WO2020125720A1 - 天线系统、移动终端及天线系统的切换方法 - Google Patents

天线系统、移动终端及天线系统的切换方法 Download PDF

Info

Publication number
WO2020125720A1
WO2020125720A1 PCT/CN2019/126682 CN2019126682W WO2020125720A1 WO 2020125720 A1 WO2020125720 A1 WO 2020125720A1 CN 2019126682 W CN2019126682 W CN 2019126682W WO 2020125720 A1 WO2020125720 A1 WO 2020125720A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
switch
antenna system
radio frequency
unit
Prior art date
Application number
PCT/CN2019/126682
Other languages
English (en)
French (fr)
Inventor
钟永卫
顾江波
周昌文
Original Assignee
深圳市万普拉斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市万普拉斯科技有限公司 filed Critical 深圳市万普拉斯科技有限公司
Priority to EP19901098.4A priority Critical patent/EP3902062A4/en
Publication of WO2020125720A1 publication Critical patent/WO2020125720A1/zh
Priority to US17/351,234 priority patent/US20210313679A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/247Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching by switching different parts of a primary active element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/242Circumferential scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2682Time delay steered arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band

Definitions

  • the present application relates to the technical field of antennas, and in particular, to an antenna system, a mobile terminal, and an antenna system switching method.
  • the antenna is a device installed on the mobile phone to receive and transmit signals from the transceiver.
  • the introduction of MIMO technology, beamforming technology, carrier aggregation technology and 5G technology has brought new ideas to the design of antennas. Challenges, especially mobile phone antennas. Mobile phone antennas need to be in a very narrow clear space to achieve higher antenna efficiency and a very wide bandwidth as much as possible.
  • the fifth generation (5G) communication technology includes the millimeter wave band (24250MHZ ⁇ 52600MHZ), which may be extended to higher frequency bands.
  • the antenna array is used in the 5G millimeter wave band In order to meet the requirements of 3GPP standards for peak effective omnidirectional transmit power (Peak Effective Isotropic Radiated Power, Peak EIRP) and space coverage.
  • beam scanning technology is used to improve the spatial coverage of beams.
  • the beam scanning technology refers to the algorithm strategy and related hardware architecture of the antenna system with beam scanning capability to control the beam pointing, and is the key technology for the antenna array to realize the beam scanning.
  • Beam scanning technology directly affects beam coverage, response time, and multi-target capabilities. At the same time, it puts forward corresponding requirements for hardware, and therefore also affects hardware costs.
  • the purpose of the embodiments of the present application is to provide an antenna system, a mobile terminal and an antenna system switching method, so as to solve the deficiencies of the prior art.
  • an antenna system includes:
  • the switch is used to switch the connection state of the multiple antenna units, so that the antenna unit in the connected state generates a beam to scan in space.
  • a mobile terminal includes a radio frequency processor and the above-mentioned antenna system;
  • the radio frequency processor is used to control the switch to switch the connection state of the plurality of antenna units according to the radio frequency signal, so that the antenna unit in the connected state generates a beam to scan in space.
  • a method for switching an antenna system is provided, which is applied to the mobile terminal described above, and the method includes:
  • the switching switch is controlled to switch the connection state of the plurality of antenna units according to the radio frequency signal, so that the antenna unit in the connected state generates a beam to scan in space.
  • a switching device for an antenna system which is applied to the above mobile terminal, and the device includes:
  • Acquisition module for acquiring radio frequency signals
  • the switching module is configured to control the switching switch to switch the connection state of the plurality of antenna units according to the radio frequency signal, so that the antenna unit in the connected state generates a beam to scan in space.
  • a computer-readable storage medium which stores the above-mentioned antenna system switching method.
  • FIG. 5 shows a schematic diagram of a cumulative distribution curve of EIRP using a phase-shifting mode for beam scanning provided by an embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of an antenna system provided by a fourth embodiment of the present application.
  • FIG. 9 shows a schematic structural diagram of a mobile terminal provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a method for switching an antenna system according to an embodiment of the present application.
  • FIG. 11 shows a schematic structural diagram of a switching device of an antenna system provided by an embodiment of the present application.
  • 10-antenna system 11-antenna unit; 111-antenna; 1111-dipole antenna; 1112-patch antenna; 112-antenna array; 12-switch; 121-sub-switch; 13-control unit;
  • 500-antenna system switching device 510-acquisition module; 520-switching module.
  • the antenna system 10 includes multiple antenna elements 11 and changeover switches 12.
  • the switch 12 is used to switch the connection state of the plurality of antenna units 11 so that the antenna unit 11 in the connected state generates a beam and performs beam scanning in space.
  • a switch 12 is added to the antenna system 10, all antenna units 11 are electrically connected to the switch 12, and the switch 12 is electrically connected to the processor.
  • the switch 12 is controlled to close the branch corresponding to an antenna unit 11 to realize the connection between the radio frequency processor and the antenna unit 11 so that the antenna unit 11 in the connected state generates a beam and performs in space Beam scanning to obtain the transmitted electromagnetic wave signal.
  • the switch 12 is closed, the electrical connection between the radio frequency processor and an antenna unit 11 can be realized, and the connection between the other antenna units 11 and the radio frequency processor is disconnected, so that the time-sharing work of all the antenna units 11 can be realized and improved.
  • the beam scanning speed reduces the beam scanning period.
  • the antenna unit 11 may be a single antenna and/or an antenna array composed of multiple antennas.
  • the antenna may be a patch antenna or a dipole antenna; the antenna array may be a patch antenna array or a dipole antenna array.
  • the switch 12 may be a single-pole N-throw switch, where N depends on the number of antenna units 11. Each time the connection state of an antenna unit 11 is switched by the switch 12, the connected antenna unit 11 is connected to the RF processor, and the connection between the other antenna unit 11 and the RF processor is disconnected, so that the connected antenna unit 11 generates a beam Scan in space.
