WO2023159865A1 - 磁共振系统 - Google Patents

磁共振系统 Download PDF

Info

Publication number
WO2023159865A1
WO2023159865A1 PCT/CN2022/107120 CN2022107120W WO2023159865A1 WO 2023159865 A1 WO2023159865 A1 WO 2023159865A1 CN 2022107120 W CN2022107120 W CN 2022107120W WO 2023159865 A1 WO2023159865 A1 WO 2023159865A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
magnetic resonance
shielding
assembly
frequency shielding
Prior art date
Application number
PCT/CN2022/107120
Other languages
English (en)
French (fr)
Inventor
赵华炜
王鹏
虞维兴
Original Assignee
合肥泽璞医疗系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥泽璞医疗系统有限公司 filed Critical 合肥泽璞医疗系统有限公司
Publication of WO2023159865A1 publication Critical patent/WO2023159865A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening

Definitions

  • the present disclosure relates to the technical field of medical equipment, in particular to a magnetic resonance system.
  • Magnetic Resonance Imaging occupies an important position in the field of in vitro diagnostics, and it also brings a lot of help to medical progress.
  • the magnetic resonance equipment is susceptible to external electromagnetic interference during operation, so the magnetic resonance detection needs to be performed in a special shielded room space.
  • the long construction period of the shielding room is not conducive to the popularization and use of magnetic resonance equipment.
  • Embodiments of the present disclosure provide a magnetic resonance system, which can be quickly assembled to form a radio frequency shielding space required for the use of magnetic resonance equipment, and is conducive to popularization and use of magnetic resonance equipment.
  • a magnetic resonance system including a magnetic resonance device, a radio frequency shielding assembly, and a carrying device.
  • the magnetic resonance device includes a housing assembly with a radio frequency shielding function, and the housing assembly is provided with a detection cavity.
  • the detection chamber is provided with an inlet and outlet;
  • the radio frequency shielding assembly is connected with the shell assembly to form a radio frequency shielding space, the radio frequency shielding space communicates with the detection chamber, the radio frequency shielding assembly is provided with a first door and a first shielding door, and the first shielding door is used for Open or close the first door;
  • the carrying device is set in the radio frequency shielding space, the carrying device includes a bed board that can move relative to the magnetic resonance equipment, and the bed board enters and exits the detection chamber through the entrance and exit.
  • the magnetic resonance system can be transported to the placement location in modules, and a radio frequency shielding space is formed by connecting the housing component and the radio frequency shielding component. inside the space.
  • the first shielded door is opened, so that the subject can enter the radio frequency shielded space through the first door, and then lie on the bed board and enter the detection chamber with the bed board for detection.
  • the operator can start the magnetic resonance equipment, and use the magnetic resonance equipment to detect the subject to obtain the desired image.
  • the magnetic resonance system can be quickly assembled to form a radio frequency shielding space required for the use of magnetic resonance equipment, without the need to specially build a shielding room with radio frequency shielding function, which is conducive to the popularization and use of magnetic resonance equipment.
  • the radio frequency shielding assembly further includes a second doorway and a second shielding door for carrying equipment to enter and exit.
  • the second doorway is set opposite to the entrance and exit. Between the exit and the second door.
  • the carrying device is slidably connected with the radio frequency shielding assembly, so that the carrying device can move relative to the detection cavity, and enter and exit the radio frequency shielding space through the second doorway, and the second shielding door is used to open and close the second doorway .
  • the radio frequency shielding assembly includes at least two shielding shells, the shielding shells are provided with accommodating space, at least one shielding shell is sealingly connected with one end of the shell assembly, and at least one shielding shell is connected with the other end of the shell assembly
  • the airtight connection makes the accommodating space form a radio frequency shielding space
  • the first door is arranged on the shielding case
  • the first shielding door is movably arranged on the shielding case.
  • the radio frequency shielding assembly further includes a radio frequency shielding connecting piece, and the radio frequency shielding connecting piece is connected between the shielding case and the shell assembly to form a sealed shielding structure.
  • the magnetic resonance equipment further includes a radio frequency coil, a gradient coil, and a magnet component for generating a main magnetic field
  • the radio frequency coil is arranged in the housing assembly and is arranged around the detection cavity
  • the gradient coil is arranged in the housing assembly
  • the radio frequency coil is arranged around, the gradient coil is arranged between the magnet part and the radio frequency coil, the magnet part is arranged in the shell assembly, and is arranged around the gradient coil
  • the magnetic resonance system also includes cabinet equipment, and the cabinet equipment is arranged outside the radio frequency shielding space, and The cabinet equipment is provided with at least one of a control module for controlling the magnetic resonance equipment, a radio frequency power amplifier for connecting the radio frequency coil, a gradient power amplifier for connecting the gradient coil, and a cooler for cooling the gradient coil.
  • the radio frequency shielding assembly includes an observation area with a radio frequency shielding function, and the observation area can observe the inside of the radio frequency shielding space; and/or, the radio frequency shielding assembly includes a filter plate with a radio frequency shielding function, and the filter plate is used to construct Signal paths between the radio frequency shielding space and the outside; and/or, the magnetic resonance system further includes a control panel, which is at least communicatively connected with the magnetic resonance equipment, and the control panel is arranged outside the radio frequency shielding assembly.
  • the magnetic resonance equipment further includes a helium gas tube assembly, and the helium gas tube assembly is at least partially arranged outside the radio frequency shielding space; and/or, the magnetic resonance equipment further includes a device that generates heat lower than a preset value or does not generate heat Components, equipment parts are arranged at least partially outside the radio-frequency shielded space.
  • the housing assembly is provided with a first accommodation chamber surrounding the detection chamber, a vacuum chamber disposed around the first accommodation chamber, and a second accommodation chamber disposed in the vacuum chamber, and the second accommodation chamber and The vacuum chambers are isolated from each other, and the second accommodating chamber is arranged around the first accommodating chamber;
  • the magnetic resonance equipment also includes a radio frequency coil, a gradient coil and a magnet component for generating a main magnetic field, and the radio frequency coil is arranged in the first accommodating chamber and surrounds the first accommodating chamber
  • the detection cavity is set, the gradient coil is set in the second storage cavity, and is set around the radio frequency coil, the gradient coil is set between the magnet component and the radio frequency coil, and the magnet component is set in the second cavity, and is set around the gradient coil.
  • the magnetic resonance system further includes an electrical connector and a shock-absorbing pad, the electrical connector is fixed to the housing assembly through the shock-absorbing pad, and one end of the electrical connector is electrically connected to the gradient coil, and the electrical connector The other end forms an electrical connection on the outside of the housing assembly.
  • Fig. 1 is a schematic structural diagram of a magnetic resonance system shown in an embodiment (the first door is in an open state).
  • FIG. 2 is a schematic structural diagram of the magnetic resonance equipment shown in FIG. 1 .
  • Fig. 3 is a schematic structural diagram of the second doorway of the magnetic resonance system shown in Fig. 1 in an open state.
  • FIG. 4 is a schematic structural diagram of the magnetic resonance system shown in FIG. 1 in an operating state.
  • FIG. 5 is a schematic structural view of the carrying device shown in FIG. 3 after the decoration is hidden.
  • FIG. 6 is a half-sectional schematic diagram of the magnetic resonance equipment shown in FIG. 2 .
  • FIG. 7 is a schematic structural diagram of the shielding assembly shown in FIG. 2 .
  • Fig. 8 is a schematic diagram of a partial structure of a housing assembly in an embodiment.
  • Fig. 9 is a schematic diagram of a partial structure of the casing in an embodiment.
  • 150 shell; 150-1, first shell; 150-2, second shell; 150-3, third shell;
  • 1501-1 the inner wall of the first shell part; 1501-2, the outer wall of the first shell part;
  • 1502-1 the inner wall of the second housing member
  • 1502-2 the outer wall of the second housing member
  • magnetic resonance equipment occupies an important position in the field of in vitro diagnostics and has also brought a lot of help to medical progress.
  • magnetic resonance equipment products with similar functions or performances the shorter the construction period of the radio frequency shielding space, the more conducive to the promotion and use of magnetic resonance equipment, which in turn makes the magnetic resonance equipment more favored by hospitals and/or medical examination institutions. Therefore, how to shorten the construction period of the radio frequency shielding space has become an issue that manufacturers of magnetic resonance equipment pay more and more attention to.
  • magnetic resonance equipment is susceptible to external electromagnetic interference during operation, so magnetic resonance detection needs to be performed in a special shielded room.
  • the long construction period of the shielding room is not conducive to the popularization and use of magnetic resonance equipment.
  • the present disclosure provides a magnetic resonance device, which can be quickly assembled to form a radio frequency shielding space required for the operation of the magnetic resonance device.
  • FIG. 1 to FIG. 4 they are structural views of the magnetic resonance system and the magnetic resonance equipment in some embodiments.
  • FIG. 1 is a schematic structural diagram of a magnetic resonance system shown in an embodiment (the first shield door is in an open state).
  • FIG. 2 is a schematic structural diagram of the magnetic resonance equipment of the magnetic resonance system shown in FIG. 1 .
  • Fig. 3 is a schematic structural view of the second shield door of the magnetic resonance system shown in Fig. 1 in an open state.
  • FIG. 4 is a schematic structural diagram of the magnetic resonance system shown in FIG. 1 in an operating state.
  • a magnetic resonance system including a magnetic resonance device 10 , a radio frequency shielding assembly 20 and a carrying device 30 .
  • the magnetic resonance equipment 10 includes a housing assembly 100 with a radio frequency shielding function.
  • the housing assembly 100 is provided with a detection chamber 110 , and the detection chamber 110 is provided with an inlet and outlet 111 .
  • the radio frequency shielding assembly 20 is connected with the casing assembly 100 to form a radio frequency shielding space 21 , and the radio frequency shielding space 21 communicates with the detection cavity 110 .
  • the radio frequency shielding assembly 20 is provided with a first shielding door 23 which can be opened or closed, and the first shielding door 23 is used for entering and exiting the radio frequency shielding space 21 .
  • the carrying device 30 is arranged in the radio frequency shielding space 21, and includes a bed board 31 and a moving assembly for moving the bed board 31, and the moving assembly is used for moving the bed board 31 into and out of the detection chamber 110 through the inlet and outlet 111 on the magnetic resonance equipment .
  • the magnetic resonance system can be transported to the placement location in modules, and the radio frequency shielding space 21 is formed by connecting the housing component 100 and the radio frequency shielding component 20 .
  • the detection cavity 110 of the magnetic resonance equipment 10 is connected with the radio frequency shielding space 21, and the carrying device 30 can also be placed in the radio frequency shielding space 21, and then the construction of the radio frequency shielding space 21 can be quickly completed through modular assembly to facilitate the magnetic resonance
  • the device 10 is put into service quickly.
  • the first shielded door 23 is opened, so that the subject can enter the radio frequency shielded space 21 through the first shielded door 23, and then lie on the bed board 31 and enter the detection chamber 110 with the bed board 31 for detection.
  • the operator After closing the first shielding door 23, the operator can start the magnetic resonance equipment 10, and use the magnetic resonance equipment 10 to detect the subject to obtain the desired image.
  • the radio-frequency shielding assembly 20 with the magnetic resonance equipment 10 with radio-frequency shielding function, the magnetic resonance system can be quickly assembled to form the radio-frequency shielding space 21 required for the use of the magnetic resonance equipment 10, without the need to specially build a radio-frequency shielding function. Shielded room.
  • the magnetic resonance system of the present disclosure makes full use of the housing assembly 100 of the magnetic resonance equipment 10 as a part of the radio frequency shielding space 21, which is beneficial to reduce the volume of the radio frequency shielding space 21, so it can reduce consumables, thereby helping to reduce the construction cost of the magnetic resonance system.
  • the magnetic resonance system of the present disclosure can be quickly assembled to form the radio frequency shielding space 21 required for the use of the magnetic resonance equipment 10 , and the assembly is flexible, which is conducive to the quick use of the magnetic resonance equipment 10 .
  • the radio frequency shielding assembly 20 can also include a second shielding door 25 that can be opened or closed, and the second shielding door 25 can be For carrying equipment 30 to enter and exit the detection cavity 110, the doorway of the second shielding door 25 is set opposite to the entrance and exit 111 of the magnetic resonance equipment, and the first shielding door 23 is arranged on the peripheral side of the radio frequency shielding assembly and is located at the Between the entrance and exit 111 and the second shield door 25.
  • the magnetic resonance system has at least two doors, and the second shielding door 25 can be opened to drag the carrying device 30 out of the radio frequency shielding assembly 20, so that the subject with limited mobility can lie on the bed board 31 from the outside of the radio frequency shielding assembly 20 , and then push the carrying device 30 into the radio frequency shielding space 21 by opening the second shielding door 25, so that the subject to be tested can enter the testing chamber 110 along with the bed board 31 for testing.
  • the operator can start the magnetic resonance equipment 10, and use the magnetic resonance equipment 10 to detect the subject to obtain the desired image.
  • the second shielded door 25 can be opened again, and the carrying device 30 can be moved out of the radio frequency shielded space 21, so that it is convenient for the person to be detected to leave.
  • the needs of examiners with different athletic abilities can be met, and the comfort of the examinee and the convenience of the operation of the magnetic resonance system are improved.
  • the carrying device 30 may be moved by using rollers, or by using slide rails to drive the carrying device 30 to move.
  • the carrying device 30 can be slidably connected with the radio frequency shielding assembly 20 , so that the carrying device 30 can move relative to the detection cavity 110 and enter and exit the radio frequency shielding space 21 through the second shielding door 25 . In this way, through the sliding connection between the carrying device 30 and the radio frequency shielding assembly 20, the carrying device 30 can enter and exit the second shielding door 25 along the set track, so that the bed board 31 can smoothly enter and exit the detection chamber 110, improving the consistency of multiple detections .
  • a guide rail 201 is provided between the carrier device 30 and the radio frequency shielding assembly 20 , and a fitting 32 that is slidably connected to the guide rail 201 is provided on the other.
  • the carrying device 30 can enter and exit the radio frequency shielding space 21 along a set direction by using the sliding cooperation between the guide rail 201 and the matching part 32 , which is easy to implement and helps to reduce the implementation cost of the magnetic resonance system.
  • the bottom of the radio frequency shielding assembly 20 may be provided with a guide rail 201 .
  • the specific implementation manner of the carrying device 30 can be implemented with reference to various scanning bed devices in related technologies.
  • the carrying device 30 may also have a lift assembly 33 capable of driving the bed board 31 up and down.
  • the lifting assembly can be realized by means of electronically controlled lifting equipment, manual lifting equipment, etc., and there are no too many restrictions here.
  • the movement of the bed board 31 and the movement of the carrying device 30 can also be realized by electronically controlled horizontal movement equipment, or by manual horizontal movement equipment, etc., and there are no too many restrictions here.
  • the bed board 31 can be divided into a horizontal moving part and a vertical moving part.
  • Bed board 31 is installed on track support 34, can move along track support 34 under controlled state, and track support 34 can be equipped with electronic braking device, photoelectric limit switch and contact switch etc.
  • track support 34 can be equipped with electronic braking device, photoelectric limit switch and contact switch etc.
  • the horizontal movement part of the bed board 31 reaches the horizontal zero position at first, and the electronic brake is released, so that the bed board 31 moves to the desired position along the track bracket 34 .
  • the electronic brake is activated, the bed board 31 is locked, and now the vertical movement part of the bed board 31 can work.
  • preparation for scanning can be performed while the horizontal movement is partially locked.
  • the electronic brake When the preparatory work before scanning is completed, the electronic brake is released, and the bed board 31 can move along the track support 34 toward the direction close to the detection chamber 110 . When the position is reached, the electronic brake is activated and the bed board 31 is locked.
  • the horizontal movement and the vertical movement of the bed board 31 can be independently controlled, for example, when the vertical movement part of the bed board 31 reaches the highest point, the horizontal movement part can move freely. All movement limit positions are provided with control devices such as photoelectric gates and contact switches to ensure the safety of the movement of the bed board 31 .
  • all the aforementioned components participating in and/or supporting the movement of the bed board 31 may be collectively referred to as a moving assembly.
  • the radio frequency shielding assembly 20 includes at least two shielding cases 26, and the shielding case 26 is provided with an accommodating space, at least One shielding case 26 is sealingly connected with one axial end of the housing assembly 100, and at least one shielding case 26 is sealingly connected with the other axial end of the housing assembly 100, so that the accommodation spaces can be connected to each other through the housing assembly 100. connected to form a radio frequency shielding space 21 .
  • the first shield door 23 is movably disposed on the shield case 26 . In this way, at least two shielding covers 26 provided with accommodating spaces cooperate with the shell assembly 100 , and can be quickly and hermetically connected to form the radio frequency shielding space 21 , which facilitates the modular assembly of the magnetic resonance equipment 10 .
  • the shielding case 26 can be realized in various ways, for example, the shielding case 26 is made of a conductive material, or the shielding case 26 is made by smearing a metal coating or a composite metal sheet on a non-metallic case, which can realize Radio frequency shielding is sufficient, and the present disclosure does not limit this.
  • the radio frequency shielding assembly 20 may further include a radio frequency shielding connector 27, and the radio frequency shielding connector 27 is used to connect the shielding cover 26 and the housing assembly 100 (
  • the radio frequency shielding connector 27 is disposed between the shielding case 26 and the housing assembly 100 ) to form a sealed shielding structure.
  • the shielding effect of the radio-frequency shielding space 21 can be further improved by using the radio-frequency shielding connector 27, so as to prevent the external magnetic field from entering the radio-frequency shielding space 21 through the connection gap between the shielding cover 26 and the housing assembly 100, thereby affecting the detection of the magnetic resonance equipment 10. quality.
  • the radio frequency shielding connection may include at least one of conductive reeds, conductive cotton, conductive colloid, etc., which can be in good contact with the shielding cover 26 and the housing assembly 100 to meet the requirements of radio frequency. Just block the requirement.
  • the magnetic resonance apparatus 10 further includes a radio frequency coil 200 , a gradient coil 300 and a magnet component 400 for generating a main magnetic field.
  • the radio frequency coil 200 is disposed on the housing assembly 100 and surrounds the detection chamber 110 .
  • the gradient coil 300 is disposed in the housing assembly 100 and surrounds the RF coil 200 .
  • the gradient coil 300 is disposed between the magnet component and the RF coil 200 .
  • the magnet component is disposed in the housing assembly 100 and surrounds the gradient coil 300 .
  • the magnetic resonance system can also include a cabinet device 40, the cabinet device 40 is arranged outside the radio frequency shielding space 21, and the cabinet device 40 is provided with a control module for controlling the magnetic resonance device 10, a radio frequency power amplifier connected to the radio frequency coil 200, a connection gradient At least one of a gradient power amplifier of the coil 300 and a cooler for cooling at least the gradient coil 300 .
  • a control module for controlling the magnetic resonance device 10 a radio frequency power amplifier connected to the radio frequency coil 200, a connection gradient At least one of a gradient power amplifier of the coil 300 and a cooler for cooling at least the gradient coil 300 .
  • electronic devices that do not require radio frequency shielding, or are easily affected by the radio frequency coil 200, the gradient coil 300 or the magnet part 400 can be placed in the cabinet device 40 and placed outside the radio frequency shielding space 21, which is convenient for assembly.
  • the occupancy of the radio frequency shielding space 21 can also be reduced, which is beneficial to reducing the volume of the radio frequency shielding space 21 to reduce costs.
  • the cabinet device 40 may include three cabinets, one cabinet is used for loading power supply, radio frequency power amplifier, spectrometer and other components, one cabinet is used for loading gradient power amplifier, and one cabinet is used for loading water cooling system and other components.
  • the radio frequency shielding assembly 20 may include an observation area 28 with a radio frequency shielding function, and the radio frequency shielding space 21 can be observed through the observation area 28. internal. In this way, it is convenient for the operator to understand the situation in the radio frequency shielding space 21 to remind the subject to be detected or to control the stop of the magnetic resonance equipment 10 .
  • the viewing area 28 can be made of a light-transmitting member with a shielding function, such as light-transmitting glass.
  • the radio frequency shielding assembly 20 may include a filter plate 29 with a radio frequency shielding function, and the filter plate 29 is used to construct a radio frequency shielding space 21 and external signaling pathways. In this way, the signal path between the radio frequency shielding space 21 and the outside can be constructed by using the filter board 29 , which is convenient for setting related control devices in the radio frequency shielding space 21 .
  • the magnetic resonance system may further include a control panel 50, the control panel 50 is at least electrically connected to the magnetic resonance equipment 10, and controls The panel 50 is disposed on the outside of the RF shielding assembly 20 .
  • the control panel 50 is at least electrically connected to the magnetic resonance equipment 10 , for example, it may be an electrical connection or a communication connection, etc., which is not limited in the disclosure.
  • control panel 50 may include a display for displaying the operation information of the magnetic resonance system, so as to facilitate the operator to interact with the magnetic resonance system.
  • control panel 50 can be implemented in various ways, including but not limited to smart tablets, computers and other operation panels with control functions.
  • the isolation of the radio frequency shielding space 21 can reach more than 90dB. In this way, the radio frequency shielding requirements required for the operation of different types of magnetic resonance equipment 10 can be fully guaranteed.
  • the magnetic resonance apparatus 10 may include a radio frequency coil 200 , a gradient coil 300 and a magnet component 400 for generating a magnetic field.
  • the inner space of the housing assembly 100 is provided with a first accommodating cavity 120 arranged around the detection cavity 110 from the circumferential outside of the detection cavity, and surrounding the first accommodating cavity 120 from the circumferential outside of the first accommodating cavity 120
  • the second accommodating chamber 140 is provided. Wherein, the second accommodating chamber 140 and the first accommodating chamber 120 are isolated from each other via the vacuum chamber 130 . At least part of the radio frequency coil 200 is disposed in the first accommodation cavity 120 and is disposed around the first accommodation cavity 120 .
  • the gradient coil 300 is disposed in the second containing chamber 140 and is disposed around the second containing chamber 140 .
  • the magnet component 400 is disposed in the second accommodation chamber 140 and is disposed around the gradient coil 300 from the circumferential outer side of the gradient coil 300 ; the gradient coil 300 is disposed between the magnet component 400 and the radio frequency coil 200 .
  • the gradient coil 300 is subjected to the action of Lorentz force in the magnetic field generated by the magnet part 400 to cause vibration, thereby generating running noise.
  • the operating noise is isolated by the vacuum cavity 130 , that is, the vacuum cavity 130 blocks the noise transmission path, making it difficult for the operating noise to spread outward from the shell assembly 100 , thereby effectively reducing the noise of the magnetic resonance apparatus 10 .
  • disposing the magnet part 400 and the gradient coil 300 in the second accommodation cavity 140 facilitates the modular assembly of the two, and facilitates the assembly of the entire magnetic resonance equipment.
  • the first housing chamber 120 and the second housing chamber 140 are separated from each other by the vacuum chamber 130, so that the noise generated by the magnet part 400 and the gradient coil 300 can be isolated by the vacuum chamber 130, which blocks the noise transmission path and can effectively reduce the Operating noise of the magnetic resonance system 10 .
  • the magnet component 400 may be realized in various ways, including but not limited to any one of the permanent magnet 400 or the superconducting magnet 400 , as long as it can generate a magnetic field.
  • the magnet component 400 is used to generate the main magnetic field (ie, the B0 field) along the axial direction of the detection cavity 110 (such as the Z direction in FIG. 2 ).
  • the gradient coil 300 may be implemented in various ways, and it only needs to be used to sample the sample to be tested.
  • the gradient coil 300 is used to sample the measured sample at different positions, phases and frequencies in the three-dimensional space, and finally form the gradient space data.
  • radio frequency coil 200 may be implemented in various ways, and it only needs to be used for transmitting energy and detecting signals.
  • the radio frequency coil 200 may include a radio frequency receiving coil and a radio frequency transmitting coil, the radio frequency transmitting coil is disposed in the first accommodating cavity 120 , and the radio frequency receiving coil is disposed on the sample to be tested.
  • the radio frequency coil 200 may have dual functions of transmitting and receiving, so that the tested sample does not need to wear a radio frequency receiving coil.
  • the radio frequency transmitting coils include but not limited to Helmholtz, optimized Maxwell, solenoid and other types of radio frequency transmitting coils.
  • the magnetic resonance apparatus 10 may further include a shim coil 500 for improving the uniformity of the magnetic field.
  • the shim coil 500 can be disposed on the radially outer peripheral side of the gradient coil 300 , and the magnet component 400 can be disposed on the radially outer peripheral side of the shim coil 500 ; the shim coil 500 can also be integrated inside the gradient coil 300 .
  • the magnet component 400 can be a permanent magnet arranged oppositely, and can be used to generate a main magnetic field in a vertical (such as Y direction) direction or a horizontal (such as X direction), and the radio frequency coil 200 is used to generate a B1 magnetic field perpendicular to the direction of the main magnetic field.
  • the magnet component 400 can be a superconducting magnet, which is used to generate the main magnetic field in the axial direction of the detection cavity 110 (such as the Z direction), and the radio frequency coil 200 is used to generate the B1 magnetic field perpendicular to the direction of the main magnetic field.
  • the embodiments of the present disclosure are not limited thereto.
  • the magnetic resonance apparatus 10 may further include a shielding assembly 600 as shown in FIG. 3 .
  • the shielding assembly 600 can be disposed on the shell assembly 100 and disposed between the gradient coil 300 and the radio frequency coil 200 . In this way, using the shielding assembly 600 can improve the performance of the magnetic resonance imaging equipment and improve the image quality.
  • the shielding assembly 600 includes at least one shielding ring 610-1, 610-2 (hereinafter collectively referred to as the shielding ring 610), and each shielding ring 610 is provided with at least one An axial slot 612 and at least one annular slot 611 perpendicular to the axial direction, the axial slot 612 runs through both ends of the at least one shielding ring 610 .
  • the number of annular slits 611 opened on the shielding ring 610 can be one or more, and the number of axial slits 612 opened can also be one or more. In the example shown in FIG. 7 , there are multiple annular slits 611 and one axial slit 612 on one shielding ring 610 , but the embodiments of the present disclosure are not limited thereto.
  • the shielding ring 610 may be made of non-magnetic metals, including copper, aluminum, magnesium, zinc, and the like.
  • the shielding assembly 600 When the shielding assembly 600 is applied to a magnetic resonance imaging device, at least one shielding ring 610 is disposed between the radio frequency coil 200 and the gradient coil 300 .
  • the eddy current circuit of the gradient coil 300 can be cut off by using the annular gap 611 to reduce the eddy current generated by the gradient coil 300 .
  • the axial slit 612 can also be used to change the direction of the induced current generated by the radio frequency coil 200 on the corresponding shielding ring 610, so that the current on the shielding ring 610 is in the same direction as the current in the corresponding radio frequency coil 200, thereby enhancing the internal strength of the radio frequency coil 200.
  • the intensity of the magnetic field can avoid the attenuation of the intensity of the magnetic field inside the radio frequency coil 200 . In this way, the shielding component 600 has a good shielding effect and can enhance the performance of the radio frequency coil 200 .
  • the magnetic resonance imaging device integrated with the shielding assembly 600 does not need to increase the transmission power of the radio frequency coil 200 to improve the efficiency of the radio frequency coil 200, which can reduce the manufacturing cost and operating cost of the magnetic resonance imaging device.
  • the "annular gap 611" includes, but is not limited to, circular, elliptical, wave-shaped and so on. It can also be set in combination with the shapes of the radio frequency coil 200 and the gradient coil 300 .
  • the "axial slot 612" includes but not limited to straight, curved, arc, stepped and so on.
  • the straight axial slit 612 can reduce the R&D and design cost of the shielding assembly 600 , facilitate processing and manufacturing, and further help reduce the manufacturing cost of the magnetic resonance imaging equipment.
  • At least one shielding ring 610 may include 1, 2 or 3 or more shielding rings 610 .
  • the number of shielding rings 610 specifically included in the shielding assembly 600 may be set according to actual needs.
  • insulation can be provided between two adjacent shielding rings 610 .
  • FIG. 3 herein uses two shielding rings 610 as an example for description, but embodiments of the present disclosure are not limited thereto.
  • the shielding assembly 600 includes at least two shielding rings 610 , and the at least two shielding rings 610 can be arranged around one another in order to improve the shielding effect.
  • the positions of the slots opened on the at least two shielding rings 610 may correspond to each other, or their positions may not correspond to each other, which is not limited in this embodiment of the present disclosure.
  • Fig. 3 shows a schematic structural diagram of a shielding assembly 600 provided by some embodiments of the present disclosure. Wherein, description is made by taking the shielding assembly 600 including two shielding rings 610 as an example, but the embodiment of the present disclosure is not limited thereto.
  • the shielding assembly 600 includes a first shielding ring 610-1 and a second shielding ring 610-2 insulated from the first shielding ring 610-1.
  • the first shielding ring 610 - 1 may be disposed radially inside the second shielding ring 610 - 2 , so as to be closer to the radio frequency coil 200 .
  • the embodiment of the present disclosure does not limit the mutual positional relationship between the first shielding ring 610-1 and the second shielding ring 610-2.
  • first shielding ring 610-1 and the second shielding ring 610-2 there are many ways to insulate the first shielding ring 610-1 and the second shielding ring 610-2 from each other, including but not limited to disposing an insulating ring between the two, or applying insulating materials.
  • the housing assembly 100 may at least include a first housing 150-1, a second housing 150-2 and a third housing body 150-3, the first casing 150-1 is arranged around the gradient coil 300 and the radio frequency coil 200; the second casing 150-2 is arranged around the outer side of the magnet part 400; the third casing 150 -3 is arranged at the axial side end of the magnetic resonance equipment 10, and is used for sealingly connecting the first housing 150-1 and the second housing 150-2.
  • the second housing chamber 140 is formed between the first housing 150 - 1 and the second housing 150 - 2 , and the inner space of the second housing 150 - 2 forms the first housing chamber 120 .
  • Each housing 150 is provided with an inner wall and an outer wall, and the inner wall and the outer wall are spaced apart to form a channel 151 .
  • the first housing 150-1 and the second housing 150-2 are packaged via the third housing 150-3, so that the channels 151 of the housings communicate with each other. In this way, the vacuum cavity 130 can be formed by vacuuming only one air hole provided on the shell assembly 100 .
  • the third housing 150-3 is provided with a socket part 152
  • the first housing 150-1 and the second housing 150-2 are respectively provided with socket parts 153
  • the third housing 150-3 is respectively inserted into the first housing 150-1 and the second housing 150-1 through the insertion part 152.
  • the sealing connection between the first housing 150-1 and the second housing 150-2 is realized through the third housing 150-3.
  • first shell 150-1, second shell 150-2 and third shell 150-3's insertion portion 152 and sleeve portion 153 is just an example.
  • the third housing 150-3 may also be provided with a socket portion 153, and the first housing 150-1 and the second housing 150-2 may be respectively provided with an insertion portion 152, or in other ways
  • the insertion portion 152 and the socket portion 153 are arranged in any manner, which is not limited in the present disclosure.
  • each housing 150 can be formed by connecting at least two housing parts (for example, a first housing part 1501 and a second housing part 1502), and the inner wall and the outer wall of each housing part A sub-channel is formed at intervals, and based on the sealing connection of the at least two shell parts, two adjacent sub-channels are spliced and sealed to form the channel 151 of each of the shells 150 .
  • the first shell part 1501 and the second shell part 1502 are spliced to form at least part of the first shell 150-1, so that the hollow sub-channels of the two communicate to form the first shell 150 - 1 corresponds to at least part of channel 151 .
  • Both the second shell 150-2 and the third shell 150-3 can be spliced by corresponding shell parts through a similar process. Furthermore, the first housing 150 - 1 and the second housing 150 - 2 are packaged and connected via the third housing 150 - 3 , so that the channels 151 of the housings 150 communicate with each other. The flexibility of forming the vacuum cavity 130 can be improved, and the production cost of the magnetic resonance equipment 10 can be reduced.
  • the inner and outer walls of each of the at least two housing parts 1501, 1502 are connected to each other.
  • the inner wall 1501 - 1 of the first housing part 1501 and the inner wall 1502 - 1 of the second housing part 1502 are connected to each other to form at least part of the inner wall of the housing 150 .
  • the outer wall 1501 - 2 of the first housing part 1501 and the outer wall 1502 - 2 of the second housing part 1502 are connected to each other to form at least part of the outer wall of the housing 150 .
  • the first housing 150 - 1 , the second housing 150 - 2 and the third housing 150 - 3 can be formed by splicing at least two housing parts. Each housing is sealed by splicing corresponding housing parts, so that the sub-channels of the housing parts communicate with each other to form the channel 151 of the housing 150 .
  • the first housing 150-1 and the second housing 150-2 are packaged and connected through the third housing 150-3, so that the channels 151 of the housings 150 communicate with each other, and through a drawer provided on the housing assembly 100 Vacuuming the pores can form the vacuum chamber 130 .
  • the vacuum cavity 130 is formed by modularly assembling the shells 150 , which is beneficial to further improve the assembly efficiency of the magnetic resonance apparatus 10 .
  • the vacuum chamber 130 may be in the shape of a ring, although the above-mentioned shells 150 are formed by connecting two shell parts to each other, and the shells 150 are hermetically connected to each other, so that the passages 151 of the shells 150 are communicated and sealed.
  • the vacuum cavity 130 is formed as an example, but those skilled in the art should understand that the present disclosure is not intended to limit the number of housing parts. In fact, each housing 150 can also be formed by four, five, or six or even more housing parts that are spliced together and then sealed.
  • the first shell part 1501 may be provided with an insertion part 152
  • the second shell part 1502 may be provided with A socket portion 153 is provided, and the insertion portion 152 is inserted into the socket portion 153 and fixedly connected.
  • the first shell part 1501 and the second shell part 1502 are fixedly connected by socketing the socket part 152 and the socket part 153 , which is easy to assemble and is beneficial to improve the assembly efficiency of the magnetic resonance apparatus 10 .
  • the housing assembly 100 may further include a sealing layer 160, and the sealing layer 160 is interposed between the side wall of the third housing 150-3 and the side wall of the insertion part 152 of the first housing.
  • sealing layer 160 and/or the sound-absorbing layer 170 can reduce the outward diffusion of noise generated by the magnetic resonance equipment 10, further reduce the operating noise of the magnetic resonance equipment 10, and improve the detection of the subject. experience.
  • the sealing layer 160 may be ring-shaped and sheathed on the outside of the insertion portion 152 , and the sound-absorbing layer 170 may be disposed between the free end of the sleeve portion 153 and the insertion portion 152 .
  • the sealed and reliable vacuum cavity 130 is further formed by using the sealing layer 160 and the sound-absorbing layer 170.
  • the sound-absorbing layer 170 can be used to passively absorb the noise generated by the magnetic resonance equipment 10, further reducing the operating noise of the magnetic resonance equipment 10, and improving the health of the subject. Test experience.
  • the above-mentioned socket part 152 can be provided with a card part 154, and the above-mentioned socket part 153 can be provided with a buckle part 155, and the socket part 152 can be inserted into the socket part 153, and The buckle part 154 and the buckle part 155 are buckled and fixed.
  • the fixed connection between the plug part 152 and the socket part 153 is realized by using the clamp part 154 and the buckle part 155.
  • the sealing layer 160 can be used to improve the sealing performance of the connection between the shells, and the sound-absorbing layer 170 can be used to improve the sealing performance. Noise reduction effect.
  • the housing 150 may further include a sealing layer 160, and the sealing layer 160 is disposed in the connection gap between the housing parts (such as the above-mentioned first housing part and the above-mentioned second housing part), which can also improve The sealing reliability of the vacuum chamber 130 is beneficial to ensure the vacuum degree of the vacuum chamber 130 .
  • the housing 150 further includes a sound-absorbing layer 170 , and the sound-absorbing layer 170 is disposed in a connection gap between the housing parts (eg, the first housing part 1501 and the second housing part 1502 ). In this way, the noise reduction effect of the magnetic resonance equipment 10 can also be further improved by using the sound-absorbing layer 170 disposed at the joint of the housing components.
  • sealing layer 160 may be implemented in various ways, including but not limited to silica gel, rubber, and the like. There are many specific ways to realize the sound-absorbing layer 170, including but not limited to sound-absorbing cotton and the like.
  • the magnetic resonance apparatus 10 may further include a support member 700 and a first connecting member 180, and the support member 700 may be partially disposed on the housing assembly 100
  • the outside part is arranged in the second accommodation cavity 140 and can be fixedly connected with the magnet component 400 .
  • the first connecting member 180 is disposed in the second receiving cavity 140 and connects the magnet part 400 and the housing assembly 100 .
  • a part of the supporting component 700 is disposed outside the casing assembly 100 to form a supporting foot for supporting the magnet component 400 so that the magnet component 400 hovers reliably in the second receiving cavity 140 .
  • the housing assembly 100 and the magnet component 400 can be connected by using the first connecting piece 180 , so that the housing assembly 100 can form a reliable support with the magnet component 400 through the first connecting piece 180 .
  • the supporting member 700 is sealingly fitted with the housing assembly 100 .
  • support member 700 there may be various specific implementation manners of the support member 700, including but not limited to support rods, support seats and the like.
  • the magnetic resonance apparatus 10 may further include a second connecting piece 190, and the gradient coil 300 may be fixedly connected to the magnet component 400 through the second connecting piece 190.
  • the second connecting piece 190 can be used to securely connect the gradient coil 300 to the magnet component 400
  • the second connecting piece 190 can be used to support the magnet component 400, reducing the contact area between the gradient coil 300 and the magnet component 400, thereby enabling The reducing gradient coil 300 transmits vibrations to the magnet assembly 400 .
  • first connecting member 180 and the second connecting member 190 there may be various specific implementation manners of the first connecting member 180 and the second connecting member 190 , including but not limited to a fixing rod, a fixing plate, and the like.
  • the magnetic resonance device 10 may further include an electrical connector 101 and a vibration-damping pad 102 .
  • the electrical connector 101 is fixed on the housing assembly 100 through the shock absorbing pad 102 , and one end of the electrical connector 101 is electrically connected to the gradient coil 300 , and the other end of the electrical connector 101 forms an electrical connection outside the housing assembly 100 .
  • the vibration-damping pad 102 to cooperate with the electrical connector 101 , the vibration energy generated during the operation of the gradient coil 300 can be absorbed by the vibration-damping pad 102 , thereby reducing the vibration of the housing assembly 100 .
  • components such as gradient power amplifiers can be disposed outside the casing assembly 100 by using the electrical connector 101 , and the external components and the gradient coil 300 can be connected by the electrical connector 101 .
  • the electrical connector 101 can be implemented in various ways, and it only needs to be able to realize the electrical connection between components such as gradient power amplifiers and the gradient coil 300 .
  • the electrical connector 101 may include, but is not limited to: electrical connectors such as electrical plugs, Type-A connectors, Type-B connectors, Type-C connectors, and Lightning connectors; or Type-A interfaces, Type-B interfaces, Type-C interfaces, An electrical interface such as a Lightning interface; or a cable such as a coaxial cable.
  • the magnetic resonance apparatus 10 may further include a helium tube assembly (not shown), and the helium tube assembly is at least partially disposed outside the radio frequency shielding space 21 .
  • the helium tube assembly is arranged outside the radio frequency shielding space 21 , which facilitates maintenance and reduces the occupation of the radio frequency shielding space 21 .
  • leakage of helium in the radio frequency shielding space 21 can also be avoided, improving the safety of the magnetic resonance system.
  • helium gas can be used for cooling to improve the cooling effect.
  • the magnetic resonance device 10 may also include device components (not shown) that generate heat below a preset value or do not generate heat, and the device components are at least partially set at radio frequency The outside of the space 21 is shielded.
  • equipment components that generate heat below a preset value or do not generate heat are placed outside the radio frequency shielding space 21 , which facilitates maintenance and reduces the occupancy of the radio frequency shielding space 21 .
  • the equipment components include, but are not limited to, cryogenic components, cooling liquid or cooling air supply components, and the like.
  • the magnetic resonance system may further include an active noise reduction component (not shown) disposed in the radio frequency shielding space 21 .
  • the active noise reduction component can further reduce the noise in the radio frequency shielding space 21, provide a quieter and more comfortable detection environment for the inspected person, and improve the detection experience.
  • the active noise reduction component there may be many specific embodiments of the active noise reduction component.
  • the sound receiving device microphone, etc.
  • the sound emitting device can be arranged in the radio frequency shielding space 21, and the sound emitting device can emit corresponding audio frequency according to the noise frequency to realize Active Noise Cancellation.
  • the magnetic resonance system may further include a light emitting element (not shown), and the light emitting element may be disposed in the radio frequency shielding space 21 .
  • the light emitting element may be disposed in the radio frequency shielding space 21 .
  • the guide rail 201 can be a part of the radio frequency shielding assembly 20 , that is, the guide rail 201 can be manufactured integrally with other parts of the radio frequency shielding assembly 20 , such as the shielding case 26 .
  • the guide rail 201 can also be an independent member that can be separated from other parts of the radio frequency shielding assembly 20, such as the shielding case 26, that is, the guide rail 201 can be manufactured independently, and then combined with other parts of the radio frequency shielding assembly 20, such as a sealing portion to form a overall.
  • a certain body and “a certain part” can be part of the corresponding “component”, that is, “a certain body” and “a certain part” are integrally formed with other parts of the “component”; they can also be integrated with other parts of the “component” Part” is an independent component that can be separated, that is, “a certain body” and “a certain part” can be manufactured independently, and then combined with “other parts of the component” to form a whole.
  • the expression of the above-mentioned "a certain body” and “a certain part” in the present disclosure is only one of the embodiments. For the convenience of reading, it is not intended to limit the protection scope of the present disclosure. As long as the above-mentioned features are included and the functions are the same, it should be understood The equivalent technical solution of the present disclosure.
  • first”, “second”, etc. are used for descriptive purposes only, and should not be interpreted as indicating or implying relative importance or implicitly specifying the quantity of the indicated technical features. Thus, a feature defined with “first”, “second”, etc. may expressly or implicitly include at least one of that feature.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being “on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the level of the first feature is higher than that of the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种磁共振系统,包括磁共振设备(10)、射频屏蔽组件(20)以及承载设备(30)。磁共振设备(10)包括具有射频屏蔽功能的壳体组件(100),壳体组件(100)的内部设有检测腔(110),壳体组件(100)上设有用于进出检测腔(110)的进出口(111)。射频屏蔽组件(20)与壳体组件(100)连接成射频屏蔽空间(21),射频屏蔽空间(21)与检测腔(110)连通,射频屏蔽组件(20)设有可打开或关闭的第一屏蔽门(23)。承载设备(30)设置于射频屏蔽空间(21)内,承载设备(30)包括可相对于磁共振设备(10)移动的床板(31),床板(31)通过进出口(111)进出检测腔(110)。该磁共振系统能够快速组装形成磁共振设备使用所需的射频屏蔽空间。

Description

磁共振系统 技术领域
本公开涉及医疗设备技术领域,特别是涉及一种磁共振系统。
背景技术
磁共振设备(Magnetic Resonance Imaging,MRI)作为一种医疗影像设备,在体外诊断领域中占据着重要位置,也为医疗进步带来诸多帮助。
在相关技术中,磁共振设备运行过程中容易受到外界电磁干扰,故需要在专门的屏蔽室空间内进行磁共振检测。但屏蔽室的建造周期长,不利于磁共振设备的推广使用。
发明内容
本公开实施例提供一种磁共振系统,能够快速组装形成磁共振设备使用所需的射频屏蔽空间,有利于磁共振设备的推广使用。
根据本公开实施例的第一方面,提供一种磁共振系统,包括磁共振设备、射频屏蔽组件以及承载设备,磁共振设备包括具有射频屏蔽功能的壳体组件,壳体组件设有检测腔,检测腔设有进出口;射频屏蔽组件与壳体组件连接,以形成射频屏蔽空间,射频屏蔽空间与检测腔连通,射频屏蔽组件设有第一门口以及第一屏蔽门,第一屏蔽门用于打开或关闭第一门口;承载设备设置于射频屏蔽空间内,承载设备包括可相对于磁共振设备移动的床板,床板通过进出口进出检测腔。
该磁共振系统可以分模块运输到摆放位置,通过壳体组件与射频屏蔽组件的连接,形成射频屏蔽空间,磁共振设备的检测腔与射频屏蔽空间连通,且承载设备也可放置在射频屏蔽空间内。磁共振设备使用时,打开第一屏蔽门,使得被检测者可以通过第一门口进入射频屏蔽空间,然后躺在床板上,随床板进入检测腔中进行检测。关闭第一屏蔽门,操作者可以启动磁共振设备,利用磁共振设备对被检测者进行检测,以获得所需图像。如此,该磁共振系统,能够快速组装形成磁共振设备使用所需的射频屏蔽空间,无需专门建造具有射频屏蔽功能的屏蔽室,有利于磁共振设备的推广使用。
在其中一个实施例中,射频屏蔽组件还包括可供承载设备进出的第二门口以及第二屏蔽门,第二门口与进出口相对设置,第一门口设置于射频屏蔽组件的侧壁,位于进出口与第二门口之间。
在其中一个实施例中,承载设备与射频屏蔽组件滑动连接,以使承载设备可相对于检测腔移动,并通过第二门口进出射频屏蔽空间,第二屏蔽门用于打开和可关闭第二门口。
在其中一个实施例中,射频屏蔽组件包括至少两个屏蔽罩,屏蔽罩设有容纳空间,至少有一个屏蔽罩与壳体组件的一端密封连接,至少有一个屏蔽罩与壳体组件的另一端密封连接,以使容纳空间形成射频屏蔽空间,第一门口设置于屏蔽罩,第一屏蔽门可活动设置于屏蔽罩。
在其中一个实施例中,射频屏蔽组件还包括射频屏蔽连接件,射频屏蔽连接件连接于屏蔽罩与壳体组件之间,以形成密封屏蔽结构。
在其中一个实施例中,磁共振设备还包括射频线圈、梯度线圈以及用于产生主磁场的磁体部件,射频线圈设置于壳体组件,并环绕检测腔设置,梯度线圈设置于壳体组件,并环绕射频线圈设置,梯度线圈设置于磁体部件与射频线圈之间,磁体部件设置于壳体组件,并环绕梯度线圈设置;磁共振系统还包括机柜设备,机柜设备设置于射频屏蔽空间的外部,且机柜设备设有用于控制磁共振设备的控制模组、用于连接射频线圈的射频功率放大器、用于连接梯度线圈的梯度功率放大器以及至少用于冷却梯度线圈的冷却器中的至少一种。
在其中一个实施例中,射频屏蔽组件包括具有射频屏蔽功能的观察区,观察区能够观察射频屏蔽空间的内部;和/或,射频屏蔽组件包括具有射频屏蔽功能的滤波板,滤波板用于构建射频屏蔽空间与外部的信号通路;和/或,磁共振系统还包括控制面板,控制面板至少与磁共振设备通信连接,控制面板设置于射频屏蔽组件的外侧。
在其中一个实施例中,磁共振设备还包括氦气管组件,氦气管组件至少部分设置于射频屏蔽空间的外部;和/或,磁共振设备还包括发热量低于预设值或者不发热的设备部件,设备部分至少部分设置于射频屏蔽空间的外部。
在其中一个实施例中,壳体组件内设有环绕检测腔的设置的第一容纳腔、环绕第一容纳腔设置的真空腔以及设置于真空腔内的第二容纳腔,第二容纳腔与真空腔相互隔绝设置,且第二容纳腔环绕第一容纳腔设置;磁共振设备还包括射频线圈、梯度线圈以及用于产生主磁场的磁体部件,射频线圈设置于第一容纳腔内,并环绕检测腔设置,梯度线圈设置于第二容纳腔内,并环绕射频线圈设置,梯度线圈设置于磁体部件与射频线圈之间,磁体部件设置于第二容纳腔内,并环绕梯度线圈设置。
在其中一个实施例中,磁共振系统还包括电连接器以及减震垫,电连接器通过减震垫固设于壳体组件,且电连接器的一端与梯度线圈电连接,电连接器的另一端在壳体组件的外侧形成电连接部。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
附图说明构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例中所示的磁共振系统的结构示意图(第一门口处于打开状态)。
图2为图1所示的磁共振设备的结构示意图。
图3为图1所示的磁共振系统的第二门口处于打开状态的结构示意图。
图4为图1所示的磁共振系统的处于运行状态的结构示意图。
图5为图3所示的承载设备的隐藏了装饰物后的结构示意图。
图6为图2所示的磁共振设备的半剖示意图。
图7为图2所示的屏蔽组件的结构示意图。
图8为一实施例中的壳体组件的局部结构示意图。
图9为一实施例中的壳体的局部结构示意图。
附图标记说明:
10、磁共振设备;
100、壳体组件;
110、检测腔;111、进出口;
120、第一容纳腔;
130、真空腔;
140、第二容纳腔;
150、壳体;
150、壳体;150-1、第一壳体;150-2、第二壳体;150-3、第三壳体;
1501、第一壳体件;1502、第二壳体件;
1501-1、第一壳体件的内壁;1501-2、第一壳体件的外壁;
1502-1、第二壳体件的内壁;1502-2、第二壳体件的外壁;
151、通道;
1511、第一子通道;1512、第二子通道
152、插接部;153、套接部;
154、卡部;155、扣部;
160、密封层;
170、吸音层;
180、第一连接件;190、第二连接件;
101、电连接器;102、减振垫;
200、射频线圈;
300、梯度线圈;
400、磁体;
500、匀场线圈;
600、屏蔽件;
610、屏蔽环;
610-1、第一屏蔽环;610-2、第二屏蔽环;
611、环形缝隙;612、轴向缝隙;
700、支撑部件;
20、射频屏蔽组件;
21、射频屏蔽空间;
23、第一屏蔽门;
25、第二屏蔽门;
26、屏蔽罩;
27、射频屏蔽连接件;
28、观察区;
29、滤波板;
201、导轨;
30、承载设备;
31、床板;
32、配合件;
33、升降组件;
34、轨道支架;
40、机柜设备;
50、控制面板。
具体实施方式
为使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本公开进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本公开,并不限定本公开的保护范围。
除非另有定义,本文所使用的技术和科学术语与本领域技术人员通常理解的含义相同。本文中所使用的术语只是为了描述具体的实施方式,不是旨在限制本公开。
磁共振设备作为一种常用的医疗影像设备,在体外诊断领域中占据着重要位置,也为医疗进步带来诸多帮助。在功能或性能相近的磁共振设备产品中,射频屏蔽空间的建造周期越短,越有利于磁共振设备的推广使用,进而使得该磁共振设备越能获得医院和 /或体检机构的青睐。因此如何缩短射频屏蔽空间的建造周期,成了磁共振设备厂家越来越重视的问题。
在相关技术中,磁共振设备在运行过程中容易受到外界电磁干扰,故需要在专门的屏蔽室空间内进行磁共振检测。但屏蔽室的建造周期长,不利于磁共振设备的推广使用。
基于此,本公开提供一种磁共振设备,能够快速组装形成磁共振设备运行所需的射频屏蔽空间。
为了更好地理解本公开的磁共振设备,下面结合附图进行进一步阐述说明。
如图1至图4所示,为一些实施例中磁共振系统及磁共振设备的结构视图。其中,图1为一实施例中所示的磁共振系统的结构示意图(第一屏蔽门处于打开状态)。图2为图1所示磁共振系统的磁共振设备的结构示意图。图3为图1所示的磁共振系统的第二屏蔽门处于打开状态的结构示意图。图4为图1所示的磁共振系统处于运行状态的结构示意图。
如图1及图2所示,在本公开的一些实施例中,提供一种磁共振系统,包括磁共振设备10、射频屏蔽组件20以及承载设备30。磁共振设备10包括具有射频屏蔽功能的壳体组件100,壳体组件100设有检测腔110,检测腔110设有进出口111。射频屏蔽组件20与壳体组件100连接,以形成射频屏蔽空间21,射频屏蔽空间21与检测腔110连通。其中,射频屏蔽组件20设有可打开或关闭的第一屏蔽门23,第一屏蔽门23用于进出所述射频屏蔽空间21。承载设备30设置于射频屏蔽空间21内,包括床板31和用于移动床板31的移动组件,所述移动组件用于移动所述床板31通过所述磁共振设备上的进出口111进出检测腔110。
该磁共振系统可以分模块运输到摆放位置,通过连接壳体组件100与射频屏蔽组件20,形成射频屏蔽空间21。其中,磁共振设备10的检测腔110与射频屏蔽空间21连通,且承载设备30也可放置在射频屏蔽空间21内,进而可以通过模块化组装快速完成射频屏蔽空间21的构建,以方便磁共振设备10快速投入使用。磁共振设备10在使用时,打开第一屏蔽门23,使得被检测者可以通过第一屏蔽门23进入射频屏蔽空间21,然后躺在床板31上随床板31进入检测腔110中进行检测。关闭第一屏蔽门23后,操作者可以启动磁共振设备10,利用磁共振设备10对被检测者进行检测,以获得所需图像。如此,通过将射频屏蔽组件20与具有射频屏蔽功能的磁共振设备10连接,使得该磁共振系统能够快速组装形成磁共振设备10使用所需的射频屏蔽空间21,无需专门建造具有射频屏蔽功能的屏蔽室。
此外,与相关技术中的屏蔽室相比,本公开的磁共振系统充分利用磁共振设备10的壳体组件100作为射频屏蔽空间21的一部分,有利于减少射频屏蔽空间21的体积,因此可以减少耗材,进而有利于降低磁共振系统的建造成本。如此,本公开的磁共振系统能够快速组装形成磁共振设备10使用所需的射频屏蔽空间21,组装灵活,有利于磁共振设备10的快速投入使用。
在上述任一实施例的基础上,如图1及图3所示,一些实施例中,射频屏蔽组件20还可以包括可打开或关闭的第二屏蔽门25,所述第二屏蔽门25可供承载设备30进出所 述检测腔110,第二屏蔽门25的门口与所述磁共振设备的进出口111相对设置,第一屏蔽门23设置于所述射频屏蔽组件的周侧面,并位于所述进出口111与第二屏蔽门25之间。如此,磁共振系统具有至少两个门,并且可以打开第二屏蔽门25将承载设备30拖出射频屏蔽组件20,以方便行动不便的被检测者从射频屏蔽组件20的外部躺在床板31上,再通过打开第二屏蔽门25将承载设备30推入射频屏蔽空间21内,使得该被检测者可随床板31进入检测腔110中进行检测。关闭第一屏蔽门23以及第二屏蔽门25,则操作者可以启动磁共振设备10,利用磁共振设备10对被检测者进行检测,以获得所需图像。完成检测后,可以再次打开第二屏蔽门25,将承载设备30移出射频屏蔽空间21,方便被检测者离开。
此外,通过第一屏蔽门23与第二屏蔽门25相配合,可以满足不同运动能力的检查者的需求,提高了被检查者的舒适度和该磁共振系统操作的便捷性。
需要说明的是,承载设备30进出第二屏蔽门25的具体实现方式可以有多种,例如,可以通过利用滚轮带动承载设备30移动,或者利用滑轨带动承载设备30移动。
一些实施例中,承载设备30可与射频屏蔽组件20滑动连接,以使承载设备30可相对于检测腔110移动,并通过第二屏蔽门25进出射频屏蔽空间21。如此,通过承载设备30与射频屏蔽组件20滑动连接,使得承载设备30可以沿着设定的轨迹进出第二屏蔽门25,以使床板31可以顺利进出检测腔110,提高多次检测的一致性。
需要说明的是,承载设备30与射频屏蔽组件20滑动连接的具体实现方式可以有多种,例如,如图5所示,可以通过导轨201、滑轨的导向部件实现承载设备30移动的导向,或者利用吊轨带动承载设备30移动,或者利用AGV(Automated Guided Vehicle)小车来带动承载设备30移动。
如图3以及图5所示,一些实施例中,承载设备30与射频屏蔽组件20之间一者设有导轨201,另一者设有与导轨201滑动连接的配合件32。如此,利用导轨201与配合件32的滑动配合可以实现承载设备30沿设定方向进出射频屏蔽空间21,易于实施,有利于降低磁共振系统的实施成本。
具体地,可以是射频屏蔽组件20的底部设有导轨201。
需要说明的是,承载设备30的具体实现方式可以参照多种相关技术中的扫描床设备而实现。
如图5所示,一些实施例中,承载设备30还可具有能够实现带动床板31升降的升降组件33。该升降组件可以采用电控升降设备、手动升降设备等方式实现,在此不做过多限制。
此外,床板31的移动以及承载设备30的移动,也可以采用电控水平移动设备实现,也可以采用手动水平移动设备等方式实现,在此不做过多限制。
一些实施例中,如图5所示,床板31可以分为水平运动部分和垂直运动部分。床板31安装在轨道支架34上,可以在受控的状态下沿轨道支架34运动,轨道支架34上可以安装有电子刹车装置、光电限位开关和接触开关等。例如,当需要移动床板31时,首先使床板31水平运动部分到达水平零位,松开电子刹车,使床板31沿轨道支架34 移动到需要的位置。然后,电子刹车被激活,床板31被锁定,此时床板31垂直运动部分可工作。此外,在水平运动部分锁定时,可进行扫描前的准备。当完成扫描前的准备工作完成后,松开电子刹车,床板31可沿轨道支架34朝接近检测腔110的方向移动。到达位置时,电子刹车激活,床板31被锁定。床板31的水平运动和垂直运动可以独立受控,例如,当床板31垂直运动部分到达最高点时,水平运动部分可自由运动。所有的运动极限位置均设置有光电门和接触开关等控制装置,以保证床板31运动的安全性。
在一些实施例中,前述参与和/或支持床板31移动的所有部件,可被统称为移动组件。
在上述任一实施例的基础上,如图1、图3以及图4所示,一些实施例中,射频屏蔽组件20包括至少两个屏蔽罩26,屏蔽罩26内设有容纳空间,至少有一个屏蔽罩26与壳体组件100的一轴向端部密封连接,至少有一个屏蔽罩26与壳体组件100的另一轴向端部密封连接,以使容纳空间可以通过壳体组件100相互连通形成射频屏蔽空间21。其中,第一屏蔽门23可活动设置于屏蔽罩26。如此,利用设有容纳空间的至少两个屏蔽罩26与壳体组件100相配合,可以快速密封连接以形成射频屏蔽空间21,便于进行磁共振设备10的模块化组装。
需要说明的是,屏蔽罩26的具体实现方式可以有多种,例如利用导电材质制造屏蔽罩26,或者通过在非金属罩上涂抹金属涂层、复合金属片等方式制作屏蔽罩26,能够实现射频屏蔽即可,本公开对此不作限制。
进一步的,如图1、图3以及图4所示,一些实施例中,射频屏蔽组件20还可包括射频屏蔽连接件27,射频屏蔽连接件27用于连接屏蔽罩26与壳体组件100(例如,射频屏蔽连接件27设置于屏蔽罩26与壳体组件100之间),以形成密封屏蔽结构。如此,利用射频屏蔽连接件27可进一步提高射频屏蔽空间21的屏蔽效果,避免外部磁场通过屏蔽罩26与壳体组件100之间的连接缝隙进入射频屏蔽空间21内从而影响磁共振设备10的检测质量。
射频屏蔽连接件27的具体实现方式可以有多种,例如射频屏蔽连接可包括导电簧片、导电棉、导电胶体等中至少一种,能够与屏蔽罩26以及壳体组件100良好接触,满足射频屏蔽需求即可。
在上述任一实施例的基础上,如图3以及图6所示,一些实施例中,磁共振设备10还包括射频线圈200、梯度线圈300以及用于产生主磁场的磁体部件400。射频线圈200设置于壳体组件100,并环绕检测腔110设置。梯度线圈300设置于壳体组件100内,并环绕射频线圈200设置,梯度线圈300设置于磁体部件与射频线圈200之间,磁体部件设置于壳体组件100内,并环绕梯度线圈300设置。磁共振系统还可包括机柜设备40,机柜设备40设置于射频屏蔽空间21的外部,且机柜设备40设置有用于控制磁共振设备10的控制模组、连接射频线圈200的射频功率放大器、连接梯度线圈300的梯度功率放大器以及用于至少冷却梯度线圈300的冷却器中的至少一种。如此,可以将不需要进行射频屏蔽,或者容易受到射频线圈200、梯度线圈300或磁体部件400影响的电子器件设置于机柜设备40内,并设置于射频屏蔽空间21的外部,即方便进行组装,还可以减少对射频屏蔽空间21的占用,有利于缩小射频屏蔽空间21的体积,以降低成本。 此外,将控制模组、射频功率放大器、梯度功率放大器以及冷却器中的至少一种设置于射频屏蔽空间21的外部,也有利于后期维护或更换。
需要说明的是,机柜设备40的具体实现方式可以有多种,例如可以利用机箱进行装载,或者利用多个机柜分别装载不同功能的器件等,本公开对此不作限制。一示例中,机柜设备40可包括三个机柜,一个机柜用于装载电源、射频功率放大器、谱仪等部件,一个机柜用于装载梯度功率放大器,一个机柜用于装载水冷系统等部件。
在上述任一实施例的基础上,如图3以及图4所示,一些实施例中,射频屏蔽组件20可包括具有射频屏蔽功能的观察区28,经由观察区28能够观察射频屏蔽空间21的内部。如此,方便操作者了解射频屏蔽空间21内的情况,以提醒被检测者或控制磁共振设备10停止等。
该观察区28可以采用具有屏蔽功能的透光件构成,如透光玻璃等。
在上述任一实施例的基础上,如图3以及图4所示,一些实施例中,射频屏蔽组件20可包括具有射频屏蔽功能的滤波板29,滤波板29用于构建射频屏蔽空间21与外部的信号通路。如此,利用滤波板29能够构建射频屏蔽空间21与外部的信号通路,便于在射频屏蔽空间21设置相关控制器件。
在上述任一实施例的基础上,如图1、图3以及图4所示,一些实施例中,磁共振系统还可包括控制面板50,控制面板50至少与磁共振设备10电连接,控制面板50设置于射频屏蔽组件20的外侧。如此,利用控制面板50可以方便操作者与磁共振系统进行交互,控制磁共振设备10的运行、第一屏蔽门23的开闭以及床板31的运动等。所述控制面板50至少与磁共振设备10电连接,例如,可以是电气连接或通信连接等,公开对此不作限制。
可选地,控制面板50可包括显示器,用于显示磁共振系统的运行信息,便于操作者与磁共振系统进行交互。
需要说明的是,控制面板50的具体实现可以有多种,包括但不限于智能平板、计算机等具有控制功能的操作面板。
一些实施例中,射频屏蔽空间21的隔离度可达到90dB以上。如此,能够充分保障不同类型的磁共振设备10运行所需的射频屏蔽要求。
如图2以及图6所示,一些实施例中,该磁共振设备10可包括射频线圈200、梯度线圈300以及用于产生磁场的磁体部件400。壳体组件100的内部空间设有从所述检测腔的周向外侧环绕所述检测腔110设置的第一容纳腔120、从所述第一容纳腔120的周向外侧环绕第一容纳腔120设置的第二容纳腔140。其中,第二容纳腔140与第一容纳腔120经由真空腔130实现了相互隔绝设置。射频线圈200的至少部分设置于第一容纳腔120内,并环绕第一容纳腔120设置。梯度线圈300设置于第二容纳腔140内,并环绕第二容纳腔140设置。磁体部件400设置于第二容纳腔140内,并从所述梯度线圈300的周向外侧环绕梯度线圈300设置;梯度线圈300设置于磁体部件400与射频线圈200之间。
该磁共振设备10在扫描过程中,梯度线圈300在磁体部件400产生的磁场中受到洛 伦兹力的作用而引起振动,进而产生运行噪音。而该运行噪音受到真空腔130的隔绝,即该真空腔130阻断了噪音传播途径,使得该运行噪音不易从壳体组件100向外扩散,进而有效降低磁共振设备10的噪音。
此外,可以理解地,将磁体部件400与梯度线圈300设置于第二容纳腔140,易于二者的模块化组装,更易于整个磁共振设备的装配。同时,利用真空腔130将第一容纳腔120与第二容纳腔140相互隔开,使得磁体部件400以及梯度线圈300产生的噪音能够被真空腔130隔绝,阻断了噪音传播途径,可以有效降低磁共振设备10的运行噪音。
需要说明的是,磁体部件400的具体实现方式可以有多种,包括但不限于永磁体400或超导磁体400中的任一种,能够产生磁场即可。
一些实施例中,磁体部件400用于产生沿着检测腔110轴向方向(如图2中Z方向)的主磁场(也即B0场)。
需要说明的是,梯度线圈300的具体实现方式可以有多种,能够用于对被测样本进行采样即可。
一些实施例中,梯度线圈300用于实现对被测样本在三维空间中不同位置、位相和频率进行采样并最终构成梯度空间数据。
需要说明的是,射频线圈200的具体实现方式可以有多种,能够用于发射能量和检测信号即可。
在一些实施例中,射频线圈200可包括射频接收线圈以及射频发射线圈,射频发射线圈设置于第一容纳腔120内,射频接收线圈设置在被测样本上。
另一些实施例中,射频线圈200可具有发射以及接收双重功能,使得被测样本无需佩戴射频接收线圈。
在本公开实施例中,射频发射线圈包括但不限于亥姆霍兹、优化的麦克斯韦以及螺线管等类型的射频发射线圈。
在上述任一实施例的基础上,如图6所示,一些实施例中,磁共振设备10还可以包括用于改进磁场均匀性的匀场线圈500。匀场线圈500可以设置于梯度线圈300的径向外周侧,磁体部件400设置于匀场线圈500的径向外周侧;匀场线圈500也可以集成在梯度线圈300内部。在此对匀场线圈500的设置不做过多限制。
在一实施例中,请参见图2及图6,磁体部件400可以为相对设置的永磁体,可以用于产生竖直(如Y方向)方向或水平(如X方向)的主磁场,射频线圈200用于产生垂直于主磁场方向的B1磁场。而另一个实施例中,磁体部件400可以为超导磁体,用于产生检测腔110轴向(如Z方向)的主磁场,射频线圈200用于产生垂直于主磁场方向的B1磁场。但本公开实施例不限于此。
为了提升磁共振成像设备的性能并改善图像质量,梯度线圈300和射频线圈200之间的相互干扰或影响通常越小越好。在上述任一实施例的基础上,磁共振设备10还可以包括如图3所示的屏蔽组件600。具体地,该屏蔽组件600可设置于壳体组件100上,并设置于梯度线圈300与射频线圈200之间。如此,利用屏蔽组件600可以提升磁共振 成像设备的性能并改善图像质量。
如图7所示,一些实施例中,屏蔽组件600包括至少一个屏蔽环610-1、610-2(以下可统称为屏蔽环610),每个屏蔽环610上开设有沿着轴向的至少一个轴向缝隙612以及垂直于轴向的至少一个环形缝隙611,轴向缝隙612贯穿所述至少一个屏蔽环610的两端。
屏蔽环610上开设的环形缝隙611的数量可以为一个或多个,开设的轴向缝隙612的数量也可以为一个或多个。在图7所示的例子中,一个屏蔽环610上开设的环形缝隙611的数量为多个,而开设的轴向缝隙612的数量为一个,但本公开实施例不限于此。
在一些实施例中,屏蔽环610的材质可以为非磁性金属,包括铜、铝、镁、锌等。
该屏蔽组件600应用于磁共振成像设备时,至少一个屏蔽环610设置于射频线圈200与梯度线圈300之间。这样,可利用环形缝隙611切断梯度线圈300的涡流回路,减少梯度线圈300产生的涡流。还可利用轴向缝隙612改变射频线圈200在对应屏蔽环610上产生的感应电流的方向,使屏蔽环610上的电流与相应的射频线圈200中的电流同向,进而可以增强射频线圈200内部的磁场强度,从而能够避免射频线圈200内部的磁场强度的衰减。如此,屏蔽组件600具有良好的屏蔽效果,且能够增强射频线圈200的性能。
进一步地,集成有屏蔽组件600的磁共振成像设备无需增加射频线圈200的发射功率来提高射频线圈200的效率,能够降低磁共振成像设备的制造成本以及运行成本。
在本公开实施例中,“环形缝隙611”包括但不仅限于圆形、椭圆形、波浪环形等等。也可以结合射频线圈200以及梯度线圈300的形状进行设置。
在本公开实施例中,“轴向缝隙612”包括但不仅限于直条形、曲线形、弧形、阶梯形等等。其中,直条状的轴向缝隙612可以降低屏蔽组件600的研发设计成本,方便加工制造,进而有利于降低磁共振成像设备的制造成本。
在本公开实施例中,至少一个屏蔽环610可以包括1个、2个或3个及更多屏蔽环610。实施时,屏蔽组件600具体包括的屏蔽环610的数量,可以根据实际需要进行设置。此外,相邻两个屏蔽环610之间可绝缘设置。为了便于理解,本文图3以两个屏蔽环610为例进行描述,但本公开实施例不限于此。
在一些实施例中,屏蔽组件600包括至少两个屏蔽环610,该至少两个屏蔽环610可以依次环绕设置,以提高屏蔽效果。其中,该至少两个屏蔽环610上开设的缝隙可以位置对应,或者位置不对应,本公开实施例对此不做限定。图3示出了本公开一些实施例提供的屏蔽组件600的结构示意图。其中,以屏蔽组件600包括两个屏蔽环610为例进行描述,但本公开实施例不限于此。
如图7所示,屏蔽组件600包括第一屏蔽环610-1以及与第一屏蔽环610-1绝缘设置的第二屏蔽环610-2。其中,第一屏蔽环610-1可以设置于第二屏蔽环610-2的径向内侧,从而更靠近射频线圈200。然而,本公开实施例对第一屏蔽环610-1和第二屏蔽环610-2的相互位置关系不做限定。
使第一屏蔽环610-1与第二屏蔽环610-2相互绝缘设置的方式可以有多种,包括但 不限于在两者之间设置绝缘环,或者涂抹绝缘材料等。
在上述任一实施例的基础上,如图6及图8所示,一些实施例中,壳体组件100可至少包括第一壳体150-1、第二壳体150-2以及第三壳体150-3,第一壳体150-1环绕设置于梯度线圈300与所述射频线圈200之间;第二壳体150-2环绕设置于磁体部件400的周向外侧;第三壳体150-3设置于磁共振设备10的轴向侧面端部,用于密封连接所述第一壳体150-1与所述第二壳体150-2。第一壳体150-1与第二壳体150-2之间形成所述第二容纳腔140,所述第二壳体150-2的内部空间形成所述第一容纳腔120。每个壳体150均设置有内壁和外壁,且内壁和外壁间隔设置,并形成通道151。组装时,第一壳体150-1、第二壳体150-2经由第三壳体150-3封装,使各所述壳体的通道151相互连通。这样,只需在壳体组件100上开设的一处抽气孔进行抽真空操作,即可形成真空腔130。
在一些可能的实施例中,第一壳体150-1、第二壳体150-2经由第三壳体150-3封装时,可采用以下方式:第三壳体150-3设有插接部152,第一壳体150-1与第二壳体150-2分别设有套接部153,第三壳体150-3通过插接部152分别插入第一壳体150-1与第二壳体150-2的套接部153中,从而实现通过第三壳体150-3密封连接所述第一壳体150-1与所述第二壳体150-2。本领域技术人员应能理解,上述第一壳体150-1、第二壳体150-2与第三壳体150-3的插接部152与套接部153的设置方式仅为一种示例,在一些实施例中,还可以是第三壳体150-3设有套接部153,第一壳体150-1、第二壳体150-2分别设有插接部152,或以其它任意方式设置插接部152与套接部153,本公开对此不作限制。
在一些可能的实施例中,每个壳体150可由至少两个壳体件(例如第一壳体件1501、第二壳体件1502)相互连接而成,每个壳体件的内壁和外壁间隔设置形成一个子通道,基于所述至少两个壳体件密封连接,使相邻两个子通道拼接密封,用于形成各所述壳体150的通道151。具体地,如图9所示,第一壳体件1501和第二壳体件1502拼接形成至少部分第一壳体150-1,使得两者的中空子通道连通而形成所述第一壳体150-1对应的通道151的至少部分。第二壳体150-2与第三壳体150-3均可以通过相似的过程由对应的壳体件拼接而成。进而将第一壳体150-1、第二壳体150-2经由第三壳体150-3封装连接,使各所述壳体150的通道151相互连通。可提高真空腔130形成的灵活度,降低磁共振设备10的生产成本。
需要说明的是,“至少两个壳体件相互连接”的具体实现方式可以有多种,包括不限于螺接、铆接、焊接、卡扣等等。
一示例中,至少两个壳体件1501、1502中的每一个壳体件的内壁和外壁均相互连接。如图9所示,第一壳体件1501的内壁1501-1和第二壳体件1502的内壁1502-1相互连接,形成壳体150的至少部分内壁。同时,第一壳体件1501的外壁1501-2和第二壳体件1502的外壁1502-2相互连接,形成壳体150的至少部分外壁。
如图6、图9所示,一些实施例中,第一壳体150-1、第二壳体150-2以及第三壳体150-3均可以由至少两个壳体件拼接形成。各壳体通过对应的壳体件拼接密封,使得壳体件的子通道相互连通形成所述壳体150的通道151。第一壳体150-1、第二壳体150-2通过第三壳体150-3封装连接,使得各所述壳体150的通道151相互连通,并通过壳体 组件100上开设的一个抽气孔抽真空即可形成真空腔130。如此,通过模块化组装各壳体150来形成真空腔130,有利于进一步提高磁共振设备10的装配效率。
一示例中,真空腔130可以呈圆环状,尽管上述以两个壳体件相互连接来形成各壳体150,各壳体150相互密封连接,使各所述壳体150的通道151连通密封进而形成真空腔130作为示例,但本领域技术人员应能理解,本公开无意限定壳体件的数量。实际上,每个壳体150也可由四个、五个、或六个甚至更多个壳体件相互拼接后密封形成。
进一步地,如图9所示,一些实施例中,相互拼接的两个壳体件1501、1502中,第一壳体件1501上可设有插接部152,第二壳体件1502上可设有套接部153,插接部152插入套接部153中,并固定连接。如此,利用插接部152与套接部153套接固定连接第一壳体件1501及第二壳体件1502,易于组装,有利于提高磁共振设备10的装配效率。
更进一步地,如图8所示,一些实施例中,壳体组件100还可以包括密封层160,密封层160夹设于第三壳体150-3插接部152的侧壁与第一壳体150-1与第二壳体150-2至少之一的套接部153的侧壁之间;和/或,壳体组件100还可以包括吸音层170,吸音层170设置于第一壳体150-1与第二壳体150-2至少之一的套接部153与第三壳体150-3的插接部152之间。如此,利用密封层160和/或吸音层170进一步形成密封可靠的真空腔130,可减少磁共振设备10产生的噪音向外扩散,进一步降低磁共振设备10的运行噪音,提高被检测者的检测体验。
一示例中,密封层160可以呈环形,并套设于插接部152的外侧,吸音层170可设置于套接部153的自由端与插接部152之间。如此,利用密封层160和吸音层170进一步形成密封可靠地真空腔130,同时利用吸音层170可以被动吸收磁共振设备10产生的噪音,进一步降低磁共振设备10的运行噪音,提高被检测者的检测体验。
需要说明的是,“拼接密封的两个壳体件”的具体实现方式可以有多种,包括不限于螺接密封、铆接密封、焊接密封、卡扣密封等等。
如图8及图9所示,一些实施例中,上述插接部152可设有卡部154,上述套接部153可设有扣部155,插接部152插入套接部153中,并使卡部154与扣部155卡扣固定。如此,利用卡部154与扣部155固定连接,实现插接部152于套接部153的固定连接,同时利用密封层160可以提高壳体之间连接的密封性,并利用吸音层170来提高降噪效果。此外,在其他实施例中,壳体150还可包括密封层160,密封层160设置于壳体件(例如上述第一壳体件与上述第二壳体件)的连接缝隙中,亦可以提高真空腔130的密封可靠性,有利于保证真空腔130的真空度。和/或,一些实施例中,壳体150还包括吸音层170,吸音层170设置于壳体件(例如上述第一壳体件1501与上述第二壳体件1502)的连接缝隙中。如此,亦可以利用设置在壳体件连接处的吸音层170来进一步提升磁共振设备10的降噪效果。
需要说明的是,密封层160的具体实现方式可以有多种,包括但不限于硅胶、橡胶等。吸音层170的具体实现方式可以有多种,包括但不限于吸音棉等。
在上述任一实施例的基础上,如图6所示,一些实施例中,磁共振设备10还可以包括支撑部件700以及第一连接件180,支撑部件700可部分设置于壳体组件100的外 部,部分设置于第二容纳腔140内,并可与磁体部件400固定连接。第一连接件180设置于第二容纳腔140内,并连接磁体部件400以及壳体组件100。如此,支撑部件700的部分设置于壳体组件100的外部形成支撑脚,用来支撑磁体部件400,使得磁体部件400可靠地悬停在第二容纳腔140内。同时可利用第一连接件180连接壳体组件100以及磁体部件400,使得壳体组件100可以通过第一连接件180与磁体部件400形成可靠支撑。
可选地,支撑部件700与壳体组件100密封配合。
需要说明的是,支撑部件700的具体实现方式可以有多种,包括但不限于支撑杆以及支撑座等等。
在上述任一实施例的基础上,如图6所示,一些实施例中,磁共振设备10还可以包括第二连接件190,梯度线圈300可通过第二连接件190与磁体部件400固定连接。如此,利用第二连接件190可以将梯度线圈300可靠地与磁体部件400固定连接,可以利用第二连接件190对磁体部件400进行支撑,减少梯度线圈300与磁体部件400的接触面积,进而可以减少梯度线圈300将振动传递给磁体部件400。
需要说明的是,第一连接件180以及第二连接件190的具体实现方式可以有多种,包括但不限于固定杆、固定板等。
在上述任一实施例的基础上,如图6所示,一些实施例中,磁共振设备10还可以包括电连接器101以及减振垫102。电连接器101通过减振垫102固设于壳体组件100,且电连接器101的一端与梯度线圈300电连接,电连接器101的另一端在壳体组件100的外侧形成电连接部。如此,利用减振垫102与电连接器101配合,使梯度线圈300运行时产生的振动能量能够被减振垫102吸收,从而可以减少壳体组件100的振动。同时,利用电连接器101可以将梯度功率放大器等元件设置于壳体组件100的外部,并利用电连接器101连接外部元件与梯度线圈300。
需要说明的是,电连接器101的具体实现方式可以有多种,能够实现梯度功率放大器等元件与梯度线圈300的电连接即可。电连接器101可以包括但不限于:电插头、Type-A接头、Type-B接头、Type-C接头、Lightning接头等电接头;或者Type-A接口、Type-B接口、Type-C接口、Lightning接口等电接口;或者,同轴线缆等线缆。
在上述任一实施例的基础上,一些实施例中,磁共振设备10还可以包括氦气管组件(未示出),氦气管组件至少部分设置于射频屏蔽空间21的外部。如此,将氦气管组件设置于射频屏蔽空间21的外部,便于进行维护,也减少对射频屏蔽空间21的占用。此外,也可以避免氦气在射频屏蔽空间21内发生泄漏,提高磁共振系统的安全性。一种实施例中,在磁共振设备10的磁体部件400为超导磁体的情况下,可以利用氦气进行冷却,提高冷却效果。
在上述任一实施例的基础上,一些实施例中,磁共振设备10还可以包括发热量低于预设值或者不发热的设备部件(未示出),所述设备部件至少部分设置于射频屏蔽空间21的外部。如此,将发热量低于预设值或者不发热的设备部件设置于射频屏蔽空间21的外部,便于进行维护,也减少对射频屏蔽空间21的占用。该设备部件包括但不限 于低温部件、冷却液或冷却气供给部件等等。
在上述任一实施例的基础上,一些实施例中,磁共振系统还可以包括设置于射频屏蔽空间21内的主动降噪部件(未示出)。如此,主动降噪部件能够进一步降低射频屏蔽空间21内的噪音,为被检查者提供更安静舒适的检测环境,提高检测体验。
需要说明的是,主动降噪部件的具体实施例可以有多种。例如,可将收音器件(麦克风等)设置于磁共振设备10的噪音源处,将发声器件(扬声器等)设置于射频屏蔽空间21内,该发声器件可以根据噪音频率来发出相应的音频以实现主动降噪。
在上述任一实施例的基础上,一些实施例中,磁共振系统还可以包括发光件(未示出),发光件可设置于射频屏蔽空间21内。如此,利用发光件发光营造舒适的灯光环境,为被检查者提供更强的舒适感与放松感,提高检测体验。需要说明的是,发光件的具体实现方式可以有多种,包括但不限于LED灯、氛围灯等等。
需要说明的是,该导轨201可以为射频屏蔽组件20的一部分,即导轨201可与射频屏蔽组件20的其他部分,如屏蔽罩26一体成型制造。该导轨201也可以是与射频屏蔽组件20的其他部分,如屏蔽罩26可分离的一个独立的构件,即导轨201可以独立制造,再与射频屏蔽组件20的其他部分,如密封部组合成形一个整体。
等同的,“某体”、“某部”可以为对应“构件”的一部分,即“某体”、“某部”与该“构件的其他部分”一体成型制造;也可以与“构件的其他部分”可分离的一个独立的构件,即“某体”、“某部”可以独立制造,再与“构件的其他部分”组合成一个整体。本公开对上述“某体”、“某部”的表达,仅是其中一个实施例,为了方便阅读,而不是对本公开的保护的范围的限制,只要包含了上述特征且作用相同应当理解为是本公开等同的技术方案。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可去除连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征 在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”、“设置于”、“固设于”或“安设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对公开专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。

Claims (14)

  1. 一种磁共振系统,其特征在于,包括:
    磁共振设备,包括具有射频屏蔽功能的壳体组件,所述壳体组件的内部设有检测腔,所述壳体组件上设有用于进出所述检测腔的进出口;
    射频屏蔽组件,与所述壳体组件连接,以形成射频屏蔽空间,所述射频屏蔽空间通过所述磁共振设备上的进出口与所述磁共振设备中的检测腔连通,所述射频屏蔽组件设有可打开或关闭的第一屏蔽门,所述第一屏蔽门用于进出所述射频屏蔽空间;以及
    承载设备,所述承载设备包括床板和用于移动所述床板的移动组件,所述移动组件用于移动所述床板通过所述磁共振设备上的进出口进出所述检测腔。
  2. 根据权利要求1所述的磁共振系统,其特征在于,所述射频屏蔽组件还包括可打开或关闭的第二屏蔽门,所述第二屏蔽门用于进出所述射频屏蔽空间。
  3. 根据权利要求2所述的磁共振系统,其特征在于,所述第二屏蔽门的门口与所述磁共振设备的进出口相对设置,所述第一屏蔽门设置于所述射频屏蔽组件的周侧面,并位于所述进出口与所述第二屏蔽门之间。
  4. 根据权利要求1所述的磁共振系统,其特征在于,
    所述射频屏蔽组件包括至少两个屏蔽罩,每个所述屏蔽罩内部设有容纳空间,
    至少有一个所述屏蔽罩与所述壳体组件的一轴向端部密封连接,至少有一个所述屏蔽罩与所述壳体组件的另一轴向端部密封连接,以使所述至少两个屏蔽罩的容纳空间通过所述壳体组件相互连通形成所述射频屏蔽空间,
    所述第一屏蔽门可活动设置于其中一个所述屏蔽罩。
  5. 根据权利要求4所述的磁共振系统,其特征在于,
    所述射频屏蔽组件还包括射频屏蔽连接件,
    所述射频屏蔽连接件用于连接所述屏蔽罩与所述壳体组件,以形成密封屏蔽结构。
  6. 根据权利要求1-5任一项所述的磁共振系统,其特征在于,所述射频屏蔽组件包括具有射频屏蔽功能的观察区,所述观察区用于使得操作员能够观察所述射频屏蔽空间的内部。
  7. 根据权利要求1-6任一项所述的磁共振系统,其特征在于,所述射频屏蔽组件包括具有射频屏蔽功能的滤波板,所述滤波板用于构建所述射频屏蔽空间与外部的信号通路。
  8. 根据权利要求1-7任一项所述的磁共振系统,其特征在于,所述磁共振系统还包括控制面板,所述控制面板设置于所述射频屏蔽组件的外侧,并至少与所述磁共振设备电连接。
  9. 根据权利要求1-8任一项所述的磁共振系统,其特征在于,
    所述磁共振设备还包括氦气管组件,所述氦气管组件至少部分设置于所述射频屏蔽空间的外部。
  10. 根据权利要求1-9任一项所述的磁共振系统,其特征在于,
    所述磁共振设备还包括发热量低于预设值或者不发热的设备部件,所述设备部件至少部分设置于所述射频屏蔽空间的外部。
  11. 根据权利要求1至10任一项所述的磁共振系统,其特征在于,所述壳体组件内部空间设有从所述检测腔的周向外侧环绕所述检测腔设置的第一容纳腔、从所述第一容 纳腔的周向外侧环绕所述第一容纳腔设置的第二容纳腔,所述第一容纳腔与所述第二容纳腔经由真空腔相互隔绝设置。
  12. 根据权利要求1-11任一项所述的磁共振系统,其特征在于,所述磁共振设备还包括:
    用于产生主磁场的磁体部件,
    射频线圈,所述射频线圈的至少部分设置于所述第一容纳腔内,并环绕所述检测腔设置,
    梯度线圈,所述梯度线圈设置于所述第二容纳腔内,并环绕所述第二容纳腔设置,
    其中,所述梯度线圈设置于所述磁体部件与所述射频线圈之间,所述磁体部件设置于所述第二容纳腔内,并环绕所述梯度线圈设置。
  13. 根据权利要求12所述的磁共振系统,其特征在于,所述磁共振系统还包括:机柜设备,所述机柜设备设置有用于控制所述磁共振设备的控制模组、用于连接所述射频线圈的射频功率放大器、用于连接所述梯度线圈的梯度功率放大器以及至少用于冷却所述梯度线圈的冷却器中的至少一种。
  14. 根据权利要求13所述的磁共振系统,其特征在于,所述磁共振系统还包括电连接器以及减震垫,
    所述电连接器通过所述减震垫固设于所述壳体组件,且
    所述电连接器的一端与所述梯度线圈电连接,所述电连接器的另一端在所述壳体组件的外侧形成电连接部。
PCT/CN2022/107120 2022-02-28 2022-07-21 磁共振系统 WO2023159865A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220431163.5 2022-02-28
CN202220431163.5U CN217007652U (zh) 2022-02-28 2022-02-28 磁共振系统

Publications (1)

Publication Number Publication Date
WO2023159865A1 true WO2023159865A1 (zh) 2023-08-31

Family

ID=82395786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107120 WO2023159865A1 (zh) 2022-02-28 2022-07-21 磁共振系统

Country Status (2)

Country Link
CN (1) CN217007652U (zh)
WO (1) WO2023159865A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217007652U (zh) * 2022-02-28 2022-07-19 合肥泽璞医疗系统有限公司 磁共振系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030088175A1 (en) * 2001-11-02 2003-05-08 Advanced Veterinary Technologies, Inc. Radio frequency shield for nuclear magnetic resonance procedures
US20130229181A1 (en) * 2012-03-05 2013-09-05 Stephan Biber Magnetic Resonance Facility Having a Cylindrical Patient Receiving Unit and Patient Capsule
CN108020797A (zh) * 2016-11-03 2018-05-11 上海东软医疗科技有限公司 磁共振发射线圈及核磁共振成像设备
US20180164391A1 (en) * 2016-12-14 2018-06-14 Aspect Imaging Ltd. Extendable radiofrequency shield for magnetic resonance imaging device
CN109009117A (zh) * 2018-08-23 2018-12-18 宁波穿山甲机电有限公司 一种超低场磁共振成像系统
CN112336333A (zh) * 2020-10-27 2021-02-09 佛山瑞加图医疗科技有限公司 一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统
CN212965375U (zh) * 2020-04-30 2021-04-13 佛山瑞加图医疗科技有限公司 一种磁共振系统的磁体屏蔽装置
CN112924912A (zh) * 2021-03-08 2021-06-08 湖南迈太科医疗科技有限公司 磁共振装置
CN113109748A (zh) * 2021-05-08 2021-07-13 苏州众志医疗科技有限公司 用于磁共振成像的射频装置和磁共振成像系统
CN213715441U (zh) * 2020-10-19 2021-07-16 上海联影医疗科技股份有限公司 磁共振成像系统
CN214231322U (zh) * 2020-10-27 2021-09-21 佛山瑞加图医疗科技有限公司 一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统
CN217007652U (zh) * 2022-02-28 2022-07-19 合肥泽璞医疗系统有限公司 磁共振系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030088175A1 (en) * 2001-11-02 2003-05-08 Advanced Veterinary Technologies, Inc. Radio frequency shield for nuclear magnetic resonance procedures
US20130229181A1 (en) * 2012-03-05 2013-09-05 Stephan Biber Magnetic Resonance Facility Having a Cylindrical Patient Receiving Unit and Patient Capsule
CN108020797A (zh) * 2016-11-03 2018-05-11 上海东软医疗科技有限公司 磁共振发射线圈及核磁共振成像设备
US20180164391A1 (en) * 2016-12-14 2018-06-14 Aspect Imaging Ltd. Extendable radiofrequency shield for magnetic resonance imaging device
CN109009117A (zh) * 2018-08-23 2018-12-18 宁波穿山甲机电有限公司 一种超低场磁共振成像系统
CN212965375U (zh) * 2020-04-30 2021-04-13 佛山瑞加图医疗科技有限公司 一种磁共振系统的磁体屏蔽装置
CN213715441U (zh) * 2020-10-19 2021-07-16 上海联影医疗科技股份有限公司 磁共振成像系统
CN112336333A (zh) * 2020-10-27 2021-02-09 佛山瑞加图医疗科技有限公司 一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统
CN214231322U (zh) * 2020-10-27 2021-09-21 佛山瑞加图医疗科技有限公司 一种电磁屏蔽舱及具有该电磁屏蔽舱的磁共振系统
CN112924912A (zh) * 2021-03-08 2021-06-08 湖南迈太科医疗科技有限公司 磁共振装置
CN113109748A (zh) * 2021-05-08 2021-07-13 苏州众志医疗科技有限公司 用于磁共振成像的射频装置和磁共振成像系统
CN217007652U (zh) * 2022-02-28 2022-07-19 合肥泽璞医疗系统有限公司 磁共振系统

Also Published As

Publication number Publication date
CN217007652U (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2023159865A1 (zh) 磁共振系统
RU2698816C2 (ru) Радиочастотный генератор мощности, сконфигурированный для уменьшения электромагнитных излучений
US20160356869A1 (en) Split magnetic resonance imaging system
JPH0139676B2 (zh)
US6590391B1 (en) Mri diagnosis apparatus with an intergrated cabinet that is mechanically and electrically connected to the electrically conductive shield of the shield room in which the mr measurement system is arranged
CN109009117B (zh) 一种超低场磁共振成像系统
US5847316A (en) Electromagnetic shielding body and electromagnetic shielding structure utilizing same
JP3879584B2 (ja) Nmr分析装置
CN105264397B (zh) 磁共振成像系统的rf屏蔽检查室
JP2007534340A (ja) 内部アクティブ磁場キャンセレーションを有する磁気遮蔽ルーム及びその使用
CN113848520A (zh) 一种超低场磁共振成像系统
CN217007651U (zh) 磁共振设备
JP3938735B2 (ja) 被検体搬送装置および診断装置
US10955512B2 (en) EPR apparatus equipped with specific RS coils and corresponding coil devices
US10126381B2 (en) Shielding with integrated cooling
CN103983928A (zh) 磁共振设备
CN113109748A (zh) 用于磁共振成像的射频装置和磁共振成像系统
JPH04295337A (ja) 磁気共鳴イメージング装置
CN206057220U (zh) 带磁场生成机构的软x射线吸收谱测量装置
CN110196400B (zh) 带有在屏蔽管中的承载部件的nmr探头
CN220849470U (zh) 一种屏蔽门、屏蔽装置以及成像治疗系统
CN216317600U (zh) 一种扫描床及超低场磁共振成像系统
US10701844B2 (en) Magnetically shielded room
JP5558863B2 (ja) Mri装置
CN212845876U (zh) 一种核磁共振探头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928134

Country of ref document: EP

Kind code of ref document: A1