WO2022012596A1 - 终端信息获取方法、终端及网络侧设备 - Google Patents

终端信息获取方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2022012596A1
WO2022012596A1 PCT/CN2021/106280 CN2021106280W WO2022012596A1 WO 2022012596 A1 WO2022012596 A1 WO 2022012596A1 CN 2021106280 W CN2021106280 W CN 2021106280W WO 2022012596 A1 WO2022012596 A1 WO 2022012596A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information
network node
terminal
receiving
Prior art date
Application number
PCT/CN2021/106280
Other languages
English (en)
French (fr)
Inventor
姜大洁
杨坤
潘学明
孙彦良
秦飞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2023502635A priority Critical patent/JP2023534688A/ja
Priority to EP21841637.8A priority patent/EP4156723A4/en
Publication of WO2022012596A1 publication Critical patent/WO2022012596A1/zh
Priority to US18/090,778 priority patent/US20230136962A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/026Services making use of location information using location based information parameters using orientation information, e.g. compass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention requires the priority of the Chinese patent application with the application number of 202010693760.0 and the invention titled "terminal information acquisition method, terminal and network side equipment" submitted to the Chinese Patent Office on July 17, 2020, the entire content of the application is by reference Incorporated in the present invention.
  • the present application belongs to the field of wireless communication technologies, and in particular relates to a terminal information acquisition method, a terminal, and a network side device.
  • Smart surface is an emerging technology. Smart surface devices can also be called Large Intelligent Surface (LIS), Smart Reflect Array (SRA), and Reconfigurable Reflect Array (RRA). Or Intelligent Reflecting Surface (IRS).
  • LIS Large Intelligent Surface
  • SRA Smart Reflect Array
  • RRA Reconfigurable Reflect Array
  • IFS Intelligent Reflecting Surface
  • Intelligent reflective surface IRS is composed of a large number of low-cost passive reflective elements, and IRS is an electromagnetic metamaterial (Electromagnetic Metamaterial) or metasurface (Metasurface). Each reflective element is capable of independently inducing changes in the amplitude and/or phase and/or polarization of the incident signal, ie reconfiguring the wireless propagation environment by controlling the reflections.
  • electromagnetic Metamaterial Electromagnetic Metamaterial
  • Metal Surface Metal Surface
  • the IRS does not use an active transmitting module, but only reflects the received signal. Active relay communications typically operate in half-duplex mode, which is less spectrally efficient than IRS operating in full-duplex mode.
  • the IRS as a passive reflective device, does not transmit its own information, but is only used to facilitate the existing communication link.
  • the IRS is passive Arrays are generally used as reflect arrays. Compared with massive multi-input multi-output (MIMO) technology, IRS has the advantages of low hardware cost, low transmission loss, and is more suitable for millimeter-level frequency bands (mmWave).
  • the terminal is located in the coverage of a smart surface device or repeater, but is beyond the coverage of the base station associated with the smart surface or repeater, but due to the smart surface or repeater
  • the device generally only performs forwarding, but does not acquire information, therefore, it cannot acquire relevant information of the terminal.
  • the purpose of the embodiments of the present application is to provide a terminal information acquisition method, a terminal, and a network side device, which can solve the problem that a smart surface device or a relay type device cannot acquire the relevant information of the terminal.
  • a first aspect provides a method for acquiring terminal information, which is applied to a first network node, where the first network node is a smart surface device or a relay device, the method comprising: receiving a first signal sent by a terminal; The first signal estimates first information of the terminal, where the first information includes at least one of the following: location information of the terminal, direction information of the terminal, and receive beams corresponding to the terminal information, and transmit beam information corresponding to the terminal.
  • a signal receiving method applied to a terminal, the method includes: receiving a fourth signal sent by a first network node, wherein the first network node is a smart surface device or a relay device; Send a fifth signal to the first network node or the second network node, wherein the fifth signal carries part or all of the information related to the fourth signal, and the second network node is related to the first network node.
  • a base station type device associated with a network node.
  • a third aspect provides an apparatus for acquiring terminal information, which is applied to a first network node, where the first network node is a smart surface type device or a relay type device, and the apparatus includes: a first receiving module for receiving a terminal The first signal sent; an estimation module, configured to estimate the first information of the terminal according to the first signal, wherein the first information includes at least one of the following: location information of the terminal, location information of the terminal direction information, receive beam information corresponding to the terminal, and transmit beam information corresponding to the terminal.
  • the receiving, by the first receiving module, the first signal sent by the terminal includes: receiving the first signal sent by the terminal in a time domain repetition manner.
  • the beams used by the first signal sent in the time domain repetition manner are different.
  • the first receiving module receiving the first signal sent by the terminal includes: receiving the first signal sent by the terminal in a manner of polling each receiving beam of the first network node.
  • the beams used by the first signal sent in the time domain repetition manner are the same.
  • the first signal is carried by one of the following sequences:
  • the format of the first signal is configured on the network side or preset.
  • the first receiving module receives the first signal sent by the terminal, including:
  • the first signal is obtained; and/or,
  • the first signal is obtained.
  • the apparatus may further include: a first sending module, configured to send a second signal to a second network node after estimating the first information of the terminal according to the first signal, wherein the first signal is The second signal carries all or part of the first information, and the second network node is a base station type node associated with the first network node.
  • a first sending module configured to send a second signal to a second network node after estimating the first information of the terminal according to the first signal, wherein the first signal is The second signal carries all or part of the first information, and the second network node is a base station type node associated with the first network node.
  • the information carried by the second signal further includes at least one of the following:
  • the first receiving module is further configured to, after sending the second signal to the second network node, receive a third signal sent by the second network node; the estimation module 602 is further configured to The third signal adjusts the transmission mode of the first network node.
  • the estimating module adjusting the transmission mode of the first network node according to the third signal includes: adjusting the reflection unit and/or the refraction unit in the first network node according to the third signal status.
  • the transmission mode includes at least one of the following:
  • the estimation module is further configured to adjust the transmit beam and/or receive beam associated with the terminal according to the first information after estimating the first information of the terminal according to the first signal .
  • a signal receiving apparatus applied to a terminal, the apparatus includes: a second receiving module configured to receive a fourth signal sent by a first network node, wherein the first network node is a smart surface type equipment or relay equipment; a second sending module configured to send a fifth signal to the first network node or the second network node, wherein the fifth signal carries a part or all of the information related to the fourth signal information, the second network node is a base station type device associated with the first network node.
  • the fourth signal carries second information, and the second information includes at least one of the following:
  • the fourth signal that the second receiving module receives from the first network node includes at least one of the following:
  • the fourth signal is obtained.
  • the part or all of the information related to the fourth signal includes at least one of the following:
  • At least one target receiving beam information wherein, the at least one target receiving beam information is related information of a receiving beam with the strongest signal strength estimated according to the fourth signal.
  • At least one target transmit beam information wherein the at least one target transmit beam information is related information of the transmit beam corresponding to the receive beam with the strongest signal strength;
  • the sending of the fifth signal by the second sending module includes: sending the fifth signal on the target time slot.
  • the target time slot is a time slot in a forwarding time window of the first network node.
  • the second sending module sending a fifth signal includes: sending the fifth signal to the first network node, and the first network node forwards the fifth signal to the second network node network node.
  • the target time slot is a time slot outside the forwarding time window of the first network node.
  • the sending of the fifth signal by the second sending module includes: using a target sending beam to send the fifth signal, wherein the target sending beam corresponds to a target receiving beam, and the target receiving beam has the highest received signal strength.
  • the strong beam used for the fourth signal is not limited to using a target sending beam to send the fifth signal.
  • a network-side device in a fifth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the The processor implements the steps of the method as described in the first aspect when executed.
  • a terminal in a sixth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor. The steps of the method as described in the second aspect are implemented when executed.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect, or the The steps of the method of the second aspect.
  • a chip in an eighth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction, and implements the method described in the first aspect. the method described, or implement the method described in the first aspect.
  • the first network node (including the smart surface device or the relay device) estimates the first information of the terminal according to the first signal, so that it can estimate the first information of the terminal according to the first signal.
  • the location information, direction information, receiving beam information or sending beam information of the terminal is obtained, and then the relevant information of the terminal can be obtained according to the first information, which solves the problem that the smart surface device or the relay device cannot obtain the relevant information of the terminal.
  • FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present application can be applied
  • FIG. 2 shows a schematic flowchart of a method for acquiring terminal information in an embodiment of the present application
  • FIG. 3 shows another schematic flowchart of a method for acquiring terminal information in an embodiment of the present application
  • FIG. 4 shows a schematic flowchart of a signal receiving method in an embodiment of the present application
  • FIG. 5 shows another schematic flowchart of the signal receiving method in the embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of an apparatus for acquiring terminal information provided by an embodiment of the present application
  • FIG. 7 shows a schematic structural diagram of a signal receiving apparatus provided by an embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a hardware structure of a network side device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, although these techniques are also applicable to applications other than NR system applications, such as 6th generation (6 th Generation, 6G) communication system.
  • 6th generation 6 th Generation, 6G
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 , a network side device 12 and a first network node 13 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiment of this application, only the NR system is used. The base station in the example is taken as an example, but the specific type of the base station is not limited.
  • the first network node 13 may be a smart surface device or a repeater device.
  • smart surface devices include but are not limited to: smart reflective surface (IRS) devices, large smart surfaces (LIS), smart reflective arrays (SRA) and configurable reflective arrays (RRA), each reflective element of smart surface devices Changes in the amplitude and/or phase and/or polarization of the incident signal can be induced independently, ie by controlling reflections to reconfigure the wireless propagation environment. Also, smart surface devices do not use transmit RF chains and operate only over short distances, so they can be densely deployed.
  • the IRS acts as a passive reflective device, does not transmit its own information, and is only used to facilitate the existing communication link; compared with the existing massive MIMO technology, IRS is a passive array, while massive MIMO is an active array; IRS is generally used as a reflector array, and massive MIMO is generally used as a transmission array.
  • IRS reflection units are as follows: A. Tunable resonator: A variable capacitor is integrated into the resonator to generate a phase shift by changing the frequency-agile patch resonator frequency. B. Guided wave control method: In this case, the arriving space wave is coupled to the guided wave by the antenna, and then the guided wave is phase-shifted and re-transmitted, forming an antenna phase shifter. C. Rotation technology of circularly polarized waves: Design using the reflection law of electromagnetic waves.
  • reflect arrays/smart surfaces are divided into two categories:
  • Static reflective array/smart surface The structure and function of the reflective array can be fixed. For an incident wave at an angle, the metasurface unit leads to a fixed change in the amplitude, phase, and polarization of the incident wave. corresponding reflected waves.
  • Dynamic reflective array/smart surface The structure and function of the reflective array can be controlled. For an incident wave at an angle, the amplitude, phase, polarization and other characteristics of the incident wave can be changed differently through programmable control. , the corresponding reflected waves are obtained. To achieve programmable control of the reflective metasurface, switching elements (such as diodes, RF-MEMS switches, etc.) must be introduced into the reflective unit.
  • PIN diodes are a common choice for controlling reconfigurable metasurfaces.
  • PIN diodes have a wide range of RF impedance and low distortion, and are widely used in microwave RF fields.
  • the switching element in the reflection unit has a plurality of different states, and the switching of the different states can be realized by controlling the on-off of the switching element. When the switching element is on or off, the structure and performance of the corresponding reflection unit have great changes. That is, the reflection units in different states have different control modes for the amplitude, phase, polarization and other characteristics of the incident wave.
  • FIG. 2 shows a schematic flowchart of a method for acquiring terminal information in an embodiment of the present application, and the method 200 may be executed by a first network node.
  • the method may be performed by software or hardware installed on a first network node, where the first network node may be a smart surface-type device or a relay-type device.
  • the method may include the following steps.
  • S210 Receive the first signal sent by the terminal.
  • the terminal may use a certain beam to send the first signal.
  • the terminal may send the first signal in a time domain repetition manner, that is, repeatedly send the first signal in the time domain. Therefore, in this possible implementation manner, S210 may include: receiving the first signal sent by the terminal in a time-domain repetition manner. In this possible implementation manner, by repeatedly sending the first signal in the time domain, the terminal can increase the success rate of the first network node receiving the first signal.
  • the beams used for the first signal sent by the time domain repetition method are different, that is, The beams used by the terminal to send the first signal at different times are different, so that the problem that the first network node fails to receive the first signal due to a certain beam being blocked or the like can be avoided.
  • the terminal sends the first signal using different beams at different times, and the first network node may be added to obtain more beam information of the terminal.
  • the beams used by the first signal sent in the time domain repetition manner are the same, that is, the beams used by the terminal to send the first signal at different times may also be the same.
  • the first network node may receive the first signal sent by the terminal in the manner of receiving beam polling. a signal. For example, assuming that the first network node has 4 receive beams, the first network node can first receive with the first receive beam, then receive with the second receive beam, then receive with the third receive beam, and then Receive with the 4th receive beam, then receive with the 1st receive beam, and receive in such a polling manner.
  • the first signal may be carried by a predetermined signal.
  • the first signal is carried by one of the following signals: a sounding reference signal (Sounding Reference Signal, SRS); a demodulation reference signal (Demodulation Reference Signal, DMRS); a random access channel (RACH) sequence, for example, a random access preamble (preamble); a dedicated sequence for the first signal.
  • SRS Sounding Reference Signal
  • DMRS demodulation Reference Signal
  • RACH random access channel
  • preamble a random access preamble
  • the first network node may receive the first signal in a manner of polling the receiving beam according to the time.
  • the format of the first signal may be configured by the network side, or may be preset, for example, according to a protocol agreement.
  • the network side may pre-configure the first signal to be carried by one of the above-mentioned signals, that is, sequence related information of the first signal.
  • the network side may pre-configure or the protocol may pre-agreed the association manner between the sequence format of the first signal and the terminal identifier, etc.
