WO2019179305A1 - 信号接收方法及信号接收装置 - Google Patents

信号接收方法及信号接收装置 Download PDF

Info

Publication number
WO2019179305A1
WO2019179305A1 PCT/CN2019/076843 CN2019076843W WO2019179305A1 WO 2019179305 A1 WO2019179305 A1 WO 2019179305A1 CN 2019076843 W CN2019076843 W CN 2019076843W WO 2019179305 A1 WO2019179305 A1 WO 2019179305A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal
signal strength
antennas
terminal device
Prior art date
Application number
PCT/CN2019/076843
Other languages
English (en)
French (fr)
Inventor
石维洲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019179305A1 publication Critical patent/WO2019179305A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a signal receiving method and a signal receiving apparatus.
  • Beamforming utilizes the interference principle of the waveform, and the signal is weighted to form a narrowband beam. Among them, the peaks of the different antennas overlap with the peaks, and the overlapping positions of the peaks and valleys are weakened. The common peaks of the multiple antennas are superimposed in a direction such that the signal strength is significantly enhanced.
  • the power consumption of the antenna and the RF front-end device accounts for a large proportion of the power consumption of the terminal device, especially when the terminal device functions as the receiving end, the power consumption of the RF front-end device and the antenna.
  • the quantity is directly related.
  • the present application specifically studies how to reduce the power consumption of the radio frequency front end device when the terminal device is used as the receiving end.
  • the embodiment of the present application provides a signal receiving method and a signal receiving device. Under different signal strength information of different scenarios, by setting different antennas, the signal receiving device can optimize the RF front end as much as possible while satisfying certain receiving performance. Power consumption effectively avoids the use of the same antenna to receive signals and increase RF front-end power consumption.
  • an embodiment of the present application provides a signal receiving method, including:
  • the first antenna Acquiring, by the first antenna, signal strength information of a working scene where the signal receiving device is located, the first antenna includes a first number of antennas; determining a second antenna according to the signal strength information; wherein the second antenna is the signal Receiving part or all of the antennas in the device, the second antenna includes a second number of antennas, the first number is different from the second number; configuring a codebook for the phase shifter of the second antenna, The second antenna receives the signal.
  • the second antenna is determined according to different signal strength information of the working scene where the signal receiving device is located, that is, the signal strength information of the working scene where the signal receiving device is located determines the antenna of the signal receiving device.
  • the second antenna configuration implementing the embodiment of the present application, the signal receiving device can switch a different number of antennas according to its own requirements, thereby achieving the purpose of dynamically changing the beam gain and the coverage azimuth, and not only satisfying the transceiver performance of the signal receiving device, Moreover, the RF front-end power consumption of the signal receiving device is optimized as much as possible.
  • the determining, according to the signal strength information, the second antenna comprises: determining a signal gain to be adjusted according to the signal strength information; and according to the signal gain to be adjusted and the first antenna Determining the second antenna.
  • the working scenario is to camp on a serving cell
  • the signal strength information is used to indicate a signal strength provided by the serving cell
  • the determining, according to the signal strength information, is to be adjusted.
  • the signal gain includes: determining, when the signal strength is less than the first threshold, a signal gain to be added as the signal gain to be adjusted, the number of the second antenna being greater than the number of the first antenna; When the intensity is greater than the second threshold, the signal gain to be reduced is determined as the signal gain to be adjusted, and the number of the second antennas is smaller than the number of the first antennas.
  • the signal receiving device After the signal receiving device is in the standby cell, if the signal receiving device is in the standby state, the signal receiving device needs to periodically measure the quality of the serving cell according to the protocol. Therefore, in the embodiment of the present application, the signal receiving device is in operation.
  • the number of working antennas may be dynamically changed according to the quality signal strength information of the serving cell. If the quality of the serving cell is good, a small number of antennas may be used to receive signals, thereby reducing power consumption of the signal receiving device; If the quality is poor, you can use more antennas to receive the signal to get more signal gain.
  • the working scenario is not camped on a serving cell, and the signal strength information is used to indicate a signal strength that is searched by the signal receiving device on a target orientation, according to the signal.
  • Determining the signal gain to be adjusted includes: determining, according to the signal strength, a signal gain to be added as the signal gain to be adjusted, a beam formed by the second antenna pointing to the target orientation, and the second antenna The number is greater than the number of the first antennas.
  • the first antenna when the signal receiving device searches for the serving cell, the first antenna is used for searching, so as to complete the requirement of using a wide beam to complete a round of omnidirectional coverage as soon as possible; and if in a certain orientation (such as the target orientation) If the signal strength is strong, the second antenna is used to further search for the serving cell in the azimuth, which can better satisfy the cell search performance and save power consumption.
  • the working scenario includes: initial searching for the serving cell; or beam tracking loss of the serving cell; or cell handover and not accessing the serving cell.
  • the configuring a codebook for the phase shifter of the second antenna includes: configuring a codebook for a phase shifter of the second antenna according to a direction inclusion relationship, where the direction includes a relationship And including an inclusion relationship of a beam formed by the first antenna and a beam formed by the second antenna on a spatial coverage plane.
  • the embodiment of the present application further provides a signal receiving apparatus, including: an acquiring unit, configured to acquire, by using a first antenna, signal strength information of a working scene where the signal receiving apparatus is located, where the first antenna includes the first a number of antennas; a determining unit, configured to determine a second antenna according to the signal strength information; wherein the second antenna is part or all of the antennas in the signal receiving device, and the second antenna includes a second quantity An antenna, the first quantity being different from the second quantity; a configuration unit configured to configure a codebook for a phase shifter of the second antenna; and a receiving unit configured to receive a signal by the second antenna.
  • a signal receiving apparatus including: an acquiring unit, configured to acquire, by using a first antenna, signal strength information of a working scene where the signal receiving apparatus is located, where the first antenna includes the first a number of antennas; a determining unit, configured to determine a second antenna according to the signal strength information; wherein the second antenna is part or all of the antennas in the signal receiving device
  • the determining unit is specifically configured to determine a signal gain to be adjusted according to the signal strength information, and determine the second antenna according to the signal gain to be adjusted and the first antenna.
  • the working scenario is to camp on a serving cell
  • the signal strength information is used to indicate a signal strength provided by the serving cell
  • the determining unit is specifically configured to be in the signal.
  • the strength is less than the first threshold
  • determining a signal gain to be added as the signal gain to be adjusted the number of the second antenna is greater than the number of the first antenna;
  • the determining unit is specifically configured to be in the signal
  • the intensity is greater than the second threshold
  • the signal gain to be reduced is determined as the signal gain to be adjusted, and the number of the second antennas is smaller than the number of the first antennas.
  • the working scenario is not camped on a serving cell, and the signal strength information is used to indicate a signal strength that is searched by the signal receiving device on a target orientation, where the determining unit is specific. And determining, according to the signal strength, a signal gain to be added as the signal gain to be adjusted, a beam formed by the second antenna is directed to the target orientation, and a quantity of the second antenna is greater than that of the first antenna Quantity.
  • the working scenario includes: initial searching for the serving cell; or beam tracking loss of the serving cell; or cell handover and not accessing the serving cell.
  • the configuration unit is specifically configured to configure a codebook for the phase shifter of the second antenna according to a direction inclusion relationship, where the direction inclusion relationship includes the first antenna formed The inclusion relationship of the beam and the beam formed by the second antenna on the spatial coverage surface.
  • the embodiment of the present application further provides a signal receiving apparatus, including a processor, a memory, and a transceiver; wherein the processor, the memory, and the transceiver are interconnected by a line, where the transceiver A first antenna and a second antenna are included, wherein the first antenna includes a first number of antennas, the second antenna includes a second number of antennas, and the first number is different from the second number; Storing a program instruction in the memory; when the program instruction is executed by the processor, causing the processor to perform: acquiring, by the first antenna, signal strength information of a working scene where the signal receiving device is located; according to the signal strength The information determines a second antenna; a codebook is configured for the phase shifter of the second antenna; and the transceiver is configured to receive a signal through the second antenna.
  • a signal receiving apparatus including a processor, a memory, and a transceiver; wherein the processor, the memory, and the transceiver are interconnected by a line, where the
  • the processor is specifically configured to determine a signal gain to be adjusted according to the signal strength information, and determine the second antenna according to the signal gain to be adjusted and the first antenna. .
  • the working scenario is to camp on a serving cell
  • the signal strength information is used to indicate a signal strength provided by the serving cell
  • the processor is specifically configured to be in the signal.
  • the strength is less than the first threshold
  • determining a signal gain to be added as the signal gain to be adjusted the number of the second antenna is greater than the number of the first antenna; and when the signal strength is greater than the second threshold, determining The signal gain to be reduced is used as the signal gain to be adjusted, and the number of the second antennas is smaller than the number of the first antennas.
  • the working scenario is not camped on a serving cell, and the signal strength information is used to indicate a signal strength that is searched by the signal receiving device on a target azimuth, the processor, specifically And determining, according to the signal strength, a signal gain to be added as the signal gain to be adjusted, a beam formed by the second antenna is directed to the target orientation, and a quantity of the second antenna is greater than that of the first antenna Quantity.
  • the working scenario includes: initial searching for the serving cell; or beam tracking loss of the serving cell; or cell handover and not accessing the serving cell.
  • the processor is configured to configure a codebook for a phase shifter of the second antenna according to a direction inclusion relationship, where the direction includes a beam formed by the first antenna The inclusion relationship of the beam formed by the second antenna on the spatial coverage surface.
  • an embodiment of the present application provides a computer readable storage medium, wherein the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • an embodiment of the present application provides a computer program product comprising instructions, which when executed on a computer, cause the computer to perform the method described in the above aspects.
  • FIG. 1 is a schematic diagram of beamforming provided by an embodiment of the present application.
  • FIG. 2 is a structural diagram of an antenna array provided by an embodiment of the present application.
  • 3 is a schematic diagram of relationship between the number of antennas, beam shape, and gain according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of an antenna array provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the relationship between the number of antennas provided by the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a signal receiving method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a specific scenario of a signal receiving method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a specific scenario of a signal receiving method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • Beamforming is a signal preprocessing technique based on antenna array.
  • a significant signal gain can be obtained, which can also be called beam gain or array gain.
  • FIG. 1 utilizes the principle of beamforming, and adjusts the phase of each antenna (abbreviated as A) in the terminal device, so that the signals transmitted by the terminal device (transmit, TX) are superimposed and weighted.
  • A the phase of each antenna
  • denotes a phase shifter
  • the phase of the phase shifter can be changed by control (control, abbreviated as C), thereby adjusting the phase of the antenna, thereby achieving the purpose of adjusting the beam direction.
  • control control, abbreviated as C
  • the direction of the arrow is the direction of the beam directed to the receiving end
  • represents the direction of the formed beam pointing to the receiving end.
  • the terminal device can also adjust the phase of each antenna to superimpose the signal peaks and troughs reaching the respective antennas to form a beam directed to the transmitting end, thereby enabling effective signal reception. .
  • the terminal device attempts to receive signals from different directions by forming receiving beams in different directions, thereby obtaining a direction in which the received energy is the best to receive the signal. Therefore, the embodiment of the present application can form a beam directed to the receiving end on the beamforming technology.
  • the analog beam is generally used to transmit and receive signals based on considerations of cost reduction and implementation complexity.
  • the antenna array structure used in the analog beam is as shown in FIG. 2. Specifically, the wavefront in FIG. 2 is the receiving plane of the antenna array, and the antenna aperture is the spacing of each antenna element in the antenna array, which is affected by the spatial propagation path.
  • the signal transmitted by the device is not directly facing the wavefront.
  • each antenna receives the same signal, there is a phase difference. Therefore, the phase of the waveform reaching each antenna can be adjusted by the phase shifter to align with each other.
  • the terminal device uses a set of equally spaced antennas, and a phase shifter is disposed on the corresponding RF path of each antenna (or each group of antennas), and the direction of the beam is adjusted by changing the phase of each receiving antenna.
  • the phase shifter configuration parameter corresponding to all working antennas in each antenna array of the terminal device is called a codebook of the analog beam. That is, in the antenna array, different analog transmit and receive beams can be generated by changing the codebook configuration, that is, the configuration of the codebook determines the direction of the beam. It can be understood that the analog beam in the embodiment of the present application generates a beam by an analog method.
  • both the analog beam and the digital beam belong to the beamforming technique, generating the beam in an analog manner is different from generating the beam in a digital manner, and the specific implementations of the two are different. It can be understood that the embodiment of the present application is a signal receiving method shown in a scenario of an analog beam.
  • Figure 3 shows by simulation the effect of different antenna numbers on beam shape and gain.
  • the horizontal axis represents the coverage of the beam
