている。流量計341は、配管321内を流れるインクの流量を計測する。流量計341は、計測した流量値を示す信号を、制御部9へ送信する。 The flow meter 341 is installed in the pipe 321. A flow meter 341 measures the flow rate of ink flowing through the pipe 321 . The flow meter 341 transmits a signal indicating the measured flow rate to the controller 9 .
 吐出ヘッド21から基材Wへ向けてインク滴が吐出されると、吐出ヘッド21内のインク量が減少する。制御部9は、吐出ヘッド21内のインク量の減少に応じて、ポンプ331に対して駆動値が入力される。これにより、ポンプ331が駆動値に応じて駆動し、吐出ヘッド21内のインクの減少量に応じた量のインクが、インクタンク311から吐出ヘッド21へ供給される。他の吐出ヘッド22―24についても、吐出ヘッド21と同様に、対応するインク供給系統31からインクがそれぞれ供給される。 When ink droplets are ejected from the ejection head 21 toward the substrate W, the amount of ink in the ejection head 21 decreases. The controller 9 inputs a drive value to the pump 331 according to the decrease in the amount of ink in the ejection head 21 . As a result, the pump 331 is driven according to the drive value, and an amount of ink corresponding to the decrease in ink in the ejection head 21 is supplied from the ink tank 311 to the ejection head 21 . Similarly to the ejection head 21, the other ejection heads 22-24 are supplied with ink from the corresponding ink supply system 31, respectively.
 ヒータ部351は、吐出ヘッド21に供給されるインクを加熱する。ヒータ部351は、配管321に設置されている。ヒータ部351は、ポンプ331と流量計341との間に位置する。ヒータ部351は、配管321を流れるインクを加熱する。 The heater section 351 heats ink supplied to the ejection head 21 . The heater section 351 is installed on the pipe 321 . The heater section 351 is positioned between the pump 331 and the flow meter 341 . The heater section 351 heats the ink flowing through the pipe 321 .
 タンク内温度センサ361(第2温度計測部)は、インクタンク311内に設置されている。タンク内温度センサ361は、インクタンク311内に貯蔵されているインクの温度を計測する。タンク内温度センサ361は、計測した温度を示す信号を制御部9へ送信する。 The in-tank temperature sensor 361 (second temperature measuring unit) is installed inside the ink tank 311 . The in-tank temperature sensor 361 measures the temperature of the ink stored in the ink tank 311 . The in-tank temperature sensor 361 transmits a signal indicating the measured temperature to the controller 9 .
 出口温度センサ371(第1温度計測部)は、配管321に設置されている。出口温度センサ371は、ヒータ部351と吐出ヘッド21との間に位置する。出口温度センサ371は、ヒータ部351から配管321を介して吐出ヘッド21に流れるインクの温度を計測する。本例では、出口温度センサ371は、ヒータ部351の出口位置に設けられている。このため、ヒータ部351を通過した直後のインクの温度を計測する。ただし、出口温度センサ371は、ヒータ部351よりも吐出ヘッド21に近くに位置していてもよい。出口温度センサ371は、計測した温度を示す信号を制御部9へ送信する。 The outlet temperature sensor 371 (first temperature measurement unit) is installed on the pipe 321 . The outlet temperature sensor 371 is positioned between the heater section 351 and the ejection head 21 . The outlet temperature sensor 371 measures the temperature of ink flowing from the heater section 351 to the ejection head 21 via the pipe 321 . In this example, the outlet temperature sensor 371 is provided at the outlet position of the heater section 351 . Therefore, the temperature of the ink immediately after passing through the heater section 351 is measured. However, the outlet temperature sensor 371 may be positioned closer to the ejection head 21 than the heater section 351 . The outlet temperature sensor 371 transmits a signal indicating the measured temperature to the controller 9 .
 液面センサ381は、吐出ヘッド21内のインク量を計測するためのセンサであり、吐出ヘッド21内におけるインクの液面の高さを計測する。液面センサ381は、例えば、超音波を用いて液面の高さを検出する非接触式のセンサである。液面センサ381は、計測した液面の高さを示す信号を、制御部9に送信する。 The liquid level sensor 381 is a sensor for measuring the amount of ink in the ejection head 21 and measures the height of the ink liquid level in the ejection head 21 . The liquid level sensor 381 is, for example, a non-contact sensor that detects the height of the liquid level using ultrasonic waves. The liquid level sensor 381 transmits a signal indicating the measured liquid level to the controller 9 .
 供給部30は、外気温度センサ39(第3温度計測部)を有する。外気温度センサ39は、インクタンク311外に位置し、インクタンク311外の外気温度を計測する。 The supply unit 30 has an outside air temperature sensor 39 (third temperature measurement unit). The outside air temperature sensor 39 is positioned outside the ink tank 311 and measures the outside air temperature outside the ink tank 311 .
 エンコーダ60は、複数の搬送ローラ12のうちの1つ(図1の例では、搬送ローラ121)の軸芯に取り付けられる。エンコーダ60は、搬送ローラ121の回転を検出し、搬送ローラ121の回転に同期した連続パルス信号を、制御部9へ出力する。連続パルス信号は、搬送ローラ121を含む複数の搬送ローラ12によって搬送される基材Wの搬送速度の経時変化を反映したデータである。 The encoder 60 is attached to the axis of one of the plurality of transport rollers 12 (the transport roller 121 in the example of FIG. 1). The encoder 60 detects the rotation of the transport roller 121 and outputs a continuous pulse signal synchronized with the rotation of the transport roller 121 to the controller 9 . The continuous pulse signal is data that reflects changes over time in the transport speed of the substrate W transported by the plurality of transport rollers 12 including the transport roller 121 .
