WO2023160467A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2023160467A1
WO2023160467A1 PCT/CN2023/076697 CN2023076697W WO2023160467A1 WO 2023160467 A1 WO2023160467 A1 WO 2023160467A1 CN 2023076697 W CN2023076697 W CN 2023076697W WO 2023160467 A1 WO2023160467 A1 WO 2023160467A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
network node
pilot signal
antenna
reflection
Prior art date
Application number
PCT/CN2023/076697
Other languages
English (en)
French (fr)
Inventor
盛彬
张立
樊婷婷
孙晨
Original Assignee
索尼集团公司
盛彬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 盛彬 filed Critical 索尼集团公司
Publication of WO2023160467A1 publication Critical patent/WO2023160467A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods

Definitions

  • the present application relates to the field of wireless communication technology, in particular to the Orbital Angular Momentum (OAM) communication technology utilizing a large intelligent surface (Large Intelligent Surface, LIS). More particularly, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • OFAM Orbital Angular Momentum
  • Electromagnetic waves have both linear and angular momentum.
  • Angular momentum can be decomposed into spin angular momentum (Spin Angular Momentum, SAM) and orbital angular momentum (OAM).
  • SAM spin angular momentum
  • OAM orbital angular momentum
  • OAM mode division multiplexing
  • MDM Mode Division Multiplexing
  • LIS is a new revolutionary technology in which the wireless propagation environment can be intelligently reconfigured by integrating a large number of low-cost passive reflective elements on a plane, thereby significantly improving the performance of wireless communication networks.
  • an electronic device for wireless communication comprising: a processing circuit configured to: estimate a first channel between a network node and a smart reflective surface; at least based on the estimated second channel A channel precodes the plane wave signal sent by the network node, so that the channel model between the network node and the network terminal is equivalent to the orbital angular momentum channel model between the intelligent reflector and the network terminal; and sending the precoded plane wave Signal.
  • a method for wireless communication including: estimating a first channel between a network node and a smart reflecting surface; The plane wave signal is precoded so that the channel model between the network node and the network terminal is equivalent to the orbital angular momentum channel model between the smart reflector and the network terminal; and the precoded plane wave signal is sent.
  • OAM communication between a network terminal supporting OAM communication and a network node not equipped with an OAM antenna can be realized by means of LIS.
  • FIG. 1 shows a block diagram of functional modules of an electronic device for wireless communication according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a system using LIS to realize OAM communication in the absence of a direct path
  • Fig. 3 shows the array structure of the LIS as an example
  • Fig. 4 shows a schematic diagram of an example of related work processes among network nodes, LIS and network terminals;
  • FIG. 5 shows a schematic diagram of a system using LIS to realize OAM communication under the condition that there is a direct path
  • Fig. 6 shows a schematic diagram of an example of related workflow among network nodes, LIS and network terminals
  • Fig. 7 shows a schematic diagram of a system for estimating a first channel by using a dummy access point
  • Fig. 8 shows a flow chart of estimating the first channel by using a dummy access point
  • FIG. 9 shows a schematic diagram of a system for estimating a first channel based on virtual full-duplex measurement
  • FIG. 10 shows a flow chart of estimating the first channel based on virtual full-duplex measurement
  • FIG. 11 shows a schematic diagram of a system for estimating a first channel based on virtual full-duplex measurement
  • FIG. 12 shows a schematic diagram of a system for estimating a first channel based on virtual full-duplex measurement
  • FIG. 13 shows a schematic diagram of a system for estimating a first channel based on virtual full-duplex measurement
  • FIG. 14 shows a schematic diagram of a system for estimating a first channel based on virtual full-duplex measurement
  • FIG. 15 shows a flow chart of estimating a first channel based on device-to-device communication measurements
  • FIG. 16 shows a schematic diagram of a system for estimating a first channel based on device-to-device communication measurements
  • FIG. 17 shows a schematic diagram of a system for estimating a first channel based on device-to-device communication measurements
  • FIG. 18 shows a schematic diagram of a system for estimating a first channel based on device-to-device communication measurements
  • FIG. 19 shows a schematic diagram of a system for estimating a first channel based on device-to-device communication measurements
  • FIG. 20 shows a flowchart of a method for wireless communication according to an embodiment of the present application
  • 21 is a block diagram illustrating a first example of a schematic configuration of an eNB or gNB to which the techniques of this disclosure can be applied;
  • FIG. 22 is a block diagram illustrating a second example of a schematic configuration of an eNB or gNB to which the techniques of this disclosure can be applied.
  • FIG. 23 is a block diagram of an exemplary structure of a general-purpose personal computer in which methods and/or apparatuses and/or systems according to embodiments of the present disclosure can be implemented.
  • Fig. 1 shows a block diagram of functional modules of an electronic device 100 for wireless communication according to an embodiment of the present application.
  • the electronic device 100 includes: an estimation unit 101 configured to estimate the first channel between them; the precoding unit 102 is configured to precode the plane wave signal sent by the network node based at least on the estimated first channel, so that the channel model between the network node and the network terminal is equivalent to An OAM channel model between the LIS and the network terminal; and a communication unit 103 configured to send a precoded plane wave signal.
  • the estimation unit 101 , the precoding unit 102 and the communication unit 103 may be implemented by one or more processing circuits, and the processing circuits may be implemented as a chip, for example.
  • the processing circuits may be implemented as a chip, for example.
  • each functional unit in the device shown in FIG. 1 is only a logic module divided according to the specific function it realizes, and is not used to limit the specific implementation manner.
  • the electronic device 100 may, for example, be disposed on a network node side or be communicably connected to a network node.
  • the network node here may, for example, refer to a device that can help a terminal device to access a wireless communication network, such as a base station/transmit and receive point (TRP) and the like.
  • TRP base station/transmit and receive point
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may work as a network node itself, and may also include external devices such as a memory, a transceiver (not shown in the figure), and the like.
  • the memory can be used to store programs and related data information that network nodes need to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (eg, other network nodes, UEs, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the network terminal refers to a terminal device that implements a network communication function, such as user equipment (User Equipment, UE).
  • the user equipment may be implemented as a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera, or a vehicle terminal such as a car navigation device.
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the above-mentioned terminals.
  • a network terminal supporting OAM communication moves into the coverage area of a network node (such as a base station) that is not equipped with an OAM antenna
  • the transmission data rate drops sharply, because in this case only Plane wave mode can be used.
  • a network node of an OAM antenna can support OAM communication of an OAM user.
  • the estimating unit 101 first estimates the channel between the network node and the smart reflector (for ease of distinction, referred to as the first channel herein), and the precoding unit 102 pairs the channel based on the estimated first channel
  • the plane wave signal sent by the network node is precoded, for example, the precoding is realized by a precoding matrix, the precoding matrix is set based on the estimated first channel, and the channel model between the network node and the network terminal is equivalent to OAM channel model between LIS and network terminals.
  • the communication unit 103 sends a precoded plane wave signal, and the plane wave signal reaches the network terminal in the form of a vortex wave after being reflected by the LIS.
  • a schematic diagram of a system using LIS to implement OAM communication wherein the network node is shown as a BS, the network terminal is shown as an OAM UE, and the BS controls the LIS through a wired or wireless control link.
  • the BS has M antennas, and the OAM UE and LIS have N antennas respectively.
  • N is the number of array elements
  • l represents the OAM mode.
  • the complete downlink channel model of the system shown in FIG. 2 can be expressed as the following formula (1).
  • Y GH LU ⁇ H BL WS+V (1)
  • Y represents the N ⁇ 1-dimensional received signal vector
  • G represents the N ⁇ N-dimensional received matrix
  • W represents an M ⁇ N dimensional precoding matrix
  • V represents an N ⁇ 1 dimensional additive white Gaussian noise (AWGN) signal.
  • X represents an N ⁇ 1-dimensional transmission signal vector, and its elements are, for example, symbols modulated by a constellation diagram such as QPSK or QAM.
  • H LU represents the channel matrix between LIS and UE, namely:
  • h LU (i,j) represents the channel between the i-th antenna of the OAM UE and the j-th reflection unit of the LIS.
  • H BL represents the channel matrix between BS and LIS, that is, the channel matrix of the first channel, as shown in the following formula:
  • h BL (n, m) represents the channel between the nth unit of the LIS and the mth antenna of the BS.
  • represents the matrix composed of the adjustment coefficients of the N reflection units of the LIS, namely:
  • ⁇ n represents the adjustment coefficient on the nth reflective unit.
  • the precoding matrix is set as shown in the following formula (5):
  • F represents an N ⁇ N-dimensional discrete Fourier transform (DFT) matrix
  • ⁇ H represents the conjugate transpose operation
  • the reflection coefficient matrix ⁇ of the LIS can be set as a unit matrix
  • H BL is known, one can Obtain the above precoding matrix.
  • the OAM UE can use the vortex wave to communicate with the BS normally.
  • the HLU is a cyclic matrix, and its elements are in the form of a cyclic shift in each row.
  • formula (6) can be decomposed to get:
  • h n represents the effective channel parameters. It can be seen from formula (7) that compared with the traditional plane wave MIMO system, OAM communication does not require complex operations such as matrix inversion, and the channel can be decomposed into orthogonal independent data streams.
  • the precoding unit 102 may precode the pilot signal based at least on the estimated first channel and the communication unit 103 sends the precoded pilot signal to the network terminal.
  • the network terminal can determine effective channel parameters between the LIS and the network terminal based on the reception of the precoded pilot signal, and perform data demodulation based on the effective channel parameters.
  • the update rate of effective channel parameters should be higher, while the update rate of HBL is much lower than that of HLU , and the measurement update can be performed after dozens or even hundreds of symbols, and the specific update rate can be set by the system.
  • FIG. 4 shows a schematic diagram of an example of related work processes between a network node (such as a BS), an LIS, and a network terminal (such as a UE).
  • a network node such as a BS
  • an LIS such as a UE
  • a network terminal such as a UE
  • the network node estimates the first channel between the network node and the LIS, for example to obtain a precoding matrix.
