WO2023160279A1 - 一种光器件、光交换全互连系统以及通信系统 - Google Patents

一种光器件、光交换全互连系统以及通信系统 Download PDF

Info

Publication number
WO2023160279A1
WO2023160279A1 PCT/CN2023/071224 CN2023071224W WO2023160279A1 WO 2023160279 A1 WO2023160279 A1 WO 2023160279A1 CN 2023071224 W CN2023071224 W CN 2023071224W WO 2023160279 A1 WO2023160279 A1 WO 2023160279A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical device
switching
switch
photoelectric conversion
Prior art date
Application number
PCT/CN2023/071224
Other languages
English (en)
French (fr)
Inventor
兰鹏
田光晓
魏娟
吴阳博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023160279A1 publication Critical patent/WO2023160279A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction

Definitions

  • the present application relates to the field of optical communication, in particular to an optical device, an optical switching fully interconnected system and a communication system.
  • the electrical switching system is based on packet switching, which can achieve microsecond-level switching delay, and is the mainstream solution for realizing fine-grained and fast switching.
  • the optical switching system is based on the switching of optical wavelengths or optical links. At present, it can realize switching at the level of milliseconds to seconds, and its bandwidth is large but the rate is slow.
  • each service node is directly connected to each other to realize fast switching between multiple service nodes
  • the electrical exchange star interconnection architecture shown in Figure 2 multiple service nodes are connected through several centralized exchange nodes for indirect exchange connection to realize fast exchange communication among multi-service nodes.
  • future bandwidth expansion can only be achieved by increasing the rate of a single channel, and the increase in the rate of a single channel is limited, so there is a problem of limited bandwidth increase space.
  • multiple service nodes are connected through indirect switching through several concentrated switching nodes so as to realize fast switching communication among multiple service nodes.
  • the bandwidth can be increased according to the service requirements, the loss of the entire optical link in the switching star interconnection architecture is very large due to the loss of the N*N optical switch and 4 times of traversing the backplane.
  • Embodiments of the present application provide an optical device, an optical switching full interconnection system, and a communication system, which are used to reduce backplane loss of optical signals between optical devices and switching nodes.
  • the present application provides an optical device, which specifically includes: a business processing module, a photoelectric conversion module, a multiplexer, an optical switching switch, an optical receiving module, and an optical connector; wherein, when the optical device is used as a transmitting end, The first electrical signal generated by the service processing module generates a first optical signal through the photoelectric conversion module, and the first optical signal is combined by the multiplexer, the optical switching switch and the optical connector and output to the next-hop optical device ; when the optical device is used as the receiving end, the optical connector receives the second optical signal output by the optical connector of the last hop optical device, and demultiplexes the signal through the optical receiving module and outputs it to the photoelectric conversion module. The optical signal generates a second electrical signal through the photoelectric conversion module and is output to the service processing module.
  • the optical device is integrated with an optical switching switch, so that the optical device can directly perform service switching with the other optical device, thereby reducing the backplane loss of optical signals between the optical device and the switching node.
  • the optical switch is a 1*N optical switch, and N is a positive integer greater than or equal to 2. In this way, the optical fiber loss during the switching process of the optical signal can be further reduced.
  • the number of the photoelectric conversion module is one. This reduces the deployment cost of optical devices.
  • the optical receiving module is an arrayed waveguide grating router (arrayed waveguide grating router, AWGR); or, the optical receiving module includes a wave splitter and an N*1 optical switching switch, and the N is A positive integer greater than or equal to 2. In this way, the possible solutions for the optical device to realize the function of light receiving can be increased.
  • the optical switching switch is an optical switching switch realized based on micro-electromechanical system (micro electro mechanical system, MEMS) technology or a wavelength selective switch (liquid crystal on silicon-based) realized based on liquid crystal silicon technology.
  • MEMS micro electro mechanical system
  • wavelength selective switch liquid crystal on silicon-based
  • LCOS-based WSS wavelength selective switch
  • the response time of the optical switch is within nanoseconds. In this way, the response speed of the optical device to optical switching can be improved.
  • the present application provides an optical switching fully interconnected system, which specifically includes: N optical devices, each of the N optical devices is directly connected to each other in pairs, and the N is a positive integer greater than or equal to 2 ;
  • the N optical devices include a first optical device and a second optical device;
  • the first optical device includes a first service processing module, a first photoelectric conversion module, a first multiplexer, a first optical switch, and a second optical switch.
  • the second optical device includes a second service processing module, a second photoelectric conversion module, a second multiplexer, a second optical switching switch, a second optical receiving module and a second An optical connector; wherein, the number of output ports of the first optical switching switch and the second optical switching switch is greater than or equal to the number of optical devices in the optical switching fully interconnected system minus one; the first service processing module generates The electrical signal of the first photoelectric conversion module generates a first optical signal, and the first optical signal is combined by the first multiplexer, the first optical switching switch and the first optical connector to send to the second optical connector; the electrical signal generated by the second service processing module generates a second optical signal through the second photoelectric conversion module, and the second optical signal is combined by the second multiplexer , the second optical switch and the second optical connector send to the first optical connector.
  • the optical device in the optical switching full interconnection system integrates an optical switching switch, so that a system architecture of direct connection is formed between each optical device in the optical switching full interconnection system, so that each optical Direct service exchange can be realized between devices, thereby reducing the backplane loss of optical signals between optical devices and switching nodes.
  • the first optical switch is a 1*M optical switch, and M is a positive integer greater than or equal to N-1;
  • the second optical switch is a 1*M optical switch,
  • the M is a positive integer greater than or equal to N-1.
  • the optical switching full interconnection system further includes a third optical device, and the first optical device, the second optical device, and the third optical device are directly connected to each other in pairs
  • the third optical device includes a third service processing module, a third photoelectric conversion module, a third multiplexer, a third optical switching switch, a third optical receiving module and a third optical connector; the third optical device
  • the electrical signal generated by the third service processing module in the third photoelectric conversion module generates a third optical signal through the third optical signal, and the third optical signal is combined by the third multiplexer, the third optical switching switch and
  • the third optical connector transmits to the second optical connector and/or the first optical connector.