 カメラ70は、印刷部20を通過した基材Wの印刷面(表面)を撮影する撮像装置である。カメラ70は、4つの吐出ヘッド21―24よりも搬送経路の下流側の撮影位置P5において、基材Wの印刷面に対向して配置される。カメラ70は、例えば、CCDやCMOS等の撮像素子が、幅方向に複数配列されたラインセンサを有する。搬送機構10により基材Wが搬送されている間、カメラ70は、基材Wの印刷面を所定周期で撮影することにより、印刷済みの基材Wの画像データを取得する。カメラ70は、得られた画像データを、制御部9へ送信する。 The camera 70 is an imaging device that captures the printed surface (front surface) of the base material W that has passed through the printing unit 20 . The camera 70 is arranged to face the printing surface of the base material W at an imaging position P5 downstream of the four ejection heads 21 to 24 in the transport path. The camera 70 has, for example, a line sensor in which a plurality of imaging devices such as CCDs and CMOSs are arranged in the width direction. While the substrate W is being transported by the transport mechanism 10, the camera 70 acquires image data of the printed substrate W by photographing the printed surface of the substrate W at predetermined intervals. The camera 70 transmits the obtained image data to the control section 9 .
 複数の各種センサ80は、上記に挙げられたものの他に、基材Wの搬送状態を計測する計測器である。複数の各種センサ80は、基材Wの搬送経路上の複数の計測箇所に設けられている。各種センサ80は、各計測箇所において、それぞれ計測値を取得する。各種センサ80の計測項目には、例えば、基材Wの上下変位(基材Wに対して垂直な方向の変位量)、基材Wに掛かる張力、基材Wのエッジの幅方向の位置、等を含めることができる。なお、同一の項目を計測する各種センサ80が、搬送経路の複数の位置に配置されていてもよい。搬送機構10により基材Wが搬送されている間、複数の各種センサ80は、各計測箇所の状態を、常に計測する。そして、各種センサ80は、得られた計測値を示す信号を、制御部9へ送信する。 A plurality of various sensors 80 are measuring instruments for measuring the transport state of the substrate W, in addition to those listed above. A plurality of various sensors 80 are provided at a plurality of measurement points on the transport path of the substrate W. As shown in FIG. Various sensors 80 acquire measured values at respective measurement locations. The measurement items of the various sensors 80 include, for example, the vertical displacement of the base material W (the amount of displacement in the direction perpendicular to the base material W), the tension applied to the base material W, the position of the edge of the base material W in the width direction, etc. can be included. Various sensors 80 that measure the same item may be arranged at a plurality of positions on the transport route. While the substrate W is being transported by the transport mechanism 10, the plurality of various sensors 80 constantly measure the state of each measurement location. The various sensors 80 then transmit signals indicating the obtained measurement values to the control unit 9 .
 図2は、制御部9と印刷装置1の各部との接続を示すブロック図である。制御部9は、印刷装置1の動作を制御する。制御部9は、CPUなどで構成されるプロセッサ901と、RAMまたはハードディスクなどで構成される記憶部903と、を有する。記憶部903は、プログラム90Pおよび各種データを記憶する。 FIG. 2 is a block diagram showing connections between the control unit 9 and each unit of the printing apparatus 1. As shown in FIG. The control unit 9 controls operations of the printing apparatus 1 . The control unit 9 has a processor 901 configured by a CPU or the like, and a storage unit 903 configured by a RAM, hard disk, or the like. Storage unit 903 stores program 90P and various data.
 プログラム90Pは、記録媒体Mによって提供される。プログラム90Pは、記録媒体Mに、コンピュータである制御部9によって読取可能に記録されている。記録媒体Mは、例えば、USB(Universal Serial Bus)メモリ、DVD(Digital Versatile Disc)などの光学ディスク、または、磁気ディスクである。 The program 90P is provided by the recording medium M. The program 90P is recorded on the recording medium M so as to be readable by the control section 9, which is a computer. The recording medium M is, for example, a USB (Universal Serial Bus) memory, an optical disk such as a DVD (Digital Versatile Disc), or a magnetic disk.
 制御部9は、搬送機構10のモータ14と、印刷部20の吐出ヘッド21―24と、供給部30のポンプ331、流量計341、ヒータ部351、タンク内温度センサ361、出口温度センサ371、液面センサ381および外気温度センサ39と、通信可能に接続されている。また、制御部9は、エンコーダ60と、カメラ70と、各種センサ80と、通信可能に接続されている。 The control unit 9 controls the motor 14 of the transport mechanism 10, the ejection heads 21 to 24 of the printing unit 20, the pump 331 of the supply unit 30, the flow meter 341, the heater unit 351, the tank internal temperature sensor 361, the outlet temperature sensor 371, It is communicably connected to the liquid level sensor 381 and the outside air temperature sensor 39 . Also, the control unit 9 is communicably connected to the encoder 60, the camera 70, and various sensors 80. FIG.