  • the antenna system 10 may further include a plurality of switch switches 12, each antenna unit 11 corresponds to a switch switch 12, the switch switch 12 is a single-pole single-throw switch, and each switch switch 12 controls its corresponding antenna The communication between the unit 11 and the radio frequency processor.
  • the RF processor controls the corresponding switch 12 to close according to the RF signal, so that the antenna unit 11 corresponding to the switch 12 and the RF processor are connected, so that the connected antenna unit 11 forms a beam, so that Scanning electromagnetic wave signal.
  • the switch 12 may be an independent switching device, or a switching device in other components, or a sufficient combination of the above possibilities.
  • the antenna system 10 further includes a control unit 13, the input terminal of the control unit 13 is electrically connected to the output terminal of the radio frequency processor, and the output terminal of the control unit 13 is connected to the switch 12 The input is electrically connected.
  • the control unit 13 controls the switch 12 to switch the connection state of the antenna unit 11 according to the radio frequency signal, so that the antenna in the connected state Unit 11 generates a beam.
  • control unit 13 controls the switch 12 to switch the connection state of the antenna unit 11 according to a preset time interval.
  • control unit 13 controls the switch 12 to switch the connection state of the connected antenna unit 11 in a time-sharing manner according to the received radio frequency signal and a predetermined time interval, so as to reduce the phase shifter and power division in the feed network
  • the use of components such as devices accelerates the scan cycle, improves scan response time, and improves battery life.
  • the predetermined time interval is 0.1 ms.
  • the control unit 13 can first control the switch 12 to switch the connection state of the antenna unit A so that the antenna unit A is in the connected state and the emitted beam is scanned in space; after the antenna unit A scans for 0.1 ms, it controls The unit 13 controls the switch 12 to switch the connection state of the antenna unit B, so that the antenna unit B is connected and the emitted beam is scanned in space; after the antenna unit B scans for 0.1 ms, the control unit 13 controls the switch 12 to switch the antenna unit C The connection state of the antenna unit C is connected and the emitted beam is scanned in space; after the antenna unit C scans for 0.1 ms, the control unit 13 controls the switch 12 to switch the connection state of the antenna unit D so that the antenna unit D is connected The status and emitted beams are scanned in space.
  • the control unit 13 controls the switch 12 to switch the connection state of the antenna unit A, so that the antenna unit A is in the connected state and sends out The beam is scanned in space; after the antenna unit A scans for 2 ms, the control unit 13 controls the switch 12 to switch the connection state of the antenna unit B, so that the antenna unit B is in the connected state and the emitted beam is scanned in space; in the antenna unit B After scanning for 3 ms, the control unit 13 controls the switch 12 to switch the connection state of the antenna unit C, so that the antenna unit C is in the connected state and the emitted beam is scanned in space; after the antenna unit C scans for 1 ms, the control unit 13 controls the switch 12 Switch the connection state of the antenna unit D so that the antenna unit D is in the connected state and the emitted beam is scanned in space.
  • the antenna system 10 includes (Q+1) antenna elements 11, wherein the (Q+1) antenna elements 11 are composed of Q antennas 111 and an antenna array 112,
  • the antenna array 112 may include M antennas.
  • the antenna array 112 does not have a beam scanning capability, that is, the antenna array 112 can only generate one beam.
  • the antenna 111 may be a dipole antenna or a patch antenna.
  • Each beam in the antenna system 10 is switched by the switch 12 to replace the phase shifting and amplitude weighting for beam scanning, which has the advantages of fast beam scanning speed, low hardware cost and small occupied area.
  • the number of each branch of the switch 12 is the number of the antenna unit 11.
  • the switch 12 may be a single-pole multi-throw switch.
  • the single-pole multi-throw switch includes Q+1 branches, each The branch corresponds to one antenna 111 or antenna array 112, that is, the single-pole multi-throw switch is closed each time to put the antenna 111 or antenna array 112 of one branch in a connected state.
  • the position and distribution of the antenna unit 11 and the changeover switch 12 are not limited to the structure shown in FIG. 3, and can be adjusted according to the device distribution of the antenna system 10.
  • the four patch antennas 1112 are connected by a feeding structure to form an antenna array E
  • the four dipole antennas 1111 are connected by a feeding structure to form an antenna array F, which is used to improve the Peak EIRP (Peak Effective) of the antenna system Isotropic Radiated Power, peak effective omnidirectional transmit power).
  • the phase-shifting method is used for beam scanning, if the phase-shifting accuracy is 3 bits, there are 16 beams in total, at least 4 channels with phase-shifting function and 4 1P2T (single pole double throw) switches are required, or 8 Channel with phase shift function.
  • FIG. 6 it is a schematic diagram of an EIRP CDF that uses a switching method for beam scanning, where the abscissa is the antenna gain and the ordinate is the cumulative distribution curve of the antenna gain. Peak EIRP is 31.5dB, and the value of point B (23.7, 50.64) at 50% of EIRP CDF is 23.7dB.
  • the radiation performance of the antenna system is basically the same through the above two methods of phase shifting and switching, so this solution can reduce the cost and hardware size while ensuring the radiation performance of the antenna system 10 To shorten the beam scanning period.
  • the antenna system 10 includes (Q+1) antenna elements 11, wherein the (Q+1) antenna elements 11 are composed of Q antennas 111 and an antenna array 112,
  • the antenna array 112 may include M antennas 111.
  • the antenna array 112 has a beam scanning capability, that is, the antenna array 112 may generate multiple beams.
  • the antenna array 112 with beam scanning capability may further include a sub-switch 121, which may switch the connection state of the M antennas in the antenna array 112, so that the connected antenna generates a beam In order to control the beam in the antenna array 112, instead of phase shifting and amplitude weighting, beam scanning is performed.
  • the antenna system 10 further includes a sub-switch 121, and the sub-switch 121 is used to switch the multiple antennas 111 included in the antenna array 112 Connected state, so that the antenna 111 in the connected state generates a beam.
  • the single-pole multi-throw switch includes M branches, and each branch corresponds to an antenna 111, that is, all The single-pole multi-throw switch is closed every time to put the antenna 111 of a branch in the connected state.
  • the sub-switch 121 can be a 1PMT (single pole M-throw) switch. Each time the sub-switch 121 is closed, it can make The connection state of one of the M antennas in the antenna array 112.