  • the network side may configure or agree on the time-frequency resource for sending the first signal, but does not limit the specific format of the first signal.
  • the first network node when receiving the first signal, may obtain the first signal by means of sequence detection. For example, if the network side configures the association method between the sequence format of the first signal and the terminal identifier, the first network node can determine the terminal sending the first signal by means of sequence detection. And/or, the first network node may also acquire the first signal by means of energy detection. For example, the terminal may detect whether the energy on a certain receiving beam reaches or exceeds a preset threshold, so as to obtain the fourth signal.
  • the first network node may complete the receiving of the above-mentioned first signal through its first module (ie, a module having a receiving function).
  • S212 Estimate the first information of the terminal according to the first signal, where the first information includes at least one of the following: location information of the terminal, direction information of the terminal, and a correspondence to the terminal.
  • the first network node can determine the terminal sending the first signal by means of sequence detection.
  • the receiving beam used for receiving the first signal the receiving beam signal corresponding to the terminal and the transmitting beam signal corresponding to the terminal are determined.
  • information such as the strength of the first signal, the direction information and the like of the terminal relative to the network side device are estimated.
  • the method may further include: sending a second signal to a second network node, wherein the second signal carries all or part of the first information, and the second network node is associated with the first network node
  • the base station class node may be the network-side device 12 in FIG. 1 .
  • the second signal further includes at least one of the following (1) to (3).
  • sequence related information of SRS, DMRS, RACH or other signals such as a scrambling sequence index (index), to help the base station identify the terminal; for example, it can also be sequence information received on different receiving beams;
  • the index is used to identify the received first signal, and the intensity-related information indicates the intensity information of the first signal corresponding to the index, for example, the energy and/or energy received on different receiving beams (corresponding to different indexes) power information.
  • the first network node may report the second signal through its third module (ie, a module having a sending function).
  • the first network node reporting the second signal may further include: the first network node transmitting the third information to the second network node (eg gNB) through control information.
  • the third information may indicate resource information for beam management required by the UE, and the resources for beam management may include at least CSI-RS resources and/or SRS resources.
  • the resource information includes at least the number of single-port CSI-RS/SRS resources or the required total number of ports.
  • the third information may be determined based on the quality of the first UE signal received by the first network node.
  • the method may further include: receiving a third signal sent by the second network node; adjusting the first signal according to the third signal The transmission mode of a network node.
  • the second network node can determine whether it is necessary to adjust the transmission mode of the first network node and how to adjust the transmission mode of the first network node according to the second signal received, and send the corresponding transmission mode to the first network node.
  • the third signal is used to adjust the transmission mode of the first network node, so as to improve the quality of the signal sent or received by the first network node.
  • adjusting the transmission mode may include: adjusting at least one of the following: a beam; transmission configuration index (Transmission Configuration Index, TCI) information; quasi-colocation (Quasi-Colocation, QCL) information.
  • TCI Transmission Configuration Index
  • QCL quasi-colocation
  • the first network node may be a smart surface device or a device other than a base station such as a repeater. If the first network node is a smart surface device, the smart surface device can optionally have a first module with a function of receiving signals and a second module with a function of adjusting the phase, amplitude or polarization mode of external signals. For example, the first module may only support functions of energy detection or sequence reception without supporting complex functions such as channel decoding. Optionally, the smart surface device may also have a third module that supports sending its own information to the terminal or base station.
  • adjusting the transmission mode of the first network node according to the third signal may include: adjusting the reflection unit and/or the reflection unit in the first network node according to the third signal or the state of the refraction element.
  • the transmission mode of the first network node can be realized by adjusting the switching pattern of the switching element of the reflection or refraction unit in the first network node device.
  • the transmission mode is related to the beam direction.
  • the above-mentioned switching element makes the reflection unit or the refracting unit have multiple different states, and the switching of different states is realized by controlling the on and off of the switching element. Different in direction, phase, amplitude and/or polarization. For example, use 1 to represent the switching element on, and use 0 to represent the switching element off. Then the pattern of the switching elements of a 100 by 100 transmitting unit is a 01-bit matrix of 100 by 100 dimensions.
  • the repeater may be any one of multiple repeaters such as direct forwarding, transparent forwarding, amplifying and forwarding, or demodulating and retransmitting signals, which is not limited in this embodiment of the present application.
  • the repeater has a first module for receiving signals and a second module for forwarding signals; optionally, the repeater also has a third module, which supports sending its own information to the terminal or the base station.
  • the base station associated with the first network node may have the following characteristics: the base station controls the transmission mode (eg beam/TCI/QCL) of the first network node by sending signaling to the first network node, or, the transmission mode of the base station The signal and the received signal are forwarded by the first network node.
  • the base station controls the transmission mode (eg beam/TCI/QCL) of the first network node by sending signaling to the first network node, or, the transmission mode of the base station The signal and the received signal are forwarded by the first network node.
  • the base station controls the transmission mode (eg beam/TCI/QCL) of the first network node by sending signaling to the first network node, or, the transmission mode of the base station The signal and the received signal are forwarded by the first network node.
  • the transmission mode eg beam/TCI/QCL
  • the first network node may also directly adjust the transmit beam and/or receive beam associated with the terminal according to the estimated first information of the terminal. Therefore, in this possible implementation manner, after S212, the method may further include: adjusting the transmit beam and/or the receive beam associated with the terminal according to the first information. For example, the first network node may adjust its transmit beam and/or receive beam according to the estimated direction information of the terminal, so as to improve the quality of the signal transmitted between the first network node and the terminal. For example, the first network node can be implemented by adapting its second module.
  • the first network node including the smart surface device or the relay device
  • the first network node performs the first information on the terminal according to the first signal. Therefore, the location information, direction information, receiving beam information or transmitting beam information of the terminal can be obtained, and then the relevant information of the terminal can be obtained according to the first information, which solves the problem that the smart surface device or relay device cannot obtain the relevant information of the terminal. problem.
  • the first network node may also forward the acquired first information to its associated base station, and the base station may learn the terminal and communicate with the terminal based on the report of the first network node.
  • the base station may also send a third signal to the first network node based on the acquired information, so as to adjust the transmission mode of the first network node and improve the communication quality.
  • the first network node may also adjust the sending beam and/or the receiving beam associated with the terminal according to the estimated first information, so as to improve the quality of signal transmission with the terminal.
  • FIG. 3 shows another schematic flowchart of a method for acquiring terminal information according to an embodiment of the present application.
  • the method 300 may be executed by a terminal, a first network node, and a base station, where the base station is the second network node in the above method 200 .
  • the method may be performed by software or hardware installed on the terminal, the first network node and the base station.
  • the method may include the following steps.
  • a terminal sends a first signal to the first network node.
  • the UE may transmit the first signal in a time-domain repetitive manner, for example, by transmitting the first signal in different or the same beam at different times.
  • the first network node receives the first signal sent by the UE.
  • the first signal may be carried by SRS, DMRS, RACH sequence or other sequence (eg dedicated sequence, etc.).
  • the first network node may receive the first signal according to the manner of time polling the receiving beam, wherein the format of the first signal, such as sequence related information, may be configured by the network side or agreed by a protocol.
  • the protocol specifies the association method between the sequence format and the UE ID, etc.; alternatively, only the time-frequency resources sent by the first signal may be specified, and the specific format of the signal is not limited.
  • the first network node may complete the above-mentioned receiving through a first module (a module with a signal receiving function).
  • the first network node receives the first signal in a receiving beam polling manner.
  • S312 is similar to S210 in the method 200 , for details, please refer to the description about S210 in the above-mentioned method 200 .
  • the first network node estimates the first information of the UE according to the received first signal of the UE, where the first information includes but is not limited to the position information, direction information of the UE, the corresponding receiving beam of the first network node and/or One or more of the transmit beams.
  • the first network node may obtain the first signal sent by the UE through sequence detection.
  • the first network node may also acquire the first signal sent by the UE through energy detection.
  • S314 is similar to S212 in the foregoing method 200 , and other undescribed details may refer to the description about S212 in the foregoing method 200 .
  • the first network node may adjust its own transmit beam and/or receive beam associated with the UE to improve the signal transmission quality between the first network node and the UE.
  • the first network node may also report the second signal to the base station, so as to assist the terminal in completing transmission and reception to the base station associated with the first network node. Therefore, after S314, S316 and S318 may also be included.
  • the first network node reports the second signal to the base station associated with the first network node through a third module (a module having a signal sending function).
  • the second signal may include receiving/transmitting beam information or position information or direction information of the first network node corresponding to the UE estimated by the first network node.
  • the second signal may also include UE ID related information, such as SRS, DMRS, RACH or sequence related information of other signals, such as scrambling sequence index, to help the base station identify the UE; for example, it may also include different receiving beams.
  • UE ID related information such as SRS, DMRS, RACH or sequence related information of other signals, such as scrambling sequence index, to help the base station identify the UE; for example, it may also include different receiving beams.
  • the second signal may further include energy information/power information of the first signal received by the first network node, for example, energy information/power information received on different receiving beams.
  • the base station sends signaling (ie, a third signal) to the first network node to adjust the transmission mode of the first network node, so as to adjust the sending behavior and/or the receiving behavior of the first network node.
  • signaling ie, a third signal
  • the first network node receives the signal sent by the UE, determines the position information, direction information, receiving beam information or sending beam information of the UE, etc., and reports the information to the base station, so that the base station can Accordingly, the beam direction between the first network node and the UE is determined, so that the base station can transmit the UE and provide services for the UE, and solve the communication problem between the UE and the base station corresponding to the first network node.
  • FIG. 4 shows a schematic flowchart of a signal receiving method provided by an embodiment of the present application, and the method 400 may be executed by a terminal.
  • the method may be performed by software or hardware installed on the terminal.
  • the method may include the following steps.
  • S410 Receive a fourth signal sent by a first network node, where the first network node is a smart surface device or a relay device.
  • the fourth signal carries second information
  • the second information may include at least one of the following (1) to (5).
  • the terminal can know the first network node that sends the fourth signal.
  • the terminal can learn the beam information that can be used by the first network node, so as to determine the beam information that can be used when sending a signal to the first network node.
  • the terminal can know the time window during which the first network node performs forwarding, that is, the first network node forwards the signal within this time window, and the terminal can send the transmitted signal to the base station within this time window without the first network node processing the signal.
  • the first network node transparently transmits the signal received in the time window to the base station.
  • the terminal can learn the beam information that can be used by the first network node and the time information corresponding to different beams.
  • the time corresponding to beam 1 is one TDD cycle (it is assumed to consist of two downlink time slots and two uplink time slots).
  • the time corresponding to beam 2 is the second downlink time slot and the first uplink time slot in a TDD cycle.
  • the terminal determines beam information and time slots that can be used when transmitting signals to the first network node, and beam information and time slots that can be used when receiving signals from the first network node.
  • the first network node may send the fourth signal to the UE in the form of a beam scan or in the form of a broadcast.
  • the first network node sends the fourth signal through a third module (a module with a signal transmitting function).
  • a third module a module with a signal transmitting function
  • S410 may include at least one of the following (1) to (3).
  • the fourth signal is received in a receive beam polling manner.
  • the terminal detects whether there is a fourth signal transmission in time in the manner of polling by its receiving beam, and receives the transmitted fourth signal.
  • the UE can obtain the fourth signal through sequence detection; for example, the terminal can detect the sequence sent by the first network node, and obtain the fourth signal if the sequence format matches a predetermined sequence format.
  • the terminal may detect that the energy on a certain receiving beam reaches or exceeds a preset threshold, so as to obtain the fourth signal.
  • S412 Send a fifth signal to the first network node or the second network node, where the fifth signal carries part or all of the information related to the fourth signal, and the second network node is related to the fourth signal.
  • part or all of the information related to the fourth signal carried in the fifth signal includes but is not limited to at least one of (1) to (3).
  • At least one target receives beam information.
  • the at least one target receiving beam information is related information of a receiving beam with the strongest signal strength estimated according to the fourth signal.
  • At least one target transmits beam information.
  • the at least one target transmit beam information is related information of the transmit beam corresponding to the receive beam with the strongest signal strength.
  • the terminal receives the fourth signal using receive beam 1 and receive beam 2 respectively, wherein the signal strength of the fourth signal received by using receive beam 1 is stronger than that of the fourth signal received by using receive beam 2, then the target The receive beam information is related information of receive beam 1 , and the target transmit beam information is related information of transmit beam (eg transmit beam 1 ) corresponding to receive beam 1 .
  • the relevant information of the receiving beam may be a synchronization signal block (SSB) index, or the receiving strength of the strongest SSB, or the like.
  • SSB synchronization signal block
  • the information related to the terminal identifier may be an identifier (eg, an index) of the sequence format corresponding to the terminal identifier.
  • sending the fifth signal in S412 may include: sending the fifth signal on the target time slot.
  • the target time slot may be a time slot in the forwarding time window of the first network node.
  • the fifth signal is a signal sent to the base station, and the signal only needs to be forwarded by the first network node without processing by the first network node.
  • the target time slot may also be a time slot outside the forwarding time window of the first network node.
  • the fifth signal is a signal sent to the first network node (for example, the first signal in the above method 200 and method 300 ), and the terminal may use the first signal described in the above method 200 and method 300 The fifth signal is sent by a signal sending method. After receiving the fifth signal, the first network node can perform corresponding processing as described in the above method 200 and method 300. For details, please refer to the description in method 200 and method 300. It is not repeated here.