 図2に示す吐出制御部90、第1ヒータ制御部91、第2ヒータ制御部92、流量予測部93、および学習部94は、プロセッサ901がプログラム90Pを実行することによって実現される機能である。吐出制御部90は、基材Wに印刷する画像を示す印刷データに基づいて、吐出ヘッド21―24からのインクの吐出を制御する。第1ヒータ制御部91および第2ヒータ制御部92は、ヒータ部351を制御する。第1ヒータ制御部91、第2ヒータ制御部92、流量予測部93および学習部94の機能については、図3を参照しつつ説明する。 The ejection control unit 90, the first heater control unit 91, the second heater control unit 92, the flow rate prediction unit 93, and the learning unit 94 shown in FIG. 2 are functions realized by the processor 901 executing the program 90P. . The ejection control unit 90 controls ejection of ink from the ejection heads 21 to 24 based on print data indicating an image to be printed on the base material W. FIG. The first heater control section 91 and the second heater control section 92 control the heater section 351 . Functions of the first heater control section 91, the second heater control section 92, the flow rate prediction section 93, and the learning section 94 will be described with reference to FIG.
 <ヒータ部の制御>
 図3は、ヒータ部351を制御するための制御ブロック線図である。以下の説明では、吐出ヘッド21に接続されているインク供給系統31のヒータ部351を制御する場合について主に説明する。吐出ヘッド22―24に接続されるインク供給系統31においても、図3に示す制御と同様の制御が行われる。
<Control of heater>
FIG. 3 is a control block diagram for controlling the heater section 351. As shown in FIG. In the following description, the case of controlling the heater section 351 of the ink supply system 31 connected to the ejection head 21 will be mainly described. Also in the ink supply system 31 connected to the ejection heads 22-24, control similar to that shown in FIG. 3 is performed.
 第1ヒータ制御部91および第2ヒータ制御部92は、それぞれヒータ指令値CV1,CV2をヒータ部351に出力する。一例として、ヒータ指令値CV1,CV2は、ヒータ部351が備えるヒータに付与される電力値を示す値である。ヒータ部351は、入力されたヒータ指令値CV1,CV2の合計値に応じて、ヒータの加熱を行う。 The first heater control section 91 and the second heater control section 92 output heater command values CV1 and CV2 to the heater section 351, respectively. As an example, the heater command values CV1 and CV2 are values indicating power values applied to heaters included in the heater section 351 . The heater unit 351 heats the heater according to the sum of the input heater command values CV1 and CV2.
 第1ヒータ制御部91は、フィードフォワード(FF)制御を実行する。第1ヒータ制御部91は、吐出ヘッド21内のインクの温度が、所定時間後(例えば、数秒後あるいは数十秒後)に、予め設定された目標温度Ttgとなるように、ヒータ指令値CV1を出力する。 The first heater control unit 91 executes feedforward (FF) control. The first heater control unit 91 controls the heater command value CV1 so that the temperature of the ink in the ejection head 21 reaches a preset target temperature Ttg after a predetermined time (for example, after several seconds or several tens of seconds). to output
 具体的には、第1ヒータ制御部91は、流量予測部93によって予測される流量に基づいて、ヒータ部351を制御する。流量予測部93は、流量予測モデル931を用いて、所定時間後に吐出ヘッド21に流入するインクの流量Fp1を予測する。流量Fp1は、将来の一時点における流量であってもよいし、流量の時間変動を示す流量変動波形であってもよい。流量予測モデル931は、記憶部903に保存されている。流量予測モデル931は、入力変数Viから、所定時間後の流量Fp1を出力する。 Specifically, the first heater control section 91 controls the heater section 351 based on the flow rate predicted by the flow rate prediction section 93 . The flow rate prediction unit 93 uses the flow rate prediction model 931 to predict the flow rate Fp1 of the ink flowing into the ejection head 21 after a predetermined period of time. The flow rate Fp1 may be the flow rate at a point in time in the future, or may be a flow rate fluctuation waveform that indicates the time fluctuation of the flow rate. The flow rate prediction model 931 is stored in the storage section 903 . The flow rate prediction model 931 outputs the flow rate Fp1 after a predetermined time from the input variable Vi.
 入力変数Viは、印刷データが示す印刷パターン、制御部9が吐出ヘッド21を駆動するために吐出ヘッド21に出力するヘッド駆動波形、インク吐出カウント、液面センサ381によって計測される吐出ヘッド21内のインク液面高さ、または、これらの情報の組合せである。印刷パターンを示す印刷データ、ヘッド駆動波形、インク吐出カウントおよびインク液面高さは、吐出ヘッド21におけるインクの吐出量を示す吐出情報である。吐出情報を入力変数Viとすることによって、所定時間後の流量を精度良く予測できる。特に、印刷データが示す印刷パターンを入力変数Viに含めることによって、所定時間後の流量を精度良く予測できる。 The input variables Vi are the print pattern indicated by the print data, the head driving waveform output to the ejection head 21 by the control unit 9 to drive the ejection head 21, the ink ejection count, and the or a combination of these information. The print data indicating the print pattern, the head drive waveform, the ink ejection count, and the ink liquid surface height are ejection information indicating the amount of ink ejected from the ejection head 21 . By using the discharge information as the input variable Vi, the flow rate after a predetermined time can be predicted with high accuracy. In particular, by including the print pattern indicated by the print data in the input variable Vi, the flow rate after a predetermined time can be predicted with high accuracy.