  • the vertical axis represents the signal gain.
  • the number of antennas is proportional to the signal gain obtained by the terminal device and inversely proportional to the spatial coverage of the beam formed by the antenna. That is to say, the more the number of antennas, the stronger the signal gain obtained by the terminal device, but the narrower the coverage of the beam formed by the antenna.
  • the terminal device acts as the receiving end, the number of antennas working at the same time directly determines the power consumption of the RF front-end device. Therefore, in the above case, the embodiment of the present application provides a signal receiving method, which can effectively reduce the power consumption of the RF front-end device and avoid power loss when the antennas in the terminal device are all used to receive signals.
  • each antenna in the antenna array panel can be configured with an independent switch or multiple antenna sharing configuration switches, so that different numbers of antennas can be sent and received according to different signal strength information of the working scene of the terminal device.
  • the above description can also be understood as a phase shifter corresponding to one antenna, or one phase shifter corresponding to multiple antennas.
  • FIG. 4 is a schematic structural diagram of an antenna array according to an embodiment of the present application. After the terminal device receives the signal through a certain number of antennas, the signals received by the certain number of antennas may be combined and sent to a radio frequency integrated circuit (RFIC). It can be understood that the multiple antennas share one configuration switch in FIG.
  • RFIC radio frequency integrated circuit
  • one switch in FIG. 4 may also correspond to one antenna (not shown).
  • one switch in the figure corresponds to three antennas or two antennas, or it can be understood that one phase shifter corresponds to two antennas, or one phase shifter corresponds to three antennas.
  • FIG. 4 is only an example, and the numerical correspondence in FIG. 4 should not be construed as limiting the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a direction inclusion relationship provided by an embodiment of the present application.
  • the figure shows the inclusion relationship of one beam and three beams on a spatial coverage plane.
  • the number of antennas corresponding to the uncolored beam is smaller than the number of antennas corresponding to the stripe color beam. If the antenna corresponding to the non-color beam is the first antenna, and the antenna corresponding to the stripe color beam (one of them) is the second antenna, it can be seen that the beam formed by the first antenna and the beam formed by the second antenna are in spatial coverage. There is an inclusion relationship on it.
  • Table 1 shows the direction inclusion relationship of the beams formed by different antennas on the spatial coverage plane, wherein the terminal device can configure the codebooks for different antennas through the direction inclusion relationship. It is to be understood that Table 1 is merely an example, and the antenna shown in Table 1 should not be construed as having a definition of the embodiment of the present application.
  • Number of antennas Codebook index Direction contains 4 Cb41 Cb81, Cb82... 4 Cb42 Cb83, Cb84... 8 Cb81 Cb161,...
  • the terminal device can configure parameters for the phase shifters corresponding to the four antennas by the codebook Cb41 and the codebook Cb42, respectively, and the beam direction formed by the antenna configured by the codebook Cb41 and the antenna configured by the codebook Cb42.
  • the beam direction is different.
  • the phase shifter corresponding to the four antennas may be a phase shifter, or may be two phase shifters, or four phase shifters, etc., which are not limited in this embodiment.
  • the terminal device can configure parameters for the phase shifters corresponding to the eight antennas by the codebook Cb81 and the codebook Cb82, respectively, and the beam direction formed by the antenna configured by the codebook Cb81 and the beam direction formed by the antenna configured by the codebook Cb82.
  • the phase shifters corresponding to the eight antennas may be eight phase shifters, or may be six phase shifters, or four phase shifters, etc., which are not limited in this embodiment.
  • the beam formed by the antenna configured by the codebook Cb81 may be included in a beam formed by the antenna configured by the codebook Cb41.
  • FIG. 5 is used as an example to illustrate that if the non-color beam can be a beam formed by the antenna configured by the codebook Cb41, the stripe color beam can be respectively passed.
  • the beam formed by the four antennas and the beam formed by the eight antennas may have an inclusive relationship. It can be understood that the above is only an example. In a specific implementation, the beams formed by the four antennas may not be the size or shape shown in FIG. 5, and the respective beams formed by the eight antennas may not be the size or shape shown in FIG. 5. It can be understood that the direction inclusion relationship table shown in Table 1 is only an example. In a specific implementation, the relationship may not be included in the direction. Therefore, the contents shown in Table 1 should not be construed as having a limited meaning for the present application. .
  • the terminal device can configure the codebook according to Table 1 when selecting different antennas, so as to dynamically change the shape of the beam of the terminal device.
  • FIG. 6 is a schematic flowchart diagram of a signal receiving method according to an embodiment of the present application.
  • the signal receiving method is applicable to a terminal device, and the terminal device may be any antenna.
  • the device such as the terminal device, can be a smart terminal such as a mobile phone, a tablet computer, or a personal digital assistant.
  • the terminal device is a device having a wireless transceiving function and can be deployed on land, including indoors or outdoors, handheld, wearable or on-board. It can also be deployed on the water (such as ships). It can also be deployed in the air (such as airplanes, balloons, etc.).
  • the terminal device may be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in an industrial control, or a self-driving (self driving).
  • a wireless terminal or the like in a smart home has a terminal having a transceiving function.
  • the signal receiving method includes at least the following steps:
  • the working scenario in which the terminal device is located may be specifically divided into a scenario in which the terminal device resides in the serving cell and a scenario in which the terminal device does not reside in the serving cell.
  • the signal strength information is a signal strength of the serving cell when the terminal device resides in the serving cell, and the signal strength information may be searched by the terminal device in the target orientation if the terminal device does not reside in the serving cell. Signal strength. It can be understood that, in the case that the terminal device does not camp on the serving cell, the terminal device needs to search for the serving cell, and the terminal device does not search for the serving cell, but the signal strength searched in the target azimuth.
  • the first antenna includes a first number of antennas, and the first number may be a preset number of antennas, such as the number of antennas that are set by the terminal device, or may be automatically determined by the terminal device according to the current working scenario.
  • the number of antennas to be set and the like, the embodiment of the present application does not limit the first number.
  • the second antenna can be determined according to the signal strength information, that is, the signal strength acquired by the terminal device corresponds to the second antenna in the antenna of the terminal device. That is, the terminal device can determine how many antennas to use to receive signals according to the signal strength.
  • determining the second antenna according to the foregoing signal strength information includes:
  • the second antenna is determined according to the signal gain to be adjusted and the first antenna.
  • the terminal device may compare whether the signal strength information matches the current service requirement. If the signal strength information does not match the current service requirement, the terminal device indicates that the first antenna is used. The obtained signal gain cannot match the current service requirement, so the terminal device needs to adjust the antenna to the second antenna, so that the signal gain obtained by the second antenna can match the current service requirement.
  • the current service requirement may be any one of the following: a requirement of a resident service cell, a requirement for performing a service, a demand for a call, and a requirement for accessing the Internet. It is to be understood that the above is only an example, and in the specific implementation, more requirements may be included, or may be further divided into other requirements.
  • the embodiment of the present application does not limit the above examples. It can be understood that the current business requirements can be understood as the demand for the ongoing service of the terminal device. It can be understood that the relationship between the signal strength and the service requirement, and the relationship between the signal gain to be adjusted and the number of antennas can be stored in the terminal device, so that the terminal device can directly determine the signal gain after determining the signal gain to be adjusted. The relationship between the adjusted signal gain and the number of antennas determines the second antenna, improving the efficiency of determining the second antenna.
  • Table 2 shows the relative relationship between the signal gain to be adjusted and the number of antennas.
  • the number of the first antennas is 2 and the signal gain to be adjusted determined by the terminal device is 3 db, according to Table 2, it can be determined that the number of the second antennas is 4. For another example, if the number of the first antennas is 4, and the signal gain to be adjusted determined by the terminal device is 3 db, it can be determined that the number of the second antennas is 8. For another example, if the number of the first antennas is 4 and the signal gain to be adjusted determined by the terminal device is 6 db, the number of the second antennas may be determined to be 16. It can be understood that the above is shown in the case where the signal gain to be adjusted is a signal gain that needs to be increased, and in a specific implementation, it may also be necessary to reduce the signal gain.
  • the relationship diagram corresponding to Table 2 can be obtained according to the relationship between the antenna and the gain.
  • the difference in signal gain between the N1 antenna and the N2 antenna can be calculated as 10 log (N1/N2).
  • the terminal device can directly determine the second antenna according to the signal gain difference and the first antenna when the signal gain needs to be increased.
  • the signal gain difference it can also be calculated in other ways, such as by channel error rate, etc., which is not limited by this application.
  • the signal receiving method provided by the embodiment of the present application will be described below by taking Table 2 as an example.
  • the terminal device may require different signal strengths to determine different signal gains to be adjusted. Therefore, the embodiment of the present application further provides a method for determining a signal gain to be adjusted, as follows:
  • the signal strength information is used to indicate the signal strength provided by the serving cell, and the determining the signal gain to be adjusted according to the signal strength information includes:
  • the signal gain to be reduced is determined as the signal gain to be adjusted, and the number of the second antenna is smaller than the number of the first antenna.
  • the first threshold may be less than or equal to the second threshold.
  • the first threshold and the second threshold may be automatically configured according to current service requirements of the terminal device. More specifically, different services may also correspond to different first thresholds and second thresholds.
  • different services may also correspond to different first thresholds and second thresholds.
  • the terminal device can determine the second antenna according to the signal gain to be added and the first antenna. As for how much signal gain is added, the terminal device can be determined according to current service requirements and signal strength. Referring to Table 3, Table 3 shows the relationship between signal strength and service.
  • the signal strength needs to be greater than or equal to -110.
  • the signal strength of the terminal device obtained by the first antenna is -115, and the terminal device can determine that the signal gain needs to be increased.
  • the terminal device can determine the second antenna according to the 3 db and the first antenna. It can be understood that if the signal strength obtained is still less than the first threshold after increasing the signal gain of 3 db, the terminal device can further increase the signal gain of 3 db, that is, increase the number of antennas, and finally the determined antenna is It is the second antenna.
  • the maximum number of the second antennas is not limited.
  • the number of the second antennas may be the highest specification of the number of antennas of the terminal equipment. It can be understood that the unit of the signal strength in the embodiment of the present application is dBm, which is not shown above, but should not be construed as limiting the embodiment of the present application.
  • the terminal device when the signal strength acquired by the terminal device through the first antenna is greater than the second threshold, it indicates that the signal gain obtained by the first antenna can meet the current service requirement, and the terminal device can reduce the signal gain, that is, according to the to-be-reduced
  • the signal gain and the first antenna determine the second antenna.
  • the terminal device is currently making a call and the signal strength is greater than or equal to -110.
  • the signal strength obtained by the terminal device through the first antenna is -108, so that the terminal device can reduce the signal gain from the viewpoint of power saving, for example, if the downlink is reduced by 3 db, the terminal device can determine the second antenna according to 3 db and the first antenna.
  • Table 3 are merely examples and should not be construed as limiting the embodiments of the present application.
  • the embodiment of the present application further provides a method for determining a signal gain to be adjusted, as follows:
  • the signal strength information is used to indicate the signal strength that is searched for by the terminal device in the target azimuth, and the signal gain to be adjusted according to the signal strength information includes:
  • the beam formed by the second antenna is directed to the target orientation, and the number of the second antenna is greater than the number of the first antenna.
  • the terminal device when the terminal device searches for the signal strength in the target azimuth, the signal gain obtained by the terminal device may be insufficient, and the search is missed, so that the signal gain may be increased, such as increasing the number of antennas, and then passing The second antenna acquires the signal strength.
  • the terminal device can increase the signal gain of 3db, and can also increase the signal gain of 6db.
  • the second antenna is thus determined based on the signal gain to be added and the first antenna. It can be understood that the beam formed by the second antenna is directed to the target orientation, so that the second antenna can obtain the signal strength in a targeted manner in the target orientation.
  • the number of first antennas is smaller than the number of second antennas.
  • the terminal device may perform the omnidirectional search through the first antenna. Since the number of the first antenna is smaller than the number of the second antenna, the first antenna is formed. The width of the beam is greater than the width of the beam formed by the second antenna, so that when the terminal device initially searches, it can quickly complete a round of omnidirectional search process. If the search fails and the signal strength is searched for in the target orientation, the number of antennas can be increased and the second antenna can be used for the search. Similarly, when the beam tracking of the serving cell of the terminal device is lost, the terminal device may first search through the first antenna.
  • the terminal antenna may perform the second antenna. search for.
  • the first antenna and the second antenna may be directional antennas, and there is a quantitative difference between the first antenna and the second antenna, but whether the first antenna and the second antenna are completely identical in type and/or function, The embodiment of the present application is not limited.
  • the foregoing working scenario includes:
  • the cell switches and does not access the above serving cell.