  • sending the fifth signal in S412 may include: using a target sending beam to send the fifth signal, where the target sending beam is the same as the target sending beam.
  • the target receiving beam is the beam used by the fourth signal with the strongest received signal strength. For example, when the terminal receives the fourth signal, the signal strength of the fourth signal received by using the receiving beam 2 is the strongest, then in S412, the terminal may use the transmitting beam corresponding to the receiving beam 2 to send the fifth signal. to ensure the strength of the fifth signal received by the first network node.
  • the first network node sends a fourth signal to the terminal, the terminal receives the signal, determines the relevant information of the fourth signal, and sends part or all of the information of the fourth signal to the terminal with the third A second network node associated with a network node, so that the second network node (ie, the base station) can discover the terminal and provide services for the terminal.
  • the second network node ie, the base station
  • FIG. 5 shows another schematic flowchart of the signal receiving method in the embodiment of the present application.
  • the method 500 may be executed by a terminal (UE), a first network node, and a base station, where the base station is the above-mentioned The second network node in method 400 .
  • the method may be performed by software or hardware installed on the terminal, the first network node and the base station.
  • the method may include the following steps.
  • the first network node sends a fourth signal to the terminal in the form of beam scanning or broadcasting.
  • the information carried by the fourth signal includes at least one item of synchronization information, id information of the first network node, beam information, and a time window forwarded by the first network node.
  • the first network node may send the fourth signal through its third module.
  • the information carried by the fourth signal includes time information and beam information associated with the time information.
  • the UE receives the fourth signal.
  • the UE receives the fourth signal in a receiving beam polling manner.
  • the UE may obtain the fourth signal through sequence detection.
  • the UE may acquire the fourth signal through energy detection.
  • the UE after obtaining the information carried by the fourth signal, according to the protocol definition rule, the UE sends the fifth signal.
  • the fifth signal can carry the information of one or several strongest receiving beams/transmitting beams estimated by the UE according to the fourth signal (for example, the strongest SSB index and/or SSB receiving strength, etc.), the idiom UEID related information Wait for at least one item.
  • the UE may send the fifth signal in a certain time slot, which may specifically be implemented in the following two manners.
  • Mode 1 - the fifth signal is sent to the base station.
  • the time slot may be a time slot in the forwarding time window of the first network node.
  • the first network node after receiving the fifth signal, the first network node performs S516 to forward the fifth signal, and the base station associated with the first network node receives the fifth signal sent by the UE.
  • the base station after receiving the fifth signal, the base station sends the control signaling for controlling the first network node to control the beam direction of the first network node, so as to communicate with the UE through the first network node.
  • Mode 2 - the fifth signal is sent to the first network node.
  • the time slot may be a time slot outside the forwarding time window, and the first network node receives the fifth signal of the UE in the time slot, and then may perform according to the processing flow of the methods 200 and 300 after receiving the first signal.
  • the UE sends the fifth signal to the first network node on a transmit beam corresponding to the strongest receive beam receiving the fourth signal.
  • the execution body may be a terminal information acquisition apparatus, or a control module in the terminal information acquisition for executing the terminal information acquisition method.
  • the method for obtaining terminal information and performing terminal information acquisition is taken as an example to describe the terminal information obtaining apparatus provided by the embodiments of the present application.
  • FIG. 6 shows a schematic structural diagram of an apparatus for acquiring terminal information in an embodiment of the present application.
  • the apparatus may be applied to a first network node, and the first network node may be a smart surface device or a relay device.
  • the apparatus for obtaining terminal information may include: a first receiving module 601 and an estimation module 602 .
  • the first receiving module 601 is configured to receive the first signal sent by the terminal;
  • the estimation module 602 is configured to estimate the first information of the terminal according to the first signal, wherein the first information It includes at least one of the following: location information of the terminal, direction information of the terminal, receive beam information corresponding to the terminal, and transmit beam information corresponding to the terminal.
  • the first receiving module 601 receives the first signal sent by the terminal, including:
  • the beams used by the first signal sent in the time domain repetition manner are different.
  • the first receiving module 601 receives the first signal sent by the terminal, including:
  • the first signal sent by the terminal is received in a polling manner of each receiving beam of the first network node.
  • the beams used by the first signal sent in the time domain repetition manner are the same.
  • the first signal is carried by one of the following sequences:
  • the format of the first signal is configured or preset on the network side.
  • the first receiving module 601 receives the first signal sent by the terminal, including:
  • the first signal is obtained; and/or,
  • the first signal is obtained.
  • the apparatus may further include: a first sending module 603, configured to send the second network to the second network after estimating the first information of the terminal according to the first signal
  • the node sends a second signal, wherein the second signal carries all or part of the first information, and the second network node is a base station type node associated with the first network node.
  • the information carried by the second signal further includes at least one of the following:
  • the first receiving module 601 is further configured to receive a third signal sent by the second network node after sending the second signal to the second network node;
  • the estimation module 602 is further configured to adjust the transmission mode of the first network node according to the third signal.
  • the estimating module 602 adjusting the transmission mode of the first network node according to the third signal includes:
  • the state of the reflection unit and/or the refraction unit in the first network node is adjusted.
  • the transmission mode includes at least one of the following:
  • the estimation module 602 is further configured to, after estimating the first information of the terminal according to the first signal, adjust the transmit beam associated with the terminal according to the first information and/or receive beams.
  • the apparatus for acquiring terminal information in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in the first network node.
  • the device may be a smart surface device or a relay device.
  • the apparatus for acquiring terminal information in this embodiment of the present application may be an apparatus having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the apparatus for obtaining terminal information provided in this embodiment of the present application can implement each process implemented by the first network node in the method embodiments of FIG. 2 to FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 7 shows a schematic structural diagram of a signal receiving apparatus in an embodiment of the present application, and the signal receiving apparatus may be located in a terminal.
  • the signal receiving apparatus may include: a second receiving module 701 and a second sending module 702 .
  • the second receiving module 701 is configured to receive a fourth signal sent by a first network node, where the first network node is a smart surface device or a relay device; the second sending module 702 , for sending a fifth signal to the first network node or the second network node, wherein the fifth signal carries part or all of the information related to the fourth signal, and the second network node is related to the fourth signal.
  • a base station type device associated with the first network node.
  • the fourth signal carries second information
  • the second information includes at least one of the following:
  • the fourth signal received by the second receiving module 701 from the first network node includes at least one of the following:
  • the fourth signal is obtained.
  • part or all of the information related to the fourth signal includes at least one of the following:
  • At least one target receiving beam information wherein, the at least one target receiving beam information is related information of a receiving beam with the strongest signal strength estimated according to the fourth signal.
  • At least one target transmit beam information wherein the at least one target transmit beam information is related information of the transmit beam corresponding to the receive beam with the strongest signal strength;
  • the sending of the fifth signal by the second sending module 702 includes:
  • the fifth signal is sent on the target time slot.
  • the target time slot is a time slot in a forwarding time window of the first network node.
  • the second sending module 702 sends a fifth signal, including:
  • the fifth signal is sent to the first network node, and the first network node forwards the fifth signal to the second network node.
  • the target time slot is a time slot outside the forwarding time window of the first network node.
  • the sending of the fifth signal by the second sending module 702 includes:
  • the fifth signal is sent using a target transmit beam, wherein the target transmit beam corresponds to a target receive beam, and the target receive beam is a beam used by the fourth signal with the strongest received signal strength.
  • the signal receiving apparatus in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the signal receiving device in the embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the signal receiving apparatus provided in the embodiments of the present application can implement each process implemented by the terminal in the method embodiments shown in FIG. 2 to FIG. 5 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 800, including a processor 801, a memory 802, a program or instruction stored in the memory 802 and executable on the processor 801,
  • a communication device 800 including a processor 801, a memory 802, a program or instruction stored in the memory 802 and executable on the processor 801,
  • the communication device 800 is a terminal
  • the program or instruction is executed by the processor 801
  • each process of the above-mentioned embodiment of the signal receiving method can be realized, and the same technical effect can be achieved.
  • the communication device 800 is a network-side device, when the program or instruction is executed by the processor 801, each process of the above-mentioned embodiments of the terminal information acquisition method can be achieved, and the same technical effect can be achieved.
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 900 includes but is not limited to: a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, a user input unit 907, an interface unit 908, a memory 909, and a processor 910 and other components .
  • the terminal 900 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 910 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 904 may include a graphics processor (Graphics Processing Unit, GPU) 9041 and a microphone 9042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 906 may include a display panel 9061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 907 includes a touch panel 9071 and other input devices 9072 .
  • the touch panel 9071 is also called a touch screen.
  • the touch panel 9071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 9072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 901 receives the downlink data from the network side device, and then processes it to the processor 910; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 901 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 909 may be used to store software programs or instructions as well as various data.
  • the memory 909 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 909 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM) ), erasable programmable read-only memory (ErasablePROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • ErasablePROM ErasablePROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 910 may include one or more processing units; optionally, the processor 910 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 910.
  • the radio frequency unit 901 is configured to receive a fourth signal sent by a first network node, where the first network node is a smart surface device or a relay device;
  • the fourth signal carries second information
  • the second information includes at least one of the following:
  • the fourth signal received by the radio frequency unit 901 and sent by the first network node includes at least one of the following:
  • the terminal receives the fourth signal in a polling manner of each receiving beam
  • the fourth signal is obtained.
  • part or all of the information of the fourth signal includes at least one of the following:
  • At least one target receiving beam information and/or at least one target transmitting beam information wherein the at least one target receiving beam information is information about a receiving beam with the strongest signal strength estimated according to the fourth signal, the at least one target receiving beam information
  • One target transmit beam information is related information of the transmit beam corresponding to the receive beam with the strongest signal strength
  • the sending of the fifth signal by the radio frequency unit 901 includes:
  • the fifth signal is sent on the target time slot.
  • the target time slot is a time slot in a forwarding time window of the first network node.
  • the radio frequency unit 901 sends the fifth signal, including:
  • the fifth signal is sent to the first network node, and the first network node forwards the fifth signal to the second network node.
  • the target time slot is a time slot outside the forwarding time window of the first network node.
  • the sending of the fifth signal by the radio frequency unit 901 includes:
  • the fifth signal is transmitted using a target transmit beam, wherein the target transmit beam corresponds to a target receive beam, and the target receive beam is a beam used by the fourth signal with the strongest received signal strength.
  • the network device 1000 includes: an antenna 1001 , a radio frequency device 1002 , and a baseband device 1003 .
  • the antenna 1001 is connected to the radio frequency device 1002 .
  • the radio frequency device 1002 receives information through the antenna 1001, and sends the received information to the baseband device 1003 for processing.
  • the baseband device 1003 processes the information to be sent and sends it to the radio frequency device 1002
  • the radio frequency device 1002 processes the received information and sends it out through the antenna 1001 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 1003 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 1003 .
  • the baseband apparatus 1003 includes a processor 1004 and a memory 1005 .
  • the baseband device 1003 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 100 , one of the chips is, for example, the processor 1004 , which is connected to the memory 1005 to call a program in the memory 1005 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 1003 may further include a network interface 1006 for exchanging information with the radio frequency device 1002, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present application further includes: instructions or programs that are stored in the memory 1005 and run on the processor 1004, and the processor 1004 invokes the instructions or programs in the memory 1005 to execute the modules shown in FIG. 6 .
  • the above-mentioned network-side device may act as a relay type device to perform the functions performed by the first network node in the above-mentioned methods 200 to 500 .
  • the first network node may not adopt the structure of the above-mentioned network-side device, but use devices such as Large Intelligent Surface (LIS), Smart Reflect Array (SRA) , Reconfigurable Reflecting Array (RRA) or Intelligent Reflecting Surface (Intelligent Reflecting Surface, IRS) and other specific structures.
  • LIS Large Intelligent Surface
  • SRA Smart Reflect Array
  • RRA Reconfigurable Reflecting Array
  • IRS Intelligent Reflecting Surface
  • the smart surface device can use a static reflective array/smart surface.
  • the structure and function of the reflective array can be fixed.
  • the metasurface unit causes the amplitude, phase, and polarization of the incident wave.
  • the characteristics such as the mode are fixedly changed, and the corresponding reflected waves are obtained.
  • smart surface devices can also dynamically reflect arrays/smart surfaces: the structure and function of the reflective array can be controlled. For an incident wave at an angle, the amplitude, phase, and polarization of the incident wave can be programmed through control. and other characteristics have different changes, and the corresponding reflected waves are obtained. To achieve programmable control of the reflective metasurface, switching elements (such as diodes, RF-MEMS switches, etc.) must be introduced into the reflective unit.
  • switching elements such as diodes, RF-MEMS switches, etc.
  • the specific structure of the smart surface device is not limited in this application.
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the above-mentioned terminal information acquisition method embodiment or signal receiving method embodiment is implemented.
  • a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the above-mentioned terminal information acquisition method embodiment or signal receiving method embodiment is implemented.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to achieve the above-mentioned terminal information acquisition
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a network-side device program or instruction to achieve the above-mentioned terminal information acquisition
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种终端信息获取方法、终端及网络侧设备,属于无线通信领域。一种终端信息获取方法包括:接收终端发送的第一信号;根据所述第一信号,估计所述终端的第一信息,其中,所述第一信息包括以下至少一项:所述终端的位置信息、所述终端的方向信息、与所述终端对应的接收波束信息、与所述终端对应的发送波束信息。