 学習部94は、流量予測モデル931を構築するための機械学習を行う。制御部9は、流量計341によって計測された流量を、記憶部903に保存する。学習部94は、入力変数Viと、その入力変数Viに対応する時刻から所定時間後に流量計341が計測した流量との関係を、教師あり機械学習アルゴリズムに基づいて学習することにより、流量予測モデル931を構築する。 The learning unit 94 performs machine learning to construct the flow rate prediction model 931. The control unit 9 stores the flow rate measured by the flow meter 341 in the storage unit 903 . The learning unit 94 learns the relationship between the input variable Vi and the flow rate measured by the flow meter 341 after a predetermined time from the time corresponding to the input variable Vi based on a supervised machine learning algorithm, thereby forming a flow rate prediction model. Build 931.
 学習部94において使用される機械学習アルゴリズムは、単純な回帰アルゴリズム、
決定木モデル(ランダムフォレストまたは勾配ブースティングなど)、深層学習アルゴリズム(畳み込みニューラルネットワーク)でもよい。また、使用されるインクの種類または特性に応じて、適切な機械学習アルゴリズムまたは入力変数Viの組合せが選定されてもよい。また、学習部94は、定期的、または、ユーザからの指示入力に基づいて、機械学習を行うことによって、流量予測モデル931を更新してもよい。これにより、流量予測モデル931が更新されることによって、流量予測モデル931の劣化を抑制できる。
The machine learning algorithms used in learning section 94 are simple regression algorithms,
It may be a decision tree model (random forest or gradient boosting, etc.), a deep learning algorithm (convolutional neural network). Appropriate machine learning algorithms or combinations of input variables Vi may also be selected depending on the type or characteristics of the ink used. Also, the learning unit 94 may update the flow rate prediction model 931 by performing machine learning periodically or based on an instruction input from the user. Accordingly, deterioration of the flow rate prediction model 931 can be suppressed by updating the flow rate prediction model 931 .
 印刷パターンを使用する場合、流量予測部93は、画像データが示す各色の濃度情報からインク吐出量(消費量)を中間データとして生成してもよい。そして、流量予測モデル931は、この中間データを入力変数Viとして、流量Fp1を出力するように構成されてもよい。また、流量予測モデル931は、画像データを入力変数Viとして、流量Fp1を出力するように構築されてもよい。この場合、教師あり学習の深層学習アルゴリズムによって、流量予測モデル931が構築されてもよい。 When using the print pattern, the flow rate prediction unit 93 may generate the ink discharge amount (consumption amount) as intermediate data from the density information of each color indicated by the image data. The flow rate prediction model 931 may be configured to output the flow rate Fp1 using this intermediate data as an input variable Vi. Also, the flow rate prediction model 931 may be constructed so as to output the flow rate Fp1 with the image data as the input variable Vi. In this case, the flow prediction model 931 may be constructed by a supervised deep learning algorithm.
 また、液面センサ381によって計測される液面高さの変位を使用する場合、流量予測モデル931は、印刷中に計測される液面高さの変位からインクの減り方の傾き(微分値)を算出し、当該傾きを入力変数Viとしてもよい。 In addition, when using the liquid level height displacement measured by the liquid level sensor 381, the flow rate prediction model 931 calculates the inclination (differential value) of how the ink decreases from the liquid level height displacement measured during printing. , and the slope may be used as the input variable Vi.
 流量予測モデル931を構築する際、モデルに汎用性を持たせるために、インクの特性(粘性、比熱または熱伝導率など)を含めてモデル化してもよい。この場合、1つのモデルで様々な特性を持つインクに対応できる。また、装置構成(例えば、吐出ヘッド21内の容積など)に関する情報を含めてモデル化してもよい。この場合、1つのモデルで様々な装置構成に対応できる。 When constructing the flow rate prediction model 931, the ink characteristics (viscosity, specific heat, thermal conductivity, etc.) may be included in the model in order to make the model versatile. In this case, one model can handle inks with various characteristics. Also, the model may include information about the device configuration (for example, the volume inside the ejection head 21). In this case, one model can correspond to various device configurations.
 第1ヒータ制御部91には、目標温度Ttgと、タンク内温度センサ361によって計測されるタンク内温度Te1との温度差DT1(=Ttg-Te1)が入力される。第1ヒータ制御部91は、この温度差DT1と、流量予測部93が出力する流量Fp1とに基づいて、流量変動による温度低下に備えて、予めヒータ部351が温まるように、ヒータ指令値CV1を出力する。 A temperature difference DT1 (=Ttg−Te1) between the target temperature Ttg and the tank internal temperature Te1 measured by the tank internal temperature sensor 361 is input to the first heater control unit 91 . Based on the temperature difference DT1 and the flow rate Fp1 output by the flow rate prediction section 93, the first heater control section 91 sets the heater command value CV1 so that the heater section 351 is warmed in advance in preparation for the temperature drop due to the flow rate fluctuation. to output
 第1ヒータ制御部91は、流量Fp1および温度差DT1と、ヒータ指令値CV1との関係を規定したルックアップテーブルに基づいて、ヒータ指令値CV1を決定してもよい。また、第1ヒータ制御部91は、流量Fp1および温度差DT1を入力とし、ヒータ指令値CV1を出力とする推論モデルを用いて、ヒータ指令値CV1を決定してもよい。この推論モデルは、上記の流量予測モデル931と同様の機械学習アルゴリズムを用いて構築してもよい。 The first heater control section 91 may determine the heater command value CV1 based on a lookup table that defines the relationship between the flow rate Fp1 and the temperature difference DT1 and the heater command value CV1. Alternatively, the first heater control unit 91 may determine the heater command value CV1 using an inference model that inputs the flow rate Fp1 and the temperature difference DT1 and outputs the heater command value CV1. This inference model may be constructed using a machine learning algorithm similar to the flow prediction model 931 described above.