  • the scenario in which the terminal device performs the cell handover and does not access the serving cell may include: a scenario in which the serving cell is re-selected and the new serving cell is not accessed when the location of the terminal device is changed; or The signal strength information of the current serving cell of the terminal device is deteriorated, and the serving cell needs to be reselected, and the scenario of the new serving cell is not accessed.
  • the terminal device search fails the terminal device can switch the antenna from the third antenna to the fourth antenna.
  • the threshold when the working scenario is not camped on the serving cell, the threshold may be set to determine whether the signal gain needs to be adjusted. As follows:
  • the signal strength information is used to indicate the signal strength that is searched for by the terminal device in the target azimuth, and the signal gain to be adjusted according to the signal strength information includes:
  • the signal gain to be added is determined as the signal gain to be adjusted according to the signal strength, and the beam formed by the second antenna is directed to the target azimuth, and the number of the second antenna is greater than the above. The number of first antennas.
  • whether the signal strength exceeds a third threshold may be measured by a received signal strength indication (RSSI), and the terminal device detects that the RSSI of the target azimuth is stronger (greater than the third threshold), but
  • RSSI received signal strength indication
  • the search signal may not be searched because the obtained signal gain is insufficient, so that the search gain can be increased by increasing the number of antennas.
  • the third threshold by setting the third threshold, the possibility that the signal gain is insufficient is further increased, so that the possibility that the terminal device searches for the serving cell by increasing the signal gain is increased, thereby improving the search efficiency of the terminal device.
  • the embodiment of the present application does not uniquely define the target orientation, and the target orientation may be any orientation in which the detected signal strength exceeds the third threshold.
  • the third threshold may be preset in the terminal device, such as setting the terminal device at the factory.
  • phase shifter configuration codebook described above for the second antenna includes:
  • the beam formed by the first antenna and the beam formed by the second antenna have a corresponding relationship in the spatial coverage.
  • the second antenna corresponds to the antenna corresponding to the stripe color beam in FIG. 5
  • the first antenna corresponds to the antenna corresponding to the uncolored beam in FIG. 5, and it can be seen that the beam formed by the first antenna includes the beam formed by the second antenna on the spatial coverage surface.
  • the terminal device in the case that the terminal device has camped on the serving cell, after the terminal device determines the second antenna, it needs to switch from the first antenna to the second antenna, where the number of the second antenna is greater than the first antenna. quantity.
  • the terminal device In the process of the terminal device being switched from the first antenna to the second antenna, the terminal device needs to configure the codebook according to the beam direction formed by the first antenna, and the width of the beam formed by the first antenna is formed by the second antenna.
  • the width of the beam is different, that is, the terminal device needs to perform fine scanning alignment inside the coverage width range of the beam formed by the first antenna, thereby determining the specific orientation of the beam formed by the second antenna. As shown in FIG.
  • the beam formed by the first antenna is a colorless beam
  • the beam formed by the second antenna can be finely aligned and aligned within the coverage of the beam formed by the first antenna, thereby determining the formation of the second antenna.
  • the final orientation of the beam is a colorless beam
  • the terminal device may A specific implementation is provided to determine a third antenna, wherein the number of the third antennas is less than the number of second antennas. In this case, the terminal device needs to switch from the second antenna to the third antenna, and in the process of switching from the second antenna to the third antenna, the terminal device can directly configure the codebook for the second antenna according to the direction inclusion relationship.
  • the foregoing third antenna may be the same as the first antenna, or may be different, and is not limited in this embodiment. It can be understood that the method for configuring the codebook in the scenario where the terminal device does not reside in the serving cell can be referred to the foregoing embodiment, and details are not described herein.
  • the second antenna is determined according to different signal strength information of the working scenario where the terminal device is located, that is, the signal strength information of the working scenario where the terminal device is located corresponds to the second of the antennas of the terminal device.
  • FIG. 7 is a schematic diagram of a specific scenario of a signal receiving method according to an embodiment of the present application.
  • the scenario is shown in the case where the terminal device does not reside in the serving cell, as shown in FIG.
  • the receiving method includes at least:
  • the initial search of the terminal device is performed by using a beam of the camped cell or a beam tracking loss of the camping cell.
  • the beam of the camped cell or the beam tracking of the camping cell is lost. Because the number of antennas is small, a small number of antennas are used to form a wider beam, and the full coverage can be quickly completed. Round search process.
  • the first antenna may continue to be used for processing of a subsequent communication process, such as receiving a signal using the first antenna.
  • the terminal device measures the quality of the serving cell.
  • the terminal device can use the method provided by the terminal device when the terminal device accesses the serving cell, which is not detailed here. Said.
  • step 705 is performed; otherwise, step 706 is performed.
  • the fourth antenna in step 706 can be different from the second antenna in step 705, at least in the formed beam direction.
  • the beam formed by the second antenna is directed to the target orientation, and the beam formed by the fourth antenna can be directed to other orientations, thereby searching for signal strength in other orientations through the fourth antenna.
  • the terminal device may use the first number of antennas, that is, the first antenna searches for the serving cell is unsuccessful, but when searching for the signal strength in the target azimuth, determining the first The two antennas search for the serving cell through the second antenna.
  • the radio frequency front end device can be optimized to the maximum while satisfying the transceiving performance of the terminal device.
  • FIG. 8 is a schematic diagram of a specific scenario of another signal receiving method according to an embodiment of the present application.
  • the scenario is shown in the case where the terminal device has camped on the serving cell, as shown in FIG.
  • the signal receiving method includes at least:
  • the signal strength of the serving cell is periodically measured according to the protocol requirement.
  • the standby state may indicate that the terminal device has accessed the serving cell, that is, the network device (such as the base station) in the serving cell performs connection, but does not perform data (or signaling) interaction with the network device.
  • the connected state indicates that the terminal device has performed data (or signaling) interaction with the network device.
  • the terminal device After determining the second antenna, the terminal device can obtain the signal strength of the serving cell by using the second antenna.
  • the terminal device can dynamically change the number of antennas according to the signal strength.
  • the signal strength is good, use a small number of antennas as much as possible to reduce power consumption.
  • the signal strength is poor, a large number of antennas are used to obtain a high signal gain.
  • the signal receiving device is illustrated by using a terminal device.
  • the terminal device includes at least:
  • the acquiring unit 901 is configured to acquire, by using the first antenna, signal strength information of a working scenario where the terminal device is located, where the first antenna includes a first number of antennas;
  • a determining unit 902 configured to determine, according to the signal strength information, a second antenna, where the second antenna is part or all of the antennas in the terminal device, and the second antenna includes a second number of antennas, the first quantity and the foregoing Two different numbers;
  • the configuration unit 903 is configured to configure a codebook for the phase shifter of the second antenna
  • the receiving unit 904 is configured to receive a signal by using the second antenna.
  • the terminal device can switch different numbers of antennas according to the requirements of the device, thereby achieving the purpose of dynamically changing the beam coverage width and the gain, not only satisfying the transceiver performance of the terminal device, but also optimizing the terminal device to the greatest extent possible.
  • RF front-end power consumption is a requirement for the terminal device to switch different numbers of antennas according to the requirements of the device, thereby achieving the purpose of dynamically changing the beam coverage width and the gain, not only satisfying the transceiver performance of the terminal device, but also optimizing the terminal device to the greatest extent possible.
  • the determining unit 902 is specifically configured to determine a signal gain to be adjusted according to the signal strength information, and determine the second antenna according to the signal gain to be adjusted and the first antenna.
  • the working scenario is that the signal strength information is used to indicate the signal strength provided by the serving cell, and the determining unit 902 is specifically configured to determine, when the signal strength is less than the first threshold, the to-be-added a signal gain as the signal gain to be adjusted, the number of the second antenna is greater than the number of the first antenna; and when the signal strength is greater than the second threshold, determining a signal gain to be reduced as the signal gain to be adjusted,
  • the number of second antennas is smaller than the number of the first antennas described above.
  • the working scenario is that the signal strength information is not in the serving cell, and the signal strength information is used to indicate the signal strength of the terminal device that is searched for in the target azimuth.
  • the determining unit 902 is specifically configured to determine, according to the signal strength, that the signal strength is to be added.
  • the signal gain is used as the signal gain to be adjusted, and the beam formed by the second antenna is directed to the target orientation, and the number of the second antenna is greater than the number of the first antenna.
  • the foregoing working scenario includes: initially searching for the serving cell; or beam tracking loss of the serving cell; or cell handover and not accessing the serving cell.
  • the configuration unit 903 is specifically configured to: configure a codebook according to a phase shifting relationship including the second antenna, where the direction includes a beam formed by the first antenna and a beam formed by the second antenna. The inclusion relationship on the spatial coverage.
  • the terminal device shown in FIG. 9 can be used to perform the signal receiving method shown in FIG. 6 to FIG. 8 , and specific implementations of the respective units are not described in detail herein.
  • FIG. 10 shows a schematic structural diagram of a simplified terminal device.
  • the terminal device uses the mobile phone 1000 as an example.
  • the terminal device can be used to perform the operation of the terminal device in the signal receiving method shown in FIGS. 6 to 8, or the terminal device can also perform the operation of the terminal device in the method shown in FIG.
  • FIG. 10 shows only the main components of the terminal device.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling terminal devices, executing software programs, processing data of software programs, and the like.
  • the processor can be used to support the terminal device to perform the methods described in Figures 6-8.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves. For example, a signal or the like can be received.
  • Input and output devices such as touch screens, display screens, keyboards, etc.
  • touch screens touch screens
  • display screens keyboards
  • etc. are primarily used to receive user input data and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the antenna array in the embodiment of the present application may be an antenna array as shown in FIG. 4.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 1 For ease of illustration, only one memory and processor are shown in FIG. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process communication protocols and communication data, and the central processing unit is mainly used to control the entire terminal and execute the software.
  • the processor in FIG. 10 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
  • the above baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit described above can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the above types of memories.
  • the processor may be configured to acquire, by using the first antenna, signal strength information of a working scenario where the terminal device is located, and a processor, configured to determine the second antenna according to the signal strength information, and to phase shift the second antenna.
  • the device is configured with a codebook; the transceiver is also used to receive signals.
  • the processor is specifically configured to determine a signal gain to be adjusted according to the signal strength information, and determine the second antenna according to the signal gain to be adjusted and the first antenna.
  • the processor is specifically configured to: when the signal strength is less than the first threshold, determine a signal gain to be added as the signal gain to be adjusted, where the number of the second antenna is greater than the number of the first antenna; and the signal strength is greater than When the threshold is two, the signal gain to be reduced is determined as the signal gain to be adjusted, and the number of the second antennas is smaller than the number of the first antennas.
  • the processor is specifically configured to determine, according to the signal strength, a signal gain to be added as the signal gain to be adjusted, where a beam formed by the second antenna is directed to the target azimuth, and the number of the second antenna is greater than The number of the first antennas mentioned above.
  • the processor is configured to configure a codebook according to the direction-inclusive relationship of the phase shifter, wherein the direction includes the beam formed by the first antenna and the second antenna.
  • the inclusion relationship of the beam on the spatial coverage For a specific implementation manner of the processor and the transceiver in the embodiment of the present application, reference may be made to the description of the foregoing embodiment, and details are not described herein again. It can be understood that, in a specific implementation, the information about the signal strength can also be understood as a transceiver, and the signal strength information of the working scene where the terminal device is located is obtained through the first antenna. The embodiment of the present application does not uniquely define whether the acquired signal strength information is acquired by the transceiver or acquired by the processor.
  • an antenna and a radio frequency circuit having a transceiving function can be regarded as a receiving unit and a transmitting unit (also collectively referred to as a transceiving unit 1001) of the terminal device, and the processor having the processing function is regarded as Processing unit 1002 of the terminal device.
  • the terminal device includes a transceiver unit 1001 and a processing unit 1002.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the transceiver unit 1001 is configured to perform step 604 in the embodiment shown in FIG. 6 (eg, receiving signals through the second antenna); the processing unit 1002 is configured to perform step 602 in the embodiment shown in FIG. .
  • the processing unit 1002 is further configured to perform the method performed by the determining unit 902 and the configuration unit 903 shown in FIG.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions may be from a website site, computer, server or data center via a wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Another website site, computer, server, or data center for transmission.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium (eg, a solid state disk (SSD)). )Wait.
  • the foregoing storage medium includes: a read-only memory (ROM) or a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信号接收方法及信号接收装置,包括:通过第一天线获取信号接收装置所在工作场景的信号强度信息,该第一天线包含第一数量的天线;依据该信号强度信息确定第二天线;其中,该第二天线为该信号接收装置中的部分或全部天线,该第二天线包含第二数量的天线,且该第一数量与该第二数量不同;为第二天线的移相器配置码本,通过该第二天线接收信号。相应地,还提供了信号接收装置。实施本申请实施例,在不同场景的信号强度信息下,通过设置不同的天线,可以使得终端设备在满足一定接收性能的同时,尽可能地优化射频前端功耗。