  • the network nodes also control the reflection of the LIS through wired or wireless links
  • the coefficient matrix is set, for example, it is set as a unit matrix, that is, the reflection coefficients of all reflection units of the LIS are set to 1.
  • the network node precodes the pilot signal based on the first channel estimate, for example using a precoding matrix to precode the pilot signal, and the pilot signal is known to the network terminal.
  • the network node sends the precoded pilot signal to the LIS, which reflects it to the network terminal. Since the network terminal knows the pilot signal, the network terminal can estimate the effective channel parameters by using formula (7) according to the received pilot signal.
  • the network node precodes the data to be transmitted based on the first channel estimation (for example, using a precoding matrix) and sends it to the LIS, and the LIS reflects it to the network terminal.
  • the network terminal can use the previously estimated
  • the effective channel parameters use formula (7) to demodulate the received data to obtain the data to be transmitted sent by the network node.
  • FIG. 5 shows that in this case A schematic diagram of the system using LIS to realize OAM communication.
  • the BS has M antennas
  • the OAM UE and the LIS have N antennas respectively
  • the reflection unit of the LIS is configured as a uniform circular array.
  • H BU represents the direct channel matrix between BS and UE, namely
  • h BU (n, m) represents the channel between the nth antenna of the OAM UE and the mth antenna of the BS, and the meanings of other parameters are the same as those in formula (1), and will not be repeated here.
  • the estimation unit 101 may also be configured to estimate the direct path channel between the network node and the network terminal, and in addition to the estimated first channel, the precoding unit 102 also performs precoding based on the estimated direct path channel, In order to eliminate the influence of the plane wave signal transmitted through the direct path. Therefore, the precoding matrix in this example is not Same as the precoding matrix in the first example.
  • the precoding unit 102 is configured to perform precoding using a dirty paper (Dirty paper) algorithm or a block diagonal (BD) algorithm. Since the number of antennas of the BS is usually much larger than the number of antennas of the UE, the multi-user interference removal method in the traditional MIMO system can be used for reference. Taking the commonly used BD algorithm as an example here, the precoding may include first precoding and second precoding, where the first precoding is used to eliminate the influence of the plane wave transmitted through the direct path.
  • the precoding matrix used for the first precoding may be the null space (Null space) of the channel matrix of the estimated direct path channel.
  • W 2 After calculating W 1 , W 2 can be set as:
  • the OAM UE can use the vortex wave to communicate with the BS normally.
  • the HLU is a cyclic matrix, and its elements are in the form of a cyclic shift in each row.
  • formula (13) can still be decomposed to obtain the previous formula (7).
  • the precoding unit 102 may precode the pilot signal based on the estimated first channel and the direct path channel, and the communication unit 103 sends the precoded pilot signal to the network terminal.
  • the network terminal can determine effective channel parameters between the LIS and the network terminal based on the reception of the precoded pilot signal, and perform data demodulation based on the effective channel parameters.
  • the update rate of effective channel parameters should be higher, while the update rate of H BL is much lower than that of H LU , and the measurement update can be performed after dozens or even hundreds of symbols.
  • the specific update rate can be set by the system .
  • FIG. 6 shows a schematic diagram of an example of related work processes between a network node (such as a BS), an LIS, and a network terminal (such as a UE).
  • a network node such as a BS
  • an LIS such as a UE
  • a network terminal such as a UE
  • the network node estimates the first channel between the network node and the LIS. And, the network node estimates the direct path channel between the network node and the network terminal. It should be noted that the sequence of the estimation of the first channel and the estimation of the direct path channel is not limited, and what is shown in FIG. 6 does not represent a sequence relationship. In addition, since the position of the network terminal changes randomly, the direct channel between the network node and the network terminal changes relatively quickly, and the update rate of the HBU should be set relatively high.
  • the network node sets the reflection coefficient matrix of the LIS through a wired or wireless control link, for example, sets it as a unit matrix.
  • the network node precodes the pilot signal based on the first channel estimate and the direct path channel estimate, for example, uses the precoding matrix of formula (10) to precode the pilot signal, and the pilot signal is known to the network terminal.
  • the network node sends the precoded pilot signal to the LIS, which reflects it to the network terminal. Since the network terminal knows the pilot signal, the network terminal can estimate the effective channel parameters by using formula (7) according to the received pilot signal.
  • the network node precodes the data to be transmitted based on the first channel estimation and the direct path channel estimation and sends it to the LIS, and the LIS reflects it to the network terminal.
  • the network terminal can use the previously estimated effective channel Parameters Demodulate the received data using formula (7) to obtain the data to be transmitted sent by the network node.
  • the estimation of the direct path channel can be performed as follows.
  • the communication unit 103 may be configured to: turn off all reflection units of the LIS; sequentially use each antenna of the network node to send a pilot signal to the network terminal, and the network terminal measures the pilot signal and estimates the direct path channel based on the measurement result; and Obtain the estimated direct path channel from the network terminal.
  • turning off all the reflective units of the LIS is to eliminate the interference of the reflected signal of the LIS to the direct signal.
  • the network node uses the m-th (0 ⁇ m ⁇ M-1) antenna to transmit pilots (other antennas do not transmit signals)
  • UE can obtain The channel between the mth root channel of the network node and all antennas of the UE is the mth column of the HBU in formula (9).
  • Select M antennas in turn at the network node to send After sending the pilot signal, the network terminal can obtain the complete H BU and feed back the complete H BU to the network node.
  • the estimation of HBU can also be realized through uplink transmission.
  • the working process is similar to the above process, that is, the network terminal uses each antenna to send pilot signals to the network node in turn, and the network node measures the pilot signal and obtains the direct path channel based on the measurement result. Specifically, still taking the situation shown in FIG.
  • the network node when the network terminal (UE) uses the nth (0 ⁇ n ⁇ N-1) antenna to transmit pilots (other antennas do not transmit signals), the network node can according to The received pilot signal is obtained from the nth channel of the network terminal to the channel between all antennas of the network node, that is, the nth row of HBU in formula (9). After the network terminal sequentially selects N antennas to send pilot signals, the network node can obtain the complete H BU . At this time, the signal sent by the network terminal using a single antenna is a plane wave, and the network terminal no longer needs to feed back channel parameters.
  • the electronic device 100 can realize OAM communication between a network terminal supporting OAM communication and a network node not equipped with an OAM antenna by means of LIS by precoding the plane wave signal, and whether or not There is a direct path, and the electronic device 100 is applicable.
  • This embodiment will provide three examples of how the estimation unit 101 described in the first embodiment is used to estimate the first channel. It should be understood that this is not limiting.
  • the estimation unit 101 is configured to use a dummy access point (Dump AP) to estimate the first channel, wherein the dummy access point is arranged within a range not exceeding a predetermined distance from the LIS.
  • Dump AP dummy access point
  • Fig. 7 shows a schematic diagram of a system for estimating a first channel by using a dummy access point.
  • the dummy access point is connected to the network node through a wired or wireless link, and the dummy access point has a radio frequency link, which can generate wireless signals.
  • a dummy access point is controlled by a network node to periodically transmit a signal so that the channel can be estimated.
  • the dumb access point is deployed at a position close enough to the LIS, so that parameters of the dumb access point can be obtained according to the location of the LIS. and, can be multiple The LIS deploys a dumb access point.
  • the step of estimating the first channel by using the dummy access point may refer to FIG. 8 , for example, and is specifically described as follows.
  • the network node notifies the dummy access point of the carrier frequency and other signal parameters, so that the dummy access point can send signals as required.
  • the network node controls the LIS to turn on one reflection unit and close other reflection units (S12), and then controls the dummy access point to send a pilot signal to the LIS (S13), and the communication unit 103 Receive the pilot signal reflected by the LIS and perform channel estimation, for example, the first row of HBL shown in formula (3) can be obtained (S14).
  • the network node performs the above steps S12-S14 for each reflection unit of the LIS, that is, turn on other reflection units of the LIS in turn and perform control so that the dumb access point sends a pilot signal, and the communication unit 103 receives the pilot signal reflected by the LIS And perform channel estimation, so as to obtain other lines of the HBL , and complete the estimation of the HBL (S15).
  • the estimation unit 101 is configured to perform estimation of the first channel based on virtual full-duplex measurement.
  • Virtual full-duplex measurement refers to the transmission and reception of signals by the network node itself, that is, the network node sends a pilot signal, and the pilot signal is reflected by the LIS and other surrounding objects and then received by the network node.
  • the estimation of the first channel can be obtained by estimating the dual-link concatenated channel from the network node to the LIS and then to the network node.
  • Fig. 9 shows a schematic diagram of a system for estimating a first channel based on virtual full-duplex measurement.
  • the network nodes are shown as base stations BS.
  • the BS controls the LIS to activate the k-th reflection unit, and sends a signal from the m1 antenna of the BS. After the signal is reflected by the LIS and surrounding objects, it reaches the remaining antennas of the BS (here, the m2 antenna is used as an example, and m2 is different from m1).
  • the self-interference signal superposition of n the system model can be expressed as:
  • h BL (k,m 2 ) indicates the distance between the kth reflection unit of the LIS and the m2 antenna of the BS
  • h BL (m 1 ,k) represents the channel between the m1 antenna of the BS and the kth reflection unit of the LIS.
  • ⁇ (k) represents the adjustment coefficient of the kth reflective unit of the LIS.
  • h en (m 1 ,m 2 ) represents the surrounding environment reflection.
  • Self-interference is mainly due to the fact that when the BS works in full-duplex mode, the signal will be directly transmitted from the m1 antenna to the m2 antenna. In a full-duplex system before canceling the self-interference, the self-interference may even be greater than the desired signal.
  • methods for self-interference suppression have been extensively studied at present. Therefore, in the following analysis, it is assumed that self-interference is included in the noise and is no longer considered separately.
  • Fig. 10 shows an example of a specific flow of estimation of the first channel.
  • step S21 all units of the LIS are turned off, and the pilot signal is transmitted by the first antenna of the network node and received by the remaining antennas of the network node, so as to estimate the environment reflection.