 図3に示すように、第1ヒータ制御部91は、外気温度センサ39によって計測される外気温度Te2に基づいて、ヒータ指令値CV1を出力してもよい。タンク内温度Te1は、インクタンク311外の温度の影響を強く受ける。このため、外気温度Te2を考慮してヒータ指令値CV1が決定されることによって、インクを適切に加熱できる。 As shown in FIG. 3, the first heater control section 91 may output the heater command value CV1 based on the outside air temperature Te2 measured by the outside air temperature sensor 39. The tank internal temperature Te1 is strongly influenced by the temperature outside the ink tank 311 . Therefore, the ink can be appropriately heated by determining the heater command value CV1 in consideration of the outside air temperature Te2.
 図3に示すように、第1ヒータ制御部91は、流量計341によって計測される流量Fc1に基づいて、ヒータ指令値CV1を出力してもよい。この場合、第1ヒータ制御部91は、現時点から所定時間経過後までに発生し得る流量の変動に応じて、ヒータ指令値CV1を決定できるため、インクを適切に加熱できる。 As shown in FIG. 3, the first heater control section 91 may output the heater command value CV1 based on the flow rate Fc1 measured by the flow meter 341. In this case, the first heater control unit 91 can determine the heater command value CV1 according to fluctuations in the flow rate that can occur after the lapse of a predetermined time from the current time, so that the ink can be heated appropriately.
 第1ヒータ制御部91は、インクの熱特性(比熱または熱伝導率など)に基づいて、ヒータ指令値CV1を出力してもよい。インクの熱特性は、ユーザの入力に基づいて第1ヒータ制御部91に与えられる。インクの熱特性は、与えるべき熱量に大きく関与し得る。このため、インクの熱特性を考慮してヒータ指令値CV1が決定されることにより、インクを適切に加熱できる。 The first heater control unit 91 may output the heater command value CV1 based on the thermal properties of the ink (specific heat, thermal conductivity, etc.). The thermal properties of the ink are provided to the first heater controller 91 based on user input. Thermal properties of the ink can play a large role in the amount of heat to be applied. Therefore, the ink can be appropriately heated by determining the heater command value CV1 in consideration of the thermal characteristics of the ink.
 第1ヒータ制御部91は、予測される流量Fp1が減少する場合、負のヒータ指令値VC1を出力してもよい。この場合、ヒータ部351に与えられるヒータ指令値VC2の値を減らすことができるため、予測される流量Fp1の減少に応じて、ヒータ部351の加熱量を小さくする(あるいは、ゼロにする)ことができる。これにより、吐出ヘッド21―24へのインクの流量が減少する場合に、インクが必要以上に加熱されることを抑制できる。 The first heater control unit 91 may output a negative heater command value VC1 when the predicted flow rate Fp1 decreases. In this case, since the value of the heater command value VC2 given to the heater section 351 can be reduced, the heating amount of the heater section 351 can be reduced (or set to zero) according to the predicted decrease in the flow rate Fp1. can be done. As a result, it is possible to prevent the ink from being heated more than necessary when the flow rate of the ink to the ejection heads 21 to 24 is reduced.
 第2ヒータ制御部92は、フィードバック(FB)制御を実行する。FB制御は、好ましくはPID制御である。ただし、FB制御は、PI制御であってもよい。第2ヒータ制御部92は、目標温度Ttgと、出口温度センサ371が計測した出口位置におけるインクの温度Te3との差分値DT2(=Ttg-Te3)に基づいて、ヒータ指令値CV2をヒータ部351に出力する。第2ヒータ制御部92は、出口位置におけるインクの温度Te3が目標温度Ttgに近づけるように、ヒータ指令値CV2を決定する。 The second heater control unit 92 executes feedback (FB) control. FB control is preferably PID control. However, FB control may be PI control. The second heater control unit 92 sets the heater command value CV2 to the heater unit 351 based on the difference value DT2 (=Ttg−Te3) between the target temperature Ttg and the ink temperature Te3 at the outlet position measured by the outlet temperature sensor 371. output to The second heater control unit 92 determines the heater command value CV2 so that the ink temperature Te3 at the outlet position approaches the target temperature Ttg.
 図4は、ヒータ部351の出口位置におけるインクの温度変動を示す図である。図4中、横軸は時間を示しており、縦軸は出口温度センサ371で計測される温度を示している。図4中、波形G11は、第2ヒータ制御部92によるFB制御のみを行う場合の温度変化を示す。また、波形G12は、FB制御に加えて第1ヒータ制御部91によるFF制御を行う場合の温度変化を示す。また、図4において波形G2は、流量計341で計測されるインクの流量Fc1の変動を示す。 FIG. 4 is a diagram showing temperature fluctuations of the ink at the exit position of the heater section 351. FIG. In FIG. 4 , the horizontal axis indicates time, and the vertical axis indicates temperature measured by the outlet temperature sensor 371 . In FIG. 4, a waveform G11 indicates a temperature change when only the FB control by the second heater control section 92 is performed. A waveform G12 indicates a temperature change when FF control is performed by the first heater control unit 91 in addition to FB control. A waveform G2 in FIG. 4 indicates the fluctuation of the ink flow rate Fc1 measured by the flow meter 341. FIG.