Description

信号接收方法及信号接收装置 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种信号接收方法及信号接收装置。
背景技术
目前移动通信技术除了使用传统的低频(<3gHz)传输外,还在研究高频(高于6gHz)传输的可行性。相对于低频传输,高频有较多可用的且连续的无线频谱资源(尤其是在毫米波频段),可支持提供更宽的物理信道。但是高频信号自由空间损耗大,受遮挡影响比较严重,穿透能力也要比低频信号差。因此当前主要引入波束赋形技术来应对这些挑战。
波束赋形利用了波形的干涉原理,信号经过加权后,形成窄带波束。其中,不同天线的波峰与波峰相遇位置叠加增强,波峰与波谷相遇位置叠加减弱。在多个天线的共同波峰叠加方向,从而使得信号强度得到显著增强。
然而,由于天线阵列的天线规模的增大,天线和射频前端器件的功耗占终端设备功耗的比重不断的增加,尤其是终端设备作为接收端时,射频前端器件的功耗大小与天线的数量有直接关系。
因此,本申请具体研究了在终端设备作为接收端时,如何降低射频前端器件的功耗。
发明内容
本申请实施例提供了一种信号接收方法及信号接收装置,在不同场景的信号强度信息下,通过设置不同的天线,可以使得信号接收装置在满足一定接收性能的同时,尽可能地优化射频前端功耗,有效避免了均使用同样的天线来接收信号而增加射频前端功耗。
第一方面,本申请实施例提供了一种信号接收方法,包括:
通过第一天线获取信号接收装置所在工作场景的信号强度信息,所述第一天线包含第一数量的天线;根据所述信号强度信息确定第二天线;其中,所述第二天线为所述信号接收装置中的部分或全部天线,所述第二天线包含第二数量的天线,所述第一数量与所述第二数量不同;为所述第二天线的移相器配置码本,通过所述第二天线接收信号。
本申请实施例中,依据信号接收装置所在工作场景的信号强度信息的不同,来确定第二天线,也就是说,该信号接收装置所在工作场景的信号强度信息决定了该信号接收装置的天线中的第二天线配置;实施本申请实施例,信号接收装置可以依据自身的需求,开关不同数量的天线,从而达到动态改变波束增益和覆盖方位大小的目的,不仅能够满足信号接收装置的收发性能,而且尽最大可能地优化了信号接收装置的射频前端功耗。
在一个可选的实现方式中,所述根据所述信号强度信息确定第二天线包括:根据所述信号强度信息确定待调整的信号增益;根据所述待调整的信号增益和所述第一天线确定所述第二天线。
在一个可选的实现方式中,所述工作场景为驻留在服务小区,所述信号强度信息用于指示所述服务小区所提供的信号强度,所述根据所述信号强度信息确定待调整的信号增益 包括:在所述信号强度小于第一阈值时,确定待增加的信号增益作为所述待调整的信号增益,所述第二天线的数量大于所述第一天线的数量;在所述信号强度大于第二阈值时,确定待降低的信号增益作为所述待调整的信号增益,所述第二天线的数量小于所述第一天线的数量。
其中,在信号接收装置驻留服务小区后,如信号接收装置在待机状态,按协议要求信号接收装置需要周期性测量该服务小区的质量,因此,本申请实施例中,信号接收装置在运行过程中,可以依据服务小区的质量信号强度信息来动态改变工作天线的数量,若该服务小区的质量较好,则可以使用少量的天线接收信号,从而降低信号接收装置的功耗;而若服务小区的质量较差,则可以使用更多天线接收信号,从而来获得更多的信号增益。
在一个可选的实现方式中,所述工作场景为未驻留在服务小区,所述信号强度信息用于指示所述信号接收装置在目标方位上搜索到的信号强度,所述根据所述信号强度信息确定待调整的信号增益包括:根据所述信号强度确定待增加的信号增益作为所述待调整的信号增益,所述第二天线形成的波束指向所述目标方位,所述第二天线的数量大于所述第一天线的数量。
本申请实施例中,在信号接收装置搜索服务小区时,先利用第一天线进行搜索,以达到使用宽波束尽快完成一轮全方位覆盖的要求;而若在某个方位(如目标方位)上的信号强度较强,则使用第二天线进一步搜索该方位上的服务小区,能够较好地满足小区搜索性能并节省功耗。
具体地,所述工作场景包括:初始搜索所述服务小区;或者所述服务小区的波束跟踪丢失;或者小区切换且未接入所述服务小区。
在一个可选的实现方式中,所述为所述第二天线的移相器配置码本包括:依据方向包含关系为所述第二天线的移相器配置码本,所述方向包含关系中包含所述第一天线形成的波束与所述第二天线形成的波束在空间覆盖面上的包含关系。
第二方面,本申请实施例还提供了一种信号接收装置,包括:获取单元,用于通过第一天线获取所述信号接收装置所在工作场景的信号强度信息,所述第一天线包含第一数量的天线;确定单元,用于依据所述信号强度信息确定第二天线;其中,所述第二天线为所述信号接收装置中的部分或全部天线,所述第二天线包含第二数量的天线,所述第一数量与所述第二数量不同;配置单元,用于为所述第二天线的移相器配置码本;接收单元,用于通过所述第二天线接收信号。
在一个可选的实现方式中,所述确定单元,具体用于根据所述信号强度信息确定待调整的信号增益;根据所述待调整的信号增益和所述第一天线确定所述第二天线。
在一个可选的实现方式中,所述工作场景为驻留在服务小区,所述信号强度信息用于指示所述服务小区所提供的信号强度,所述确定单元,具体用于在所述信号强度小于第一阈值时,确定待增加的信号增益作为所述待调整的信号增益,所述第二天线的数量大于所述第一天线的数量;所述确定单元,具体用于在所述信号强度大于第二阈值时,确定待降低的信号增益作为所述待调整的信号增益,所述第二天线的数量小于所述第一天线的数量。
在一个可选的实现方式中,所述工作场景为未驻留在服务小区,所述信号强度信息用于指示所述信号接收装置在目标方位上搜索到的信号强度,所述确定单元,具体用于根据 所述信号强度确定待增加的信号增益作为所述待调整的信号增益,所述第二天线形成的波束指向所述目标方位,所述第二天线的数量大于所述第一天线的数量。
在一个可选的实现方式中,所述工作场景包括:初始搜索所述服务小区;或者所述服务小区的波束跟踪丢失;或者小区切换且未接入所述服务小区。
在一个可选的实现方式中,所述配置单元,具体用于依据方向包含关系为所述第二天线的移相器配置码本,所述方向包含关系中包含有所述第一天线形成的波束与所述第二天线形成的波束在空间覆盖面上的包含关系。
第三方面,本申请实施例还提供了一种信号接收装置,包括处理器、存储器和收发器;其中,所述处理器、所述存储器和所述收发器通过线路互联,所述收发器中包含第一天线和第二天线,其中,所述第一天线包含第一数量的天线,所述第二天线包含第二数量的天线,且所述第一数量与所述第二数量不同;所述存储器中存储有程序指令;所述程序指令被所述处理器执行时,使所述处理器执行以下操作:通过第一天线获取信号接收装置所在工作场景的信号强度信息;根据所述信号强度信息确定第二天线;为所述第二天线的移相器配置码本;所述收发器,用于通过所述第二天线接收信号。
在一个可选的实现方式中,所述处理器,具体用于根据所述信号强度信息确定待调整的信号增益;根据所述待调整的信号增益和所述第一天线确定所述第二天线。
在一个可选的实现方式中,所述工作场景为驻留在服务小区,所述信号强度信息用于指示所述服务小区所提供的信号强度,所述处理器,具体用于在所述信号强度小于第一阈值时,确定待增加的信号增益作为所述待调整的信号增益,所述第二天线的数量大于所述第一天线的数量;在所述信号强度大于第二阈值时,确定待降低的信号增益作为所述待调整的信号增益,所述第二天线的数量小于所述第一天线的数量。
在一个可选的实现方式中,所述工作场景为未驻留在服务小区,所述信号强度信息用于指示所述信号接收装置在目标方位上搜索到的信号强度,所述处理器,具体用于根据所述信号强度确定待增加的信号增益作为所述待调整的信号增益,所述第二天线形成的波束指向所述目标方位,所述第二天线的数量大于所述第一天线的数量。
具体地,所述工作场景包括:初始搜索所述服务小区;或者所述服务小区的波束跟踪丢失;或者小区切换且未接入所述服务小区。
在一个可选的实现方式中,所述处理器,具体用于依据方向包含关系为所述第二天线的移相器配置码本,所述方向包含关系中包含所述第一天线形成的波束与所述第二天线形成的波束在空间覆盖面上的包含关系。
可以理解的是,本申请所示的实施例是以信号接收装置为终端设备的情况下示出的,但是不应理解为对本申请的限定。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第五方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的波束赋形的原理图;
图2是本申请实施例提供的天线阵列结构图;
图3是本申请实施例提供的天线数量与波束形状以及增益的关系示意图;
图4是本申请实施例提供的天线阵列的结构示意图;
图5是本申请实施例提供的天线数量之间的关系示意图;
图6是本申请实施例提供的信号接收方法的流程示意图;
图7是本申请实施例提供的信号接收方法的具体场景示意图;
图8是本申请实施例提供的信号接收方法的具体场景示意图;
图9是本申请实施例提供的终端设备的结构示意图;
图10是本申请实施例提供的终端设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图对本申请实施例中技术方案进行描述。