  • step S22 for each antenna of the network node, control the LIS to turn on each reflection unit in turn, use the antenna of the network node to send a pilot signal and use the rest of the antennas of the network node to receive, to estimate the reflection from the environment based on the estimated Dual-link concatenated channels from the antenna to the remaining antennas via the reflection unit of the LIS.
  • step S23 the first channel is estimated based on all estimated dual-link concatenated channels.
  • step S21 for example, at time n, all reflection units in the LIS are set to inactive state, and do not reflect any signal.
  • the m1 antenna of the BS transmits a pilot signal. After the pilot signal is reflected by surrounding objects, it is received by other BS antennas and can be used to estimate the environmental reflection.
  • the schematic diagram of the system is shown in Figure 11.
  • the m1 antenna is used as an example of the first antenna, which is not limiting.
  • the system model can be expressed as follows:
  • step S21 for example, at time n+1, the BS controls the LIS to activate the kth reflective unit and keep the rest of the reflective units turned off (inactive).
  • the m1 antenna of the BS transmits a pilot signal. After the pilot signal is reflected by the LIS, it is received by the remaining BS antennas and used to estimate the dual-link concatenated channels from the antenna m1 to the kth reflection unit of the LIS and then to the rest of the antennas.
  • the system diagram is shown in Figure 12.
  • the system model can be expressed as follows:
  • the BS controls the LIS to activate the k+1th reflective unit and keep the rest of the reflective units turned off.
  • the m1 antenna of the BS transmits a pilot signal. After the pilot signal is reflected by the LIS, it is received by the remaining BS antennas and used to estimate the dual-link concatenated channels from the antenna m1 to the k+1 reflection unit of the LIS and then to the rest of the antennas.
  • the system diagram is shown in Figure 13 .
  • the system model can be expressed as follows:
  • the BS controls the LIS to activate other reflection units in turn, repeats the above estimation process, and finally obtains the following cascaded channel estimation results:
  • S represents the antenna set of the BS.
  • the BS selects another antenna m3 different from the m1 antenna from the antenna set S to transmit the pilot signal.
  • the BS controls the LIS to activate the kth reflection unit and keep the rest of the reflection units off (inactive ).
  • the m3 antenna of the BS transmits the pilot signal.
  • the pilot signal is reflected by the LIS, it is received by the remaining BS antennas and used to estimate the dual-link concatenated channel from the antenna m3 to the kth reflection unit of the LIS and then to the rest of the antennas.
  • the system diagram is shown in Figure 14.
  • the system model can be expressed as follows:
  • h en (m 3 ,m 2 ) represents all units that close the LIS, use the antenna m3 of the network node to send pilot signals and use the network node’s Estimated ambient reflections when received by the remaining antennas.
  • the estimation of the dual-link concatenated channel from the antenna m3 to the kth reflection unit of the LIS and then to the antenna m2 can be obtained from equation (22) as follows:
  • the elements in H BL can be estimated as:
  • the first channel between the network node and the LIS can be estimated through the measurement process based on virtual full duplex.
  • the estimation unit 101 is configured to perform estimation of the first channel based on measurement of device-to-device (D2D) communication.
  • D2D device-to-device
  • the two terminal devices work in D2D mode and alternately send pilot signals.
  • the two terminal devices are respectively referred to as a first device and a second device for distinction.
  • Fig. 15 shows a flowchart of the estimation of the first channel according to this example.
  • the LIS is controlled to turn on a reflection unit.
  • the first device sends a pilot signal to the LIS, and the antenna of the network node receives the pilot signal reflected by the LIS, and estimates the The first concatenated channel from the reflection unit of the LIS to the antenna of the network node;
  • the second device sends a pilot signal to the LIS, and the antenna of the network node receives the pilot signal reflected by the LIS, and estimates the signal from the second The second concatenated channel from the device to the antenna of the network node via the reflection unit of the LIS;
  • the first device sends a pilot signal to the LIS, the reflected pilot signal is received by the second device, and the second device estimates From the third concatenated channel from the first device to the second device via the reflection unit of the LIS, the network node obtains the estimated third concatenated channel from the
  • Fig. 16 shows a schematic diagram of a system for estimating a first channel based on D2D communication measurement.
  • the network node is shown as a base station BS, UE A and UE B perform D2D communication, both of which are single antennas, assuming that the LIS has N reflection units, and the BS has M antennas.
  • UE A and UE B can also be OAM UEs, for example, a single antenna can be used for estimation.
  • the BS controls the LIS to activate the nth reflection unit, and keeps the rest of the reflection units inactive.
  • UE A sends a pilot signal. After the pilot signal is reflected by the LIS, it is received by the antenna of the BS, as shown in Figure 16 .
  • x A (k) represents the signal sent by UE A
  • y m,A (k) represents the signal received by the m antenna
  • h BL (m,n) represents the distance between the nth reflection unit of the LIS and the m antenna of the BS
  • h LU (n,A) represents the channel between UE A and the nth reflection unit of the LIS
  • ⁇ (n) represents the adjustment coefficient of the nth reflection unit of the LIS
  • w m,A (k) represents the noise.
  • the estimated first concatenated channel can be obtained as:
  • UE A stops sending pilot signals.
  • UE B starts sending pilot signals.
  • the pilot signal is received by the BS after being reflected by the LIS, as shown in Figure 17.
  • the BS estimates the second concatenated channel from the UE B to each antenna via the nth reflection unit of the LIS based on the received pilot signal (corresponding to step S32).
  • the following still uses the mth antenna as an example for description.
  • x B (k) represents the signal sent by UE B
  • y m,B (k+1) represents the signal received by m antenna
  • h LU (n, B) represents the channel between UE B and the nth reflecting unit of the LIS.
  • w m,B (k+1) represents noise.
  • the estimated second concatenated channel can be obtained as:
  • UE B stops sending pilot signals.
  • UE A starts sending pilot signals.
  • the pilot signal is reflected by the LIS, it is received by UE B, as shown in Figure 18.
  • UE B estimates a third concatenated channel from UE A to UE B via the nth reflection unit of the LIS based on the received pilot signal (corresponding to step S33).
  • the estimated third concatenated channel can be obtained as:
  • the BS controls the LIS to activate other reflective units in turn, as shown in Figure 19, and then repeats the above steps to finally obtain a complete estimate of the first channel, such as each element in the aforementioned matrix HBL .
  • the uplink signal is used for channel estimation, and based on the reciprocity of the uplink and downlink channels, the estimated result can also be applied to the downlink channel from the network node to the LIS.
  • Fig. 19 shows a flowchart of a method for wireless communication according to an embodiment of the present application, the method comprising: estimating a first channel between a network node and an LIS (S41); at least based on the estimated first channel A channel precodes the plane wave signal sent by the network node, so that the channel model between the network node and the network terminal is equivalent to the OAM channel model between the LIS and the network terminal (S42); and sending the precoded plane wave signal (S43).
  • the method can be performed, for example, on the side of a network node.
  • the reflection unit of the LIS can be configured as a uniform circular array, and the reflection coefficient matrix of the LIS can be set as an identity matrix.
  • the pilot signal may also be precoded based on the estimated first channel, so that the network terminal determines effective channel parameters between the LIS and the network terminal based on receiving the precoded pilot signal, wherein, The network terminal performs data demodulation based on the effective channel parameters.
  • the above method further includes estimating the direct path channel between the network node and the network terminal, and in step S42 based on the estimated direct path channel
  • Precoding is performed to remove the effects of plane wave signals transmitted over the direct path.
  • precoding may be performed using a dirty paper algorithm or a block diagonalization algorithm.
  • the precoding includes first precoding and second precoding, the first precoding is used to eliminate the influence of a plane wave signal transmitted through a direct path.
  • the precoding matrix used for the first precoding is the null space of the channel matrix of the estimated direct path channel.
  • step S42 the pilot signal is precoded based on the estimated first channel and the direct path channel, so that the network terminal based on the precoded pilot signal
  • the effective channel parameters between the LIS and the network terminal are determined through the reception, wherein the network terminal performs data demodulation based on the effective channel parameters.
  • the estimation of the direct path channel can be performed as follows: turn off all reflection units of the LIS; use each antenna of the network node to send pilot signals to the network terminal in turn, and the network terminal measures the pilot signal and estimates the direct path channel based on the measurement results ; and obtain the estimated direct path channel from the network terminal.
  • a dummy access point may be used to estimate the first channel, and the dummy access point is arranged within a range not exceeding a predetermined distance from the LIS.
  • using the dummy access point to estimate the first channel includes: controlling the LIS to turn on one reflection unit and turning off other reflection units; controlling the dummy access point to send a pilot signal to the LIS; receiving the pilot signal reflected by the LIS and performing channel Estimating; and performing the above steps for each reflection unit of the LIS, so as to complete the estimation of the first channel.
  • the specific details are as described above with reference to FIG. 8 .
  • the estimation of the first channel can be done based on virtual full duplex measurements.
  • estimating the first channel based on virtual full-duplex measurement includes: closing all reflection units of the LIS, using the first antenna of the network node to send a pilot signal and using the remaining antennas of the network node to receive, so as to estimate the environment reflection; for For each antenna of the network node, control the LIS to turn on each reflection unit in turn, use the antenna of the network node to transmit a pilot signal and use the remaining antennas of the network node to receive, to estimate the reflection from the antenna via the reflection unit of the LIS to Dual-link concatenated channels of the remaining antennas; based on all estimated dual-link concatenated channels, a first channel is estimated.
  • the specific details are as described above with reference to FIG. 10 .
  • the estimation of the first channel may be performed based on the measurement of the D2D communication.
  • estimating the first channel based on the measurement of D2D communication includes: controlling the LIS to turn on each reflection unit in turn: the first device sends a pilot signal to the LIS, and the antenna of the network node receives the pilot signal reflected
  • performing the estimation of the first channel based on the measurement of the D2D communication further includes: obtaining the estimation of the first channel based on the estimated channel from each reflection unit of the LIS to each antenna of the network node.