 図4に示すように、流量Fc1が増加した場合、波形G11,G12のいずれにおいても、温度Te3が瞬間的に低下した後、温度Te3が上昇する。しかしながら、波形G11に示すように、FB制御のみの場合、ヒータ部351の加熱が遅れるため、温度変動幅(加熱オンオフの1サイクル間における最大温度と最小温度の差)が大きくなる(具体的には、約1.4℃)。これに対して、波形G12に示すように、FB制御にFF制御を加えることによって、温度変動幅が、FB制御のみの場合よりも、小さくなる(具体的には、約0.8℃)。また、波形G11は、許容温度範囲(ここでは、32℃±0.5℃)を外れているのに対して、波形G12は許容温度範囲にほぼ入っている。このように、予測される流量Fp1に基づくFF制御を行うことにより、温度変動幅を小さくすることができる。 As shown in FIG. 4, when the flow rate Fc1 increases, the temperature Te3 rises after the temperature Te3 momentarily drops in both waveforms G11 and G12. However, as shown in the waveform G11, in the case of only the FB control, the heating of the heater section 351 is delayed, so the temperature fluctuation range (difference between the maximum temperature and the minimum temperature during one cycle of heating ON/OFF) increases (specifically, is about 1.4° C.). On the other hand, as shown by waveform G12, by adding FF control to FB control, the temperature fluctuation range becomes smaller than in the case of only FB control (specifically, about 0.8° C.). Also, the waveform G11 is out of the allowable temperature range (here, 32° C.±0.5° C.), while the waveform G12 is almost within the allowable temperature range. By performing FF control based on the predicted flow rate Fp1 in this way, the temperature fluctuation range can be reduced.
 図5は、ヒータ部351の入口位置におけるインクの温度と、温度変動幅との対応関係を示す図である。図5中、横軸は入口位置におけるインクの温度(すなわち、ヒータ部351に加熱される前のインクの温度。以下、「ヒータ入口位置温度」と称する。)を示し、縦軸は温度変動幅を示す。図5中、グラフG31は、第2ヒータ制御部92によるFB制御のみを行う場合の対応関係を示し、グラフG32は、FB制御に加えて第1ヒータ制御部91によるFF制御を行う場合の対応関係を示す。 FIG. 5 is a diagram showing the correspondence relationship between the temperature of the ink at the inlet position of the heater section 351 and the width of temperature fluctuation. In FIG. 5, the horizontal axis indicates the temperature of the ink at the inlet position (that is, the temperature of the ink before being heated by the heater section 351; hereinafter referred to as "heater inlet position temperature"), and the vertical axis indicates the temperature fluctuation range. indicates In FIG. 5, the graph G31 shows the correspondence when only the FB control by the second heater control unit 92 is performed, and the graph G32 shows the correspondence when the FF control is performed by the first heater control unit 91 in addition to the FB control. Show relationship.
 グラフG31に示すように、FB制御のみの場合、目標温度変動幅(例えば、1℃)を達成するためには、ヒータ入口位置温度を比較的高い温度(例えば、約23℃以上)に設定する必要がある。これに対して、グラフG32に示すように、FB制御にFF制御を加えることによって、ヒータ入口位置温度が比較的低い温度(例えば、約16℃以上)で、目標温度変動幅を達成できる。すなわち、第1ヒータ制御部91によるFF制御と、第2ヒータ制御部92によるFB制御とを組み合わせることによって、ヒータ入口位置温度の条件を大幅に緩和できる。これにより、インクタンク311内においてインクを加熱するヒータを省略するなど、温度調節システムを簡素化できる。ただし、インクタンク311にヒータを設けることは妨げられない。 As shown in graph G31, in the case of only FB control, in order to achieve the target temperature fluctuation width (eg, 1° C.), the heater inlet position temperature is set to a relatively high temperature (eg, approximately 23° C. or higher). There is a need. On the other hand, as shown in graph G32, by adding FF control to FB control, the target temperature fluctuation range can be achieved at a relatively low heater inlet temperature (for example, about 16° C. or higher). That is, by combining the FF control by the first heater control section 91 and the FB control by the second heater control section 92, the condition of the heater inlet position temperature can be greatly relaxed. As a result, the temperature control system can be simplified by omitting a heater for heating the ink in the ink tank 311 . However, providing a heater in the ink tank 311 is not prevented.
 <2.変形例>
 以上、本発明の一実施形態について説明したが、本発明は、上記の実施形態に限定されるものではない。
<2. Variation>
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.
