WO2023160243A1 - 阵列基板、显示装置以及电子设备 - Google Patents

阵列基板、显示装置以及电子设备 Download PDF

Info

Publication number
WO2023160243A1
WO2023160243A1 PCT/CN2022/143984 CN2022143984W WO2023160243A1 WO 2023160243 A1 WO2023160243 A1 WO 2023160243A1 CN 2022143984 W CN2022143984 W CN 2022143984W WO 2023160243 A1 WO2023160243 A1 WO 2023160243A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
microcup
electrode
substrate
common electrode
Prior art date
Application number
PCT/CN2022/143984
Other languages
English (en)
French (fr)
Inventor
蔡佩芝
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to US18/269,103 priority Critical patent/US20240192566A1/en
Priority to EP22905463.0A priority patent/EP4258049A4/en
Publication of WO2023160243A1 publication Critical patent/WO2023160243A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16756Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16755Substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • G02F1/1681Gaskets; Spacers; Sealing of cells; Filling or closing of cells having two or more microcells partitioned by walls, e.g. of microcup type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1685Operation of cells; Circuit arrangements affecting the entire cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • G02F1/16761Side-by-side arrangement of working electrodes and counter-electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • G02F1/16762Electrodes having three or more electrodes per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • G02F1/16766Electrodes for active matrices