  • the position and distribution of the antenna 111 and the antenna array 112 are not limited to the structure shown in FIG. 7, and may be determined according to the application requirements of the antenna system 10.
  • all the antennas 111 and the antenna array 112 are connected to the switch 12, and the connection state of the antenna 111 or the antenna array 112 is switched by a switch.
  • the antenna array 112 switches the connection state of all antennas in the antenna array 112 through the sub-switch 121, so that the antenna 111 in the connected state of the antenna array 112 generates a beam, and then performs in space Scanning. After all antennas 111 in the antenna array 112 have been scanned, they are switched to other antennas 111 through the switch 12 to generate other beams.
  • the four patch antennas 1112 are connected by a feeding structure to form an antenna array, which is used to improve the Peak EIRP (Peak Effective Effective Radiated Power of the antenna system) of the antenna system.
  • the patch antenna array has a beam The ability to scan can generate at least one beam.
  • phase-shifting method is used for beam scanning, if the phase-shifting accuracy is 3 bits, as shown in Figure 8, Peak EIRP is 31.5dB, and the value of point C (23.9, 49.22) at 50% of EIRP CDF is 23.9dB.
  • switch 12 and the sub-switch 121 may be independent devices, or switching devices in other devices, or a full combination of the above possibilities.
  • the antenna system 10 may further include devices such as phase shifters and power splitters.
  • the devices such as phase shifters and power splitters may not be used for beam scanning but may be used for beam calibration.
  • the antenna system 10 may also include power amplifiers, filters, couplers, analog-to-digital converters and other devices to work with all the above-mentioned antennas, antenna arrays, switchers, sub-switches, control units, etc. by adjusting After the antenna system is matched, the antenna system can achieve the best antenna performance at a lower cost.
  • the M, N, and Q are all integers greater than 1.
  • the mobile terminal may include a radio frequency processor 20 and the antenna system 10 described above.
  • the radio frequency processor 20 is configured to control the switch to switch the connection state of the plurality of antenna units according to the radio frequency signal, so that the antenna unit in the connected state generates a beam to scan in space.
  • the radio frequency processor 20 may also control the switch to switch the connection state of the multiple antenna units 11 according to a predetermined time interval, and perform the time-sharing operation of the antenna units 11 to reduce the scan period and the feed loss To increase the scanning speed.
  • the mobile terminal may further include components such as a memory, an input unit, a display unit, a photography unit, an audio circuit, a wireless fidelity (WiFi) module, a processor, and a power supply.
  • the memory may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system and at least one function required application program, and the storage data area may store data created according to the use of the mobile terminal;
  • the input unit may include The touch panel and can include other input devices;
  • the display unit can include a display panel; the photography unit is used to collect image information within the imaging range;
  • the audio circuit can provide an audio interface between the user and the mobile terminal;
  • the wireless fidelity module can help the user Send and receive e-mails, browse web pages, and access streaming media.
  • the processor is the control center of the mobile terminal. In addition to the above functions, the processor can also use various interfaces and lines to connect the entire Each part of the mobile terminal performs overall functions of the mobile terminal and processes data by running or executing software programs and/or modules stored in the memory and calling data stored in the memory, thereby performing overall monitoring of the mobile terminal;
  • the power supply can be logically connected to the processor through the power management system, so as to realize the functions of managing charging, discharging, and power consumption management through the power management system.
  • FIG. 9 does not constitute a limitation on the mobile terminal, and may include more or less components than those illustrated, or combine certain components, or arrange different components.
  • FIG. 10 shows a schematic flowchart of a method for switching an antenna system.
  • the switching method of the antenna system is applied to the mobile terminal as described in Embodiment 5.
  • the switching method of the antenna system may include the following steps:
  • step S102 a radio frequency signal is acquired.
  • the radio frequency processor controls the switch to switch to the corresponding antenna unit according to the radio frequency signal, so that the antenna unit in the connected state generates a beam and scans in space.
  • the radio frequency processor may send the radio frequency signal to the control unit, and the control unit controls the switching switch to switch the connection state of all the antenna units in time-sharing according to the radio frequency signal, so that the antenna in the connected state
  • the unit generates a beam and scans in space.
  • the performance of the beam scanning by the phase shift method is basically the same, reduce the cost and the number of beams, and reduce the scanning period. Increase the scan rate.
  • FIG. 11 shows a schematic structural diagram of a switching device of an antenna system.
  • the antenna system switching device 500 corresponds to the antenna system switching method of Embodiment 6. Any options in Embodiment 6 are also applicable to this embodiment, and will not be described in detail here.
  • This embodiment also provides a computer storage medium for storing the computer program used in the above antenna system switching method.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of code that contains one or more of the Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two consecutive blocks can actually be executed substantially in parallel, and sometimes they can also be executed in reverse order, depending on the functions involved.
  • each block in the block diagram and/or flowchart, and a combination of blocks in the block diagram and/or flowchart can use a dedicated hardware-based system that performs the specified function or action To achieve, or can be realized by a combination of dedicated hardware and computer instructions.
  • the functional modules or units in the embodiments of the present application may be integrated together to form an independent part, or each module may exist alone, or two or more modules may be integrated to form an independent part.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a mobile terminal (which may be a smart phone, personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种天线系统、移动终端及天线系统的切换方法,该天线系统包括:切换开关和多个天线单元;所述切换开关用于切换所述多个天线单元的连接状态,以使处于连接状态的所述天线单元产生波束在空间中进行扫描。本申请提供的天线系统、移动终端及天线系统的切换方法,通过切换开关来切换多个天线单元的连接状态,以使处于连接状态的天线单元产生波束从而进行空间扫描,有效减少了移相器等相关部件的使用,减少馈电损耗及波束数量,从而降低成本,减少扫描周期及反应时间。