 例えば、上記実施形態では、供給部30から各吐出ヘッド21―24へ、インクが一方向に供給されている。しかしながら、供給部30と各吐出ヘッド21―24との間でインクを循環させる循環経路が設けられていてもよい。また、吐出ヘッド21―24内においてインクを循環させる循環経路が設けられていてもよい。また、循環経路上にインクを加熱するヒータ部が設けられ、第1ヒータ制御部91および第2ヒータ制御部92が当該ヒータ部を制御してもよい。 For example, in the above embodiment, ink is supplied in one direction from the supply unit 30 to each of the ejection heads 21-24. However, a circulation path for circulating ink may be provided between the supply section 30 and each of the ejection heads 21-24. Further, a circulation path may be provided for circulating the ink within the ejection heads 21 to 24 . Alternatively, a heater section for heating the ink may be provided on the circulation path, and the heater section may be controlled by the first heater control section 91 and the second heater control section 92 .
 この発明は詳細に説明されたが、上記の説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。上記各実施形態及び各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせたり、省略したりすることができる。 Although the present invention has been described in detail, the above description is, in all aspects, exemplary and the present invention is not limited thereto. It is understood that numerous variations not illustrated can be envisioned without departing from the scope of the invention. Each configuration described in each of the above embodiments and modifications can be appropriately combined or omitted as long as they do not contradict each other.
 1      印刷装置
 9      制御部
 21―24  吐出ヘッド
 39     外気温度センサ
 90     吐出制御部
 91     第1ヒータ制御部
 92     第2ヒータ制御部
 93     流量予測部
 95     モータ駆動部
 311    インクタンク
 321    配管
 331    ポンプ
 341    流量計
 351    ヒータ部
 361    タンク内温度センサ
 371    出口温度センサ
 931    流量予測モデル
 W      基材
1 printing device 9 control unit 21-24 ejection head 39 outside temperature sensor 90 ejection control unit 91 first heater control unit 92 second heater control unit 93 flow rate prediction unit 95 motor drive unit 311 ink tank 321 pipe 331 pump 341 flow meter 351 Heater part 361 In-tank temperature sensor 371 Outlet temperature sensor 931 Flow rate prediction model W Base material

Claims (7)

  1.  印刷装置であって、
     基材の表面にインクを吐出する吐出ヘッドと、
     前記インクを貯蔵可能なインクタンクと、
     前記インクタンクから前記吐出ヘッドへ前記インクを供給するインク供給部と、
     前記インクタンクから前記吐出ヘッドへ流れるインクを加熱するヒータ部と、
     現時点から所定時間後に、前記インクタンクから前記吐出ヘッドへ流れるインクの流量を予測する流量予測部と、
     前記流量予測部によって予測される流量に基づいて、前記ヒータ部を制御する第1ヒータ制御部と、
     前記ヒータ部から前記吐出ヘッドへ流れるインクの温度を計測する第1温度計測部と、
     前記第1温度計測部によって計測される温度と、予め設定される目標温度との差に基づいて、前記ヒータ部を制御する第2ヒータ制御部と、
    を備える、印刷装置。
    A printing device,
    an ejection head for ejecting ink onto the surface of a substrate;
    an ink tank capable of storing the ink;
    an ink supply unit that supplies the ink from the ink tank to the ejection head;
    a heater unit that heats the ink flowing from the ink tank to the ejection head;
    a flow rate prediction unit that predicts the flow rate of ink flowing from the ink tank to the ejection head after a predetermined time from the current time;
    a first heater control unit that controls the heater unit based on the flow rate predicted by the flow rate prediction unit;
    a first temperature measurement unit that measures the temperature of ink flowing from the heater unit to the ejection head;
    a second heater control unit that controls the heater unit based on the difference between the temperature measured by the first temperature measurement unit and a preset target temperature;
    A printing device.
  2.  請求項1に記載の印刷装置であって、
     前記流量予測部は、前記吐出ヘッドにおけるインクの吐出量を示す吐出情報に基づいて流量を予測する、印刷装置。
    The printing device according to claim 1, wherein
    The printing apparatus, wherein the flow rate prediction unit predicts the flow rate based on ejection information indicating the amount of ink ejected from the ejection head.
  3.  請求項2に記載の印刷装置であって、
     印刷データに基づいて前記吐出ヘッドを制御する吐出制御部、
    をさらに備え、
     前記吐出情報は、前記印刷データを含む、印刷装置。
    The printing device according to claim 2,
    an ejection control unit that controls the ejection head based on print data;
    further comprising
    A printing apparatus, wherein the ejection information includes the print data.
  4.  請求項1から請求項3のいずれか1項に記載の印刷装置であって、
     前記インクタンク内のインクの温度を計測する第2温度計測部、
    をさらに備え、
     前記第1ヒータ制御部は、前記第2温度計測部によって計測される温度と、予め設定される目標温度との差に基づいて、前記ヒータ部を制御する、印刷装置。
    The printing apparatus according to any one of claims 1 to 3,
    a second temperature measuring unit that measures the temperature of the ink in the ink tank;
    further comprising
    The printing apparatus, wherein the first heater control section controls the heater section based on a difference between the temperature measured by the second temperature measurement section and a preset target temperature.
  5.  請求項1から請求項4のいずれか1項に記載の印刷装置であって、
     前記インクタンク外の温度を計測する第3温度計測部、
    をさらに備え、
     前記第1ヒータ制御部は、前記第3温度計測部によって計測される温度に基づいて、前記ヒータ部を制御する、印刷装置。
    The printing apparatus according to any one of claims 1 to 4,
    a third temperature measuring unit that measures the temperature outside the ink tank;
    further comprising
    The printing apparatus, wherein the first heater control section controls the heater section based on the temperature measured by the third temperature measurement section.
