WO2023160255A1 - 一种无线路由器及其控制方法 - Google Patents

一种无线路由器及其控制方法 Download PDF

Info

Publication number
WO2023160255A1
WO2023160255A1 PCT/CN2023/070198 CN2023070198W WO2023160255A1 WO 2023160255 A1 WO2023160255 A1 WO 2023160255A1 CN 2023070198 W CN2023070198 W CN 2023070198W WO 2023160255 A1 WO2023160255 A1 WO 2023160255A1
Authority
WO
WIPO (PCT)
Prior art keywords
directional antenna
target
axis
signal quality
lookup table
Prior art date
Application number
PCT/CN2023/070198
Other languages
English (en)
French (fr)
Inventor
官乔
张志军
魏鲲鹏
王毅
侯甲
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP23741957.7A priority Critical patent/EP4376216A1/en
Publication of WO2023160255A1 publication Critical patent/WO2023160255A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/60Router architectures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communication equipment, in particular to a wireless router and a control method thereof.
  • wireless routers such as home wireless routers
  • a wireless router can be regarded as a repeater, which forwards wireless or wired broadband network signals to nearby wireless network devices (such as laptops, mobile phones, tablets, smart TVs, wireless routers, etc.) through antennas.
  • wireless network devices such as laptops, mobile phones, tablets, smart TVs, wireless routers, etc.
  • the omnidirectional antenna shows 360° uniform radiation on the horizontal pattern, which is commonly referred to as non-directional.
  • the gain of the omnidirectional antenna is small, usually only 3dBi ⁇ 6dBi, and the communication distance is short, and the signal forwarding speed is slow.
  • these wireless routers can only serve ordinary user equipment, and cannot serve medium and long-distance weak field equipment and high-speed equipment. Therefore, the application of existing wireless routers is limited.
  • Embodiments of the present application provide a wireless router and a control method thereof, which are used to solve the problem of how to improve the wide application of the wireless router.
  • a wireless router in a first aspect, includes an omnidirectional antenna, a directional antenna, and a driving device.
  • the driving device is connected to the directional antenna, and the driving device is used to drive the directional antenna to rotate, so that the beam direction of the directional antenna coincides with the direction of the target beam in the beam lookup table, and the target beam can cover the target device.
  • the beam lookup table includes a set of beams formed when the directional antenna rotates to multiple different orientations under the drive of the driving device.
  • the access of medium and long-distance weak-field equipment and high-speed equipment can be satisfied with the help of a directional antenna with high gain and adjustable beam direction, thereby enabling Improve the application versatility of wireless routers.
  • the directional antenna in the process of driving the directional antenna to rotate with the help of the driving device, the directional antenna can be adjusted to Covering the position of the target device does not need to traverse all the directions that the directional antenna can rotate to under the drive of the driving device, so the control difficulty is relatively low, and the power consumption and time delay are relatively small.
  • the driving device is used to drive the directional antenna to rotate around the first axis.
  • Multiple beams in the beam lookup table form multiple beam subsets, the multiple beam subsets are arranged along the circumferential direction of the first axis, and the beam subset includes at least the first beam pointing perpendicular to the first axis.
  • the included angle between the first beams in two adjacent beam subsets is greater than or equal to the step driven by the driving device around the first axis
  • the precision angle is less than or equal to the first beam angle of the directional antenna.
  • the first beam angle means that when the beam of the directional antenna is directed perpendicular to the first axis, in a plane perpendicular to the first axis, on both sides of the maximum radiation direction, the radiation power drops by two degrees of the first preset threshold. The angle between the directions.
  • the beam lookup table is complete within the 360° range along the first axis, and the beam pointing of the directional antenna can be adjusted to multiple positions within the 360° range of the first axis, so that the directional antenna can Cover target devices anywhere in the horizontal plane.
  • the included angle between the first beams in two adjacent beam subsets is equal to the first beam angle of the directional antenna. In this way, the number of beams in the beam lookup table is small, the difficulty of control is low, and the power consumption and delay are small.
  • the driving device is further used to drive the directional antenna to rotate around a second axis; the second axis is perpendicular to the first axis, and the second axis is perpendicular to the beam direction of the directional antenna.
  • the subset of beams includes a plurality of beams arranged circumferentially along the second axis, the first beam being one of the plurality of beams.
  • the multiple beams in the beam lookup table are distributed in the three-dimensional space, and when the directional antenna rotates until the beam pointing coincides with the multiple beams in the three-dimensional space, it can cover the target device in the three-dimensional space ,
  • the wireless router can be applied to house structures such as villas and duplex buildings.
  • the included angle between two adjacent beams in the beam subset is greater than or equal to the step driven by the second driving device around the second axis
  • the precision angle is less than or equal to the second beam angle of the directional antenna.
  • the second beam angle means that when the beam of the directional antenna is directed perpendicular to the first axis, in a plane perpendicular to the second axis, on both sides of the maximum radiation direction, the radiation power drops by two degrees of the second preset threshold. The angle between the directions. In this way, the beam lookup table is complete in the three-dimensional space, and the beam pointing of the directional antenna can be adjusted to multiple positions in the three-dimensional space, so that the directional antenna can cover the target device at any position in the three-dimensional space.
  • the included angle between two adjacent beams in the beam subset is equal to the second beam angle of the directional antenna. In this way, the number of beams in the beam lookup table is small, the difficulty of control is low, and the power consumption and delay are small.
  • the wireless router further includes a controller and a detection system.
  • the controller is electrically connected to the driving device, and the controller is used to control the driving device to drive the directional antenna to rotate to multiple directions in sequence, so that the beam directions of the directional antenna coincide with the directions of multiple beams in the beam lookup table respectively.
  • the detection system is used to detect the quality of the signal received by the directional antenna from the target device when the beam directions of the directional antenna coincide with the directions of multiple beams in the beam lookup table respectively.
  • the signal quality can be evaluated by at least one of indicators such as received signal strength, error rate, throughput rate, and channel state information.
  • the multiple indicators can be weighted to obtain a comprehensive indicator for evaluation, or can be evaluated separately, which is not specifically limited here.
  • the controller is electrically connected with the detection system, and the controller is also used to determine the target beam in the beam lookup table according to the multiple signal qualities detected by the detection system, and controls the driving device to drive the directional antenna to rotate, so that the beam direction of the directional antenna is consistent with the The pointing of the target beams in the beam lookup table coincides.
  • the wireless router has a simple structure and does not need a special positioning device, so the cost is low.
  • the wireless router further includes a positioning device and a controller.
  • the positioning device is used to obtain the location information of the target device.
  • the controller is electrically connected with the positioning device, and the controller is used to determine the target beam in the beam lookup table according to the position information obtained by the positioning device, and control the driving device to drive the directional antenna to rotate, so that the beam of the directional antenna points to the target in the beam lookup table The pointing of the beams coincides.
  • This wireless router does not need to search for the target beam in turn, and can quickly determine the target beam, with fast response and short delay time.
  • the positioning device is a UWB antenna.
  • the radio frequency transceiver system has multiple signal output ends, the number of omnidirectional antennas is at least one, the number of directional antennas is at least one, and the number of omnidirectional antennas is The sum of the number and the number of directional antennas is greater than the number of signal output terminals of the radio frequency transceiver system.
  • the multiple signal output ends of the system are respectively electrically connected to any multiple antennas of at least one omnidirectional antenna and at least one directional antenna, so that the wireless router can switch between multiple usage scenarios.
  • a control method of a wireless router includes an omnidirectional antenna, a directional antenna and a driving device, the driving device is connected to the directional antenna, and the control method includes:
  • the driving device drives the directional antenna to rotate, so that the beam direction of the directional antenna coincides with the direction of the target beam in the beam lookup table, and the target beam can cover the first target device.
  • the beam lookup table includes a set of beams formed when the directional antenna rotates to multiple different orientations under the drive of the driving device.
  • the directional antenna can be adjusted to Covering the position of the target device does not need to traverse all the directions that the directional antenna can rotate to under the drive of the driving device, so the control difficulty is relatively low, and the power consumption and time delay are relatively small.
  • the control method when the first signal quality is less than the third preset threshold, the directional antenna is driven to rotate by the driving device, so that the beam of the directional antenna is directed to the target beam in the beam lookup table Before the pointing coincidence, the control method further includes: determining the target beam in the beam lookup table. In this way, the automatic search of the target beam can be realized with less time delay and higher efficiency.
  • determining the target beam includes:
  • the directional antenna is driven by the driving device to rotate to multiple directions in turn, so that the beam directions of the directional antenna coincide with the directions of multiple beams in the beam lookup table respectively, and when the beam directions of the directional antenna respectively coincide with the multiple beams in the beam lookup table When the orientations of the directional antennas are coincident, the quality of the signal received by the directional antenna from the first target device is detected to obtain multiple signal qualities;
  • the target beam is determined in a beam lookup table.
  • the target beam is determined in the beam lookup table in a round-robin lookup manner, which is simple and easy to implement.
  • the driving device is used to drive the directional antenna to rotate around the first axis; multiple beams in the beam lookup table form multiple beam subsets, and the multiple beam subsets along the first axis arranged circumferentially, the subset of beams includes at least a first beam directed perpendicular to the first axis;
  • the directional antenna is driven by the driving device to rotate to multiple directions in turn, so that the beam directions of the directional antenna coincide with the directions of multiple beams in the beam lookup table respectively, and when the beam directions of the directional antenna respectively coincide with the multiple beams in the beam lookup table
  • detect the signal quality received by the directional antenna from the first target device to obtain multiple signal qualities including:
  • the directional antenna is driven to rotate around the first axis by the driving device, so that the beam directions of the directional antenna coincide with the first beam directions of the plurality of beam subsets respectively, and the beam directions of the directional antenna coincide with the first beam directions of the plurality of beam subsets respectively.
  • the signal quality received by the directional antenna from the first target device is detected to obtain a plurality of third signal qualities; wherein, since each beam subset includes the first beam, the plurality of beam sub-sets
  • the concentrated first beams refer to a plurality of first beams, and the plurality of first beams respectively belong to the plurality of beam subsets;
  • a subset of target beams is determined, and the target beams belong to the subset of target beams.
  • the driving device is further used to drive the directional antenna to rotate around a second axis; the second axis is perpendicular to the first axis, and the second axis is perpendicular to the beam direction of the directional antenna;
  • the beam subset includes a plurality of beams arranged circumferentially along the second axis, and the first beam is one of the plurality of beams;
  • the directional antenna is driven to rotate to multiple directions in turn by the driving device, so that the beam directions of the directional antenna coincide with the directions of the multiple beams in the beam lookup table respectively, and when the beam directions of the directional antenna respectively coincide with the directions of the multiple beams in the beam lookup table
  • detecting the signal quality received by the directional antenna from the first target device to obtain multiple signal qualities also includes:
  • the directional antenna Drive the directional antenna to rotate around the second axis through the driving device, so that the beam direction of the directional antenna coincides with the direction of multiple beams in the target beam subset respectively, and the beam direction of the directional antenna respectively coincides with the direction of multiple beams in the target beam subset.
  • detecting the signal quality received by the directional antenna from the first target device to obtain a plurality of fourth signal qualities;
  • Target beams are determined in a beam lookup table based on multiple signal qualities, including:
  • Target beams are determined in the subset of target beams based on the plurality of fourth signal qualities.
  • the multiple beams in the beam lookup table are distributed in the three-dimensional space, and when the directional antenna is rotated until the beam points coincide with the directions of the multiple beams in the three-dimensional space, the target in the three-dimensional space can be covered Equipment, wireless routers can be applied to house structures such as villas and duplex buildings.
  • determining the target beam includes:
  • the target beam is determined in the beam lookup table.
  • the wireless router does not need to search for the target beam in turn, and can quickly determine the target beam, with faster response and shorter delay time.
  • control method further includes:
  • the omnidirectional antenna covers the first target device and works.
  • the directional antenna can also be used to cover the first target device, or the use of the directional antenna can be stopped, or the directional Antennas are used to cover other target devices. In this way, a reasonable allocation of resources can be realized.
  • control method further includes:
  • the directional antenna is driven to rotate by the driving device, so that the beam of the directional antenna is directed to the direction of the target beam in the beam lookup table coincide.
  • switching the beam pointing of the directional antenna can quickly cover the first target device and reduce the delay in most usage scenarios and power consumption.
  • acquiring the signal quality received by the directional antenna from the first target device includes:
  • the directional antenna When the first signal quality is less than the third preset threshold, acquire the signal quality received by the directional antenna from the first target device. In this way, priority is given to using the omnidirectional antenna to cover the first target device. When the omnidirectional antenna cannot cover the first target device, the directional antenna is used to cover the first target device, which can reduce the delay and power in most usage scenarios. consumption.
  • control method further includes:
  • the directional antenna in the current beam direction covers the first target device and works. In this way, the coverage of the first target device is achieved by means of the directional antenna pointed by the current beam, and while the coverage of the first target device is achieved, the directional antenna does not need to be rotated, so the time delay and power consumption are low.
  • control method further includes:
  • Work is done by covering the first target device with a directional antenna after switching the beam pointing.
  • control method after switching the directional antenna after beam pointing to cover the first target device for a preset time, the control method further includes:
  • the omni-directional antenna can cover the first target device, so as to realize reasonable allocation of resources.
  • control method further includes:
  • the second signal quality is less than or equal to the sixth preset threshold, reacquire the signal quality received by the omnidirectional antenna from the first target device. In this way, when the signal quality deteriorates, the optimal antenna can be searched for coverage again.
  • control method further includes:
  • the second signal quality is less than the fifth preset threshold and the second signal quality is greater than the sixth preset threshold, keep the directional antenna directed by the switched beam to cover the first target device and work.
  • control method further includes:
  • the device information includes at least one of network type, device type, wireless data request characteristics and device usage information
  • the device usage information includes usage time and usage probability at least one of
  • some embodiments of the present application provide a computer storage medium, the computer storage medium includes computer instructions, and when the computer instructions are run on the wireless router, the wireless router executes the control method described in any of the above technical solutions .
  • some embodiments of the present application further provide a computer program product, which, when the computer program product is run on a computer, enables the computer to execute the control method described in any one of the above technical solutions.
  • the computer storage medium or computer program product provided by the embodiment of the present application is used to implement the control method described in any of the above technical solutions, therefore, the beneficial effects it can achieve can refer to the corresponding control method provided above Beneficial effects are not repeated here.
  • FIG. 1 is a schematic structural diagram of a home wireless router provided by some embodiments of the present application.
  • FIG. 2 is a directional diagram of the omnidirectional antenna in the wireless router shown in FIG. 1 in three-dimensional space;
  • FIG. 3 is a directional diagram of a directional antenna in a three-dimensional space in the wireless router shown in FIG. 1;
  • Fig. 4 is a kind of coverage schematic diagram of omnidirectional antenna and directional antenna when wireless router shown in Fig. 1 is applied to large-level family house; Wherein, (a) among Fig. 4 is a kind of coverage schematic diagram of omnidirectional antenna, Fig. (b) in 4 is a schematic diagram of a coverage area of a directional antenna;
  • FIG. 5 is a schematic structural diagram of a driving device in the wireless router shown in FIG. 1;
  • FIG. 6 is a schematic structural diagram of another driving device in the wireless router shown in FIG. 1;
  • FIG. 7 is a schematic structural diagram of another driving device in the wireless router shown in FIG. 1;
  • FIG. 8 is a schematic structural diagram of a wireless router provided in some other embodiments of the present application.
  • FIG. 9 is a schematic structural diagram of a driving device in the wireless router shown in FIG. 8;
  • Fig. 10 is a specific structural schematic diagram of the driving device shown in Fig. 9;
  • Fig. 11 is another specific structural schematic diagram of the driving device shown in Fig. 9;
  • FIG. 12 is a schematic structural diagram of the first beam of multiple beam subsets in the beam lookup table provided by some embodiments of the present application.
  • FIG. 13 is a schematic diagram of a first beam angle of a directional antenna in a wireless router provided by some embodiments of the present application.
  • FIG. 14 is a schematic structural diagram of a beam lookup table provided by some other embodiments of the present application.
  • FIG. 15 is a schematic diagram of a second beam angle of a directional antenna in a wireless router provided by some embodiments of the present application.
  • FIG. 16 is a schematic structural diagram of a wireless router provided in some other embodiments of the present application.
  • FIG. 17 is a schematic structural diagram of a wireless router provided in some other embodiments of the present application.
  • FIG. 18 is an internal circuit diagram of a wireless router provided in some embodiments of the present application.
  • FIG. 19 is a schematic structural diagram of a radio frequency transceiver system in the wireless router shown in FIG. 18;
  • FIG. 20 is an internal circuit diagram of a wireless router provided in some other embodiments of the present application.
  • FIG. 21 is a flowchart of a control method of a wireless router provided in some embodiments of the present application.
  • FIG. 22 is a flowchart of a control method of a wireless router provided in some other embodiments of the present application.
  • FIG. 23 is a flowchart of a control method of a wireless router provided in some other embodiments of the present application.
  • FIG. 24 is a flowchart of a control method of a wireless router provided in some other embodiments of the present application.
  • Fig. 25 is a flow chart of a method for determining a target beam in the control method shown in Fig. 23 or 24;
  • Fig. 26 is a method flowchart of step S410 in the method for determining the target beam shown in Fig. 25;
  • Fig. 27 is another method flowchart of step S410 in the method for determining the target beam shown in Fig. 25;
  • Fig. 28 is a flowchart of another method for determining the target beam in the control method shown in Fig. 23 or Fig. 24;
  • Fig. 29 is a flow chart of a control method of a wireless router provided in some other embodiments of the present application.
  • first”, “second”, “third”, and “fourth” are used for descriptive purposes only, and should not be understood as indicating or implying relative importance or implicitly indicating the indicated The number of technical characteristics. Thus, a feature defined as “first”, “second”, “third” and “fourth” may expressly or implicitly include one or more of such features.
  • the term “comprising”, “comprising” or any other variant thereof is intended to cover a non-exclusive inclusion, such that a process, method, article or device comprising a series of elements not only includes those elements, but also includes Including other elements not expressly listed, or also including elements inherent in such process, method, article or apparatus.
  • an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • orientation relationship qualifiers such as “coincidence”, “parallel”, and “perpendicular” used to describe the beam pointing of each component or antenna in the wireless router all indicate the approximate orientation that allows a certain error, and are not limited to Absolute orientation relationship.
  • an embodiment of the present application provides a wireless router, which can serve medium and long-distance weak-field equipment and high-speed equipment on the basis of serving common user equipment.
  • the wireless router provided by the embodiment of the present application additionally places a directional antenna with adjustable beam direction, and the directional antenna has a higher antenna gain (8dBi-12dBi)
  • the antenna satisfying the access of ordinary devices with the help of a directional antenna with high gain and adjustable beam pointing, it can meet the access of medium and long-distance weak field devices and high-speed devices, thereby improving the application versatility of wireless routers.
  • This application provides a wireless router, which can be an outdoor wireless router or an indoor home wireless router.
  • the following embodiments are introduced using a home wireless router as an example, which cannot be considered as a special limitation to this application .
  • the wireless router provided in this application can support at least one of WiFi-2.4G, WiFi-5G, WiFi-6E and above general frequency bands, which is not specifically limited in this application.
  • FIG. 1 is a schematic structural diagram of a home wireless router 100 provided by some embodiments of the present application. It should be noted that, in order to facilitate the description of the following embodiments, an XYZ coordinate system is established for the home wireless router 100 shown in FIG. 1 . Specifically, define the height direction of the wireless router 100 when it is in a home use state as the Z-axis direction, and define the plane perpendicular to the Z-axis direction as the XY plane. It can be understood that the coordinate system of the wireless router 100 can be flexibly set according to actual needs, and is not specifically limited here.
  • the wireless router 100 includes a housing 10 .
  • the housing 10 is used to protect the internal electronic components from water and dust.
  • the material of the housing 10 includes, but is not limited to, plastic.
  • the shape of the housing 10 includes, but is not limited to, a cylinder, a square cylinder, a disk, a triangular prism, a sphere, and the like. FIG. The shape constitutes special restrictions. In some other embodiments, the wireless router 100 may not be provided with the housing 10 .
  • the wireless router 100 further includes an omnidirectional antenna 20 and a directional antenna 30 .
  • the omnidirectional antenna 20 and the directional antenna 30 are used to realize the wireless coverage of the wireless router.
  • the omnidirectional antenna 20 and the directional antenna 30 are used to support the transmission and reception of at least one signal in WiFi-2.4G, WiFi-5G, WiFi-6E or the above general frequency band signals.
  • the omnidirectional antenna 20 and the directional antenna 30 can be disposed inside the casing 10 to prevent the omnidirectional antenna 20 and the directional antenna 30 from being interfered by the external environment.
  • a part of the omnidirectional antenna 20 and a directional antenna 30 can also be arranged inside the casing 10, and the other part can be arranged outside the casing 10, or all of them can be arranged outside the casing 10.
  • the other part can be arranged outside the casing 10, or all of them can be arranged outside the casing 10.
  • the omnidirectional antenna 20 is fixed to the housing 10 .
  • the omnidirectional antenna 20 has a central axis O that coincides with the central axis of the omnidirectional antenna 20's pattern in three-dimensional space. Please refer to FIG. 2.
  • FIG. 2 is a three-dimensional directional diagram of the omnidirectional antenna 20 in the wireless router 100 shown in FIG. The central axis of the pattern coincides.
  • the central axis O extends along the Z-axis direction. In this way, the omnidirectional antenna 20 exhibits 360° uniform radiation in the XY plane.
  • the wireless router 100 is applied to a home, the omnidirectional antenna 20 can realize Short-distance coverage within 360° in the XY plane.
  • FIG. 3 is a three-dimensional directional diagram of the directional antenna 30 in the wireless router 100 shown in FIG. 1 . It can be seen from FIG. 3 that the ability of the directional antenna 30 to transmit and receive signals in a certain direction is particularly strong, while the ability to transmit and receive signals in other directions is small or zero.
  • the direction of the directional antenna 30 with the strongest ability to transmit and receive signals is hereinafter referred to as the beam direction of the directional antenna 30 .
  • the directional antenna 30 has relatively large gain (8dBi-12dBi), and has excellent anti-interference ability.
  • the coverage distance of the directional antenna 30 is longer.
  • FIG. 4 FIG.
  • FIG. 4 is a schematic diagram of the coverage of the omnidirectional antenna 20 and the directional antenna 30 when the wireless router 100 shown in FIG. 1 is applied to a large flat family house.
  • the coverage distance of the omnidirectional antenna 20 is relatively short, and can only cover the target device 01 with a relatively short distance, but cannot cover the target device 02 with a relatively long distance.
  • the directional antenna 30 has a relatively long coverage distance, and can cover both the target device 01 with a relatively short distance and the target device 02 with a relatively long distance. It can be seen that, compared with the omni-directional antenna 20, the directional antenna 30 has a longer coverage distance, and can cover target devices at medium and long distances.
  • target devices refers to a type of electronic device that needs to establish a connection with the wireless router 100 to achieve the purpose of surfing the Internet.
  • target devices include but are not limited to personal computers, wireless routers, portable computer devices, mobile terminal devices (such as PDAs, handheld computer devices, mobile phones or smart phones, etc.), smart wearable devices or smart home devices (such as smart TVs, smart refrigerator, air conditioner, washing machine, air purifier) and so on.
  • smart wearable devices include but are not limited to bracelets, watches, augmented reality (augmented reality, AR) glasses, AR helmets, virtual reality (virtual reality, VR) glasses, or VR helmets.
  • the beam of the directional antenna 30 is concentrated in a certain direction or multiple directions, so the coverage angle of the directional antenna 30 is narrower.
  • the beams are directed so that the directional antenna 30 can serve target devices at different locations.
  • the driving device 40 is used to drive the directional antenna 30 to rotate around the first axis L1 .
  • the first axis L1 is parallel to the central axis O of the omnidirectional antenna 20.
  • the first axis L1 may also be perpendicular to or intersect with the central axis O of the omnidirectional antenna 20.
  • the following implementations The example is described on the basis that the first axis L1 is parallel to the central axis O of the omnidirectional antenna 20 , which should not be regarded as a special limitation to the present application.
  • the first axis L1 also extends along the height direction of the wireless router 100 .
  • the driving device 40 can adjust the beam pointing of the directional antenna 30 in the XY plane, so that the directional antenna 30 can serve target devices at different positions in the XY plane, so the wireless router 100 can be applied to the structure of a large flat family house .
  • the driving device 40 includes a rotary motor 41 .
  • the rotating electrical machine 41 can be a motor with a reducer, or a motor without a reducer.
  • Types of rotary motors 41 include, but are not limited to, servo motors, stepper motors, torque motors, switched reluctance motors, and brushless DC motors.