Description

天线系统、移动终端及天线系统的切换方法
本申请以2018年12月21日提交的申请号为201811574074.0,名称为“天线系统、移动终端及天线系统的切换方法”的中国发明专利申请为基础,并要求其优先权。
技术领域
本申请涉及天线技术领域,具体而言,涉及一种天线系统、移动终端及天线系统的切换方法。
背景技术
天线是安装在手机上用来接收和发射来自收发机的信号的一种装置。随着通信行业的飞速发展,信息传输速率的不断提升,对天线性能的要求越来越高,MIMO技术、波束赋形技术、载波聚合技术及5G技术等的提出,对天线的设计提出了新的挑战,尤其是手机天线。手机天线需要在非常窄的净空中,尽可能实现较高的天线效率及非常宽的带宽。
第五代(5G)通信技术包括了毫米波频段(24250MHZ~52600MHZ),可能会扩展到更高频段,为了克服毫米波频段电磁波传播损耗较高的缺点,天线阵列被用在5G毫米波频段中,以满足3GPP标准对峰值有效全向发射功率(Peak Effective Isotropic Radiated Power,Peak EIRP)和空间覆盖率的要求。
为了克服天线阵列波束较窄的缺点,使用波束扫描技术来提高波束的空间覆盖率。波束扫描技术是指具有波束扫描能力的天线系统控制波束指 向的算法策略及相关的硬件架构,是天线阵列实现波束扫描的关键技术。波束扫描技术直接影响波束覆盖范围、响应时间及多目标能力等性能,同时对硬件提出了相应的要求,因此也影响着硬件成本。
目前的5G毫米波天线模块将天线阵列和射频芯片封装在一起,射频芯片实现波束扫描所需要的馈电功能,即包含功率放大、幅度加权和移相等功能。使用移相和激励幅度加强的方式进行波束扫描,主要存在两个问题:一是移相器等相关部件数量众多,增加了硬件成本和器件所占用的空间面积;二是波束数量较多,波束较窄使得扫描周期较大,反应速度较差,增加耗电量。
发明内容
因此,减少移相器等相关部件的使用、减少波束数量等成为本领域技术人员亟待解决的问题。
鉴于上述问题,本申请实施例的目的在于提供一种天线系统、移动终端及天线系统的切换方法,以解决现有技术的不足。
根据本申请的一个实施方式,提供一种天线系统,该天线系统包括:
切换开关和多个天线单元;
所述切换开关用于切换所述多个天线单元的连接状态,以使处于连接状态的所述天线单元产生波束在空间中进行扫描。
根据本申请的另一个实施方式,提供一种移动终端,该移动终端包括射频处理器及上述的天线系统;
所述射频处理器用于根据射频信号控制所述切换开关切换所述多个天线单元的连接状态,以使处于连接状态的所述天线单元产生波束在空间中进行扫描。
根据本申请的另一个实施方式,提供一种天线系统的切换方法,应用于上述的移动终端,所述方法包括:
获取射频信号;
根据所述射频信号控制所述切换开关切换所述多个天线单元的连接状态,以使处于连接状态的所述天线单元产生波束在空间中进行扫描。
根据本申请的另一个实施方式,提供一种天线系统的切换装置,应用于上述的移动终端,所述装置包括:
获取模块,用于获取射频信号;
切换模块,用于根据所述射频信号控制所述切换开关切换所述多个天线单元的连接状态,以使处于连接状态的所述天线单元产生波束在空间中进行扫描。
根据本申请的再一个实施方式,提供一种计算机可读存储介质,其存储有上述的天线系统的切换方法。
本公开的实施例提供的技术方案可以包括如下有益效果:
本申请实施例中一种天线系统、移动终端及天线系统的切换方法,通过切换开关来切换多个天线单元的连接状态,通过切换的方式代替移相、幅度加权等功能,以使处于连接状态的天线单元产生波束从而进行空间扫描,在与通过移相方式进行波束扫描性能基本一致的情况下,有效减少了移相器等相关部件的使用,减少馈电损耗及波束数量,从而降低成本,减少扫描周期及反应时间。
本申请的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对本申请保护范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本申请第一实施例提供的一种天线系统的结构示意图。
图2示出了本申请第二实施例提供的一种天线系统的结构示意图。
图3示出了本申请第三实施例提供的一种天线系统的结构示意图。
图4示出了本申请实施例提供的一种天线单元的结构示意图。
图5示出了本申请实施例提供的一种使用移相方式进行波束扫描的EIRP的累积分布曲线的示意图。
图6示出了本申请实施例提供的一种使用开关方式进行波束扫描的EIRP的累积分布曲线的示意图。
图7示出了本申请第四实施例提供的一种天线系统的结构示意图。
图8示出了本申请实施例提供的另一种使用移相方式进行波束扫描的EIRP的累积分布曲线的示意图。
图9示出了本申请实施例提供的一种移动终端的结构示意图。
图10示出了本申请实施例提供的一种天线系统的切换方法的流程示意图。
图11示出了本申请实施例提供的一种天线系统的切换装置的结构示意 图。
主要元件符号说明:
10-天线系统;11-天线单元;111-天线;1111-偶极子天线;1112-贴片天线;112-天线阵列;12-切换开关;121-子切换开关;13-控制单元;
20-射频处理器;
500-天线系统的切换装置;510-获取模块;520-切换模块。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
实施例1
如图1所示,该天线系统10包括多个天线单元11和切换开关12。
所述切换开关12用于切换所述多个天线单元11的连接状态,以使处于连接状态的所述天线单元11产生波束,在空间中进行波束扫描。
具体实现时,在天线系统10中增加切换开关12,所有天线单元11和 切换开关12电连接,切换开关12和处理器电连接。根据射频处理器发送的射频信号控制切换开关12闭合某一天线单元11对应的支路,实现射频处理器和该天线单元11的连接,使处于连接状态的天线单元11产生波束,在空间中进行波束扫描,获取传输的电磁波信号。所述切换开关12每一次闭合可实现射频处理器与一天线单元11的电连接,其他天线单元11与射频处理器之间的连接是断开的,实现所有天线单元11的分时工作,提高波束扫描速度,减少波束扫描周期。
进一步地,所述天线单元11可以为单个天线和/或由多个天线组成的天线阵列。
具体地,所述天线可以为贴片天线或偶极子天线等;所述天线阵列可以为贴片天线阵列或偶极子天线阵列等。
进一步地,所述切换开关12可为单刀N掷开关,其中,N取决于天线单元11的数目。每次通过切换开关12切换一天线单元11的连接状态,使连接的天线单元11与射频处理器连接,其他天线单元11与射频处理器之间的连接断开,使连接的天线单元11产生波束在空间中进行扫描。
进一步地,所述天线系统10中还可以包括多个切换开关12,每一天线单元11均对应一切换开关12,该切换开关12为单刀单掷开关,每一切换开关12控制其对应的天线单元11与射频处理器之间的连通。