  • the first optical device, the second optical device, and the third optical device have the same structure. In this way, only one set of modules can be used in one system, thereby saving the development cost of optical devices.
  • the first optical receiving module is an arrayed waveguide grating router AWGR; or, the first optical receiving module includes a wave splitter and an M*1 optical switching switch;
  • the second optical receiving module is an arrayed waveguide grating router AWGR; or, the second optical receiving module includes a wave splitter and an M*1 optical switching switch, wherein the M is a positive integer greater than or equal to N-1.
  • the present application provides a communication system, which includes the optical switching full interconnection system described in the second aspect above, and the optical switching full interconnection system includes the optical device described in the first aspect above.
  • FIG. 1 is an exemplary architecture diagram of an electrical switching fully interconnected architecture
  • FIG. 2 is an exemplary architecture diagram of an electrical switching star interconnection architecture
  • Fig. 3 is an exemplary architecture diagram of optical switching star interconnection architecture
  • FIG. 4 is a schematic diagram of an embodiment of an optical device applied to an optical switching fully interconnected system in an embodiment of the present application
  • FIG. 5 is a schematic diagram of another embodiment of an optical device applied to an optical switching fully interconnected system in the embodiment of the present application;
  • FIG. 6 is a schematic diagram of another embodiment of an optical device applied to an optical switching fully interconnected system in the embodiment of the present application;
  • FIG. 7 is a schematic diagram of another embodiment of an optical device applied to an optical switching fully interconnected system in the embodiment of the present application;
  • FIG. 8 is a schematic diagram of another embodiment of an optical device applied to an optical switching fully interconnected system in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of another embodiment of an optical device applied to an optical switching fully interconnected system in the embodiment of the present application.
  • FIG. 10 is a schematic diagram of another embodiment of an optical device applied to an optical switching fully interconnected system in the embodiment of the present application;
  • FIG. 11 is a schematic diagram of an embodiment of an optical switching fully interconnected system in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another embodiment of the optical switching fully interconnected system in the embodiment of the present application.
  • FIG. 13 is a schematic diagram of another embodiment of the optical switching fully interconnected system in the embodiment of the present application.
  • Fig. 14 is a schematic diagram of an embodiment of the optical switching system in the embodiment of the present application.
  • the naming or numbering of the steps in this application does not mean that the steps in the method flow must be executed in the time/logic sequence indicated by the naming or numbering.
  • the execution order of the technical purpose is changed, as long as the same or similar technical effect can be achieved.
  • the division of units presented in this application is a logical division. In actual application, there may be other division methods. For example, multiple units can be combined or integrated in another system, or some features can be ignored. , or not, in addition, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, and the indirect coupling or communication connection between units may be electrical or other similar forms, this Applications are not limited.
  • the units or subunits described as separate components may or may not be physically separated, may or may not be physical units, or may be distributed into multiple circuit units, and some or all of them may be selected according to actual needs unit to realize the purpose of the application scheme.
  • the electrical switching system is based on packet switching, which can achieve microsecond-level switching delay, and is the mainstream solution for realizing fine-grained and fast switching.
  • the optical switching system is based on the switching of optical wavelengths or optical links. At present, it can realize switching at the level of milliseconds to seconds, and its bandwidth is large but the rate is slow.
  • each service node is directly connected to each other to realize fast switching between multiple service nodes
  • the electrical exchange star interconnection architecture shown in Figure 2 multiple service nodes are connected through several centralized exchange nodes for indirect exchange connection to realize fast exchange communication among multi-service nodes.
  • future bandwidth expansion can only be achieved by increasing the rate of a single channel, and the increase in the rate of a single channel is limited, so there is a problem of limited bandwidth increase space.
  • multiple service nodes are connected through indirect switching through several concentrated switching nodes so as to realize fast switching communication among multiple service nodes.
  • the bandwidth can be increased according to the service requirements
  • the loss of the entire optical link in the switching star interconnection architecture is very large due to the loss of the N*N optical switch and the backplane crossing the service node many times. Therefore, there is an urgent need for an optical device that can increase bandwidth and reduce optical link loss according to service requirements.
  • the embodiment of the present application provides an optical device 400 as shown in FIG. 405 and optical connector 406.
  • the service processing module 401 is used to process the service data in communication to generate an electrical signal; the photoelectric conversion module 402 is used to modulate the service data carried by the electrical signal
  • the light source generator received by the photoelectric conversion device 402 generates a corresponding light signal, and the light source generator can be integrated in the optical device 400, or can be separated from the optical device 400 independent existence.
  • the light source generator can generate light sources with multiple wavelengths, so that the photoelectric converter 402 can modulate different service data on different wavelengths to generate different optical signals; and the multiplexer 403 can combine different wavelengths
  • the optical signals are combined to generate an optical signal (ie, the first optical signal), and transmitted to the optical switch 404; the optical switch 404 selects a corresponding port to output the optical signal to the optical connector 406; wherein, the optical The connector 406 is connected to the optical connector of the next-hop optical device (that is, the service node) through an optical fiber, so the optical connector 406 transmits the optical signal to the next-hop service node through the optical fiber.
  • the optical device 400 is directly connected to the next-hop optical device.
  • the optical connector 406 receives the second optical signal sent by the previous hop optical device (that is, the service node); The signal is forwarded to the optical receiving module 405; then the optical receiving module 405 outputs the second optical signal from the corresponding port and performs demultiplexing to generate an optical signal of multiple wavelengths, and then sends the optical signal of the multiple wavelengths to the optoelectronic The conversion module 402 ; then, the photoelectric conversion module 402 demodulates the multiple optical signals to generate corresponding electrical signals and sends them to the service processing module 401 .
  • the optical switching switch 404 may be a 1*N optical switching switch, a schematic diagram of a possible implementation thereof may be shown in FIG. 5 . It can be understood that the optical switch shape 404 may also be an N*N optical switch, and a schematic diagram of a possible implementation thereof may be shown in FIG. 6 .