Definitions

  • the present application relates to the field of display technology, and in particular to an array substrate, a display device and electronic equipment.
  • E-ink screen also known as electronic paper display screen
  • E-ink screen is the core technology and product of reflective display. Its core competitiveness is eye protection and low power consumption, so it has developed rapidly.
  • the working principle of the electronic ink screen is to use the electric field to control the electrophoretic particles in the electrophoretic fluid in each pixel, such as positively charged black particles and negatively charged white particles to move, and to reflect the external ambient light through the electrophoretic particles to achieve possible Visual effect, so as to realize the display of the screen.
  • the electronic ink screen also has a display mode of the transparent display mode, that is, when the ink particles are dispersed in the ink, the display screen is in an opaque state and displays the color of the ink particles, such as black, white, or other colors ;
  • a parallel electric field is applied, the ink particles gather around the electrodes, and the display screen is in a transparent state at this time, that is, a transparent display is realized. Since the width of the electrode is generally wider, this causes the ink particles to block more light when they gather around the electrode, thereby greatly reducing the transmittance of the display screen.
  • the present application provides an array substrate, a display device and electronic equipment.
  • the display device has a relatively high transmittance and can realize a good transparent display effect.
  • the present application provides an array substrate, which is applied to a display device, and the display device further includes a plurality of microcup units, each microcup unit includes at least one microcup, and electrophoretic particles are encapsulated in each microcup .
  • the array substrate includes a first substrate and a plurality of pixel units arrayed on the first substrate, and the plurality of pixel units correspond to the plurality of microcup units one by one.
  • Each pixel unit includes a first pixel electrode and a first common electrode disposed on the first substrate.
  • the array substrate further includes an insulating layer covering the first pixel electrode and the first common electrode of each pixel unit, and the surface of the insulating layer opposite to the first substrate corresponds to the first pixel electrode of each pixel unit And/or the first common electrode is provided with a groove, the width of which is smaller than that of the corresponding electrode, and the groove is used to collect the electrophoretic particles in the corresponding microcup.
  • the bottom of the microcup has a three-dimensional design, and the electrophoretic particles gather in the grooves above the electrodes and arrange vertically when the pixel unit is in the transmissive display mode. Since the width of the groove is smaller than the width of the corresponding electrode, and the electrophoretic particles are arranged vertically in the groove, it can effectively reduce the blocking of light by the aggregated electrophoretic particles, and can significantly improve the transmittance of the pixel unit, thereby enabling the display The device realizes a good transparent display effect.
  • the surface of the insulating layer opposite to the first substrate is provided with the groove corresponding to the first pixel electrode, and the first pixel electrode is used for When the unit is in the transmissive display mode, the electrophoretic particles in the corresponding microcups are attracted to gather the electrophoretic particles into the corresponding grooves of the first pixel electrodes.
  • the surface of the insulating layer opposite to the first substrate is provided with the groove corresponding to the first common electrode, and the first common electrode is used for transparently opening the corresponding pixel unit.
  • the electrophoretic particles in the corresponding microcups are attracted, so that the electrophoretic particles are gathered into the corresponding grooves of the first common electrode.
  • the groove includes a bottom and a side wall connected with the bottom.
  • the sidewall is perpendicular to the bottom, that is, the angle between the sidewall and the bottom is a right angle. In this way, the width of the open end of the groove is equal to the width of the bottom of the groove.
  • the angle between the side wall and the bottom is an acute angle, that is, the side wall is an inclined surface.
  • the width of the opening end of the groove is smaller than the width of the bottom of the groove, and the electrophoretic particles can be gathered in the groove in the see-through display mode.
  • the angle between the side wall and the bottom is an obtuse angle, that is, the side wall is an inclined surface.
  • the width of the opening end of the groove is greater than the width of the bottom of the groove, which facilitates the entry and exit of the electrophoretic particles from the groove.
  • the groove includes a bottom, a side wall, and a first connecting portion, the first connecting portion is connected between the bottom and the side wall, and the first connecting portion is arc-shaped shape so that the side walls transition gently to the bottom.
  • the groove includes a bottom and a side wall connected with the bottom.
  • the groove also includes a second connecting portion, the second connecting portion is connected between the surface of the insulating layer and the side wall, and the second connecting portion is arc-shaped so that the side wall transitions gently to the insulating layer. layer surface.
  • the microcup contains two electrophoretic particles of different colors and different electrical properties; the surface of the insulating layer opposite to the first substrate corresponds to the first pixel electrode and the first pixel electrode.
  • the first common electrode is provided with the groove, and when the pixel unit is in the transmissive display mode, the first pixel electrode is used to attract one of the electrophoretic particles in the microcup to the In the groove corresponding to the first pixel electrode, the first common electrode is used to attract another electrophoretic particle in the microcup into the groove corresponding to the first common electrode, so that the pixel Cells can appear transparent.
  • the microcup contains electrophoretic particles of one color; the surface of the insulating layer opposite to the first substrate is provided with In the groove, when the pixel unit is in the transmissive display mode, the first pixel electrode or the first common electrode corresponding to the groove is used to attract the electrophoretic particles in the microcup to In the groove, in this way, the pixel unit may exhibit a transparent state.
  • the microcup contains electrophoretic particles of one color; the surface of the insulating layer opposite to the first substrate is opened corresponding to the first pixel electrode and the first common electrode.
  • the first pixel electrode is used to attract the electrophoretic particles in the microcup to the groove corresponding to the first pixel electrode
  • the first common electrode is used to attract the electrophoretic particles in the microcup to the groove corresponding to the first common electrode. That is to say, the groove corresponding to one of the electrodes is in an empty state when the pixel unit is in the transmissive display mode, so that the pixel unit can also be in a transparent state.
  • each pixel unit includes a plurality of first pixel electrodes and a plurality of first common electrodes, the plurality of first pixel electrodes extend along the first direction and are arranged at intervals along the second direction, the plurality of The first common electrodes extend along the first direction and are arranged at intervals along the second direction.
  • Each of the first pixel electrodes is arranged between two adjacent first common electrodes, or each of the first common electrodes is arranged between two adjacent first pixel electrodes, wherein the first The direction is perpendicular to the second direction.
  • each microcup unit includes electrophoretic particles of one color, and each microcup corresponds to at least one first pixel electrode and at least one first common electrode included in the corresponding pixel unit.
  • the first pixel electrode and the first common electrode are used to generate a first driving electric field in the corresponding microcup, so as to control the electrophoresis in the corresponding microcup
  • the particles move along a direction parallel to the first substrate, so that the electrophoretic particles are uniformly dispersed in the electrophoretic liquid.
  • the electric field direction of the first driving electric field is a direction parallel to the first substrate.
  • the display device further includes a second substrate disposed opposite to the array substrate and a second common electrode disposed on the second substrate, and the plurality of microcup units are disposed on between the array substrate and the second common electrode.
  • Each microcup corresponds to the second common electrode and at least one first pixel electrode and at least one first common electrode included in the corresponding pixel unit.
  • the first pixel electrode and the first common electrode are used to generate a first driving electric field in the corresponding microcup, so as to control the electrophoresis in the corresponding microcup
  • the particles move along a direction parallel to the first substrate, so that the electrophoretic particles are uniformly dispersed in the electrophoretic liquid.
  • the first pixel electrode and the second common electrode are used to generate a second driving electric field in the corresponding microcup, so that the electrophoretic particles in the corresponding microcup
  • the direction moves toward the first pixel electrode or the second common electrode.
  • the electrophoretic particles that need to participate in color development move to the top of the corresponding microcup, that is, close to the second common electrode
  • the electrophoretic particles that do not participate in color development move to the bottom of the corresponding microcup, that is, close to the first pixel electrode, so that The corresponding microcups appear in black, white or other colors.
  • the electric field direction of the first driving electric field is a direction parallel to the first substrate
  • the electric field direction of the second driving electric field is a direction perpendicular to the first substrate.
  • each pixel unit further includes a thin film transistor and at least one second pixel electrode, and the second pixel electrode is electrically connected to the plurality of first pixel electrodes included in the corresponding pixel unit and the drain of the thin film transistor, respectively.
  • the second pixel electrode is used to electrically connect a plurality of first pixel electrodes included in the corresponding pixel unit to the drains of the corresponding thin film transistors, so that the thin film transistors are connected to the corresponding first pixel electrodes and the second pixel electrodes. Electrode drive.
  • the insulating layer also covers the second pixel electrode, and the surface of the insulating layer opposite to the first substrate is further provided with the groove corresponding to the second pixel electrode,
  • the second pixel electrode is used to attract the electrophoretic particles in the corresponding microcup when the corresponding pixel unit is in the transmissive display mode, so that the electrophoretic particles gather in the groove corresponding to the second pixel electrode, thereby The transmittance of the corresponding pixel unit and the transparent display effect of the display device are further improved.
  • the present application provides a display device, including the above-mentioned array substrate, a second substrate disposed opposite to the array substrate, and a plurality of substrates disposed between the array substrate and the second substrate.
  • Microcup units, the plurality of microcup units correspond to the plurality of pixel units included in the array substrate.
  • the present application provides an electronic device, including a host and the above-mentioned display device. Since the display device uses the above-mentioned array substrate, it can have a higher transmittance when the pixel unit is in the transmissive display mode, and can achieve a good transparent display effect. Therefore, the electronic device also has a good transparent display Effect.
  • FIG. 1 is a schematic side view of the structure of a display device provided in a first embodiment of the present application.
  • FIG. 2 is a schematic plan view of a partial circuit structure of a first substrate included in the display device shown in FIG. 1 .
  • FIG. 3 is a schematic perspective view of a circuit structure corresponding to a single pixel unit provided in the first embodiment of the present application.
  • FIG. 4 is a cross-sectional view of the structure shown in FIG. 3 along the II-II direction.
  • FIG. 5 a is a schematic diagram of a planar layout structure of microcups included in the microcup unit corresponding to the pixel unit shown in FIG. 3 in a display device.
  • FIG. 5 b is a schematic diagram of another planar layout structure of microcups included in the microcup unit corresponding to the pixel unit shown in FIG. 3 in a display device.
  • FIG. 5c is a schematic diagram of another planar layout structure of the microcups contained in the microcup unit corresponding to the pixel unit shown in FIG. 3 in the display device.
  • FIG. 5d is a schematic diagram of another planar layout structure of the microcups contained in the microcup unit corresponding to the pixel unit shown in FIG. 3 in the display device.
  • Fig. 6a is a schematic diagram of the arrangement of color-forming electrophoretic particles contained in the microcup when the pixel unit is in the non-transmissive display mode.
  • Fig. 6b is a schematic diagram of the arrangement of two kinds of electrophoretic particles contained in the microcup when the pixel unit is in the transmissive display mode.
  • Fig. 6c is a schematic diagram of the arrangement of electrophoretic particles contained in the microcup when the pixel unit is in the transmissive display mode.
  • Fig. 7a is a cross-sectional view along II-II direction of the structure shown in Fig. 5a or Fig. 5b.
  • Fig. 7b is another cross-sectional view along II-II direction of the structure shown in Fig. 5a or Fig. 5b.
  • Fig. 8a is a cross-sectional view of a structure of the first substrate provided in the second embodiment of the present application.
  • Fig. 8b is a cross-sectional view of another structure of the first substrate provided in the second embodiment of the present application.
  • Fig. 8c is a cross-sectional view of another structure of the first substrate provided in the second embodiment of the present application.
  • Fig. 9a is a cross-sectional view of a structure of a display device corresponding to a single microcup provided in the second embodiment of the present application.
  • Fig. 9b is a cross-sectional view of another structure corresponding to a single microcup of the display device provided in the second embodiment of the present application.
  • Fig. 9c is a cross-sectional view of another structure corresponding to a single microcup of the display device provided in the second embodiment of the present application.
  • Fig. 9d is a cross-sectional view of another structure corresponding to a single microcup of the display device provided in the second embodiment of the present application.
  • Fig. 10a is a cross-sectional view of a structure of a display device corresponding to a single microcup provided in the third embodiment of the present application.
  • Fig. 10b is a cross-sectional view of another structure corresponding to a single microcup of the display device provided in the third embodiment of the present application.
  • Fig. 10c is a cross-sectional view of another structure corresponding to a single microcup of the display device provided in the third embodiment of the present application.
  • Fig. 11a is a schematic diagram of the arrangement of two kinds of electrophoretic particles contained in the microcup shown in Fig. 9a when the pixel unit is in the transmissive display mode.
  • Fig. 11b is a schematic diagram of the arrangement of a kind of electrophoretic particles contained in the microcup shown in Fig. 9b or Fig. 10a when the pixel unit is in the transmissive display mode.
  • Fig. 12a is a cross-sectional view of the structure of the groove provided in the first embodiment of the present application.
  • Fig. 12b is a cross-sectional view of the structure of the groove provided in the second embodiment of the present application.
  • Fig. 12c is a cross-sectional view of the structure of the groove provided in the third embodiment of the present application.
  • Fig. 12d is a cross-sectional view of the structure of the groove provided by the fourth embodiment of the present application.
  • Fig. 12e is a cross-sectional view of the structure of the groove provided by the fifth embodiment of the present application.
  • Fig. 13 is a schematic diagram of functional modules of an electronic device provided in an embodiment of the present application.
  • display device 100 101, 101a-101b, 102a-102d, 103a-103c first substrate 20, 20' first substrate twenty one scan line twenty two data cable twenty three pixel area
  • a pixel unit twenty four thin film transistor 241 stacked structure 241a pixel electrode layer 242 first pixel electrode 2421 second pixel electrode 2422 Insulation 2423 first common electrode layer 243 first common electrode 2431 Insulation 2432 barrier wall 244 Insulation 245 surface 2451 groove 2452, 50 second substrate 30 second substrate 31 second common electrode 32 e-ink layer 40
  • Microcup unit 41 microcup 411, 411a, 411b, 411c, 411d
  • Electrophoretic particles 412 host 200 Electronic equipment 1000
  • the present application provides an array substrate, which is applied in a display device.
  • the array substrate includes a first substrate and a plurality of pixel units arrayed on the first substrate, and the plurality of pixel units correspond to the plurality of microcup units included in the display device.
  • Each pixel unit includes a first pixel electrode and a first common electrode disposed on the first substrate.
  • the array substrate further includes an insulating layer covering the first pixel electrode and the first common electrode of each pixel unit, and the surface of the insulating layer opposite to the first substrate corresponds to the first pixel electrode of each pixel unit
  • the first common electrode is provided with a groove, the width of which is smaller than that of the corresponding electrode, and the groove is used to collect the electrophoretic particles in the corresponding microcup.
  • the bottom of the microcup Due to the existence of the grooves, the bottom of the microcup has a three-dimensional design, and the electrophoretic particles are gathered in the grooves above the electrodes for vertical arrangement when the pixel unit is in the transmission display mode. Since the width of the groove is smaller than the width of the corresponding electrode, and the electrophoretic particles are arranged vertically in the groove, it can effectively reduce the blocking of light by the aggregated electrophoretic particles, and can significantly improve the transmittance of the pixel unit, thereby enabling the display The device realizes a good transparent display effect.