  • the central axis of the output shaft of the rotating electrical machine 41 is collinear with the first axis L1 , and the output shaft of the rotating electrical machine 41 is fixedly connected to the directional antenna 30 .
  • the directional antenna 30 can be driven to rotate around the first axis L1.
  • the driving device 40 has a simple structure and low cost, and the rotating motor 41 is directly connected to the directional antenna 30 without a transmission device, so the transmission efficiency is high and the loss of mechanical energy is small.
  • FIG. 6 is a schematic structural diagram of another driving device 40 in the wireless router 100 shown in FIG. 1 .
  • the driving device 40 includes a rotary motor 41 , a driving bevel gear 42 and a driven bevel gear 43 .
  • the rotating electrical machine 41 can be a motor with a reducer, or a motor without a reducer.
  • Types of rotary motors 41 include, but are not limited to, servo motors, stepper motors, torque motors, switched reluctance motors, and brushless DC motors.
  • the output shaft of the rotary motor 41 is connected with the driving bevel gear 42 to drive the driving bevel gear 42 to rotate.
  • the driven bevel gear 43 is meshed with the driving bevel gear 42 for transmission, the central axis of the driven bevel gear 43 is collinear with the first axis L1 , and the driven bevel gear 43 is fixedly connected to the directional antenna 30 .
  • the rotating motor 41 rotates, the driving bevel gear 42 and the driven bevel gear 43 are meshed for transmission, which can drive the directional antenna 30 to rotate around the first axis L1.
  • the precision of the gear transmission is high, the transmission efficiency is high, and the loss is small.
  • the transmission path is turned, so that the rotating motor 41 can be installed on one side of the first axis L1, thereby reducing the occupied height of the driving device 40 in the direction of the Z axis.
  • FIG. 7 is a schematic structural diagram of another driving device 40 in the wireless router shown in FIG. 1 .
  • the drive device 40 includes a rotary motor 41 , a drive gear 44 and a toothed disc 45 .
  • the rotating electrical machine 41 can be a motor with a reducer, or a motor without a reducer.
  • Types of rotary motors 41 include, but are not limited to, servo motors, stepper motors, torque motors, switched reluctance motors, and brushless DC motors.
  • the output shaft of the rotary motor 41 is connected with the driving gear 44 to drive the driving gear 44 to rotate.
  • the driving gear 44 is meshed with the end toothed disc 45 for transmission, the central axis of the end toothed disc 45 is in line with the first axis L1 , and the end toothed disc 45 is fixedly connected to the directional antenna 30 .
  • the transmission path is turned, so that the rotating motor 41 can be installed on one side of the first axis L1, thereby reducing the occupied height of the driving device 40 in the Z-axis direction, and on the other hand
  • the radius of the end-face sprocket is relatively large, which increases the distance between the rotating motor 41 and the directional antenna 30 , so that the rotating motor 41 can be installed in an area with ample space in the wireless router.
  • the driving device 40 may also include a rotating motor and a belt transmission, a pneumatic transmission, a hydraulic transmission, etc. in addition to the gear transmission.
  • the combination of other transmission devices is not specifically limited in this application.
  • FIG. 8 is a schematic structural diagram of a wireless router 100 provided in some other embodiments of the present application.
  • the difference between the wireless router shown in FIG. 8 and the wireless router shown in FIG. 1 is that in the wireless router shown in FIG.
  • the directional antenna 30 rotates around the second axis L2 , the second axis L2 is perpendicular to the first axis L1 , and the second axis L2 is also perpendicular to the beam direction of the directional antenna 30 . Since the beam direction of the directional antenna 30 changes when the directional antenna 30 rotates around the first axis L1 , the extending direction of the second axis L2 also changes with the change of the beam direction of the directional antenna 30 .
  • the driving device 40 can adjust the beam pointing of the directional antenna 30 within the XYZ three-dimensional space, so that the directional antenna 30 can serve target devices at different positions within the XYZ three-dimensional space, so the wireless router 100 can be used in villas, Duplex buildings and other housing structures.
  • the driving device 40 there are various structural forms of the driving device 40 .
  • the driving device 40 may be a ball joint structure movable in any direction in the XYZ three-dimensional space.
  • FIG. 9 is a schematic structural diagram of a driving device 40 in the wireless router 100 shown in FIG. 8 .
  • the driving device 40 includes a first driving device 40a and a second driving device 40b.
  • the first driving device 40a is used to drive the directional antenna 30 to rotate around the first axis L1.
  • the structure of the first driving device 40a may be the same as that of the driving device 40 in the wireless router 100 shown in FIG.
  • the second driving device 40b is connected between the first driving device 40a and the directional antenna 30, and the first driving device 40a is also used to drive the second driving device 40b to follow the orientation while driving the directional antenna 30 to rotate around the first axis L1.
  • the antennas 30 rotate together around the first axis L1.
  • the second driving device 40b is used to drive the directional antenna 30 to rotate around the second axis L2.
  • the difficulty and cost of the structure of the driving device can be reduced, and the two driving devices
  • the driving process is independent of each other, which can ensure the driving precision.
  • the structure of the second driving device 40b includes but is not limited to a rotary motor, and a combination of a rotary motor and a belt transmission, a pneumatic transmission, a hydraulic transmission, and a gear transmission.
  • FIG. 10 is a specific structural schematic diagram of the driving device 40 shown in FIG. 9 .
  • the second driving device 40b includes a rotating motor 40b1, the stator part of the rotating motor 40b1 is relatively fixed to the output shaft of the rotating motor of the first driving device 40a, and the first driving device 40a is used to drive the rotating motor 40b1 to rotate around the first axis L1.
  • the directional antenna 30 is fixed to the rotor part of the rotating motor 40b1, and the rotating motor 40b1 is used to drive the directional antenna 30 to rotate around the second axis L2.
  • the second drive device 40b has a simple structure, high transmission efficiency, and less mechanical energy loss.
  • FIG. 11 is a schematic diagram of another specific structure of the driving device 40 shown in FIG. 9 .
  • the structure of the first driving device 40 a is the same as that of the driving device 40 shown in FIG. 7 , which will not be repeated here.
  • the second driving device 40b also includes a rotating motor 40b1, the stator part of the rotating motor 40b1 is relatively fixed to the end gear plate in the first driving device 40a, and the first driving device 40a is used to drive the rotating motor 40b1 to rotate around the first axis L1.
  • the directional antenna 30 is fixed to the rotor part of the rotating motor 40b1, and the rotating motor 40b1 is used to drive the directional antenna 30 to rotate around the second axis L2.
  • the second drive device 40b has a simple structure, high transmission efficiency, and less mechanical energy loss.
  • the driving device 40 may also have other structural forms, as long as it can drive the directional antenna 30 to rotate so as to achieve the purpose of adjusting the beam direction of the directional antenna 30 .
  • the directional antenna 30 includes a radiator and a reflector. At least one of the radiator and the reflector rotates to change the beam direction of the directional antenna 30 .
  • the driving device 40 can be connected with the radiator and/or reflector of the directional antenna 30 to drive the radiator and/or reflector of the directional antenna 30 to rotate, thereby changing the orientation of the radiator and the reflector reflection direction, so as to achieve the purpose of adjusting the beam pointing of the directional antenna 30.
  • a physical and mechanical structure that is, the driving device 40
  • the driving device 40 is used to drive the directional antenna 30 to rotate, so as to achieve the purpose of adjusting the beam direction of the directional antenna 30 .
  • the physical mechanical adjustment method has a high utilization rate of the antenna surface, a wider beam and a higher maximum gain, and the control method is simple
  • the structure of the control circuit is simple, and at the same time it can Make the directional antenna 30 cover more sectors.
  • the directional antenna adjusted by the transmission circuit usually covers 3 to 4 sectors, while the directional antenna adjusted by the physical and mechanical structure in the embodiment of the present application can cover far more than 4 sectors according to the step accuracy of the driving device 40 .
  • the use of a directional antenna with high gain and adjustable beam direction can meet the access of medium and long-distance weak-field equipment and high-speed equipment.
  • the wide application of the wireless router 100 can be improved.
  • a beam lookup table may be established.
  • the beam lookup table includes a set of beams when the directional antenna 30 rotates to a plurality of different orientations under the drive of the driving device 40, that is to say, the beam lookup table includes a set of multiple beams, and the multiple beams are respectively the directional antenna 30 The beam is rotated to a plurality of different orientations driven by the driving device 40 .
  • the driving device 40 can refer to the beam lookup table, and drive the directional antenna 30 to rotate, so that the beam direction of the directional antenna 30 coincides with the direction of the target beam in the beam lookup table.
  • the target beam is one of the multiple beams included in the beam lookup table, and the target beam can cover the target device.
  • the directional antenna 30 is adjusted to cover the position of the target device without traversing all the directions that the directional antenna 30 can rotate to under the drive of the driving device 40, so the control difficulty is low, and the power consumption and time delay are small.
  • the plurality of beams in the beam lookup table form a plurality of beam subsets arranged in the circumferential direction of the first axis L1, each The subset of beams comprises at least a first beam a directed perpendicular to the first axis L1.
  • FIG. 12 is a schematic structural diagram of a first beam a of multiple beam subsets in a beam lookup table provided by some embodiments of the present application.
  • the first beams a of the plurality of beam subsets are respectively the beams when the directional antenna 30 is driven by the driving device 40 to rotate around the first axis L1 to a plurality of different orientations.
  • the directional antenna 30 rotates until the beam pointing coincides with the pointing of the plurality of first beams a, it can cover the target equipment in the XY plane, and the wireless router can be applied to large flat building structures.
  • the directional antenna 30 in order to enable the directional antenna 30 to cover target devices at different positions in the XY plane, in some embodiments, please continue to refer to FIG. 12 , along the circumferential direction w1 of the first axis L1, two adjacent The included angle ⁇ between the first beams a in the beam subset is greater than or equal to the step accuracy angle driven by the driving device 40 around the first axis L1 and less than or equal to the first beam angle of the directional antenna 30 .
  • the angle ⁇ between the first beams a in two adjacent beam subsets refers to the angle between the maximum gain directions (that is, the beam pointing) of the two first beams a.
  • the step accuracy angle driven by the driving device 40 around the first axis L1 refers to the minimum angle driven by the driving device 40 around the first axis L1, and the step accuracy angle is greater than 0°.
  • the first beam angle means that when the beam of the directional antenna 30 is directed perpendicular to the first axis L1, it is located on both sides of the maximum radiation direction in a plane (that is, the XY plane) perpendicular to the first axis L1, An included angle between two directions in which the radiation power drops by a first preset threshold.
  • the first preset threshold may be 2dB, 3dB, 4dB, 5dB, etc., which are not specifically limited here, and the first preset threshold may be specifically selected according to actual needs.
  • FIG. 13 is a schematic diagram of the first beam angle a of the directional antenna 30 in the wireless router 100 provided by some embodiments of the present application.
  • the first beam angle a of the directional antenna 30 refers to the XY plane, Located on both sides of the maximum radiation direction D1, the included angle ⁇ between the two directions D2 and D3 in which the radiation power drops by a first preset threshold (for example, 3dB).
  • a first preset threshold for example, 3dB
  • the angle ⁇ between the first beam a in two adjacent beam subsets is 20°, there are 18 beam subsets within a range of 360° around the first axis L1.
  • the angle ⁇ between the first beam a in two adjacent beam subsets is 45°, there are 8 beam subsets within a range of 360° around the first axis L1.
  • the angle ⁇ between the first beam a in two adjacent beam subsets is 90°, there are 4 beam subsets within a range of 360° around the first axis L1.
  • the beam lookup table is complete within a range of 360° along the circumference of the first axis L1, and the beam pointing of the directional antenna 30 can be adjusted to multiple positions within a range of 360° of the circumference of the first axis L1, so that The directional antenna 30 can cover the target device at any position in the XY plane.
  • the angle ⁇ between the first beams a in two adjacent beam subsets is equal to the first beam angle of the directional antenna 30 . In this way, the number of beams in the beam lookup table is small, the difficulty of control is low, and the power consumption and delay are small.
  • the multiple beam lookup tables form a plurality of beam subsets arranged in the circumferential direction of the first axis L1, the beam subsets include a plurality of beams arranged in the circumferential direction of the second axis L2, and the first beam a is one of the plurality of beams.
  • the beam pointing of the directional antenna 30 changes, so the extending direction of the second axis L2 also follows the direction of the directional antenna 30. Changes in beam pointing. In this way, a plurality of beams in different beam subsets are arranged around the circumference of the second axis along different extension directions.
  • FIG. 14 is a schematic structural diagram of a beam lookup table provided by some other embodiments of the present application.
  • the beam lookup table includes a plurality of beam subsets arranged circumferentially along the first axis L1, and the plurality of beams
  • the subsets include a beam subset C1 and a beam subset C2, the beam subset C1 and the beam subset C2 both include a first beam a pointing perpendicular to the first axis L1, and the directional antenna 30 is driven to rotate by the driving device 40, so that When the beam pointing of the directional antenna 30 coincides with the first beam a in the beam subset C1 and the first beam a in the beam subset C2 respectively, the second axis L2 is the axis L21 and the axis L22 respectively, and the axis L21 and the axis L22 The direction of extension is different.
  • the plurality of beams in the beam subset C1 are arranged around the circumference of the axis L21, and the multiple beams in the beam subset C2 are arranged along the circumference of the axis L22, that is, the plurality of beams in the beam subset C1
  • the beams and the multiple beams in the beam subset C2 are respectively arranged along the circumferential direction of the second axis with different extending directions.
  • the multiple beams in the beam lookup table are distributed in the XYZ three-dimensional space range, and when the directional antenna 30 rotates until the beam pointing coincides with the direction of the multiple beams in the XYZ three-dimensional space range, the XYZ three-dimensional space range can be covered
  • the target device in the wireless router can be applied to house structures such as villas and duplex buildings.
  • the beam sub- The included angle ⁇ between two adjacent beams in the set is greater than or equal to the step accuracy angle driven by the driving device 40 around the second axis L2 and less than or equal to the second beam angle of the directional antenna 30 .
  • the angle ⁇ between two adjacent beams in the beam subset refers to the angle between the directions of maximum gain (that is, beam pointing) of the two beams.
  • the step accuracy angle driven by the driving device 40 around the second axis L2 refers to the minimum angle driven by the driving device 40 around the second axis L2, and the step accuracy angle is greater than 0°.
  • the second beam angle means that when the beam of the directional antenna 30 is directed perpendicular to the first axis L1, the radiated power is located on both sides of the maximum radiation direction in a plane (such as the XZ plane) perpendicular to the second axis L2.
  • the angle between the two directions of falling the second preset threshold may be 2dB, 3dB, 4dB, 5dB, etc., and the second preset threshold value may be equal to or different from the first preset threshold value.
  • the second preset threshold may be selected according to actual needs. For an example, please refer to FIG. 15. FIG.
  • the second beam angle of the directional antenna 30 refers to the XZ plane, located at On both sides of the maximum radiation direction D4, the included angle ⁇ between the two directions D5 and D6 in which the radiation power drops by a second preset threshold (for example, 3dB).
  • a second preset threshold for example, 3dB
  • the beam lookup table is complete in the XYZ three-dimensional space, and the beam pointing of the directional antenna 30 can be adjusted to multiple positions in the XYZ three-dimensional space, so that the directional antenna 30 can cover any position in the XYZ three-dimensional space target device.
  • the included angle ⁇ between two adjacent beams in the beam subset is equal to the second beam angle of the directional antenna 30 . In this way, the number of beams in the beam lookup table is small, the difficulty of control is low, and the power consumption and delay are small.
  • the structural form of the beam set in the beam lookup table may also be other structural forms.
  • it is composed of beams located within a circumferential range of 180° of the first axis L1 in FIG. 12 .
  • Another example is composed of beams located within 180° of the circumferential direction of the first axis L1 and within 90° of the circumferential direction of the second axis L2 in FIG. 14 , which is not specifically limited in this embodiment of the present application.
  • the beam lookup table includes multiple beams.
  • the following two embodiments can be adopted, and the two embodiments include the following embodiment one and embodiment two.
  • Embodiment 1 Please refer to FIG. 16 , which is a schematic structural diagram of a wireless router 100 provided in some embodiments of the present application.
  • the wireless router 100 further includes a controller 50 and a detection system 60 .
  • Controller 50 may include a processor or necessary logic circuitry.
  • the processor may be a baseband processor, a digital signal processor, a microprocessor, or a central processing unit.
  • the controller 50 is electrically connected to the driving device 40, and the controller 50 is used to control the driving device 40 to drive the directional antenna 30 to rotate to multiple directions in turn, so that the beam directions of the directional antenna 30 coincide with the directions of multiple beams in the beam lookup table respectively.
  • the plurality of beams may be all the beams in the beam lookup table, or may be some beams in the beam lookup table, which are not specifically limited here.
  • the detection system 60 is configured to detect the quality of the signal received by the directional antenna 30 from the target device when the beam directions of the directional antenna 30 coincide with the directions of multiple beams in the beam lookup table respectively.
  • the signal quality may be evaluated by at least one of indicators such as received signal strength indication (RSSI), error rate (PER), throughput rate, and channel status information (channel status information, CSI).
  • RSSI received signal strength indication
  • PER error rate
  • CSI channel status information
  • the multiple indicators can be weighted to obtain a comprehensive indicator for evaluation, or can be evaluated separately, which is not specifically limited here.
  • the controller 50 is electrically connected to the detection system 60 , and the controller 50 is also configured to determine the target beam in the beam lookup table according to the quality of multiple signals detected by the detection system 60 .
  • the controller 50 determines that the signal quality is optimal, the beam in the beam lookup table that coincides with the beam direction of the directional antenna 30 is the target beam.
  • the wireless router has a simple structure and does not need a special positioning device, so the cost is low.
  • the controller 50 is also used to control the driving device 40 to drive the directional antenna 30 to rotate, so that the beam directions of the directional antenna 30 coincide with the target beam directions in the beam lookup table respectively. This realizes automatic control, simplifies control difficulty, and ensures driving precision.
  • Embodiment 2 Please refer to FIG. 17 , which is a schematic structural diagram of a wireless router 100 provided by some other embodiments of the present application. In this embodiment, a positioning device 70 and a controller 50 are also included.
  • the positioning device 70 includes but is not limited to a carrier-free communication (ultra wideband, UWB) antenna.
  • the positioning device 70 is used to obtain the location information of the target device.
  • the controller 50 is electrically connected to the positioning device 70 , and the controller 50 is configured to determine the target beam in the beam lookup table according to the position information acquired by the positioning device 70 .
  • the controller 50 determines the beam with the smallest angle between the beam pointing and the target position relative to the position direction of the wireless router in the beam lookup table as the target beam. This wireless router does not need to poll to find the target beam, so the response speed is faster and the delay time is lower.
  • the controller 50 is also used to control the driving device 40 to drive the directional antenna 30 to rotate, so that the beam direction of the directional antenna 30 coincides with the direction of the target beam in the beam lookup table. This realizes automatic control, simplifies control difficulty, and ensures driving precision.
  • the above embodiments describe the situation that the number of omnidirectional antennas 20 and the number of directional antennas 30 are both one.
  • the quantity of omnidirectional antenna 20 and the quantity of directional antenna 30 also can be multiple, or the quantity of omnidirectional antenna 20 is one, the quantity of directional antenna 30 is multiple, or the quantity of omnidirectional antenna 20 is multiple, The number of directional antennas 30 is one. That is, there is at least one omnidirectional antenna 20 and at least one directional antenna 30 .
  • the multiple omnidirectional antennas 20 can support the sending and receiving of signals of multiple different channels, thereby further improving the application versatility of the wireless router 100 .
  • multi-user downlink concurrency can be realized by means of the multiple directional antennas 30 .
  • wireless routers 100 of different specifications can be obtained.
  • the specifications of the wireless router 100 may be MIMO2X2, MIMO3X3 and MIMO4X4.
  • MIMO2X2 the sum of the number of omnidirectional antennas 20 and the number of directional antennas 30 is 2, specifically, the number of omnidirectional antennas 20 is 1, and the number of directional antennas 30 is also 1 .
  • the wireless router 100 When the specification of the wireless router 100 is MIMO3X3, the sum of the number of omnidirectional antennas 20 and the number of directional antennas 30 is 3, specifically, the number of omnidirectional antennas 20 is 1, and the number of directional antennas 30 is 2 or, the number of omnidirectional antennas 20 is two, and the number of directional antennas 30 is one.
  • the wireless router 100 When the specification of the wireless router 100 is MIMO4X4, the sum of the number of omnidirectional antennas 20 and the number of directional antennas 30 is 4, specifically, the number of omnidirectional antennas 20 is 1, and the number of directional antennas 30 is 3; Alternatively, the number of omnidirectional antennas 20 is two, and the number of directional antennas 30 is two; or, the number of omnidirectional antennas 20 is three, and the number of directional antennas 30 is one. Specifically, the specifications of the wireless router 100 , and the number of omnidirectional antennas 20 and the number of directional antennas 30 under different specifications are recorded in Table 1.
  • Table 1 only gives examples of wireless router 100 having three specifications: MIMO 2x2, MIMO 3x3, and MIMO 4x4.
  • the specifications of the wireless router 100 can also be MIMO 5x5, MIMO 6x6, etc. That is, in the wireless router 100, the sum of the number of omnidirectional antennas 20 and the number of directional antennas 30 is 5 or 6, etc.
  • FIG. 18 is an internal circuit diagram of the wireless router 100 provided by some embodiments of the present application.
  • the wireless router 100 further includes a radio frequency transceiving system 80 , which is configured to implement signal transceiving of the at least one omnidirectional antenna 20 and the at least one directional antenna 30 .
  • the radio frequency transceiver system 80 has a plurality of signal output ends 80a, and the plurality of signal output ends 80a are electrically connected to the at least one omnidirectional antenna 20 and the at least one directional antenna 30 respectively.
  • the radio frequency transceiver system 80 is used to generate radio frequency signals, and output the generated radio frequency signals to the at least one omnidirectional antenna 20 and at least one directional antenna 30 by means of a plurality of signal output terminals 80a, so as to realize signal transmission.
  • the radio frequency transceiver system 80 can also receive signals received by the at least one omnidirectional antenna 20 and the at least one directional antenna 30 by means of the multiple signal output terminals 80a, so as to realize signal reception.
  • FIG. 19 is a schematic structural diagram of the radio frequency transceiver system 80 in the wireless router 100 shown in FIG. 18 .
  • the radio frequency transceiving system 80 includes a plurality of radio frequency transceiving links (also referred to as radio frequency transceivers or TRx) 81 .
  • the number of the multiple radio frequency transceiving links 81 is the same as the number of the above-mentioned multiple signal output terminals 80a, and each radio frequency transceiving link 81 has a signal output terminal 80a.
  • the radio frequency transceiving link 81 may include a duplexer 811 , a transmitting path 812 and a receiving path 813 .
  • the duplexer 811 is used to connect the transmitting path 812 and the receiving path 813 to the signal output terminal 80a.
  • the back end of the radio frequency transceiving link 81 may be connected with a processing circuit 82 for generating a sending signal or processing a receiving signal.
  • the processing circuit 82 may include a processor or necessary logic circuits for baseband signal processing or digital signal processing.
  • the processor may be a baseband processor, a digital signal processor, a microprocessor, or a central processing unit, etc.
  • the processing circuit 82 may be included in the radio frequency transceiving link 81 , or may be independent from the radio frequency transceiving link 81 .
  • the duplexer 811 may be a frequency division duplexer or a time division duplexer, and is used to couple the transmit signal from the transmit path 812 to the signal output port 80 a and couple the receive signal from the signal output port 80 a to the receive path 813 .
  • the duplexer 811 may be one or a combination of the following: a single-pole multi-throw switch, a circulator, and a filter.
  • the transmission path 812 is used to receive a transmission signal from the back-end processing circuit 82 , process the transmission signal, and transmit the transmission signal to the signal output terminal 80 a through the duplexer 811 .
  • the transmit path 812 may include a power amplifier and/or an up-mixer.
  • the power amplifier is used for power amplifying the transmission signal transmitted in the transmission channel 812 .
  • the up-mixer is also called a modulator, and is used to convert the frequency of the transmission signal transmitted in the transmission path 812 from the first frequency to the second frequency. The first frequency is less than the second frequency.
  • an up-mixer is used to modulate a baseband signal or an IF signal into an RF signal.
  • the transmit path 812 includes a power amplifier and an up-mixer
  • the input of the mixer can be connected to the processing circuit 82
  • the output of the mixer can be connected to the input of the power amplifier
  • the output of the power amplifier can be connected to the duplexer One end of device 811.
  • the positions of the power amplifier and up-mixer may be interchanged.
  • the receiving path 813 is used for processing and transmitting the received signal received by the signal output terminal 80 a to the back-end processing circuit 82 .
  • the receive path 813 may include a low noise amplifier (low noise amplifier, LNA) and a down-mixer.
  • LNA low noise amplifier
  • the LNA can amplify the weak signal received by the signal output terminal 80a, and reduce noise interference during the process of amplifying the signal.
  • a demodulator it is used to convert the frequency of the received signal transmitted in the receiving path 813 from the third frequency to a fourth frequency, and the third frequency is greater than the fourth frequency.
  • the down-mixer is used to demodulate the RF signal to a baseband signal or an IF signal.
  • the locations of the down-mixer and LNA are also interchangeable.
  • the number of signal output terminals 80a of the radio frequency transceiver system 80 may be equal to the sum of the number of omnidirectional antennas 20 and the number of directional antennas 30.
  • the quantity of omnidirectional antenna 20 is 2
  • the quantity of directional antenna 30 is also 2
  • the sum of the quantity of omnidirectional antenna 20 and the quantity of directional antenna 30 is 4
  • the number of signal output terminals 80a of the radio frequency transceiver system 80 is also four.
  • the radio frequency transceiver system 80 part of the signal output terminals 80 a are electrically connected to the omnidirectional antenna 20 in a one-to-one correspondence, and other part of the signal output terminals 80 a are electrically connected to the directional antenna 30 in a one-to-one correspondence.
  • 2 signal output ports 80a are respectively electrically connected to 2 omnidirectional antennas 20, and the other 2 signal output ports 80a are respectively It is electrically connected with two directional antennas 30 . In this way, the signal transmission and reception of the omnidirectional antenna 20 and the directional antenna 30 in the wireless router can be realized simultaneously.
  • the number of omnidirectional antennas 20 and/or directional antennas 30 can be increased, so that the number and orientation of omnidirectional antennas 20 The sum of the number of antennas 30 is greater than the number of signal output terminals 80 a of the radio frequency transceiver system 80 .