具体实现时,射频处理器根据射频信号控制对应的切换开关12闭合,使该切换开关12对应的天线单元11与射频处理器之间进行连接,以使连接的天线单元11形成波束,从而在空间中扫描电磁波信号。
进一步地,所述切换开关12可以为独立的开关器件,或者为其他部件中的开关器件,或者上述可能性的充分结合。
实施例2
如图2所示,所述天线系统10还包括控制单元13,所述控制单元13 的输入端与射频处理器的输出端电连接,所述控制单元13的输出端与所述切换开关12的输入端电连接。
具体地,所述控制单元13在接收到射频处理器发送的射频信号后,根据所述射频信号控制所述切换开关12切换所述天线单元11的连接状态,以使处于连接状态的所述天线单元11产生波束。
进一步地,所述控制单元13在接收到射频处理器发送的射频信号后,控制所述切换开关12根据预设的时间间隔切换所述天线单元11的连接状态。
具体地,所述控制单元13根据接收的射频信号及预定的时间间隔控制所述切换开关12分时切换所述连接的天线单元11的连接状态,以减少馈电网络中移相器、功分器等部件的使用,加快扫描周期,改善扫描反应时间,改善电池续航能力。
例如,若天线系统10中包括天线单元A、天线单元B、天线单元C及天线单元D,预定的时间间隔为0.1ms。控制单元13在接收到射频信号后,可首先控制切换开关12切换天线单元A的连接状态,使天线单元A处于连接状态及发出波束在空间中进行扫描;在天线单元A扫描0.1ms后,控制单元13控制切换开关12切换天线单元B的连接状态,使天线单元B处于连接状态及发出波束在空间中进行扫描;在天线单元B扫描0.1ms后,控制单元13控制切换开关12切换天线单元C的连接状态,使天线单元C处于连接状态及发出波束在空间中进行扫描;在天线单元C扫描0.1ms后,控制单元13控制切换开关12切换天线单元D的连接状态,使天线单元D处于连接状态及发出波束在空间中进行扫描。
值得注意的是,进行切换的每两个天线单元11之间的预定的时间间隔可不同,例如,控制单元13控制切换开关12切换天线单元A的连接状态,使天线单元A处于连接状态及发出波束在空间中进行扫描;在天线单元A扫描2ms后,控制单元13控制切换开关12切换天线单元B的连接状态, 使天线单元B处于连接状态及发出波束在空间中进行扫描;在天线单元B扫描3ms后,控制单元13控制切换开关12切换天线单元C的连接状态,使天线单元C处于连接状态及发出波束在空间中进行扫描;在天线单元C扫描1ms后,控制单元13控制切换开关12切换天线单元D的连接状态,使天线单元D处于连接状态及发出波束在空间中进行扫描。
实施例3
如图3所示,所述天线系统10包括(Q+1)个天线单元11,其中,所述(Q+1)个天线单元11由Q个天线111和1个天线阵列112组成,所述天线阵列112中可包括M个天线,该天线阵列112不具有波束扫描的能力,即该天线阵列112只能产生一个波束。
具体地,所述天线111可为偶极子天线或贴片天线等。
通过切换开关12切换天线系统10中的各个波束,取代移相、幅度加权的方式进行波束扫描,具有波束扫描速度快,硬件成本低,占据面积小的优点。
其中,所述切换开关12的各支路个数为天线单元11的数目,例如,切换开关12可以为单刀多掷的开关,该单刀多掷的切换开关包括Q+1条支路,每一支路对应有一个天线111或天线阵列112,即所述单刀多掷的切换开关每次闭合可使一条支路的天线111或天线阵列112处于连接状态。
值得注意的是,所述天线单元11和所述切换开关12的位置和分布不限于如图3所示的结构,可根据天线系统10的器件分布进行调整。
具体地,如图4所示,以4个偶极子天线1111及4个贴片天线1112的例子进行说明。其中,所述4个贴片天线1112用馈电结构连接形成一个天线阵列E,4个偶极子天线1111通过馈电结构连接形成一个天线阵列F,用于提高天线系统的Peak EIRP(Peak Effective Isotropic Radiated Power,峰值有效全向发射功率)。如果使用移相的方式进行波束扫描,若移相精 度为3bit,则共有16个波束,则至少需要4个带移相功能的通道和4个1P2T(单刀双掷)的开关,或者需要8个带移相功能的通道。
如图5所示,为使用移相方式进行波束扫描的EIRP CDF(EIRP Cumulative Distribution Function,EIRP累积分布函数)的示意图,其中,横坐标为天线增益,纵坐标为天线增益的累积分布曲线。Peak EIRP为31.5dB,EIRP CDF在50%处的点A(24.15,49.37)的值为24.15dB。
如图4所示,若4个贴片天线1112使用馈电网络连接形成一个天线阵列,4个偶极子天线1111为单个的天线,将一个贴片天线阵列和4个偶极子天线通过一个1P5T(单刀五掷)的开关,共产生5个波束。如图6所示为,使用开关方式进行波束扫描的EIRP CDF的示意图,其中,横坐标为天线增益,纵坐标为天线增益的累积分布曲线。Peak EIRP为31.5dB,EIRP CDF在50%处的点B(23.7,50.64)的值为23.7dB。
如图5和图6可知,通过上述的移相和切换开关的两种方式,天线系统的辐射性能基本一致,所以,本方案能在保证天线系统10的辐射性能的同时,降低成本,硬件尺寸,缩短波束扫描周期。
值得注意的是,所述的天线111为单个的天线111,如单个的贴片天线或偶极子天线等。所述的天线阵列112,为由预定数量的单个天线111按照预定的排列方式组成的天线阵列112。
实施例4
如图7所示,所述天线系统10包括(Q+1)个天线单元11,其中,所述(Q+1)个天线单元11由Q个天线111和1个天线阵列112组成,所述天线阵列112中可包括M个天线111,该天线阵列112具有波束扫描的能力,即该天线阵列112可产生多个波束。在该具有波束扫描能力的天线阵列112中,还可以包括子切换开关121,该子切换开关121可切换天线阵列112中的M个天线的连接状态,以使处于连接状态的所述天线产生波 束,进而达到控制天线阵列112中的波束,取代移相、幅度加权的方式进行波束扫描。
若所述天线单元11包括由多个天线组成的天线阵列112,所述天线系统10还包括子切换开关121,所述子切换开关121用于切换所述天线阵列112中包含的多个天线111的连接状态,以使处于连接状态的所述天线111产生波束。
其中,所述切换开关12的各支路个数为天线单元11的数目,例如,切换开关12可以为单刀多掷的开关,该单刀多掷的切换开关包括Q+1条支路,每一支路对应有一个天线111或天线阵列112,即所述单刀多掷的切换开关每次闭合可使一条支路的天线111或天线阵列112处于连接状态;所述子切换开关121各支路个数为天线阵列112中所有天线的数目,所述子切换开关121可以为单刀多掷的开关,该单刀多掷的切换开关包括M条支路,每一支路对应有一个天线111,即所述单刀多掷的切换开关每次闭合可使一条支路的天线111处于连接状态,例如,子切换开关121可以为1PMT(单刀M掷)的开关,每一次子切换开关121闭合时,可使该天线阵列112中M个天线中的一个天线的连接状态。