  6.  請求項1から請求項5のいずれか1項に記載の印刷装置であって、
     前記インクタンクから前記吐出ヘッドへ供給されるインクの流量を計測する流量計測部、
    をさらに備え、
     前記第1ヒータ制御部は、前記流量計測部によって計測される流量に基づいて、前記ヒータ部を制御する、印刷装置。
    The printing apparatus according to any one of claims 1 to 5,
    a flow rate measurement unit that measures the flow rate of ink supplied from the ink tank to the ejection head;
    further comprising
    The printing apparatus, wherein the first heater control section controls the heater section based on the flow rate measured by the flow rate measurement section.
  7.  印刷方法であって、
    a) 現時点から所定時間後にインクタンクから吐出ヘッドへ流れるインクの流量を予測する予測工程と、
    b) 前記インクタンクから前記吐出ヘッドへ流れる前記インクを、ヒータ部で加熱する工程と、
    c) 前記ヒータ部から前記吐出ヘッドへ流れるインクの温度を計測する工程と
    を含み、
     前記工程b)は、
    b-1) 前記工程a)によって予測される流量に基づいて、前記ヒータ部を制御する工程と、
    b-2) 前記c)によって計測される温度と、予め設定される目標温度との差に基づいて、前記ヒータ部を制御する工程と、
    を含む、印刷方法。
    A printing method comprising:
    a) a prediction step of predicting the flow rate of ink flowing from the ink tank to the ejection head after a predetermined time from the current time;
    b) heating the ink flowing from the ink tank to the ejection head with a heater;
    c) measuring the temperature of the ink flowing from the heater section to the ejection head;
    Said step b) is
    b-1) controlling the heater unit based on the flow rate predicted by the step a);
    b-2) controlling the heater unit based on the difference between the temperature measured in c) and a preset target temperature;
    printing methods, including;
PCT/JP2022/046258 2022-02-25 2022-12-15 Printing device and printing method WO2023162421A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-028158 2022-02-25
JP2022028158A JP2023124417A (en) 2022-02-25 2022-02-25 Printer and printing method

Publications (1)

Publication Number Publication Date
WO2023162421A1 true WO2023162421A1 (en) 2023-08-31

Family

ID=87765493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046258 WO2023162421A1 (en) 2022-02-25 2022-12-15 Printing device and printing method

Country Status (2)

Country Link
JP (1) JP2023124417A (en)
WO (1) WO2023162421A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145789A (en) * 2001-11-09 2003-05-21 Konica Corp Ink jet printer
JP2009234221A (en) * 2008-03-28 2009-10-15 Fujifilm Corp Image forming apparatus
JP2010221466A (en) * 2009-03-23 2010-10-07 Seiko Epson Corp Liquid jetting apparatus
JP2018144419A (en) * 2017-03-08 2018-09-20 コニカミノルタ株式会社 Inkjet recording device and control method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145789A (en) * 2001-11-09 2003-05-21 Konica Corp Ink jet printer
JP2009234221A (en) * 2008-03-28 2009-10-15 Fujifilm Corp Image forming apparatus
JP2010221466A (en) * 2009-03-23 2010-10-07 Seiko Epson Corp Liquid jetting apparatus
JP2018144419A (en) * 2017-03-08 2018-09-20 コニカミノルタ株式会社 Inkjet recording device and control method of the same

Also Published As

Publication number Publication date
JP2023124417A (en) 2023-09-06

Similar Documents

Publication Publication Date Title
JP4120836B2 (en) Liquid supply apparatus and method, and ink jet recording apparatus
JP5063441B2 (en) Image forming apparatus
JP5026143B2 (en) Image recording device
US8292392B2 (en) System and method for modifying operation of an inkjet printer to accommodate changing environmental conditions
JP5404498B2 (en) Printing device
JP6715120B2 (en) Substrate processing device and meandering prediction method
US20110221820A1 (en) Method of calibrating temperature sensor, method of manufacturing recording head, and inkjet recording apparatus
JP2011020436A (en) Inkjet printer
JP2016026913A (en) Recording apparatus, recording apparatus control method, and program
EP3184309B1 (en) Inkjet printer and method of checking liquid feeding state
JP2010264689A (en) Inkjet recorder and inkjet recording method
JP2008055716A (en) Inkjet recording head and inkjet recording apparatus
WO2023162421A1 (en) Printing device and printing method
US20190232651A1 (en) Inkjet recording apparatus
JP2024002054A (en) Printing device and printing method
JP2023184202A (en) Method of printing and printing device
JP2008119936A (en) Inkjet recorder
JP2023008250A (en) Learning method, prediction model, temperature estimation method, temperature adjustment method, printing method, and printer
EP3351392B1 (en) Inkjet printer
WO2022181396A1 (en) Inkjet printing device and inkjet printing method
US20230302813A1 (en) Ink circulation system and inkjet printing apparatus
JP2020055216A (en) Image forming apparatus, method and program
US20230364920A1 (en) Ink supply device and image forming apparatus
US20240075753A1 (en) Device and Method for Controlling the Heating Elements of a Drying Unit of a Printing Device
JP7310529B2 (en) image forming device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928938

Country of ref document: EP

Kind code of ref document: A1