  • the above method corresponds to the electronic device 100 described in the first embodiment to the second embodiment, and its specific details can refer to the description of the corresponding part above, which will not be repeated here.
  • the electronic device 100 may be implemented as various base stations or TRPs.
  • a base station may be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, micro eNB, and home (femto) eNB.
  • a similar situation may also exist for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and Base Transceiver Station (BTS).
  • BTS Base Transceiver Station
  • a base station may include: a main body (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at places different from the main body.
  • a main body also referred to as a base station device
  • RRHs remote radio heads
  • various types of user equipment can work as a base station by temporarily or semi-permanently performing the base station function.
  • FIG. 21 is a schematic configuration illustrating an eNB or gNB to which the techniques of this disclosure can be applied.
  • the eNB 800 includes one or more antennas 810 and base station equipment 820 .
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a multiple-input multiple-output (MIMO) antenna, and is used for the base station apparatus 820 to transmit and receive wireless signals.
  • eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 21 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821 , a memory 822 , a network interface 823 and a wireless communication interface 825 .
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 820 .
  • the controller 821 generates data packets from data in signals processed by the wireless communication interface 825 and communicates the generated packets via the network interface 823 .
  • the controller 821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 821 may have a logical function to perform control such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 823 is a communication interface for connecting the base station apparatus 820 to the core network 824 .
  • the controller 821 may communicate with a core network node or another eNB via a network interface 823 .
  • eNB 800 and core network nodes or other eNBs can be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825 .
  • the wireless communication interface 825 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in a cell of the eNB 800 via the antenna 810 .
  • Wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and RF circuitry 827 .
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation And multiplexing/demultiplexing, and various types of signal processing of layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP) are performed.
  • the BB processor 826 may have part or all of the logic functions described above.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor configured to execute a program and related circuits.
  • the update program may cause the function of the BB processor 826 to change.
  • the module may be a card or a blade inserted into a slot of the base station device 820 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810 .
  • the wireless communication interface 825 may include multiple BB processors 826 .
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827 .
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 21 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827 , the wireless communication interface 825 may include a single BB processor 826 or a single RF circuit 827 .
  • the communication unit 103 and the transceiver of the electronic device 100 can be realized by the wireless communication interface 825. At least part of the functions can also be realized by the controller 821 .
  • the controller 821 can precode the plane wave signal by executing the functions of the estimating unit 101, the precoding unit 102, and the communication unit 103, so as to achieve communication between a network terminal supporting OAM communication and a network node not equipped with an OAM antenna by means of an LIS. OAM communication.
  • FIG. 22 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that similarly, the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 830 includes one or more antennas 840, base station equipment 850 and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via RF cables.
  • the base station apparatus 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the RRH 860 to transmit and receive wireless signals.
  • eNB 830 may include multiple antennas 840 .
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830 .
  • FIG. 22 shows an example in which the eNB 830 includes multiple antennas 840 , the eNB 830 may include a single antenna 840 as well.
  • the base station device 850 includes a controller 851 , a memory 852 , a network interface 853 , a wireless communication interface 855 and a connection interface 857 .
  • the controller 851, memory 852, and network interface 853 are the same as the controller 821, memory 822, and network interface 823 described with reference to FIG. 21 .
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856 .
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 21 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include multiple BB processors 856 .
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 22 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856 , the wireless communication interface 855 may also include a single BB processor 856 .
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communication in the above-mentioned high-speed line used to connect the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840 .
  • Wireless communication interface 863 may generally include RF circuitry 864, for example.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840 .
  • the wireless communication interface 863 may include a plurality of RF circuits 864 .
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 22 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864 , the wireless communication interface 863 may also include a single RF circuit 864 .
  • the communication unit 103 and the transceiver of the electronic device 100 may be implemented by the wireless communication interface 855 and/or the wireless communication interface 863 . at least part of the function
  • the points can also be realized by the controller 851.