  • the present application also provides a display device, including the above-mentioned array substrate, a second substrate disposed opposite to the array substrate, and a plurality of microcup units disposed between the array substrate and the second substrate , the plurality of microcup units correspond one-to-one to the plurality of pixel units contained in the array substrate.
  • the display device can have a higher transmittance when the pixel unit is in a transmissive display mode, thereby achieving a good transparent display effect.
  • the display device can be widely used in various fields, for example, e-book readers, medical applications (such as blood glucose meters, blood pressure monitors, etc.), wearable devices (such as watches, bracelets, etc.), indoor electronic billboards, electronic Shelf labels, logistics labels, highway signs, or other Internet applications, etc.
  • medical applications such as blood glucose meters, blood pressure monitors, etc.
  • wearable devices such as watches, bracelets, etc.
  • indoor electronic billboards such as electronic Shelf labels, logistics labels, highway signs, or other Internet applications, etc.
  • the present application also provides an electronic device, which includes the above-mentioned display device. Therefore, the electronic device also has a good transparent display effect.
  • the electronic devices include but are not limited to e-book readers, medical applications (such as blood glucose meters, blood pressure monitors, etc.), wearable devices (such as watches, bracelets, etc.), indoor electronic billboards, electronic curtains, etc.
  • FIG. 1 is a schematic side view of the structure of a display device 101 provided in the first embodiment of the present application.
  • a display device 101 includes a first substrate 20, a second substrate 30, and an electronic ink layer 40, wherein the first substrate 20 and the second substrate 30 are arranged oppositely, and the electronic ink Layer 40 is disposed between first substrate 20 and second substrate 30 .
  • the display device 101 is an electronic ink screen
  • the first substrate 20 is an array substrate or a thin film transistor substrate.
  • FIG. 2 is a schematic plan view of a partial circuit structure of the first substrate 20 . Please refer to FIG. 1 and FIG. 2 together.
  • the first substrate 20 includes a first substrate 21 and a plurality of scan lines 22 , a plurality of data lines 23 and a plurality of pixel units 24 disposed on the first substrate 21 .
  • the first substrate 21 is made of transparent material, such as glass.
  • a plurality of pixel units 24 are arranged in an array on the first substrate 21 .
  • each scan line 22 is arranged at intervals
  • each data line 23 is arranged at intervals
  • each scan line 22 and each data line 23 intersect to define a plurality of pixel areas A arranged in a matrix
  • the plurality of pixel areas A corresponds to a plurality of pixel units 24 one by one
  • the pixel units 24 are located in the corresponding pixel area A.
  • Each pixel unit 24 includes a thin film transistor (Thin Film Transistor, TFT) 241 and a pixel electrode layer 242 located on the first substrate 21 .
  • the thin film transistor 241 is formed at the intersection of the corresponding scan line 22 and the corresponding data line 23 .
  • the stacked structure 241 a of the thin film transistor 241 is formed on the first substrate 21
  • the pixel electrode layer 242 is formed on the stacked structure 241 a of the thin film transistor 241 .
  • the stacked structure 241a of the thin film transistor 241 may include a buffer layer (not shown) formed on the first substrate 21, a gate (not shown) formed on the buffer layer, a gate covering the gate An insulating layer (not shown in the figure), an active region (not shown in the figure) formed on the gate insulating layer, and a source (not shown in the figure) and a drain (not shown in the figure) respectively electrically connected to the active region ), a passivation layer (not shown) covering the source and the drain, etc.
  • the gate of the thin film transistor 241 is electrically connected to the corresponding scanning line 22
  • the source electrode of the thin film transistor 241 is electrically connected to the corresponding data line 23.
  • the scanning line 22 and the data line 23 are used to provide the thin film transistor 241 provides a signal.
  • the first substrate 20 may further include a data line driver (not shown in the figure), a plurality of data line leads (not shown in the figure), and a scan line driver (not shown in the figure).
  • the data line driver is electrically connected to a plurality of data lines 23 through the plurality of data line leads, and provides corresponding data line signals to the plurality of data lines 23 .
  • the scan line driver is electrically connected to a plurality of scan lines 22 and provides corresponding scan line signals to the plurality of scan lines 22 .
  • the pixel electrode layer 242 can be formed on the passivation layer of the corresponding thin film transistor 241, and a through hole (not shown) is opened on the passivation layer, so as to realize the drain electrode of the thin film transistor 241 and
  • the corresponding pixel electrode layer 242 includes the electrical connections of the pixel electrodes (not shown).
  • the thin film transistor 241 is used as a driving unit for controlling the voltage on the corresponding pixel electrode.
  • Each pixel unit 24 also includes a first common electrode layer 243 on the first substrate 21 .
  • the stacked structure 241 a of the thin film transistor 241 , the pixel electrode layer 242 and the first common electrode layer 243 are sequentially stacked on the first substrate 21 .
  • the stacking relationship of the stacked structure 241 a of the thin film transistor 241 , the pixel electrode layer 242 and the first common electrode layer 243 on the first substrate 21 can also be adjusted according to actual needs.
  • FIG. 3 is a schematic perspective view of a circuit structure corresponding to a single pixel unit 24 provided in the first embodiment of the present application.
  • each pixel unit 24 includes a first pixel electrode 2421 and a first common electrode 2431, wherein the first pixel electrode 2421 is electrically connected to the drain of the corresponding thin film transistor 241, and the first pixel electrode 2421 is formed on In the pixel electrode layer 242 , the first common electrode 2431 is formed in the first common electrode layer 243 .
  • each pixel unit 24 includes a plurality of first pixel electrodes 2421 and a plurality of first common electrodes 2431, wherein the plurality of first pixel electrodes 2421 and corresponding thin film transistors 241 The drain electrical connection.
  • each pixel unit 24 further includes at least one second pixel electrode 2422 , the second pixel electrode 2422 is connected to a plurality of first pixel electrodes 2421 of the corresponding pixel unit 24 and the drain of the thin film transistor 241 Respectively electrically connected, so that the multiple first pixel electrodes 2421 of the corresponding pixel unit 24 are respectively electrically connected to the drains of the corresponding thin film transistors 241, so that the thin film transistors 241 are connected to the corresponding first pixel electrodes 2421 and the second pixel electrodes. 2422 drivers.
  • the second pixel electrode 2422 can be disposed in the same layer structure as the first pixel electrode 2421 .
  • each pixel unit 24 may only include one first pixel electrode 2421 and one first common electrode 2431 .
  • a plurality of first pixel electrodes 2421 extend along the first direction OX and are arranged at intervals along the second direction OY, and a plurality of first common electrodes 2431 also extend along the first direction OX and along the second direction OY spaced arrangement.
  • Each first pixel electrode 2421 is arranged between two adjacent first common electrodes 2431, or each first common electrode 2431 is arranged between two adjacent first pixel electrodes 2421, wherein the first direction OX Perpendicular to the second direction OY, both the first direction OX and the second direction OY are directions parallel to the first substrate 21 .
  • the second pixel electrode 2422 extends along the second direction OY, so as to be electrically connected to the plurality of first pixel electrodes 2421 extending along the first direction OX and arranged at intervals along the second direction OY, and connects the plurality of first pixel electrodes 2421 are electrically connected to the drains of the corresponding thin film transistors 241 .
  • the plurality of first pixel electrodes 2421 and the plurality of first common electrodes 2431 can also be arranged in other ways, as long as the driving voltage provided by the first pixel electrodes 2421 and the first common electrodes 2431 can meet the relevant driving requirements. control requirements.
  • the pixel electrode layer 242 further includes an insulating layer 2423 covering the first pixel electrode 2421 and the second pixel electrode 2422, and the first common electrode 2431 is formed on the insulating layer 2423. superior.
  • the first common electrode layer 243 further includes an insulating layer 2432 covering the first common electrode 2431 .
  • the pixel electrode layer 242, the first common electrode layer 243 and the second substrate 30 are all made of transparent materials, so that all three can transmit light.
  • the display brightness of the display device 101 is increased, and the light transmittance and aperture ratio of the display device 101 are increased, thereby improving the display quality of the display device 101 .
  • the materials of the first pixel electrode 2421, the second pixel electrode 2422 and the first common electrode 2431 are all transparent conductive materials, such as indium tin oxide (Indium Tin Oxide, ITO).
  • ITO is a commonly used transparent electrode material at present, and its light transmittance can reach more than 90%.
  • the first pixel electrode 2421, the second pixel electrode 2422 and the first common electrode 2431 are all made of ITO, which can make the first substrate 20 meet Transparency requirements.
  • the materials of the insulating layers 2423 and 2432 are both transparent materials, such as SiO2 and the like.
  • the scanning lines 22 and the data lines 23 are made of non-transparent conductive materials, such as one or more of MO, AL, Au, TI, Nb, Cu and alloys thereof.
  • the orthographic projection of at least one first pixel electrode 2421 on the first substrate 21 is the The orthographic projections of the corresponding scanning lines 22 on the first substrate 21 overlap, and the orthographic projections of at least one second pixel electrode 2422 on the first substrate 21 and the orthographic projections of the corresponding data lines 23 on the first substrate 21 overlapping.
  • At least one second pixel electrode 2422 or first common electrode 2431 can also be arranged to overlap with the corresponding scanning line 22, and at least one first pixel electrode 2421 can be arranged to overlap with the corresponding data line 23
  • the overlapping setting is not specifically limited in this application.
  • the second substrate 30 includes a second substrate 31 opposite to the first substrate 21, wherein the material of the second substrate 31 is a transparent material, such as glass or quartz, etc., so that the second The substrate 31 can transmit light, so that the second substrate 30 meets the requirement of transparency.
  • the material of the second substrate 31 is a transparent material, such as glass or quartz, etc., so that the second The substrate 31 can transmit light, so that the second substrate 30 meets the requirement of transparency.
  • the electronic ink layer 40 includes a plurality of microcup units 41 corresponding to the plurality of pixel units 24 .
  • Each microcup unit 41 includes at least one microcup 411 , and each microcup 411 encapsulates electrophoretic particles 412 and transparent electrophoretic fluid (not shown).
  • the electrophoretic particles 412 contained in each microcup 411 can exhibit one color or several different colors, and the electrophoretic particles 412 of different colors contained in the same microcup 411 have different electrical properties.
  • each microcup unit 41 includes a microcup 411, and the microcup 411 contains black particles and white particles as an example, wherein the electrical properties of the black particles are opposite to those of the white particles, for example, if the black particles If the electrical properties of the particles are positive, the electrical properties of the white particles are negative; if the electrical properties of the black particles are negative, the electrical properties of the white particles are positive.
  • each microcup 411 the electrophoretic particles 412 contained in each microcup 411 are not limited to black particles and/or white particles, and may also contain particles of other colors, such as red and green , blue, so as to improve the display effect of the display device 101 .
  • the number of microcups 411 included in each microcup unit 41 is not limited to one.
  • the microcup unit 41 may include two microcups 411 a and 411 b arranged along the first direction OX.
  • the microcup unit 41 may include two microcups 411 a and 411 b arranged along the second direction OY.
  • the microcup unit 41 may include four microcups 411a, 411b, 411c, 411d arranged in a matrix.
  • the microcup unit 41 may also include a larger number of microcups 411 , which will not be listed here, and may be adjusted according to actual needs. It can be understood that when the microcup unit 41 includes only one microcup 411 , the microcup 411 corresponds to all the first pixel electrodes 2421 and all the first common electrodes 2431 included in the pixel unit 24 .
  • each microcup 411 corresponds to at least one first pixel electrode 2421 and at least one first common electrode 2431 included in the pixel unit 24, so that each Independent control of microcup 411.
  • the electrophoretic particles 412 contained in each microcup 411 are not limited to black particles and/or white particles, and may also contain particles of other colors, such as red, green, and blue, so as to improve the display effect of the display device 101 . It can be understood that, in the embodiment shown in FIG. 1 , in order to express the electrophoretic particles 412 more clearly, the volume of the electrophoretic particles 412 is enlarged and the density is reduced. In actual products, the electrophoretic particles 412 are smaller and denser.
  • the first substrate 20 further includes a plurality of barrier walls 244 .
  • the barrier wall 244 is disposed on the first common electrode layer 243 and forms a plurality of barrier regions (not shown).
  • the plurality of barrier areas correspond to the plurality of pixel areas A one by one, and the microcup units 41 corresponding to each pixel area A are disposed in the corresponding barrier areas.
  • the barrier wall 244 can also be used to block the electric field between adjacent pixel regions A, so as to prevent the random electric field from affecting the normal display of the pixel unit 24, thereby more accurately controlling the electrophoretic particles in each microcup unit 41 of the electronic ink layer 40 movement to enhance the display. It can be understood that, when each microcup unit 41 includes a plurality of microcups 411 , barrier walls 244 may also be provided between adjacent microcups 411 .
  • the display mode of each pixel unit 24 includes a transmissive display mode and a non-transmissive display mode (ie, color rendering mode).
  • a transmissive display mode ie, color rendering mode
  • the electrophoretic particles 412 in the corresponding microcup 411 are dispersed in the electrophoretic liquid, preventing light from passing through, so that the pixel unit 24 appears in an opaque state. And display the color of the electrophoretic particle 412, such as black, white or other colors.
  • the first pixel electrode 2421 and/or the first common electrode 2431 attract the electrophoretic particles 412 in the corresponding microcups 411, so that the electrophoretic particles 412
  • the light is gathered above and around the corresponding electrodes, so that the light can easily pass through, so that the pixel unit 24 is in a transparent state, and transparent display is realized.
  • the plurality of pixel units 24 included in the first substrate 20 can be in the same display mode or different display modes at the same moment. For example, at the same time, the pixel units 24 that need to display colors can be in the non-transmissive display mode, and the pixel units 24 that do not need to display colors can be in the transmissive display mode.
  • all the pixel units 24 are in the transmissive display mode, so that the display device 101 as a whole presents a transparent state.
  • all pixel units 24 are in the non-transmissive display mode, so that the display surface presented by the display device 101 includes both a pattern display area and a non-pattern display area, wherein the non-pattern display area
  • the display area may exhibit a certain color as the base color of the pattern area.
  • the display device 101a corresponds to a single microcup 411 Cutaway view of the structure.
  • the second substrate 30 of the display device 101 a may further include a second common electrode 32 disposed on the second substrate 31 , wherein the second common electrode 32 is located between the second substrate 31 and the electronic ink layer 40 .
  • the second common electrode 32 may be a whole-layer structure, that is, the second common electrodes 32 corresponding to the microcup units 41 are connected to each other, so as to facilitate the manufacturing process.
  • the second common electrodes 32 corresponding to each microcup unit 41 may also be independent of each other, that is, the second substrate 30 includes a plurality of second common electrodes 32 , which is not limited in the present application.
  • the second common electrode 32 is a transparent conductive film made of a transparent conductive material such as indium tin oxide (ITO), that is, the second common electrode 32 can transmit light so as not to affect the transmittance of the display device 101a.
  • the second substrate 30 may further include an insulating layer (not shown) covering the second common electrode 32 , and the material of the insulating layer is also a transparent material, such as SiO 2 .
  • each microcup unit 41 includes at least one microcup 411 , and each microcup 411 may contain at least two kinds of electrophoretic particles 412 with different colors and electrical properties.
  • each microcup unit 41 includes at least two microcups 411 and electrophoretic particles 412 of at least two colors, and each microcup 411 only contains electrophoretic particles of one color.
  • FIG. 7 a a microcup 411 and its surrounding structure are illustrated by taking black particles and white particles contained in each microcup 411 as an example.
  • the first pixel electrode 2421 and the first common electrode 2431 are used to generate the first driving electric field in the corresponding microcup 411 E1, that is, the electric field distributed along the second direction OY (direction parallel to the first substrate 21), to control the movement of the electrophoretic particles 412 in the corresponding microcups 411 along the second direction OY, so that the electrophoretic particles 412 are uniformly dispersed in the electrophoretic in the liquid.
  • a reference voltage of 15V can be applied to the first common electrode 2431, and voltages of 0V and 30V can be alternately applied to the first pixel electrode 2421, thereby alternately generating positive and negative voltages between the first common electrode 2431 and the first pixel electrode 2421 , and form a lateral positive and negative electric field with alternate directions in the microcup 411 to oscillate the electrophoretic particles 412 back and forth, so that the electrophoretic particles 412 are uniformly dispersed in the electrophoretic liquid.
