WO2023159870A1 - 一种生化项目检测盘片 - Google Patents

一种生化项目检测盘片 Download PDF

Info

Publication number
WO2023159870A1
WO2023159870A1 PCT/CN2022/108943 CN2022108943W WO2023159870A1 WO 2023159870 A1 WO2023159870 A1 WO 2023159870A1 CN 2022108943 W CN2022108943 W CN 2022108943W WO 2023159870 A1 WO2023159870 A1 WO 2023159870A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
flow channel
sample
diluent
quantitative
Prior art date
Application number
PCT/CN2022/108943
Other languages
English (en)
French (fr)
Inventor
冯澄宇
吴烨娴
孙丽亚
陈兢
Original Assignee
含光微纳科技(太仓)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 含光微纳科技(太仓)有限公司 filed Critical 含光微纳科技(太仓)有限公司
Publication of WO2023159870A1 publication Critical patent/WO2023159870A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/02Continuous feeding or discharging; Control arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/088Passive control of flow resistance by specific surface properties

Definitions

  • the invention relates to the field of biochemical item detection, in particular to a disc for biochemical item detection.
  • the biochemical item detection disk in the prior art has a single biochemical item detection function, cannot dilute a single sample into samples with different dilution ratios, and cannot meet the technical problems of more biochemical freeze-dried reagent detection needs.
  • the main purpose of the present invention is to provide a biochemical item detection disc with various detection functions, which can dilute a single sample into samples with different dilution ratios to meet the detection needs of more biochemical freeze-dried reagents.
  • the biochemical item detection disk includes: a disk, a first detection unit and a second detection unit, and the first detection unit and the second detection unit are arranged on the disk.
  • the first detection unit includes: a centrifuge capsule placement tank, a first diluent quantification tank, a sample adding tank, a first sample quantification tank, a first mixing tank, a first liquid separation tank and a first detection hole, the The centrifuge bag placement tank communicates with the first diluent quantitative tank through the liquid inlet flow channel, the sample sample application tank communicates with the first sample quantitative tank through the flow channel, and the first diluent quantitative tank communicates with the first diluent quantitative tank through the first siphon
  • the flow channel communicates with the first mixing tank, the first sample quantitative tank communicates with the first mixing tank through the second siphon flow channel, and the first mixing tank communicates with the first branching tank through the third siphon flow channel. tank.
  • the first liquid separation tank communicates with the first detection holes through a flow channel.
  • the second detection unit includes: a first diluent overflow tank, a second diluent quantitative tank, a second sample quantitative tank, a second mixing tank, a second liquid separation tank and a second detection hole, the first diluent
  • the liquid overflow tank communicates with the first dilution liquid quantitative tank through the overflow flow channel
  • the first dilution liquid overflow tank communicates with the second dilution liquid quantitative tank through the liquid inlet flow channel
  • the second sample quantitative tank The first sample quantitative tank is communicated with the first sample quantitative tank through a flow channel
  • the second diluent quantitative tank is connected with the second mixing tank through the fourth siphon flow channel
  • the second sample quantitative tank is connected with the second sample quantitative tank through the fifth siphon flow channel.
  • the second mixing tank, the second mixing tank communicates with the second liquid separation tank through the sixth siphon channel.
  • the second liquid separation tank communicates with the second detection holes through a flow channel.
  • it also includes: a sample overflow tank and a sample detection hole, the sample overflow tank communicates with the second sample quantitative tank through an overflow channel, and the sample detection hole communicates with the second sample quantification tank through a flow channel. Sample overflow tank.
  • it also includes: a second diluent overflow tank and a diluent detection hole, the second diluent overflow tank communicates with the second diluent quantitative tank through an overflow channel, and the diluent The liquid detection hole communicates with the second diluent overflow tank through a flow channel.
  • the first sample quantification tank and the second sample quantification tank are respectively communicated with red blood cell separation tanks.
  • a positioning device is fixedly connected to the back of the disc, the positioning device is a 12-sided structure, the height of the 12-sided structure is 1mm-5mm, and the 12-sided structure is provided with Multiple circular grooves make the disc and instrument fixed precisely.
  • the disc is provided with an iron plate slot, and an iron plate is provided in the iron plate slot.
  • the width of the first siphon flow channel, the second siphon flow channel, the third siphon flow channel, the fourth siphon flow channel, the fifth siphon flow channel and the sixth siphon flow channel is 0.2mm- 0.5mm, the depth is 0.1mm-0.5mm.
  • the surfaces of the first siphon flow channel, the second siphon flow channel, the third siphon flow channel, the fourth siphon flow channel, the fifth siphon flow channel and the sixth siphon flow channel are modified with hydrophilicity.
  • the upper surface of the disc is bonded with a thin film
  • the thin film may be one of PET pressure-sensitive film, PC, PMMA, and PS film
  • the thickness of the thin film is 0.05mm-0.2mm.
  • a vinyl block is provided on the disc, and the vinyl block is fixedly connected to an edge of the disc.
  • the biochemical item detection disk includes: a disk, a first detection unit and a second detection unit, and the first detection unit and the second detection unit are arranged on the disk.
  • the first detection unit includes: a centrifuge capsule placement tank, a first diluent quantitative tank, a first sample application tank, a first sample quantitative tank, a first mixing tank, a first liquid separation tank and a first detection hole;
  • the centrifugal bag placement tank is connected to the first diluent quantitative tank through the liquid inlet flow channel, the first sample sampling tank is connected to the first sample quantitative tank through the flow channel, and the first diluent quantitative tank is connected to the first diluent quantitative tank through the first siphon flow channel.