波束赋形是一种基于天线阵列的信号预处理技术,通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,从而获得明显的信号增益,又可以称为波束增益或阵列增益。如图1所示,图1利用了波束赋形的原理,通过调整终端设备中各天线(antenna,简称A)的相位,使得终端设备发射(transmit,TX)的信号经过加权后能量叠加,形成指向接收端的窄带波束。其中,φ表示移相器,通过控制(control,简称C)可改变移相器的相位大小,从而调整天线的相位,进而达到调整波束方向的目的。如图1所示,箭头方向为形成的指向接收端的波束方向,θ表示形成的指向接收端的波束的方向。同样地,在终端设备作为接收端的情况下,该终端设备也可以通过调整各天线的相位,使到达各天线的信号波峰和波谷分别叠加,来形成指向发送端的波束,从而使得能够有效地接收信号。即终端设备作为接收端的情况下,该终端设备通过形成不同方向的接收波束,尝试从不同方向上接收信号,从而得到接收能量最好的方向来接收信号。因此,本申请实施例可在波束赋形的技术上形成的指向接收端的波束。
在收发天线规模较大时,基于降低成本和实现的复杂度的考虑,一般要使用模拟波束收发信号。其中,模拟波束使用的天线阵列结构如图2所示,具体地,图2中波阵面为天线阵列的接收平面,天线孔径为天线阵列中各天线阵子的间距,受空间传播路径影响,终端设备发射的信号并不是正对着波阵面,各天线接收同一信号时存在相位差,因此可通过移相器来调节到达各天线的波形相位,使相互对齐。即终端设备使用一组等间距的天线,在每个天线(或每组天线)对应的射频通路上配置移相器,通过改变各接收天线的相位,达到调整波束方向的目的。其中,终端设备的每个天线阵列中所有工作的天线对应的移相器配置参数,称为模拟波束的码本。即在天线阵列中,可通过改变码本配置生成不同的模拟收发波束,也就是说,码本的配置决定了波束的方向。可以理解的是,本申请实施例中的模拟波束是通过模拟方式生成波束。尽管模拟波束和数字波束都属于波束赋形技术,但是以模拟方式生成波束不同于以数字方式生成波束,两者的具体实现方式不同。可理解, 本申请实施例是在模拟波束的场景下示出的信号接收方法。
参见图3,图3通过仿真示出了不同的天线数量对波束形状和增益的影响。其中,横轴表示波束的覆盖范围,纵轴表示信号增益。从中可以看出,天线的数量和终端设备获得的信号增益成正比,和天线形成的波束的空间覆盖范围成反比。也就是说,天线的数量越多,终端设备获得的信号增益就越强,但是该天线形成的波束的覆盖范围就越窄。在终端设备作为接收端时,同时工作的天线数量直接决定了射频前端器件的功耗大小。因此在上述情况下,本申请实施例提出了一种信号接收方法,能够有效地降低射频前端器件的功耗,避免终端设备中的天线全部用来接收信号时的功耗损失。
本申请实施例中,天线阵列面板中的各天线可配置独立开关或多个天线共享配置开关,这样可以依据终端设备所在工作场景的信号强度信息的不同,来设置不同数量的天线参与信号的收发。可理解的是,上述描述也可以理解为一个移相器对应一个天线,或者一个移相器对应多个天线。参见图4,图4是本申请实施例提供的一种天线阵列的结构示意图。其中,终端设备通过一定数量的天线接收到信号后,可以将通过该一定数量的天线接收到的信号进行合并,从而发送到射频集成电路(radio frequency integrated circuit,RFIC)。可理解,图4中示出的是多个天线共享一个配置开关,但是不应理解为对本申请具有限定,如图4中一个开关也可对应一个天线(图中未示出)。具体地,图中一个开关对应了3个天线或2个天线,或者,也可理解为一个移相器对应2个天线,或者一个移相器对应3个天线。可以理解的是,图4仅为一种示例,不应将图4中数量上的对应关系理解为对本申请实施例具有限定。
同时参见图5,图5是本申请实施例提供的一种方向包含关系的示意图,图中示出了一个波束和三个波束在空间覆盖面上的包含关系。相对来说,无颜色波束对应的天线数量小于条纹色波束对应的天线数量。若无颜色波束对应的天线为第一天线,条纹色波束(其中的一个)对应的天线为第二天线,则从中可看出,第一天线形成的波束与第二天线形成的波束在空间覆盖面上具有包含关系。如下表1所示,表中示出了不同天线形成的波束在空间覆盖面上的方向包含关系,其中,终端设备可以通过该方向包含关系来为不同天线配置码本。可以理解的是,表1仅仅为一个示例,不应将表1示出的天线理解为对本申请实施例具有限定意义。
表1
天线数量 码本索引 方向包含
4 Cb41 Cb81,Cb82…
4 Cb42 Cb83,Cb84…
8 Cb81 Cb161,…
举例来说,终端设备可通过码本Cb41和码本Cb42分别为四个天线对应的移相器配置参数,且通过码本Cb41配置的天线形成的波束方向与通过码本Cb42配置的天线形成的波束方向不同。可理解,该四个天线对应的移相器可能为一个移相器,也可能为两个移相器,又或者为四个移相器等等,本申请实施例不作限定。终端设备可通过码本Cb81和码本Cb82分别为八个天线对应的移相器配置参数,且通过码本Cb81配置的天线所形成的波束方向与通过码本Cb82配置的天线所形成的波束方向不同。可理解,该八个天线对应的移相器可能 为八个移相器,也可能为六个移相器,又或者为四个移相器等等,本申请实施例不作限定。
其中,通过码本Cb81配置的天线形成的波束可包含在通过码本Cb41配置的天线形成的波束中。为了更形象地说明本申请实施例所描述的方向包含关系,现以图5为例来说明,如无颜色波束可为通过码本Cb41配置的天线形成的波束,而条纹色波束可分别为通过码本Cb81、码本Cb82和码本Cb83配置的天线形成的波束。也就是说,无颜色波束可为四个天线形成的波束,条纹色波束可分别为八个天线形成的不同方向的波束。因此从中可看出,四个天线形成的波束与八个天线形成的波束可具有包含关系。可理解,以上仅为示例,在具体实现中,四个天线形成的波束可能不是图5所示的大小或形状,以及八个天线形成的各个波束也可能不是图5所示的大小或形状。可以理解的是,表1所示的方向包含关系表仅为一种示例,在具体实现中,可能不止这些方向包含关系,因此,不应将表1所示的内容理解为对本申请具有限定意义。
其中,终端设备可以在选择不同天线时,可以依据表1来配置码本,以达到动态改变终端设备的波束的形状。
在上述所描述的背景的基础上,参见图6,图6是本申请实施例提供的一种信号接收方法的流程示意图,该信号接收方法可应用于终端设备,该终端设备可以为任意具有天线的设备,如该终端设备可以为手机、平板计算机、个人数字助理等智能终端。具体地,该终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或内外、手持、穿戴或车载。也可以部署在水面上(如轮船等)。还可以部署在空中(如飞机、气球等)。该终端设备除了上述智能终端,还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等具有收发功能的终端。如图6所示,该信号接收方法至少包括以下步骤:
601、通过第一天线获取终端设备所在工作场景的信号强度信息,上述第一天线包含第一数量的天线。
本申请实施例中,终端设备所在工作场景可具体分为终端设备驻留服务小区的场景和终端设备未驻留服务小区的场景。其中,在终端设备驻留服务小区的情况下,信号强度信息为该服务小区的信号强度;在终端设备未驻留服务小区的情况下,信号强度信息可为终端设备在目标方位上搜索到的信号强度。可理解,在终端设备未驻留服务小区的情况下,该终端设备需要搜索服务小区,且该终端设备未搜索到服务小区,但是在目标方位上搜索到的信号强度。
其中,第一天线包含第一数量的天线,该第一数量可为预设的天线的数量,如终端设备出厂设置的天线的数量;或者,也可以为终端设备根据当前所在的工作场景而自动设置的天线数量等等,本申请实施例对于该第一数量不作限定。
602、根据上述信号强度信息确定第二天线;其中,上述第二天线为上述终端设备中的部分或全部天线,上述第二天线包含第二数量的天线,上述第一数量与上述第二数量不同。
其中,终端设备通过第一天线获取信号强度信息后,便可以依据该信号强度信息来确定第二天线,也就是说,终端设备所获取的信号强度对应了终端设备的天线中的第二天线,也即终端设备可以依据信号强度来确定使用多少天线来接收信号。
具体地,上述根据上述信号强度信息确定第二天线包括:
根据上述信号强度信息确定待调整的信号增益;
根据上述待调整的信号增益和上述第一天线确定上述第二天线。
本申请实施例中,终端设备在获取到信号强度信息后,可以对比该信号强度信息是否匹配当前的业务需求,在该信号强度信息不匹配当前的业务需求的情况下,则说明通过第一天线所获得的信号增益已无法匹配当前的业务需求,因此该终端设备就需要调整天线为第二天线,从而使得通过第二天线获得的信号增益能够匹配当前的业务需求。具体地,当前的业务需求可为以下任意一种:驻留服务小区的需求、进行业务的需求、打电话的需求、上网的需求等。可以理解,以上仅为示例,在具体实现中,还可以包括更多的需求,又或者还可以细分为其他需求,本申请实施例对于以上示例不作限定。可理解,当前的业务需求可以理解为终端设备正在进行的业务的需求。可理解,终端设备中可以存储信号强度与业务需求之间的关系,以及待调整的信号增益与天线数量之间的关系,从而可以使得终端设备在确定待调整的信号增益之后,能够直接根据待调整的信号增益与天线数量之间的关系来确定第二天线,提高确定第二天线的效率。
举例来说,参见表2,表2示出了待调整的信号增益与天线数量之间的相对关系。
表2
天线数量 待调整的信号增益(db)
2 3
4 3
8 3
16 3