  • the voltage of the first pixel electrode 2421 can be changed through the driving control of the corresponding thin film transistor 241 .
  • the first pixel electrode 2421 and the second common electrode 32 are used to generate a second driving electric field E2 in the corresponding microcup 411, that is, along the third direction OZ (direction perpendicular to the first substrate 21 and the second substrate 31)
  • the distributed electric field makes the electrophoretic particles 412 in the corresponding microcups 411 move to the first pixel electrode 2421 or the second common electrode 32 according to their own electric properties and the electric field direction of the second driving electric field E2, among which, those that need to participate in color development
  • the electrophoretic particles 412 move to the top of the corresponding microcup 411, that is, close to the second common electrode 32, and the electrophoretic particles 412 that do not participate in color development move to the bottom of the corresponding microcup 411, that is, close to the first pixel electrode 2421, so that the corresponding The microcup 411 presents black, white or other colors.
  • each microcup 411 contains black particles and white particles. Color develops at the top, while the white particles move to the bottom of the microcup 411.
  • the white particles are dispersed in the electrophoretic fluid and spread on the top of the microcup 411 for color development, while the black particles move to the bottom of the microcup 411 .
  • the electric field applied to each electrode can be removed, that is, the electric field applied to the first common electrode 2431, the second common electrode 32, and the first pixel can be removed.
  • the electrodes 2421 are powered off, so that the electrophoretic particles 412 are evenly spread on the top of the corresponding microcups 411 .
  • FIG. 7b it is another cross-sectional view of the structure shown in FIG. 5a or FIG. Cutaway view of the structure.
  • the second substrate 30 of the display device 101b only includes a second substrate 31 , but no second common electrode 32 is provided.
  • Each microcup unit 41 only contains electrophoretic particles 412 of one color.
  • FIG. 7 b taking black particles contained in each microcup 411 as an example, a microcup 411 and its surrounding structures are schematically illustrated.
  • the first pixel electrode 2421 and the first common electrode 2431 are used to generate the first driving electric field in the corresponding microcup 411 E1, that is, an electric field distributed along the second direction OY (direction parallel to the first substrate 21), to control the electrophoretic particles 412 in the corresponding microcups 411 to move along the second direction OY, so that the electrophoretic particles 412 are uniformly dispersed in the corresponding
  • the color is developed in the electrophoretic liquid of the microcup 411, so that the corresponding microcup 411 presents the color of the electrophoretic particle 412 (for example, as shown in FIG. 6 a ).
  • the first pixel electrode 2421 and/or the first common electrode 2431 included in the pixel unit 24 are used to attract the electrophoretic particles 412 in the corresponding microcups 411 in the energized state, so that the electrophoretic Particles 412 collect on and around the corresponding electrodes.
  • the related control principle is roughly as follows:
  • the microcup 411 contains two electrophoretic particles of different colors and different electrical properties, based on the structure of the display device 101a shown in FIG.
  • One voltage makes one of the electrophoretic particles in the microcup 411 gather on and around the first pixel electrode 2421; a second voltage is applied to the first common electrode 2431 to make another kind of electrophoretic particle in the microcup 411 gather on the first pixel electrode 2421; Above and around a common electrode 2431 , in this way, the pixel unit 24 can be in a transparent state.
  • each microcup 411 contains black particles and white particles, and the electrical properties of the black particles and white particles are different.
  • the first voltage is applied to the first pixel electrode 2421, so that the black particles in the microcup 411 are gathered above and around the first pixel electrode 2421; the first common electrode 2431 is applied with the first voltage The second voltage causes the white particles in the microcup 411 to gather above and around the first common electrode 2431 , so that the pixel unit 24 can be in a transparent state.
  • the microcup 411 only contains electrophoretic particles of one color, based on the structure of the display device 101a shown in Figure 7a or the structure of the display device 101b shown in Figure 7b, when the pixel unit 24 is in the transmissive display mode, the given A reference voltage is applied to one of the first pixel electrode 2421 and the first common electrode 2431, and a voltage opposite to that of the electrophoretic particles 412 is applied to the other electrode, so that the electrophoretic particles 412 in the microcup 411 are gathered to all the electrodes. Above and around the other electrode, so that the pixel unit 24 can be in a transparent state. For example, as shown in FIG.
  • a reference voltage is applied to the first common electrode 2431, and a voltage opposite to that of the electrophoretic particles 412 is applied to the first pixel electrode 2421, so that the electrophoretic particles 412 gather above and around the first pixel electrode 2421.
  • Electrophoretic particles 412 gather on and around the first pixel electrode 2421 or the first common electrode 2431, the electric field applied to each electrode can be removed, that is, the first common electrode 2431 and the first pixel electrode 2421 are disconnected. Electrophoretic particles 412 are kept gathered on and around the first pixel electrode 2421 or the first common electrode 2431 .
  • the first pixel electrode 2421 and the first common electrode 2431 Generally, they have a wide width to ensure a certain electric field strength.
  • the bottom of the microcup 411 is a plane, which causes the electrophoretic particles 412 to gather on and around the electrodes in the transmissive display mode and flatten on the microcup 411
  • the bottom occupies a large area of the display surface of the pixel unit 24, thereby blocking more light, resulting in a low transmittance of the pixel unit 24 .
  • the present application also provides the first substrate 20' of the second embodiment.
  • the structure of the first substrate 20' provided in the second embodiment is similar to the structure of the first substrate 20 shown in FIG.
  • the surface 2451 of the insulating layer 245 opposite to the first substrate 21 that is, the insulating layer 245 is adjacent to each microcup unit 41
  • a groove 2452 is formed on the first pixel electrode 2421 and/or the first common electrode 2431 corresponding to each pixel unit 24 on the surface), and the width of the groove 2452 is smaller than that of the corresponding electrode.
  • the grooves 2452 are used to gather the electrophoretic particles 412 in the corresponding microcups 411 .
  • the material of the insulating layer 245 is a transparent material, such as resin, and the like.
  • the length of the groove 2452 may be less than, equal to, or greater than the length of the corresponding electrode.
  • the depth of the groove 2452 can be adjusted according to requirements, generally ranging from several microns to tens of microns. The present application does not specifically limit the length and depth of the groove 2452 .
  • the barrier wall 244 can be formed around the pixel area A, and the groove 2452 can be formed by using the nanoimprint process.
  • the present application also provides display devices 102a-102d in the second embodiment.
  • the structure of the display devices 102a-102d provided in the second embodiment is similar to the structure of the display device 101a shown in FIG.
  • the first substrate 20' That is, the first substrate 20' of the second embodiment is applied to the display devices 102a-102d of the second embodiment.
  • the present application also provides display devices 103a-103c in a third embodiment.
  • the structure of the display devices 103a-103c provided in the third embodiment is similar to the structure of the display device 101b shown in FIG. The first substrate 20'. That is, the first substrate 20' of the second embodiment is applied to the display devices 103a-103c of the third embodiment.
  • the first pixel electrode 2421 and/or the first common electrode 2431 of each pixel unit 24 are used to attract the corresponding
  • the electrophoretic particles 412 in the microcup 411 make the electrophoretic particles 412 gather in the grooves 2452 corresponding to the electrodes.
  • the microcup 411 contains two kinds of electrophoretic particles of different colors and different electrical properties, as shown in FIG. Groove 2452.
  • a first voltage is applied to the first pixel electrode 2421, so that one of the electrophoretic particles in the microcup 411 gathers to the first pixel electrode 2421 In the corresponding groove 2452; apply a second voltage to the first common electrode 2431, so that another electrophoretic particle in the microcup 411 gathers in the groove 2452 corresponding to the first common electrode 2431, so that the pixel unit 24 can display transparent state.
  • a groove 2452 is formed on the surface 2451 of the insulating layer 245 corresponding to the first pixel electrode 2421 or the first common electrode 2431 .
  • a voltage opposite to that of the electrophoretic particles 412 is applied to the electrode corresponding to the groove 2452, and a reference voltage is applied to the other electrode, so that the electrophoretic particles in the microcup 411 gather to In the groove 2452, in this way, the pixel unit 24 can be in a transparent state.
  • the microcup 411 contains black particles, as shown in FIG. 9 b or FIG. 10 a , only the groove 2452 corresponding to the first pixel electrode 2421 is opened on the surface 2451 of the insulating layer 245 .
  • a reference voltage is applied to the first common electrode 2431, and a voltage opposite to that of the electrophoretic particle 412 is applied to the first pixel electrode 2421, so that the microcup 411
  • the electrophoretic particles in the first pixel electrode 2421 are collected in the corresponding groove 2452 .
  • the surface 2451 of the insulating layer 245 may only have a groove 2452 corresponding to the first common electrode 2431 .
  • a reference voltage is applied to the first pixel electrode 2421, and a voltage opposite to that of the electrophoretic particles 412 is applied to the first common electrode 2431, so that the electrophoretic particles in the microcup 411 gather to In the groove 2452 corresponding to the first common electrode 2431 , in this way, the pixel unit 24 can be in a transparent state.
  • the microcup 411 only contains electrophoretic particles of one color, as shown in FIG. 8a, FIG. 9d and FIG.
  • the electrodes 2431 are all provided with grooves 2452 .
  • a reference voltage is applied to one of the first pixel electrode 2421 and the first common electrode 2431, and a voltage opposite to that of the electrophoretic particle 412 is applied to the other electrode.
  • the electrophoretic particles in the microcup 411 gather into the groove 2452 corresponding to the other electrode, that is, the groove corresponding to one of the electrodes is empty when the pixel unit 24 is in the transmissive display mode state, in this way, the pixel unit 24 may also exhibit a transparent state.
  • the display mode control principle of the pixel unit 24 of the display device 102a-102d shown in FIG. 9a-FIG. 9d is the same as the display mode control principle of the pixel unit 24 of the display device 101a shown in FIG. 7a. Please refer to The specific introduction of the display device 101a shown in FIG. 7a above will not be repeated here.
  • the display mode control principle of the pixel unit 24 of the display device 103a-103c shown in Fig. 10a-10c is the same as the display mode control principle of the pixel unit 24 of the display device 101b shown in Fig. 7b, please refer to the above for specific technical details The specific introduction of the display device 101b shown in FIG. 7b will not be repeated here.
  • the insulating layer 245 can also cover the second pixel electrode 2422, and a groove 2452 can be opened on the surface 2451 of the insulating layer 245 corresponding to the second pixel electrode 2422, and the second pixel electrode 2422 is used for attracting the electrophoretic particles 412 in the corresponding microcup 411 when the corresponding pixel unit 24 is in the transmissive display mode, so that the electrophoretic particles 412 gather in the groove 2452 corresponding to the second pixel electrode 2422 .
  • the bottom of the microcup 411 is a planar design, as shown in As shown in FIG. 6a or FIG. 6b , electrophoretic particles 412 are gathered and spread on and around the first pixel electrode 2421 and/or the first common electrode 2431 in the transmissive display mode, and the gathered electrophoretic particles 412 occupy the pixel unit.
  • the larger area of the display surface of the pixel unit 24 blocks more light, resulting in low transmittance of the pixel unit 24 .
  • the microcup 411 when the groove 2452 is provided above the first pixel electrode 2421 and/or the first common electrode 2431, due to the existence of the groove 2452, the microcup 411 The bottom is a three-dimensional design, as shown in Figure 11a or Figure 11b, the electrophoretic particles 412 gather above the first pixel electrode 2421 and/or the first common electrode 2431 when the pixel unit 24 is in the transmissive display mode, and sink into the groove 2452 for longitudinal arrangement.
  • the width of the groove 2452 is smaller than the width of the corresponding electrode, and the electrophoretic particles 412 are arranged vertically in the groove 2452, the aggregated electrophoretic particles 412 only occupy a small area of the display surface of the pixel unit 24, which can reduce light shading area, so as to effectively reduce the shielding of light by the aggregated electrophoretic particles, and can significantly increase the transmittance of the pixel unit 24, thereby enabling the display device to achieve a good transparent display effect.
  • the groove 2452 is also provided above the second pixel electrode 2422, which can further improve the transmittance of the pixel unit 24 and the transparent display effect of the display device.
  • the first embodiment of the present application provides a groove 50 that is opened on the insulating layer 245 and located above the electrode 60 .
  • the groove 50 corresponds to the groove 2452 shown in FIGS. 8a-8c
  • the electrode 60 corresponds to the first pixel electrode 2421 or the first common electrode 2431 shown in FIGS. 8a-8c.
  • the groove 50 includes a bottom 51 and a sidewall 52 connected to the bottom 51 .
  • the side wall 52 is perpendicular to the bottom 51 , that is, the angle between the side wall 52 and the bottom 51 is a right angle.
  • the width of the opening end of the groove 50 is equal to the width of the bottom of the groove 50 .
  • the angle between the side wall 52 and the bottom 51 of the groove 50 is an obtuse angle, that is, the side wall 52 is an inclined surface.
  • the width of the opening end of the groove 50 is greater than the width of the bottom of the groove 50 , which facilitates the entry and exit of the electrophoretic particles from the groove 50 .
  • the angle between the side wall 52 and the bottom 51 of the groove 50 is an acute angle, that is, the side wall 52 is an inclined surface.
  • the width of the opening end of the groove 50 is smaller than the width of the bottom of the groove 50 , so that the electrophoretic particles can be gathered in the groove 50 in the see-through display mode.
  • the groove 50 may further include a first connecting portion 53 connected between the bottom 51 and the side wall 52, wherein the first connecting portion 53 is arc-shaped , so that the side wall 52 transitions gently to the bottom 51 .
  • the groove 50 may further include a second connecting portion 54 connected between the surface 2451 of the insulating layer 245 and the sidewall 52, wherein the second connecting portion 54 is arc-shaped, so that the sidewall 52 transitions gently to the surface 2451 of the insulating layer 245 .
  • the shape of the groove 50 is not limited to the shape shown in Fig. 12a-Fig.
  • the shape shown in Fig. 12e is deformed in combination, or otherwise deformed.
  • the width and depth of the groove 50 on the basis of the groove 50 provided in the present application, for example, the aspect ratio of the groove is designed to be 2:1 or 3:1, etc., which can be adjusted according to actual design requirements, which is not specifically limited in this application.
  • each electrode presents a linear shape along its length direction
  • the groove 50 also presents a linear shape along its length direction.
  • each electrode may be in a wave shape, a zigzag shape, or a square wave shape in its length direction
  • the groove 50 may also be in a wave shape, a zigzag shape, or a wave shape in its length direction. square wave shape etc.
  • the shape of the electrodes and the groove 50 in the length direction can be adjusted according to actual design requirements, which is not specifically limited in this application.
  • the present application also provides an electronic device 1000 including a display device 100 and a host 200 .
  • the display device 100 corresponds to any one of the above-mentioned display devices 102a-102d, 103a-103c.
  • the host 200 may include components such as a processor (not shown in the figure), a memory (not shown in the figure), and a power module (not shown in the figure).
  • the processor as the logic operation and control center of the electronic device 1000 , is mainly responsible for functions such as data processing, communication, and execution of drive output.
  • the memory can be accessed by a processor, etc., so as to store or call data, etc.
  • the power supply module is used to supply power to other functional modules of the electronic device 1000, so that other functional modules of the electronic device 1000 can work normally.
  • the electronic device 1000 includes, but is not limited to, e-book readers, medical applications (such as blood glucose meters, blood pressure monitors, etc.), wearable devices (such as watches, wristbands, etc.), indoor electronic billboards, and the like.
  • medical applications such as blood glucose meters, blood pressure monitors, etc.
  • wearable devices such as watches, wristbands, etc.
  • indoor electronic billboards and the like.
  • the electronic device 1000 provided by this application can make the display device of the electronic device 1000 have a higher transmittance when the pixel unit is in the transmissive display mode by using the above-mentioned display devices 102a-102d, 103a-103c, so as to realize Good transparent display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种阵列基板、显示装置(100、101、101a-101b、102a-102d、103a-103c)以及电子设备(1000)。显示装置(100、101、101a-101b、102a-102d、103a-103c)包括多个微杯单元(41),每个微杯单元(41)包括至少一个微杯(411、411a、411b、411c、411d),每个微杯(411、411a、411b、411c、411d)中封装有电泳粒子(412)。阵列基板包括第一衬底(21)、阵列排布于第一衬底(21)上的多个像素单元(24)、绝缘层(245),多个像素单元(24)与多个微杯单元(41)一一对应,每个像素单元(24)包括第一像素电极(2421)和第一公共电极(2431)。绝缘层(245)覆盖各个像素单元(24)的第一像素电极(2421)和第一公共电极(2431),绝缘层(245)与第一衬底(21)相背的表面上对应于各个像素单元(24)的第一像素电极(2421)和/或第一公共电极(2431)开设有凹槽(2452、50),凹槽(2452、50)的宽度小于相应的电极的宽度,凹槽(2452、50)用于聚集相应的微杯(411、411a、411b、411c、411d)中的电泳粒子(412),使电泳粒子(412)在凹槽(2452、50)中进行纵向排列,从而使得阵列基饭具有较高的透过率,能够实现良好的透明显示效果。