Description

终端信息获取方法、终端及网络侧设备
交叉引用
本发明要求在2020年07月17日提交中国专利局、申请号为202010693760.0、发明名称为“终端信息获取方法、终端及网络侧设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于无线通信技术领域,具体涉及一种终端信息获取方法、终端及网络侧设备。
背景技术
智能表面是一种新兴的技术,智能表面设备也可以称之为大型智能表面(Large Intelligent Surface,LIS)、智能反射阵列(Smart Reflect Array,SRA)、可配置反射阵列(Reconfigurable Reflect Array,RRA)或智能反射表面(Intelligent Reflecting Surface,IRS)。
智能反射表面IRS由大量低成本无源反射元件组成,IRS是一种电磁超材料(Electromagnetic Metamaterial)或者超表面(Metasurface)。每个反射元件能够独立地诱导入射信号的振幅和/或相位和/或极化方式的变化,即通过控制反射来重新配置无线传播环境。
与现有的有源中继通信相比,IRS不使用有源发射模块,而仅将接收到的信号反射。有源中继通信通常以半双工模式运行,其频谱效率低于以全双工模式运行的IRS。与现有的反向散射通信(例如射频识别(Radio Frequency Identification,RFID)相比,IRS作为无源反射器件,不发送其自身的信息, 仅仅用于促进现有的通信链接。IRS为无源阵列,一般用作反射阵列,相比于大规模多输入多输出(Multi Input Multi Output,MIMO)技术,IRS具有低硬件成本、低传输损耗、更适用于毫米级频段(mmWave)等优点。
在某些情况下,终端(UE)位于智能表面设备或者中继类设备(repeater)的覆盖范围,但是超出了与智能表面或者repeater关联的基站的覆盖范围,但由于智能表面设备或中继类设备一般只进行转发,而不进行信息获取,因此,不能获知终端的相关信息。
发明内容
本申请实施例的目的是提供一种终端信息获取方法、终端及网络侧设备,能够解决智能表面设备或中继类设备无法获知终端的相关信息的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,提供了一种终端信息获取方法,应用于第一网络节点,所述第一网络节点为智能表面类设备或中继类设备,该方法包括:接收终端发送的第一信号;根据所述第一信号,估计所述终端的第一信息,其中,所述第一信息包括以下至少一项:所述终端的位置信息、所述终端的方向信息、与所述终端对应的接收波束信息、与所述终端对应的发送波束信息。
第二方面,提供了一种信号接收方法,应用于终端,该方法包括:接收第一网络节点发送的第四信号,其中,所述第一网络节点为智能表面类设备或中继类设备;向所述第一网络节点或第二网络节点发送第五信号,其中,所述第五信号携带有部分或全部与所述第四信号相关的信息,所述第二网络节点为与所述第一网络节点关联的基站类设备。
第三方面,提供了一种终端信息获取装置,应用于第一网络节点,所述第一网络节点为智能表面类设备或中继类设备,该装置包括:第一接收模块,用于接收终端发送的第一信号;估计模块,用于根据所述第一信号,估计所述终端的第一信息,其中,所述第一信息包括以下至少一项:所述终端的位 置信息、所述终端的方向信息、与所述终端对应的接收波束信息、与所述终端对应的发送波束信息。
可选地,所述第一接收模块接收终端发送的第一信号,包括:接收所述终端通过时域重复方式发送的所述第一信号。
可选地,通过时域重复方式发送的所述第一信号所使用的波束不同。
可选地,所述第一接收模块接收终端发送的第一信号,包括:以所述第一网络节点的各个接收波束轮询的方式,接收所述终端发送的所述第一信号。
可选地,通过时域重复方式发送的所述第一信号所使用的波束相同。
可选地,所述第一信号通过以下序列之一承载:
SRS;
DMRS;
RACH序列;
所述第一信号的专用序列。
可选地,所述第一信号的格式为网络侧配置的或者预先设置的。
可选地,所述第一接收模块接收终端发送的第一信号,包括:
通过序列检测,获得所述第一信号;和/或,
通过能量检测,获知所述第一信号。
可选地,该装置还可以包括:第一发送模块,用于在根据所述第一信号,估计所述终端的第一信息之后,向第二网络节点发送第二信号,其中,所述第二信号携带有所述第一信息的全部或者部分内容,第二网络节点为与所述第一网络节点关联的基站类节点。
可选地,所述第二信号携带的信息还包括以下至少一项:
与所述终端的标识相关的信息;
接收到的所述第一信号的索引;
所述第一信号对应的信号强度相关信息。
可选地,所述第一接收模块还用于在向第二网络节点发送第二信号之后, 接收所述第二网络节点发送的第三信号;所述估计模块602还用于按照所述第三信号,调整所述第一网络节点的传输模式。
可选地,所述估计模块按照所述第三信号,调整所述第一网络节点的传输模式包括:根据所述第三信号,调整所述第一网络节点中的反射单元和/或折射单元的状态。
可选地,所述传输模式包括以下至少之一:
波束;
TCI信息;
QCL信息。
可选地,所述估计模块还用于在根据所述第一信号,估计所述终端的第一信息之后,根据所述第一信息,调整与所述终端关联的发送波束和/或接收波束。
第四方面,提供了一种信号接收装置,应用于终端,该装置包括:第二接收模块,用于接收第一网络节点发送的第四信号,其中,所述第一网络节点为智能表面类设备或中继类设备;第二发送模块,用于向所述第一网络节点或第二网络节点发送第五信号,其中,所述第五信号携带有部分或全部与所述第四信号相关的信息,所述第二网络节点为与所述第一网络节点关联的基站类设备。
可选地,所述第四信号中携带有第二信息,所述第二信息包括以下至少一项:
同步信息;
所述第一网络节点的标识信息;
所述第一网络节点的波束信息;
所述第一网络节点转发的时间窗;
所述第一网络节点的波束信息以及与该波束信息关联的时间信息。
可选地,所述第二接收模块接收第一网络节点发送的第四信号包括以下 至少一项:
以各个接收波束轮询的方式,接收所述第四信号;
通过序列检测,获得所述第四信号;
通过能量检测,获知所述第四信号。
可选地,所述部分或全部与所述第四信号相关的信息包括以下至少一项:
至少一个目标接收波束信息;其中,所述至少一个目标接收波束信息为根据所述第四信号估计出的信号强度最强的接收波束的相关信息。
至少一个目标发送波束信息,其中,所述至少一个目标发送波束信息为与所述信号强度最强的接收波束对应的发送波束的相关信息;
与所述终端的标识相关的信息。
可选地,所述第二发送模块发送第五信号包括:在目标时隙上发送所述第五信号。
可选地,所述目标时隙为所述第一网络节点的转发时间窗中的时隙。
可选地,所述第二发送模块发送第五信号,包括:发送所述第五信号至所述第一网络节点,由所述第一网络节点将所述第五信号转发给所述第二网络节点。
可选地,所述目标时隙为所述第一网络节点的转发时间窗之外的时隙。
可选地,所述第二发送模块发送第五信号包括:使用目标发送波束发送所述第五信号,其中,所述目标发送波束与目标接收波束对应,所述目标接收波束为接收信号强度最强的所述第四信号使用的波束。
第五方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现如第一方面所述的方法,或实现如第一方面所述的方法。
在本申请实施例中,第一网络节点(包括智能表面类设备或中继类设备)在接收到终端发送的第一信号后,根据第一信号,对终端的第一信息进行估计,从而可以获取终端的位置信息、方向信息、接收波束信息或发送波束信息,进而可以根据第一信息获取终端的相关信息,解决了智能表面设备或中继类设备无法获知终端的相关信息的问题。
附图说明
图1示出本申请实施例可应用的一种无线通信系统的框图;
图2示出本申请实施例中的终端信息获取方法的一种流程示意图;
图3示出本申请实施例中的终端信息获取方法的另一种流程示意图;
图4示出本申请实施例中的信号接收方法的一种流程示意图;
图5示出本申请实施例中的信号接收方法的另一种流程示意图;
图6示出本申请实施例提供的终端信息获取装置的一种结构示意图;
图7示出本申请实施例提供的信号接收装置的一种结构示意图;
图8示出本申请实施例提供的一种通信设备的结构示意图;
图9示出本申请实施例提供的一种终端的硬件结构示意图;
图10示出本申请实施例提供的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(NewRadio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6 thGeneration,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11、网络侧设备12和第一网络节点13。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平 板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(TransmittingReceivingPoint,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
第一网络节点13可以为智能表面类设备或中继类设备(repeater)。其中,智能表面类设备包括但不限于:智能反射表面(IRS)设备、大型智能表面(LIS)、智能反射阵列(SRA)以及可配置反射阵列(RRA),智能表面类设备的每个反射元件能够独立地诱导入射信号的振幅和/或相位和/或极化方式的变化,即通过控制反射来重新配置无线传播环境。并且,智能表面类设备不使用发射RF链,且只在短距离内工作,因此可以密集部署。与现有的反向散射通信(例如RFID)相比,IRS作为无源反射器件,不发送其自身的信息,仅仅用于促进现有的通信链接;与现有的大规模MIMO技术相比,IRS为无源阵列,而大规模MIMO为有源阵列;IRS一般用作反射阵列,而大规模MIMO一般用作传输阵。
IRS反射单元种类主要有以下几种:A.可调谐谐振器:一个可变电容器被整合到谐振器中,通过改变频率捷变(frequency-agile)贴片谐振器频率, 产生相移。B.导波控制法:在这种情况下,到达的空间波被天线耦合到导波上,随后导波相移,再重新发射,形成了一个天线移相器。C.圆极化波的旋转技术:利用电磁波的反射规律进行设计。
从是否可动态控制的角度划分,反射阵列/智能表面分为两大类:
1)静态的反射阵列/智能表面:反射阵列的结构和功能可以是固定的,对于一个角度的入射波,超表面单元导致入射波的幅度、相位、极化方式等特性发生固定的改变,得到相应的反射波。
2)动态的反射阵列/智能表面:反射阵列的结构和功能是可以控制的,对于一个角度的入射波,可以通过可编程控制使得入射波的幅度、相位、极化方式等特性发生不同的改变,得到相应的反射波。对反射超表面实现可编程控制,须在反射单元中引入开关元件(如二极管、RF-MEMS开关等)。
其中,PIN二极管是目前控制可重构超表面的常见选择,PIN二极管具备较宽范围的射频阻抗,并且失真低,在微波射频领域具有广泛应用。反射单元中的开关元件使其具有多个不同的状态,并且通过控制开关元件的通断可实现不同状态的切换。开关元件在通、断两种情况下,对应反射单元的结构和性能均有较大变化。即,不同状态的反射单元对入射波的幅度、相位、极化等特性有不同的调控模式。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的技术方案进行详细地说明。
图2示出本申请实施例中的终端信息获取方法的一种流程示意图,该方法200可以由第一网络节点执行。换言之,所述方法可以由安装在第一网络节点上的软件或硬件来执行,其中,第一网络节点可以为智能表面类设备或中继类设备。如图2所示,该方法可以包括以下步骤。
S210,接收终端发送的第一信号。
在本申请实施例中,终端可以使用某一波束发送第一信号。在一个可能的实现方式中,终端可以通过时域重复方式发送第一信号,即在时域上重复 的发送第一信号。因此,该可能的实现方式中,S210可以包括:接收终端通过时域重复方式发送的第一信号。通过该可能的实现方式中,终端通过在时域上重复发送第一信号,可以增加第一网络节点接收该第一信号的成功率。
在上述可能的实现方式中,为了进一步保证第一网络节点接收第一信号的成功率,在一个可能的实现方式中,通过时域重复方式发送的所述第一信号所使用的波束不同,即终端在不同时刻发送所述第一信号所使用的波束不同,从而可以避免由于某个波束的被遮挡等原因而导致第一网络节点接收第一信号不成功的问题。并且,终端在不同时刻使用不同波束发送第一信号,还可以增加第一网络节点获取到终端更多的波束信息。当然,并不限于此,通过时域重复方式发送的所述第一信号所使用的波束相同,即终端在不同时刻发送第一信号所使用的波束也可以相同。
在一个可能的实现方式中,由于第一网络节点并不知晓终端发送第一信号所使用的波束,因此,在S210中,第一网络节点可以以接收波束轮询的方式,接收终端发送的第一信号。比如,假设第一网络节点有4个接收波束,则第一网络节点可以先以第1个接收波束进行接收,然后以第2个接收波束进行接收,再以第3个接收波束进行接收,然后以第4个接收波束进行接收,接下来再以第1个接收波束进行接收,如此轮询的方式进行接收。
在一个可能的实现方式中,第一信号可以通过预定信号承载。例如,第一信号通过以下信号之一承载:探测参考信号(Sounding Reference Signal,SRS);解调参考信号(Demodulation Reference Signal,DMRS);随机接入信道(RACH)序列,例如,随机接入前导(preamble);第一信号的专用序列。在该可能的实现方式中,第一网络节点可以根据时间轮询接收波束的方式来接收第一信号。
在一个可能的实现方式中,第一信号的格式可以由网络侧配置,或者,预先设置的,例如,协议约定。例如,网络侧可以预先配置第一信号采用上述的某一种信号承载,即第一信号的序列相关信息。例如,网络侧可以预先 配置或协议可以预先约定第一信号的序列格式与终端标识的关联方式等。当然,并不限于此,例如,网络侧可以配置或协议可以约定第一信号发送的时频资源,而不对第一信号的具体格式进行限定。
在一个可能的实现方式中,在S210中,在接收第一信号时,第一网络节点可以通过序列检测的方式,获得第一信号。例如,如果网络侧配置了第一信号的序列格式与终端标识的关联方式,则第一网络节点可以通过序列检测的方式,确定发送第一信号的终端。和/或,第一网络节点还可以通过能量检测的方式,获知所述第一信号。例如,终端可以检测在某个接收波束上的能量是否达到或者超过预设门限,从而获知第四信号。
在一个可能的实现方式中,第一网络节点可以通过其第一模块(即具有接收功能的模块)完成上述第一信号的接收。
S212,根据所述第一信号,估计所述终端的第一信息,其中,所述第一信息包括以下至少一项:所述终端的位置信息、所述终端的方向信息、与所述终端对应的接收波束信息、与所述终端对应的发送波束信息。