  • the mixing tank, the first sample quantitative tank is connected to the first mixing tank through the second siphon flow channel, and the first mixing tank is connected to the first liquid separation tank through the third siphon flow channel;
  • the first detection hole is provided with multiple, the first The liquid separation tank communicates with the first detection hole through the flow channel;
  • the second detection unit includes: a first diluent overflow tank, a second diluent quantitative tank, a second sample quantitative tank, a second mixing tank, a second liquid separation tank and a second detection hole.
  • the first diluent overflow tank is connected to the first diluent quantitative tank through the overflow channel
  • the first diluent overflow tank is connected to the second diluent quantitative tank through the second liquid inlet channel
  • the second sample quantitative tank is connected to the second sample quantitative tank through the flow channel.
  • the channel communicates with the first sample quantitative tank, the second diluent quantitative tank communicates with the second mixing tank through the fourth siphon channel, the second sample quantitative tank communicates with the second mixing tank through the fifth siphon channel, and the second mixing tank communicates with the second mixing tank through the fifth siphon channel.
  • the six siphon channels are connected to the second liquid separation tank; multiple second detection holes are provided, and the second liquid separation tank is connected to the second detection hole through the flow channels.
  • the diluent in the first diluent quantitative tank is mixed with the sample in the first sample quantitative tank in the first mixing tank, and the diluent in the second diluent quantitative tank is mixed with the sample in the second sample quantitative tank in the second Mix in the mixing tank so that there are two plasma sample dilutions on the disc.
  • Different dilution ratios of a single sample can be realized through the first detection unit and the second detection unit, which can meet the detection needs of more biochemical freeze-dried reagents.
  • the disc is equipped with a whole blood plasma separation structure, which can be used for pretreatment of whole blood, that is, plasma separation, which realizes the diversification of the functions of the disc.
  • FIG. 1 is a top view of a biochemical item detection disc according to an embodiment of the present disclosure
  • FIG. 2 is a bottom view of a biochemical item detection disc according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a disc for detecting biochemical items according to an embodiment of the present disclosure.
  • the second detection unit 31.
  • the first siphon flow channel 5. The second siphon flow channel; 6. The third siphon flow channel; 7. The fourth siphon flow channel; 8. The fifth siphon flow channel; 9. The sixth siphon flow channel; 10. Sample overflow tank; 11. Sample detection hole; 12. Second diluent overflow tank; 13. Diluent detection hole; 14. Red blood cell separation hole; 15. Positioning device; 16. Black rubber block.
  • spatially relative terms may be used here, such as “on !, “over !, “on the surface of !, “above”, etc., to describe The spatial positional relationship between one device or feature shown and other devices or features. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, devices described as “above” or “above” other devices or configurations would then be oriented “beneath” or “above” the other devices or configurations. under other devices or configurations”. Thus, the exemplary term “above” can encompass both an orientation of “above” and “beneath”. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.
  • the disc for detection of biochemical items includes: a disc 1 , a first detection unit 2 and a second detection unit 3 , and the first detection unit 2 and the second detection unit 3 are arranged on the disc 1 .
  • the first detection unit 2 includes: a centrifuge capsule placement tank 21, a first diluent quantitative tank 22, a sample application tank 23, a first sample quantitative tank 24, a first mixing tank 25, a first liquid separation tank 26 and a first Detection hole 27.
  • a centrifuge bag placement tank 21 communicate with the first diluent quantitative tank 22 through the liquid inlet channel
  • the sample adding tank 23 communicate with the first sample quantitative tank 24 through the flow channel
  • the first diluent quantitative tank 24 pass through the first siphon flow channel 4 communicates with the first mixing tank 25
  • the first sample quantification tank 24 communicates with the first mixing tank 25 through the second siphon channel 5
  • the first mixing tank 25 communicates with the first liquid separation tank 26 through the third siphon channel 6.
  • a plurality of first detection holes 27 are provided, and the first liquid separation tank 26 communicates with the first detection holes 27 through a flow channel.
  • the second detection unit 3 includes: a first diluent overflow tank 31 , a second diluent quantitative tank 32 , a second sample quantitative tank 33 , a second mixing tank 34 , a second liquid separation tank 35 and a second detection hole 36 .
  • the first diluent overflow tank 31 communicates with the first diluent quantitative tank 24 through the overflow channel
  • the first diluent overflow tank 31 communicate with the second diluent quantitative tank 32 through the liquid inlet flow channel
  • the second sample quantitative tank 33 communicates with the first sample quantitative tank 24 through a flow channel
  • the second diluent quantitative tank 32 communicates with the second mixing tank 34 through the fourth siphon flow channel 7
  • the second sample quantitative tank 33 communicates with the second sample quantitative tank 33 through the fifth siphon flow channel 8.
  • the mixing tank 34 and the second mixing tank 34 communicate with the second liquid separation tank 35 through the sixth siphon channel 9 .
  • a plurality of second detection holes 36 are provided, so that the second liquid separation tank 35 communicates with the second detection holes 36 through a flow channel.
  • the diluent centrifuge capsule is placed in the centrifuge capsule placement slot 21 , and the aluminum foil strip above the diluent centrifuge capsule is torn off before use.
  • the plasma sample and diluent are respectively injected into the sample adding tank 23 and the centrifuge capsule placement tank 21 .
  • the diameter of the first detection hole 27 and the second detection hole 36 is 2mm-4mm, and the depth is 1mm-4mm, and biochemical detection jelly is pre-embedded in the first detection hole 27 and the second detection hole 36.
  • dry reagents In order to prevent interference between different biochemical testing items, not every testing hole is filled with reagents, and there will be several testing holes between the embedded reagents. According to the biochemical testing items (such as liver function panel, kidney function panel, etc.) Determine where the reagents are loaded on disc 1.
  • the volumes of the first diluent quantitative tank 22 and the second diluent quantitative tank 32 are different, and the volumes of the first sample quantitative tank 24 and the second sample quantitative tank 33 are different.
  • the diluent in the first diluent quantitative tank 22 is mixed with the sample in the first sample quantitative tank 24 in the first mixing tank 25, and the diluent in the second diluent quantitative tank 32 is mixed with the sample in the second sample quantitative tank 33.
  • the samples are mixed in the second mixing tank 34, so that there are two plasma sample dilution ratios on the disk 1. Further, the dilution ratio of the two plasma samples can be determined by controlling the injection diluent and the amount of the sample, and the dilution ratio can be any two within 1:10 to 1:100.
  • a plurality of first detection units 2 and second detection units 3 can be arranged on the disc 1, and the plasma samples are divided into different dilution ratios by the first detection units 2 and the second detection units 3, To meet the detection needs of more biochemical freeze-dried reagents.
  • disc 1 is equipped with a structure for separating plasma from whole blood, which can perform pretreatment of whole blood, that is, separate plasma, and realize the diversification of functions of disc 1 .
  • a fishbone structure or a small cylinder is added in the first mixing tank 25 and the second mixing tank 34, so that the height of the fishbone structure and the small cylinder is 0.5mm-1mm.
  • the plasma sample and the diluent are mixed with acceleration and deceleration in the first mixing tank 25 and the second mixing tank 34.
  • the existence of the fishbone structure and small cylinders can aggravate the mixing of the first mixing tank 25 and the second mixing tank.
  • the turbulent flow of liquid within 34 enhances the mixing of plasma samples and diluents.
  • the upper and lower edges of the first diluent quantitative tank 22 and the second diluent quantitative tank 32 are circular arcs, the circular arcs are not concentric with the center of the disc 1, and the leftmost ends of the circular arcs are opposite to each other. The rightmost end is shifted toward the center of the disc, thereby reducing the generation of air bubbles in the first diluent quantitative tank 22 and the second diluent quantitative tank 32 and improving the accuracy of quantification.
  • the depth of the first sample quantitative groove 24 and the second sample quantitative groove 33 is greater than or equal to 0.5mm, avoiding when the depth of the first sample quantitative groove 24 and the second sample quantitative groove 33 is less than 0.5mm
  • the liquid layer is too shallow, air bubbles are generated in the first sample quantitative tank 24 and the second sample quantitative tank 33, resulting in inaccurate quantitative results.
  • the biochemical item detection disk also includes: a sample overflow tank 10 and a sample detection hole 11, the sample overflow tank 10 is connected to the second sample quantitative tank 33 through the overflow flow channel, and the sample detection hole 11 is connected to the second sample quantitative tank 33 through the flow channel.
  • the channel communicates with the sample overflow tank 10.
  • the biochemical project detection disc also includes: a second diluent overflow tank 12 and a diluent detection hole 13, the second diluent overflow tank 12 communicates with the second diluent quantitatively through the overflow flow channel
  • the tank 32 and the diluent detection hole 13 communicate with the second diluent overflow tank 12 through a flow channel.
  • the first sample quantification tank 24 and the second sample quantification tank 33 are respectively communicated with the red blood cell separation tank 14 .
  • a positioning device 15 is fixedly connected to the back of the disc 1.
  • the positioning device 15 is a 12-sided structure, and the height of the 12-sided structure is 1mm-5mm.
  • the 12-sided structure is equipped with multiple The circular grooves match the protruding glass beads on the instrument tray, so that the disc 1 can be precisely fixed to the instrument.
  • an iron sheet slot on the disc 1, and an iron sheet is arranged in the iron slot, which matches the magnet on the instrument tray.
  • the disc 1 When the disc 1 is placed on the instrument tray, the disc 1 will be automatically sucked into the tray by magnetic force Inside, and rely on the 12-sided structure and circular groove on the disc 1 for precise positioning.
  • the first siphon flow channel 4 In order to ensure that the sample passes through the siphon flow channel smoothly, the first siphon flow channel 4, the second siphon flow channel 5, the third siphon flow channel 6, the fourth siphon flow channel 7, the fifth siphon flow channel 8 and the sixth siphon flow channel
  • the width of 9 is 0.2mm-0.5mm, and the depth is 0.1mm-0.5mm; in the first siphon flow channel 4, the second siphon flow channel 5, the third siphon flow channel 6, the fourth siphon flow channel 7, and the fifth siphon flow channel
  • the surfaces of the flow channel 8 and the sixth siphon flow channel 9 are modified with hydrophilicity.
  • the thin film can be one of PET pressure-sensitive film, PC, PMMA, and PS film, and the film thickness is 0.05mm-0.2mm.
  • a black glue block 16 is provided on the disk 1 , and the black glue block 16 is fixedly connected to the edge of the disk 1 .
  • air holes are arranged beside the first mixing tank 25 and the second mixing tank 34, so that the first mixing tank 25 and the second mixing tank 34 are respectively communicated with the air holes through flow passages, and the diameter of the air holes should be greater than 1mm, and the cross-sectional area of the air hole should be larger than that of the siphon flow channel, so that the internal air pressure of the disc 1 can be kept stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种生化项目检测盘片,包括:盘片(1)、第一检测单元(2)和第二检测单元(3),第一检测单元(2)和第二检测单元(3)开设在盘片(1)上;第一检测单元(2)包括:离心囊放置槽(21)、第一稀释液定量槽(22)、样本加样槽(23)、第一样本定量槽(24)、第一混合槽(25)、第一分液槽(26)和第一检测孔(27);第二检测单元(3)包括:第一稀释液溢流槽(31)、第二稀释液定量槽(32)、第二样本定量槽(33)、第二混合槽(34)、第二分液槽(35)和第二检测孔(36)。第一稀释液定量槽(22)内的稀释液与第一样本定量槽(24)内的样本在第一混合槽(25)内混合,第二稀释液定量槽(32)内的稀释液与第二样本定量槽(33)内的样本在第二混合槽(34)内混合,使盘片(1)上有两个血浆样本稀释比例,实现了单一样本不同的稀释比,可满足更多生化冻干试剂检测需要。

Description

一种生化项目检测盘片 技术领域
本发明涉及生化项目检测领域,尤其涉及一种生化项目检测盘片。
背景技术
在医学临床诊断中,需要获得患者血液血细胞检测信息和生化检测信息来给临床疾病诊断和治疗提供更加完善的指导。而现有血液细胞检测和生化检测一般是分别在血液分析仪和生化分析仪上分别进行,因此检测时必须准备两份血样和两部不同仪器方可以完成两种类型检测,操作较为繁琐,因此常使用生化项目检测盘片对血浆样本进行快速检测。
然而在生化项目检测过程中,由于不同种类的冻干试剂需要不同稀释比例下的样本,以达到最佳的检测效果,因此现有技术中无法满足对单样本在不同稀释比的条件下同时进行多个指标的生化项目检测。
因此,现有技术的生化项目检测盘片存在生化项目检测功能单一,无法将单样本稀释为不同稀释比的样本,不能满足更多生化冻干试剂检测需要的技术问题。
发明内容
有鉴于此,本发明的主要目的在于提供一种生化项目检测功能多样,可以将单样本稀释为不同稀释比的样本,以满足更多生化冻干试剂检测需要的 生化项目检测盘片。
为达到上述目的,本发明的技术方案是这样实现的:
该生化项目检测盘片,包括:盘片、第一检测单元和第二检测单元,所述第一检测单元和第二检测单元开设在盘片上。
所述第一检测单元包括:离心囊放置槽、第一稀释液定量槽、样本加样槽、第一样本定量槽、第一混合槽、第一分液槽和第一检测孔,所述离心囊放置槽通过进液流道连通所述第一稀释液定量槽,所述样本加样槽通过流道连通所述第一样本定量槽,所述第一稀释液定量槽通过第一虹吸流道连通所述第一混合槽,所述第一样本定量槽通过第二虹吸流道连通所述第一混合槽,所述第一混合槽通过第三虹吸流道连通所述第一分液槽。
所述第一检测孔设有多个,所述第一分液槽通过流道连通所述第一检测孔。
所述第二检测单元包括:第一稀释液溢流槽、第二稀释液定量槽、第二样本定量槽、第二混合槽、第二分液槽和第二检测孔,所述第一稀释液溢流槽通过溢液流道连通所述第一稀释液定量槽,所述第一稀释液溢流槽通过进液流道连通所述第二稀释液定量槽,所述第二样本定量槽通过流道连通所述第一样本定量槽,所述第二稀释液定量槽通过第四虹吸流道连通所述第二混合槽,所述第二样本定量槽通过第五虹吸流道连通所述第二混合槽,所述第二混合槽通过第六虹吸流道连通所述第二分液槽。
所述第二检测孔设有多个,所述第二分液槽通过流道连通所述第二检测 孔。
在一种实施例中,还包括:样本溢流槽和样本检测孔,所述样本溢流槽通过溢液流道连通所述第二样本定量槽,所述样本检测孔通过流道连通所述样本溢流槽。
在一种实施例中,还包括:第二稀释液溢流槽和稀释液检测孔,所述第二稀释液溢流槽通过溢液流道连通所述第二稀释液定量槽,所述稀释液检测孔通过流道连通所述第二稀释液溢流槽。
在一种实施例中,所述第一样本定量槽和第二样本定量槽分别连通有红细胞分离槽。
在一种实施例中,所述盘片背面固定连接有定位装置,所述定位装置为12边形结构,所述12边型结构的高度为1mm-5mm,所述12边型结构上设有多个圆形凹槽,使盘片与仪器精确固定。
在一种实施例中,所述盘片上设有铁片卡槽,所述铁片卡槽内设有铁片。
在一种实施例中,所述第一虹吸流道、第二虹吸流道、第三虹吸流道、第四虹吸流道、第五虹吸流道和第六虹吸流道的宽度为0.2mm-0.5mm,深度为0.1mm-0.5mm。
所述第一虹吸流道、第二虹吸流道、第三虹吸流道、第四虹吸流道、第五虹吸流道和第六虹吸流道的表面做亲水性修饰。
在一种实施例中,所述盘片上表面进行薄膜键合,所述薄膜可以为PET压敏膜、PC、PMMA、PS膜中的一种,所述薄膜厚度为0.05mm-0.2mm。
在一种实施例中,所述盘片上设有黑胶块,所述黑胶块固定连接在所述盘片边缘处。
本发明的一种生化项目检测盘片,具有如下有益效果:
该生化项目检测盘片包括:盘片、第一检测单元和第二检测单元,第一检测单元和第二检测单元开设在盘片上。第一检测单元包括:离心囊放置槽、第一稀释液定量槽、第一样本加样槽、第一样本定量槽、第一混合槽、第一分液槽和第一检测孔;使离心囊放置槽通过进液流道连通第一稀释液定量槽,第一样本加样槽通过流道连通第一样本定量槽,第一稀释液定量槽通过第一虹吸流道连通第一混合槽,第一样本定量槽通过第二虹吸流道连通第一混合槽,第一混合槽通过第三虹吸流道连通第一分液槽;使第一检测孔设有多个,第一分液槽通过流道连通第一检测孔;
第二检测单元包括:第一稀释液溢流槽、第二稀释液定量槽、第二样本定量槽、第二混合槽、第二分液槽和第二检测孔。使第一稀释液溢流槽通过溢液流道连通第一稀释液定量槽,第一稀释液溢流槽通过第二进液流道连通第二稀释液定量槽,第二样本定量槽通过流道连通第一样本定量槽,第二稀释液定量槽通过第四虹吸流道连通第二混合槽,第二样本定量槽通过第五虹吸流道连通第二混合槽,第二混合槽通过第六虹吸流道连通第二分液槽;使第二检测孔设有多个,第二分液槽通过流道连通第二检测孔。
第一稀释液定量槽内的稀释液与第一样本定量槽内的样本在第一混合槽内混合,第二稀释液定量槽内的稀释液与第二样本定量槽内的样本在第二混合槽 内混合,使盘片上有两个血浆样本稀释比例。通过第一检测单元和第二检测单元实现单一样本不同的稀释比,可满足更多生化冻干试剂检测需要。同时,盘片配备了全血分离血浆结构,可进行全血的前处理,即分离血浆,实现了盘片功能的多样化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一种实施例的生化项目检测盘片的俯视图;
图2为本公开一种实施例的生化项目检测盘片的仰视图;
图3位本公开一种实施例的生化项目检测盘片的结构示意图。
【主要组件符号说明】
1、盘片;2、第一检测单元;21、离心囊放置槽;22、第一稀释液定量槽;23、样本加样槽;24、第一样本定量槽;25、第一混合槽;26、第一分液槽;27、第一检测孔;
3、第二检测单元;31、第一稀释液溢流槽;32、第二稀释液定量槽;33、第二样本定量槽;34、第二混合槽;35、第二分液槽;36、第二检测孔;
4、第一虹吸流道;5、第二虹吸流道;6、第三虹吸流道;7、第四虹吸流道;8、第五虹吸流道;9、第六虹吸流道;10、样本溢流槽;11、样本检测孔;12、第二稀释液溢流槽;13、稀释液检测孔;14、红细胞分离孔;15、定位装置;16、黑胶块。
具体实施方式
下面结合附图及本发明的实施例对发明的一种离心式微流控芯片装夹结构作进一步详细的说明。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不 排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
该生化项目检测盘片包括:盘片1、第一检测单元2和第二检测单元3,使第一检测单元2和第二检测单元3开设在盘片1上。
第一检测单元2包括:离心囊放置槽21、第一稀释液定量槽22、样本加样槽23、第一样本定量槽24、第一混合槽25、第一分液槽26和第一检测孔27。使离心囊放置槽21通过进液流道连通第一稀释液定量槽22,样本加样槽23通过流道连通第一样本定量槽24,第一稀释液定量槽24通过第一虹吸流道4连通第一混合槽25,第一样本定量槽24通过第二虹吸流道 5连通第一混合槽25,第一混合槽25通过第三虹吸流道6连通第一分液槽26。
将第一检测孔27设有多个,第一分液槽26通过流道连通第一检测孔27。
第二检测单元3包括:第一稀释液溢流槽31、第二稀释液定量槽32、第二样本定量槽33、第二混合槽34、第二分液槽35和第二检测孔36。使第一稀释液溢流槽31通过溢液流道连通第一稀释液定量槽24,第一稀释液溢流槽31通过进液流道连通第二稀释液定量槽32,第二样本定量槽33通过流道连通第一样本定量槽24,第二稀释液定量槽32通过第四虹吸流道7连通第二混合槽34,第二样本定量槽33通过第五虹吸流道8连通第二混合槽34,第二混合槽34通过第六虹吸流道9连通第二分液槽35。
将第二检测孔36设有多个,使第二分液槽35通过流道连通第二检测孔36。
在一种实施方式中,离心囊放置槽21内放置有稀释液离心囊,在使用前先将稀释液离心囊上方的铝箔条撕开。在使用该生化项目检测盘片进行生化项目检测时,向样本加样槽23和离心囊放置槽21分别注入血浆样本和稀释液。
在一种实施方式中,第一检测孔27和第二检测孔36的直径为2mm-4mm,深度为1mm-4mm,在第一检测孔27和第二检测孔36内预埋有生化检测冻干试剂。为防止不同生化检测项目之间的干扰,不是每个检 测孔内都装有试剂,预埋试剂之间会间隔几个检测孔,根据生化检测项目(如肝功能盘、肾功能盘等)来确定试剂装在盘片1上的位置。
在一种实施方式中,第一稀释液定量槽22和第二稀释液定量槽32的容积不同,第一样本定量槽24和第二样本定量槽33的容积不同。第一稀释液定量槽22内的稀释液与第一样本定量槽24内的样本在第一混合槽25内混合,第二稀释液定量槽32内的稀释液与第二样本定量槽33内的样本在第二混合槽34内混合,使盘片1上有两个血浆样本稀释比例。进一步,可以通过控制注入稀释液和样本的量,确定两个血浆样本的稀释比例,稀释比例可以是1:10至1:100内的任意两个。
在一种实施方式中,在盘片1上可以设置多个第一检测单元2和第二检测单元3,通过第一检测单元2和第二检测单元3将血浆样本分为不同的稀释比例,以满足更多生化冻干试剂检测需要。同时,盘片1配备了全血分离血浆结构,可进行全血的前处理,即分离血浆,实现了盘片1功能的多样化。
在一种实施方式中,在第一混合槽25和第二混合槽34内增加鱼骨结构或小圆柱,使鱼骨结构和小圆柱高度为0.5mm-1mm。在离心状态下,血浆样本和稀释液在第一混合槽25和第二混合槽34内做加减速混匀,鱼骨结构和小圆柱的存在,可以加剧第一混合槽25和第二混合槽34内的液体湍流,增强血浆样本和稀释液的混合。
在一种实施方式中,第一稀释液定量槽22、第二稀释液定量槽32上边缘和下边缘都是一条圆弧,圆弧与盘片1的圆心不同心,并且圆弧最左端相 对于最右端向盘片圆心方向偏移,从而降低第一稀释液定量槽22、第二稀释液定量槽32内气泡的产生,提高定量的准确度。
在一种实施方式中,使第一样本定量槽24和第二样本定量槽33的深度大于等于0.5mm,避免当第一样本定量槽24和第二样本定量槽33的深度小于0.5mm时,由于液层太浅,使第一样本定量槽24和第二样本定量槽33内产生气泡,导致定量结果不准确。
在一种实施方式中,在第一稀释液溢流槽31内有高度大于1mm的台阶,台阶的存在可防止稀释液回流至第一稀释液定量槽22。
为了设置血浆对照样本,该生化项目检测盘片还包括:样本溢流槽10和样本检测孔11,样本溢流槽10通过溢液流道连通第二样本定量槽33,样本检测孔11通过流道连通样本溢流槽10。
为了设置稀释液对照样本,该生化项目检测盘片还包括:第二稀释液溢流槽12和稀释液检测孔13,第二稀释液溢流槽12通过溢液流道连通第二稀释液定量槽32,稀释液检测孔13通过流道连通第二稀释液溢流槽12。
为了实现从全血样本中分离出血浆,使第一样本定量槽24和第二样本定量槽33分别连通有红细胞分离槽14。
为了实现盘片1的精准固定,在盘片1背面固定连接有定位装置15,定位装置15为12边形结构,12边型结构的高度为1mm-5mm,12边型结构上设有多个圆形凹槽,与仪器托盘上突出的玻珠相匹配,使盘片1与仪器精确固定。
进一步,在盘片1上设有铁片卡槽,铁片卡槽内设有铁片,与仪器托盘上磁铁匹配,盘片1放到仪器托盘上时,盘片1会依靠磁力自动吸入托盘内,并且依靠盘片1上的12边型结构和圆形凹槽进行精确定位。
为了保证样本顺利通过虹吸流道,使第一虹吸流道4、第二虹吸流道5、第三虹吸流道6、第四虹吸流道7、第五虹吸流道8和第六虹吸流道9的宽度为0.2mm-0.5mm,深度为0.1mm-0.5mm;在第一虹吸流道4、第二虹吸流道5、第三虹吸流道6、第四虹吸流道7、第五虹吸流道8和第六虹吸流道9的表面做亲水性修饰。
为了实现盘片1的密封,在盘片1上表面进行薄膜键合,薄膜可以为PET压敏膜、PC、PMMA、PS膜中的一种,薄膜厚度为0.05mm-0.2mm。
为了便于检测孔在盘片1上的定位,在盘片1上设有黑胶块16,黑胶块16固定连接在盘片1边缘处。使仪器光偶通过读取黑胶块16透光强度,来进行初始位确定,从而确定每个检测孔的位置,相比传统的棱镜定位方式,可节省盘片1的空间,能够在盘片1上排布更多的检测孔。
为了便于提取多余的稀释样本,在第一混合槽25和第二混合槽34旁设有气孔,使第一混合槽25和第二混合槽34分别通过流道与气孔连通,气孔的直径应大于1mm,并且气孔的截面积应大于虹吸流道的截面积,使盘片1内部气压保持稳定。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (9)

  1. 一种生化项目检测盘片,其特征在于,包括:盘片(1)、第一检测单元(2)和第二检测单元(3),所述第一检测单元(2)和第二检测单元(3)开设在盘片(1)上;
    所述第一检测单元(2)包括:离心囊放置槽(21)、第一稀释液定量槽(22)、样本加样槽(23)、第一样本定量槽(24)、第一混合槽(25)、第一分液槽(26)和第一检测孔(27),所述离心囊放置槽(21)通过进液流道连通所述第一稀释液定量槽(22),所述样本加样槽(23)通过流道连通所述第一样本定量槽(24),所述第一稀释液定量槽(24)通过第一虹吸流道(4)连通所述第一混合槽(25),所述第一样本定量槽(24)通过第二虹吸流道(5)连通所述第一混合槽(25),所述第一混合槽(25)通过第三虹吸流道(6)连通所述第一分液槽(26);
    所述第一检测孔(27)设有多个,所述第一分液槽(26)通过流道连通所述第一检测孔(27);
    所述第二检测单元(3)包括:第一稀释液溢流槽(31)、第二稀释液定量槽(32)、第二样本定量槽(33)、第二混合槽(34)、第二分液槽(35)和第二检测孔(36),所述第一稀释液溢流槽(31)通过溢液流道连通所述第一稀释液定量槽(24),所述第一稀释液溢流槽(31)通过进液流道连通所述第二稀释液定量槽(32),所述第二样本定量槽(33)通过流道连通所述第一样本定量槽(24),所述第二稀释液定量槽(32)通 过第四虹吸流道(7)连通所述第二混合槽(34),所述第二样本定量槽(33)通过第五虹吸流道(8)连通所述第二混合槽(34),所述第二混合槽(34)通过第六虹吸流道(9)连通所述第二分液槽(35);
    所述第二检测孔(36)设有多个,所述第二分液槽(35)通过流道连通所述第二检测孔(36)。
  2. 根据权利要求1所述的一种生化项目检测盘片,其特征在于,还包括:样本溢流槽(10)和样本检测孔(11),所述样本溢流槽(10)通过溢液流道连通所述第二样本定量槽(33),所述样本检测孔(11)通过流道连通所述样本溢流槽(10)。
  3. 根据权利要求1所述的一种生化项目检测盘片,其特征在于,还包括:第二稀释液溢流槽(12)和稀释液检测孔(13),所述第二稀释液溢流槽(12)通过溢液流道连通所述第二稀释液定量槽(32),所述稀释液检测孔(13)通过流道连通所述第二稀释液溢流槽(12)。
  4. 根据权利要求1所述的一种生化项目检测盘片,其特征在于,所述第一样本定量槽(24)和第二样本定量槽(33)分别连通有红细胞分离槽(14)。
  5. 根据权利要求1所述的一种生化项目检测盘片,其特征在于,所述盘片(1)背面固定连接有定位装置(15),所述定位装置(15)为12边形结构,所述12边型结构的高度为1mm-5mm,所述12边型结构上设有多个圆形凹槽,使盘片(1)与仪器精确固定。
  6. 根据权利要求1所述的一种生化项目检测盘片,其特征在于,所述盘 片(1)上设有铁片卡槽,所述铁片卡槽内设有铁片。
  7. 根据权利要求1所述的一种生化项目检测盘片,其特征在于,所述第一虹吸流道(4)、第二虹吸流道(5)、第三虹吸流道(6)、第四虹吸流道(7)、第五虹吸流道(8)和第六虹吸流道(9)的宽度为0.2mm-0.5mm,深度为0.1mm-0.5mm;
    所述第一虹吸流道(4)、第二虹吸流道(5)、第三虹吸流道(6)、第四虹吸流道(7)、第五虹吸流道(8)和第六虹吸流道(9)的表面做亲水性修饰。
  8. 根据权利要求1所述的一种生化项目检测盘片,其特征在于,所述盘片(1)上表面进行薄膜键合,所述薄膜可以为PET压敏膜、PC、PMMA、PS膜中的一种,所述薄膜厚度为0.05mm-0.2mm。
  9. 根据权利要求1所述的一种生化项目检测盘片,其特征在于,所述盘片(1)上设有黑胶块(16),所述黑胶块(16)固定连接在所述盘片(1)边缘处。
PCT/CN2022/108943 2022-02-24 2022-07-29 一种生化项目检测盘片 WO2023159870A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210177056.9 2022-02-24
CN202210177056.9A CN114414823A (zh) 2022-02-24 2022-02-24 一种生化项目检测盘片

Publications (1)

Publication Number Publication Date
WO2023159870A1 true WO2023159870A1 (zh) 2023-08-31

Family

ID=81261158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108943 WO2023159870A1 (zh) 2022-02-24 2022-07-29 一种生化项目检测盘片

Country Status (3)

Country Link
US (1) US20230264205A1 (zh)
CN (1) CN114414823A (zh)
WO (1) WO2023159870A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114414823A (zh) * 2022-02-24 2022-04-29 含光微纳科技(太仓)有限公司 一种生化项目检测盘片
CN117233412B (zh) * 2023-11-13 2024-02-02 成都斯马特科技有限公司 微流控生化试剂盘及生化检验分析方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101194155A (zh) * 2005-04-09 2008-06-04 贝林格尔英格海姆米克罗帕茨有限责任公司 用于测试样品液的装置和方法
US20090053108A1 (en) * 2007-08-22 2009-02-26 Samsung Electronics Co., Ltd. Centrifugal force-based microfluidic device for blood chemistry analysis
US20100071486A1 (en) * 2008-09-23 2010-03-25 Samsung Electronics Co., Ltd. Microfluidic device
CN102177439A (zh) * 2008-10-14 2011-09-07 三星电子株式会社 利用离心力的微流体装置及使用微流体装置的样品分析方法
US20120314528A1 (en) * 2011-06-08 2012-12-13 Albert-Ludwigs-Universitaet Freiburg Device, fluidic module and method for producing a dilution series
CN112169853A (zh) * 2020-12-01 2021-01-05 南京岚煜生物科技有限公司 一种多功能微流控检测芯片
CN113848329A (zh) * 2021-10-27 2021-12-28 苏州含光微纳科技有限公司 一种生化项目检测装置
CN114414823A (zh) * 2022-02-24 2022-04-29 含光微纳科技(太仓)有限公司 一种生化项目检测盘片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101194155A (zh) * 2005-04-09 2008-06-04 贝林格尔英格海姆米克罗帕茨有限责任公司 用于测试样品液的装置和方法
US20090053108A1 (en) * 2007-08-22 2009-02-26 Samsung Electronics Co., Ltd. Centrifugal force-based microfluidic device for blood chemistry analysis
US20100071486A1 (en) * 2008-09-23 2010-03-25 Samsung Electronics Co., Ltd. Microfluidic device
CN102177439A (zh) * 2008-10-14 2011-09-07 三星电子株式会社 利用离心力的微流体装置及使用微流体装置的样品分析方法
US20120314528A1 (en) * 2011-06-08 2012-12-13 Albert-Ludwigs-Universitaet Freiburg Device, fluidic module and method for producing a dilution series
CN112169853A (zh) * 2020-12-01 2021-01-05 南京岚煜生物科技有限公司 一种多功能微流控检测芯片
CN113848329A (zh) * 2021-10-27 2021-12-28 苏州含光微纳科技有限公司 一种生化项目检测装置
CN114414823A (zh) * 2022-02-24 2022-04-29 含光微纳科技(太仓)有限公司 一种生化项目检测盘片

Also Published As

Publication number Publication date
CN114414823A (zh) 2022-04-29
US20230264205A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
WO2023159870A1 (zh) 一种生化项目检测盘片
US20200094252A1 (en) Microfluidic chip for separating and detecting whole blood sample and detection method thereof
EP3698872B1 (en) Microfluidic detection chip for multi-channel quick detecting
US9678069B2 (en) Rotatable fluid sample collection device
US20150093771A1 (en) Microfluidic analytical device for analysis of chemical or biological samples, method and system thereof
JP4111179B2 (ja) 化学分析装置と化学分析システム
CN109212201A (zh) 一种用于血清中乙肝病毒五项检测的离心式微流控芯片
WO1995017966A1 (en) Self-venting immunodiagnostic devices and methods of performing assays
EP1284817A2 (en) Microfluidics devices and methods for performing cell based assays
WO2023071365A1 (zh) 一种生化项目检测装置
EP3409364B1 (en) Specimen processing chip, liquid feeder and liquid feeding method of specimen processing chip
CN113848329A (zh) 一种生化项目检测装置
CN217212766U (zh) 一种生化项目检测盘片
US20220137038A1 (en) Assays with reduced interference (iii)
CN114453037B (zh) 均相测试微流控芯片及检测系统
Pugia et al. Microfluidic tool box as technology platform for hand-held diagnostics
US20220065768A1 (en) Blood separation and analysis device and methods
CN116493061B (zh) 一种血液检测微流控芯片及其检测方法
US8372660B2 (en) Quantitative analyzing method
JP2021535404A (ja) アッセイプレート、分離シート、フィルタ、及びサンプル配置マーク
CN114433259A (zh) 均相测试微流控芯片及检测系统
CN220214973U (zh) 离心式生化检测芯片
CN216936080U (zh) 均相测试微流控芯片及检测系统
US20150260709A1 (en) Diagnostic device and diagnostic system having the same
US20240198325A1 (en) Cassette for blood analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928139

Country of ref document: EP

Kind code of ref document: A1