Description

阵列基板、显示装置以及电子设备
本申请要求2022年02月25日在中国提交的申请号为202210180433.4、名称为“阵列基板、显示装置以及电子设备”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种阵列基板、显示装置以及电子设备。
背景技术
电子墨水屏又被称为电子纸显示屏,是反射式显示的最核心的技术和产品,其最核心的竞争力就是护眼、低功耗,从而得到了快速发展。电子墨水屏的工作原理是利用电场来控制各个像素内的电泳流体中的电泳粒子,例如带正电的黑色粒子和带负电的白色粒子进行移动,并通过电泳粒子反射外界的环境光来达到可视效果,从而实现画面的显示。
电子墨水屏还有一种显示模式为透过式显示模式,即当墨水粒子分散在墨水中时,此时显示屏为不透过状态,并显示墨水粒子的颜色,例如黑色、白色、或其他颜色;当施加平行电场时,墨水粒子聚集到电极周围,此时显示屏为透过状态,即实现透明显示。由于电极宽度一般较宽,这就导致墨水粒子聚集在电极周围时遮挡较多光线,从而导致显示屏的透过率大大降低。
发明内容
本申请提供一种阵列基板、显示装置以及电子设备,所述显示装置具有较高的透过率,能够实现良好的透明显示效果。
第一方面,本申请提供一种阵列基板,应用于显示装置中,所述显示装置还包括多个微杯单元,每个微杯单元包括至少一个微杯,每个微杯中封装有电泳粒子。所述阵列基板包括第一衬底以及阵列排布于所述第一衬底上的多个像素单元,所述多个像素单元与所述多个微杯单元一一对应。每个像素单元包括设置于所述第一衬底上的第一像素电极和第一公共电极。所述阵列基板还包括覆盖各个像素单元的第一像素电极和第一公共电极的绝缘层,所述绝缘层与所述第一衬底相背的表面上对应于各个像素单元的第一像素电极和/或第一公共电极开设有凹槽,所述凹槽的宽度小于相应的电极的宽度,所述凹槽用于聚集相应的微杯中的电泳粒子。
可以理解的是,由于所述凹槽的存在,使得微杯的底部为立体设计,电泳粒子在像素单元处于透过式显示模式时聚集到电极上方的凹槽中进行纵向排列。由于凹槽的宽度小于相应的电极的宽度,且电泳粒子在凹槽中进行纵向排列,因此,可有效减少聚集的电泳粒子对光线的遮挡,能够显著提升像素单元的透过率,进而使显示装置实现良好的透明显示效果。
在一种实施方式中,所述绝缘层与所述第一衬底相背的表面上对应于所述第一像素电极开设有所述凹槽,所述第一像素电极用于在相应的像素单元处于透过式显示模式时吸引相应的微杯中的电泳粒子,使所述电泳粒子聚集到所述第一像素电极对应的凹槽中。
和/或,所述绝缘层与所述第一衬底相背的表面上对应于所述第一公共电极开设有所述 凹槽,所述第一公共电极用于在相应的像素单元处于透过式显示模式时吸引相应的微杯中的电泳粒子,使所述电泳粒子聚集到所述第一公共电极对应的凹槽中。
在一种实施方式中,所述凹槽包括底部以及与所述底部连接的侧壁。所述侧壁垂直于所述底部,即侧壁与底部之间的夹角为直角。如此,凹槽的开口端的宽度等于凹槽底部的宽度。
可选地,所述侧壁与所述底部之间的夹角为锐角,即,侧壁为一倾斜面。如此,凹槽的开口端的宽度小于凹槽底部的宽度,可在透过式显示模式时将电泳粒子收拢在凹槽中。
可选地,所述侧壁与所述底部之间的夹角为钝角,即,侧壁为一倾斜面。如此,凹槽的开口端的宽度大于凹槽底部的宽度,可方便电泳粒子从凹槽中进出。
在一种实施方式中,所述凹槽包括底部、侧壁、以及第一连接部,所述第一连接部连接于所述底部与所述侧壁之间,所述第一连接部呈弧形,使侧壁平缓过度到底部。
在一种实施方式中,所述凹槽包括底部以及与所述底部连接的侧壁。所述凹槽还包括第二连接部,所述第二连接部连接于所述绝缘层的表面与所述侧壁之间,所述第二连接部呈弧形,使侧壁平缓过度到绝缘层的表面。
在一种实施方式中,所述微杯中包含两种不同颜色、不同电性的电泳粒子;所述绝缘层与所述第一衬底相背的表面上对应于所述第一像素电极和所述第一公共电极均开设有所述凹槽,在所述像素单元处于透过式显示模式时,所述第一像素电极用于将所述微杯中的其中一种电泳粒子吸引到所述第一像素电极对应的凹槽中,所述第一公共电极用于将所述微杯中的另一种电泳粒子吸引到所述第一公共电极对应的凹槽中,如此,所述像素单元可呈现透明状态。
可选地,所述微杯中包含一种颜色的电泳粒子;所述绝缘层与所述第一衬底相背的表面上对应于所述第一像素电极或所述第一公共电极开设有所述凹槽,在所述像素单元处于透过式显示模式时,所述凹槽对应的所述第一像素电极或所述第一公共电极用于将所述微杯中的电泳粒子吸引到所述凹槽中,如此,所述像素单元可呈现透明状态。
可选地,所述微杯中包含一种颜色的电泳粒子;所述绝缘层与所述第一衬底相背的表面上对应于所述第一像素电极和所述第一公共电极均开设有所述凹槽,在所述像素单元处于透过式显示模式时,所述第一像素电极用于将所述微杯中的电泳粒子吸引到所述第一像素电极对应的凹槽中,或者,所述第一公共电极用于将所述微杯中的电泳粒子吸引到所述第一公共电极对应的凹槽中。也就是说,其中一种电极对应的凹槽在像素单元处于透过式显示模式处于空置状态,如此,像素单元也可呈现透明状态。
在一种实施方式中,每个像素单元包括多个第一像素电极和多个第一公共电极,所述多个第一像素电极沿第一方向延伸且沿第二方向间隔排列,所述多个第一公共电极沿第一方向延伸且沿第二方向间隔排列。每个所述第一像素电极设于相邻两个第一公共电极之间,或者,每个所述第一公共电极设于相邻两个第一像素电极之间,其中,所述第一方向与所述第二方向垂直。
在一种实施方式中,每个所述微杯单元包括一种颜色的电泳粒子,每个微杯与相应的像素单元包含的至少一个第一像素电极以及至少一个第一公共电极对应。在所述像素单元处于非透过式显示模式时,所述第一像素电极和所述第一公共电极用于在相应的微杯内产 生第一驱动电场,以控制相应的微杯中的电泳粒子沿平行于所述第一衬底的方向移动,使电泳粒子均匀分散在电泳液中。其中,所述第一驱动电场的电场方向为平行于所述第一衬底的方向。
在一种实施方式中,所述显示装置还包括与所述阵列基板相对设置的第二衬底以及设置于所述第二衬底上的第二公共电极,所述多个微杯单元设置于所述阵列基板和所述第二公共电极之间。每个微杯与所述第二公共电极以及相应的像素单元包含的至少一个第一像素电极和至少一个第一公共电极对应。在所述像素单元处于非透过式显示模式时,所述第一像素电极和所述第一公共电极用于在相应的微杯内产生第一驱动电场,以控制相应的微杯中的电泳粒子沿平行于所述第一衬底的方向移动,使电泳粒子均匀分散在电泳液中。所述第一像素电极和所述第二公共电极用于在相应的微杯内产生第二驱动电场,使相应的微杯内的电泳粒子根据自身的电性以及所述第二驱动电场的电场方向向所述第一像素电极或所述第二公共电极移动。其中,需要参与显色的电泳粒子移动至相应的微杯的顶部,即靠近第二公共电极,不参与显色的电泳粒子移动至相应的微杯的底部,即靠近第一像素电极,从而使得相应的微杯呈现黑色、白色或其他颜色。其中,所述第一驱动电场的电场方向为平行于所述第一衬底的方向,所述第二驱动电场的电场方向为垂直于所述第一衬底的方向。
在一种实施方式中,每个像素单元还包括薄膜晶体管以及至少一个第二像素电极,所述第二像素电极与相应的像素单元包括的多个第一像素电极以及薄膜晶体管的漏极分别电连接,所述第二像素电极用于将相应的像素单元包括的多个第一像素电极分别电连接至相应的薄膜晶体管的漏极,从而实现薄膜晶体管对相应的第一像素电极和第二像素电极的驱动。
在一种实施方式中,所述绝缘层还覆盖所述第二像素电极,所述绝缘层与第一衬底相背的表面上对应于所述第二像素电极还开设有所述凹槽,所述第二像素电极用于在相应的像素单元处于透过式显示模式时吸引相应的微杯中的电泳粒子,使所述电泳粒子聚集到所述第二像素电极对应的凹槽中,从而进一步提升相应像素单元的透过率和显示装置的透明显示效果。
第二方面,本申请提供一种显示装置,包括上述的阵列基板、与所述阵列基板相对设置的第二衬底、以及设置于所述阵列基板和所述第二衬底之间的多个微杯单元,所述多个微杯单元与所述阵列基板包含的多个像素单元一一对应。
第三方面,本申请提供一种电子设备,包括主机以及上述的显示装置。由于所述显示装置使用上述的阵列基板,可在像素单元处于透过式显示模式时具有较高的透过率,能够实现良好的透明显示效果,因此,所述电子设备也具有良好的透明显示效果。
附图说明
为了更清楚地说明本申请实施方式中的技术方案,下面将对本申请实施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施方式提供的显示装置的结构的侧视示意图。
图2为图1所示的显示装置包含的第一基板的局部电路结构的平面示意图。
图3为本申请第一实施方式提供的单个像素单元对应的一种电路结构的透视示意图。
图4为图3所示的结构沿II-II方向的剖视图。
图5a为图3所示的像素单元对应的微杯单元所包含的微杯在显示装置中的一种平面布局结构示意图。
图5b为图3所示的像素单元对应的微杯单元所包含的微杯在显示装置中的另一种平面布局结构示意图。
图5c为图3所示的像素单元对应的微杯单元所包含的微杯在显示装置中的另一种平面布局结构示意图。
图5d为图3所示的像素单元对应的微杯单元所包含的微杯在显示装置中的另一种平面布局结构示意图。
图6a为在像素单元处于非透过式显示模式时微杯内包含的显色电泳粒子的排布示意图。
图6b为在像素单元处于透过式显示模式时微杯内包含的两种电泳粒子的排布示意图。
图6c为在像素单元处于透过式显示模式时微杯内包含的一种电泳粒子的排布示意图。
图7a为图5a或图5b所示的结构沿II-II方向的一种剖视图。
图7b为图5a或图5b所示的结构沿II-II方向的另一种剖视图。
图8a为本申请第二实施方式提供的第一基板的一种结构的剖视图。
图8b为本申请第二实施方式提供的第一基板的另一种结构的剖视图。
图8c为本申请第二实施方式提供的第一基板的另一种结构的剖视图。
图9a为本申请第二实施方式提供的显示装置对应于单个微杯的一种结构的剖视图。
图9b为本申请第二实施方式提供的显示装置对应于单个微杯的另一种结构的剖视图。
图9c为本申请第二实施方式提供的显示装置对应于单个微杯的另一种结构的剖视图。
图9d为本申请第二实施方式提供的显示装置对应于单个微杯的另一种结构的剖视图。
图10a为本申请第三实施方式提供的显示装置对应于单个微杯的一种结构的剖视图。
图10b为本申请第三实施方式提供的显示装置对应于单个微杯的另一种结构的剖视图。
图10c为本申请第三实施方式提供的显示装置对应于单个微杯的另一种结构的剖视图。
图11a为图9a所示的微杯内包含的两种电泳粒子在像素单元处于透过式显示模式时的排布示意图。
图11b为图9b或图10a所示的微杯内包含的一种电泳粒子在像素单元处于透过式显示模式时的排布示意图。
图12a为本申请第一实施方式提供的凹槽的结构剖视图。
图12b为本申请第二实施方式提供的凹槽的结构剖视图。
图12c为本申请第三实施方式提供的凹槽的结构剖视图。
图12d为本申请第四实施方式提供的凹槽的结构剖视图。
图12e为本申请第五实施方式提供的凹槽的结构剖视图。
图13为本申请的一种实施方式提供的电子设备的功能模块示意图。
主要元件符号说明
显示装置 100、101、101a-101b、102a-102d、103a-103c
第一基板 20、20’
第一衬底 21
扫描线 22
数据线 23
像素区域 A
像素单元 24
薄膜晶体管 241
层叠结构 241a
像素电极层 242
第一像素电极 2421
第二像素电极 2422
绝缘层 2423
第一公共电极层 243
第一公共电极 2431
绝缘层 2432
阻隔墙 244
绝缘层 245
表面 2451
凹槽 2452、50
第二基板 30
第二衬底 31
第二公共电极 32
电子墨水层 40
微杯单元 41
微杯 411、411a、411b、411c、411d
电泳粒子 412
主机 200
电子设备 1000
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述。其中,附图仅用于示例性说明,表示的仅是示意图,不能理解为对本申请的限制。显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基 于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与本领域技术人员通常理解的含义相同。本申请在说明书中所使用的术语只是为了描述具体实施方式的目的,不是旨在限制本申请。
本申请提供一种阵列基板,应用于显示装置中。所述阵列基板包括第一衬底以及阵列排布于所述第一衬底上的多个像素单元,所述多个像素单元与所述显示装置包含的多个微杯单元一一对应。每个像素单元包括设置于所述第一衬底上的第一像素电极和第一公共电极。所述阵列基板还包括覆盖各个像素单元的第一像素电极和第一公共电极的绝缘层,所述绝缘层与所述第一衬底相背的表面上对应于各个像素单元的第一像素电极和/或第一公共电极开设有凹槽,所述凹槽的宽度小于相应的电极的宽度,所述凹槽用于聚集相应的微杯中的电泳粒子。由于所述凹槽的存在,使得微杯的底部为立体设计,电泳粒子在像素单元处于透过式显示模式时聚集到电极上方的凹槽中进行纵向排列。由于凹槽的宽度小于相应的电极的宽度,且电泳粒子在凹槽中进行纵向排列,因此,可有效减少聚集的电泳粒子对光线的遮挡,能够显著提升像素单元的透过率,进而使显示装置实现良好的透明显示效果。
本申请还提供一种显示装置,包括上述的阵列基板、与所述阵列基板相对设置的第二衬底、以及设置于所述阵列基板和所述第二衬底之间的多个微杯单元,所述多个微杯单元与所述阵列基板包含的多个像素单元一一对应。所述显示装置通过使用上述的阵列基板,可在像素单元处于透过式显示模式时具有较高的透过率,从而能够实现良好的透明显示效果。其中,所述显示装置可广泛应用于多方面领域,例如,电子书阅读器、医疗应用(例如血糖仪、血压计等)、穿戴式设备(例如手表、手环等)、室内电子看板、电子货架标签、物流标签、高速公路路牌、或其他互联网应用等。
本申请还提供一种电子设备,包括上述的显示装置,因此,所述电子设备也具有良好的透明显示效果。其中,所述电子设备包括但不限于电子书阅读器、医疗应用(例如血糖仪、血压计等)、穿戴式设备(例如手表、手环等)、室内电子看板、电子窗帘等。
图1为本申请第一实施方式提供的显示装置101的结构的侧视示意图。如图1所示,在所述第一实施方式中,显示装置101包括第一基板20、第二基板30和电子墨水层40,其中,第一基板20和第二基板30相对设置,电子墨水层40设置于第一基板20和第二基板30之间。在本申请中,显示装置101为电子墨水屏,第一基板20为阵列基板或薄膜晶体管基板。
图2为第一基板20的局部电路结构的平面示意图。请一并参阅图1和图2,第一基板20包括第一衬底21以及设于第一衬底21上的多条扫描线22、多条数据线23和多个像素单元24。其中,第一衬底21由透明材料,例如玻璃制成。
多个像素单元24阵列排布于第一衬底21上。具体地,各条扫描线22相互间隔排列,各条数据线23相互间隔排列,且各条扫描线22与各条数据线23交叉限定出多个呈矩阵排列的像素区域A,多个像素区域A与多个像素单元24一一对应,像素单元24位于相应的像素区域A内。
每个像素单元24包括位于第一衬底21上的薄膜晶体管(Thin Film Transistor,TFT)241和像素电极层242。其中,薄膜晶体管241形成于相应的扫描线22和相应的数据线23的交叉处。在所述第一实施方式中,如图1所示,薄膜晶体管241的层叠结构241a形成于第一衬底21上,像素电极层242形成于薄膜晶体管241的层叠结构241a上。
薄膜晶体管241的层叠结构241a可包括形成于第一衬底21上的缓冲层(图未示)、形成于所述缓冲层上的栅极(图未示)、覆盖所述栅极的栅极绝缘层(图未示)、形成于所述栅极绝缘层的有源区(图未示)以及分别与所述有源区电连接的源极(图未示)和漏极(图未示)、覆盖所述源极和所述漏极的钝化层(图未示)等。其中,如图2所示,薄膜晶体管241的栅极与相应的扫描线22电连接,薄膜晶体管241的源极与相应的数据线23电连接,扫描线22和数据线23用于给薄膜晶体管241提供信号。
可以理解的是,第一基板20还可包括数据线驱动器(图未示)、多条数据线引线(图未示)和扫描线驱动器(图未示)。其中,所述数据线驱动器通过所述多条数据线引线与多条数据线23电连接,并给多条数据线23提供相应的数据线信号。所述扫描线驱动器与多条扫描线22电连接,并给多条扫描线22提供相应的扫描线信号。
像素电极层242可形成于相应的薄膜晶体管241的所述钝化层上,所述钝化层上开设有通孔(图未示),以通过所述通孔实现薄膜晶体管241的漏极与相应的像素电极层242包含的像素电极(图未示)的电连接。其中,薄膜晶体管241作为驱动单元,用于控制相应的像素电极上的电压。