  • the controller 851 can precode the plane wave signal by executing the functions of the estimating unit 101, the precoding unit 102, and the communication unit 103, so as to achieve communication between a network terminal supporting OAM communication and a network node not equipped with an OAM antenna by means of LIS. OAM communication.
  • the present invention also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above-mentioned method according to the embodiment of the present invention can be executed.
  • a storage medium for carrying the program product storing the above-mentioned machine-readable instruction codes is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware configuration (for example, a general-purpose computer 2300 shown in FIG. 23 ), where various programs are installed. , various functions and the like can be performed.
  • a central processing unit (CPU) 2301 executes various processes according to programs stored in a read only memory (ROM) 2302 or loaded from a storage section 2308 to a random access memory (RAM) 2303 .
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 2301 executes various processing and the like is also stored as necessary.
  • the CPU 2301, ROM 2302, and RAM 2303 are connected to each other via a bus 2304.
  • the input/output interface 2305 is also connected to the bus 2304 .
  • the following components are connected to the input/output interface 2305: an input section 2306 (including a keyboard, a mouse, etc.), an output section 2307 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.), Storage section 2308 (including hard disk, etc.), communication section 2309 (including network interface card such as LAN card, modem, etc.).
  • the communication section 2309 performs communication processing via a network such as the Internet.
  • a driver 2310 may also be connected to the input/output interface 2305 as needed.
  • Removable media 2311 such as magnetic disks, optical disks, magneto-optical disks, A semiconductor memory or the like is mounted on the drive 2310 as necessary, so that a computer program read therefrom is installed into the storage section 2308 as necessary.
  • the programs constituting the software are installed from a network such as the Internet or a storage medium such as the removable medium 2311 .
  • a storage medium is not limited to the removable medium 2311 shown in FIG. 23 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable media 2311 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disc read only memory (CD-ROM) and digital versatile disk (DVD)), magneto-optical disks (including mini disks (MD) (registered trademark)) and semiconductor memory.
  • the storage medium may be a ROM 2302, a hard disk contained in the storage section 2308, etc., in which the programs are stored and distributed to users together with devices containing them.
  • each component or each step can be decomposed and/or reassembled. These decompositions and/or recombinations should be considered equivalents of the present invention. Also, the steps for executing the series of processes described above may naturally be executed in chronological order in the order described, but need not necessarily be executed in chronological order. Certain steps may be performed in parallel or independently of each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用于无线通信的电子设备、方法和计算机可读存储介质,该电子设备包括:处理电路,被配置为:对网络节点与智能反射面之间的第一信道进行估计;至少基于所估计的第一信道对网络节点发出的平面波信号进行预编码,以使得网络节点与网络终端之间的信道模型等价为智能反射面与网络终端之间的轨道角动量信道模型;以及发送经预编码的平面波信号。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2022年2月24日提交中国专利局、申请号为202210177126.0、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及利用智能反射表面(Large Intelligent Surface,LIS)的轨道角动量(Orbital Angular Momentum,OAM)通信技术。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
电磁波既具有线性动量又具有角动量。角动量可以分解为自旋角动量(Spin Angular Momentum,SAM)和轨道角动量(OAM)。OAM是波的相位相对于围绕波的传播轴的方位角θ变化的结果。这种变化导致螺旋相位分布(φ=l*θ),其中l代表OAM模态数,指的是一个波长内完整相位旋转的次数。
由于不同整数模态之间的正交性特征,因此利用OAM进行模分复用(Mode Division Multiplexing,MDM)被认为可用于未来的无线通信。OAM作为一种额外的自由度,其带来的频谱效率的提升和在通信中的潜力引起了人们的广泛关注。
LIS是一种全新的革命性技术,其中可以通过在平面上集成大量低成本的无源反射元件来智能地重新配置无线传播环境,从而显著提升无线通信网络的性能。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某 些方面的基本理解。应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图确定本公开的关键或重要部分,也不是意图限定本公开的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:对网络节点与智能反射面之间的第一信道进行估计;至少基于所估计的第一信道对网络节点发出的平面波信号进行预编码,以使得网络节点与网络终端之间的信道模型等价为智能反射面与网络终端之间的轨道角动量信道模型;以及发送经预编码的平面波信号。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:对网络节点与智能反射面之间的第一信道进行估计;至少基于所估计的第一信道对网络节点发出的平面波信号进行预编码,以使得网络节点与网络终端之间的信道模型等价为智能反射面与网络终端之间的轨道角动量信道模型;以及发送经预编码的平面波信号。
根据本申请的上述方面的电子设备和方法通过基于第一信道的估计对平面波信号进行预编码,能够借助于LIS实现支持OAM通信的网络终端与没有配备OAM天线的网络节点之间的OAM通信。
根据本公开的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
通过以下结合附图对本公开的优选实施例的详细说明,本公开的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本公开的以上和其它优点和特征,下面结合附图对本公开的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本公开的典型示例,而不应看作是对本公开的范围的限定。在附图中:
图1示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图2示出了在不存在直达径的情况下下利用LIS实现OAM通信的系统示意图;
图3示出了作为示例的LIS的阵列结构;
图4示出了网络节点、LIS与网络终端之间的相关工作流程的示例的示意图;
图5示出了在存在直达径的情况下下利用LIS实现OAM通信的系统示意图;
图6示出了网络节点、LIS与网络终端之间的相关工作流程的示例的示意图;
图7示出了利用哑接入点进行第一信道的估计的系统的示意图;
图8示出了利用哑接入点进行第一信道的估计的流程图;
图9示出了基于虚拟全双工测量来进行第一信道的估计的系统的示意图;
图10示出了基于虚拟全双工测量来进行第一信道的估计的流程图;
图11示出了基于虚拟全双工测量来进行第一信道的估计的系统的示意图;
图12示出了基于虚拟全双工测量来进行第一信道的估计的系统的示意图;
图13示出了基于虚拟全双工测量来进行第一信道的估计的系统的示意图;
图14示出了基于虚拟全双工测量来进行第一信道的估计的系统的示意图;
图15示出了基于设备到设备通信的测量进行第一信道的估计的流程图;
图16示出了基于设备到设备通信的测量来进行第一信道的估计的系统的示意图;
图17示出了基于设备到设备通信的测量来进行第一信道的估计的系统的示意图;
图18示出了基于设备到设备通信的测量来进行第一信道的估计的系统的示意图;
图19示出了基于设备到设备通信的测量来进行第一信道的估计的系统的示意图;
图20示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图21是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图22是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;以及
图23是其中可以实现根据本公开的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的设备结构和/或处理步骤,而省略了与本公开关系不大的其他细节。
<第一实施例>
图1示出了根据本申请的一个实施例的用于无线通信的电子设备100的功能模块框图,如图1所示,电子设备100包括:估计单元101,被配置为对网络节点与LIS之间的第一信道进行估计;预编码单元102,被配置为至少基于所估计的第一信道对网络节点发出的平面波信号进行预编码,以使得网络节点与网络终端之间的信道模型等价为LIS与网络终端之间的OAM信道模型;以及通信单元103,被配置为发送经预编码的平面波信号。
其中,估计单元101、预编码单元102和通信单元103可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图1中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备100例如可以设置在网络节点侧或者可通信地连接到网络节点。这里的网络节点例如可以指能够帮助终端设备接入无线通信网络的设备,比如基站/收发点(Transmit and Receive Point,TRP)等。这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为网络节点本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储网络节点实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,其他网络节点、UE等等)间的通信,这里不具体限制收发器的实现形式。
此外,网络终端指的是实现网络通信功能的终端设备,比如用户设备(User Equipment,UE)等。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