如第一天线的数量为2,终端设备确定的待调整的信号增益为3db,则根据表2,可以确定第二天线的数量为4。又如,第一天线的数量为4,终端设备确定的待调整的信号增益为3db,则可以确定第二天线的数量为8。又如,第一天线的数量为4,终端设备确定的待调整的信号增益为6db,则可以确定第二天线的数量为16。可理解,以上是在待调整的信号增益为需要增加的信号增益的情况下示出的,在具体实现中,也可能需要降低信号增益。可理解,在具体实现中,也可能不止以上几种天线数量的变化,还可能有其他数量的变化。在包含其他数量变化时,可根据天线与增益之间的关系,来得到与表2对应的关系图。举例来说,从N1个天线切换到N2个天线,则N1天线与N2天线之间的信号增益差值的计算方式可为10log(N1/N2)。通过计算信号增益差值,则终端设备在需要增加信号增益时,可直接依据该信号增益差值以及第一天线确定第二天线。可理解的是,在计算信号增益差值时,还可以用其他方式来计算,如通过信道误码率等,本申请不作唯一性限定。可理解,以下将以表2为例来说明本申请实施例所提供的信号接收方法。
在具体实现中,在不同的场景下,终端设备可能需要不同的信号强度来确定不同的待 调整的信号增益。因此,本申请实施例还提供了一种如何确定待调整的信号增益的方法,如下所示:
上述工作场景为驻留在服务小区,上述信号强度信息用于指示上述服务小区所提供的信号强度,上述根据上述信号强度信息确定待调整的信号增益包括:
在上述信号强度小于第一阈值时,确定待增加的信号增益作为上述待调整的信号增益,上述第二天线的数量大于上述第一天线的数量;
在上述信号强度大于第二阈值时,确定待降低的信号增益作为上述待调整的信号增益,上述第二天线的数量小于上述第一天线的数量。
本申请实施例中,第一阈值可以小于等于第二阈值。具体地,该第一阈值与该第二阈值可以根据终端设备当前的业务需求自动配置,更具体地,不同的业务也可以对应不同的第一阈值和第二阈值。其中,在终端设备通过第一天线所获取的信号强度小于第一阈值时,则说明通过第一天线所获得的信号增益不能满足当前的业务需求,终端设备需要获得更大的信号增益,进而该终端设备便可以根据待增加的信号增益以及第一天线确定第二天线。至于增加多少信号增益,则该终端设备可以根据当前的业务需求以及信号强度来确定。参见表3,表3示出了信号强度与业务之间的关系,举例来说,终端设备当前正在打电话,则信号强度需要大于等于-110。而终端设备通过第一天线获得的信号强度为-115,则终端设备可以确定需要增加信号增益,如为3db,则该终端设备可以根据3db以及第一天线确定第二天线。可理解的是,若增加3db的信号增益后,所获得的信号强度仍然小于第一阈值,则该终端设备还可以再增加3db的信号增益,即再增加天线的数量,最后所确定的天线即为第二天线。
可以理解的是,具体实现中,在增加天线数量时,第二天线的最高数量具体为多少,本申请实施例不作限定,该第二天线的数量可为终端设备天线数量的最高规格。可以理解的是,本申请实施例中信号强度的单位为dBm,以上未示出,但不应理解为对本申请实施例具有限定。
表3
信号强度(dBm) 满足的业务
>-115 满足小区驻留业务
>=-110 满足打电话要求
>=-108 满足上网要求
>=-90 可满足所有业务要求
其中,在终端设备通过第一天线所获取的信号强度大于第二阈值时,则说明通过第一天线所获得的信号增益能够满足当前的业务需求,则终端设备可以降低信号增益,即根据待降低的信号增益以及第一天线确定第二天线。举例来说,终端设备当前正在打电话,信号强度为大于等于-110。而终端设备通过第一天线获得的信号强度为-108,则从节省功耗角度,该终端设备可以降低信号增益,如降低3db,则该终端设备便可以根据3db以及第一天线确定第二天线。可理解,表3所示出的例子仅为示例,不应理解为对本申请实施例的限定。
可理解的是,上述根据待调整的信号增益以及第一天线确定第二天线的具体实现方式, 可以参考前述实施例的描述,这里不再详述。
具体地,本申请实施例还提供了一种如何确定待调整的信号增益的方法,如下所示:
上述工作场景为未驻留在服务小区,上述信号强度信息用于指示该终端设备在目标方位上搜索到的信号强度,上述根据上述信号强度信息确定待调整的信号增益包括:
根据上述信号强度确定待增加的信号增益作为上述待调整的信号增益,上述第二天线形成的波束指向上述目标方位,上述第二天线的数量大于上述第一天线的数量。
本申请实施例中,终端设备在目标方位上搜索到信号强度时,则可能是由于终端设备获得的信号增益不够,而导致搜索遗漏,因此可以增加信号增益,如增加天线的数量,从而再通过第二天线获取信号强度。其中,终端设备可以增加3db的信号增益,也可以增加6db的信号增益。从而根据待增加的信号增益以及第一天线来确定第二天线。可理解,第二天线形成的波束指向目标方位,从而可以使得该第二天线在目标方位上有针对性地获取信号强度。其中,根据待增加的信号增益以及第一天线确定第二天线的具体实现方式,可以参考前述实施例,这里不再详述。
在终端设备未驻留服务小区的情况下,第一天线的数量小于第二天线的数量。在终端设备上电开机初始搜索服务小区的情况下,该终端设备可以先通过第一天线来进行全方位的搜索,由于第一天线的数量小于第二天线的数量,因此,第一天线形成的波束的宽度大于第二天线形成的波束的宽度,这样在终端设备初始搜索时,便可以快速地完成一轮全方位搜索过程。如果搜索失败,且在目标方位上搜索到信号强度,则可以增加天线的数量,使用第二天线进行搜索。同样地,在终端设备驻留服务小区的波束跟踪丢失时,该终端设备也可以先通过第一天线进行搜索,若搜索失败,且在目标方位上搜索到信号强度,则可以通过第二天线进行搜索。可理解,第一天线和第二天线可以为定向天线,以及第一天线和第二天线之间存在数量上的区别,但是第一天线和第二天线在类型和/或功能上是否完全一致,本申请实施例不作限定。
具体地,本申请实施例中,上述工作场景包括:
初始搜索上述服务小区;或者
上述服务小区的波束跟踪丢失;或者
小区切换且未接入上述服务小区。
其中,在终端设备进行小区切换,且未接入服务小区的场景,可以包括:终端设备位置变换时,需重新选择服务小区,且未接入新的服务小区的场景;或者,也可以包括:终端设备当前的服务小区的信号强度信息变差,需重新选择服务小区,且未接入新的服务小区的场景。在上述情况下,在终端设备搜索失败时,则终端设备可以将天线由第三天线切换为第四天线。
本申请实施例中,在工作场景为未驻留在服务小区时,还可以通过设置阈值来确定是否需要调整信号增益。如下所示:
上述工作场景为未驻留在服务小区,上述信号强度信息用于指示该终端设备在目标方位上搜索到的信号强度,上述根据上述信号强度信息确定待调整的信号增益包括:
在上述信号强度大于第三阈值的情况下,根据上述信号强度确定待增加的信号增益作为上述待调整的信号增益,上述第二天线形成的波束指向上述目标方位,上述第二天线的 数量大于上述第一天线的数量。
其中,信号强度是否超过第三阈值,可以由接收的信号强度指示(received signal strength indication,RSSI)来衡量,在终端设备检测到目标方位的RSSI较强(大于第三阈值)的情况下,但是没有接收到波束搜索需要的信息(即未搜索到服务小区的波束)时,则可能是由于获得的信号增益不够而导致无法搜索成功,因此,通过增加天线的数量,可以增加接收增益。
本申请实施例中,通过设置第三阈值,可以进一步增加信号增益不够的可能性,从而使得终端设备通过增加信号增益而搜索到服务小区的可能性增大,进而提高终端设备的搜索效率。可以理解的是,本申请实施例对于目标方位不作唯一性限定,该目标方位可以为任意检测到信号强度超过第三阈值的方位。本申请实施例中,第三阈值可以预先预置于终端设备中,如终端设备出厂时设置等。
603、为上述第二天线的移相器配置码本。
具体地,上述为上述第二天线的移相器配置码本包括:
依据方向包含关系为上述第二天线的移相器配置码本,上述方向包含关系中包含上述第一天线形成的波束与上述第二天线形成的波束在空间覆盖面上的包含关系。
本申请实施例中,第一天线形成的波束与第二天线形成的波束在空间覆盖范围上存在对应关系,如图5所示,若第二天线对应图5中的条纹色波束对应的天线,第一天线对应图5中无颜色波束对应的天线,则可以看出,第一天线形成的波束在空间覆盖面上包含了第二天线形成的波束。
本申请实施例中,在终端设备已驻留服务小区的情况下,在终端设备确定第二天线之后,就需要从第一天线切换为第二天线,其中,第二天线的数量大于第一天线的数量。在终端设备由第一天线切换为第二天线的过程中,该终端设备需要根据第一天线形成的波束方向为第二天线配置码本,由于第一天线形成的波束的宽度与第二天线形成的波束的宽度不同,即该终端设备需要在第一天线形成的波束的覆盖宽度范围内部进行细扫对准,从而确定第二天线形成的波束的具体方位。如图5所示,第一天线形成的波束为无颜色波束,第二天线形成的波束则可以在第一天线形成的波束的覆盖范围内进行细扫对准,从而来确定第二天线形成的波束的最终方位。
可理解,在为第二天线的移相器配置码本之后,该终端设备通过第二天线获取到服务小区所提供的信号强度后,该信号强度大于第二阈值,则该终端设备可以根据上述所提供的具体实现方式来确定第三天线,其中,该第三天线的数量小于第二天线的数量。该情况下,终端设备需要从第二天线切换为第三天线,而由第二天线切换为第三天线的过程中,该终端设备可根据方向包含关系直接为第二天线配置码本。可理解,上述第三天线可以与第一天线相同,也可能不同,本申请实施例不作限定。可理解,终端设备未驻留服务小区场景下的码本配置方法,可以参考前述实施例,这里不再详述。
604、通过上述第二天线接收信号。
本申请实施例中,依据终端设备所在工作场景的信号强度信息的不同,来确定第二天线,也就是说,该终端设备所在工作场景的信号强度信息对应了该终端设备的天线中的第二天线;实施本申请实施例,终端设备可以依据自身的需求,开关不同数量的天线,从而 达到动态改变天线数量的目的,不仅能够满足终端设备的收发性能,而且尽最大可能地优化了终端设备的射频前端功耗。