每个像素单元24还包括位于第一衬底21上的第一公共电极层243。如图1所示,在所述第一实施方式中,薄膜晶体管241的层叠结构241a、像素电极层242以及第一公共电极层243依次层叠于第一衬底21上。在其他实施方式中,薄膜晶体管241的层叠结构241a、像素电极层242以及第一公共电极层243在第一衬底21上的层叠关系也可以根据实际需求做调整。
图3为本申请第一实施方式提供的单个像素单元24对应的一种电路结构的透视示意图。如图3所示,每个像素单元24包括第一像素电极2421和第一公共电极2431,其中,第一像素电极2421与相应的薄膜晶体管241的漏极电连接,第一像素电极2421形成于像素电极层242中,第一公共电极2431形成于第一公共电极层243中。
在一种实施方式中,如图3所示,每个像素单元24包括多个第一像素电极2421和多个第一公共电极2431,其中,多个第一像素电极2421与相应的薄膜晶体管241的漏极电连接。在所述一种实施方式中,每个像素单元24还包括至少一个第二像素电极2422,第二像素电极2422与相应的像素单元24的多个第一像素电极2421以及薄膜晶体管241的漏极分别电连接,以将相应的像素单元24的多个第一像素电极2421分别电连接至相应的薄膜晶体管241的漏极,从而实现薄膜晶体管241对相应的第一像素电极2421和第二像素电极2422的驱动。其中,第二像素电极2422可与第一像素电极2421设置于同一层结构中。在其他实施方式中,多个第一像素电极2421也可以通过其他方式与相应的薄膜晶体管241的漏极电连接,在此不做具体限定。在其他实施方式中,每个像素单元24也可以只包括一个第一像素电极2421以及一个第一公共电极2431。
在所述第一实施方式中,多个第一像素电极2421沿第一方向OX延伸且沿第二方向 OY间隔排列,多个第一公共电极2431也沿第一方向OX延伸且沿第二方向OY间隔排列。每个第一像素电极2421设于相邻两个第一公共电极2431之间,或者,每个第一公共电极2431设于相邻两个第一像素电极2421之间,其中,第一方向OX与第二方向OY垂直,第一方向OX和第二方向OY均为平行于第一衬底21的方向。第二像素电极2422沿第二方向OY延伸,从而可与沿第一方向OX延伸且沿第二方向OY间隔排列的若干个第一像素电极2421均电连接,并将若干个第一像素电极2421电连接至相应的薄膜晶体管241的漏极。在其他实施方式中,多个第一像素电极2421和多个第一公共电极2431也可按其他方式排列,只要第一像素电极2421与第一公共电极2431配合提供的驱动电压能够满足相关的驱动控制要求即可。
如图4所示,在所述第一实施方式中,像素电极层242还包括覆盖在第一像素电极2421和第二像素电极2422上的绝缘层2423,第一公共电极2431形成于绝缘层2423上。第一公共电极层243还包括覆盖在第一公共电极2431上的绝缘层2432。
请一并参阅图1和图4,在所述第一实施方式中,像素电极层242、第一公共电极层243以及第二基板30均由透明材料制成,使三者均能透光,以提高显示装置101的显示亮度,并提高显示装置101的透光率和开口率,从而提高显示装置101的显示质量。
具体地,第一像素电极2421、第二像素电极2422以及第一公共电极2431的材质均为透明导电材料,例如可为氧化铟锡(Indium Tin Oxide,ITO)。ITO是目前常用的透明电极材质,其光透光率可达到90%以上,第一像素电极2421、第二像素电极2422以及第一公共电极2431的材质均采用ITO,可使第一基板20满足透明性的要求。绝缘层2423、2432的材质均为透明材料,例如可为SiO2等。
扫描线22、数据线23的材质均为非透明导电材料,例如可采用MO、AL、Au、TI、Nb、Cu及其合金等中的一种或多种。为了进一步提高第一基板20的透光率和开口率,如图3和图4所示,在每个像素单元24中,至少一条第一像素电极2421在第一衬底21上的正投影与相应的扫描线22在第一衬底21上的正投影重叠,至少一条第二像素电极2422在第一衬底21上的正投影与相应的数据线23在第一衬底21上的正投影重叠。可以理解的是,在其他实施方式中,也可以将至少一条第二像素电极2422或第一公共电极2431与相应的扫描线22重叠设置,将至少一条第一像素电极2421与相应的数据线23重叠设置,本申请对此不作具体限定。
请再次参阅图1,第二基板30包括与第一衬底21相对设置的第二衬底31,其中,第二衬底31的材质为透明材料,例如可为玻璃或石英等,使第二衬底31能够透光,从而使第二基板30满足透明性的要求。
在所述第一实施方式中,电子墨水层40包括与多个像素单元24一一对应的多个微杯单元41。每个微杯单元41包括至少一个微杯411,每个微杯411中封装有电泳粒子412以及透明的电泳液(图未示)。其中,每个微杯411中包含的电泳粒子412可呈现一种颜色或呈现若干种不同颜色,同一个微杯411中包含的不同颜色的电泳粒子412呈不同电性。图1中以每个微杯单元41包括一个微杯411,微杯411中包含黑色粒子和白色粒子为例进行示意,其中,黑色粒子的电性与白色粒子的电性相反,例如,若黑色粒子的电性为正,则白色粒子的电性为负;若黑色粒子的电性为负,则白色粒子的电性为正。
应说明的是,在本申请提供的显示装置101中,每个微杯411中包含的电泳粒子412也不局限于黑色粒子和/或白色粒子,也可以包含其他颜色的粒子,例如红色、绿色、蓝色,从而可提高显示装置101的显示效果。每个微杯单元41包含的微杯411的数量不局限于一个,例如,对应于图3所示的像素单元24,如图5a所示,微杯单元41可仅包含一个微杯411。可选地,如图5b所示,微杯单元41可包含沿第一方向OX方向排列的两个微杯411a和411b。可选地,如图5c所示,微杯单元41可包含沿第二方向OY方向排列的两个微杯411a和411b。可选地,如图5d所示,微杯单元41可包含呈矩阵排列的四个微杯411a、411b、411c、411d。可选地,微杯单元41还可包含数量更多的微杯411,在此不进行一一举例,具体可根据实际需求做调整。可以理解的是,在微杯单元41仅包括一个微杯411时,微杯411与像素单元24包含的所有第一像素电极2421以及所有第一公共电极2431均对应。在微杯单元41包含的微杯411的数量多于一个时,每个微杯411与像素单元24包含的至少一个第一像素电极2421以及至少一个第一公共电极2431对应,如此,可实现各个微杯411的独立控制。
每个微杯411中包含的电泳粒子412也不局限于黑色粒子和/或白色粒子,也可以包含其他颜色的粒子,例如红色、绿色、蓝色,从而可提高显示装置101的显示效果。可以理解的是,在图1所示的实施方式中,为了更清楚地表现电泳粒子412而将电泳粒子412的体积放大、密度变小。在实际产品中,电泳粒子412的体积更小且密度更大。
请再次参阅图1,相邻的微杯单元41之间彼此不连通,相应地,第一基板20还包括多个阻隔墙244。在所述第一实施方式中,阻隔墙244设于第一公共电极层243上且形成多个阻隔区域(图未示)。所述多个阻隔区域与多个像素区域A一一对应,且各个像素区域A对应的微杯单元41设于相应的阻隔区域内。阻隔墙244还可用于将相邻像素区域A间的电场进行阻隔,避免杂序电场影响像素单元24的正常显示,从而更加准确地控制电子墨水层40的每个微杯单元41中的电泳粒子运动,以提高显示效果。可以理解的是,在每个微杯单元41包括多个微杯411的情况下,相邻的微杯411之间也可以设有阻隔墙244。
在本申请中,各个像素单元24的显示模式包括透过式显示模式和非透过式显示模式(即显色模式)。在像素单元24处于非透过式显示模式时,如图6a所示,相应的微杯411中的电泳粒子412分散在电泳液中,阻止光线通过,使像素单元24呈现为不透过状态,并显示电泳粒子412的颜色,例如黑色、白色或其他颜色。在像素单元24处于透过式显示模式时,如图6b或图6c所示,第一像素电极2421和/或第一公共电极2431吸引相应的微杯411中的电泳粒子412,使电泳粒子412聚集到相应的电极上方及周围,使光线容易通过,从而使像素单元24呈现透过状态,实现透明显示。可以理解的是,第一基板20包括的多个像素单元24在同一时刻可处于相同的显示模式或不同的显示模式。例如,在同一时刻,需要显示颜色的像素单元24可处于非透过式显示模式,不需要显示颜色的像素单元24可处于透过式显示模式,如此,可使显示装置101呈现的显示面中,既包含有不透明的图案显示区域,还包含有透明的非图案显示区域。或者,在同一时刻,所有像素单元24均处于透过式显示模式,使显示装置101整体呈现透明状态。或者,在同一时刻,所有像素单元24均处于非透过式显示模式,使显示装置101呈现的显示面中,既包含有图案显示区域,也包含有非图案显示区域,其中,所述非图案显示区域可呈现某一颜色作为所述图案区域 的底色。
具体地,在一种实施方式中,如图7a所示,为图5a或图5b所示的结构沿II-II方向的一种剖视图,即,显示装置101a对应于单个微杯411的一种结构的剖视图。显示装置101a的第二基板30还可包括设于第二衬底31上的第二公共电极32,其中,第二公共电极32位于第二衬底31与电子墨水层40之间。第二公共电极32可以是一整层结构,即,各个微杯单元41对应的第二公共电极32互相连接,以方便工艺制作。可选地,各个微杯单元41对应的第二公共电极32也可以相互独立,即,第二基板30包括多个第二公共电极32,本申请对此不作限定。
第二公共电极32为由透明导电材料,例如氧化铟锡(ITO)制成的透明导电薄膜,即,第二公共电极32可透光,以避免影响显示装置101a的透过率。第二基板30还可包括覆盖第二公共电极32的绝缘层(图未示),所述绝缘层的材质也为透明材料,例如可为SiO2等。
在所述一种实施方式中,每个微杯单元41包括至少一个微杯411,每个微杯411中可包含颜色和电性均不同的至少两种电泳粒子412。或者,每个微杯单元41包括至少两个微杯411以及至少两种颜色的电泳粒子412,且每个微杯411中仅包含一种颜色的电泳粒子。
图7a中以每个微杯411中包含黑色粒子和白色粒子为例,对一个微杯411及其周围的结构进行示意。基于图7a所示的显示装置101a的结构,在像素单元24处于非透过式显示模式时,第一像素电极2421和第一公共电极2431用于在相应的微杯411内产生第一驱动电场E1,即沿第二方向OY(平行于第一衬底21的方向)分布的电场,以控制相应的微杯411中的电泳粒子412沿第二方向OY移动,使电泳粒子412均匀分散在电泳液中。例如,可给第一公共电极2431施加15V的参考电压,并给第一像素电极2421交替施加0V和30V的电压,从而在第一公共电极2431和第一像素电极2421之间交替产生正负电压,并在微杯411内形成横向的、且方向交替变化的正负电场,以来回震荡电泳粒子412,使电泳粒子412均匀分散在电泳液中。其中,第一像素电极2421的电压可通过相应的薄膜晶体管241的驱动控制来改变。
第一像素电极2421和第二公共电极32用于在相应的微杯411内产生第二驱动电场E2,即沿第三方向OZ(垂直于第一衬底21和第二衬底31的方向)分布的电场,使相应的微杯411内的电泳粒子412根据自身的电性以及第二驱动电场E2的电场方向向第一像素电极2421或第二公共电极32移动,其中,需要参与显色的电泳粒子412移动至相应的微杯411的顶部,即靠近第二公共电极32,不参与显色的电泳粒子412移动至相应的微杯411的底部,即靠近第一像素电极2421,从而使得相应的微杯411呈现黑色、白色或其他颜色。例如图7a所示,每个微杯411中包含黑色粒子和白色粒子,当微杯411需要呈现黑色时,如图6a所示,黑色粒子分散在电泳液中,并平铺在微杯411的顶部进行显色,而白色粒子则移动至微杯411的底部。当微杯411需要呈现白色时,白色粒子分散在电泳液中,并平铺在微杯411的顶部进行显色,而黑色粒子则移动至微杯411的底部。
可以理解的是,在参与显色的电泳粒子412均匀平铺在相应的微杯411顶部后可撤去给各个电极施加的电场,即给第一公共电极2431、第二公共电极32、第一像素电极2421断电,使电泳粒子412保持均匀平铺在相应的微杯411顶部的状态。
在另一种实施方式中,如图7b所示,为图5a或图5b所示的结构沿II-II方向的另一种 剖视图,即,显示装置101a对应于单个微杯411的另一种结构的剖视图。显示装置101b的第二基板30只包括第二衬底31,但未设置第二公共电极32。每个微杯单元41仅包含一种颜色的电泳粒子412。
图7b中以每个微杯411中包含黑色粒子为例,对一个微杯411及其周围的结构进行示意。基于图7b所示的显示装置101b的结构,在像素单元24处于非透过式显示模式时,第一像素电极2421和第一公共电极2431用于在相应的微杯411内产生第一驱动电场E1,即沿第二方向OY(平行于第一衬底21的方向)分布的电场,以控制相应的微杯411中的电泳粒子412沿第二方向OY移动,使电泳粒子412均匀分散在相应的微杯411的电泳液中进行显色,从而使相应的微杯411呈现电泳粒子412的颜色(例如图6a所示)。
在像素单元24处于透过式显示模式时,像素单元24包括的第一像素电极2421和/或第一公共电极2431在通电状态下用于吸引相应的微杯411中的电泳粒子412,使电泳粒子412聚集到相应的电极上方及周围。具体地,当需要实现像素单元24的透过式显示模式时,相关的控制原理大致为:
若微杯411中包含两种不同颜色、不同电性的电泳粒子,基于图7a所示的显示装置101a的结构,在像素单元24处于透过式显示模式时,给第一像素电极2421施加第一电压,使微杯411中的其中一种电泳粒子聚集到第一像素电极2421上方及周围;给第一公共电极2431施加第二电压,使微杯411中的另一种电泳粒子聚集到第一公共电极2431上方及周围,如此,像素单元24可呈现透明状态。例如图6b所示,每个微杯411中包含黑色粒子和白色粒子,黑色粒子和白色粒子的电性不同。在像素单元24处于透过式显示模式时,给第一像素电极2421施加第一电压,使微杯411中的黑色粒子聚集到第一像素电极2421上方及周围;给第一公共电极2431施加第二电压,使微杯411中的白色粒子聚集到第一公共电极2431上方及周围,如此,像素单元24可呈现透明状态。
若微杯411中仅包含一种颜色的电泳粒子,基于图7a所示的显示装置101a的结构或图7b所示的显示装置101b的结构,在像素单元24处于透过式显示模式时,给第一像素电极2421和第一公共电极2431中的其中一种电极施加参考电压,给另一种电极施加与电泳粒子412的电性相反的电压,使微杯411中的电泳粒子412聚集到所述另一种电极的上方及周围,如此,像素单元24可呈现透明状态。例如图6c所示,给第一公共电极2431施加参考电压,并给第一像素电极2421施加与电泳粒子412的电性相反的电压,使电泳粒子412聚集到第一像素电极2421的上方及周围。
可以理解的是,在电泳粒子412聚集到第一像素电极2421或第一公共电极2431的上方及周围后可撤去给各个电极施加的电场,即给第一公共电极2431、第一像素电极2421断电,使电泳粒子412保持聚集在第一像素电极2421或第一公共电极2431的上方及周围的状态。
在图7a或图7b所示的实施方式中,当像素单元24处于非透过式显示模式时,为了确保电泳粒子412能够均匀分散在电泳液中,第一像素电极2421和第一公共电极2431一般都具有较宽的宽度,以保证一定的电场强度。另外,第一像素电极2421和第一公共电极2431上方,即微杯411的底部为平面,这就导致透过式显示模式时的电泳粒子412聚集在电极上方及周围时平铺在微杯411的底部(如图6b、图6c、图7a、图7b所示),占据了像 素单元24的显示面的较大面积,从而遮挡了较多的光线,导致像素单元24的透过率偏低。
为了提高像素单元24在透过式显示模式时的透过率,如图8a-图8c所示,本申请还提供了第二实施方式的第一基板20’。其中,所述第二实施方式提供的第一基板20’的结构与图4所示的第一基板20的结构相似,不同之处在于:所述第二实施方式提供的第一基板20’还包括覆盖像素单元24的第一像素电极2421和第一公共电极2431的绝缘层245,绝缘层245与第一衬底21相背的表面2451(即绝缘层245与各个微杯单元41相邻的表面)上对应于各个像素单元24的第一像素电极2421和/或第一公共电极2431开设有凹槽2452,凹槽2452的宽度小于相应的电极的宽度。凹槽2452用于聚集相应的微杯411中的电泳粒子412。
其中,绝缘层245的材料为透明材料,例如可为树脂等。凹槽2452的长度可小于、等于或大于相应的电极的长度。凹槽2452的深度可根据需求进行调整,一般为几微米~几十微米。本申请对凹槽2452的长度和深度不做具体限定。在制作工艺上,可在形成电子墨水层40的工艺时,在像素区域A的周围形成阻隔墙244,同时采用纳米压印工艺形成凹槽2452。