  • FIG. 20 is an internal circuit diagram of a wireless router 100 provided in some other embodiments of the present application.
  • switch 90 between the signal output end 80a of radio frequency transceiver system 80 and omnidirectional antenna 20, directional antenna 30, this switch 90 is used for selecting a plurality of signal output ends 80a of radio frequency transceiver system 80 and omnidirectional antenna respectively.
  • 20 is electrically connected to any number of antennas in the directional antenna 30, so that the wireless router can switch between multiple usage scenarios.
  • the quantity of the signal output terminal 80a of the radio frequency transceiver system 80 is constant, only the quantity of the omnidirectional antenna 20 is increased, so that the quantity of the omnidirectional antenna 20 is equal to the quantity of the signal output terminal 80a of the radio frequency transceiver system 80 Equally, the sum of the number of omnidirectional antennas 20 and the number of directional antennas 30 is greater than the number of signal output terminals 80 a of the radio frequency transceiver system 80 .
  • the number of omnidirectional antennas 20 and the number of directional antennas 30 in the wireless router 100 with MIMO2X2, MIMO3X3 and MIMO4X4 specifications are recorded in Table 2 below.
  • the number of signal output terminals 80a of the radio frequency transceiver system 80 is two, and the two signal output terminals 80a can be electrically connected to two omnidirectional antennas 20 by means of a switch 90, which can meet the requirements of ordinary Simultaneous sending and receiving of two-channel signals of the device.
  • the two signal output terminals 80a can also be electrically connected to one omnidirectional antenna 20 and one directional antenna 30 by means of the switch 90.
  • the wireless router 100 can serve medium and long-distance equipment under the premise of satisfying the access of ordinary equipment. and high-speed equipment. In this way, the wireless router has two usage scenarios, and the switch 90 can be used to switch between the two usage scenarios.
  • the number of signal output terminals 80a of the radio frequency transceiver system 80 is three, and the three signal output terminals 80a can be electrically connected to three omnidirectional antennas 20 by means of a switch 90, which can meet the requirements of ordinary Simultaneous sending and receiving of three-channel signals of the device.
  • the three signal output terminals 80a can also be electrically connected to one omnidirectional antenna 20 and two directional antennas 30 by means of a switch 90.
  • the wireless router 100 can serve two Medium and long-distance equipment or high-speed equipment.
  • the three signal output terminals 80a can also be electrically connected to two omnidirectional antennas 20 and one directional antenna 30 by means of a switch 90.
  • the wireless router 100 can serve 1 medium and long-distance equipment or high-speed equipment. In this way, the wireless router has three usage scenarios, and the switch 90 can be used to switch among the three usage scenarios.
  • the number of signal output terminals 80a of the radio frequency transceiver system 80 is four, and the four signal output terminals 80a can be electrically connected to four omnidirectional antennas 20 by means of a switch 90, which can meet the requirements of ordinary Simultaneous transmission and reception of four-channel signals of the device.
  • the four signal output terminals 80a can also be electrically connected to one omnidirectional antenna 20 and three directional antennas 30 by means of the switch 90.
  • the wireless router 100 can serve three Medium and long-distance equipment or high-speed equipment.
  • the four signal output terminals 80a can also be electrically connected to two omnidirectional antennas 20 and two directional antennas 30 by means of a switch 90.
  • the wireless router 100 can serve 2 medium and long-distance devices or high-speed devices.
  • the four signal output terminals 80a can also be electrically connected to three omnidirectional antennas 20 and one directional antenna 30 by means of a switch 90.
  • the wireless router 100 can serve 1 medium and long-distance equipment or high-speed equipment.
  • the wireless router has four usage scenarios, and the switch 90 can be used to switch among the four usage scenarios.
  • the above embodiments have introduced the structure of the wireless router 100.
  • the wireless router 100 provided by the embodiment of the present application not only satisfies the access of ordinary users with the help of the omnidirectional antenna 20, but also uses the directional antenna 30 with adjustable beam direction to meet the needs of medium and long-distance equipment. And the access of high-speed equipment, thereby improving the application versatility of the wireless router 100 .
  • the present application also provides a control method of a wireless router, which is applicable to the wireless router 100 described above.
  • the wireless router 100 includes an omnidirectional antenna 20 , a directional antenna 30 and a driving device 40 , and the driving device 40 is connected to the directional antenna 30 .
  • FIG. 21 is a flow chart of a control method of a wireless router provided by some embodiments of the present application.
  • the control method includes the following steps S100-S200.
  • Step S100 Obtain the signal quality received by the omnidirectional antenna 20 from the first target device to obtain a first signal quality Q1.
  • the first target device is an electronic device within the coverage of the wireless router
  • the electronic device includes but is not limited to a personal computer, a wireless router, a portable computer device, a mobile terminal device (such as a PDA, a handheld computer device, a mobile phone or a smart phone) etc.), smart wearable devices or smart home devices (such as smart TVs, smart refrigerators, air conditioners, washing machines, air purifiers), etc.
  • smart wearable devices include but are not limited to bracelets, watches, AR glasses, AR helmets, VR glasses, or VR helmets.
  • the first signal quality Q1 may be evaluated by at least one of indicators such as RSSI, PER, throughput rate, and CSI.
  • the multiple indicators can be weighted to obtain one comprehensive indicator for evaluation, or can be evaluated separately, which is not specifically limited here.
  • the driving device 40 is used to drive the directional antenna 30 to rotate, so as to adjust the beam pointing of the directional antenna 30, so that the directional antenna 30 can serve target devices at different locations.
  • the directional antenna can be adjusted to Covering the position of the target device does not need to traverse all the directions that the directional antenna can rotate to under the drive of the driving device, so the control difficulty is relatively low, and the power consumption and time delay are relatively small.
  • the driving device 40 is used to drive the directional antenna 30 to rotate around the first axis L1.
  • the first axis is parallel to the central axis O of the omnidirectional antenna 20 . Since the central axis O of the omnidirectional antenna 20 generally extends along the height direction of the wireless router (ie, the Z-axis direction), the first axis L1 also extends along the height direction of the wireless router. In this way, the driving device 40 can adjust the beam pointing of the directional antenna 30 in the horizontal plane (that is, the XY plane), so that the directional antenna 30 can serve target devices at different positions in the horizontal plane, so the wireless router can be used in large flat areas. storey family house structure.
  • the driving device 40 is also used to drive the directional antenna 30 to rotate around the second axis L2, the second axis L2 is perpendicular to the first axis L1, and the second axis L2 is also in line with the directional antenna 30
  • the beam points vertically. Since the beam direction of the directional antenna 30 changes when the directional antenna 30 rotates around the first axis L1 , the extending direction of the second axis L2 also changes with the change of the beam direction of the directional antenna 30 .
  • the driving device 40 can adjust the beam pointing of the directional antenna 30 within the three-dimensional space range, so that the directional antenna 30 can serve target devices at different positions within the three-dimensional space range, so the wireless router can be applied to villas, duplex buildings, etc. House structure.
  • the driving device 40 may include the above-mentioned rotary motor, and a combination of the rotary motor and transmission devices such as gear transmission, belt transmission, pneumatic transmission, and hydraulic transmission, which is not specifically limited in the present application.
  • the beam lookup table includes a set of beams formed when the directional antenna 30 is driven by the driving device 40 to rotate to a plurality of different azimuths. That is to say, the beam lookup table includes a set of multiple beams, and the multiple beams are the beams when the directional antenna 30 is driven by the driving device 40 to rotate to multiple different orientations.
  • the plurality of beams in the beam lookup table form a plurality of beam subsets arranged in the circumferential direction of the first axis L1, and each beam subset includes at least directional A first beam a perpendicular to the first axis L1.
  • the first beams a of the plurality of beam subsets are respectively the beams when the directional antenna 30 is driven by the driving device 40 to rotate around the first axis L1 to a plurality of different orientations.
  • the directional antenna 30 rotates until the beam pointing coincides with the pointing of the plurality of first beams a, it can cover the target equipment in the XY plane, and the wireless router can be applied to large flat building structures.
  • the angle ⁇ between the first beam a in two adjacent beam subsets is greater than or equal to
  • the step accuracy angle driven by the driving device 40 around the first axis L1 is smaller than or equal to the first beam angle of the directional antenna 30 .
  • the angle ⁇ between the first beams a in two adjacent beam subsets refers to the angle between the maximum gain directions (that is, the beam pointing) of the two first beams a.
  • the step accuracy angle driven by the driving device 40 around the first axis L1 refers to the minimum angle driven by the driving device 40 around the first axis L1, and the step accuracy angle is greater than 0°.
  • the first beam angle means that when the beam of the directional antenna 30 is directed perpendicular to the first axis L1, it is located on both sides of the maximum radiation direction in a plane (that is, the XY plane) perpendicular to the first axis L1, An included angle between two directions in which the radiation power drops by a first preset threshold.
  • the first preset threshold may be 2dB, 3dB, 4dB, 5dB, etc., which are not specifically limited here, and the first preset threshold may be specifically selected according to actual needs.
  • the beam lookup table is complete within a range of 360° along the circumference of the first axis L1
  • the beam pointing of the directional antenna 30 can be adjusted to multiple positions within a range of 360° of the circumference of the first axis L1, so that The directional antenna 30 can cover the target device at any position in the XY plane.
  • the included angle ⁇ between the first beams a in two adjacent beam subsets is equal to the first beam angle of the directional antenna 30 . In this way, the number of beams in the beam lookup table is small, the difficulty of control is low, and the power consumption and delay are small.
  • the multiple beams in the beam lookup table form a beam along the first axis L1
  • the first beam a is one of the plurality of beams.
  • the beam pointing of the directional antenna 30 changes, so the extending direction of the second axis L2 also follows the direction of the directional antenna 30. Changes in beam pointing. In this way, a plurality of beams in different beam subsets are arranged around the circumference of the second axis along different extension directions.
  • the multiple beams in the beam lookup table are distributed in the XYZ three-dimensional space range, and when the directional antenna 30 rotates until the beam pointing coincides with the direction of the multiple beams in the XYZ three-dimensional space range, the XYZ three-dimensional space range can be covered
  • the target device in the wireless router can be applied to house structures such as villas and duplex buildings.
  • the angle ⁇ between the first beam a in two adjacent beam subsets It is greater than or equal to the step accuracy angle driven by the driving device 40 around the first axis L1 and less than or equal to the first beam angle of the directional antenna 30 .
  • the angle ⁇ between two adjacent beams in the beam subset is greater than or equal to the step accuracy angle driven by the driving device 40 around the second axis L2, and less than Or equal to the second beam angle of the directional antenna 30 .
  • the angle ⁇ between two adjacent beams in the beam subset refers to the angle between the directions of maximum gain (that is, beam pointing) of the two beams.
  • the step accuracy angle driven by the driving device 40 around the second axis L2 refers to the minimum angle driven by the driving device 40 around the second axis L2, and the step accuracy angle is greater than 0°.
  • the second beam angle means that when the beam of the directional antenna 30 is directed perpendicular to the first axis L1, the radiated power is located on both sides of the maximum radiation direction in a plane (such as the XZ plane) perpendicular to the second axis L2. The angle between the two directions of falling the second preset threshold.
  • the second preset threshold value may be 2dB, 3dB, 4dB, 5dB, etc., and the second preset threshold value may be equal to or different from the first preset threshold value.
  • the second preset threshold may be selected according to actual needs. In this way, the beam lookup table is complete in the XYZ three-dimensional space, and the beam pointing of the directional antenna 30 can be adjusted to multiple positions in the XYZ three-dimensional space, so that the directional antenna 30 can cover any position in the XYZ three-dimensional space target device.
  • the included angle ⁇ between the first beams a in two adjacent beam subsets is equal to the first beam angle of the directional antenna 30 .
  • the angle ⁇ between two adjacent beams in the beam subset is equal to the second beam angle of the directional antenna 30 .
  • FIG. 22 is a flow chart of a control method of a wireless router provided in some embodiments of the present application. After step S100, the control method further includes:
  • Step S801 Determine whether the first signal quality is greater than or equal to a third preset threshold.
  • Step S802 When the first signal quality is greater than or equal to the third preset threshold, the omni-directional antenna 20 covers the first target device to work. When the first signal quality is greater than or equal to the third preset threshold, while the omnidirectional antenna is used to cover the first target device, the directional antenna can also be used to cover the first target device, or the use of the directional antenna can be stopped, or the directional Antennas are used to cover other target devices. In this way, a reasonable allocation of resources can be realized.
  • step S802 includes: sending parameters to the radio frequency transceiver link of the omnidirectional antenna 20, the parameters including but not limited to transmit power and protocol software parameters, etc.; entering a standard working state.
  • the omnidirectional antenna 20 After the omnidirectional antenna 20 covers the first target device for the first preset time T1, it may return to step S100 to enter the next cycle.
  • the first preset time T3 may refer to the duration of the standard working state in step S802.
  • the first preset time T1 includes but is not limited to 0.1 second (s), 0.2 s, 0.3 s, etc., and is not specifically limited here.
  • FIG. 23 is a flowchart of a control method of a wireless router provided in some embodiments of the present application.
  • the control method further includes:
  • Step S300 Obtain the signal quality received by the directional antenna 30 from the first target device to obtain a second signal quality Q2.
  • step S200 includes: when the first signal quality Q1 is less than the third preset threshold, and the second signal quality Q2 is less than the fourth preset threshold, driving the directional antenna 30 to rotate through the driving device 40, so that the directional antenna The beam pointing of 30 coincides with the pointing of the target beam in the beam lookup table. In this way, after the omnidirectional antenna 20 and the directional antenna 30 under the current beam pointing cannot cover the first target device, switching the beam pointing of the directional antenna 30 can quickly cover the first target device, reducing the cost of the first target device in most usage scenarios. delay and power consumption.
  • the second signal quality Q2 may also be evaluated by at least one of indicators such as RSSI, PER, throughput, and CSI.
  • the multiple indicators can be weighted to obtain a comprehensive indicator for evaluation, or can be evaluated separately, which is not specifically limited here.
  • the evaluation index of the second signal quality Q2 may be the same as the evaluation index of the first signal quality Q1, or may be different from the evaluation index of the first signal quality Q1.
  • the second signal quality Q2 is also weighted by the four indicators of RSSI, PER, throughput rate, and CSI
  • the final comprehensive index is comprehensively evaluated, and the weighted values of each index are the same, so the evaluation indexes of the first signal quality Q1 and the second signal quality Q2 are the same, if the above weighted values are different, the first signal quality Q1 and the second signal quality
  • the evaluation index of Q2 is different.
  • step S300 may be performed simultaneously with step S100 , or may be performed after step S100 , or may be performed before step S100 , which is not specifically limited here.
  • step S300 is located after step S100.
  • step S300 includes: when the first signal quality is less than a third preset threshold, acquiring the signal quality received by the directional antenna from the first target device. In this way, priority is given to using the omnidirectional antenna to cover the first target device. When the omnidirectional antenna cannot cover the first target device, the directional antenna is used to cover the first target device, which can reduce the delay and power in most usage scenarios. consumption.
  • control method further includes the following steps S901 and S902.
  • Step S901 Determine whether the second signal quality is greater than or equal to a fourth preset threshold.
  • Step S902 When the second signal quality is greater than or equal to a fourth preset threshold, the first target device is covered by the directional antenna in the current beam direction. In this way, the coverage of the first target device is achieved by means of the directional antenna pointed by the current beam, and while the coverage of the first target device is achieved, the directional antenna does not need to be rotated, so the time delay and power consumption are low.
  • step S902 includes: delivering parameters to the radio frequency transceiver link of the directional antenna 30, the parameters including but not limited to transmit power and protocol software parameters, etc.; entering a standard working state. After the directional antenna 30 covers the first target device for the second preset time T2, it may return to step S100 to enter the next cycle.
  • the second preset time T2 may refer to the duration of the standard working state in step S902.
  • the second preset time T2 includes but is not limited to 0.1s, 0.2s, 0.3s, etc., and is not specifically limited here.
  • the second preset time T2 may be equal to or different from the first preset time T1 , which is not specifically limited here.
  • step S200 is located after step S901 .
  • step S1000 Cover the first target device with the directional antenna 30 after switching the beam pointing.
  • step S1000 may include: delivering parameters to the radio frequency transceiver link of the directional antenna 30, the parameters including but not limited to transmit power and protocol software parameters, etc.; entering a standard working state.
  • the step of delivering parameters to the RF transceiver link of the directional antenna 30 may be performed before switching the beam pointing, or at the same time as switching the beam pointing, in addition to switching the beam pointing, which is not specifically limited here.
  • the directional antenna 30 covers the first target device for the third preset time T3, it may return to step S100 to enter the next cycle.
  • the third preset time T3 may refer to the duration of the standard working state in step S1000.
  • the third preset time T3 includes but is not limited to 0.1s, 0.2s, 0.3s, etc., and is not specifically limited here.
  • the third preset time T3 may be equal to or different from the first preset time T1 and the second preset time T2 , which are not specifically limited here.
  • FIG. 24 is a flow chart of a method for controlling a wireless router provided in some other embodiments of the present application.
  • the control method further includes step S1000, step S1000: use the directional antenna after switching beam direction to cover the first target device and work.
  • step S300 is executed after the preset time T4 in step S1000 .
  • the preset time T4 includes but is not limited to 0.1s, 0.2s, and 0.3s, and is not specifically limited here.
  • the control method further includes step S903 and step S904.
  • step S903 further includes: judging whether the second signal quality is less than or equal to a sixth preset threshold, and the sixth preset threshold is smaller than the fifth preset threshold.
  • the step of judging whether the second signal quality is less than or equal to the sixth preset threshold may be after the step of judging whether the second signal quality is greater than or equal to the fifth preset threshold, or after judging whether the second signal quality is greater than or equal to the fifth preset threshold. Before the step of presetting the threshold, it can also be judged at the same time, which is not specifically limited here.
  • the control method further includes: when the second signal quality is less than or equal to the sixth preset threshold, re-enter step S100. In this way, when the signal quality deteriorates, the optimal antenna can be searched for coverage again.
  • step S903 further include: when the second signal quality is less than the fifth preset threshold and the second signal quality is greater than the sixth preset threshold, keep step S1000 to continue working .
  • the control method further includes the following step S400.
  • Step S400 Determine the target beam in the beam lookup table. This step S400 is after the steps S100 and S200.
  • step S400 includes the following steps S410 and S420.
  • Step S410 Drive the directional antenna 30 to rotate to a plurality of orientations sequentially through the driving device 40, so that the beam directions of the directional antenna 30 coincide with the directions of multiple beams in the beam lookup table respectively, and when the beam direction of the directional antenna 30 coincides with the beam direction
  • the quality of the signal received by the directional antenna 30 from the first target device is detected to obtain multiple signal qualities.
  • the multiple beams in the beam lookup table may be all beams in the beam lookup table, or may be some beams in the beam lookup table, which are not specifically limited here.
  • Step S420 Determine the target beam in the beam lookup table according to the multiple signal qualities.
  • the target beam is determined in the beam lookup table in a round-robin lookup manner, which is simple and easy to implement.
  • Step S410 includes the following steps S411 and S412.
  • Step S411 drive the directional antenna 30 to rotate around the first axis L1 through the driving device 40, so that the beam direction of the directional antenna 30 coincides with the direction of the first beam a in the plurality of beam subsets respectively, and the beam direction of the directional antenna 30 When respectively coincident with the directions of the first beam a in the plurality of beam subsets, the quality of the signal received by the directional antenna 30 from the first target device is detected to obtain a plurality of third signal qualities.
  • each beam subset includes the first beam a
  • the first beam a in the plurality of beam subsets refers to a plurality of first beams a
  • the plurality of first beams a respectively belong to the plurality of beam sub-sets set.
  • Step S412 Determine a target beam subset according to a plurality of third signal qualities, and the target beam belongs to the target beam subset.
  • step S412 may include: determining the optimal third signal quality according to multiple third signal qualities; determining the first beam a corresponding to the optimal third signal quality according to the optimal third signal quality
  • the beam subset at is the target beam subset. It should be noted that the first beam a corresponding to the optimal third signal quality refers to the first beam a coincident with the beam direction of the directional antenna 30 when the detected third signal quality is the optimal third signal quality.
  • the directional antenna 30 rotates until the beam pointing coincides with the pointing of the plurality of first beams a, it can cover the target equipment in the XY plane, and the wireless router can be applied to large flat building structures.
  • the beam subset includes a plurality of beams arranged in the circumferential direction of the second axis L2, and the first beam a is one of the plurality of beams.
  • FIG. 27 is a flow chart of another method of step S410 in the method for determining a target beam shown in FIG. 25 . After step S412, step S410 also includes the following step S413.
  • Step S413 Drive the directional antenna 30 to rotate around the second axis L2 through the driving device 40, so that the beam directions of the directional antenna 30 coincide with the directions of multiple beams in the target beam subset respectively, and when the beam directions of the directional antenna 30 respectively coincide with the target When the directions of multiple beams in the beam subset overlap, detecting the signal quality received by the directional antenna 30 from the first target device to obtain a plurality of fourth signal qualities;
  • step S420 includes the following step S421.
  • Step S421 Determine a target beam in the target beam subset according to a plurality of fourth signal qualities.
  • step S421 may include: determining an optimal fourth signal quality according to multiple fourth signal qualities; and determining a beam corresponding to the optimal fourth signal quality as a target beam according to the optimal fourth signal quality.
  • the beam corresponding to the optimal fourth signal quality refers to the beam in the target beam subset that coincides with the beam direction of the directional antenna 30 when the detected fourth signal quality is the optimal fourth signal quality.
  • the multiple beams in the beam lookup table are distributed in the XYZ three-dimensional space range, and when the directional antenna 30 is rotated until the beam pointing coincides with the direction of the multiple beams in the XYZ three-dimensional space range, the XYZ three-dimensional space range can be covered
  • the target device in the wireless router can be applied to house structures such as villas and duplex buildings.
  • FIG. 28 is a flowchart of another method for determining a target beam in the control method shown in FIG. 23 or FIG. 24 .
  • step S400 includes the following steps S430 and S440.
  • Step S430 Obtain the location information of the first target device
  • Step S440 Determine the target beam in the beam lookup table according to the location information of the first target device.
  • the wireless router does not need to search for the target beam in turn, and can quickly determine the target beam, with faster response and shorter delay time.
  • step S440 may include: according to the position information of the first target device, in the beam lookup table, determine the beam with the smallest angle between the beam pointing and the position direction of the first target device relative to the wireless router as target beam. In this way, the coverage effect of the directional antenna 30 on the first target device is better.
  • control methods described in the above multiple embodiments are implemented based on the purpose of covering the first target device.
  • the network type, device type, and device usage information of the target device (including but not limited to use time and use probability), determine the priority of multiple target devices, and the wireless router covers the target device with the highest priority to improve the rationality of beam switching.
  • FIG. 29 is a flowchart of a control method of a wireless router provided in some other embodiments of the present application. Before step S100 and step S200, the control method further includes step S600 and step S700.
  • Step S600 Determine the priorities of the multiple target devices according to the device information of the multiple target devices.
  • the device information of the target device includes at least one of network type, device type, wireless data request characteristics and device usage information
  • the device usage information includes at least one of usage time and usage probability.
  • Internet of things (iot) devices have a small amount of data, so they can be ranked later in priority.
  • students' online class equipment needs to give priority to ensuring the smooth network during a certain period of time, and the priority ranking during this period of time can be higher.
  • the wireless router has learned the following scenarios after a period of self-learning: which are IoT devices, which are low-latency and large-data-volume devices (such as high-definition smart screens, online class devices, game devices), and which are edge devices. devices, which are location-fixed devices, etc. According to the time and probability of device appearance, etc., understand the user's usage habits, and realize the priority ranking strategy of multiple users.
  • Step S700 Determine the target device with the highest priority among the multiple target devices as the first target device.
  • control method before step S600 , further includes: using the directional antenna 20 and/or the omni-directional antenna 30 to search for and identify the target device, so as to obtain multiple target devices.
  • Some embodiments of the present application also provide a computer storage medium, which includes but is not limited to U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM) Various media that can store program codes, such as , magnetic disk or optical disk.
  • the computer storage medium includes computer instructions, and when the computer instructions are run on the wireless router 100, the wireless router 100 is made to execute the control method described in any of the foregoing embodiments.
  • Some embodiments of the present application further provide a computer program product.
  • the computer program product When the computer program product is run on a computer, the computer is made to execute the control method described in any one of the above embodiments.
  • the computer storage medium or the computer program product provided by the embodiments of the present application are used to execute the control method described in any of the above embodiments, therefore, the beneficial effects that it can achieve can refer to the corresponding control method provided above The beneficial effects in the above will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种无线路由器及其控制方法,涉及通信设备技术领域,用于解决如何提升无线路由器的应用广泛性的问题。无线路由器包括全向天线、定向天线和驱动装置。驱动装置与定向天线连接,驱动装置用于驱动该定向天线转动,以使定向天线的波束指向与波束查找表中目标波束的指向重合,目标波束能够覆盖目标设备。其中,波束查找表包括定向天线在驱动装置的驱动下转动至多个不同方位时的波束组成的集合。本申请提供的无线路由器用于家庭房屋无线覆盖。