当支持OAM通信的网络终端(下文中也简称为OAM用户)移动到没有配备OAM天线的网络节点(比如基站)的覆盖区域内时,传输数据速率急剧下降,这是因为在这种情况下只能使用平面波模式。在本实施例中,提出了利用LIS将平面波转换为涡旋波从而使得没有配备 OAM天线的网络节点能够支持OAM用户的OAM通信。
具体地,根据本实施例,估计单元101首先对网络节点与智能反射面之间的信道(为了便于区分,本文中称为第一信道)进行估计,预编码单元102基于估计的第一信道对网络节点发出的平面波信号进行预编码,例如,预编码通过预编码矩阵来实现,该预编码矩阵基于所估计的第一信道来设置,并且使得网络节点与网络终端之间的信道模型等价为LIS与网络终端之间的OAM信道模型。通信单元103发送经预编码的平面波信号,该平面波信号经过LIS反射后以涡旋波的形式到达网络终端。
注意,在利用LIS辅助通信的情况下,存在如下两种可能场景:网络节点与网络终端之间不存在直达径;网络节点与网络终端之间存在直达径。在这两种场景下,预编码矩阵的设置是有所不同的。因此,下面将分别针对这两种场景阐述预编码矩阵的设置。在下文的描述中,假设估计单元101已经估计得到第一信道,应该理解,可以采用各种信道估计方法,这并不是限制性的。此外,在第二实施例中,将具体描述本公开提出的三种用于第一信道的估计的方法。
作为第一示例,网络节点与网络终端之间不存在直达径,即,网络节点与网络终端之间的直达路径被阻隔或者通过直达径到达网络终端的信号强度很弱,图2示出了在这种情况下利用LIS实现OAM通信的系统示意图,其中,网络节点示出为BS,网络终端示出为OAM UE,BS通过有线或无线的控制链路对LIS进行控制。假设BS有M根天线,OAM UE和LIS分别有N根天线。
LIS的反射单元被配置为均匀环形阵列(UCA),以将接收到的平面波转换为涡旋波,每个单元之间的相位差表示为Δφ=2πl/N。其中N为阵元数,l表示OAM模态。图3示出了当N=8时LIS的阵列结构作为示例。应该理解,这并不是限制性的。
图2所示的系统下行的完整信道模型可以表示为下式(1)。
Y=GHLUΦHBLWS+V      (1)
其中,Y表示N×1维的接收信号向量,G表示N×N维的接收矩阵, W表示M×N维的预编码矩阵,V表示示N×1维的加性白高斯噪声(AWGN)信号。X表示N×1维的发送信号向量,其元素例如为经过QPSK或QAM等星座图调制的符号。HLU表示LIS到UE之间的信道矩阵,即:
其中,hLU(i,j)表示OAM UE第i根天线与LIS第j个反射单元之间的信道。HBL表示BS到LIS之间的信道矩阵,即,第一信道的信道矩阵,如下式所示:
其中,hBL(n,m)表示LIS第n个单元与BS第m根天线之间的信道。Φ表示LIS的N个反射单元的调整系数组成的矩阵,即:
其中,αn表示第n个反射单元上的调整系数。在该信道模型下,如下式(5)所示设置预编码矩阵:
其中,F表示一个N×N维的离散傅里叶变换(DFT)矩阵,(·)H表示共轭转置操作。这里,为了简化信道分析,可以将LIS的反射系数矩阵Φ设置为一单位阵,同时令接收矩阵G=F。在HBL已知的情况下,可以 获得上述预编码矩阵。将以上设置代入原信道模型(1)可以得到传统的OAM信道模型,如下式(6)所示:
Y=FHLUFHS      (6)
此时,OAM UE可使用涡旋波与BS正常通信。
在接收端,假设LIS和OAM UE之间共轴平行,则HLU为一个循环阵,其元素在每行呈现一个循环移位的形式。在这种情况下,式(6)经过分解可得到:
其中,hn表示有效信道参数。由(7)式可以看出,与传统的平面波MIMO系统相比,OAM通信不需要复杂的矩阵求逆等运算,就可将信道分解为正交的独立数据流。
为了确定上述有效信道参数,预编码单元102可以至少基于所估计的第一信道对导频信号进行预编码并且通信单元103将经预编码的导频信号发送至网络终端。这样,网络终端可以基于对经预编码的导频信号的接收来确定LIS与网络终端之间的有效信道参数,并基于该有效信道参数进行数据解调。
需要注意,由于LIS一旦架设好,位置是固定的,其与BS之间的信道HBL变化非常缓慢。而OAM用户由于位置随机变化,所以其与LIS之间的信道HLU变化就相对较快,即,有效信道参数变化较快。因此,有效信道参数的更新速率应该较高,而HBL的更新速率比HLU低得多,可以数十个符号,甚至数百个符号之后再进行测量更新,具体更新速率可由系统设定。
为了便于理解,图4示出了网络节点(比如BS)、LIS与网络终端(比如UE)之间的相关工作流程的示例的示意图。
首先,网络节点对网络节点与LIS之间的第一信道进行估计,例如以得到预编码矩阵。网络节点还通过有线或无线控制链路对LIS的反射 系数矩阵进行设置,例如将其设置为单位阵,即,将LIS的所有反射单元的反射系数均设置为1。接着,网络节点基于第一信道估计对导频信号进行预编码,例如使用预编码矩阵对导频信号进行预编码,该导频信号对于网络终端是已知的。网络节点将经预编码的导频信号发送至LIS,LIS将其反射至网络终端。由于网络终端已知导频信号,因此网络终端能够根据所接收到的导频信号利用式(7)来估计有效信道参数。接下来,进入数据传输阶段,网络节点基于第一信道估计(例如使用预编码矩阵)对待传输数据进行预编码并发送至LIS,LIS将其反射至网络终端,此外,网络终端可以根据之前估计的有效信道参数利用式(7)对接收到的数据进行解调以获得网络节点发送的待传输数据。
作为第二示例,网络节点与网络终端之间存在直达径,即,网络节点所发送的信号可以通过LIS反射至网络终端,也可以直接发射至网络终端,图5示出了在这种情况下利用LIS实现OAM通信的系统示意图。类似地,假设BS有M根天线,OAM UE和LIS分别有N根天线,LIS的反射单元被配置为均匀环形阵列。
图5所示的系统的完整的下行信道模型可以表示为:
Y=G(HLUΦHBL+HBU)WS+V    (8)
其中,HBU表示BS到UE之间的直达信道矩阵,即
其中,hBU(n,m)表示OAM UE第n根天线与BS第m根天线之间的信道,其余参数含义与式(1)中相同,在此不再重复。
由于HBU的存在,BS的平面波信号会对经过LIS转换后的OAM信号产生干扰,因此需要去除掉。例如,估计单元101还可以被配置为对网络节点与网络终端之间的直达径信道进行估计,除了估计的第一信道之外,预编码单元102还基于所估计的直达径信道进行预编码,以消除通过直达径传输的平面波信号的影响。因此,本示例中的预编码矩阵不 同于第一示例中的预编码矩阵。
例如,预编码单元102被配置为利用脏纸(Dirty paper)算法或块对角化(BD)算法来执行预编码。由于BS的天线数通常远大于UE的天线数,因此可以借鉴传统MIMO系统中的多用户干扰去除方法。这里以常用的BD算法为例,预编码可以包括第一预编码和第二预编码,其中,第一预编码用于消除通过直达径传输的平面波的影响。例如,用于第一预编码的预编码矩阵可以为估计的直达径信道的信道矩阵的零空间(Null space)。
具体地,预编码矩阵可以设置为:
W=W1W2    (10)
其中,W1矩阵是用于第一预编码的预编码矩阵。假设M>2N,W1矩阵为HBU的零空间,即:
HBUW1=0     (11)
求出W1后,W2可设置为:
类似地,F是一个DFT矩阵,Φ为一单位阵,接收矩阵G=F。将以上设置代入原信道模型(8)可以得到传统的OAM信道模型,如下式(13)所示:
Y=FHLUFHS      (13)
此时,OAM UE可使用涡旋波与BS正常通信。
在接收端,仍然假设LIS和OAM UE之间共轴平行,则HLU为一个循环阵,其元素在每行呈现一个循环移位的形式。在这种情况下,式(13)经过分解仍可得到前面的式(7)。
为了确定上述有效信道参数,预编码单元102可以基于所估计的第一信道和直达径信道对导频信号进行预编码并且通信单元103将经预编码的导频信号发送至网络终端。这样,网络终端可以基于对经预编码的导频信号的接收来确定LIS与网络终端之间的有效信道参数,并基于该有效信道参数进行数据解调。
类似地,有效信道参数的更新速率应该较高,而HBL的更新速率比HLU低得多,可以数十个符号,甚至数百个符号之后再进行测量更新,具体更新速率可由系统设定。
为了便于理解,图6示出了网络节点(比如BS)、LIS与网络终端(比如UE)之间的相关工作流程的示例的示意图。
首先,网络节点对网络节点与LIS之间的第一信道进行估计。并且,网络节点对网络节点与网络终端之间的直达径信道进行估计。应该注意,第一信道的估计和直达径信道的估计的先后顺序并不受限定,图6中所示并不代表先后关系。此外,由于网络终端位置随机变化,所以网络节点与网络终端之间的直达径信道变化就相对较快,HBU的更新速率应设置地相对较高。
接下来的流程与图4类似,具体地,网络节点通过有线或无线控制链路对LIS的反射系数矩阵进行设置,例如将其设置为单位阵。网络节点基于第一信道估计和直达径信道估计对导频信号进行预编码,例如使用式(10)的预编码矩阵对导频信号进行预编码,该导频信号对于网络终端是已知的。网络节点将经预编码的导频信号发送至LIS,LIS将其反射至网络终端。由于网络终端已知导频信号,因此网络终端能够根据所接收到的导频信号利用式(7)来估计有效信道参数。接下来,进入数据传输阶段,网络节点基于第一信道估计和直达径信道估计对待传输数据进行预编码并发送至LIS,LIS将其反射至网络终端,此外,网络终端可以根据之前估计的有效信道参数利用式(7)对接收到的数据进行解调以获得网络节点发送的待传输数据。
对于直达径信道的估计,可以如下进行。例如,通信单元103可以被配置为:关闭LIS的所有反射单元;依次利用网络节点的各个天线向网络终端发送导频信号,网络终端对导频信号进行测量并基于测量结果估计直达径信道;以及从网络终端获取所估计的直达径信道。
其中,关闭LIS的所有反射单元是为了排除LIS的反射信号对直达信号的干扰。仍以图5所示的情形为例,当网络节点使用第m根(0≤m≤M-1)天线发送导频(其他天线不发送信号)时,UE可以根据接收到的导频信号得到网络节点的第m根信道到UE所有天线之间的信道,即式(9)中HBU的第m列。在网络节点依次选择M根天线发 送导频信号之后,网络终端可以获得完整的HBU,并将完整的HBU反馈给网络节点。
注意,当系统工作在时分双工(TDD)模式下时,由于上下行信道之间存在互易性(Reciprocity),因此HBU的估计也可以通过上行传输来实现。工作流程与上述流程类似,即,网络终端依次利用各个天线向网络节点发送导频信号,网络节点对导频信号进行测量并基于测量结果获得直达径信道。具体地,仍以图5所示的情形为例,当网络终端(UE)使用第n根(0≤n≤N-1)天线发送导频(其他天线不发送信号)时,网络节点可以根据接收到的导频信号得到网络终端的第n根信道到网络节点所有天线之间的信道,即式(9)中HBU的第n行。在网络终端依次选择N根天线发送导频信号之后,网络节点可以获得完整的HBU。此时,网络终端使用单根天线发送的信号为平面波,并且网络终端不再需要反馈信道参数。
综上所述,根据本实施例的电子设备100通过对平面波信号进行预编码,能够借助于LIS实现支持OAM通信的网络终端与没有配备OAM天线的网络节点之间的OAM通信,并且,无论是否存在直达径,电子设备100都可以适用。
<第二实施例>
本实施例将提供第一实施例中所述的估计单元101用于估计第一信道的的三种示例。应该理解,这并不是限制性的。
第一示例
在该示例中,估计单元101被配置为利用哑接入点(Dump AP)进行第一信道的估计,其中,哑接入点布置在距离LIS不超过预定距离的范围内。
图7示出了利用哑接入点进行第一信道的估计的系统的示意图。其中,哑接入点通过有线或无线链路与网络节点连接,并且哑接入点有射频链路,可以产生无线信号。哑接入点被网络节点控制以周期性地发送信号,从而可以估计信道。哑接入点被部署在距离LIS足够近的位置处,从而使得可以根据LIS的位置获取哑接入点的参数。并且,可以为多个 LIS部署一个哑接入点。
利用哑接入点进行第一信道的估计的步骤例如可以参照图8所示,具体描述如下。首先,在步骤S11中,网络节点向哑接入点通知载波频率和其他信号参数,以使得哑接入点能够按照要求发送信号。在估计过程中,网络节点(具体地,例如估计单元101)控制LIS打开一个反射单元而关闭其他反射单元(S12),然后控制哑接入点向LIS发送导频信号(S13),通信单元103接收经LIS反射的导频信号并进行信道估计,例如可以得到式(3)中所示的HBL的第一行(S14)。网络节点针对LIS的每一个反射单元执行上述步骤S12-S14,即,依次打开LIS的其他反射单元并执行控制以使得哑接入点发送导频信号,通信单元103接收经LIS反射的导频信号并进行信道估计,从而得到HBL的其他行,完成对HBL的估计(S15)。
第二示例
在该示例中,估计单元101被配置为基于虚拟全双工测量来进行第一信道的估计。
虚拟全双工测量指的是由网络节点自身进行信号的发送和接收,即,网络节点发送导频信号,该导频信号由LIS和其他周围物体反射后由网络节点接收,当使用不同的天线进行收发时,实现了虚拟全双工传输,此时可以通过对从网络节点到LIS再到网络节点的双链路级联信道的估计来获得对第一信道的估计。
图9示出了基于虚拟全双工测量来进行第一信道的估计的系统的示意图。在图9中,网络节点示出为基站BS。假设BS控制LIS激活第k个反射单元,并且从BS的m1天线发送信号,信号经LIS和周围物体反射后,到达BS的其余天线(这里以m2天线作为示例,m2不同于m1),与时刻n的自干扰信号叠加,系统模型可表示为:
其中,表示m1天线发送的信号,表示m2天线接收到的信号,hBL(k,m2)表示LIS第k个反射单元与BS的m2天线之间 的信道,hBL(m1,k)表示BS的m1天线与LIS第k个反射单元之间的信道。φ(k)表示LIS的第k个反射单元的调整系数。表示BS天线间的自干扰,表示噪声,hen(m1,m2)表示周围的环境反射。
自干扰主要是由于BS工作在全双工模式时,信号会从m1天线直接传输到m2天线。在对自干扰进行抵消之前的全双工系统中,自干扰甚至可能比所需信号更大。但是,目前对于自干扰抑制的方法已经有了广泛的研究。因此,在下面的分析中,假设自干扰包含在噪声中,不再单独考虑。
使用hen(m1,m2)来表示环境反射,这是因为除了LIS的反射单元之外的一些周围物体也可以将m1天线发送的信号反射到m2天线。因此,需要提前将其估计出来。
图10示出了第一信道的估计的具体流程的示例。在步骤S21中,关闭LIS的所有单元,利用网络节点的第一天线发送导频信号并利用网络节点的其余天线接收,以估计环境反射。在步骤S22中,针对网络节点的每一个天线,控制LIS依次打开每一个反射单元,利用网络节点的该天线发送导频信号并利用网络节点的其余天线接收,以基于估计的环境反射估计从该天线经由LIS的所述反射单元至其余天线的双链路级联信道。在步骤S23中,基于所估计的所有双链路级联信道,估计第一信道。
具体地,在步骤S21中,例如在时刻n,LIS中的所有反射单元都设置为未激活状态,不反射任何信号。BS的m1天线发送导频信号。该导频信号被周围物体反射后,被其余的BS天线接收,可以用来估计环境反射,系统示意图如图11所示。这里将m1天线作为第一天线的一个示例,并不是限制性的。