以下将结合具体场景来描述本申请实施例所提供的信号接收方法。
场景一、
参见图7,图7是本申请实施例提供的一种信号接收方法的具体场景示意图,该场景是在终端设备未驻留服务小区的情况下示出的例子,如图7所示,该信号接收方法至少包括:
701、终端设备上电开机初始搜索需驻留小区的波束或驻留小区的波束跟踪丢失。
702、使用第一天线进行搜索。
在终端设备上电开机初始搜索需驻留小区的波束或驻留小区的波束跟踪丢失时,因天线个数少,此时使用少量的天线以形成较宽的波束可以快速完成全方位覆盖的一轮搜索过程。
703、当搜索成功,可继续使用第一天线进行后续通信过程的处理,如使用第一天线接收信号。
可理解,在搜索成功后,该终端设备便测量服务小区的质量,这时,该终端设备便可以利用本申请提供的当终端设备接入服务小区时的方法来实现,这里不再一一详述。
704、当搜索失败(可能因信号增益不够而导致搜索遗漏或确实没有信号),则检测目标方位的RSSI是否大于第三阈值;若是,则执行步骤705;否则执行步骤706。
705、增加天线数量,使用第二天线进行搜索;其中,该第二天线形成的波束指向目标方位。
706、增加天线数量,使用第四天线再次启动搜索;可以理解的是,步骤706中的第四天线可以与步骤705中的第二天线不同,至少可以在形成的波束方向上可以不同。如第二天线形成的波束指向目标方位,而第四天线形成的波束可以指向其他方位,从而通过该第四天线搜索其他方位上的信号强度。
707、若仍未搜索成功,则再次增加天线的数量进行搜索,直到天线数量增加到终端设备最高规格为止。
本申请实施例中,终端设备通过支持能够动态改变天线的天线阵列,可以在使用第一数量的天线,即第一天线搜索服务小区不成功,但搜索到目标方位上的信号强度时,确定第二天线,通过第二天线搜索服务小区。实施本实施例,在满足终端设备的收发性能的同时,还能够最大化地优化射频前端器件。
场景二、
参见图8,图8是本申请实施例提供的另一种信号接收方法的具体场景示意图,该场景是在终端设备已驻留服务小区的情况下示出的例子,如图8所示,该信号接收方法至少包括:
801、通过第一天线获取服务小区的信号强度,即终端设备处于正常工作场景(包括待机态和连接态)时,按协议要求会周期性测量服务小区的信号强度。
其中,待机态可表示终端设备已接入服务小区,即已该服务小区中的网络设备(如基站)进行连接,但是并没有与该网络设备进行数据(或信令)交互。而连接态则表示终端设备与该网络设备进行了数据(或信令)交互。
802、检测信号强度是否小于第一阈值,若是,则执行803;否则,执行804。
803、确定待增加的信号增益,以及根据表2和第一天线确定第二天线。
804、检测信号强度是否大于第二阈值,若是,则执行805;否则,执行806。
805、确定待降低的信号增益,以及根据表2和第一天线确定第二天线。
806、继续使用第一天线进行后续通信过程的处理,如使用第一天线接收信号。
807、在确定第二天线后,该终端设备便可以通过第二天线获取服务小区的信号强度。
本申请实施例中,终端设备在运行过程中,可以根据信号强度来动态改变天线的数量,信号强度较好时,尽可能使用少量的天线以降低功耗。而在信号强度较差时,使用多数量的天线以获得高的信号增益。
以上为本申请实施例示出的信号接收方法,以下将具体介绍本申请实施例中的信号接收装置。可以理解的是,该信号接收装置是以终端设备为例示出的,如图9所示,该终端设备至少包括:
获取单元901,用于通过第一天线获取上述终端设备所在工作场景的信号强度信息;上述第一天线包含第一数量的天线;
确定单元902,用于依据上述信号强度信息确定第二天线;其中,上述第二天线为终端设备中的部分或全部天线,上述第二天线包含第二数量的天线,上述第一数量与上述第二数量不同;
配置单元903,用于为上述第二天线的移相器配置码本;
接收单元904,用于通过上述第二天线接收信号。
实施本申请实施例,终端设备可以依据自身的需求,开关不同数量的天线,从而达到动态改变波束覆盖宽度和增益的目的,不仅能够满足终端设备的收发性能,而且尽最大可能地优化了终端设备的射频前端功耗。
具体地,上述确定单元902,具体用于根据上述信号强度信息确定待调整的信号增益;根据上述待调整的信号增益和上述第一天线确定上述第二天线。
具体地,上述工作场景为驻留在服务小区,上述信号强度信息用于指示上述服务小区提供的信号强度,上述确定单元902,具体用于在上述信号强度小于第一阈值时,确定待增加的信号增益作为上述待调整的信号增益,上述第二天线的数量大于上述第一天线的数量;以及在上述信号强度大于第二阈值时,确定待降低的信号增益作为上述待调整的信号增益,上述第二天线的数量小于上述第一天线的数量。
具体地,上述工作场景为未驻留在服务小区,上述信号强度信息永固指示上述终端设备在目标方位上搜索到的信号强度,上述确定单元902,具体用于根据上述信号强度确定待增加的信号增益作为上述待调整的信号增益,上述第二天线形成的波束指向上述目标方位,上述第二天线的数量大于上述第一天线的数量。
具体地,上述工作场景包括:初始搜索上述服务小区;或者上述服务小区的波束跟踪 丢失;或者小区切换且未接入上述服务小区。
具体地,上述配置单元903,具体用于依据方向包含关系为上述第二天线的移相器配置码本,上述方向包含关系中包含有上述第一天线形成的波束与上述第二天线形成的波束在空间覆盖面上的包含关系。
其中,图9所示的终端设备可以用于执行图6至图8所示的信号接收方法,各个单元的具体实现,这里不再详述。
以信号接收装置为终端设备为例,图10示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图10中,终端设备以手机1000作为例子。该终端设备可用于执行图6至图8所示的信号接收方法中的终端设备的操作,或者,该终端设备也可以执行图9所示的方法中终端设备的操作。
为了便于说明,图10仅示出了终端设备的主要部件。如图10所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。例如该处理器可用于支持终端设备执行图6至图8所描述的方法。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。例如,可以接收信号等。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。可以理解的是,本申请实施例中的天线阵列可为如图4所示的天线阵列。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为便于说明,图10中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图10中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。上述基带处理器也可以表述为基带处理电路或者基带处理芯片。上述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
在一个实施例中,处理器,可用于通过第一天线获取终端设备所在工作场景的信号强度信息;处理器,用于依据上述信号强度信息确定第二天线,以及为上述第二天线的移相器配置码本;收发器还用于接收信号。在另一个实施例中,处理器具体用于根据上述信号强度信息确定待调整的信号增益;根据上述待调整的信号增益和上述第一天线确定上述第二天线。处理器,具体用于在上述信号强度小于第一阈值时,确定待增加的信号增益作为上述待调整的信号增益,上述第二天线的数量大于上述第一天线的数量;在上述信号强度大于第二阈值时,确定待降低的信号增益作为上述待调整的信号增益,上述第二天线的数量小于上述第一天线的数量。在又一个实施例中,处理器,具体用于根据上述信号强度确定待增加的信号增益作为上述待调整的信号增益,上述第二天线形成的波束指向上述目标方位,上述第二天线的数量大于上述第一天线的数量。在又一个实施例中,处理器,具体用于依据方向包含关系为上述第二天线的移相器配置码本,上述方向包含关系中包含上述第一天线形成的波束与上述第二天线形成的波束在空间覆盖面上的包含关系。可理解的是,本申请实施例中的处理器和收发器的具体实现方式还可以参考前述实施例的描述,这里不再赘述。可理解的是,在具体实现中,获取信号强度信息,也可理解为收发器,通过第一天线获取终端设备所在工作场景的信号强度信息。本申请实施例对于获取信号强度信息由收发器获取还是由处理器获取不作唯一性限定。
示例性的,在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元1001),将具有处理功能的处理器视为终端设备的处理单元1002。如图10所示,终端设备包括收发单元1001和处理单元1002。收发单元也可以称为收发器、收发机、收发装置等等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。
例如,在一个实施例中,收发单元1001用于执行图6所示实施例中的步骤604(如通过第二天线接收信号);处理单元1002用于执行图6所示实施例中的步骤602。又例如,在一个实施例中,处理单元1002还可用于执行图9所示的确定单元902和配置单元903所执行的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:只读存储器(read-only memory,ROM)或随机存储存储器(random access memory,RAM)、磁碟或者光盘等各种可存储程序代码的介质。