  • the value of N is related to the number of service nodes in the optical switching fully interconnected system applied by the optical device 400, and its value is greater than or equal to the number of service nodes in the optical switching fully interconnected system minus 1. For example, there are 6 service nodes including the optical device 400 in the fully interconnected optical switching system, and the value of N is greater than or equal to 5.
  • the optical switching switch can be an optical switching switch based on micro electromechanical system (micro electro mechanical system, MEMS) technology or a wavelength selective switch (liquid crystal on silicon-based wavelength selective switch, LCOS- based WSS).
  • the response time of the optical switching switch can be designed to be within nanoseconds.
  • the specific implementation manner of the optical switching switch is not limited here.
  • the optical receiving module 405 may be an arrayed waveguide grating router (arrayed waveguide grating router, AWGR), a schematic diagram of a possible implementation thereof may be shown in FIG. 7 .
  • the optical receiving module 405 may also include a demultiplexer and an N*1 optical switching switch, and a schematic diagram of a possible implementation thereof may be shown in FIG. 8 .
  • the value of N is related to the number of service nodes in the optical switching fully interconnected system applied by the optical device 400, and its value is greater than or equal to the number of service nodes in the optical switching fully interconnected system minus 1.
  • the optical switching switch can be an optical switching switch based on micro electromechanical system (micro electro mechanical system, MEMS) technology or a wavelength selective switch (liquid crystal on silicon-based wavelength selective switch, LCOS- based WSS).
  • the response time of the optical switching switch can be designed to be within nanoseconds.
  • the specific implementation manner of the optical switching switch is not limited here.
  • the number of the photoelectric conversion module 402 can be set to at least one. However, in a preferred solution, the number of the photoelectric conversion module 402 is one. It can be understood that the number of photoelectric conversion modules 402 may also be 2, and a schematic diagram of a possible implementation thereof may be shown in FIG. 9 .
  • the preferred scheme of the optical device 400 can be shown in Figure 10, which includes a service processing module 401, a photoelectric conversion module 402, a wave splitter 403, a 1*N optical switching switch 404, an AWGR405, and an optical connector 406 and light source 407 .
  • the embodiment of the present application provides an optical switching full interconnection system 100, wherein the optical switching full
  • the device 400 has the structure described above in FIG. 4 to FIG. 10 ; the N optical devices 400 serve as service nodes and are directly connected to each other in pairs.
  • the optical device 1 and the optical device 2 communicate, and the specific implementation process is as follows:
  • the service processing module in the optical device 1 is used to process the service data in the communication to generate an electrical signal; the photoelectric conversion module in the optical device 1 is used to carry the service data carried by the electrical signal modulated onto the light source to generate a corresponding optical signal; the photoelectric conversion module in the optical device 1 then outputs the optical signal to the multiplexer in the optical device 1, and the multiplexer in the optical device 1 can combine different wavelengths Optical signals are combined to generate an optical signal, and transmitted to the optical switching switch in the optical device 1; the optical switching switch in the optical device 1 selects the corresponding port to output the optical signal to the optical connection in the optical device 1
  • the optical connector is connected to the optical connector of the optical device 2 through an optical fiber, so the optical connector in the optical device 1 transmits the optical signal to the optical connector of the optical device 2 through the optical fiber.
  • the optical connector of optical device 2 receives the optical signal sent by optical device 1; then the optical connector of optical device 2 forwards the optical signal to the optical receiving module of optical device 2; then the optical receiving module of optical device 2 sends the optical signal Output from the corresponding ports and demultiplex to generate optical signals of multiple wavelengths, and then send the optical signals of multiple wavelengths to the photoelectric conversion module of the optical device 2; then, the photoelectric conversion module of the optical device 2 converts the multi-channel optical signals Signal demodulation generates a corresponding electrical signal and sends it to the service processing module of the optical device 2 .
  • the optical devices in the optical switching full interconnection system 100 may have the same structure or different structures, which are not limited here, as long as the functions of the optical switching full interconnection system 100 can be realized. Can.
  • FIG. 12 an exemplary solution of a preferred solution of the optical switching fully interconnected system 100 may be shown in FIG. 12 , wherein the structures of the optical devices are shown in FIG. 10 .
  • the optical switching system may also have a possible implementation manner as shown in FIG. 13 .
  • at least one optical device serving as a service node is shown in FIG. 6
  • other optical devices serving as service nodes may be optical devices as shown in FIGS. 4 to 5 , and 7 to 10 .
  • the optical switching system can also have a possible implementation as shown in Figure 14.
  • at least one optical device serving as a service node is shown in Figure 6, and then other optical devices serving as service nodes can be is the structure of an existing optical device, and is not specifically limited here.
  • the optical device shown in Figure 6 is used as a switching node in the entire optical switching system, and the optical device shown in Figure 6 can be directly connected to the service node as shown in Figure 6 direct communication; and the service nodes directly connected to the optical device shown in FIG. 6 realize indirect communication with each other through the optical device shown in FIG. 6 . That is, as shown in FIG. 14 , if the optical device 2 communicates with the optical device 3 , optical switching needs to be performed through the optical device 1 . However, direct communication between the optical device 1 and the optical device 2 or between the optical device 1 and the optical device 3 may be implemented.
  • the embodiment of the present application also provides a communication system, including the optical switching fully interconnected system as shown in FIG. 11 .
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • 5G communication system and future wireless communication system, etc.
  • the optical device 400 in this application may be a user equipment, and this application describes various embodiments in conjunction with the user equipment.
  • User Equipment may also refer to terminal equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolved PLMN networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the optical device 400 in the present application may also be a network device, and the present application describes various embodiments in conjunction with the network device.
  • the network device may be a device for communicating with user equipment, for example, it may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or a base station (NodeB, NB) in the WCDMA system, or it may be The evolved base station (Evolutional Node B, eNB or eNodeB) in the LTE system, or the network device can be a relay station, an access point, a vehicle device, a wearable device, and a network side device in a 5G network or a future evolved public land mobile Network equipment in the network (Public Land Mobile Network, PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • NB base station
  • NB base station
  • the network device can be a relay station, an access point, a vehicle device, a wearable device, and
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例提供了一种光器件、光交换全互连系统以及通信系统,用于减少了光信号在光器件以及交换节点之间的背板损耗。其具体包括:业务处理模块、光电转换模块、合波器、光交换开关、光接收模块和光连接器;其中,在该光器件作为发射端时,该业务处理模块生成的第一电信号通过该光电转换模块生成第一光信号,该第一光信号通过该合波器合波、该光交换开关和该光连接器输出至下一跳光器件;在该光器件作为接收端时,该光连接器接收上一跳光器件的光连接器输出的第二光信号,并通过该光接收模块进行分波输出至该光电转换模块,该第二光信号通过该光电转换生成第二电信号,并输出至该业务处理模块。

Description

一种光器件、光交换全互连系统以及通信系统
本申请要求于2022年02月22日提交中国国家知识产权局、申请号为202210163877.7、发明名称为“一种光器件、光交换全互连系统以及通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及一种光器件、光交换全互连系统以及通信系统。
背景技术
随着通信技术的发展,对于路由交换设备的容量需求也在不断增加。目前的交换技术通常是电交换系统和光交换系统。其中,电交换系统基于包交换,可以实现微秒级交换时延,是实现细颗粒度、快速交换的主流方案。光交换系统是基于光波长或者光链路的交换,目前可以实现毫秒至秒级的交换,其带宽较大但速率慢。
目前电交换系统与光交换系统的系统架构存在如下几种可能实现方式:如图1所示的电交换全互连架构中,各个业务节点之间相互直连从而实现多业务节点间的快速交换通信,如图2所示的电交换星型互连架构中,将多个业务节点通过集中的几个集中交换节点,作间接交换连接从而实现多业务节点间快速交换通信。但是在如图1和图2所示的电交换系统中通道数量一旦确定,未来带宽扩展只能靠提升单通道速率,而单通道速率提升有限,因此存在带宽增加空间受限的问题。如图3所示的光交换星型互连架构中,将多个业务节点通过集中的几个集中交换节点,作间接交换连接从而实现多业务节点间快速交换通信。在光交换系统中,虽然可以根据业务需求实现带宽增加,但是交换星型互连架构中由于N*N光开关损耗以及4次穿越背板导致整个光链路损耗很大。
因此目前急需一种在满足根据业务需求实现带宽增加且减少光链路损耗的光器件。
发明内容
本申请实施例提供了一种光器件、光交换全互连系统以及通信系统,用于减少了光信号在光器件以及交换节点之间的背板损耗。
第一方面,本申请提供一种光器件,其具体包括:业务处理模块、光电转换模块、合波器、光交换开关、光接收模块和光连接器;其中,在该光器件作为发射端时,该业务处理模块生成的第一电信号通过该光电转换模块生成第一光信号,该第一光信号通过该合波器合波、该光交换开关和该光连接器输出至下一跳光器件;在该光器件作为接收端时,该光连接器接收上一跳光器件的光连接器输出的第二光信号,并通过该光接收模块进行分波输出至该光电转换模块,该第二光信号通过该光电转换模块生成第二电信号,并输出至该业务处理模块。
本实施例中,该光器件集成了光交换开关,使得该光器件可以实现与该其他光器件直接进行业务交换,从而减少了光信号在光器件以及交换节点之间的背板损耗。
在一个可能实现方式中,所述光交换开关为1*N光交换开关,所述N为大于等于2的正整数。这样可以更进一步的减少光信号在交换过程中的光纤损耗。
在另一个可能实现方式中,该光电转换模块的数量为1。这样减少光器件的部署成本。
在另一个可能实现方式中,所述光接收模块为阵列波导光栅路由器(arrayed waveguide grating router,AWGR);或者,所述光接收模块包括分波器和N*1光交换开关,所述N为大于等于2的正整数。这样可以增加了光器件实现光接收的功能的可能性方案。
在另一个可能实现方式中,所述光交换开关为基于微机电系统(micro electro mechanical system,MEMS)技术实现的光交换开关或者为基于液晶硅技术实现的波长选择开关(liquid crystal on silicon-based wavelength selective switch,LCOS-based WSS)。这样可以增加了实现光交换开关的可能性方案。
在另一种可能实现方式中,所述光交换开关的响应时间位于纳秒级以内。这样可以提高该光器件对于光交换的响应速度。
第二方面,本申请提供一种光交换全互连系统,具体包括:N个光器件,所述N个光器件中各光器件两两相互直连,所述N为大于等于2的正整数;所述N个光器件包括第一光器件和第二光器件;所述第一光器件包括第一业务处理模块、第一光电转换模块、第一合波器、第一光交换开关、第一光接收模块和第一光连接器;所述第二光器件包括第二业务处理模块、第二光电转换模块、第二合波器、第二光交换开关、第二光接收模块和第二光连接器;其中,所述第一光交换开关和所述第二光换开关的输出端口数量大于等于所述光交换全互连系统中光器件数量减一;所述第一业务处理模块生成的电信号通过所述第一光电转换模块生成第一光信号,所述第一光信号通过所述第一合波器合波、所述第一光交换开关和所述第一光连接器发送至所述第二光连接器;所述第二业务处理模块生成的电信号通过所述第二光电转换模块生成第二光信号,所述第二光信号通过所述第二合波器合波、所述第二光交换开关和所述第二光连接器发送至所述第一光连接器。
本实施例中,该光交换全互连系统中的该光器件集成了光交换开关,从而使得该光交换全互连系统中各个光器件之间形成了相互直连的系统架构,使得各个光器件之间可以实现直接业务交换,从而减少了光信号在光器件以及交换节点之间的背板损耗。
一种可能实现方式中,所述第一光交换开关为1*M光交换开关,所述M为大于等于N-1的正整数;所述第二光交换开关为1*M光交换开关,所述M为大于等于N-1的正整数。
另一种可能实现方式中,所述光交换全互连系统还包括第三光器件,所述第一光器件、所述第二光器件和所述第三光器件之间两两相互直连;所述第三光器件包括第三业务处理模块、第三光电转换模块、第三合波器、第三光交换开关、第三光接收模块和第三光连接器;所述第三光器件中的第三业务处理模块生成的电信号通过所述第三光电转换模块生成第三光信号,所述第三光信号通过所述第三合波器合波、所述第三光交换开关和所述第三光连接器发送至所述第二光连接器和/或所述第一光连接器。
另一种可能实现方式中,所述第一光器件、所述第二光器件以及所述第三光器件具有相同的结构。这样使得一套系统里仅使用一套模组即可,从而节省光器件的开发成本。
另一种可能实现方式中,所述第一光接收模块为阵列波导光栅路由器AWGR;或者,所述第一光接收模块包括分波器和M*1光交换开关;所述第二光接收模块为阵列波导光栅路由器AWGR;或者,所述第二光接收模块包括分波器和M*1光交换开关其中,所述M为大于 等于N-1的正整数。
第三方面,本申请提供一种通信系统,该通信系统包括上述第二方面所描述的光交换全互连系统,所述光交换全互连系统包括上述第一方面所述的光器件。
附图说明
图1为电交换全互连架构的一个示例性架构图;
图2为电交换星型互连架构的一个示例性架构图;
图3为光交换星型互连架构的一个示例性架构图;
图4为本申请实施例中应用于光交换全互连系统的光器件的一个实施例示意图;
图5为本申请实施例中应用于光交换全互连系统的光器件的另一个实施例示意图;
图6为本申请实施例中应用于光交换全互连系统的光器件的另一个实施例示意图;
图7为本申请实施例中应用于光交换全互连系统的光器件的另一个实施例示意图;
图8为本申请实施例中应用于光交换全互连系统的光器件的另一个实施例示意图;
图9为本申请实施例中应用于光交换全互连系统的光器件的另一个实施例示意图;
图10为本申请实施例中应用于光交换全互连系统的光器件的另一个实施例示意图;
图11为本申请实施例中光交换全互连系统的一个实施例示意图;
图12为本申请实施例中光交换全互连系统的另一个实施例示意图;
图13为本申请实施例中光交换全互连系统的另一个实施例示意图;
图14为本申请实施例中光交换系统的一个实施例示意。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行次序,只要能达到相同或者相类似的技术效果即可。本申请中所出现的单元的划分,是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个单元可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请中均 不作限定。并且,作为分离部件说明的单元或子单元可以是也可以不是物理上的分离,可以是也可以不是物理单元,或者可以分布到多个电路单元中,可以根据实际的需要选择其中的部分或全部单元来实现本申请方案的目的。
随着通信技术的发展,对于路由交换设备的容量需求也在不断增加。目前的交换技术通常是电交换系统和光交换系统。其中,电交换系统基于包交换,可以实现微秒级交换时延,是实现细颗粒度、快速交换的主流方案。光交换系统是基于光波长或者光链路的交换,目前可以实现毫秒至秒级的交换,其带宽较大但速率慢。
目前电交换系统与光交换系统的系统架构存在如下几种可能实现方式:如图1所示的电交换全互连架构中,各个业务节点之间相互直连从而实现多业务节点间的快速交换通信,如图2所示的电交换星型互连架构中,将多个业务节点通过集中的几个集中交换节点,作间接交换连接从而实现多业务节点间快速交换通信。但是在如图1和图2所示的电交换系统中通道数量一旦确定,未来带宽扩展只能靠提升单通道速率,而单通道速率提升有限,因此存在带宽增加空间受限的问题。如图3所示的光交换星型互连架构中,将多个业务节点通过集中的几个集中交换节点,作间接交换连接从而实现多业务节点间快速交换通信。在光交换系统中,虽然可以根据业务需求实现带宽增加,但是交换星型互连架构中由于N*N光开关损耗以及多次穿越业务节点的背板导致整个光链路损耗很大。因此目前急需一种在满足根据业务需求实现带宽增加且减少光链路损耗的光器件。
为解决上述问题,本申请实施例提供如图4所示的光器件400,其中,该光器件400包括业务处理模块401、光电转换模块402、合波器403、光交换开关404、光接收模块405和光连接器406。
基于上述光器件400,在该光器件400作为发射端时,该业务处理模块401用于将通信中的业务数据处理生成电信号;该光电转换模块402用于将该电信号承载的业务数据调制至光源上生成相应的光信号;可以理解的是,该光电转换器件402接收到的光源产生器生成,而该光源产生器可以集成在该光器件400中,也可以是与该光器件400分别独立存在。同时,该光源产生器可以产生多路波长的光源,从而使得该光电转换器402可以将不同的业务数据调制在不同的波长上生成不同的光信号;而该合波器403可以将不同波长的光信号进行合波生成一路光信号(即第一光信号),并传输至该光交换开关404;该光交换开关404选择相应的端口将该光信号输出至光连接器406;其中,该光连接器406与下一跳的光器件(即业务节点)的光连接器通过光纤相连,因此该光连接器406通过光纤将该光信号传输至下一跳的业务节点。本实施例中,该光器件400与该下一跳光器件直连。
基于上述光器件400,在该光器件400作为接收端时,该光连接器406接收上一跳光器件(即业务节点)发送的第二光信号;然后该光连接器406将该第二光信号转发至光接收模块405;然后该光接收模块405将该第二光信号从相应的端口输出并进行分波生成多路波长的光信号,然后将该多路波长的光信号发送至该光电转换模块402;然后,该光电转换模块402将该多路光信号解调生成相应的电信号并发送至该业务处理模块401。
基于上述图4所示的光器件400,其中,该光交换开关404可以为1*N光交换开关,其一种可能实现的示意图可以如图5所示。可以理解的是,该光换形状404也可以是N*N 光交换开关,其一种可能实现的示意图可以如图6所示。本实施例中,该N的取值与该光器件400应用的光交换全互连系统中的业务节点的数量相关,其取值大于等于该光交换全互连系统中的业务节点的数量减1。比如该光交换全互连系统中包括该光器件400在内总共有6个业务节点,则该N的取值大于等于5。同时,该光交换开关可以为基于微机电系统(micro electro mechanical system,MEMS)技术实现的光交换开关或者为基于液晶硅技术实现的波长选择开关(liquid crystal on silicon-based wavelength selective switch,LCOS-based WSS)。
本实施例中,为了实现对于光交换的响应速度,可以设计该光交换开关的响应时间为纳秒级以内。其中,该光交换开关的具体实现方式此处不做限定。
基于上述图4所示的光器件400,其中,光接收模块405可以是阵列波导光栅路由器(arrayed waveguide grating router,AWGR),其一种可能实现的示意图可以如图7所示。同时,该光接收模块405也可以包括分波器和N*1光交换开关,其一种可能实现的示意图可以如图8所示。本实施例中,该N的取值与该光器件400应用的光交换全互连系统中的业务节点的数量相关,其取值大于等于该光交换全互连系统中的业务节点的数量减1。同时,该光交换开关可以为基于微机电系统(micro electro mechanical system,MEMS)技术实现的光交换开关或者为基于液晶硅技术实现的波长选择开关(liquid crystal on silicon-based wavelength selective switch,LCOS-based WSS)。
本实施例中,为了实现对于光交换的响应速度,可以设计该光交换开关的响应时间为纳秒级以内。其中,该光交换开关的具体实现方式此处不做限定。
基于上述图4所示的光器件400,其中,该光电转换模块402的数量可以设定为至少一个。但是优选方案中,该光电转换模块402的数量为1。可以理解的是,该光电转换模块402的数量也可以为2,其一种可能实现的示意图可以如图9所示。
本申请中,该光器件400的优先方案可以如图10所示,其包括业务处理模块401、一个光电转换模块402、分波器403、1*N光交换开关404、AWGR405、光连接器406以及光源407。
基于上述光器件400的方案,如图11所示,本申请实施例提供一种光交换全互连系统100,其中,该光交换全互连系统100包括N个光器件400,其中,该光器件400具有上述图4至图10中所描述的结构;该N个光器件400作为业务节点,相互之间两两直连。一种示例性方案中,如图11所示,该光器件1和光器件2发生通信,则其具体实现过程如下:
该光器件1作为发射端时,该光器件1中的业务处理模块用于将通信中的业务数据处理生成电信号;该光器件1中的光电转换模块用于将该电信号承载的业务数据调制至光源上生成相应的光信号;该光器件1中的光电转换模块再将该光信号输出至该光器件1中的合波器,该光器件1中的合波器可以将不同波长的光信号进行合波生成一路光信号,并传输至该光器件1中的光交换开关;该光器件1中的光交换开关选择相应的端口将该光信号输出至该光器件1中的光连接器;其中,该光连接器与光器件2的光连接器通过光纤相连,因此该光器件1中的光连接器通过光纤将该光信号传输至光器件2的光连接器。光器件2的光连接器接收光器件1发送的光信号;然后光器件2的光连接器将该光信号转发至光器 件2的光接收模块;然后光器件2的光接收模块将该光信号从相应的端口输出并进行分波生成多路波长的光信号,然后将该多路波长的光信号发送至光器件2的光电转换模块;然后,光器件2的光电转换模块将该多路光信号解调生成相应的电信号并发送至光器件2的业务处理模块。
本实施例中,该光交换全互连系统100中的光器件可以是相同的结构也可以是不相同的结构,具体此处不做限定,只要可以实现光交换全互连系统100的功能即可。
可选的,本申请实施例中,该光交换全互连系统100的一个优选方案的示例性方案可以如图12所示,其中,该光器件的结构均如图10所示。
可以理解的是,若该光器件中的光交换开关N*N光交换开关时,本实施例中,该光交换系统还可以具有如图13所示的一种可能实现方式。在此光交换系统中,至少一个作为业务节点的光器件如图6所示,然后其他作为业务节点的光器件可以是如图4至图5、图7至图10所示的光器件。该光交换系统还可以具有如图14所示的一种可能实现方式,在此光交换系统中,至少一个作为业务节点的光器件如图6所示,然后其他作为业务节点的光器件可以可以是现有光器件的结构,具体此处不做限定。在此光交换系统中,如图6所示的光器件作为整个光交换系统中的交换节点,可以实现如图6所示的光器件与该如图6所示光器件直连的业务节点的直接通信;而与该如图6所示光器件直连的业务节点相互之间通过如图6所示的光器件实现间接通信。即如图14所示,若该光器件2与该光器件3实现通信,则需要通过该光器件1进行光交换。但是光器件1与光器件2或者光器件1与光器件3之间可以实现直接通信。
本申请实施例中还提供一种通信系统,包括如图11所示的光交换全互连系统。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、5G通信系统、以及未来的无线通信系统等。
本申请中的光器件400可以是用户设备,其中本申请结合用户设备描述了各个实施例。用户设备(User Equipment,UE)也可以指终端设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
本申请中的光器件400也可以是网络设备,其中本申请结合网络设备描述了各个实施例。网络设备可以是用于与用户设备进行通信的设备,例如,可以是GSM系统或CDMA中的 基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络侧设备或未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的网络设备等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (11)

  1. 一种光器件,应用于光交换全互连系统,其特征在于,包括:
    业务处理模块、光电转换模块、合波器、光交换开关、光接收模块和光连接器;
    其中,在所述光器件作为发射端时,所述业务处理模块生成的第一电信号通过所述光电转换模块生成第一光信号,所述第一光信号通过所述合波器合波、所述光交换开关和所述光连接器输出至下一跳光器件;
    在所述光器件作为接收端时,所述光连接器接收上一跳光器件的光连接器输出的第二光信号,并通过所述光接收模块进行分波输出至所述光电转换模块,所述第二光信号通过所述光电转换模块生成第二电信号,并输出至所述业务处理模块。
  2. 根据权利要求1所述的光器件,其特征在于,所述光交换开关为1*N光交换开关,所述N为大于等于2的正整数。
  3. 根据权利要求1所述的光器件,其特征在于,所述光接收模块为阵列波导光栅路由器AWGR;或者,所述光接收模块包括分波器和N*1光交换开关,所述N为大于等于2的正整数。
  4. 根据权利要求1至3中任一项所述的光器件,其特征在于,所述光交换开关为基于微机电系统MEMS技术实现的光交换开关或者为基于液晶硅技术实现的波长选择开关LCOS-based WSS。
  5. 根据权利要求1至3中任一项所述的光器件,其特征在于,所述光交换开关的响应速度位于纳秒级以内。
  6. 一种光交换全互连系统,其特征在于,包括:
    N个光器件,所述N个光器件中各光器件两两相互直连,所述N为大于等于2的正整数;
    所述N个光器件包括第一光器件和第二光器件;
    所述第一光器件包括第一业务处理模块、第一光电转换模块、第一合波器、第一光交换开关、第一光接收模块和第一光连接器;
    所述第二光器件包括第二业务处理模块、第二光电转换模块、第二合波器、第二光交换开关、第二光接收模块和第二光连接器;
    其中,所述第一光交换开关和所述第二光换开关的输出端口数量大于等于所述光交换全互连系统中光器件数量减一;
    所述第一业务处理模块生成的电信号通过所述第一光电转换模块生成第一光信号,所述第一光信号通过所述第一合波器合波、所述第一光交换开关和所述第一光连接器发送至所述第二光连接器;
    所述第二业务处理模块生成的电信号通过所述第二光电转换模块生成第二光信号,所述第二光信号通过所述第二合波器合波、所述第二光交换开关和所述第二光连接器发送至所述第一光连接器。
  7. 根据权利要求6所述的系统,其特征在于,所述第一光交换开关为1*M光交换开关,所述M为大于等于N-1的正整数;
    所述第二光交换开关为1*M光交换开关,所述M为大于等于N-1的正整数。
  8. 根据权利要求6所述的系统,其特征在于,所述光交换全互连系统还包括第三光器件,所述第一光器件、所述第二光器件和所述第三光器件之间两两相互直连;
    所述第三光器件包括第三业务处理模块、第三光电转换模块、第三合波器、第三光交换开关、第三光接收模块和第三光连接器;
    所述第三光器件中的第三业务处理模块生成的电信号通过所述第三光电转换模块生成第三光信号,所述第三光信号通过所述第三合波器合波、所述第三光交换开关和所述第三光连接器发送至所述第二光连接器和/或所述第一光连接器。
  9. 根据权利要求8所述的系统,其特征在于,所述第一光器件、所述第二光器件以及所述第三光器件具有相同的结构。
  10. 根据权利要求6至9中任一项所述的系统,其特征在于,所述第一光接收模块为阵列波导光栅路由器AWGR;或者,所述第一光接收模块包括分波器和M*1光交换开关;
    所述第二光接收模块为阵列波导光栅路由器AWGR;或者,所述第二光接收模块包括分波器和M*1光交换开关;
    其中,所述M为大于等于N-1的正整数。
  11. 一种通信系统,其特征在于,包括上述权利要求6至10中至少一项所描述的光交换全互连系统,所述光交换全互连系统包括上述权利要求1至5中任一项所述的光器件。
PCT/CN2023/071224 2022-02-22 2023-01-09 一种光器件、光交换全互连系统以及通信系统 WO2023160279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210163877.7A CN116684762A (zh) 2022-02-22 2022-02-22 一种光器件、光交换全互连系统以及通信系统
CN202210163877.7 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023160279A1 true WO2023160279A1 (zh) 2023-08-31

Family

ID=87764699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071224 WO2023160279A1 (zh) 2022-02-22 2023-01-09 一种光器件、光交换全互连系统以及通信系统

Country Status (2)

Country Link
CN (1) CN116684762A (zh)
WO (1) WO2023160279A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030831A (zh) * 2007-03-19 2007-09-05 华为技术有限公司 波分复用装置及实现波分复用功能的方法
US20140126914A1 (en) * 2010-07-09 2014-05-08 Corning Cable Systems Llc Optical fiber-based distributed radio frequency (rf) antenna systems supporting multiple-input, multiple-output (mimo) configurations, and related components and methods
CN111917507A (zh) * 2020-08-10 2020-11-10 上海欣诺通信技术股份有限公司 集成化波分系统和设备
CN113285760A (zh) * 2021-06-17 2021-08-20 杭州兰特普光电子技术有限公司 光信号收发交换单元、分布式光交换系统及其扩展方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030831A (zh) * 2007-03-19 2007-09-05 华为技术有限公司 波分复用装置及实现波分复用功能的方法
US20140126914A1 (en) * 2010-07-09 2014-05-08 Corning Cable Systems Llc Optical fiber-based distributed radio frequency (rf) antenna systems supporting multiple-input, multiple-output (mimo) configurations, and related components and methods
CN111917507A (zh) * 2020-08-10 2020-11-10 上海欣诺通信技术股份有限公司 集成化波分系统和设备
CN113285760A (zh) * 2021-06-17 2021-08-20 杭州兰特普光电子技术有限公司 光信号收发交换单元、分布式光交换系统及其扩展方法

Also Published As

Publication number Publication date
CN116684762A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
CN101076961B (zh) 通信方法,尤其是用于移动无线电网络的通信方法
Chia et al. The next challenge for cellular networks: Backhaul
Huang et al. Coherent optical CDMA (OCDMA) systems used for high-capacity optical fiber networks-system description, OTDMA comparison, and OCDMA/WDMA networking
US7181140B2 (en) Method and apparatus for implementing and networking a semiconductor-based optical burst switching module within optical networks
KR20190094430A (ko) 공통 공중 무선 인터페이스(cpri) 수동 광 네트워크들(pons)에서의 동기화 에러 감소
CN101166068A (zh) 用于控制传输时间的光纤无线电系统和方法
CN111049865B (zh) 一种建链方法、装置和系统
WO2013119153A1 (en) A network node and a method therein enabling a first unit to connect or to be connected ad-hoc to a second unit
Liu et al. Emerging optical communication technologies for 5G
JP5296009B2 (ja) 基地局装置及び通信方法
JP2005079778A (ja) 送信タイミング制御システム及びノード装置
WO2007005142A1 (en) Discovery of an adjacent network element within a network data plane
WO2023160279A1 (zh) 一种光器件、光交换全互连系统以及通信系统
Tokas et al. A scalable optically-switched datacenter network with multicasting
KR100360012B1 (ko) 대용량 디지털 광 전송 장치
JP6600245B2 (ja) 光通信システム及び光通信方法
JP2002186017A (ja) 無線基地局ネットワークシステム、統括局、信号処理方法、及びハンドオーバー制御方法
JP5112302B2 (ja) イーサネット(登録商標)ネットワークリンクおよびアプリケーション上のクロックレートを転送するための方法およびシステム
JP4364248B2 (ja) 通信システム、ゲートウェイ装置およびアダプタ装置
JP2018098556A (ja) 光リングネットワークシステム及びそのパス制御方法
Furukawa et al. Control-message exchange of lightpath setup over colored optical packet switching in an optical packet and circuit integrated network
Furukawa et al. 100 Gbps multi-format optical packet and circuit switching node with transparent optical switch and burst-mode amplifier
JP5649130B2 (ja) 光通信システム及び光通信方法
Kim et al. Demonstration of 2.5 Gbps optical burst switched WDM rings network
KR100742505B1 (ko) 단방향 광전송 라우터를 이용한 양방향 통신시스템과 그통신방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23758904

Country of ref document: EP

Kind code of ref document: A1