系统模型可以表示如下:
其中,相同的符号与在上式(14)中具有相同的含义,在此不再重复。由式(15)可以获得估计的环境反射为:
接下来,在步骤S21中,例如,在时刻n+1,BS控制LIS激活第k个反射单元,并保持其余反射单元关闭(未激活)。BS的m1天线发送导频信号。导频信号经LIS反射后,由剩余的BS天线接收,用于估计从天线m1至LIS的第k个反射单元再到其余天线的双链路级联信道,系统示意图如图12所示。
系统模型可以表示如下:
其中,相同的符号与在上式(14)和(15)中具有相同的含义,在此不再重复。由式(17)可以获得从天线m1至LIS的第k个反射单元再到天线m2的双链路级联信道的估计如下:
接下来,在下一个时刻n+2,BS控制LIS激活第k+1个反射单元,并保持其余反射单元关闭。BS的m1天线发送导频信号。导频信号经LIS反射后,由剩余的BS天线接收,用于估计从天线m1至LIS的第k+1个反射单元再到其余天线的双链路级联信道,系统示意图如图13所示。
系统模型可以表示如下:
其中,相同的符号与在上式(14)、(15)和(17)中具有相同的含义,在此不再重复。由式(19)可以获得从天线m1至LIS的第k+1个反射单元再到天线m2的双链路级联信道的估计如下:

接着,BS控制LIS依次激活其他反射单元,重复上述估计过程,最终得到如下级联信道的估计结果:
其中,S代表BS的天线集合。
接下来,BS从天线集合S中选择不同于m1天线的另一个天线m3来发送导频信号,在时刻n+t,BS控制LIS激活第k个反射单元,并保持其余反射单元关闭(未激活)。BS的m3天线发送导频信号。导频信号经LIS反射后,由剩余的BS天线接收,用于估计从天线m3至LIS的第k个反射单元再到其余天线的双链路级联信道,系统示意图如图14所示。
系统模型可以表示如下:
其中,相同的符号与前文中具有相同的含义,在此不再重复,hen(m3,m2)代表关闭LIS的所有单元,利用网络节点的天线m3发送导频信号并利用网络节点的其余天线接收时估计的环境反射。由式(22)可以获得从天线m3至LIS的第k个反射单元再到天线m2的双链路级联信道的估计如下:
类似地,BS控制LIS依次激活其他反射单元,重复上述估计过程, 最终得到如下级联信道的估计结果:
根据以上得到的所有级联信道的估计结果,可以估计HBL中的元素为:
这是由于信道互易性,即,将前述步骤中估计的结果(例如式(21)、(24)等)代入式(25),可以计算得到
进一步地,由于信道互易性,可以得到:
基于前述步骤中的估计结果以及式(25)的计算结果,可以计算得到从而得到了完整的HBL
如上所述,通过基于虚拟全双工的测量过程,可以估计出网络节点与LIS之间的第一信道。
第二示例
在该示例中,估计单元101被配置为基于设备到设备(D2D)通信的测量来进行第一信道的估计。其中,两个终端设备以D2D模式工作,交替发送导频信号。在下文中将两个终端设备分别称为第一设备和第二设备,以用于区分。
图15示出了根据本示例的第一信道的估计的流程图。其中,控制LIS打开一个反射单元,在步骤S31中,第一设备向LIS发送导频信号,网络节点的天线接收经由LIS反射的导频信号,并估计从第一设备经由 LIS的该反射单元到网络节点的天线的第一级联信道;在步骤S32中,第二设备向LIS发送导频信号,网络节点的天线接收经由LIS反射的导频信号,并估计从第二设备经由LIS的该反射单元到网络节点的天线的第二级联信道;在步骤S33中,第一设备向LIS发送导频信号,经反射的导频信号由第二设备接收,第二设备估计从第一设备经由LIS的该反射单元到第二设备的第三级联信道,网络节点从第二设备获取估计的第三级联信道;在步骤S34中,基于第一级联信道、第二级联信道和第三级联信道估计LIS的该单元到网络节点的天线的信道;在步骤S35中,针对LIS的每一个反射单元执行步骤S31-S34,基于所估计的LIS的每个单元到网络节点的每个天线的信道,获得第一信道的估计。
图16示出了基于D2D通信的测量来进行第一信道的估计的一个系统示意图。其中,网络节点示出为基站BS,UE A和UE B执行D2D通信,均为单天线,假设LIS有N个反射单元,BS有M根天线。注意,UE A和UE B也可以为OAM UE,例如在进行估计时使用单天线即可。
下面参照图16-19所示的系统示意图来具体描述第一信道的估计过程。例如,在时刻k,BS控制LIS激活第n个反射单元,并保持其余反射单元未激活,UE A发送导频信号,导频信号经过LIS反射后,由BS的天线接收,如图16所示。BS基于接收的导频信号估计从UE A经由LIS的第n个反射单元到各个天线的第一级联信道(对应于步骤S31),下面将以第m(m=0,1,…,M-1)根天线作为示例进行描述。
第m根天线接收到的信号表示如下:
ym,A(k)=hBL(m,n)φ(n)hLU(n,A)xA(k)+wm,A(k)  (27)
其中,xA(k)表示UE A发送的信号,ym,A(k)表示m天线接收到的信号,hBL(m,n)表示LIS第n个反射单元与BS的m天线之间的信道,hLU(n,A)表示UE A与LIS第n个反射单元之间的信道。φ(n)表示LIS的第n个反射单元的调整系数,wm,A(k)表示噪声。
根据式(27)可以获得估计的第一级联信道为:
在时刻k+1,UE A停止发送导频信号。UE B开始发送导频信号。导频信号经过LIS反射后,由BS接收,如图17所示。BS基于接收的导频信号估计从UE B经由LIS的第n个反射单元到各个天线的第二级联信道(对应于步骤S32)。下面仍以第m根天线作为示例进行描述。
第m根天线接收到的信号表示如下:
ym,B(k+1)=hBL(m,n)φ(n)hLU(n,B)xB(k+1)+wm,B(k+1)
(29)
其中,相同的符号与前文中具有相同的含义,在此不再重复,xB(k)表示UE B发送的信号,ym,B(k+1)表示m天线接收到的信号,hLU(n,B)表示UE B与LIS第n个反射单元之间的信道。wm,B(k+1)表示噪声。
根据式(29)可以获得估计的第二级联信道为:
在时刻k+2,UE B停止发送导频信号。UE A开始发送导频信号。导频信号经由LIS反射后,由UE B接收,如图18所示。UE B基于接收到的导频信号估计从UE A经由LIS的第n个反射单元到UE B的第三级联信道(对应于步骤S33)。
UE B接收到的导频信号表示如下:
yB,A(k+2)=hLU(B,n)φ(n)hLU(n,A)xA(k+2)+wB,A(k+2)  (31)
根据式(31)可以获得估计的第三级联信道为:
UE B将UE A到UE B的第三级联信道的信息上报给BS。BS如下计算LIS中第n个反射单元到BS第m根天线的信道(对应于步骤S34),其中m=0,1,…,M-1。
其中,由于信道互易性,
接下来,BS控制LIS依次激活其他反射单元,如图19所示,然后重复上述步骤,最终获得第一信道的完整估计,例如前述矩阵HBL中的每一个元素。
可以看出,在第三示例中,采用了上行信号进行信道估计,基于上下行信道的互易性,所估计的结果同样能够适用于网络节点到LIS的下行信道。
以上描述了估计单元101用于估计第一信道的三种示例,但是应该理解,这并不是限制性的。
<第三实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图19示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括:对网络节点与LIS之间的第一信道进行估计(S41);至少基于所估计的第一信道对网络节点发出的平面波信号进行预编码,以使得网络节点与网络终端之间的信道模型等价为LIS与网络终端之间的OAM信道模型(S42);以及发送经预编码的平面波信号(S43)。该方法例如可以在网络节点侧执行。
例如,LIS的反射单元可以被配置为均匀环形阵列,LIS的反射系数矩阵可以设置为单位矩阵。
在步骤S42中还可以基于所估计的第一信道对导频信号进行预编码,使得网络终端基于对经预编码的导频信号的接收来确定LIS与网络终端之间的有效信道参数,其中,网络终端基于该有效信道参数进行数据解调。
此外,在网络节点与网络终端之间存在直达径的情况下,上述方法还包括为对网络节点与网络终端之间的直达径信道进行估计,并且在步骤S42中还基于所估计的直达径信道进行预编码,以消除通过直达径传输的平面波信号的影响。例如,可以利用脏纸算法或块对角化算法执行预编码。在利用块对角化算法执行预编码的情况下,预编码包括第一预编码和第二预编码,第一预编码用于消除通过直达径传输的平面波信号的影响。例如,用于第一预编码的预编码矩阵为估计的直达径信道的信道矩阵的零空间。
在网络节点与网络终端之间存在直达径的情况下,在步骤S42中基于所估计的第一信道和直达径信道对导频信号进行预编码,使得网络终端基于对经预编码的导频信号的接收来确定LIS与网络终端之间的有效信道参数,其中,网络终端基于该有效信道参数进行数据解调。
作为示例,可以如下进行直达径信道的估计:关闭LIS的所有反射单元;依次利用网络节点的各个天线向网络终端发送导频信号,网络终端对导频信号进行测量并基于测量结果估计直达径信道;以及从网络终端获取所估计的直达径信道。
在第一示例中,可以利用哑接入点进行第一信道的估计,哑接入点布置在距离LIS不超过预定距离的范围内。例如,利用哑接入点进行第一信道的估计包括:控制LIS打开一个反射单元而关闭其他反射单元;控制哑接入点向LIS发送导频信号;接收经LIS反射的导频信号并进行信道估计;以及针对LIS的每一个反射单元执行上述步骤,以完成第一信道的估计。具体细节如前文参照图8所述。
在第二示例中,可以基于虚拟全双工测量来进行第一信道的估计。例如,基于虚拟全双工测量来进行第一信道的估计包括:关闭LIS的所有反射单元,利用网络节点的第一天线发送导频信号并利用网络节点的其余天线接收,以估计环境反射;针对网络节点的每一个天线,控制LIS依次打开每一个反射单元,利用网络节点的该天线发送导频信号并利用网络节点的其余天线接收,以基于估计的环境反射估计从天线经由LIS的反射单元至其余天线的双链路级联信道;基于所估计的所有双链路级联信道,估计第一信道。具体细节如前文参照图10所述。
在第三示例中,可以基于D2D通信的测量来进行第一信道的估计。 例如,基于D2D通信的测量进行第一信道的估计包括:控制LIS依次打开每一个反射单元:第一设备向LIS发送导频信号,网络节点的天线接收经由LIS反射的导频信号并估计从第一设备经由LIS的该反射单元到网络节点的天线的第一级联信道;第二设备向LIS发送导频信号,网络节点的天线接收经由LIS反射的导频信号并估计从第二设备经由LIS的该反射单元到网络节点的天线的第二级联信道;第一设备向LIS发送导频信号,经反射的导频信号由第二设备接收,第二设备估计从第一设备经由LIS的该反射单元到第二设备的第三级联信道,从第二设备获取所估计的第三级联信道;以及基于第一级联信道、第二级联信道和第三级联信道估计LIS的该反射单元到网络节点的天线的信道。此外,基于D2D通信的测量进行第一信道的估计还包括:基于所估计的LIS的每个反射单元到网络节点的每一个天线的信道,获得第一信道的估计。具体细节如前文参照图15所述。
上述方法对应于第一实施例至第二实施例中所描述的电子设备100,其具体细节可参见以上相应部分的描述,在此不再重复。
本公开内容的技术能够应用于各种产品。
电子设备100可以被实现为各种基站或TRP。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
[关于基站的应用示例]
(第一应用示例)
图21是示出可以应用本公开内容的技术的eNB或gNB的示意性配 置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图21所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图21示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调 以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图21所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图21所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图21示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图21所示的eNB 800中,电子设备100的通信单元103、收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行估计单元101、预编码单元102和通信单元103的功能对平面波信号进行预编码,以借助于LIS实现支持OAM通信的网络终端与没有配备OAM天线的网络节点之间的OAM通信。
(第二应用示例)
图22是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。 如图22所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图22示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图21描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图21描述的BB处理器826相同。如图22所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图22示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图22所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图22示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图22所示的eNB 830中,电子设备100的通信单元103、收发器可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部 分也可以由控制器851实现。例如,控制器851可以通过执行估计单元101、预编码单元102和通信单元103的功能对平面波信号进行预编码,以借助于LIS实现支持OAM通信的网络终端与没有配备OAM天线的网络节点之间的OAM通信。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图23所示的通用计算机2300)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图23中,中央处理单元(CPU)2301根据只读存储器(ROM)2302中存储的程序或从存储部分2308加载到随机存取存储器(RAM)2303的程序执行各种处理。在RAM 2303中,也根据需要存储当CPU 2301执行各种处理等等时所需的数据。CPU 2301、ROM 2302和RAM 2303经由总线2304彼此连接。输入/输出接口2305也连接到总线2304。