例如,如果网络侧配置了第一信号的序列格式与终端标识的关联方式,则第一网络节点可以通过序列检测的方式,确定发送第一信号的终端。根据接收第一信号使用的接收波束,确定与终端对应的接收波束信号和与终端对应的发送波束信号。通过接收到第一信号的强度等信息,估计终端相对于网络侧设备的方向信息等。
在终端位于智能表面类设备或者repeater的覆盖范围,但是超出了与智能表面类设备或者repeater关联的基站的覆盖范围,为了使基站发现并服务这些终端,在一个可能的实现方式中,在S212之后,该方法还可以包括:向第二网络节点发送第二信号,其中,所述第二信号携带有所述第一信息的全部或者部分内容,第二网络节点为与所述第一网络节点关联的基站类节点。例如,第二网络节点可以为图1中的网络侧设备12。
在一个可能的实现方式,所述第二信号还包括以下(1)至(3)中的至 少一项。
(1)与所述终端的标识相关的信息。例如SRS、DMRS、RACH或者其他信号的序列相关信息等例如扰码序列索引(index),以帮助基站识别该终端;例如,还可以为在不同接收波束上收到的序列信息;
(2)接收到的所述第一信号的索引。
(3)各个所述索引对应的第一信号的强度相关信息。
其中,索引是用于标识接收到的第一信号,而强度相关信息则指示该索引对应的第一信号的强度信息,例如,在不同接收波束(对应不同索引)上收到的能量和/或功率信息。
在一个可能的实现方式中,第一网络节点可以通过其第三模块(即具有发送功能的模块)上报所述第二信号。
在一个可能的实现方式,所述第一网络节点上报所述第二信号,还可以包括:第一网络节点将第三信息通过控制信息传递给第二网络节点(如gNB)。第三信息可以指示该UE所需的用于波束管理的资源信息,用于波束管理的资源至少可以包括CSI-RS资源和/或SRS资源。所述资源信息至少包括单端口CSI-RS/SRS资源数目或所需的总端口数目。
其中,所述第三信息可以基于第一网络节点接收到的UE第一信号质量确定。
在一个可能的实现方式中,在向第二网络节点发送第二信号之后,该方法还可以包括:接收所述第二网络节点发送的第三信号;按照所述第三信号,调整所述第一网络节点的传输模式。通过该可能的实现方式中,第二网络节点可以根据接收到第二信号,判断是否需要调整第一网络节点的传输模式以及如何调整第一网络节点的传输模式,并向第一网络节点发送相应的第三信号,以调整第一网络节点的传输模式,从而提高第一网络节点发送信号或接收信号的质量。
在一个可能的实现方式中,调整传输模式可以包括:调整以下至少一项: 波束;传输配置索引(Transmission Configuration Index,TCI)信息;准共址(Quasi-Colocation,QCL)信息。通过该可能的实现方式,可以提高第一网络节点发送信息和/或接收信号的质量。
其中,第一网络节点可以是智能表面类设备或者repeater等非基站的设备。如果第一网络节点是智能表面类设备,该智能表面类设备可选的具有接收信号功能的第一模块以及具有调整外来信号相位、幅度或极化方式功能的第二模块。例如,第一模块可以仅支持能量检测或者序列接收功能而不支持信道译码等复杂功能。可选的,该智能表面类设备还可以具有第三模块,支持向终端或基站发送自己的信息。
因此,在上述可能的实现方式中,按照所述第三信号,调整所述第一网络节点的传输模式可以包括:根据所述第三信号,调整所述第一网络节点中的反射单元和/或折射单元的状态。
也就是说,第一网络节点的传输模式可以通过调整第一网络节点设备中反射或折射单元的开关元件的开关图案来实现。传输模式与波束方向有关,上述开关元件使反射单元或折射单元具有多个不同的状态,通过控制开关元件的通和断开实现不同状态的切换,其中,不同状态对应的反射波或折射波的方向、相位、幅度和/或极化方式不同。例如,用1代表开关元件通,用0代表开关元件断。则一个100乘100的发射单元的开关元件的图案就是100乘100维度的01比特矩阵。
如果第一网络节点是repeater,该repeater可以是直接转发、透明转发、放大转发或者对信号进行解调再发送等多种repeater中的任意一种,对此本申请实施例不作限定。
可选的,该repeater具有接收信号的第一模块和转发信号的第二模块;可选的,该repeater还具有第三模块,支持向终端或基站发送自己的信息。
其中,与第一网络节点关联的基站可以具有以下特征:该基站通过向第一网络节点发送信令来控制第一网络节点的传输模式(例如波束/TCI/QCL), 或,该基站的发送信号和接收信号通过第一网络节点来转发。
在一个可能的实现方式中,第一网络节点也可以直接根据估计的所述终端的第一信息,调整与终端关联的发送波束和/或接收波束。因此,在该可能的实现方式中,在S212之后,该方法还可以包括:根据所述第一信息,调整与所述终端关联的发送波束和/或接收波束。例如,第一网络节点可以根据估计出的终端的方向信息,调整其发送波束和/或接收波束,以提高第一网络节点与终端之间传输的信号质量。例如,第一网络节点可以通过调整其第二模块来实现。
通过本申请实施例提供的上述技术方案,第一网络节点(包括智能表面类设备或中继类设备)在接收到终端发送的第一信号后,根据第一信号,对终端的第一信息进行估计,从而可以获取终端的位置信息、方向信息、接收波束信息或发送波束信息,进而可以根据第一信息获取终端的相关信息,解决了智能表面设备或中继类设备无法获知终端的相关信息的问题。
并且,在本申请实施例中,第一网络节点还可以将获取的第一信息转发给其关联的基站,基站基于第一网络节点的上报,可以获知终端并与终端进行通讯。另外,基站还可以基于获取的信息向第一网络节点发送第三信号,以调整第一网络节点的传输模式,提高通信质量。或者,第一网络节点也可以根据估计得到的第一信息,调整与终端关联的发送波束和/或接收波束,以提高与终端之间的信号传输质量。
图3示出了本申请实施例的终端信息获取方法的另一种流程示意图,该方法300可以由终端、第一网络节点和基站执行,其中,基站即为上述方法200中的第二网络节点。换言之,所述方法可以由安装在终端、第一网络节点和基站上的软件或硬件来执行。如图3所示,该方法可以包括以下步骤。
S310,终端(UE)向第一网络节点发送第一信号。
可选地,UE可以通过时域重复方式发送第一信号,例如,通过在不同时刻以不同的或相同的波束来发第一信号。
S312,第一网络节点接收UE发送的第一信号。
其中,第一信号可以通过SRS、DMRS、RACH序列或者其他序列(例如专用序列等)承载。
第一网络节点可以根据时间轮询接收波束的方式来接收第一信号,其中,第一信号的格式例如序列相关信息可以通过网络侧配置或者由协议约定。例如协议约定了序列格式与UE ID的关联方式等;或者,也可以只约定第一信号发送的时频资源,信号具体格式不做限定。
可选地,第一网络节点可以通过第一模块(具有信号接收功能的模块)完成上述接收。
可选地,第一网络节点以接收波束轮询方式接收第一信号。
其中,S312与方法200中的S210相似,具体可以参见上述方法200中关于S210的描述。
S314,第一网络节点根据接收到的UE的第一信号,估计UE的第一信息,第一信息包括但不限于UE的位置信息、方向信息、对应的第一网络节点的接收波束和/或发送波束中的一项或多项。
可选地,第一网络节点可以通过序列检测,获得UE发送的第一信号。
可选地,第一网络节点也可以通过能量检测,获知UE发送的第一信号。
S314与上述方法200中的S212相似,其它未描述细节可以参见上述方法200中关于S212的描述。
第一网络节点在确定UE的第一信号后,可以调整自己与该UE关联的发送波束和/或接收波束,以提高第一网络节点与UE之间的信号传输质量。
可选地,第一网络节点也可以向基站上报第二信号,协助终端完成面向与第一网络节点关联的基站的收发。因此,在S314之后,还可以包括S316和S318。
S316,第一网络节点通过第三模块(具有信号发送功能的模块)将第二信号上报给与第一网络节点关联的基站。
其中,第二信号可以包括第一网络节点估计到的UE对应的第一网络节点的接收/发送波束信息或者位置信息或者方向信息。
可选地,第二信号还可以包括UE ID相关信息,例如SRS,DMRS,RACH或者其他信号的序列相关信息等例如扰码序列index,以帮助基站识别该UE;例如还可以包括在不同接收波束上收到的序列信息
可选地,第二信号还可以包括第一网络节点接收到的第一信号的能量信息/功率信息,例如在不同接收波束上收到的能量信息/功率信息。
S318,基站向第一网络节点发送信令(即第三信号)调整第一网络节点的传输模式,以调整第一网络节点的发送行为和/或接收行为。
具体调整方式可以参见上述方法200中的相关描述,在此不再赘述。
通过本申请实施例提供的上述方法,第一网络节点接收UE发送的信号,并确定UE的位置信息、方向信息、接收波束信息或发送波束信息等,并将信息上报给基站,从而使得基站能够据此确定第一网络节点和UE之间的波束方向,便于基站发送该UE,并为该UE提供服务,解决UE和第一网络节点对应的基站间的通信问题。
图4示出本申请实施例提供的信号接收方法的一种流程示意图,该方法400可以由终端执行。换言之,所述方法可以由安装在终端上的软件或硬件来执行。如图4所示,该方法可以包括以下步骤。
S410,接收第一网络节点发送的第四信号,其中,所述第一网络节点为智能表面类设备或中继类设备。
在一个可能的实现方式中,第四信号中承载有第二信息,所述第二信息可以包括以下(1)至(5)中的至少一项。
(1)同步信息。
通过该信息可以实现终端与第一网络节点之间的同步。
(2)所述第一网络节点的标识信息。
通过该信息,终端可以获知发送第四信号的第一网络节点。
(3)所述第一网络节点的波束信息。
通过该信息,终端可以获知第一网络节点可以使用的波束信息,从而确定向第一网络节点发送信号时可以使用的波束信息。
(4)所述第一网络节点转发的时间窗。
通过该信息,终端可以获知第一网络节点执行转发的时间窗,即第一网络节点在该时间窗内转发信号,终端可以在这个时间窗内发送传输给基站的、而无需第一网络节点处理的信号,第一网络节点将该时间窗接收到的信号透传给基站。
(5)与所述第一网络节点的波束信息关联的时间信息。
通过该信息,终端可以获知第一网络节点可以使用的波束信息,以及不同波束对应的时间信息,例如波束1对应的时间是一个TDD周期(假设由2个下行时隙和两个上行时隙组成)内的第1个下行时隙和第2个上行时隙,波束2对应的时间是一个TDD周期内的第2个下行时隙和第1个上行时隙。终端因而确定向第一网络节点发送信号时可以使用的波束信息和时隙,以及确定从第一网络节点接收信号时可以使用的波束信息和时隙。
例如,第一网络节点可以以波束扫描的形式或者广播的形式向UE发送第四信号。
可选地,第一网络节点通过第三模块(具有信号发射功能的模块)来发送第四信号。
在一个可能的实现方式中,S410可以包括以下(1)至(3)中的至少一项。
(1)以接收波束轮询方式接收第四信号。
即终端在时间上以其接收波束轮询的方式,检测是否有第四信号传输,并接收传输的第四信号。
(2)通过序列检测,获得所述第四信号。
与上述方法200相似,UE可以通过序列检测,获得第四信号;例如,终 端可以检测第一网络节点发送的序列,如果该序列格式与预定的序列格式匹配,则获得第四信号。
(3)通过能量检测,获知第四信号。
例如,终端可以检测在某个接收波束上的能量达到或者超过预设门限,从而获知第四信号。
S412,向所述第一网络节点或第二网络节点发送第五信号,其中,所述第五信号携带有部分或全部与所述第四信号相关的信息,所述第二网络节点为与所述第一网络节点关联的基站类设备。
在一个可能的实现方式中,第五信号中携带的部分或全部与所述第四信号相关的信息包括但不限于(1)至(3)中的至少一项。
(1)至少一个目标接收波束信息。其中,所述至少一个目标接收波束信息为根据所述第四信号估计出的信号强度最强的接收波束的相关信息。
(2)至少一个目标发送波束信息。其中,所述至少一个目标发送波束信息为与所述信号强度最强的接收波束对应的发送波束的相关信息。
例如,终端分别使用接收波束1和接收波束2接收到第四信号,其中,使用接收波束1接收到的第四信号的信号强度强于使用接收波束2接收到的第四信号,则所述目标接收波束信息为接收波束1的相关信息,目标发送波束信息为与接收波束1对应的发送波束(例如,发送波束1)的相关信息。
其中,接收波束的相关信息可以为同步信号块(SSB)索引,或者为最强的SSB的接收强度等。
(3)与所述终端的标识相关的信息。例如,如果网络侧配置了序列格式与终端标识的关联关系,则与终端的标识相关的信息可以为与终端标识对应的序列格式的标识(例如,索引)。
在一个可能的实现方式中,S412中发送第五信号可以包括:在目标时隙上发送第五信号。
在一个可能的实现方式中,目标时隙可以为第一网络节点的转发时间窗 中的时隙。在该可能的实现方式中,第五信号为发送给基站的信号,该信号只需要通过第一网络节点转发,而无需第一网络节点处理。
或者,在另一个可能的实现方式中,目标时隙也可以为第一网络节点的转发时间窗之外的时隙。在该可能的实现方式中,第五信号为发送给第一网络节点的信号(例如,上述方法200和方法300中的第一信号),终端可以使用上述方法200和方法300中所描述的第一信号的发送方式发送第五信号,第一网络节点在接收到第五信号后,可以按照上述方法200和方法300中所描述进行相应地处理,具体可以参见方法200和方法300中的描述,在此不再赘述。
在一个可能的实现方式中,为了保证第一网络节点接收第五信号的质量,S412中发送第五信号可以包括:使用目标发送波束发送所述第五信号,其中,所述目标发送波束与目标接收波束对应,所述目标接收波束为接收信号强度最强的所述第四信号使用的波束。例如,终端在接收第四信号时,使用接收波束2接收到的第四信号的信号强度最强,则在S412中,终端可以使用与接收波束2对应的发送波束发送第五信号。以保证第一网络节点接收到的第五信号的强度。
通过本申请实施例提供的上述技术方案,第一网络节点向终端发送第四信号,终端接收该信号并确定所述第四信号的相关信息,将第四信号的部分或全部信息发送给与第一网络节点关联的第二网络节点,使得第二网络节点(即基站)可以发现终端并为终端提供服务。
图5示出本申请实施例中的信号接收方法的另一种流程示意图,如图5所示,该方法500可以由终端(UE)、第一网络节点和基站执行,其中,基站即为上述方法400中的第二网络节点。换言之,所述方法可以由安装在终端、第一网络节点和基站上的软件或硬件来执行。如图5所示,该方法可以包括以下步骤。
S510,第一网络节点以波束扫描的形式或者广播的形式向终端发送第四 信号。
其中,所述第四信号承载的信息包括同步信息、第一网络节点的id信息、波束信息以及第一网络节点转发的时间窗等信息中的至少一项。
可选地,第一网络节点可以通过其第三模块发送第四信号。
可选地,第四信号承载的信息包括时间信息以及与时间信息关联的波束信息。
S512,UE接收第四信号。
可选地,UE以接收波束轮询方式接收第四信号。
可选地,UE可以通过序列检测,获得第四信号。
可选地,UE可以通过能量检测,获知第四信号。
S514,在获得第四信号承载的信息后,按照协议定义规则,UE发送第五信号。