Claims (15)

  1. 一种信号接收方法,其特征在于,包括:
    通过第一天线获取信号接收装置所在工作场景的信号强度信息,所述第一天线包含第一数量的天线;
    根据所述信号强度信息确定第二天线;其中,所述第二天线为所述信号接收装置中的部分或全部天线,所述第二天线包含第二数量的天线,所述第一数量与所述第二数量不同;
    为所述第二天线的移相器配置码本;
    通过所述第二天线接收信号。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述信号强度信息确定第二天线包括:
    根据所述信号强度信息确定待调整的信号增益;
    根据所述待调整的信号增益和所述第一天线确定所述第二天线。
  3. 根据权利要求2所述的方法,其特征在于,所述工作场景为驻留在服务小区,所述信号强度信息用于指示所述服务小区所提供的信号强度,
    所述根据所述信号强度信息确定待调整的信号增益包括:
    在所述信号强度小于第一阈值时,确定待增加的信号增益作为所述待调整的信号增益,所述第二天线的数量大于所述第一天线的数量;
    在所述信号强度大于第二阈值时,确定待降低的信号增益作为所述待调整的信号增益,所述第二天线的数量小于所述第一天线的数量。
  4. 根据权利要求2所述的方法,其特征在于,所述工作场景为未驻留在服务小区,所述信号强度信息用于指示所述信号接收装置在目标方位上搜索到的信号强度,
    所述根据所述信号强度信息确定待调整的信号增益包括:
    根据所述信号强度确定待增加的信号增益作为所述待调整的信号增益,所述第二天线形成的波束指向所述目标方位,所述第二天线的数量大于所述第一天线的数量。
  5. 根据权利要求4所述的方法,其特征在于,所述工作场景包括:
    初始搜索所述服务小区;或者
    所述服务小区的波束跟踪丢失;或者
    小区切换且未接入所述服务小区。
  6. 根据权利要求1至5任意一项所述的方法,其特征在于,所述为所述第二天线的移相器配置码本包括:
    依据方向包含关系为所述第二天线的移相器配置码本,所述方向包含关系中包含所述第一天线形成的波束与所述第二天线形成的波束在空间覆盖面上的包含关系。
  7. 一种信号接收装置,其特征在于,包括:
    获取单元,用于通过第一天线获取所述信号接收装置所在工作场景的信号强度信息,所述第一天线包含第一数量的天线;
    确定单元,用于依据所述信号强度信息确定第二天线;其中,所述第二天线为所述信号接收装置中的部分或全部天线,所述第二天线包含第二数量的天线,所述第一数量与所述第二数量不同;
    配置单元,用于为所述第二天线的移相器配置码本;
    接收单元,用于通过所述第二天线接收信号。
  8. 根据权利要求7所述的信号接收装置,其特征在于,
    所述确定单元,具体用于根据所述信号强度信息确定待调整的信号增益;根据所述待调整的信号增益和所述第一天线确定所述第二天线。
  9. 根据权利要求8所述的信号接收装置,其特征在于,所述工作场景为驻留在服务小区,所述信号强度信息用于指示所述服务小区所提供的信号强度,
    所述确定单元,具体用于在所述信号强度小于第一阈值时,确定待增加的信号增益作为所述待调整的信号增益,所述第二天线的数量大于所述第一天线的数量;
    所述确定单元,具体用于在所述信号强度大于第二阈值时,确定待降低的信号增益作为所述待调整的信号增益,所述第二天线的数量小于所述第一天线的数量。
  10. 根据权利要求8所述的信号接收装置,其特征在于,所述工作场景为未驻留在服务小区,所述信号强度信息用于指示所述信号接收装置在目标方位上搜索到的信号强度,
    所述确定单元,具体用于根据所述信号强度确定待增加的信号增益作为所述待调整的信号增益,所述第二天线形成的波束指向所述目标方位,所述第二天线的数量大于所述第一天线的数量。
  11. 根据权利要求10所述的信号接收装置,其特征在于,所述工作场景包括:
    初始搜索所述服务小区;或者
    所述服务小区的波束跟踪丢失;或者
    小区切换且未接入所述服务小区。
  12. 根据权利要求7至11任意一项所述的信号接收装置,其特征在于,
    所述配置单元,具体用于依据方向包含关系为所述第二天线的移相器配置码本,所述方向包含关系中包含有所述第一天线形成的波束与所述第二天线形成的波束在空间覆盖面上的包含关系。
  13. 一种信号接收装置,其特征在于,所述信号接收装置包括处理器、存储器和收发 器;其中,所述处理器、所述存储器和所述收发器通过线路互联,所述存储器存储有程序指令;所述程序指令被所述处理器执行时,
    使所述处理器通过第一天线获取所述信号接收装置所在工作场景的信号强度信息;根据所述信号强度信息确定第二天线;以及为所述第二天线的移相器配置码本;
    所述收发器,用于通过所述第二天线接收信号;其中,所述第一天线包含第一数量的天线,所述第二天线包含第二数量的天线,所述第一数量与所述第二数量不同。
  14. 根据权利要求13所述的信号接收装置,其特征在于,所述程序指令被所述处理器执行时,使所述处理器执行如权利要求2至4以及权利要求6任意一项所述的方法。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被信号接收装置的处理器执行时,使所述处理器执行权利要求1至6任意一项所述的方法。
PCT/CN2019/076843 2018-03-22 2019-03-04 信号接收方法及信号接收装置 WO2019179305A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810242321.0A CN110300443B (zh) 2018-03-22 2018-03-22 信号接收方法及信号接收装置
CN201810242321.0 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019179305A1 true WO2019179305A1 (zh) 2019-09-26

Family

ID=67988148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076843 WO2019179305A1 (zh) 2018-03-22 2019-03-04 信号接收方法及信号接收装置

Country Status (2)

Country Link
CN (1) CN110300443B (zh)
WO (1) WO2019179305A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11503526B2 (en) 2020-09-15 2022-11-15 International Business Machines Corporation Predictive communication compensation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788265B (zh) * 2019-11-11 2024-02-02 浙江宇视科技有限公司 录像数据保存方法、装置、图像采集设备及可读存储介质
CN111029772B (zh) * 2019-12-24 2021-10-22 维沃移动通信有限公司 天线电路、电子设备及天线性能的调整方法
CN111668606B (zh) * 2020-06-10 2021-12-24 维沃移动通信有限公司 天线配置信息的处理方法、装置和电子设备
CN111885689B (zh) * 2020-07-30 2024-04-19 广东小天才科技有限公司 一种天线控制方法、装置及终端设备
CN112152689B (zh) * 2020-09-29 2023-12-01 维沃移动通信有限公司 波束发送控制方法、装置及发送端
CN116722881B (zh) * 2022-09-20 2024-07-12 荣耀终端有限公司 天线调谐方法和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1596513A (zh) * 2001-09-28 2005-03-16 阿雷伊通讯有限公司 用于在远程单元中提供空间处理的方法和设备
US20130176869A1 (en) * 2012-01-11 2013-07-11 QUALCOMM ATHEROS Incorporated Reducing power consumption in a mobile communication device in response to motion detection
CN103503333A (zh) * 2011-05-02 2014-01-08 苹果公司 具有空闲模式天线切换的电子设备
CN104219377A (zh) * 2014-06-30 2014-12-17 华为技术有限公司 移动终端的天线的控制方法和移动终端
CN105897317A (zh) * 2015-02-13 2016-08-24 三星电子株式会社 通过选择性地使用多个天线来执行通信的电子装置和方法
CN107707288A (zh) * 2017-09-01 2018-02-16 珠海格力电器股份有限公司 一种数据传输方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1596513A (zh) * 2001-09-28 2005-03-16 阿雷伊通讯有限公司 用于在远程单元中提供空间处理的方法和设备
CN103503333A (zh) * 2011-05-02 2014-01-08 苹果公司 具有空闲模式天线切换的电子设备
US20130176869A1 (en) * 2012-01-11 2013-07-11 QUALCOMM ATHEROS Incorporated Reducing power consumption in a mobile communication device in response to motion detection
CN104219377A (zh) * 2014-06-30 2014-12-17 华为技术有限公司 移动终端的天线的控制方法和移动终端
CN105897317A (zh) * 2015-02-13 2016-08-24 三星电子株式会社 通过选择性地使用多个天线来执行通信的电子装置和方法
CN107707288A (zh) * 2017-09-01 2018-02-16 珠海格力电器股份有限公司 一种数据传输方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11503526B2 (en) 2020-09-15 2022-11-15 International Business Machines Corporation Predictive communication compensation

Also Published As

Publication number Publication date
CN110300443B (zh) 2021-08-20
CN110300443A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2019179305A1 (zh) 信号接收方法及信号接收装置
CN110959259B (zh) 自适应天线配置
US9882689B2 (en) Apparatus and method for base station cooperative communication in wireless communication system
US11108477B2 (en) Method and apparatus for determining broadcast beam weighted value in wireless communications system
CN111526565B (zh) 一种参考信号管理方法、装置及系统
WO2021008495A1 (zh) 波束配置方法和装置
WO2022012596A1 (zh) 终端信息获取方法、终端及网络侧设备
WO2018095305A1 (zh) 一种波束训练方法及装置
WO2020125720A1 (zh) 天线系统、移动终端及天线系统的切换方法
US10249961B2 (en) Transmit device and method thereof
WO2014056162A1 (zh) 通过分布式天线阵列系统进行通信的方法及阵列系统
WO2018103297A1 (zh) 通信波束选择方法、装置及终端
CN109842890B (zh) 信号测量方法、相关装置及系统
CN116076025A (zh) 电子装置和用于通过电子装置设置发送信号的路径的方法
CN109995408B (zh) 一种天线系统及网络设备
Umehira et al. Feasibility of RSSI based access network detection for multi-band WLAN using 2.4/5GHz and 60GHz
US11303334B2 (en) Communication method and related device
EP4329213A1 (en) Apparatus, method, program products for maximizing desired multi-transmission point signal to inter-layer-group-interference via ue beam control
CN113302955B (zh) 无线电信道快速扫描
US10693545B2 (en) Different sector rotation speeds for post-amble processing of a beam forming packet
CN111727568A (zh) 对无线通信系统中的装置进行操作
WO2019061294A1 (zh) 接入点设备及通信方法
WO2020182120A1 (en) Method and apparatus for positioning
US20200137590A1 (en) Considerations in wireless networks that support beam steering mobile devices
CN113225111A (zh) 一种波束形成的方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770504

Country of ref document: EP

Kind code of ref document: A1