如图9a-图9d所示,本申请还提供了第二实施方式的显示装置102a-102d。其中,所述第二实施方式提供的显示装置102a-102d的结构与图7a所示的显示装置101a的结构相似,不同之处在于:所述第二实施方式提供的显示装置102a-102d包括了第一基板20’。即,所述第二实施方式的第一基板20’应用于第二实施方式的显示装置102a-102d中。
如图10a-图10c所示,本申请还提供了第三实施方式的显示装置103a-103c。其中,所述第三实施方式提供的显示装置103a-103c的结构与图7b所示的显示装置101b的结构相似,不同之处在于:所述第三实施方式提供的显示装置103a-103c包括了第一基板20’。即,所述第二实施方式的第一基板20’应用于第三实施方式的显示装置103a-103c中。
在所述第二实施方式或所述第三实施方式中,各个像素单元24的第一像素电极2421和/或第一公共电极2431用于在像素单元24处于透过式显示模式时吸引相应的微杯411中的电泳粒子412,使电泳粒子412聚集到所述电极对应的凹槽2452中。
具体地,若微杯411中包含两种不同颜色、不同电性的电泳粒子,如图8a所示,绝缘层245的表面2451上对应于第一像素电极2421和第一公共电极2431均开设有凹槽2452。在像素单元24处于透过式显示模式时,如图9a或图11a所示,给第一像素电极2421施加第一电压,使微杯411中的其中一种电泳粒子聚集到第一像素电极2421对应的凹槽2452中;给第一公共电极2431施加第二电压,使微杯411中的另一种电泳粒子聚集到第一公共电极2431对应的凹槽2452中,如此,像素单元24可呈现透明状态。
若微杯411中仅包含一种颜色的电泳粒子,如图8b或图8c所示,绝缘层245的表面2451上对应于第一像素电极2421或第一公共电极2431开设有凹槽2452。在像素单元24处于透过式显示模式时,给凹槽2452对应的电极施加与电泳粒子412的电性相反的电压,给另一种电极施加参考电压,使微杯411中的电泳粒子聚集到凹槽2452中,如此,像素单元24可呈现透明状态。
例如微杯411中包含黑色粒子,如图9b或图10a所示,绝缘层245的表面2451上仅对应于第一像素电极2421开设有凹槽2452。在像素单元24处于透过式显示模式时,如图 11b所示,给第一公共电极2431施加参考电压,给第一像素电极2421施加与电泳粒子412的电性相反的电压,使微杯411中的电泳粒子聚集到第一像素电极2421对应的凹槽2452中。
可选地,如图9c或图10b所示,绝缘层245的表面2451上也可以仅对应于第一公共电极2431开设有凹槽2452。在像素单元24处于透过式显示模式时,给第一像素电极2421施加参考电压,给第一公共电极2431施加与电泳粒子412的电性相反的电压,使微杯411中的电泳粒子聚集到第一公共电极2431对应的凹槽2452中,如此,像素单元24可呈现透明状态。
可选地,若微杯411中仅包含一种颜色的电泳粒子,如图8a、图9d和图10c所示,绝缘层245的表面2451上也可以对应于第一像素电极2421和第一公共电极2431均开设有凹槽2452。在像素单元24处于透过式显示模式时,给第一像素电极2421和第一公共电极2431中的其中一种电极施加参考电压,给另一种电极施加与电泳粒子412的电性相反的电压,使微杯411中的电泳粒子聚集到所述另一种电极对应的凹槽2452中,也就是说,所述其中一种电极对应的凹槽在像素单元24处于透过式显示模式处于空置状态,如此,像素单元24也可呈现透明状态。
其中,图9a-图9d所示的显示装置102a-102d的像素单元24的显示模式控制原理,与图7a所示的显示装置101a的像素单元24的显示模式控制原理相同,具体技术细节请参阅上文对图7a所示的显示装置101a的具体介绍,在此不进行重复赘述。
图10a-图10c所示的显示装置103a-103c的像素单元24的显示模式控制原理,与图7b所示的显示装置101b的像素单元24的显示模式控制原理相同,具体技术细节请参阅上文对图7b所示的显示装置101b的具体介绍,在此不进行重复赘述。
在所述第二、第三实施方式中,绝缘层245还可覆盖第二像素电极2422,绝缘层245的表面2451上对应于第二像素电极2422还可开设有凹槽2452,第二像素电极2422用于在相应的像素单元24处于透过式显示模式时吸引相应的微杯411中的电泳粒子412,使电泳粒子412聚集到第二像素电极2422对应的凹槽2452中。
综上所述可知,上述第一实施方式中,在第一像素电极2421、第二像素电极2422和第一公共电极2431的上方均未设置凹槽时,微杯411的底部为平面设计,如图6a或图6b所示,电泳粒子412在透过式显示模式时聚集并平铺在第一像素电极2421和/或第一公共电极2431的上方及周围,聚集的电泳粒子412占据了像素单元24的显示面的较大面积,因此遮挡了较多的光线,从而导致像素单元24的透过率偏低。
相比之下,在上述第二、第三实施方式中,在第一像素电极2421和/或第一公共电极2431的上方设置凹槽2452时,由于凹槽2452的存在,使得微杯411的底部为立体设计,如图11a或图11b所示,电泳粒子412在像素单元24处于透过式显示模式时聚集到第一像素电极2421和/或第一公共电极2431的上方,并陷入凹槽2452中进行纵向排列。由于凹槽2452的宽度小于相应的电极的宽度,且电泳粒子412在凹槽2452中进行纵向排列,因此,聚集电泳粒子412只占据了像素单元24的显示面的较小面积,可以减小遮光面积,从而有效减少聚集的电泳粒子对光线的遮挡,能够显著提升像素单元24的透过率,进而使显示装置实现良好的透明显示效果。
可以理解的是,在第二像素电极2422的上方也设置凹槽2452,也可进一步提升像素单元24的透过率和显示装置的透明显示效果。
如图12a所示,本申请第一实施方式提供了一种凹槽50,所述凹槽50开设于绝缘层245上,并位于电极60上方。其中,所述凹槽50对应于图8a-图8c所示的凹槽2452,所述电极60对应于图8a-图8c所示的第一像素电极2421或第一公共电极2431。
凹槽50包括底部51以及与底部51连接的侧壁52。在所述第一实施方式中,侧壁52垂直于底部51,即侧壁52与底部51之间的夹角为直角。如此,凹槽50的开口端的宽度等于凹槽50底部的宽度。
可选地,如图12b所示,在第二实施方式中,凹槽50的侧壁52与底部51之间的夹角为钝角,即,侧壁52为一倾斜面。如此,凹槽50的开口端的宽度大于凹槽50底部的宽度,可方便电泳粒子从凹槽50中进出。
可选地,如图12c所示,在第三实施方式中,凹槽50的侧壁52与底部51之间的夹角为锐角,即,侧壁52为一倾斜面。如此,凹槽50的开口端的宽度小于凹槽50底部的宽度,可在透过式显示模式时将电泳粒子收拢在凹槽50中。
可选地,如图12d所示,在第四实施方式中,凹槽50还可包括连接于底部51与侧壁52之间的第一连接部53,其中,第一连接部53呈弧形,使侧壁52平缓过度到底部51。
可选地,如图12e所示,在第五实施方式中,凹槽50还可包括连接于绝缘层245的表面2451与侧壁52之间的第二连接部54,其中,第二连接部54呈弧形,使侧壁52平缓过度到绝缘层245的表面2451。
可以理解的是,凹槽50的形状不限于图12a-图12e所示的形状,本领域的技术人员可根据实际设计需求对凹槽50的结构做不同的变形设计,例如,将图12a-图12e所示的形状进行组合变形,或者做其他的变形。
进一步地,本领域的技术人员还可在本申请提供的凹槽50的基础上,对凹槽50的宽度、深度做不同的变形,例如,将凹槽的深宽比设计为2:1或3:1等,具体可根据实际设计需求进行调整,本申请对此不做具体限定。
另外,应说明的是,图12a-图12e所示的凹槽50的形状为凹槽50在其宽度方向上的截面的形状。凹槽50在其长度方向的形状与凹槽50所对应的电极(第一像素电极2421、第二像素电极2422或第一公共电极2431)的形状相同。在本申请的实施方式中,各条电极在其长度方向上呈现为直线形状,相应地,凹槽50在其长度方向上也呈现为直线形状。在其他实施方式中,各条电极在其长度方向上可呈现为波浪形状、锯齿形状、或方波形状等,相应地,凹槽50在其长度方向上也呈现为波浪形状、锯齿形状、或方波形状等。电极和凹槽50在其长度方向上形状可根据实际设计需求进行调整,本申请对此不做具体限定。
如图13所示,本申请还提供了一种电子设备1000,所述电子设备1000包括显示装置100和主机200。显示装置100与上述的显示装置102a-102d、103a-103c中的任意一个显示装置对应。
主机200中可包括处理器(图未示)、存储器(图未示)、电源模块(图未示)等部件。其中,处理器作为电子设备1000的逻辑运算和控制中心,主要负责数据处理、通信及执行驱动输出等功能。存储器可以被处理器等访问,以实现数据的存储或调用等。电源模块用 于为电子设备1000的其他功能模块供电,使电子设备1000的其他功能模块能够正常工作。
电子设备1000包括但不限于电子书阅读器、医疗应用(例如血糖仪、血压计等)、穿戴式设备(例如手表、手环等)、室内电子看板等。
本申请提供的电子设备1000通过使用上述的显示装置102a-102d、103a-103c,可使得电子设备1000的显示装置在像素单元处于透过式显示模式时具有较高的透过率,从而能够实现良好的透明显示效果。
以上,仅为本申请的部分实施方式,本申请的保护范围不局限于此,任何熟知本领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种阵列基板,应用于显示装置中,所述显示装置还包括多个微杯单元,每个微杯单元包括至少一个微杯,每个微杯中封装有电泳粒子;其特征在于,
    所述阵列基板包括第一衬底以及阵列排布于所述第一衬底上的多个像素单元,所述多个像素单元与所述多个微杯单元一一对应;每个像素单元包括设置于所述第一衬底上的第一像素电极和第一公共电极;
    所述阵列基板还包括覆盖各个像素单元的第一像素电极和第一公共电极的绝缘层,所述绝缘层与所述第一衬底相背的表面上对应于各个像素单元的第一像素电极和/或第一公共电极开设有凹槽,所述凹槽的宽度小于相应的电极的宽度,所述凹槽用于聚集相应的微杯中的电泳粒子。
  2. 根据权利要求1所述的阵列基板,其特征在于,所述绝缘层与所述第一衬底相背的表面上对应于所述第一像素电极开设有所述凹槽,所述第一像素电极用于在相应的像素单元处于透过式显示模式时吸引相应的微杯中的电泳粒子,使所述电泳粒子聚集到所述第一像素电极对应的凹槽中;和/或,
    所述绝缘层与所述第一衬底相背的表面上对应于所述第一公共电极开设有所述凹槽,所述第一公共电极用于在相应的像素单元处于透过式显示模式时吸引相应的微杯中的电泳粒子,使所述电泳粒子聚集到所述第一公共电极对应的凹槽中。
  3. 根据权利要求1或2所述的阵列基板,其特征在于,所述凹槽包括底部以及与所述底部连接的侧壁;
    所述侧壁垂直于所述底部,或者,所述侧壁与所述底部之间的夹角为锐角,或者,所述侧壁与所述底部之间的夹角为钝角。
  4. 根据权利要求1或2所述的阵列基板,其特征在于,所述凹槽包括底部、侧壁、以及第一连接部,所述第一连接部连接于所述底部与所述侧壁之间,所述第一连接部呈弧形。
  5. 根据权利要求1或2所述的阵列基板,其特征在于,所述凹槽包括底部以及与所述底部连接的侧壁;
    所述凹槽还包括第二连接部,所述第二连接部连接于所述绝缘层的表面与所述侧壁之间,所述第二连接部呈弧形。
  6. 根据权利要求1所述的阵列基板,其特征在于,所述微杯中包含两种不同颜色、不同电性的电泳粒子;所述绝缘层与所述第一衬底相背的表面上对应于所述第一像素电极和所述第一公共电极均开设有所述凹槽,在所述像素单元处于透过式显示模式时,所述第一像素电极用于将所述微杯中的其中一种电泳粒子吸引到所述第一像素电极对应的凹槽中,所述第一公共电极用于将所述微杯中的另一种电泳粒子吸引到所述第一公共电极对应的凹槽中;或者,
    所述微杯中包含一种颜色的电泳粒子;所述绝缘层与所述第一衬底相背的表面上对应于所述第一像素电极或所述第一公共电极开设有所述凹槽,在所述像素单元处于透过式显示模式时,所述凹槽对应的所述第一像素电极或所述第一公共电极用于将所述微杯中的电泳粒子吸引到所述凹槽中;或者,
    所述微杯中包含一种颜色的电泳粒子;所述绝缘层与所述第一衬底相背的表面上对应于所述第一像素电极和所述第一公共电极均开设有所述凹槽,在所述像素单元处于透过式显示模式时,所述第一像素电极用于将所述微杯中的电泳粒子吸引到所述第一像素电极对应的凹槽中,或者,所述第一公共电极用于将所述微杯中的电泳粒子吸引到所述第一公共电极对应的凹槽中。
  7. 根据权利要求1所述的阵列基板,其特征在于,每个像素单元包括多个第一像素电极和多个第一公共电极,所述多个第一像素电极沿第一方向延伸且沿第二方向间隔排列,所述多个第一公共电极沿第一方向延伸且沿第二方向间隔排列;
    每个所述第一像素电极设于相邻两个第一公共电极之间,或者,每个所述第一公共电极设于相邻两个第一像素电极之间,其中,所述第一方向与所述第二方向垂直。
  8. 根据权利要求1或7所述的阵列基板,其特征在于,每个所述微杯单元包括一种颜色的电泳粒子,每个微杯与相应的像素单元包含的至少一个第一像素电极以及至少一个第一公共电极对应;
    在所述像素单元处于非透过式显示模式时,所述第一像素电极和所述第一公共电极用于在相应的微杯内产生第一驱动电场,以控制相应的微杯中的电泳粒子沿平行于所述第一衬底的方向移动,使电泳粒子均匀分散在电泳液中;其中,所述第一驱动电场的电场方向为平行于所述第一衬底的方向。
  9. 根据权利要求1或7所述的阵列基板,其特征在于,所述显示装置还包括与所述阵列基板相对设置的第二衬底以及设置于所述第二衬底上的第二公共电极,所述多个微杯单元设置于所述阵列基板和所述第二公共电极之间;
    每个微杯与所述第二公共电极以及相应的像素单元包含的至少一个第一像素电极和至少一个第一公共电极对应;
    在所述像素单元处于非透过式显示模式时,所述第一像素电极和所述第一公共电极用于在相应的微杯内产生第一驱动电场,以控制相应的微杯中的电泳粒子沿平行于所述第一衬底的方向移动,使电泳粒子均匀分散在电泳液中;所述第一像素电极和所述第二公共电极用于在相应的微杯内产生第二驱动电场,使相应的微杯内的电泳粒子根据自身的电性以及所述第二驱动电场的电场方向向所述第一像素电极或所述第二公共电极移动;其中,所述第一驱动电场的电场方向为平行于所述第一衬底的方向,所述第二驱动电场的电场方向为垂直于所述第一衬底的方向。
  10. 根据权利要求7所述的阵列基板,其特征在于,每个像素单元还包括薄膜晶体管以及至少一个第二像素电极,所述第二像素电极与相应的像素单元包括的多个第一像素电极以及薄膜晶体管的漏极分别电连接,所述第二像素电极用于将相应的像素单元包括的多个第一像素电极分别电连接至相应的薄膜晶体管的漏极。
  11. 根据权利要求10所述的阵列基板,其特征在于,所述绝缘层还覆盖所述第二像素电极,所述绝缘层与第一衬底相背的表面上对应于所述第二像素电极还开设有所述凹槽,所述第二像素电极用于在相应的像素单元处于透过式显示模式时吸引相应的微杯中的电泳粒子,使所述电泳粒子聚集到所述第二像素电极对应的凹槽中。
  12. 一种显示装置,其特征在于,包括:
    如权利要求1-11任意一项所述的阵列基板;
    第二衬底,与所述阵列基板相对设置;以及,
    设置于所述阵列基板和所述第二衬底之间的多个微杯单元,所述多个微杯单元与所述阵列基板包含的多个像素单元一一对应。
  13. 一种电子设备,其特征在于,包括主机以及如权利要求12所述的显示装置。
PCT/CN2022/143984 2022-02-25 2022-12-30 阵列基板、显示装置以及电子设备 WO2023160243A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/269,103 US20240192566A1 (en) 2022-02-25 2022-12-30 Array substrate, display apparatus, and electronic device
EP22905463.0A EP4258049A4 (en) 2022-02-25 2022-12-30 NETWORK SUBSTRATE, DISPLAY APPARATUS AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210180433.4 2022-02-25
CN202210180433.4A CN116699918B (zh) 2022-02-25 2022-02-25 阵列基板、显示装置以及电子设备