值得注意的是,所述天线111和天线阵列112的位置和分布不限于如图7所示的结构,具体可根据天线系统10的应用需求而定。
如图7中,所有天线111及天线阵列112连接至切换开关12,通过开关切换的方式切换天线111或天线阵列112的连接状态。在切换到天线阵列112时,天线阵列112通过子切换开关121切换该天线阵列112中的所有天线的连接状态,以使该天线阵列112中处于连接状态的天线111产生波束,进而在空间中进行扫描,天线阵列112中所有天线111均进行扫描完毕后再通过切换开关12切换至其他天线111,产生其他的波束。
具体地,如图4所示,以4个偶极子天线1111及4个贴片天线1112的例子进行说明。其中,所述4个贴片天线1112用馈电结构连接形成一个 天线阵列,用于提高天线系统的Peak EIRP(Peak Effective Isotropic Radiated Power,峰值有效全向发射功率),该贴片天线阵列具有波束扫描的能力,可产生至少一个波束。
如果使用移相的方式进行波束扫描,若移相精度为3bit,如图8所示,Peak EIRP为31.5dB,EIRP CDF在50%处的点C(23.9,49.22)的值为23.9dB。
如图6和图8可知,通过上述的移相和切换开关的两种方式,天线系统的辐射性能基本一致,所以,本方案能在保证天线系统10的辐射性能的同时,降低成本,硬件尺寸,缩短波束扫描周期。
值得注意的是,所述切换开关12及所述子切换开关121可为独立的器件,或者为其他器件中的开关器件,或者上述可能性的充分结合。
值得注意的是,所述天线系统10中还可以包括移相器、功分器等器件,该移相器、功分器等器件可不用于波束扫描,可用于对波束进行校准。
所述天线系统10中还可以包括功率放大器、滤波器、耦合器、模数转换器等器件,以和上述的所有天线、天线阵列、切换开关、子切换开关,控制单元等共同工作,通过调整天线系统的匹配后,以使天线系统在成本较低的情况下,达到最佳的天线性能。
所述M、N、Q均为大于1的整数。
实施例5
图9所示为本申请实施例提供的一种移动终端的结构示意图。该移动终端可包括射频处理器20和上述的天线系统10。
所述射频处理器20用于根据射频信号控制所述切换开关切换所述多个天线单元的连接状态,以使处于连接状态的所述天线单元产生波束在空间中进行扫描。
进一步地,所述射频处理器20还可控制所述切换开关根据预定的时间 间隔切换多个天线单元11的连接状态,将所述天线单元11进行分时工作,减少扫描周期,降低馈电损耗,提高扫描速度。
所述移动终端还可以包括存储器、输入单元、显示单元、摄影单元、音频电路、无线保真(wireless fidelity,WiFi)模块、处理器、以及电源等部件。存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序,存储数据区可存储根据移动终端的使用所创建的数据;输入单元可以包括触控面板并且可以包括其他输入设备;显示单元可以包括显示面板;摄影单元用于采集成像范围内的图像信息;音频电路可提供用户与移动终端之间的音频接口;无线保真模块可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问;处理器是移动终端的控制中心,除上述功能外,处理器还可以利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存储在存储器内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控;电源可以通过电源管理系统与处理器逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。本领域技术人员可以理解,图9中示出的移动终端结构并不构成对移动终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
实施例6
图10示出了一种天线系统的切换方法的流程示意图。该天线系统的切换方法应用于如实施例5所述的移动终端。
该天线系统的切换方法可包括如下步骤:
在步骤S102中,获取射频信号。
具体地,射频处理器接收移动中总处理器发出的射频信号。
在步骤S104中,根据射频信号控制切换开关切换多个天线单元的连接 状态,以使处于连接状态的天线单元产生波束在空间中进行扫描。
具体地,射频处理器根据所述射频信号控制切换开关切换至对应的天线单元,以使处于连接状态的天线单元产生波束,在空间中进行扫描。
具体地,射频处理器在获取射频信号后,可将所述射频信号发送至控制单元,控制单元根据所述射频信号控制切换开关分时切换所有天线单元的连接状态,以使处于连接状态的天线单元产生波束,在空间中进行扫描。以使处于连接状态的天线单元发出相应的波束,以使所述天线单元分时进行工作,在与通过移相方式进行波束扫描性能基本一致的情况下,减少成本及波束数量,减少扫描周期,提高扫描速率。
实施例7
图11示出了一种天线系统的切换装置的结构示意图。所述天线系统的切换装置500对应于实施例6的天线系统的切换方法。实施例6中的任何可选项也适用于本实施例,这里不再详述。
该天线系统的切换装置500包括获取模块510及切换模块520。
获取模块510,用于获取射频信号。
切换模块520,用于根据射频信号控制所述切换开关切换所述多个天线单元的连接状态,以使处于连接状态的天线单元产生波束在空间中进行扫描。
本实施例还提供了一种计算机存储介质,用于储存上述的天线系统的切换方法中使用的所述计算机程序。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和结构图显示了根据本申请的多个实施例的装置、 方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,结构图和/或流程图中的每个方框、以及结构图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本申请各个实施例中的各功能模块或单元可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或更多个模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台移动终端(可以是智能手机、个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (18)

  1. 一种天线系统,其特征在于,所述天线系统包括:
    切换开关和多个天线单元;
    所述切换开关用于切换所述多个天线单元的连接状态,以使处于连接状态的所述天线单元产生波束在空间中进行扫描。
  2. 根据权利要求1所述的天线系统,其特征在于,所述天线单元为单个天线和/或由多个天线组成的天线阵列。
  3. 根据权利要求2所述的天线系统,其特征在于,所述天线为贴片天线或偶极子天线。
  4. 根据权利要求1所述的天线系统,其特征在于,所述切换开关为单刀N掷开关,其中,所述N的值为所述天线单元的数目。
  5. 根据权利要求1所述的天线系统,其特征在于,每一所述天线单元对应一切换开关,所述切换开关为单刀单掷开关。
  6. 根据权利要求2所述的天线系统,其特征在于,所述天线单元为由多个天线组成的天线阵列,所述天线系统还包括子切换开关:
    所述子切换开关用于切换所述多个天线的连接状态,以使处于连接状态的所述天线产生波束。
  7. 根据权利要求1所述的天线系统,其特征在于,还包括控制单元:
    所述控制单元用于在接收到射频信号后,根据所述射频信号控制所述切换开关切换所述天线单元的连接状态。
  8. 根据权利要求7所述的天线系统,其特征在于,所述控制单元还用于根据射频信号控制所述切换开关根据预设的时间间隔切换所述天线单元的连接状态。
  9. 一种移动终端,其特征在于,所述移动终端包括射频处理器及天线 系统:
    所述射频处理器用于根据射频信号控制所述切换开关切换所述多个天线单元的连接状态,以使处于连接状态的所述天线单元产生波束在空间中进行扫描。
  10. 根据权利要求9所述的移动终端,其特征在于,所述天线系统包括:
    切换开关和多个天线单元;
    所述切换开关用于切换所述多个天线单元的连接状态,以使处于连接状态的所述天线单元产生波束在空间中进行扫描。
  11. 根据权利要求10所述的移动终端,其特征在于,所述天线单元为单个天线和/或由多个天线组成的天线阵列。
  12. 根据权利要求11所述的移动终端,其特征在于,所述天线为贴片天线或偶极子天线。
  13. 根据权利要求10所述的移动终端,其特征在于,所述切换开关为单刀N掷开关,其中,所述N的值为所述天线单元的数目。
  14. 根据权利要求10所述的移动终端,其特征在于,每一所述天线单元对应一切换开关,所述切换开关为单刀单掷开关。
  15. 根据权利要求11所述的天线系统,其特征在于,所述天线单元为由多个天线组成的天线阵列,所述天线系统还包括子切换开关:
    所述子切换开关用于切换所述多个天线的连接状态,以使处于连接状态的所述天线产生波束。
  16. 根据权利要求10所述的移动终端,其特征在于,还包括控制单元:
    所述控制单元用于在接收到射频信号后,根据所述射频信号控制所述切换开关切换所述天线单元的连接状态。
  17. 根据权利要求16所述的移动终端,其特征在于,所述控制单元还用于根据射频信号控制所述切换开关根据预设的时间间隔切换所述天线单元的连接状态。
  18. 一种天线系统的切换方法,其特征在于,应用于如权利要求9-17任一项所述的移动终端,所述方法包括:
    获取射频信号;
    根据所述射频信号控制所述切换开关切换所述多个天线单元的连接状态,以使处于连接状态的所述天线单元产生波束在空间中进行扫描。
PCT/CN2019/126682 2018-12-21 2019-12-19 天线系统、移动终端及天线系统的切换方法 WO2020125720A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19901098.4A EP3902062A4 (en) 2018-12-21 2019-12-19 ANTENNA SYSTEM, MOBILE TERMINAL, AND ANTENNA SYSTEM SWITCHING METHOD
US17/351,234 US20210313679A1 (en) 2018-12-21 2021-06-18 Antenna system, mobile terminal, and antenna system switching method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811574074.0A CN109638462B (zh) 2018-12-21 2018-12-21 天线系统、移动终端及天线系统的切换方法
CN201811574074.0 2018-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/351,234 Continuation US20210313679A1 (en) 2018-12-21 2021-06-18 Antenna system, mobile terminal, and antenna system switching method