下述部件连接到输入/输出接口2305:输入部分2306(包括键盘、鼠标等等)、输出部分2307(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分2308(包括硬盘等)、通信部分2309(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2309经由网络比如因特网执行通信处理。根据需要,驱动器2310也可连接到输入/输出接口2305。可移除介质2311比如磁盘、光盘、磁光盘、 半导体存储器等等根据需要被安装在驱动器2310上,使得从中读出的计算机程序根据需要被安装到存储部分2308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质2311安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图23所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质2311。可移除介质2311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2302、存储部分2308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (18)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    对网络节点与智能反射面之间的第一信道进行估计;
    至少基于所估计的第一信道对所述网络节点发出的平面波信号进行预编码,以使得所述网络节点与网络终端之间的信道模型等价为所述智能反射面与所述网络终端之间的轨道角动量信道模型;以及
    发送经预编码的平面波信号。
  2. 根据权利要求1所述的电子设备,其中,在所述网络节点与所述网络终端之间存在直达径的情况下,所述处理电路还被配置为对所述网络节点与所述网络终端之间的直达径信道进行估计,并且还基于所估计的直达径信道进行预编码,以消除通过所述直达径传输的平面波信号的影响。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为利用脏纸算法或块对角化算法执行所述预编码。
  4. 根据权利要求3所述的电子设备,其中,在利用所述块对角化算法执行所述预编码的情况下,所述预编码包括第一预编码和第二预编码,所述第一预编码用于消除通过所述直达径传输的平面波信号的影响。
  5. 根据权利要求4所述的电子设备,其中,用于所述第一预编码的预编码矩阵为估计的直达径信道的信道矩阵的零空间。
  6. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为至少基于所估计的第一信道对导频信号进行预编码,使得所述网络终端基于对经预编码的导频信号的接收来确定所述智能反射面与所述网络终端之间的有效信道参数,其中,所述网络终端基于所述有效信道参数进行数据解调。
  7. 根据权利要求2所述的电子设备,其中,在所述网络节点与所述网络终端之间存在直达径的情况下,所述处理电路被配置为基于所估计的第一信道和直达径信道对导频信号进行预编码,使得所述网络终端基 于对经预编码的导频信号的接收来确定所述智能反射面与所述网络终端之间的有效信道参数,其中,所述网络终端基于所述有效信道参数进行数据解调。
  8. 根据权利要求1所述的电子设备,其中,所述智能反射面的反射单元被配置为均匀环形阵列。
  9. 根据权利要求8所述的电子设备,其中,所述处理电路被配置为将所述智能反射面的反射系数矩阵设置为单位矩阵。
  10. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为如下进行所述直达径信道的估计:
    关闭所述智能反射面的所有反射单元;
    依次利用所述网络节点的各个天线向所述网络终端发送导频信号,所述网络终端对所述导频信号进行测量并基于测量结果估计所述直达径信道;以及
    从所述网络终端获取所估计的直达径信道。
  11. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为利用哑接入点进行所述第一信道的估计,所述哑接入点布置在距离所述智能反射面不超过预定距离的范围内。
  12. 根据权利要求11所述的电子设备,所述处理电路被配置为如下进行所述第一信道的估计:
    控制所述智能反射面打开一个反射单元而关闭其他反射单元;
    控制所述哑接入点向所述智能反射面发送导频信号;
    接收经所述智能反射面反射的导频信号并进行信道估计;以及
    针对所述智能反射面的每一个反射单元执行上述步骤,以完成所述第一信道的估计。
  13. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为基于虚拟全双工测量来进行所述第一信道的估计。
  14. 根据权利要求13所述的电子设备,其中,所述处理电路被配置为如下进行所述第一信道的估计:
    关闭所述智能反射面的所有反射单元,利用所述网络节点的第一天线发送导频信号并利用所述网络节点的其余天线接收,以估计环境反射;
    针对所述网络节点的每一个天线,控制所述智能反射面依次打开每一个反射单元,利用所述网络节点的该天线发送导频信号并利用所述网络节点的其余天线接收,以基于估计的环境反射估计从所述天线经由所述智能反射面的所述反射单元至所述其余天线的双链路级联信道;
    基于所估计的所有双链路级联信道,估计所述第一信道。
  15. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为基于设备到设备通信的测量来进行所述第一信道的估计。
  16. 根据权利要求15所述的电子设备,其中,所述处理电路被配置为如下进行所述第一信道的估计:
    控制所述智能反射面依次打开每一个反射单元:
    第一设备向所述智能反射面发送导频信号,所述网络节点的天线接收经由所述智能反射面的所述反射单元反射的导频信号并估计从所述第一设备经由所述智能反射面的所述反射单元到所述网络节点的天线的第一级联信道;
    第二设备向所述智能反射面发送导频信号,所述网络节点的天线接收经由所述智能反射面的所述反射单元反射的导频信号并估计从所述第二设备经由所述智能反射面的所述反射单元到所述网络节点的天线的第二级联信道;
    所述第一设备向所述智能反射面发送导频信号,经反射的导频信号由所述第二设备接收,所述第二设备估计从所述第一设备经由所述智能反射面的所述反射单元到所述第二设备的第三级联信道,所述处理电路从所述第二设备获取所估计的第三级联信道;以及
    基于所述第一级联信道、所述第二级联信道和所述第三级联信道估计所述智能反射面的所述反射单元到所述网络节点的天线的信道,
    基于所估计的所述智能反射面的每个反射单元到所述网络节点的每一个天线的信道,获得所述第一信道的估计。
  17. 一种用于无线通信的方法,包括:
    对网络节点与智能反射面之间的第一信道进行估计;
    至少基于所估计的第一信道对所述网络节点发出的平面波信号进行预编码,以使得所述网络节点与网络终端之间的信道模型等价为所述智能反射面与所述网络终端之间的轨道角动量信道模型;以及
    发送经预编码的平面波信号。
  18. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被处理器执行时,使得所述处理器执行根据权利要求17所述的用于无线通信的方法。
PCT/CN2023/076697 2022-02-24 2023-02-17 用于无线通信的电子设备和方法、计算机可读存储介质 WO2023160467A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210177126.0A CN116708085A (zh) 2022-02-24 2022-02-24 用于无线通信的电子设备和方法、计算机可读存储介质
CN202210177126.0 2022-02-24

Publications (1)

Publication Number Publication Date
WO2023160467A1 true WO2023160467A1 (zh) 2023-08-31

Family

ID=87764693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076697 WO2023160467A1 (zh) 2022-02-24 2023-02-17 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116708085A (zh)
WO (1) WO2023160467A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112868188A (zh) * 2018-10-26 2021-05-28 索尼公司 电子设备、通信方法以及介质
CN113133014A (zh) * 2021-03-23 2021-07-16 清华大学 基于智能反射面的广义电磁波轨道角动量传输系统
CN113765550A (zh) * 2020-06-03 2021-12-07 华为技术有限公司 通信方法及相关装置
US20210399766A1 (en) * 2018-11-02 2021-12-23 Nec Corporation Oam reception apparatus, oam reception method, and oam transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112868188A (zh) * 2018-10-26 2021-05-28 索尼公司 电子设备、通信方法以及介质
US20210399766A1 (en) * 2018-11-02 2021-12-23 Nec Corporation Oam reception apparatus, oam reception method, and oam transmission system
CN113765550A (zh) * 2020-06-03 2021-12-07 华为技术有限公司 通信方法及相关装置
CN113133014A (zh) * 2021-03-23 2021-07-16 清华大学 基于智能反射面的广义电磁波轨道角动量传输系统

Also Published As

Publication number Publication date
CN116708085A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
US10411776B2 (en) Beamforming training using multiple-input and multiple-output transmission scheme
US10250309B2 (en) System and method for downlink channel estimation in massive multiple-input-multiple-output (MIMO)
WO2019141285A1 (zh) 一种天线选择指示方法、装置和系统
US10644828B2 (en) Method and apparatus for wideband CSI reporting in an advanced wireless communication system
US20140293904A1 (en) Systems and Methods for Sparse Beamforming Design
CN109787664A (zh) 用于无线通信系统的电子设备、方法、装置和存储介质
US10574312B2 (en) Apparatus and methods for interference cancellation in multi-antenna receivers
CN106575988A (zh) 多用户、多输入多输出系统中的并行信道训练
US10797841B2 (en) Electronic device, wireless communication method and medium
CN108781201B (zh) 根据发送空频分集方案进行通信的装置、系统和方法
US20190123991A1 (en) Systems and Methods for a Sounding Frame in an IEEE 802.11AX Compliant Network
WO2012068716A1 (en) Multi-layer beamforming with partial channel state information
WO2020198168A1 (en) Receiver combining for hybrid analog-digital beamforming
US20180248600A1 (en) Wideband sector sweep using wideband training (trn) field
KR20110110733A (ko) 중계기 및 그의 신호 전달 방법
WO2023160467A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230019630A1 (en) Update Method and Communications Apparatus
US10862552B2 (en) Electronic device and method for use in network control point and central processing node
WO2011136473A2 (en) Method for avoiding interference in wireless communication system and apparatus for the same
WO2020211736A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2023241215A1 (zh) 一种通信方法及设备
WO2018115974A2 (zh) 用于大规模mimo系统的波束形成的方法和设备
WO2022048531A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2024027387A1 (zh) 一种信息传输的方法和装置
WO2024016837A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759092

Country of ref document: EP

Kind code of ref document: A1