其中,第五信号中可以承载UE根据第四信号估计出的最强的一个或几个接收波束信息/发送波束信息(例如最强的SSBindex和/或SSB接收强度等),惯用语UEID相关信息等至少一项。
可选地,UE可以在某个时隙发送第五信号,具体可以为以下两种实现方式。
方式1-第五信号为发送给基站的。
所述时隙可以是第一网络节点转发时间窗中的时隙。
如图5所示,第一网络节点接收到第五信号后,执行S516,转发第五信号,与第一网络节点关联的基站接收UE发送的第五信号。
S518,基站接收第五信号后,向控制第一网络节点的控制信令,控制第一网络节点的波束方向,从而通过第一网络节点与该UE通信。
方式2-第五信号为发送给第一网络节点的。
所述时隙可以是转发时间窗之外的时隙,第一网络节点在所述时隙接收UE的第五信号,然后可以按照方法200和300中接收到第一信号之后的处理 流程执行。
可选地,UE在接收第四信号的最强接收波束对应的发送波束上向第一网络节点发送第五信号。
需要说明的是,本申请实施例提供的终端信息获取方法,执行主体可以为终端信息获取装置,或者,该终端信息获取中的用于执行终端信息获取方法的控制模块。本申请实施例中以终端信息获取执行终端信息获取的方法为例,说明本申请实施例提供的终端信息获取装置。
图6示出本申请实施例中的终端信息获取装置的一种结构示意图,该装置可以应用于第一网络节点,所述第一网络节点可以为智能表面类设备或中继类设备。
如图6所示,该终端信息获取装置可以包括:第一接收模块601和估计模块602。
在本申请中,第一接收模块601,用于接收终端发送的第一信号;估计模块602,用于根据所述第一信号,估计所述终端的第一信息,其中,所述第一信息包括以下至少一项:所述终端的位置信息、所述终端的方向信息、与所述终端对应的接收波束信息、与所述终端对应的发送波束信息。
在一个可能的实现方式中,所述第一接收模块601接收终端发送的第一信号,包括:
接收所述终端通过时域重复方式发送的所述第一信号。
在一个可能的实现方式中,通过时域重复方式发送的所述第一信号所使用的波束不同。
在一个可能的实现方式中,所述第一接收模块601接收终端发送的第一信号,包括:
以所述第一网络节点的各个接收波束轮询的方式,接收所述终端发送的所述第一信号。
在一个可能的实现方式中,通过时域重复方式发送的所述第一信号所使 用的波束相同。
在一个可能的实现方式中,所述第一信号通过以下序列之一承载:
SRS;
DMRS;
RACH序列;
所述第一信号的专用序列。
在一个可能的实现方式中,所述第一信号的格式为网络侧配置的或者预先设置的。
在一个可能的实现方式中,所述第一接收模块601接收终端发送的第一信号,包括:
通过序列检测,获得所述第一信号;和/或,
通过能量检测,获知所述第一信号。
在一个可能的实现方式中,如图6所示,该装置还可以包括:第一发送模块603,用于在根据所述第一信号,估计所述终端的第一信息之后,向第二网络节点发送第二信号,其中,所述第二信号携带有所述第一信息的全部或者部分内容,第二网络节点为与所述第一网络节点关联的基站类节点。
在一个可能的实现方式中,所述第二信号携带的信息还包括以下至少一项:
与所述终端的标识相关的信息;
接收到的所述第一信号的索引;
所述第一信号对应的信号强度相关信息。
在一个可能的实现方式中,所述第一接收模块601还用于在向第二网络节点发送第二信号之后,接收所述第二网络节点发送的第三信号;
所述估计模块602还用于按照所述第三信号,调整所述第一网络节点的传输模式。
在一个可能的实现方式中,所述估计模块602按照所述第三信号,调整 所述第一网络节点的传输模式包括:
根据所述第三信号,调整所述第一网络节点中的反射单元和/或折射单元的状态。
在一个可能的实现方式中,所述传输模式包括以下至少之一:
波束;
TCI信息;
QCL信息。
在一个可能的实现方式中,所述估计模块602还用于在根据所述第一信号,估计所述终端的第一信息之后,根据所述第一信息,调整与所述终端关联的发送波束和/或接收波束。
本申请实施例中的终端信息获取装置可以是装置,也可以是第一网络节点中的部件、集成电路、或芯片。该装置可以是智能表面类设备,也可以为中继类设备。
本申请实施例中的终端信息获取装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的终端信息获取装置能够实现图2至图3的方法实施例中第一网络节点实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图7示出本申请实施例中的信号接收装置的一种结构示意图,该信号接收装置可以位于终端。
如图7所示,该信号接收装置可以包括:第二接收模块701和第二发送模块702。
在本申请实施例中,第二接收模块701,用于接收第一网络节点发送的第四信号,其中,所述第一网络节点为智能表面类设备或中继类设备;第二发送模块702,用于向所述第一网络节点或第二网络节点发送第五信号,其 中,所述第五信号携带有部分或全部与所述第四信号相关的信息,所述第二网络节点为与所述第一网络节点关联的基站类设备。
在一个可能的实现方式中,所述第四信号中携带有第二信息,所述第二信息包括以下至少一项:
同步信息;
所述第一网络节点的标识信息;
所述第一网络节点的波束信息;
所述第一网络节点转发的时间窗;
所述第一网络节点的波束信息以及与该波束信息关联的时间信息。
在一个可能的实现方式中,所述第二接收模块701接收第一网络节点发送的第四信号包括以下至少一项:
以各个接收波束轮询的方式,接收所述第四信号;
通过序列检测,获得所述第四信号;
通过能量检测,获知所述第四信号。
在一个可能的实现方式中,部分或全部与所述第四信号相关的信息包括以下至少一项:
至少一个目标接收波束信息;其中,所述至少一个目标接收波束信息为根据所述第四信号估计出的信号强度最强的接收波束的相关信息。
至少一个目标发送波束信息,其中,所述至少一个目标发送波束信息为与所述信号强度最强的接收波束对应的发送波束的相关信息;
与所述终端的标识相关的信息。
在一个可能的实现方式中,所述第二发送模块702发送第五信号包括:
在目标时隙上发送所述第五信号。
在一个可能的实现方式中,所述目标时隙为所述第一网络节点的转发时间窗中的时隙。
在一个可能的实现方式中,所述第二发送模块702发送第五信号,包括:
发送所述第五信号至所述第一网络节点,由所述第一网络节点将所述第五信号转发给所述第二网络节点。
在一个可能的实现方式中,所述目标时隙为所述第一网络节点的转发时间窗之外的时隙。
在一个可能的实现方式中,所述第二发送模块702发送第五信号包括:
使用目标发送波束发送所述第五信号,其中,所述目标发送波束与目标接收波束对应,所述目标接收波束为接收信号强度最强的所述第四信号使用的波束。
本申请实施例中的信号接收装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的信号接收装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的信号接收装置能够实现图2至图5的方法实施例中终端实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图8所示,本申请实施例还提供一种通信设备800,包括处理器801,存储器802,存储在存储器802上并可在所述处理器801上运行的程序或指令,例如,该通信设备800为终端时,该程序或指令被处理器801执行时实现上述信号接收方法实施例的各个过程,且能达到相同的技术效果。该通信设备800为网络侧设备时,该程序或指令被处理器801执行时实现上述终端信息获取方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图9为实现本申请实施例的一种终端的硬件结构示意图。
该终端900包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909、以及处理器910等部件。
本领域技术人员可以理解,终端900还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元904可以包括图形处理器(Graphics Processing Unit,GPU)9041和麦克风9042,图形处理器9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元906可包括显示面板9061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板9061。用户输入单元907包括触控面板9071以及其他输入设备9072。触控面板9071,也称为触摸屏。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元901将来自网络侧设备的下行数据接收后,给处理器910处理;另外,将上行的数据发送给网络侧设备。通常,射频单元901包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器909可用于存储软件程序或指令以及各种数据。存储器909可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器909可以包括高速随机存取存储器,还可以包 括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(ProgrammableROM,PROM)、可擦除可编程只读存储器(ErasablePROM,EPROM)、电可擦除可编程只读存储器(ElectricallyEPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器910可包括一个或多个处理单元;可选的,处理器910可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
其中,射频单元901用于接收第一网络节点发送的第四信号,其中,所述第一网络节点为智能表面类设备或中继类设备;
向所述第一网络节点或第二网络节点发送第五信号,其中,所述第五信号承载所述第四信号的部分或全部信息,所述第二网络节点为与所述第一网络节点关联的基站类设备。
在一个可能的实现方式中,所述第四信号中承载有第二信息,所述第二信息包括以下至少一项:
同步信息;
所述第一网络节点的标识信息;
所述第一网络节点的波束信息;
所述第一网络节点转发的时间窗;
所述第一网络节点的波束信息以及与该波束信息关联的时间信息。
在一个可能的实现方式中,射频单元901接收第一网络节点发送的第四信号包括以下至少一项:
所述终端以各个接收波束轮询的方式,接收所述第四信号;
通过序列检测,获得所述第四信号;
通过能量检测,获知所述第四信号。
在一个可能的实现方式中,所述第四信号的部分或全部信息包括以下至少一项:
至少一个目标接收波束信息和/或至少一个目标发送波束信息,其中,所述至少一个目标接收波束信息为根据所述第四信号估计出的信号强度最强的接收波束的相关信息,所述至少一个目标发送波束信息为与所述信号强度最强的接收波束对应的发送波束的相关信息;
与所述终端的标识相关的信息。
在一个可能的实现方式中,射频单元901发送第五信号包括:
在目标时隙上发送所述第五信号。
在一个可能的实现方式中,所述目标时隙为所述第一网络节点的转发时间窗中的时隙。
在一个可能的实现方式中,射频单元901发送第五信号,包括:
发送所述第五信号至所述第一网络节点,由所述第一网络节点将所述第五信号转发给所述第二网络节点。
在一个可能的实现方式中,所述目标时隙为所述第一网络节点的转发时间窗之外的时隙。
在一个可能的实现方式中,射频单元901发送第五信号包括:
使用目标发送波束发送所述第五信号,其中,所述目标发送波束与目标接收波束对应,所述目标接收波束为接收信号强度最强的所述第四信号使用的波束。
具体地,本申请实施例还提供了一种网络侧设备。如图10所示,该网络设备1000包括:天线1001、射频装置1002、基带装置1003。天线1001与射频装置1002连接。在上行方向上,射频装置1002通过天线1001接收信息,将接收的信息发送给基带装置1003进行处理。在下行方向上,基带装置1003对要发送的信息进行处理,并发送给射频装置1002,射频装置1002对收到的信息进行处理后经过天线1001发送出去。
上述频带处理装置可以位于基带装置1003中,以上实施例中网络侧设备执行的方法可以在基带装置1003中实现,该基带装置1003包括处理器1004和存储器1005。
基带装置1003例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图100所示,其中一个芯片例如为处理器1004,与存储器1005连接,以调用存储器1005中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1003还可以包括网络接口1006,用于与射频装置1002交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器1005上并可在处理器1004上运行的指令或程序,处理器1004调用存储器1005中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
需要说明的是上述网络侧设备可以作为中继类设备执行上述方法200-方法500中第一网络节点所执行的功能。
如果第一网络节点为智能表面类设备,则第一网络节点可以不采用上述网络侧设备的结构,而采用诸如大型智能表面(Large Intelligent Surface,LIS)、智能反射阵列(Smart Reflect Array,SRA)、可配置反射阵列(Reconfigurable Reflect Array,RRA)或智能反射表面(Intelligent Reflecting Surface,IRS)等设备的具体结构。
在本申请中,智能表面类设备可以采用静态的反射阵列/智能表面,反射阵列的结构和功能可以是固定的,对于一个角度的入射波,超表面单元导致入射波的幅度、相位、极化方式等特性发生固定的改变,得到相应的反射波。
或者,智能表面类设备也可以动态的反射阵列/智能表面:反射阵列的结构和功能是可以控制的,对于一个角度的入射波,可以通过可编程控制使得入射波的幅度、相位、极化方式等特性发生不同的改变,得到相应的反射波。 对反射超表面实现可编程控制,须在反射单元中引入开关元件(如二极管、RF-MEMS开关等)。
智能表面类设备的具体结构在本申请中并不作限定。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述终端信息获取方法实施例或信号接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述终端信息获取方法实施例或信号接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省 去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (42)