Publications (1)

Publication Number Publication Date
WO2023160243A1 true WO2023160243A1 (zh) 2023-08-31

Family

ID=87764658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143984 WO2023160243A1 (zh) 2022-02-25 2022-12-30 阵列基板、显示装置以及电子设备

Country Status (4)

Country Link
US (1) US20240192566A1 (zh)
EP (1) EP4258049A4 (zh)
CN (1) CN116699918B (zh)
WO (1) WO2023160243A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303504A (zh) * 2007-05-09 2008-11-12 Lg.菲利浦Lcd株式会社 柔性显示基板和柔性显示器件的制造方法
CN101710220A (zh) * 2009-12-02 2010-05-19 友达光电股份有限公司 电泳显示面板
CN101710221A (zh) * 2009-11-22 2010-05-19 友达光电(苏州)有限公司 显示装置、电泳显示面板及其制作方法
CN102385214A (zh) * 2010-09-01 2012-03-21 乐金显示有限公司 电泳显示装置及其制造方法
CN102707534A (zh) * 2011-06-09 2012-10-03 京东方科技集团股份有限公司 电子显示装置及其制造方法及电子纸
CN105182653A (zh) * 2015-09-14 2015-12-23 京东方科技集团股份有限公司 一种电泳显示面板和电泳显示装置
US20180129080A1 (en) * 2015-04-10 2018-05-10 Vlyte Innovations Limited Micro-fastened, sealed light modulator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005226A (ja) * 2001-06-26 2003-01-08 Canon Inc 電気泳動表示装置
CN1209674C (zh) * 2002-04-23 2005-07-06 希毕克斯影像有限公司 电磁泳显示器
JP2004271610A (ja) * 2003-03-05 2004-09-30 Canon Inc カラー電気泳動表示装置
US7414776B2 (en) * 2005-06-30 2008-08-19 Xerox Corporation Electrophoretic display including display medium containing gelling agent for image stability
JP4816245B2 (ja) * 2006-05-19 2011-11-16 株式会社日立製作所 電気泳動表示装置
JP2009020279A (ja) * 2007-07-11 2009-01-29 Hitachi Ltd 表示装置およびその駆動方法
KR101759643B1 (ko) * 2010-12-17 2017-08-01 삼성디스플레이 주식회사 전기영동 표시장치
JP6584891B2 (ja) * 2015-09-18 2019-10-02 イー インク コーポレイション 表示装置用基板、表示装置、電子機器および表示装置用基板の製造方法
CN108897180B (zh) * 2018-07-03 2021-10-22 京东方科技集团股份有限公司 显示面板、显示装置及其显示方法
CN110596985A (zh) * 2019-08-09 2019-12-20 信利半导体有限公司 一种电泳显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303504A (zh) * 2007-05-09 2008-11-12 Lg.菲利浦Lcd株式会社 柔性显示基板和柔性显示器件的制造方法
CN101710221A (zh) * 2009-11-22 2010-05-19 友达光电(苏州)有限公司 显示装置、电泳显示面板及其制作方法
CN101710220A (zh) * 2009-12-02 2010-05-19 友达光电股份有限公司 电泳显示面板
CN102385214A (zh) * 2010-09-01 2012-03-21 乐金显示有限公司 电泳显示装置及其制造方法
CN102707534A (zh) * 2011-06-09 2012-10-03 京东方科技集团股份有限公司 电子显示装置及其制造方法及电子纸
US20180129080A1 (en) * 2015-04-10 2018-05-10 Vlyte Innovations Limited Micro-fastened, sealed light modulator
CN105182653A (zh) * 2015-09-14 2015-12-23 京东方科技集团股份有限公司 一种电泳显示面板和电泳显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4258049A4

Also Published As

Publication number Publication date
US20240192566A1 (en) 2024-06-13
CN116699918A (zh) 2023-09-05
EP4258049A1 (en) 2023-10-11
EP4258049A4 (en) 2024-07-24
CN116699918B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
CN110520791B (zh) 显示基板及其驱动方法、显示装置
US7439948B2 (en) Electrophoretic display device
US9285647B2 (en) TFT array substrate, E-paper display panel and method for manufacturing the same
US20230152656A1 (en) Electronic paper, display device, and driving method
JP2008544312A (ja) 双安定型の表示装置
US11316070B2 (en) Illumination device and display device
JP2007094089A (ja) 電気光学装置及び電子機器
US20110317105A1 (en) Liquid crystal display device
CN108919586A (zh) 显示面板及显示装置
US6490020B2 (en) TFTLCD for recycling electrical power
KR20080057264A (ko) 동일 평면의 스위칭 디스플레이 디바이스
WO2023160243A1 (zh) 阵列基板、显示装置以及电子设备
TWI743733B (zh) 雙面電子紙顯示面板、顯示裝置以及其操作方法
JP2012215841A (ja) 表示装置
KR20010077157A (ko) 박막 트랜지스터 어레이 패널 및 액정표시장치
CN108628045A (zh) 阵列基板、显示面板和显示装置
JP4211255B2 (ja) 電気泳動表示装置および電子機器
TWI780747B (zh) 雙面電子紙顯示面板以及顯示裝置的操作方法
KR102081604B1 (ko) 액정표시장치
KR101108313B1 (ko) 표시장치
CN219179749U (zh) 电泳显示屏及显示装置
TWI444743B (zh) 顯示裝置及其製造方法
KR20110025538A (ko) 전기영동표시장치 및 그 제조방법
TWI851413B (zh) 具高開口率的電泳式顯示器
JP2013254162A (ja) 電気泳動表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18269103

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022905463

Country of ref document: EP

Effective date: 20230619

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905463

Country of ref document: EP

Kind code of ref document: A1