Publications (1)

Publication Number Publication Date
WO2020125720A1 true WO2020125720A1 (zh) 2020-06-25

Family

ID=66076417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126682 WO2020125720A1 (zh) 2018-12-21 2019-12-19 天线系统、移动终端及天线系统的切换方法

Country Status (4)

Country Link
US (1) US20210313679A1 (zh)
EP (1) EP3902062A4 (zh)
CN (1) CN109638462B (zh)
WO (1) WO2020125720A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638462B (zh) * 2018-12-21 2021-09-14 深圳市万普拉斯科技有限公司 天线系统、移动终端及天线系统的切换方法
EP3713014A1 (en) * 2019-03-21 2020-09-23 Nokia Solutions and Networks Oy Configurable antenna arrangements
CN110417442B (zh) * 2019-06-21 2021-12-10 成都天锐星通科技有限公司 一种集成波束控制算法的射频芯片及芯片处理方法
CN111313153A (zh) * 2020-02-28 2020-06-19 维沃移动通信有限公司 一种天线单元、天线和电子设备
TWI816140B (zh) * 2020-07-16 2023-09-21 群邁通訊股份有限公司 訊號饋入元件,天線模組及電子設備

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101609931A (zh) * 2008-06-20 2009-12-23 电子科技大学 基于时间调制的天线阵列相位控制技术及其系统实现
US20120257653A1 (en) * 2011-04-06 2012-10-11 Hitachi Chemical Co., Ltd. Antenna beam scan unit and wireless communication system using antenna beam scan unit
CN108075802A (zh) * 2016-11-16 2018-05-25 华为技术有限公司 一种天线切换方法及网络设备
CN109638462A (zh) * 2018-12-21 2019-04-16 深圳市万普拉斯科技有限公司 天线系统、移动终端及天线系统的切换方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371133B1 (en) * 1987-02-13 1994-04-13 Mitsubishi Denki Kabushiki Kaisha Holographic radar
JPH06105959B2 (ja) * 1989-04-24 1994-12-21 三菱電機株式会社 電子走査形アレイアンテナ装置
JP3597678B2 (ja) * 1997-08-18 2004-12-08 富士通株式会社 レーダ装置
US20020036586A1 (en) * 2000-09-22 2002-03-28 Tantivy Communications, Inc. Adaptive antenna for use in wireless communication systems
US6825815B1 (en) * 2003-06-03 2004-11-30 Northrop Grumman Corporation Steerable uplink antenna for moveable redundant beams
US9455495B2 (en) * 2010-11-03 2016-09-27 The Boeing Company Two-dimensionally electronically-steerable artificial impedance surface antenna
US10439684B2 (en) * 2012-12-31 2019-10-08 Futurewei Technologies, Inc. Smart antenna platform for indoor wireless local area networks
US10942262B2 (en) * 2014-02-12 2021-03-09 Battelle Memorial Institute Shared aperture antenna array
KR102056411B1 (ko) * 2014-02-28 2019-12-16 삼성전자주식회사 무선 통신 시스템에서 빔 영역을 확장하기 위한 방법 및 장치
CN105337036B (zh) * 2015-11-12 2018-09-07 深圳市万普拉斯科技有限公司 移动终端及其天线结构
CN105932427B (zh) * 2016-05-04 2018-10-09 西安电子工程研究所 一种毫米波成像雷达一维阵列天线及时序控制方法
KR102456541B1 (ko) * 2016-06-22 2022-10-19 삼성전자 주식회사 Sar 저감을 위한 안테나 스위칭 방법 및 이를 지원하는 전자 장치
CN108023626A (zh) * 2016-11-02 2018-05-11 中兴通讯股份有限公司 一种阵列天线组合、波束切换的方法及装置
CN108736160B (zh) * 2017-04-20 2020-12-15 惠州硕贝德无线科技股份有限公司 一种辐射方向图可重构的5g终端天线
JP2020523865A (ja) * 2017-06-14 2020-08-06 ソニー株式会社 アダプティブアンテナ構成
CN107230837B (zh) * 2017-07-14 2023-12-05 深圳市中天迅通信技术股份有限公司 运用于无人机的二维切换多波束智能天线
CN108172998A (zh) * 2017-12-21 2018-06-15 四川中测微格科技有限公司 一种提高波束成形网络器件端口隔离度的结构
US10879627B1 (en) * 2018-04-25 2020-12-29 Everest Networks, Inc. Power recycling and output decoupling selectable RF signal divider and combiner
US11205834B2 (en) * 2018-06-26 2021-12-21 Apple Inc. Electronic device antennas having switchable feed terminals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101609931A (zh) * 2008-06-20 2009-12-23 电子科技大学 基于时间调制的天线阵列相位控制技术及其系统实现
US20120257653A1 (en) * 2011-04-06 2012-10-11 Hitachi Chemical Co., Ltd. Antenna beam scan unit and wireless communication system using antenna beam scan unit
CN108075802A (zh) * 2016-11-16 2018-05-25 华为技术有限公司 一种天线切换方法及网络设备
CN109638462A (zh) * 2018-12-21 2019-04-16 深圳市万普拉斯科技有限公司 天线系统、移动终端及天线系统的切换方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3902062A4

Also Published As

Publication number Publication date
EP3902062A4 (en) 2022-02-23
CN109638462B (zh) 2021-09-14
EP3902062A1 (en) 2021-10-27
US20210313679A1 (en) 2021-10-07
CN109638462A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020125720A1 (zh) 天线系统、移动终端及天线系统的切换方法
US8779976B2 (en) Antenna system having adaptive polarization control
US20070287384A1 (en) Wireless device with directional antennas for use in millimeter-wave peer-to-peer networks and methods for adaptive beam steering
US11557835B2 (en) Apparatus for transmitting and/or receiving radio frequency signals and method of operating such apparatus
WO2019179305A1 (zh) 信号接收方法及信号接收装置
US7405695B2 (en) Switching circuit and control method of antenna module
US20150194740A1 (en) Multi-channel mimo antenna apparatus using monopole or dipole antenna
WO2022135233A1 (zh) 天线电路及电子设备
WO2018130281A1 (en) Dual-polarization beamforming
CN108808228B (zh) 一种天线系统及电子设备
CN114868307A (zh) 用于相移的装置和方法
US20160112070A1 (en) Antenna module and control method thereof
US20220190888A1 (en) Multiple-input multiple-output transmission and reception
CN115378444B (zh) 射频系统和通信设备
CN112448727A (zh) 电子设备和终端设备
CN105048108A (zh) 时间调制范阿塔方向回溯三功能可重构共孔径天线阵
CN204927535U (zh) 一种全频段的内外置混合天线
WO2019061294A1 (zh) 接入点设备及通信方法
US11888553B2 (en) Massive MIMO antenna array
CN112993596A (zh) 一种降维多波束天线系统
WO2023193129A1 (en) Power and hardware efficient tranceiver device with configurable antenna array architecture
CN112825490B (zh) 一种虚拟天线映射方法及网络设备
WO2024077500A1 (zh) 一种通信设备及基站
US20220393755A1 (en) Communication using arbitrary selectable polarization
US20240055772A1 (en) Lens antenna, lens antenna array, radio device and method performed by radio device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019901098

Country of ref document: EP

Effective date: 20210721