  1. 一种终端信息获取方法,应用于第一网络节点,所述第一网络节点为智能表面类设备或中继类设备,所述方法包括:
    接收终端发送的第一信号;
    根据所述第一信号,估计所述终端的第一信息,其中,所述第一信息包括以下至少一项:所述终端的位置信息、所述终端的方向信息、与所述终端对应的接收波束信息、与所述终端对应的发送波束信息。
  2. 根据权利要求1所述的方法,其中,接收终端发送的第一信号,包括:
    接收所述终端通过时域重复方式发送的所述第一信号。
  3. 根据权利要求2所述的方法,其中,通过时域重复方式发送的所述第一信号所使用的波束不同。
  4. 根据权利要求3所述的方法,其中,接收终端发送的第一信号,包括:
    以接收波束轮询的方式,接收所述终端发送的所述第一信号。
  5. 根据权利要求2所述的方法,其中,通过时域重复方式发送的所述第一信号所使用的波束相同。
  6. 根据权利要求1所述的方法,其中,所述第一信号通过以下之一承载:
    探测参考信号SRS;
    解调参考信号DMRS;
    随机接入信道RACH序列;
    所述第一信号的专用序列。
  7. 根据权利要求6所述的方法,其中,所述第一信号的格式为网络侧配置的或者预先设置的。
  8. 根据权利要求1所述的方法,其中,接收终端发送的第一信号,包括:
    通过序列检测,获得所述第一信号;和/或,
    通过能量检测,获知所述第一信号。
  9. 根据权利要求1至8任一项所述的方法,其中,在根据所述第一信号,估计所述终端的第一信息之后,所述方法还包括:
    向第二网络节点发送第二信号,其中,所述第二信号携带有所述第一信息的全部或者部分内容,第二网络节点为与所述第一网络节点关联的基站类节点。
  10. 根据权利要求9所述的方法,其中,所述第二信号携带的信息还包括以下至少一项:
    与所述终端的标识相关的信息;
    接收到的所述第一信号的索引;
    各个所述索引对应的第一信号的强度相关信息。
  11. 根据权利要求9所述的方法,其中,在向第二网络节点发送第二信号之后,所述方法还包括:
    接收所述第二网络节点发送的第三信号;
    按照所述第三信号,调整所述第一网络节点的传输模式。
  12. 根据权利要求11所述的方法,其中,按照所述第三信号,调整所述第一网络节点的传输模式包括:
    根据所述第三信号,调整所述第一网络节点中的反射单元和/或折射单元的状态。
  13. 根据权利要求11所述的方法,其中,所述传输模式包括以下至少之一:
    波束;
    传输配置索引TCI信息;
    准共址QCL信息。
  14. 根据权利要求1至8任一项所述的方法,其中,在根据所述第一信号,估计所述终端的第一信息之后,所述方法还包括:
    根据所述第一信息,调整与所述终端关联的发送波束和/或接收波束。
  15. 一种信号接收方法,应用于终端,所述方法包括:
    接收第一网络节点发送的第四信号,其中,所述第一网络节点为智能表面类设备或中继类设备;
    向所述第一网络节点或第二网络节点发送第五信号,其中,所述第五信号携带有部分或全部与所述第四信号相关的信息,所述第二网络节点为与所述第一网络节点关联的基站类设备。
  16. 根据权利要求15所述的方法,其中,所述第四信号中携带有第二信息,所述第二信息包括以下至少一项:
    同步信息;
    所述第一网络节点的标识信息;
    所述第一网络节点的波束信息;
    所述第一网络节点转发的时间窗;
    与所述第一网络节点的波束信息关联的时间信息。
  17. 根据权利要求15所述的方法,其中,接收第一网络节点发送的第四信号包括以下至少一项:
    以接收波束轮询的方式,接收所述第四信号;
    通过序列检测,获得所述第四信号;
    通过能量检测,获知所述第四信号。
  18. 根据权利要求15至17任一项所述的方法,其中,部分或全部与所述第四信号相关的信息包括以下至少一项:
    至少一个目标接收波束信息,其中,所述至少一个目标接收波束信息为根据所述第四信号估计出的信号强度最强的接收波束的相关信息;
    至少一个目标发送波束信息,其中,所述至少一个目标发送波束信息为与所述信号强度最强的接收波束对应的发送波束的相关信息;
    与所述终端的标识相关的信息。
  19. 根据权利要求15至17任一项所述的方法,其中,发送第五信号包括:
    在目标时隙上发送所述第五信号。
  20. 根据权利要求19所述的方法,其中,所述目标时隙为所述第一网络节点的转发时间窗中的时隙。
  21. 根据权利要求20所述的方法,其中,发送第五信号,包括:
    发送所述第五信号至所述第一网络节点,由所述第一网络节点将所述第五信号转发给所述第二网络节点。
  22. 根据权利要求19所述的方法,其中,所述目标时隙为所述第一网络节点的转发时间窗之外的时隙。
  23. 根据权利要求15至17任一项所述的方法,其中,发送第五信号包括:
    使用目标发送波束发送所述第五信号,其中,所述目标发送波束与目标接收波束对应,所述目标接收波束为接收信号强度最强的所述第四信号使用的波束。
  24. 一种终端信息获取装置,应用于第一网络节点,所述第一网络节点为智能表面类设备或中继类设备,所述装置包括:
    第一接收模块,用于接收终端发送的第一信号;
    估计模块,用于根据所述第一信号,估计所述终端的第一信息,其中,所述第一信息包括以下至少一项:所述终端的位置信息、所述终端的方向信息、与所述终端对应的接收波束信息、与所述终端对应的发送波束信息。
  25. 根据权利要求24所述的装置,其中,所述第一接收模块接收终端发送的第一信号,包括:
    接收所述终端通过时域重复方式发送的所述第一信号。
  26. 根据权利要求24所述的装置,其中,所述第一接收模块接收终端发送的第一信号,包括:
    以所述第一网络节点的接收波束轮询的方式,接收所述终端发送的所述第一信号。
  27. 根据权利要求24所述的装置,其中,所述第一信号通过以下之一承载:
    SRS;
    DMRS;
    RACH序列;
    所述第一信号的专用序列。
  28. 根据权利要求24所述的装置,其中,所述第一接收模块接收终端发送的第一信号,包括:
    通过序列检测,获得所述第一信号;和/或,
    通过能量检测,获知所述第一信号。
  29. 根据权利要求24至28任一项所述的装置,其中,还包括:第一发送模块,用于在根据所述第一信号,估计所述终端的第一信息之后,向第二网络节点发送第二信号,其中,所述第二信号中的信息包括所述第一信息中的全部或者部分内容,第二网络节点为与所述第一网络节点关联的基站类节点。
  30. 根据权利要求29所述的装置,其中,
    所述第一接收模块还用于在向第二网络节点发送第二信号之后,接收所述第二网络节点发送的第三信号;
    所述估计模块还用于按照所述第三信号,调整所述第一网络节点的传输模式。
  31. 根据权利要求30所述的装置,其中,所述估计模块按照所述第三信号,调整所述第一网络节点的传输模式包括:
    根据所述第三信号,调整所述第一网络节点中的反射单元和/或折射单元的状态。
  32. 根据权利要求24至28任一项所述的装置,其中,所述估计模块还用于在根据所述第一信号,估计所述终端的第一信息之后,根据所述第一信息,调整与所述终端关联的发送波束和/或接收波束。
  33. 一种信号接收装置,应用于终端,所述装置包括:
    第二接收模块,用于接收第一网络节点发送的第四信号,其中,所述第一网络节点为智能表面类设备或中继类设备;
    第二发送模块,用于向所述第一网络节点或第二网络节点发送第五信号, 其中,所述第五信号携带有部分或全部与所述第四信号相关的信息,所述第二网络节点为与所述第一网络节点关联的基站类设备。
  34. 根据权利要求33所述的装置,其中,所述第二接收模块接收第一网络节点发送的第四信号包括以下至少一项:
    以各个接收波束轮询的方式,接收所述第四信号;
    通过序列检测,获得所述第四信号;
    通过能量检测,获知所述第四信号。
  35. 根据权利要求33或34所述的装置,其中,所述部分或全部与所述第四信号相关的信息包括以下至少一项:
    至少一个目标接收波束信息和/或至少一个目标发送波束信息,其中,所述至少一个目标接收波束信息为根据所述第四信号估计出的信号强度最强的接收波束的相关信息,所述至少一个目标发送波束信息为与所述信号强度最强的接收波束对应的发送波束的相关信息;
    与所述终端的标识相关的信息。
  36. 根据权利要求33或34所述的装置,其中,所述第二发送模块发送第五信号包括:
    在目标时隙上发送所述第五信号。
  37. 根据权利要求36所述的装置,其中,所述目标时隙为所述第一网络节点的转发时间窗中的时隙。
  38. 根据权利要求37所述的装置,其中,所述第二发送模块发送第五信号,包括:
    发送所述第五信号至所述第一网络节点,由所述第一网络节点将所述第五信号转发给所述第二网络节点。
  39. 根据权利要求33或34所述的装置,其中,所述第二发送模块发送第五信号包括:
    使用目标发送波束发送所述第五信号,其中,所述目标发送波束与目标接收波束对应,所述目标接收波束为接收信号强度最强的所述第四信号使用 的波束。
  40. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至14任一项所述的终端信息获取方法的步骤。
  41. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求15至23任一项所述的信号接收方法的步骤。
  42. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-14任一项所述的终端信息获取方法,或者实现如权利要求15至23任一项所述的信号接收方法的步骤。
PCT/CN2021/106280 2020-07-17 2021-07-14 终端信息获取方法、终端及网络侧设备 WO2022012596A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023502635A JP2023534688A (ja) 2020-07-17 2021-07-14 端末情報取得方法、端末及びネットワーク側機器
EP21841637.8A EP4156723A4 (en) 2020-07-17 2021-07-14 TERMINAL INFORMATION ACQUISITION METHOD, TERMINAL AND NETWORK SIDE DEVICE
US18/090,778 US20230136962A1 (en) 2020-07-17 2022-12-29 Terminal Information Obtaining Method, Terminal, and Network Side Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010693760.0A CN113949985B (zh) 2020-07-17 2020-07-17 终端信息获取方法、终端及网络侧设备
CN202010693760.0 2020-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/090,778 Continuation US20230136962A1 (en) 2020-07-17 2022-12-29 Terminal Information Obtaining Method, Terminal, and Network Side Device