Description

一种无线路由器及其控制方法
本申请要求于2022年02月28日提交国家知识产权局、申请号为202210191453.1、发明名称为“一种无线路由器及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信设备技术领域,尤其涉及一种无线路由器及其控制方法。
背景技术
目前,无线路由器(比如家用无线路由器)应用于用户上网和无线覆盖。无线路由器可以看作一个转发器,将无线或者有线宽带网络信号通过天线转发给附近的无线网络设备(比如笔记本电脑、手机、平板电脑、智能电视、无线路由器等等)。
现有的无线路由器大多采用全向天线实现无线覆盖。全向天线在水平方向图上表现为360°均匀辐射,也就是平常所说的无方向性。但是,全向天线的增益较小,通常只有3dBi~6dBi,且通信距离较短,信号转发速度较慢,导致这些无线路由器只能服务普通用户设备,不能服务中远距离弱场设备以及高速设备,因此现有无线路由器的应用受限。
发明内容
本申请实施例提供一种无线路由器及其控制方法,用于解决如何提升无线路由器的应用广泛性的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种无线路由器,该无线路由器包括全向天线、定向天线和驱动装置。驱动装置与定向天线连接,驱动装置用于驱动定向天线转动,以使定向天线的波束指向与波束查找表中目标波束的指向重合,目标波束能够覆盖目标设备。其中,波束查找表包括定向天线在驱动装置的驱动下转动至多个不同方位时的波束组成的集合。
本申请实施例中,在借助全向天线满足普通设备接入的基础上,借助增益较高且波束指向可调的定向天线,可以满足中远距离弱场设备以及高速设备的接入,由此能够提升无线路由器的应用广泛性。在此基础上,在借助驱动装置驱动定向天线转动的过程中,只需使定向天线的波束指向与波束查找表内有限数量的多个波束中目标波束的指向重合,即可将定向天线调节至覆盖目标设备的位置,无需遍历定向天线在驱动装置的驱动下能够转动到的所有方位,因此控制难度较低,功耗和时延较小。
在第一方面的一种可能的实现方式中,驱动装置用于驱动定向天线绕第一轴线转动。波束查找表中多个波束组成多个波束子集,多个波束子集沿第一轴线的周向排列,波束子集至少包括指向与第一轴线垂直的第一波束。这样一来,当定向天线转动至波束指向与该多个第一波束的指向重合时,可以覆盖水平面内的目标设备,无线路由器可以适用于大平层房屋结构。
在第一方面的一种可能的实现方式中,沿第一轴线的周向,相邻两个波束子集中的第一波束之间的夹角大于或者等于驱动装置绕第一轴线驱动的步进精度角,小于或者等于定向天线的第一波束角。其中,第一波束角是指当定向天线的波束指向与第一轴线垂直时,在与第一轴线垂直的平面内,位于最大辐射方向的两侧,辐射功率下降第一预设阈值的两个方向之间的夹角。这样一来,波束查找表在沿第一轴线周向的360°范围内具有完备性,定向天线的波束指向可以调节至第一轴线周向360°范围内的多个位置,以使定向天线能够覆盖水平面内任意位置的目标设备。
在第一方面的一种可能的实现方式中,沿第一轴线的周向,相邻两个波束子集中的第一波束之间的夹角等于定向天线的第一波束角。这样一来,波束查找表中的波束的数量较少,控制难度较低,功耗和时延较小。
在第一方面的一种可能的实现方式中,驱动装置还用于驱动定向天线绕第二轴线转动;该第二轴线与第一轴线垂直,且第二轴线与定向天线的波束指向垂直。波束子集包括沿第二轴线的周向排列的多个波束,第一波束为该多个波束中的一个。这样一来,波束查找表中的多个波束分布于三维空间范围内,当定向天线转动至波束指向与该三维空间范围内的多个波束的指向重合时,可以覆盖三维空间范围内的目标设备,无线路由器可以适用于别墅、复式楼等房屋结构。
在第一方面的一种可能的实现方式中,沿第二轴线的周向,波束子集内相邻两个波束之间的夹角大于或者等于第二驱动装置绕第二轴线驱动的步进精度角,小于或者等于定向天线的第二波束角。其中,第二波束角是指当定向天线的波束指向与第一轴线垂直时,在与第二轴线垂直的平面内,位于最大辐射方向的两侧,辐射功率下降第二预设阈值的两个方向之间的夹角。这样一来,波束查找表在三维空间范围内具有完备性,定向天线的波束指向可以调节至三维空间范围内的多个位置,以使定向天线能够覆盖三维空间范围内任意位置的目标设备。
在第一方面的一种可能的实现方式中,沿第二轴线的周向,波束子集中相邻两个波束之间的夹角等于定向天线的第二波束角。这样一来,波束查找表中的波束的数量较少,控制难度较低,功耗和时延较小。
在第一方面的一种可能的实现方式中,无线路由器还包括控制器和检测系统。控制器与驱动装置电连接,控制器用于控制驱动装置驱动定向天线依次转动至多个方位,以使定向天线的波束指向分别与波束查找表中的多个波束的指向重合。检测系统用于在定向天线的波束指向分别与波束查找表中的多个波束的指向重合时,检测该定向天线接收到的来自目标设备的信号质量。该信号质量可以由接收信号强度、错误率、吞吐率、信道状态信息等指标中的至少一个进行评价。当信号质量由这些指标中的多个综合评价时,可以将该多个指标进行加权得到一个综合指标进行评价,也可以分别进行评价,在此不做具体限定。控制器与检测系统电连接,控制器还用于根据检测系统检测得到的多个信号质量,确定波束查找表中的目标波束,并控制驱动装置驱动定向天线转动,以使定向天线的波束指向与波束查找表中目标波束的指向重合。此无线路由器的结构简单,无需专门的定位装置,因此成本较低。
在第一方面的一种可能的实现方式中,无线路由器还包括定位装置和控制器。定位装置用于获取目标设备的位置信息。控制器与定位装置电连接,控制器用于根据定 位装置获取的位置信息,确定波束查找表中的目标波束,并控制驱动装置驱动定向天线转动,以使定向天线的波束指向与波束查找表中目标波束的指向重合。此无线路由器无需轮寻查找目标波束,能够快速确定目标波束,响应较快,延迟时间较短。
在第一方面的一种可能的实现方式中,定位装置为UWB天线。
在第一方面的一种可能的实现方式中,还包括射频收发系统,射频收发系统具有多个信号输出端,全向天线的数量为至少一个,定向天线的数量为至少一个,全向天线的数量和定向天线的数量之和大于射频收发系统的信号输出端的数量,射频收发系统的多个信号输出端与全向天线、定向天线之间还设有切换开关,该切换开关用于选择射频收发系统的多个信号输出端分别与至少一个全向天线和至少一个定向天线中的任意多个天线电连接,以使无线路由器在多种使用场景之间进行切换。
第二方面,又提供了一种无线路由器的控制方法,该无线路由器包括全向天线、定向天线和驱动装置,驱动装置与定向天线连接,控制方法包括:
获取全向天线接收到的来自第一目标设备的信号质量,以得到第一信号质量;
当第一信号质量小于第三预设阈值时,通过驱动装置驱动定向天线转动,以使定向天线的波束指向与波束查找表中的目标波束的指向重合,目标波束能够覆盖第一目标设备。其中,波束查找表包括定向天线在驱动装置的驱动下转动至多个不同方位时的波束组成的集合。
这样一来,在借助全向天线满足普通设备接入的基础上,借助增益较高且波束指向可调的定向天线,可以满足中远距离弱场设备以及高速设备的接入,由此能够提升无线路由器的应用广泛性。在此基础上,在借助驱动装置驱动定向天线转动的过程中,只需使定向天线的波束指向与波束查找表内有限数量的多个波束中目标波束的指向重合,即可将定向天线调节至覆盖目标设备的位置,无需遍历定向天线在驱动装置的驱动下能够转动到的所有方位,因此控制难度较低,功耗和时延较小。
在第二方面的一种可能的实现方式中,当第一信号质量小于第三预设阈值时,在通过驱动装置驱动定向天线转动,以使定向天线的波束指向与波束查找表中的目标波束的指向重合之前,控制方法还包括:在波束查找表中,确定目标波束。这样一来,可以实现目标波束的自动寻找,时延较小,效率较高。
在第二方面的一种可能的实现方式中,在波束查找表中,确定目标波束,包括:
通过驱动装置驱动定向天线依次转动至多个方位,以使定向天线的波束指向分别与波束查找表中的多个波束的指向重合,并在定向天线的波束指向分别与波束查找表中的多个波束的指向重合时,检测定向天线接收到的来自第一目标设备的信号质量,以得到多个信号质量;
根据多个信号质量,在波束查找表中确定目标波束。
这样一来,采用轮寻查找方式在波束查找表中确定目标波束,此方法简单,容易实现。
在第二方面的一种可能的实现方式中,驱动装置用于驱动定向天线绕第一轴线转动;波束查找表中多个波束组成多个波束子集,多个波束子集沿第一轴线的周向排列,波束子集至少包括指向与第一轴线垂直的第一波束;
通过驱动装置驱动定向天线依次转动至多个方位,以使定向天线的波束指向分别 与波束查找表中的多个波束的指向重合,并在定向天线的波束指向分别与波束查找表中的多个波束的指向重合时,检测定向天线接收到的来自第一目标设备的信号质量,以得到多个信号质量,包括:
通过驱动装置驱动定向天线绕第一轴线转动,以使定向天线的波束指向分别与多个波束子集中的第一波束的指向重合,并在定向天线的波束指向分别与多个波束子集中第一波束的指向重合时,检测定向天线接收到的来自第一目标设备的信号质量,以得到多个第三信号质量;其中,由于每个波束子集均包括第一波束,因此,多个波束子集中的第一波束是指多个第一波束,该多个第一波束分别属于该多个波束子集;
根据多个第三信号质量,确定目标波束子集,目标波束属于所述目标波束子集。
这样一来,当定向天线转动至波束指向分别与该多个第一波束的指向重合时,可以覆盖水平面内的目标设备,无线路由器可以适用于大平层房屋结构。
在第二方面的一种可能的实现方式中,驱动装置还用于驱动定向天线绕第二轴线转动;第二轴线与所述第一轴线垂直,且第二轴线与定向天线的波束指向垂直;波束子集包括沿第二轴线的周向排列的多个波束,第一波束为多个波束中的一个;
在确定目标波束子集之后,通过驱动装置驱动定向天线依次转动至多个方位,以使定向天线的波束指向分别与波束查找表中的多个波束的指向重合,并在定向天线的波束指向分别与波束查找表中的多个波束的指向重合时,检测定向天线接收到的来自第一目标设备的信号质量,以得到多个信号质量,还包括:
通过驱动装置驱动定向天线绕第二轴线转动,以使定向天线的波束指向分别与目标波束子集中多个波束的指向重合,并在定向天线的波束指向分别与目标波束子集中多个波束的指向重合时,检测定向天线接收到的来自第一目标设备的信号质量,以得到多个第四信号质量;
根据多个信号质量,在波束查找表中确定目标波束,包括:
根据多个第四信号质量,在目标波束子集中确定目标波束。
这样一来,波束查找表中的多个波束分布于三维空间范围内,通过定向天线转动至波束指向分别与该三维空间范围内的多个波束的指向重合时,可以覆盖三维空间范围内的目标设备,无线路由器可以适用于别墅、复式楼等房屋结构。
在第二方面的一种可能的实现方式中,在波束查找表中,确定目标波束,包括:
获取第一目标设备的位置信息;
根据位置信息,在波束查找表中确定目标波束。
这样一来,无线路由器无需轮寻查找目标波束,能够快速确定目标波束,响应较快,延迟时间较短。
在第二方面的一种可能的实现方式中,在得到第一信号质量之后,控制方法还包括:
判断第一信号质量是否大于或者等于第三预设阈值;
当第一信号质量大于或者等于第三预设阈值时,由全向天线覆盖第一目标设备进行工作。当第一信号质量大于或者等于第三预设阈值时,在采用全向天线覆盖第一目标设备的同时,还可以采用定向天线覆盖该第一目标设备,也可以停止使用定向天线,或者将定向天线用来覆盖其他目标设备。由此,能够实现资源的合理配置。
在第二方面的一种可能的实现方式中,控制方法还包括:
获取定向天线接收到的来自第一目标设备的信号质量,以得到第二信号质量;
通过驱动装置驱动定向天线转动,以使定向天线的波束指向与波束查找表中的目标波束的指向重合,包括:
当第一信号质量小于第三预设阈值,且第二信号质量小于第四预设阈值时,通过驱动装置驱动定向天线转动,以使定向天线的波束指向与波束查找表中的目标波束的指向重合。
这样一来,在全向天线以及当前波束指向下的定向天线均无法覆盖第一目标设备之后,再切换定向天线的波束指向,能够快速覆盖第一目标设备,降低大部分使用场景下的时延和功耗。
在第二方面的一种可能的实现方式中,获取定向天线接收到的来自第一目标设备的信号质量包括:
当第一信号质量小于第三预设阈值时,获取定向天线接收到的来自第一目标设备的信号质量。这样一来,优先考虑采用全向天线覆盖第一目标设备,在全向天线无法覆盖第一目标设备时,再采用定向天线覆盖第一目标设备,能够降低大部分使用场景下的时延和功耗。
在第二方面的一种可能的实现方式中,得到第二信号质量之后,控制方法还包括:
判断第二信号质量是否大于或者等于第四预设阈值;
当第二信号质量大于或者等于第四预设阈值时,由处于当前波束指向的定向天线覆盖第一目标设备进行工作。这样一来,借助当前波束指向的定向天线实现第一目标设备的覆盖,在实现第一目标设备的覆盖的同时,无需旋转定向天线,因此时延和功耗较低。
在第二方面的一种可能的实现方式中,定向天线的波束指向与波束查找表中的目标波束的指向重合之后,控制方法还包括:
由切换波束指向后的定向天线覆盖第一目标设备进行工作。
在第二方面的一种可能的实现方式中,由切换波束指向后的定向天线覆盖所述第一目标设备进行工作预设时间之后,控制方法还包括:
获取定向天线接收到的来自第一目标设备的信号质量,以得到第二信号质量;
判断第二信号质量是否大于或者等于第五预设阈值;
当第二信号质量大于或者等于第五预设阈值时,重新获取全向天线接收到的来自第一目标设备的信号质量。
这样一来,当信号质量变好时,可以重新确定全向天线是否能够覆盖第一目标设备,以实现资源的合理配置。
在第二方面的一种可能的实现方式中,得到第二信号质量之后,控制方法还包括:
判断第二信号质量是否小于或者等于第六预设阈值,第六预设阈值小于第五预设阈值;
当第二信号质量小于或者等于第六预设阈值时,重新获取全向天线接收到的来自第一目标设备的信号质量。这样一来,当信号质量变差时,可以重新寻找最优天线进行覆盖。
在第二方面的一种可能的实现方式中,控制方法还包括:
当第二信号质量小于第五预设阈值,且第二信号质量大于第六预设阈值时,保持由切换波束指向后的定向天线覆盖第一目标设备进行工作。
在第二方面的一种可能的实现方式中,控制方法还包括:
根据多个目标设备的设备信息确定多个目标设备的优先级,设备信息包括网络类型、设备类型、无线数据请求特性和设备使用信息中的至少一种,设备使用信息包括使用时间和使用概率中的至少一种;
将多个目标设备中优先级最高的目标设备确定为所述第一目标设备。
这样一来,可以提高波束切换的合理性。
第三方面,本申请一些实施例提供一种计算机存储介质,该计算机存储介质包括计算机指令,当所述计算机指令在无线路由器上运行时,使得无线路由器执行如上任一技术方案所述的控制方法。
第四方面,本申请一些实施例还提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如上任一技术方案所述的控制方法。
本申请实施例提供的计算机存储介质或者计算机程序产品均用于执行如上任一技术方案所述的控制方法,因此,其所能达到的有益效果可参考上文所提供的对应的控制方法中的有益效果,此处不再赘述。
附图说明
图1为本申请一些实施例提供的一种家用的无线路由器的结构示意图;
图2为图1所示无线路由器内全向天线在三维空间内的方向图;
图3为图1所示无线路由器内定向天线在三维空间内的方向图;
图4为图1所示无线路由器应用于大平层家庭房屋时全向天线和定向天线的一种覆盖范围示意图;其中,图4中的(a)为全向天线的一种覆盖范围示意图,图4中的(b)为定向天线的一种覆盖范围示意图;
图5为图1所示无线路由器中一种驱动装置的结构示意图;
图6为图1所示无线路由器中又一种驱动装置的结构示意图;
图7为图1所示无线路由器中又一种驱动装置的结构示意图;
图8为本申请又一些实施例提供的无线路由器的结构示意图;
图9为图8所示无线路由器中一种驱动装置的结构示意图;
图10为图9所示驱动装置的一种具体结构示意图;
图11为图9所示驱动装置的又一种具体结构示意图;
图12为本申请一些实施例提供的波束查找表中多个波束子集的第一波束的结构示意图;
图13为本申请一些实施例提供的无线路由器中定向天线的第一波束角的示意图;
图14为本申请又一些实施例提供的波束查找表的结构示意图;
图15为本申请一些实施例提供的无线路由器中定向天线的第二波束角的示意图;
图16为本申请又一些实施例提供的无线路由器的结构示意图;
图17为本申请又一些实施例提供的无线路由器的结构示意图;
图18为本申请一些实施例提供的无线路由器的内部电路图;
图19为图18所示无线路由器内射频收发系统的结构示意图;
图20为本申请又一些实施例提供的无线路由器的内部电路图;
图21为本申请一些实施例提供的无线路由器的控制方法的流程图;
图22为本申请又一些实施例提供的无线路由器的控制方法的流程图;
图23为本申请又一些实施例提供的无线路由器的控制方法的流程图;
图24为本申请又一些实施例提供的无线路由器的控制方法的流程图;
图25为图23或24所示控制方法中一种确定目标波束的方法流程图;
图26为图25所示确定目标波束的方法中步骤S410的一种方法流程图;
图27为图25所示确定目标波束的方法中步骤S410的又一种方法流程图;
图28为图23或图24所示控制方法中又一种确定目标波束的方法流程图;
图29为本申请又一些实施例提供的无线路由器的控制方法流程图。
具体实施方式
在本申请实施例中,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请实施例中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要说明的是,本申请实施例描述无线路由器中各个部件或者天线的波束指向所采用的“重合”、“平行”、“垂直”等方位关系限定词均表示允许一定误差的大致方位,并非限于绝对的方位关系。
为了提升无线路由器的应用广泛性,本申请实施例提供一种无线路由器,该无线路由器在服务普通用户设备的基础上,还能够服务中远距离弱场设备以及高速设备。具体的,本申请实施例提供的无线路由器在内置有全向天线的基础上,额外放置波束指向可调的定向天线,定向天线具有更高的天线增益(8dBi~12dBi),以在借助全向天线满足普通设备接入的基础上,借助增益较高且波束指向可调的定向天线,满足中远距离弱场设备以及高速设备的接入,由此提升无线路由器的应用广泛性。
下面将结合附图详细介绍本申请的实施例,且在详细介绍本申请实施例之前,首先介绍本申请提供的无线覆盖系统的应用场景。
本申请提供一种无线路由器,该无线路由器可以是室外无线路由器,也可以为室内家用无线路由器,以下各实施例是以家用无线路由器为例进行介绍,这并不能认为是对本申请构成的特殊限制。同时,本申请提供的无线路由器可以支撑WiFi-2.4G、WiFi-5G、WiFi-6E及以上通用频段中的至少一个,本申请对此不做具体限定。
请参阅图1,图1为本申请一些实施例提供的一种家用的无线路由器100的结构示意图。需要说明的是,为了方便下文各实施例的描述,针对图1所示家用无线路由器100,建立XYZ坐标系。具体的,定义无线路由器100在处于家庭使用状态时的高度方向为Z轴方向,与Z轴方向垂直的平面为XY平面。可以理解的是,无线路由器100的坐标系可以根据实际需要进行灵活设置,在此不做具体限定。
无线路由器100包括壳体10。壳体10用于对内部电子器件起到防水防尘保护作用。壳体10的材料包括但不限于塑料。壳体10的形状包括但不限于圆柱形、方柱形、圆盘形、三棱柱、球形等等,图1给出了壳体10呈圆柱形的示例,这并不能认为是对壳体10的形状构成的特殊限制。在其他一些实施例中,无线路由器100也可以不设置该壳体10。
请继续参阅图1,无线路由器100还包括全向天线20和定向天线30。全向天线20和定向天线30用于实现无线路由器的无线覆盖。具体的,全向天线20和定向天线30用于支持WiFi-2.4G、WiFi-5G、WiFi-6E或者以上通用频段信号中的至少一种信号的发射与接收。在一些实施例中,全向天线20和定向天线30可以设置于壳体10内,以防止全向天线20和定向天线30受到外界环境的干扰。在其他一些实施例中,全向天线20和定向天线30也可以一部分设置于壳体10的内部,另一部分设置于壳体10的外部,或者全部设置于壳体10的外部,在本申请实施例中不做具体限定。
在一些实施例中,全向天线20与壳体10固定。全向天线20具有中心轴O,中心轴O与全向天线20在三维空间内的方向图的中心轴重合。请参阅图2,图2为图1所示无线路由器100内全向天线20在三维空间内的方向图,该全向天线20的方向图近似呈“苹果”状,中心轴O与该苹果状的方向图的中心轴重合。在一些实施例中,中心轴O沿Z轴方向延伸,这样一来,全向天线20在XY平面内表现为360°均匀辐射,在将无线路由器100应用于家庭时,全向天线20能够实现XY平面360°范围内的短距离覆盖。
请参阅图3,图3为图1所示无线路由器100内定向天线30在三维空间内的方向图。由图3可知,定向天线30在某个方向上发射和接收信号的能力特别强,而在其他的方向上发射和接收信号的能力较小或者为零。定向天线30的发射和接收信号能力最强的方向下文称之为定向天线30的波束指向。定向天线30具有较大的增益(8dBi~12dBi),抗干扰能力较优。同时,相比于全向天线20,定向天线30的覆盖距离较远。举例说明,请参阅图4,图4为图1所示无线路由器100应用于大平层家庭房屋时全向天线20和定向天线30的一种覆盖范围示意图。具体的,图4中的(a)为全向天线20的一种覆盖范围示意图,图4中的(b)为定向天线30的一种覆盖范围示意图。在此示例中,全向天线20的覆盖距离较近,仅能够覆盖到距离相对较近的目标设备01,不能覆盖到距离相对较远的目标设备02。定向天线30的覆盖距离较远,既能覆盖到距离较近的目标设备01,又能覆盖到距离相对较远的目标设备02。由此可知,相比于全向天线20,定向天线30具有更远的覆盖距离,能够覆盖中远距离的目标设备。
需要说明的是,本申请实施例所述的目标设备是指需要与无线路由器100建立连接以达到上网目的的一类电子设备。具体的,目标设备包括但不限于个人电脑、无线 路由器、便携式电脑设备、移动终端设备(如PDA、掌上电脑设备、手机或智能手机等)、智能穿戴设备或者智能家居设备(如智能电视、智能冰箱、空调、洗衣机、空气净化器)等等。其中,智能穿戴设备包括但不限于手环、手表、增强现实(augmented reality,AR)眼镜、AR头盔、虚拟现实(virtual reality,VR)眼镜或者VR头盔等。
对比图2和图3可知,相比于全向天线20,定向天线30的波束集中在某一个方向或者多个方向,因此定向天线30的覆盖角度较窄。在此基础上,为了使全向天线20能够服务不同位置的目标设备,请返回参阅图1,无线路由器还包括驱动装置40,驱动装置40用于驱动定向天线30转动,以调节定向天线30的波束指向,使得定向天线30能够服务不同位置的目标设备。
在一些实施例中,请继续参阅图1,驱动装置40用于驱动定向天线30绕第一轴线L1转动。可选的,第一轴线L1与全向天线20的中心轴O平行,在其他一些可选实施例中,第一轴线L1也可以与全向天线20的中心轴O垂直或者相交,下文各实施例是在第一轴线L1与全向天线20的中心轴O平行的基础上进行的说明,这并不能认为是对本申请构成的特殊限制。由于全向天线20的中心轴O沿着无线路由器100的高度方向(也即是Z轴方向)延伸,因此第一轴线L1也沿着无线路由器100的高度方向延伸。这样一来,驱动装置40能够在XY平面内调节定向天线30的波束指向,以使定向天线30能够服务XY平面内的不同位置的目标设备,因此该无线路由器100能够适用于大平层家庭房屋结构。
驱动装置40的结构形式有多种。示例的,请参阅图5,图5为图1所示无线路由器100中一种驱动装置40的结构示意图。在本示例中,驱动装置40包括旋转电机41。旋转电机41可以为带减速器的电机,也可以为不带减速器的电机。旋转电机41的类型包括但不限于伺服电机、步进电机、力矩电机、开关磁阻电机和无刷直流电机。旋转电机41的输出轴的中轴线与第一轴线L1共线,旋转电机41的输出轴与定向天线30固定连接。
这样一来,当旋转电机41转动时,即可驱动定向天线30绕第一轴线L1转动。此驱动装置40的结构简单,成本较低,且旋转电机41与定向天线30直接连接,无需传动装置,因此传动效率较高,机械能损耗较小。
又示例的,请参阅图6,图6为图1所示无线路由器100中又一种驱动装置40的结构示意图。在本示例中,驱动装置40包括旋转电机41、主动锥齿轮42和从动锥齿轮43。旋转电机41可以为带减速器的电机,也可以为不带减速器的电机。旋转电机41的类型包括但不限于伺服电机、步进电机、力矩电机、开关磁阻电机和无刷直流电机。旋转电机41的输出轴与主动锥齿轮42连接,以驱动主动锥齿轮42转动。从动锥齿轮43与主动锥齿轮42啮合传动,从动锥齿轮43的中轴线与第一轴线L1共线,且从动锥齿轮43与定向天线30固定连接。
这样一来,当旋转电机41转动时,主动锥齿轮42和从动锥齿轮43啮合传动,可以驱动定向天线30绕第一轴线L1转动。齿轮传动的精度较高,传动效率较大,损耗小。同时通过锥齿轮传动,传动路径产生了转折,使得旋转电机41可以安装于第一轴线L1的一侧,从而降低了驱动装置40在Z轴方向上的占用高度。
又示例的,请参阅图7,图7为图1所示无线路由器中又一种驱动装置40的结构 示意图。在本示例中,驱动装置40包括旋转电机41、主动齿轮44和端面齿盘45。旋转电机41可以为带减速器的电机,也可以为不带减速器的电机。旋转电机41的类型包括但不限于伺服电机、步进电机、力矩电机、开关磁阻电机和无刷直流电机。旋转电机41的输出轴与主动齿轮44连接,以驱动主动齿轮44转动。主动齿轮44与端面齿盘45啮合传动,端面齿盘45的中轴线与第一轴线L1共线,端面齿盘45与定向天线30固定连接。
这样一来,当旋转电机41转动时,主动齿轮44和端面齿盘45啮合传动,可以驱动定向天线30绕第一轴线L1转动。齿轮传动的精度较高,传动效率较大,损耗小。同时通过主动齿轮与端面齿盘传动,一方面传动路径发生了转折,使得旋转电机41可以安装于第一轴线L1的一侧,从而降低了驱动装置40在Z轴方向上的占用高度,另一方面,端面齿盘的半径较大,拉远了旋转电机41与定向天线30的距离,使得旋转电机41能够安装至无线路由器内空间富裕的区域。
需要说明的是,驱动装置40除了包括上述旋转电机、以及旋转电机与齿轮传动装置的组合之外,还可以包括旋转电机与皮带传动装置、气动传动装置、液动传动装置等除了齿轮传动装置之外的传动装置的组合,本申请对此不做具体限定。
在一些实施例中,请参阅图8,图8为本申请又一些实施例提供的无线路由器100的结构示意图。图8所示无线路由器与图1所示无线路由器的区别之处在于:图8所示无线路由器中,驱动装置40除了用于驱动定向天线30绕第一轴线L1转动之外,还用于驱动定向天线30绕第二轴线L2转动,第二轴线L2与第一轴线L1垂直,且第二轴线L2还与定向天线30的波束指向垂直。由于定向天线30在绕第一轴线L1转动时,定向天线30的波束指向改变,因此第二轴线L2的延伸方向也随着定向天线30的波束指向的改变而改变。这样一来,驱动装置40能够在XYZ三维空间范围内调节定向天线30的波束指向,以使定向天线30能够服务XYZ三维空间范围内的不同位置的目标设备,因此无线路由器100能够适用于别墅、复式楼等房屋结构。
在上述实施例中,驱动装置40的结构形式有多种。示例的,驱动装置40可以为沿XYZ三维空间内的任意方向可动的球铰结构。
又示例的,请参阅图9,图9为图8所示无线路由器100中一种驱动装置40的结构示意图。在本示例中,驱动装置40包括第一驱动装置40a和第二驱动装置40b。第一驱动装置40a用于驱动定向天线30绕第一轴线L1转动,第一驱动装置40a的结构形式可以与图1所示无线路由器100中驱动装置40的结构形式相同,在此不做赘述。第二驱动装置40b连接于第一驱动装置40a与定向天线30之间,第一驱动装置40a在驱动定向天线30绕第一轴线L1转动的同时,还用于驱动第二驱动装置40b随着定向天线30一起绕第一轴线L1转动。第二驱动装置40b用于驱动定向天线30绕第二轴线L2转动。这样一来,借助第一驱动装置40a和第二驱动装置40b分别驱动定向天线30绕第一轴线L1和第二轴线L2转动,能够降低驱动装置的结构制作难度和成本,且两个驱动装置的驱动过程相互独立,能够保证驱动精度。
在上述实施例中,第二驱动装置40b的结构形式包括但不限于旋转电机、以及旋转电机与皮带传动装置、气动传动装置、液动传动装置以及齿轮传动装置等传动装置的组合。
示例的,请参阅图10,图10为图9所示驱动装置40的一种具体结构示意图。在本实施例中,第一驱动装置40a与图5所示的驱动装置40的结构形式相同,在此不做赘述。第二驱动装置40b包括旋转电机40b1,旋转电机40b1的定子部分与第一驱动装置40a的旋转电机的输出轴相对固定,第一驱动装置40a用于驱动旋转电机40b1绕第一轴线L1转动。在此基础上,定向天线30与旋转电机40b1的转子部分固定,旋转电机40b1用于驱动定向天线30绕第二轴线L2转动。此第二驱动装置40b的结构简单,传动效率高,机械能损耗较小。
又示例的,请参阅图11,图11为图9所示驱动装置40的又一种具体结构示意图。在本实施例中,第一驱动装置40a与图7所示的驱动装置40的结构形式相同,在此不做赘述。第二驱动装置40b也包括旋转电机40b1,旋转电机40b1的定子部分与第一驱动装置40a中端面齿盘相对固定,第一驱动装置40a用于驱动旋转电机40b1绕第一轴线L1转动。在此基础上,定向天线30与旋转电机40b1的转子部分固定,旋转电机40b1用于驱动定向天线30绕第二轴线L2转动。此第二驱动装置40b的结构简单,传动效率高,机械能损耗较小。
上述各实施例分别介绍了驱动装置40的多种结构形式,当然,驱动装置40还可以有其他结构形式,只要能够驱动定向天线30转动,以达到调节定向天线30的波束指向的目的即可。
在一些实施例中,定向天线30包括辐射体和反射板。辐射体和反射板中的至少一个转动,即可改变定向天线30的波束指向。在此基础上,驱动装置40可以与定向天线30的辐射体和/或反射板连接,以驱动定向天线30的辐射体和/或反射板转动,由此改变辐射体的口面朝向和反射板的反射方向,从而达到调节定向天线30的波束指向的目的。
本申请实施例中,采用物理机械结构(也即驱动装置40)驱动定向天线30转动,来达到调节定向天线30的波束指向的目的。相比于传统电路调节(比如波束赋形)方式,物理机械调节方式天线口面利用率高,具有更宽的波束以及更高的最大增益,且控制方法简单,控制电路的结构简单,同时可以使定向天线30覆盖更多的扇区。比如传动电路调节定向天线通常覆盖3~4个扇区,而本申请实施例采用物理机械结构调节的定向天线,根据驱动装置40的步进精度,可以覆盖的扇区数量远大于4个。
本申请实施例中,在借助全向天线20满足普通设备接入的基础上,借助增益较高且波束指向可调的定向天线,可以满足中远距离弱场设备以及高速设备的接入,由此能够提升无线路由器100的应用广泛性。
在通过驱动装置40调节定向天线30的波束指向,以使得定向天线30能够覆盖目标设备的过程中,为了简化控制难度,在一些实施例中,可以建立波束查找表。波束查找表包括定向天线30在驱动装置40的驱动下转动至多个不同方位时的波束组成的集合,也就是说,波束查找表包括多个波束组成的集合,该多个波束分别为定向天线30在驱动装置40的驱动下转动至多个不同方位时的波束。在此基础上,驱动装置40可以参照该波束查找表,驱动定向天线30转动,以使定向天线30的波束指向与波束查找表中目标波束的指向重合。其中,目标波束为波束查找表包括的多个波束中的一个,且目标波束能够覆盖目标设备。
这样一来,在借助驱动装置40驱动定向天线30转动的过程中,只需使定向天线30的波束指向与波束查找表内有限数量的多个波束中目标波束的指向重合,即可将定向天线30调节至覆盖目标设备的位置,无需遍历定向天线30在驱动装置40的驱动下能够转动到的所有方位,因此控制难度较低,功耗和时延较小。
在一些实施例中,当驱动装置40用于驱动定向天线30绕第一轴线L1转动时,波束查找表中多个波束组成沿第一轴线L1的周向排列的多个波束子集,每个波束子集至少包括指向与第一轴线L1垂直的第一波束a。请参阅图12,图12为本申请一些实施例提供的波束查找表中多个波束子集的第一波束a的结构示意图。该多个波束子集的第一波束a分别为定向天线30在驱动装置40的驱动下绕第一轴线L1转动至多个不同方位时的波束。这样一来,当定向天线30转动至波束指向与该多个第一波束a的指向重合时,可以覆盖XY平面内的目标设备,无线路由器可以适用于大平层房屋结构。
在上述实施例的基础上,为了使定向天线30能够覆盖XY平面内不同位置的目标设备,在一些实施例中,请继续参阅图12,沿第一轴线L1的周向w1,相邻两个波束子集中的第一波束a之间的夹角α大于或者等于驱动装置40绕第一轴线L1驱动的步进精度角,且小于或者等于定向天线30的第一波束角。
其中,相邻两个波束子集中的第一波束a之间的夹角α是指两个第一波束a的最大增益方向(也即是波束指向)之间夹角。
另外,驱动装置40绕第一轴线L1驱动的步进精度角是指驱动装置40绕第一轴线L1驱动的最小角度,该步进精度角大于0°。
再者,第一波束角是指当定向天线30的波束指向与第一轴线L1垂直时,在与第一轴线L1垂直的平面(也即是XY平面)内,位于最大辐射方向的两侧,辐射功率下降第一预设阈值的两个方向之间的夹角。其中,第一预设阈值可以为2dB、3dB、4dB、5dB等等,在此不做具体限定,该第一预设阈值具体可以根据实际需要进行选择。示例的,请参阅图13,图13为本申请一些实施例提供的无线路由器100中定向天线30的第一波束角a的示意图,该定向天线30的第一波束角是指在XY平面内,位于最大辐射方向D1的两侧,辐射功率下降第一预设阈值(比如为3dB)的两个方向D2和D3之间的夹角θ。
示例的,当相邻两个波束子集中的第一波束a之间的夹角α为20°时,在绕第一轴线L1的360°范围内有18个波束子集。当相邻两个波束子集中的第一波束a之间的夹角α为45°时,在绕第一轴线L1的360°范围内有8个波束子集。当相邻两个波束子集中的第一波束a之间的夹角α为90°时,在绕第一轴线L1的360°范围内有4个波束子集。
这样一来,波束查找表在沿第一轴线L1周向的360°范围内具有完备性,定向天线30的波束指向可以调节至第一轴线L1周向360°范围内的多个位置,以使定向天线30能够覆盖XY平面内任意位置的目标设备。
在一些实施例中,请返回参阅图12,沿第一轴线L1的周向w1,相邻两个波束子集中的第一波束a之间的夹角α等于定向天线30的第一波束角。这样一来,波束查找表中的波束的数量较少,控制难度较低,功耗和时延较小。
在上述实施例的基础上,当驱动装置40除了用于驱动定向天线30绕第一轴线L1 转动之外,还用于驱动定向天线30绕第二轴线L2转动时,波束查找表中的多个波束组成沿第一轴线L1的周向排列的多个波束子集,波束子集包括沿第二轴线L2的周向排列的多个波束,第一波束a为该多个波束中的一个。
由于第二轴线L2与定向天线30的波束指向垂直,且定向天线30在绕第一轴线L1转动时,定向天线30的波束指向改变,因此第二轴线L2的延伸方向也随着定向天线30的波束指向的改变而改变。这样,不同波束子集中的多个波束围沿不同延伸方向的第二轴线的周向排列。
举例说明,请参阅图14,图14为本申请又一些实施例提供的波束查找表的结构示意图,波束查找表包括沿第一轴线L1的周向排列的多个波束子集,该多个波束子集包括波束子集C1和波束子集C2,波束子集C1和波束子集C2均包括指向与第一轴线L1垂直的第一波束a,在通过驱动装置40驱动定向天线30转动,以使定向天线30的波束指向分别与波束子集C1中的第一波束a和波束子集C2中的第一波束a重合时,第二轴线L2分别为轴线L21和轴线L22,轴线L21和轴线L22的延伸方向不同。在此基础上,波束子集C1中的多个波束围绕轴线L21的周向排列,波束子集C2中的多个波束沿轴线L22的周向排列,也即是,波束子集C1中的多个波束和波束子集C2中的多个波束分别沿不同延伸方向的第二轴线的周向排列。
这样一来,波束查找表中的多个波束分布于XYZ三维空间范围内,当定向天线30转动至波束指向与该XYZ三维空间范围内的多个波束的指向重合时,可以覆盖XYZ三维空间范围内的目标设备,无线路由器可以适用于别墅、复式楼等房屋结构。
在上述实施例的基础上,为了使定向天线30能够覆盖XYZ三维空间范围内不同位置的目标设备,在一些实施例中,请继续参阅图14,沿第二轴线L2的周向w2,波束子集内相邻两个波束之间的夹角β大于或者等于驱动装置40绕第二轴线L2驱动的步进精度角,且小于或者等于定向天线30的第二波束角。
其中,波束子集内相邻两个波束之间的夹角β是指两个波束的最大增益方向(也即是波束指向)之间夹角。
另外,驱动装置40绕第二轴线L2驱动的步进精度角是指驱动装置40绕第二轴线L2驱动的最小角度,该步进精度角大于0°。
再者,第二波束角是指当定向天线30的波束指向与第一轴线L1垂直时,在与第二轴线L2垂直的平面(比如XZ平面)内,位于最大辐射方向的两侧,辐射功率下降第二预设阈值的两个方向之间的夹角。其中,第二预设阈值可以为2dB、3dB、4dB、5dB等等,该第二预设阈值可以与上述第一预设阈值相等,也可以与上述第一预设阈值不等,在此不做具体限定,该第二预设阈值具体可以根据实际需要进行选择。示例的,请参阅图15,图15为本申请一些实施例提供的无线路由器100中定向天线30的第二波束角的示意图,该定向天线30的第二波束角是指在XZ平面内,位于最大辐射方向D4的两侧,辐射功率下降第二预设阈值(比如为3dB)的两个方向D5和D6之间的夹角γ。
这样一来,波束查找表在XYZ三维空间范围内具有完备性,定向天线30的波束指向可以调节至XYZ三维空间范围内的多个位置,以使定向天线30能够覆盖XYZ三维空间范围内任意位置的目标设备。
在一些实施例中,沿第二轴线L2的周向w2,波束子集中相邻两个波束之间的夹角β等于定向天线30的第二波束角。这样一来,波束查找表中的波束的数量较少,控制难度较低,功耗和时延较小。
需要说明的是,波束查找表中波束集合的结构形式除了可以为图12和图14所示结构形式之外,还可以为其他结构形式。比如由图12中位于第一轴线L1的周向180°范围内的波束组成。又比如由图14中位于第一轴线L1的周向180°以及位于第二轴线L2的周向的90°范围内的波束组成,本申请实施例对此不做具体限定。
根据以上各实施例的描述,波束查找表包括多个波束,为了在该多个波束中确定目标波束,可以采用下面两种实施例实施,该两种实施例包括下述实施例一和实施例二。
实施例一:请参阅图16,图16为本申请又一些实施例提供的无线路由器100的结构示意图。在本实施例中,无线路由器100还包括控制器50和检测系统60。
控制器50可以包括处理器或必要的逻辑电路。该处理器可以是基带处理器、数字信号处理器、微处理器或中央处理单元等。控制器50与驱动装置40电连接,控制器50用于控制驱动装置40驱动定向天线30依次转动至多个方位,以使定向天线30的波束指向分别与波束查找表中的多个波束的指向重合。其中,该多个波束可以为波束查找表中的全部波束,也可以为波束查找表中的部分波束,在此不做具体限定。
检测系统60用于在定向天线30的波束指向分别与波束查找表中的多个波束的指向重合时,检测定向天线30接收到的来自目标设备的信号质量。该信号质量可以由接收信号强度(received signal strength indication,RSSI)、错误率(PER)、吞吐率、信道状态信息(channel status information,CSI)等指标中的至少一个进行评价。当信号质量由这些指标中的多个综合评价时,可以将该多个指标进行加权得到一个综合指标进行评价,也可以分别进行评价,在此不做具体限定。
控制器50与检测系统60电连接,控制器50还用于根据检测系统60检测得到的多个信号质量,确定波束查找表中的目标波束。可选的,控制器50确定信号质量最优时,波束查找表中与定向天线30的波束指向重合的波束为目标波束。
此无线路由器的结构简单,无需专门的定位装置,因此成本较低。
在上述实施例的基础上,控制器50还用于控制驱动装置40驱动定向天线30转动,以使定向天线30的波束指向分别与波束查找表中目标波束的指向重合。由此实现自动化控制,简化控制难度,保证驱动精度。
实施例二:请参阅图17,图17为本申请又一些实施例提供的无线路由器100的结构示意图。在本实施例中,还包括定位装置70和控制器50。
定位装置70包括但不限于无载波通信(ultra wideband,UWB)天线。定位装置70用于获取目标设备的位置信息。控制器50与定位装置70电连接,控制器50用于根据定位装置70获取的位置信息,确定波束查找表中的目标波束。可选的,控制器50确定波束查找表中波束指向与目标位置相对于无线路由器的位置方向之间的夹角最小的波束为目标波束。此无线路由器无需轮寻查找目标波束,因此响应速度较快,延迟时间较短。
在上述实施例的基础上,控制器50还用于控制驱动装置40驱动定向天线30转动, 以使定向天线30的波束指向与波束查找表中目标波束的指向重合。由此实现自动化控制,简化控制难度,保证驱动精度。
以上各实施例介绍了全向天线20的数量和定向天线30的数量均为一个的情况。当然,全向天线20的数量和定向天线30的数量也可以为多个,或者全向天线20的数量为一个,定向天线30的数量为多个,或者全向天线20的数量为多个,定向天线30的数量为一个。也即是,全向天线20的数量为至少一个,定向天线30的数量为至少一个。
当全向天线20的数量为多个时,借助该多个全向天线20可以支持多个不同信道信号的收发,由此进一步提高无线路由器100的应用广泛性。
当定向天线30的数量为多个时,借助该多个定向天线30,可以实现多用户下行并发。
通过不同数量的全向天线20与不同数量的定向天线30组合,可以得到不同规格的无线路由器100。无线路由器100的规格可以为MIMO2X2、MIMO3X3和MIMO4X4。当无线路由器100的规格为MIMO2X2时,全向天线20的数量与定向天线30的数量之和为2个,具体的,全向天线20的数量为1个,定向天线30的数量也为1个。当无线路由器100的规格为MIMO3X3时,上全向天线20的数量与定向天线30的数量之和为3个,具体的,全向天线20的数量为1个,至定向天线30的数量为2个;或者,全向天线20的数量为2个,定向天线30的数量为1个。当无线路由器100的规格为MIMO4X4时,全向天线20的数量与定向天线30的数量之和为4个,具体的,全向天线20的数量为1个,定向天线30的数量为3个;或者,全向天线20的数量为2个,定向天线30的数量为2个;或者,全向天线20的数量为3个,定向天线30的数量为1个。具体的,无线路由器100的规格、以及不同规格下全向天线20的数量和定向天线30的数量记录在表1中。
表1
Figure PCTCN2023070198-appb-000001
需要说明的是,表1仅给出了无线路由器100分别为MIMO 2x2、MIMO 3x3、MIMO 4x4三种规格的示例。当然,无线路由器100的规格还可以为MIMO 5x5、MIMO 6x6等等,也即是,无线路由器100中,全向天线20的数量与定向天线30的数量之和为5个或者6个等等。
为了向全向天线和定向天线输出射频信号或者接收来自全向天线和定向天线的射频信号,请参阅图18,图18为本申请一些实施例提供的无线路由器100的内部电路 图。无线路由器100还包括射频收发系统80,射频收发系统80用于实现上述至少一个全向天线20以及上述至少一个定向天线30的信号收发。具体的,射频收发系统80具有多个信号输出端80a,该多个信号输出端80a分别与上述至少一个全向天线20以及至少一个定向天线30电连接。射频收发系统80用于生成射频信号,并借助多个信号输出端80a,将生成的射频信号输出至该至少一个全向天线20以及至少一个定向天线30,以实现信号的发射。同时,射频收发系统80还可以借助该多个信号输出端80a,接收该至少一个全向天线20以及该至少一个定向天线30接收的信号,以实现信号的接收。
射频收发系统80的结构形式有多种,在一些实施例中,请参阅图19,图19为图18所示无线路由器100内射频收发系统80的结构示意图。射频收发系统80包括多条射频收发链路(也称为射频收发器或者TRx)81。多条射频收发链路81的数量与上述多个信号输出端80a的数量相同,每条射频收发链路81均具有一个信号输出端80a。
在一些实施例中,请继续参阅图19,射频收发链路81可以包括双工器811、发射通路812和接收通路813。具体来说,双工器811用于将发射通路812以及接收通路813连接至信号输出端80a。射频收发链路81后端可以连接用于生成发送信号或处理接收信号的处理电路82。该处理电路82可以包括处理器或必要的逻辑电路,用于进行基带信号处理或数字信号处理。处理器可以是基带处理器、数字信号处理器、微处理器或中央处理单元等。处理电路82可以包括在射频收发链路81内,也可以独立于射频收发链路81之外。
双工器811可以是频分双工器或时分双工器,用于将发送信号从发射通路812耦合至信号输出端80a,将接收信号从信号输出端80a耦合至接收通路813。具体的,双工器811可以是以下一种或多种的组合:单刀多掷开关、环形器以及滤波器。
发射通路812用于从后端的处理电路82接收发送信号、处理该发送信号并将该发送信号通过双工器811传输至信号输出端80a。具体的,发射通路812可以包括功率放大器和/或上混频器。其中,功率放大器用于功率放大发射通路812中传输的发送信号。上混频器也叫调制器,用于将发射通路812中传输的发送信号的频率从第一频率转换为第二频率。第一频率小于第二频率。典型的,上混频器用于将基带信号或中频信号调制为射频信号。若发射通路812包括功率放大器和上混频器,则混频器的输入端可以与处理电路82连接,混频器的输出端与功率放大器的输入端连接,功率放大器的输出端连接至双工器811的一端。可替换地,功率放大器和上混频器的位置可以互换。
接收通路813用于处理并传输信号输出端80a接收的接收信号至后端的处理电路82。接收通路813可以包括低噪声放大器(low noise amplifier,LNA)和下混频器。其中,LNA能够将信号输出端80a接收到的微弱信号进行放大,并且在放大信号的过程中降低噪声干扰。也叫解调器,用于将接收通路813中传输的接收信号的频率从第三频率转换为第四频率,第三频率大于第四频率。典型的,下混频器则用于将射频信号解调为基带信号或中频信号。在接收通路813中,下混频器和LNA的位置也是可以互换的。
射频收发系统80的信号输出端80a的数量可以与全向天线20的数量和定向天线 30的数量之和相等。示例的,请参阅图18和图19,全向天线20的数量为2个,定向天线30的数量也为2个,则全向天线20的数量和定向天线30的数量之和为4个,射频收发系统80的信号输出端80a的数量也为4个。在此基础上,射频收发系统80中,部分信号输出端80a与全向天线20一一对应电连接,另外部分信号输出端80a与定向天线30一一对应电连接。示例的,请继续参阅图18和图19,射频收发系统80的4个信号输出端80a中,2个信号输出端80a分别与2个全向天线20电连接,另外2个信号输出端80a分别与2个定向天线30电连接。这样一来,可以同时实现无线路由器中全向天线20和定向天线30的信号收发。
在其他一些实施例中,在射频收发系统80的信号输出端80a的数量不变的前提下,可以增加全向天线20和/或定向天线30的数量,以使得全向天线20的数量和定向天线30的数量之和大于射频收发系统80的信号输出端80a的数量。在此基础上,请参阅图20,图20为本申请又一些实施例提供的无线路由器100的内部电路图。射频收发系统80的信号输出端80a与全向天线20、定向天线30之间还设有切换开关90,该切换开关90用于选择射频收发系统80的多个信号输出端80a分别与全向天线20和定向天线30中的任意多个天线电连接,以使无线路由器在多种使用场景之间进行切换。
举例说明,在射频收发系统80的信号输出端80a的数量不变的前提下,仅增加全向天线20的数量,以使得全向天线20的数量与射频收发系统80的信号输出端80a的数量相等,全向天线20的数量和定向天线30的数量之和大于射频收发系统80的信号输出端80a的数量。具体的,MIMO2X2、MIMO3X3和MIMO4X4规格的无线路由器100中全向天线20的数量和定向天线30的数量记载在下表2中。
表2
Figure PCTCN2023070198-appb-000002
MIMO 2x2规格无线路由器中,射频收发系统80的信号输出端80a的数量为2个,该2个信号输出端80a可以借助切换开关90选择与2个全向天线20电连接,此时能够满足普通设备两信道信号的同时收发。2个信号输出端80a也可以借助切换开关90选择与1个全向天线20和1个定向天线30电连接,此时在满足普通设备接入的前提下,使得无线路由器100能够服务中远距离设备和高速设备。这样一来,无线路由器具备两种使用场景,借助切换开关90可以在该两种使用场景之间进行切换。
MIMO 3x3规格无线路由器中,射频收发系统80的信号输出端80a的数量为3个,该3个信号输出端80a可以借助切换开关90选择与3个全向天线20电连接,此时能够满足普通设备三信道信号的同时收发。3个信号输出端80a也可以借助切换开关90 选择与1个全向天线20和2个定向天线30电连接,此时在满足普通设备接入的前提下,使得无线路由器100能够同时服务2个中远距离设备或者高速设备。3个信号输出端80a也可以借助切换开关90选择与2个全向天线20和1个定向天线30电连接,此时在满足普通设备两信道信号同时收发的前提下,使得无线路由器100能够服务1个中远距离设备或者高速设备。这样一来,无线路由器具备三种使用场景,借助切换开关90可以在该三种使用场景之间进行切换。
MIMO 4x4规格无线路由器中,射频收发系统80的信号输出端80a的数量为4个,该4个信号输出端80a可以借助切换开关90选择与4个全向天线20电连接,此时能够满足普通设备四信道信号的同时收发。4个信号输出端80a也可以借助切换开关90选择与1个全向天线20和3个定向天线30电连接,此时在满足普通设备接入的前提下,使得无线路由器100能够同时服务3个中远距离设备或者高速设备。4个信号输出端80a也可以借助切换开关90选择与2个全向天线20和2个定向天线30电连接,此时在满足普通设备两信道信号同时收发的前提下,使得无线路由器100能够服务2个中远距离设备或者高速设备。4个信号输出端80a也可以借助切换开关90选择与3个全向天线20和1个定向天线30电连接,此时在满足普通设备三信道信号同时收发的前提下,使得无线路由器100能够服务1个中远距离设备或者高速设备。这样一来,无线路由器具备四种使用场景,借助切换开关90可以在该四种使用场景之间进行切换。
以上各实施例介绍了无线路由器100的结构,本申请实施例提供的无线路由器100在借助全向天线20满足普通用户接入的基础上,还借助波束指向可调的定向天线30满足中远距离设备以及高速设备的接入,由此提高了无线路由器100的应用广泛性。
本申请还提供了一种无线路由器的控制方法,该控制方法适用于上述无线路由器100,无线路由器100包括全向天线20、定向天线30和驱动装置40,驱动装置40与定向天线30连接。请参阅图21,图21为本申请一些实施例提供的无线路由器的控制方法的流程图,该控制方法包括下面步骤S100~S200。
步骤S100:获取全向天线20接收到的来自第一目标设备的信号质量,以得到第一信号质量Q1。
其中,第一目标设备为无线路由器的覆盖范围内的一个电子设备,该电子设备包括但不限于个人电脑、无线路由器、便携式电脑设备、移动终端设备(如PDA、掌上电脑设备、手机或智能手机等)、智能穿戴设备或者智能家居设备(如智能电视、智能冰箱、空调、洗衣机、空气净化器)等等。其中,智能穿戴设备包括但不限于手环、手表、AR眼镜、AR头盔、VR眼镜或者VR头盔等。
另外,第一信号质量Q1可以由RSSI、PER、吞吐率、CSI等指标中的至少一个进行评价。当第一信号质量Q1由这些指标中的多个综合评价时,可以将该多个指标进行加权得到一个综合指标进行评价,也可以分别进行评价,在此不做具体限定。
S200:当第一信号质量Q1小于第三预设阈值时,通过驱动装置40驱动定向天线30转动,以使定向天线30的波束指向与波束查找表中的目标波束的指向重合,该目标波束能够覆盖第一目标设备。由此切换定向天线30的波束指向,以使定向天线30能够覆盖到第一目标设备。
其中,驱动装置40用于驱动定向天线30转动,以调节定向天线30的波束指向, 使得定向天线30能够服务不同位置的目标设备。
这样一来,在借助全向天线满足普通设备接入的基础上,借助增益较高且波束指向可调的定向天线,可以满足中远距离弱场设备以及高速设备的接入,由此能够提升无线路由器的应用广泛性。在此基础上,在借助驱动装置驱动定向天线转动的过程中,只需使定向天线的波束指向与波束查找表内有限数量的多个波束中目标波束的指向重合,即可将定向天线调节至覆盖目标设备的位置,无需遍历定向天线在驱动装置的驱动下能够转动到的所有方位,因此控制难度较低,功耗和时延较小。
在一些实施例中,驱动装置40用于驱动定向天线30绕第一轴线L1转动。可选的,第一轴线与全向天线20的中心轴O平行。由于全向天线20的中心轴O通常沿着无线路由器的高度方向(也即是Z轴方向)延伸,因此第一轴线L1也沿着无线路由器的高度方向延伸。这样一来,驱动装置40能够在水平面(也即是XY平面)内调节定向天线30的波束指向,以使定向天线30能够服务水平面内的不同位置的目标设备,因此该无线路由器能够适用于大平层家庭房屋结构。
在上述实施例的基础上,可选的,驱动装置40还用于驱动定向天线30绕第二轴线L2转动,第二轴线L2与第一轴线L1垂直,且第二轴线L2还与定向天线30的波束指向垂直。由于定向天线30在绕第一轴线L1转动时,定向天线30的波束指向改变,因此第二轴线L2的延伸方向也随着定向天线30的波束指向的改变而改变。这样一来,驱动装置40能够在三维空间范围内调节定向天线30的波束指向,以使定向天线30能够服务三维空间范围内的不同位置的目标设备,因此无线路由器能够适用于别墅、复式楼等房屋结构。
驱动装置40的结构形式有多种。具体的,驱动装置40可以包括上述旋转电机、以及旋转电机与齿轮传动装置、皮带传动装置、气动传动装置、液动传动装置等传动装置的组合,本申请对此不做具体限定。
波束查找表包括定向天线30在驱动装置40的驱动下转动至多个不同方位时的波束组成的集合。也就是说,波束查找表包括多个波束组成的集合,该多个波束分别为定向天线30在驱动装置40的驱动下转动至多个不同方位时的波束。
当驱动装置40用于驱动定向天线30绕第一轴线L1转动时,波束查找表中多个波束组成沿第一轴线L1的周向排列的多个波束子集,每个波束子集至少包括指向与第一轴线L1垂直的第一波束a。该多个波束子集的第一波束a分别为定向天线30在驱动装置40的驱动下绕第一轴线L1转动至多个不同方位时的波束。这样一来,当定向天线30转动至波束指向与该多个第一波束a的指向重合时,可以覆盖XY平面内的目标设备,无线路由器可以适用于大平层房屋结构。
为了保证波束查找表在XY平面内具有完备性,在一些实施例中,沿第一轴线L1的周向w1,相邻两个波束子集中的第一波束a之间的夹角α大于或者等于驱动装置40绕第一轴线L1驱动的步进精度角,且小于或者等于定向天线30的第一波束角。其中,相邻两个波束子集中的第一波束a之间的夹角α是指两个第一波束a的最大增益方向(也即是波束指向)之间夹角。另外,驱动装置40绕第一轴线L1驱动的步进精度角是指驱动装置40绕第一轴线L1驱动的最小角度,该步进精度角大于0°。再者,第一波束角是指当定向天线30的波束指向与第一轴线L1垂直时,在与第一轴线L1垂直 的平面(也即是XY平面)内,位于最大辐射方向的两侧,辐射功率下降第一预设阈值的两个方向之间的夹角。其中,第一预设阈值可以为2dB、3dB、4dB、5dB等等,在此不做具体限定,该第一预设阈值具体可以根据实际需要进行选择。这样一来,波束查找表在沿第一轴线L1周向的360°范围内具有完备性,定向天线30的波束指向可以调节至第一轴线L1周向360°范围内的多个位置,以使定向天线30能够覆盖XY平面内任意位置的目标设备。
在一些实施例中,沿第一轴线L1的周向w1,相邻两个波束子集中的第一波束a之间的夹角α等于定向天线30的第一波束角。这样一来,波束查找表中的波束的数量较少,控制难度较低,功耗和时延较小。
当驱动装置40除了用于驱动定向天线30绕第一轴线L1转动之外,还用于驱动定向天线30绕第二轴线L2转动时,波束查找表中的多个波束组成沿第一轴线L1的周向排列的多个波束子集,波束子集包括沿第二轴线L2的周向排列的多个波束,第一波束a为该多个波束中的一个。由于第二轴线L2与定向天线30的波束指向垂直,且定向天线30在绕第一轴线L1转动时,定向天线30的波束指向改变,因此第二轴线L2的延伸方向也随着定向天线30的波束指向的改变而改变。这样,不同波束子集中的多个波束围沿不同延伸方向的第二轴线的周向排列。这样一来,波束查找表中的多个波束分布于XYZ三维空间范围内,当定向天线30转动至波束指向与该XYZ三维空间范围内的多个波束的指向重合时,可以覆盖XYZ三维空间范围内的目标设备,无线路由器可以适用于别墅、复式楼等房屋结构。
为了保证波束查找表在XYZ三维空间范围内内具有完备性,在一些实施例中,沿第一轴线L1的周向w1,相邻两个波束子集中的第一波束a之间的夹角α大于或者等于驱动装置40绕第一轴线L1驱动的步进精度角,且小于或者等于定向天线30的第一波束角。在此基础上,沿第二轴线L2的周向w2,波束子集内相邻两个波束之间的夹角β大于或者等于驱动装置40绕第二轴线L2驱动的步进精度角,且小于或者等于定向天线30的第二波束角。其中,波束子集内相邻两个波束之间的夹角β是指两个波束的最大增益方向(也即是波束指向)之间夹角。另外,驱动装置40绕第二轴线L2驱动的步进精度角是指驱动装置40绕第二轴线L2驱动的最小角度,该步进精度角大于0°。再者,第二波束角是指当定向天线30的波束指向与第一轴线L1垂直时,在与第二轴线L2垂直的平面(比如XZ平面)内,位于最大辐射方向的两侧,辐射功率下降第二预设阈值的两个方向之间的夹角。其中,第二预设阈值可以为2dB、3dB、4dB、5dB等等,该第二预设阈值可以与上述第一预设阈值相等,也可以与上述第一预设阈值不等,在此不做具体限定,该第二预设阈值具体可以根据实际需要进行选择。这样一来,波束查找表在XYZ三维空间范围内具有完备性,定向天线30的波束指向可以调节至XYZ三维空间范围内的多个位置,以使定向天线30能够覆盖XYZ三维空间范围内任意位置的目标设备。
在一些实施例中,沿第一轴线L1的周向w1,相邻两个波束子集中的第一波束a之间的夹角α等于定向天线30的第一波束角。同时沿第二轴线L2的周向w2,波束子集中相邻两个波束之间的夹角β等于定向天线30的第二波束角。这样一来,波束查找表中的波束的数量较少,控制难度较低,功耗和时延较小。
在一些实施例中,请参阅图22,图22为本申请又一些实施例提供的无线路由器的控制方法的流程图,在步骤S100之后,控制方法还包括:
步骤S801:判断第一信号质量是否大于或者等于第三预设阈值。
步骤S802:当第一信号质量大于或者等于第三预设阈值时,由全向天线20覆盖第一目标设备进行工作。当第一信号质量大于或者等于第三预设阈值时,在采用全向天线覆盖第一目标设备的同时,还可以采用定向天线覆盖该第一目标设备,也可以停止使用定向天线,或者将定向天线用来覆盖其他目标设备。由此,能够实现资源的合理配置。在一些实施例中,步骤S802包括:向全向天线20的射频收发链路下发参数,该参数包括但不限于发射功率和协议软件参数等;进入标准工作状态。全向天线20覆盖第一目标设备第一预设时间T1之后,可以返回步骤S100,以进入下一次循环。其中,第一预设时间T3可以指步骤S802中标准工作状态的持续时间。第一预设时间T1包括但不限于0.1秒(s)、0.2s、0.3s等等,在此不做具体限定。
在一些实施例中,请参阅图23,图23为本申请又一些实施例提供的无线路由器的控制方法的流程图,控制方法还包括:
步骤S300:获取定向天线30接收到的来自第一目标设备的信号质量,以得到第二信号质量Q2。在此基础上,步骤S200包括:当第一信号质量Q1小于第三预设阈值,且第二信号质量Q2小于第四预设阈值时,通过驱动装置40驱动定向天线30转动,以使定向天线30的波束指向与波束查找表中的目标波束的指向重合。这样一来,在全向天线20以及当前波束指向下的定向天线30均无法覆盖第一目标设备之后,再切换定向天线30的波束指向,能够快速覆盖第一目标设备,降低大部分使用场景下的时延和功耗。
在上述实施例中,第二信号质量Q2也可以由RSSI、PER、吞吐率、CSI等指标中的至少一个进行评价。当第二信号质量Q2由这些指标中的多个综合评价时,可以将该多个指标进行加权得到一个综合指标进行评价,也可以分别进行评价,在此不做具体限定。第二信号质量Q2的评价指标可以与第一信号质量Q1的评价指标相同,也可以与第一信号质量Q1的评价指标不同。举例说明,当第一信号质量Q1通过RSSI、PER、吞吐率、CSI四个指标加权后的综合指标进行综合评价时,第二信号质量Q2也通过RSSI、PER、吞吐率、CSI四个指标加权后的综合指标进行综合评价,且各指标的加权值相同,这样第一信号质量Q1与第二信号质量Q2的评价指标相同,若上述加权值不同,则第一信号质量Q1与第二信号质量Q2的评价指标不同。
在图23所示的控制方法中,步骤S300可以与步骤S100同时操作,也可以在步骤S100之后操作,还可以在步骤S100之前操作,在此不做具体限定。在一些实施例中,步骤S300位于步骤S100之后,具体的,步骤S300包括:当第一信号质量小于第三预设阈值时,获取定向天线接收到的来自第一目标设备的信号质量。这样一来,优先考虑采用全向天线覆盖第一目标设备,在全向天线无法覆盖第一目标设备时,再采用定向天线覆盖第一目标设备,能够降低大部分使用场景下的时延和功耗。
在一些实施例中,在步骤S300之后,请继续参阅图23,控制方法还包括下面的步骤S901和步骤S902。
步骤S901:判断第二信号质量是否大于或者等于第四预设阈值。
步骤S902:当第二信号质量大于或者等于第四预设阈值时,由处于当前波束指向的定向天线覆盖第一目标设备。这样一来,借助当前波束指向的定向天线实现第一目标设备的覆盖,在实现第一目标设备的覆盖的同时,无需旋转定向天线,因此时延和功耗较低。在一些实施例中,步骤S902包括:向定向天线30的射频收发链路下发参数,该参数包括但不限于发射功率和协议软件参数等;进入标准工作状态。定向天线30覆盖第一目标设备第二预设时间T2之后,可以返回步骤S100,以进入下一次循环。其中,第二预设时间T2可以指步骤S902中标准工作状态的持续时间。第二预设时间T2包括但不限于0.1s、0.2s、0.3s等等,在此不做具体限定。且第二预设时间T2与第一预设时间T1可以相等,也可以不等,在此不做具体限定。在此基础上,请继续参阅图23,步骤S200位于步骤S901之后。
在一些实施例中,请继续参阅图23,在上述步骤S200之后,还包括步骤S1000。步骤S1000:由切换波束指向后的定向天线30覆盖第一目标设备进行工作。具体的,步骤S1000可以包括:向定向天线30的射频收发链路下发参数,该参数包括但不限于发射功率和协议软件参数等;进入标准工作状态。其中,向定向天线30的射频收发链路下发参数的步骤除了在切换波束指向之后执行之外,还可以在切换波束指向之前执行,或者与切换波束指向同时执行,在此不做具体限定。定向天线30覆盖第一目标设备第三预设时间T3之后,可以返回步骤S100,以进入下一次循环。其中,第三预设时间T3可以指步骤S1000中标准工作状态的持续时间。第三预设时间T3包括但不限于0.1s、0.2s、0.3s等等,在此不做具体限定。且第三预设时间T3与第一预设时间T1、第二预设时间T2可以相等,也可以不等,在此不做具体限定。请参阅图24,图24为本申请又一些实施例提供的无线路由器的控制方法的流程图。本实施例中,步骤S200之后,控制方法还包括步骤S1000,步骤S1000:由切换波束指向后的定向天线覆盖第一目标设备进行工作。
在一些实施例中,请继续参阅图24,上述步骤S300在步骤S1000操作预设时间T4之后执行。预设时间T4包括但不限于0.1s、0.2s、0.3s,在此不做具体限定。在此基础上,在步骤S300之后,控制方法还包括步骤S903和步骤S904。步骤S903:判断第二信号质量是否大于或者等于第五预设阈值;步骤S903:当第二信号质量大于或者等于第五预设阈值时,重新进入步骤S100。这样一来,当信号质量变好时,可以重新确定全向天线20是否能够覆盖第一目标设备,以实现资源的合理配置。
在一些实施例中,请继续参阅图24,步骤S903还包括:判断第二信号质量是否小于或者等于第六预设阈值,第六预设阈值小于第五预设阈值。判断第二信号质量是否小于或者等于第六预设阈值的步骤可以在判断第二信号质量是否大于或者等于第五预设阈值的步骤之后,也可以在判断第二信号质量是否大于或者等于第五预设阈值的步骤之前,还可以同时判断,在此不做具体限定。在此基础上,请继续参阅图24,在步骤S903之后,控制方法还包括:当第二信号质量小于或者等于第六预设阈值时,重新进入步骤S100。这样一来,当信号质量变差时,可以重新寻找最优天线进行覆盖。
在一些实施例中,请继续参阅图24,在步骤S903之后,还包括:当第二信号质量小于第五预设阈值,且第二信号质量大于第六预设阈值时,保持步骤S1000继续工作。
在一些实施例中,请继续参阅图23或图24,当第一信号质量Q1小于第三预设阈值,且第二信号质量Q2小于第四预设阈值时,在通过驱动装置40驱动定向天线30转动,以使定向天线30的波束指向与波束查找表中的目标波束的指向重合之前,控制方法还包括下面步骤S400。
步骤S400:在波束查找表中,确定目标波束。该步骤S400在步骤S100和步骤S200之后。
在一些实施例中,请参阅图25,图25为图23或图24所示控制方法中一种确定目标波束的方法流程图。在本实施例中,步骤S400包括下面的步骤S410和步骤S420。
步骤S410:通过驱动装置40驱动定向天线30依次转动至多个方位,以使定向天线30的波束指向分别与波束查找表中的多个波束的指向重合,并在该定向天线30的波束指向与波束查找表中的多个波束的指向重合时,检测定向天线30接收到的来自第一目标设备的信号质量,以得到多个信号质量。其中,波束查找表中的多个波束可以为波束查找表中的全部波束,也可以为波束查找表中的部分波束,在此不做具体限定。
步骤S420:根据多个信号质量,在波束查找表中确定目标波束。
这样一来,采用轮寻查找方式在波束查找表中确定目标波束,此方法简单,容易实现。
当驱动装置40用于驱动定向天线30绕第一轴线L1转动时,波束查找表中多个波束组成多个波束子集,该多个波束子集沿第一轴线L1的周向排列,波束子集至少包括指向与第一轴线L1垂直的第一波束a。在此基础上,请参阅图26,图26为图25所示确定目标波束的方法中步骤S410的一种方法流程图。步骤S410包括下面的步骤S411和步骤S412。
步骤S411:通过驱动装置40驱动定向天线30绕第一轴线L1转动,以使定向天线30的波束指向分别与多个波束子集中的第一波束a的指向重合,并在定向天线30的波束指向分别与多个波束子集中第一波束a的指向重合时,检测定向天线30接收到的来自第一目标设备的信号质量,以得到多个第三信号质量。其中,由于每个波束子集均包括第一波束a,因此,多个波束子集中的第一波束a是指多个第一波束a,该多个第一波束a分别属于该多个波束子集。
步骤S412:根据多个第三信号质量,确定目标波束子集,目标波束属于该目标波束子集。
在一些实施例中,步骤S412可以包括:根据多个第三信号质量,确定最优第三信号质量;根据最优第三信号质量,确定该最优第三信号质量对应的第一波束a所处的波束子集为目标波束子集。需要说明的是,最优第三信号质量对应的第一波束a是指当检测的第三信号质量为最优第三信号质量时,与定向天线30的波束指向重合的第一波束a。
这样一来,当定向天线30转动至波束指向与该多个第一波束a的指向重合时,可以覆盖XY平面内的目标设备,无线路由器可以适用于大平层房屋结构。
在上述实施例的基础上,当驱动装置40还用于驱动定向天线30绕第二轴线L2转动时,波束子集包括沿第二轴线L2的周向排列的多个波束,第一波束a为该多个波束中的一个。基于此,请参阅图27,图27为图25所示确定目标波束的方法中步骤S410 的又一种方法流程图。在步骤S412之后,步骤S410还包括下面的步骤S413。
步骤S413:通过驱动装置40驱动定向天线30绕第二轴线L2转动,以使定向天线30的波束指向分别与目标波束子集中多个波束的指向重合,并在定向天线30的波束指向分别与目标波束子集中多个波束的指向重合时,检测定向天线30接收到的来自第一目标设备的信号质量,以得到多个第四信号质量;
在上述实施例的基础上,请继续参阅图27,上述步骤S420包括下面的步骤S421。
步骤S421:根据多个第四信号质量,在目标波束子集中确定目标波束。
在一些实施例中,步骤S421可以包括:根据多个第四信号质量,确定最优第四信号质量;根据最优第四信号质量,确定该最优第四信号质量对应的波束为目标波束。需要说明的是,最优第四信号质量对应的波束是指当检测的第四信号质量为最优第四信号质量时,目标波束子集中,与定向天线30的波束指向重合的波束。
这样一来,波束查找表中的多个波束分布于XYZ三维空间范围内,通过定向天线30转动至波束指向与该XYZ三维空间范围内的多个波束的指向重合时,可以覆盖XYZ三维空间范围内的目标设备,无线路由器可以适用于别墅、复式楼等房屋结构。
请参阅图28,图28为图23或图24所示控制方法中又一种确定目标波束的方法流程图。在本实施例中,步骤S400包括下面的步骤S430和步骤S440。
步骤S430:获取第一目标设备的位置信息;
步骤S440:根据第一目标设备的位置信息,在波束查找表中确定目标波束。
这样一来,无线路由器无需轮寻查找目标波束,能够快速确定目标波束,响应较快,延迟时间较短。
在一些实施例中,步骤S440可以包括:根据第一目标设备的位置信息,在波束查找表中,确定波束指向与第一目标设备相对于无线路由器的位置方向之间的夹角最小的波束为目标波束。这样,定向天线30对第一目标设备的覆盖效果较优。
以上多个实施例所述的控制方法均是基于覆盖第一目标设备的目的实施,当目标设备的数量为多个时,可以根据目标设备的网络类型、设备类型和设备使用信息(包括但不限于使用时间和使用概率),确定多个目标设备的优先级,无线路由器覆盖优先级最高的目标设备,以提高波束切换的合理性。
具体的,请参阅图29,图29为本申请又一些实施例提供的无线路由器的控制方法流程图。在步骤S100和步骤S200之前,控制方法还包括步骤S600和步骤S700。
步骤S600:根据多个目标设备的设备信息确定该多个目标设备的优先级。其中,目标设备的设备信息包括网络类型、设备类型、无线数据请求特性和设备使用信息中的至少一种,设备使用信息包括使用时间和使用概率中的至少一种。比如物联网(internet of things,iot)设备数据量小,在优先级上的排序可以靠后。又比如学生网课设备在某个时间段需要优先保证网络通畅,在该时间段内的优先级上的排序可以靠前。根据设备的统计规律,无线路由器经过一段时间的自主学习,识别出以下场景:哪些是iot设备,哪些是低延迟大数据量设备(比如高清智慧屏、网课设备、游戏设备),哪些是边缘设备,哪些是位置固定设备等。根据设备出现的时间、概率等,了解用户使用习惯,实现多用户的优先级排序策略。
步骤S700:将多个目标设备中优先级最高的目标设备确定为第一目标设备。
在一些实施例中,在步骤S600之前,控制方法还包括:通过定向天线20和/或全向天线30轮寻识别目标设备,以得到多个目标设备。
本申请一些实施例还提供一种计算机存储介质,该计算机存储介质包括但不限于U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。该计算机存储介质包括计算机指令,当该计算机指令在无线路由器100上运行时,使得无线路由器100执行上述任一实施例所述的控制方法。
本申请一些实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述任一实施例所述的控制方法。
其中,本申请实施例提供的计算机存储介质或者计算机程序产品均用于执行如上任一实施例所述的控制方法,因此,其所能达到的有益效果可参考上文所提供的对应的控制方法中的有益效果,此处不再赘述。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (26)

  1. 一种无线路由器,其特征在于,包括全向天线、定向天线和驱动装置;
    所述驱动装置与所述定向天线连接,所述驱动装置用于驱动所述定向天线转动,以使所述定向天线的波束指向与波束查找表中目标波束的指向重合,所述目标波束能够覆盖目标设备;
    其中,所述波束查找表包括所述定向天线在所述驱动装置的驱动下转动至多个不同方位时的波束组成的集合。
  2. 根据权利要求1所述的无线路由器,其特征在于,所述驱动装置用于驱动所述定向天线绕第一轴线转动;
    所述波束查找表中多个波束组成多个波束子集,所述多个波束子集沿所述第一轴线的周向排列,所述波束子集至少包括指向与所述第一轴线垂直的第一波束。
  3. 根据权利要求2所述的无线路由器,其特征在于,沿所述第一轴线的周向,相邻两个波束子集中的第一波束之间的夹角大于或者等于所述驱动装置绕所述第一轴线驱动的步进精度角,小于或者等于所述定向天线的第一波束角;
    其中,所述第一波束角是指当所述定向天线的波束指向与所述第一轴线垂直时,在与所述第一轴线垂直的平面内,位于最大辐射方向的两侧,辐射功率下降第一预设阈值的两个方向之间的夹角。
  4. 根据权利要求2或3所述的无线路由器,其特征在于,所述驱动装置还用于驱动所述定向天线绕第二轴线转动;所述第二轴线与所述第一轴线垂直,且所述第二轴线与所述定向天线的波束指向垂直;
    所述波束子集包括沿所述第二轴线的周向排列的多个波束,所述第一波束为所述多个波束中的一个。
  5. 根据权利要求4所述的无线路由器,其特征在于,沿所述第二轴线的周向,所述波束子集内相邻两个波束之间的夹角大于或者等于所述第二驱动装置绕所述第二轴线驱动的步进精度角,小于或者等于所述定向天线的第二波束角;
    其中,所述第二波束角是指当所述定向天线的波束指向与所述第一轴线垂直时,在与所述第二轴线垂直的平面内,位于最大辐射方向的两侧,辐射功率下降第二预设阈值的两个方向之间的夹角。
  6. 根据权利要求1-5任一项所述的无线路由器,其特征在于,还包括控制器和检测系统;
    所述控制器与所述驱动装置电连接,所述控制器用于控制所述驱动装置驱动所述定向天线依次转动至多个方位,以使所述定向天线的波束指向分别与所述波束查找表中的多个波束的指向重合;
    所述检测系统用于在所述定向天线的波束指向分别与所述波束查找表中的所述多个波束的指向重合时,检测所述定向天线接收到的来自所述目标设备的信号质量;
    所述控制器与所述检测系统电连接,所述控制器还用于根据所述检测系统检测得到的多个信号质量,确定所述波束查找表中的目标波束,并控制所述驱动装置驱动所述定向天线转动,以使所述定向天线的波束指向与波束查找表中目标波束的指向重合。
  7. 根据权利要求1-5任一项所述的无线路由器,其特征在于,还包括定位装置和 控制器;
    所述定位装置用于获取所述目标设备的位置信息;
    所述控制器与所述定位装置电连接,所述控制器用于根据所述定位装置获取的位置信息,确定波束查找表中的目标波束,并控制所述驱动装置驱动所述定向天线转动,以使所述定向天线的波束指向与波束查找表中目标波束的指向重合。
  8. 根据权利要求7所述的无线路由器,其特征在于,所述定位装置为UWB天线。
  9. 根据权利要求1-8任一项所述的无线路由器,其特征在于,还包括射频收发系统,所述射频收发系统具有多个信号输出端;
    所述全向天线的数量为至少一个,所述定向天线的数量为至少一个,所述全向天线的数量和所述定向天线的数量之和大于所述射频收发系统的信号输出端的数量,所述射频收发系统的多个信号输出端与所述全向天线、所述定向天线之间还设有切换开关,所述切换开关用于选择所述射频收发系统的多个信号输出端分别与至少一个所述全向天线和至少一个所述定向天线中的任意多个天线电连接。
  10. 一种无线路由器的控制方法,其特征在于,所述无线路由器包括全向天线、定向天线和驱动装置,所述驱动装置与所述定向天线连接,所述控制方法包括:
    获取所述全向天线接收到的来自第一目标设备的信号质量,以得到第一信号质量;
    当所述第一信号质量小于第三预设阈值时,通过所述驱动装置驱动所述定向天线转动,以使所述定向天线的波束指向与波束查找表中的目标波束的指向重合,所述目标波束能够覆盖第一目标设备;其中,所述波束查找表包括所述定向天线在所述驱动装置的驱动下转动至多个不同方位时的波束组成的集合。
  11. 根据权利要求10所述的控制方法,其特征在于,当所述第一信号质量小于第三预设阈值时,在所述通过所述驱动装置驱动所述定向天线转动,以使所述定向天线的波束指向与波束查找表中的目标波束的指向重合之前,所述控制方法还包括:
    在波束查找表中,确定目标波束。
  12. 根据权利要求11所述的控制方法,其特征在于,所述在波束查找表中,确定目标波束,包括:
    通过所述驱动装置驱动所述定向天线转动至多个方位,以使所述定向天线的波束指向与所述波束查找表中的多个波束的指向重合,并在所述定向天线的波束指向与所述波束查找表中的所述多个波束的指向重合时,检测所述定向天线接收到的来自所述第一目标设备的信号质量,以得到多个信号质量;
    根据所述多个信号质量,在所述波束查找表中确定目标波束。
  13. 根据权利要求12所述的控制方法,其特征在于,所述驱动装置用于驱动所述定向天线绕第一轴线转动;所述波束查找表中多个波束组成多个波束子集,所述多个波束子集沿所述第一轴线的周向排列,所述波束子集至少包括指向与所述第一轴线垂直的第一波束;
    所述通过所述驱动装置驱动所述定向天线转动至多个方位,以使所述定向天线的波束指向与所述波束查找表中的多个波束的指向重合,并在所述定向天线的波束指向与所述波束查找表中的所述多个波束的指向重合时,检测所述定向天线接收到的来自所述第一目标设备的信号质量,以得到多个信号质量,包括:
    通过所述驱动装置驱动所述定向天线绕所述第一轴线转动,以使所述定向天线的波束指向与所述多个波束子集中的第一波束的指向重合,并在所述定向天线的波束指向与所述多个波束子集中第一波束的指向重合时,检测所述定向天线接收到的来自所述第一目标设备的信号质量,以得到多个第三信号质量;
    根据所述多个第三信号质量,确定目标波束子集,所述目标波束属于所述目标波束子集。
  14. 根据权利要求13所述的控制方法,其特征在于,所述驱动装置还用于驱动所述定向天线绕第二轴线转动;所述第二轴线与所述第一轴线垂直,且所述第二轴线与所述定向天线的波束指向垂直;所述波束子集包括沿所述第二轴线的周向排列的多个波束,所述第一波束为所述多个波束中的一个;
    在所述确定目标波束子集之后,所述通过所述驱动装置驱动所述定向天线转动至多个方位,以使所述定向天线的波束指向与所述波束查找表中的多个波束的指向重合,并在所述定向天线的波束指向与所述波束查找表中的所述多个波束的指向重合时,检测所述定向天线接收到的来自所述第一目标设备的信号质量,以得到多个信号质量,还包括:
    通过所述驱动装置驱动所述定向天线绕第二轴线转动,以使所述定向天线的波束指向与所述目标波束子集中多个波束的指向重合,并在所述定向天线的波束指向与所述目标波束子集中多个波束的指向重合时,检测所述定向天线接收到的来自所述第一目标设备的信号质量,以得到多个第四信号质量;
    所述根据所述多个信号质量,在所述波束查找表中确定目标波束,包括:
    根据所述多个第四信号质量,在所述目标波束子集中确定目标波束。
  15. 根据权利要求11所述的控制方法,其特征在于,所述在波束查找表中,确定目标波束,包括:
    获取所述第一目标设备的位置信息;
    根据所述位置信息,在所述波束查找表中确定目标波束。
  16. 根据权利要求10-15任一项所述的控制方法,其特征在于,在得到所述第一信号质量之后,所述控制方法还包括:
    判断所述第一信号质量是否大于或者等于所述第三预设阈值;
    当所述第一信号质量大于或者等于所述第三预设阈值时,由所述全向天线覆盖所述第一目标设备进行工作。
  17. 根据权利要求10-16任一项所述的控制方法,其特征在于,所述控制方法还包括:
    获取所述定向天线接收到的来自所述第一目标设备的信号质量,以得到第二信号质量;
    所述通过所述驱动装置驱动所述定向天线转动,以使所述定向天线的波束指向与波束查找表中的目标波束的指向重合,包括:
    当所述第一信号质量小于第三预设阈值,且所述第二信号质量小于第四预设阈值时,通过所述驱动装置驱动所述定向天线转动,以使所述定向天线的波束指向与波束查找表中的目标波束的指向重合。
  18. 根据权利要求17所述的控制方法,其特征在于,所述获取所述定向天线接收到的来自所述第一目标设备的信号质量包括:
    当所述第一信号质量小于所述第三预设阈值时,获取所述定向天线接收到的来自所述第一目标设备的信号质量。
  19. 根据权利要求17或18所述的控制方法,其特征在于,所述得到所述第二信号质量之后,所述控制方法还包括:
    判断所述第二信号质量是否大于或者等于所述第四预设阈值;
    当所述第二信号质量大于或者等于所述第四预设阈值时,由处于当前波束指向的所述定向天线覆盖所述第一目标设备进行工作。
  20. 根据权利要求10-19任一项所述的控制方法,其特征在于,所述定向天线的波束指向与波束查找表中的目标波束的指向重合之后,所述控制方法还包括:
    由切换波束指向后的定向天线覆盖所述第一目标设备进行工作。
  21. 根据权利要求20所述的控制方法,其特征在于,由切换波束指向后的定向天线覆盖所述第一目标设备进行工作预设时间之后,所述控制方法还包括:
    获取所述定向天线接收到的来自所述第一目标设备的信号质量,以得到第二信号质量;
    判断所述第二信号质量是否大于或者等于第五预设阈值;
    当所述第二信号质量大于或者等于第五预设阈值时,重新获取所述全向天线接收到的来自第一目标设备的信号质量。
  22. 根据权利要求21所述的控制方法,其特征在于,所述得到第二信号质量之后,所述控制方法还包括:
    判断所述第二信号质量是否小于或者等于第六预设阈值,所述第六预设阈值小于所述第五预设阈值;
    当所述第二信号质量小于或者等于所述第六预设阈值时,重新获取所述全向天线接收到的来自第一目标设备的信号质量。
  23. 根据权利要求22所述的控制方法,其特征在于,所述控制方法还包括:
    当所述第二信号质量小于第五预设阈值,且所述第二信号质量大于所述第六预设阈值时,保持由切换波束指向后的定向天线覆盖所述第一目标设备进行工作。
  24. 根据权利要求10-23任一项所述的控制方法,其特征在于,所述控制方法还包括:
    根据多个目标设备的设备信息确定所述多个目标设备的优先级,所述设备信息包括网络类型、设备类型、无线数据请求特性和设备使用信息中的至少一种,所述设备使用信息包括使用时间和使用概率中的至少一种;
    将所述多个目标设备中优先级最高的目标设备确定为所述第一目标设备。
  25. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在无线路由器上运行时,使得所述无线路由器执行如权利要求10-24中任一项所述的控制方法。
  26. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求10-24中任一项所述的控制方法。
PCT/CN2023/070198 2022-02-28 2023-01-03 一种无线路由器及其控制方法 WO2023160255A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23741957.7A EP4376216A1 (en) 2022-02-28 2023-01-03 Wireless router and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210191453.1 2022-02-28
CN202210191453.1A CN116706511A (zh) 2022-02-28 2022-02-28 一种无线路由器及其控制方法

Publications (1)

Publication Number Publication Date
WO2023160255A1 true WO2023160255A1 (zh) 2023-08-31

Family

ID=87764703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070198 WO2023160255A1 (zh) 2022-02-28 2023-01-03 一种无线路由器及其控制方法

Country Status (3)

Country Link
EP (1) EP4376216A1 (zh)
CN (1) CN116706511A (zh)
WO (1) WO2023160255A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482654A2 (en) * 2003-05-30 2004-12-01 Microsoft Corporation Using directional antennas to enhance throughput in wireless networks
CN102428607A (zh) * 2009-05-21 2012-04-25 中兴通讯股份有限公司 通信天线自动定向装置、方法
CN202696915U (zh) * 2012-05-14 2013-01-23 成都飞鱼星科技开发有限公司 一种智能型无线路由器
CN103618676A (zh) * 2013-12-09 2014-03-05 深圳市共进电子股份有限公司 一种无线路由器
CN103746924A (zh) * 2014-01-16 2014-04-23 深圳市共进电子股份有限公司 一种非对称性无线路由器及其控制方法
CN204167483U (zh) * 2014-11-12 2015-02-18 谢诚 一种自由跟踪调节角度的路由器天线
CN104917537A (zh) * 2014-03-15 2015-09-16 临沧师范高等专科学校 一种无线路由器信号发射装置
CN108701897A (zh) * 2016-11-04 2018-10-23 华为技术有限公司 定向天线旋转机构及网关设备
CN109041069A (zh) * 2018-07-02 2018-12-18 四川斐讯信息技术有限公司 一种调节路由器信号覆盖范围的方法及系统
CN111277293A (zh) * 2020-01-21 2020-06-12 Oppo广东移动通信有限公司 客户前置设备、天线控制方法和计算机可读存储介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482654A2 (en) * 2003-05-30 2004-12-01 Microsoft Corporation Using directional antennas to enhance throughput in wireless networks
CN102428607A (zh) * 2009-05-21 2012-04-25 中兴通讯股份有限公司 通信天线自动定向装置、方法
CN202696915U (zh) * 2012-05-14 2013-01-23 成都飞鱼星科技开发有限公司 一种智能型无线路由器
CN103618676A (zh) * 2013-12-09 2014-03-05 深圳市共进电子股份有限公司 一种无线路由器
CN103746924A (zh) * 2014-01-16 2014-04-23 深圳市共进电子股份有限公司 一种非对称性无线路由器及其控制方法
CN104917537A (zh) * 2014-03-15 2015-09-16 临沧师范高等专科学校 一种无线路由器信号发射装置
CN204167483U (zh) * 2014-11-12 2015-02-18 谢诚 一种自由跟踪调节角度的路由器天线
CN108701897A (zh) * 2016-11-04 2018-10-23 华为技术有限公司 定向天线旋转机构及网关设备
CN109041069A (zh) * 2018-07-02 2018-12-18 四川斐讯信息技术有限公司 一种调节路由器信号覆盖范围的方法及系统
CN111277293A (zh) * 2020-01-21 2020-06-12 Oppo广东移动通信有限公司 客户前置设备、天线控制方法和计算机可读存储介质

Also Published As

Publication number Publication date
CN116706511A (zh) 2023-09-05
EP4376216A1 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
US7212499B2 (en) Method and apparatus for antenna steering for WLAN
US7274944B2 (en) Method and apparatus for high throughput multiple radio sectorized wireless cell
EP2945411B1 (en) Millimeter wave phased-array wave beam alignment method and communication device
US8306003B2 (en) Throughput performance in the presence of in-band interference in a CSMA based network
WO2010100956A1 (ja) 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
JP2003244060A (ja) Cdma通信システムにおける基地局のアンテナ装置およびアンテナ装置の使用方法
CA2867303A1 (en) Methods and apparatus for overlapping mimo antenna physical sectors
WO2011090886A2 (en) Directional beam steering system and method to detect location and motion
EP1554900B8 (en) Method and apparatus for antenna steering for wlan
WO2019179305A1 (zh) 信号接收方法及信号接收装置
WO2023098223A1 (zh) 智能反射面相移控制方法、装置及存储介质
CN103716855A (zh) 一种智能电视无线工作站的数据传输方法和装置
WO2022021656A1 (zh) 用于oam-mimo动态信道的功率分配方法
WO2023160255A1 (zh) 一种无线路由器及其控制方法
CN113242056B (zh) 客户前置设备、天线控制方法及计算机可读存储介质
GB2514548A (en) Method of configuring a high-frequency radio module, associated multiband radio communication device and system
JP2020534763A (ja) ビームフォーミングパケットのポストアンブル処理のための異なるセクタのローテーション速度
CN106105359A (zh) 干扰协调方法及基站
CN114598371B (zh) 获取天线组合的方法、电子设备和计算机可读存储介质
JPH11340885A (ja) 移動体無線通信用アンテナ装置及びその切り換え方法
WO2022188169A1 (zh) 无人机的控制方法、通信控制方法、无人机及控制系统
Wang et al. Joint Switched-Beam Training and Rate Adaptation Schemes for MIMO WLANs
CN116859329A (zh) 融合uwb和ble技术的定位装置和定位方法
KR20240082961A (ko) 전자 장치 및 이를 이용한 위치 측정 방법
CN117938746A (zh) 一种网络信号的发送方法、路由器及计算机可读存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023741957

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023741957

Country of ref document: EP

Effective date: 20230727