Publications (1)

Publication Number Publication Date
WO2022012596A1 true WO2022012596A1 (zh) 2022-01-20

Family

ID=79327247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106280 WO2022012596A1 (zh) 2020-07-17 2021-07-14 终端信息获取方法、终端及网络侧设备

Country Status (5)

Country Link
US (1) US20230136962A1 (zh)
EP (1) EP4156723A4 (zh)
JP (1) JP2023534688A (zh)
CN (1) CN113949985B (zh)
WO (1) WO2022012596A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197101A1 (en) * 2022-04-11 2023-10-19 Qualcomm Incorporated Controlling a reconfigurable intelligent surface using a weighting matrix

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113873424B (zh) * 2020-06-29 2023-04-28 华为技术有限公司 一种波束管理方法及装置
WO2023159452A1 (en) * 2022-02-25 2023-08-31 Qualcomm Incorporated Reconfigurable intelligent surface-assisted access using uplink signatures
WO2023159546A1 (en) * 2022-02-28 2023-08-31 Qualcomm Incorporated Reconfigurable intelligent surface co-existence
CN117856832A (zh) * 2022-09-30 2024-04-09 维沃移动通信有限公司 信息传输方法、装置和通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200028262A1 (en) * 2018-07-23 2020-01-23 Metawave Corporation High gain relay antenna system with multiple passive reflect arrays
CN111093267A (zh) * 2019-12-23 2020-05-01 华中科技大学 一种基于irs的ue位置确定方法、通信方法及系统
CN111245494A (zh) * 2020-01-13 2020-06-05 东南大学 基于智能反射面的定位信息辅助波束控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4333515A2 (en) * 2016-05-11 2024-03-06 InterDigital Patent Holdings, Inc. Systems and methods for beamformed uplink transmission
WO2020042081A1 (en) * 2018-08-30 2020-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for location services
CN111050276B (zh) * 2019-12-23 2020-11-24 华中科技大学 基于角度信息的irs辅助通信系统的优化方法及设备
CN111245492B (zh) * 2020-01-10 2022-01-21 北京邮电大学 一种基于接收功率排序的智能反射面选择方法
CN111245493B (zh) * 2020-01-10 2021-07-20 北京邮电大学 智能反射面辅助毫米波通信系统的高效波束训练方法
CN111416646B (zh) * 2020-02-17 2021-07-06 北京大学 传播环境可调控方法、装置、电子设备和计算机存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200028262A1 (en) * 2018-07-23 2020-01-23 Metawave Corporation High gain relay antenna system with multiple passive reflect arrays
CN111093267A (zh) * 2019-12-23 2020-05-01 华中科技大学 一种基于irs的ue位置确定方法、通信方法及系统
CN111245494A (zh) * 2020-01-13 2020-06-05 东南大学 基于智能反射面的定位信息辅助波束控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUO YAJING, ZHANG JIAYI;LU ZHAOHUA;WANG MINGHUI: "Beam Tracking and Coverage Enhancement Algorithm for Mobile Users with Intelligent Reflecting Surface", ZTE TECHNOLOGY JOURNAL, vol. 27, 28 June 2020 (2020-06-28), pages 54 - 59, XP055887450, DOI: 10.12142/ZTETJ.202102012 *
YANG KUN, JIANG DAJIE;QIN FEI: "Overview of the Intelligent Surface for 6G Communications", MOBILE COMMUNICATIONS, YIDONG TONGXIN ZAZHISHE, CN, vol. 44, no. 6, 30 June 2020 (2020-06-30), CN , pages 70 - 81, XP055887456, ISSN: 1006-1010, DOI: 10.3969/j.issn.1006-1010.2020.06.011 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197101A1 (en) * 2022-04-11 2023-10-19 Qualcomm Incorporated Controlling a reconfigurable intelligent surface using a weighting matrix

Also Published As

Publication number Publication date
EP4156723A1 (en) 2023-03-29
JP2023534688A (ja) 2023-08-10
CN113949985B (zh) 2023-03-24
US20230136962A1 (en) 2023-05-04
CN113949985A (zh) 2022-01-18
EP4156723A4 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
WO2022012596A1 (zh) 终端信息获取方法、终端及网络侧设备
EP3217737B1 (en) Method and apparatus for aligning beams of antennae of high-low frequency co-station network
EP4228097A1 (en) Operating mode indication method, apparatus, and device
US20230224003A1 (en) Angle-of-arrival dependent re-configurable reflective devices
CN114172773B (zh) 调制方法及装置、通信设备和可读存储介质
US20200150263A1 (en) Wlan radar
WO2022095979A1 (zh) 识别节点方法、装置、设备及可读存储介质
US20180331730A1 (en) Technique for bi-static radar operation simultaneously with an active mmwave link
US20230077666A1 (en) Information transmission method and node device
CN114616763A (zh) 装置、方法和计算机程序
US20230361853A1 (en) Polarization dependent operation of a re-configurable relaying device
WO2022129262A2 (en) Propagation path length dependent re-configurable relaying devices
CN114124143A (zh) 射频系统和客户前置设备
CN113302955B (zh) 无线电信道快速扫描
US20230209642A1 (en) Working state switching method and apparatus, terminal, and read storage medium
US20230327713A1 (en) Communication over a dually-polarized re-configurable relaying device
EP3837773B1 (en) Method and system for managing interference in multi trp systems
US20240089937A1 (en) Efficient usage of time resource blocks for transmitting reference signals
CN116582877A (zh) 来波方向估计方法、终端及网络侧设备
JP2024517892A (ja) インテリジェントサーフェス機器のビーム制御方法、装置及び電子機器
CN114513806A (zh) 用于被增强的mimo吞吐量的极化分裂
WO2023186628A1 (en) Beamwidth and radiated power control of coverage enhancing devices
CN115226116A (zh) 信号的处理方法及装置、信号放大器及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021841637

Country of ref document: EP

Effective date: 20221219

ENP Entry into the national phase

Ref document number: 2023502635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE