WO2023159838A1 - 发动机涡轮增压方法及发动机涡轮增压系统 - Google Patents

发动机涡轮增压方法及发动机涡轮增压系统 Download PDF

Info

Publication number
WO2023159838A1
WO2023159838A1 PCT/CN2022/102356 CN2022102356W WO2023159838A1 WO 2023159838 A1 WO2023159838 A1 WO 2023159838A1 CN 2022102356 W CN2022102356 W CN 2022102356W WO 2023159838 A1 WO2023159838 A1 WO 2023159838A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
turbocharger
value
valve
rotational speed
Prior art date
Application number
PCT/CN2022/102356
Other languages
English (en)
French (fr)
Inventor
成锐
曹丽
Original Assignee
上海三一重机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海三一重机股份有限公司 filed Critical 上海三一重机股份有限公司
Publication of WO2023159838A1 publication Critical patent/WO2023159838A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • F02B37/002Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel the exhaust supply to one of the exhaust drives can be interrupted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B2037/122Control of rotational speed of the pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present application relates to the technical field of engineering machinery, in particular to an engine turbocharging method and an engine turbocharging system.
  • the engine speed will drop to a certain extent. It is necessary to increase the intake air volume of the engine to restore the engine speed.
  • the responsiveness of the engine refers to the speed required to restore the engine speed. time.
  • the engine in order to make the turbocharged engine take into account both the responsiveness of the engine at high-speed operation and the response at low-speed operation, the engine is generally equipped with two turbochargers.
  • one of the turbochargers When the engine is running at low speed, one of the turbochargers is used for boosting, and when the engine is running at high speed, both turbochargers are used for boosting simultaneously.
  • the application provides an engine turbocharging method and an engine turbocharging system, which are used to solve the defects of the twin-turbocharged engine in the prior art that have high requirements for the design of the exhaust pipe and the hidden danger of damage to the turbocharger .
  • the application provides a turbocharging method for an engine, comprising:
  • the exhaust gas discharged from the engine is controlled to enter the turbine chamber of the first turbocharger so as to utilize the boost chamber of the first turbocharger alone Provide compressed air for the intake line of the engine, otherwise, control the exhaust gas discharged from the engine to enter the turbine chamber of the second turbocharger, so as to use the boost chamber of the second turbocharger alone as the The intake pipe of the engine provides compressed air;
  • the A/R value of the first turbocharger is smaller than the A/R value of the second turbocharger, and the A/R value is between the area of the air inlet of the turbine chamber and the radius of the turbine ratio.
  • a kind of engine turbocharging method provided according to the application also includes:
  • a kind of engine turbocharging method provided according to the application also includes:
  • the exhaust gas flow rate entering the turbine chamber of the first turbocharger is controlled to decrease; when the intake air pressure value of the engine is less than the fifth reference threshold value , controlling the flow of exhaust gas entering the turbine chamber of the first turbocharger to increase;
  • the exhaust gas flow rate entering the turbine chamber of the second turbocharger is controlled to decrease; when the intake pressure value of the engine is less than the fifth reference threshold.
  • the flow rate of exhaust gas entering the turbine chamber of the second turbocharger is controlled to increase, and the fourth reference threshold is greater than the fifth reference threshold.
  • the present application also provides an engine turbocharging system, including an engine, a first turbocharger, a second turbocharger, a first valve, a second valve and an engine control module, the first turbocharger
  • the A/R value is less than the A/R value of the second turbocharger, and the A/R value is the ratio between the air inlet area of the turbine chamber and the radius of the turbine;
  • Both the boost chamber outlet of the first turbocharger and the boost chamber outlet of the second turbocharger are connected to the intake port of the engine, and the turbine chamber inlet of the first turbocharger and the inlet of the turbine chamber of the second turbocharger are connected to the exhaust port of the engine, and the first valve is configured to control the inlet of the turbine chamber of the first turbocharger to the exhaust port of the engine.
  • the second valve is configured to control on-off between the inlet of the turbine chamber of the second turbocharger and the exhaust port of the engine;
  • the inside of the engine is provided with a first speed sensor for collecting the speed value of the engine, and the first speed sensor, the first valve and the second valve are all electrically connected to the engine control module, and the engine control module It is configured to acquire the rotational speed value of the engine collected by the first rotational speed sensor, and control the actions of the first valve and the second valve according to the rotational speed value of the engine.
  • a bypass pipeline is also provided at the exhaust port of the engine, and a third valve is arranged on the bypass pipeline, and the opening degree of the third valve can be adjust.
  • the first turbocharger is provided with a second rotational speed sensor for collecting the rotational speed value of the first turbocharger, and the second turbocharger
  • the interior of the compressor is provided with a third speed sensor for collecting the speed value of the second turbocharger;
  • the second rotational speed sensor, the third rotational speed sensor, and the third valve are all electrically connected to the engine control module, and the engine control module is configured to obtain the first turbine speed collected by the second rotational speed sensor.
  • the speed value of the supercharger and the speed value of the second turbocharger collected by the third speed sensor, and according to the speed value of the first turbocharger or the speed value of the second turbocharger controls the opening degree of the third valve.
  • the intake port of the engine is provided with an intake pressure sensor for collecting the intake pressure value of the engine, and the intake pressure sensor is connected with the engine control
  • the modules are electrically connected, and the engine control module is configured to obtain the intake air pressure value of the engine collected by the intake air pressure sensor, and control the opening of the third valve according to the intake air pressure value of the engine.
  • the outlet of the boosting chamber of the first turbocharger is provided with a first unit only for gas to flow from the first turbocharger to the engine. to the valve;
  • the outlet of the boosting chamber of the second turbocharger is provided with a second one-way valve only for gas to flow from the second turbocharger to the engine.
  • an engine turbocharging system provided by the present application, it also includes an intercooler, and the outlet of the boosting chamber of the first turbocharger and the outlet of the boosting chamber of the second turbocharger are connected to the The inlet end of the intercooler is connected, and the air inlet of the engine is connected with the outlet end of the intercooler.
  • the present application also provides an operating machine, including the above-mentioned engine turbocharging system.
  • the engine turbocharging method provided by the present application is applicable to an engine turbocharging system having two turbochargers, wherein the two turbochargers are respectively a first turbocharger and a second turbocharger, and the second turbocharger
  • the A/R value of the second turbocharger is greater than the A/R value of the first turbocharger
  • the boost response of the second turbocharger is faster in the high speed range
  • the first turbocharger is in the low speed range
  • the pressurization response is faster.
  • the engine turbocharging method in this application controls and selects the corresponding turbocharger according to the rotational speed value of the engine. When the rotational speed of the engine is lower than the first reference threshold, the first turbocharger is used to provide compression to the intake pipeline of the engine.
  • the second turbocharger is used to provide compressed air to the intake line of the engine to ensure the responsiveness of the engine at high speeds. Responsiveness, so that the engine can take into account both the responsiveness of high-speed operation and the responsiveness of low-speed operation.
  • two exhaust pipes need to be connected to the exhaust port of the engine, when the engine is running at high speed and low speed, the engine The exhaust gas only enters the turbine chamber of one turbocharger, which does not involve the proportional distribution of the exhaust gas of the engine, thus avoiding the problem that the turbocharger is easily damaged due to the uneven distribution of exhaust volume, and furthermore The design requirements for the exhaust pipe are reduced.
  • the engine turbocharging system has a first turbocharger and a second turbocharger, and the A/R value of the first turbocharger is smaller than the A/R value of the second turbocharger .
  • the first turbocharger When the engine is running at low speed, open the first valve, close the second valve, and use the first turbocharger alone to provide compressed air to the intake pipeline of the engine to ensure the responsiveness of the engine at low speed; when the engine is running at high speed , open the second valve, close the first valve, and use the second turbocharger alone to provide compressed air to the intake line of the engine to ensure the responsiveness of the engine at high speed, so that the engine can simultaneously take into account the Responsiveness and responsiveness at low-speed operation, and when the engine is running at high speed and low speed, the exhaust gas of the engine only enters the turbine chamber of a turbocharger, which does not involve the proportional distribution of the exhaust gas of the engine.
  • the problem that the turbocharger is easily damaged due to the uneven distribution of the exhaust volume reduces the design
  • Fig. 1 is the flowchart of the engine turbocharging method provided by the present application
  • Fig. 2 is a structural schematic diagram of the engine turbocharging system provided by the present application.
  • the A/R value of the turbocharger (referring to the ratio between the area of the air inlet of the turbine chamber of the turbocharger and the radius of the turbine) is smaller, and the exhaust gas of the engine 1 will flow in the turbocharger.
  • the flow rate in the turbine chamber is higher, so that the supercharging response of the turbo in the low speed area is faster, the turbo hysteresis is reduced, and the turbo can achieve higher supercharging in the low speed area; but it will also increase the exhaust back pressure. Insufficient flow of exhaust gas at high speed, so that the horsepower is limited at high speed.
  • a turbocharger with a relatively large A/R value has a faster supercharging response in a high-speed region
  • a turbocharger with a relatively small A/R value has a faster supercharging response in a low-speed region.
  • the engine turbocharging method provided by the embodiment of the present application is applicable to an engine turbocharging system with two turbochargers, wherein the two turbochargers are respectively the first turbocharger 2 and the second turbocharger 3, and the A/R value of the second turbocharger 3 is greater than the A/R value of the first turbocharger 2, that is, the second turbocharger 3 is in the high speed region
  • the supercharging response of the first turbocharger 2 is faster in the low speed region.
  • the exhaust gas discharged from the engine 1 is controlled to enter the turbine chamber of the first turbocharger 2, so as to use the boost chamber of the first turbocharger 2 alone as
  • the intake pipeline of the engine 1 provides compressed air to ensure the responsiveness of the engine 1 at low speeds.
  • the exhaust gas discharged from the engine 1 was controlled to enter the turbine chamber of the second turbocharger 3, so as to use the boost chamber of the second turbocharger 3 as the inlet of the engine 1
  • the air pipeline provides compressed air to ensure the responsiveness of the engine 1 at high-speed operation, so that the engine 1 can take into account the responsiveness at high-speed operation and the response at low-speed operation at the same time, expanding the usable speed range of the engine 1 and improving fuel efficiency. economy.
  • the exhaust port of the engine 1 needs to be connected to two exhaust pipes, when the engine 1 runs at a high speed and at a low speed, the exhaust gas of the engine 1 all only enters the turbine chamber of a turbocharger, and does not involve any damage to the engine 1.
  • the problem of proportional distribution of exhaust gas avoids the problem that the turbocharger is easily damaged due to uneven distribution of exhaust volume, thereby reducing the design requirements for the exhaust pipe.
  • the speed value of the engine 1 refers to the number of revolutions per minute of the crankshaft of the engine 1.
  • a speed sensor is arranged inside the engine 1 so that the speed sensor corresponds to the signal tooth on the flywheel of the engine 1.
  • the rotational speed of the flywheel is measured, and the rotational speed of the flywheel of the engine 1 is taken as the rotational speed of the engine 1 .
  • the engine control module is electrically connected with the rotational speed sensor inside the engine 1 and can acquire the rotational speed value of the engine 1 .
  • the engine turbocharging method in the embodiment of the present application further includes a step of controlling the flow of exhaust gas entering the turbine chamber of the turbocharger according to the rotational speed of the turbocharger.
  • the rotational speed value of the first turbocharger 2 and the rotational speed value of the second turbocharger 3 can be obtained.
  • the rotational speed value of the first turbocharger 2 is greater than the second reference threshold, it is necessary to control the flow of exhaust gas entering the turbine chamber of the first turbocharger 2 to decrease; when the rotational speed value of the second turbocharger 3 is greater than the first
  • three reference thresholds are used, the flow rate of exhaust gas entering the turbine chamber of the second turbocharger 3 needs to be controlled to decrease.
  • first turbocharger 2 and the rotational speed value of the second turbocharger 3 can avoid the rotational speed value of the first turbocharger 2 and the rotational speed value of the second turbocharger 3 to be too large, reduce the possibility that the first turbocharger 2 and the second turbocharger 3 are damaged, to
  • the first turbocharger 2 and the second turbocharger 3 have a protective effect, which is beneficial to prolong the service life of the first turbocharger 2 and the second turbocharger 3 .
  • the speed value of the turbocharger refers to the number of revolutions per minute of the turbine in the turbine chamber or the impeller in the booster chamber.
  • a speed sensor can be installed in the turbine chamber or the booster chamber to measure the speed of the turbine or impeller, so that the turbine or impeller RPM is used as the RPM of the turbocharger.
  • the engine control module is electrically connected with the rotational speed sensor, and can acquire the rotational speed value of the turbocharger.
  • the intake pressure value of the engine 1 also needs to be taken into consideration, so as to avoid the intake pressure of the engine 1 being too low and affecting the performance of the engine 1.
  • the engine turbocharging method in this embodiment further includes a step of controlling the flow of exhaust gas entering the turbine chamber of the turbocharger according to the intake pressure value of the engine 1 .
  • the intake pressure value of the engine 1 can be acquired.
  • the intake air pressure of the engine 1 When the engine 1 is running at high speed, when the intake air pressure of the engine 1 is greater than the fourth reference threshold, the flow of exhaust gas entering the turbine chamber of the second turbocharger 3 needs to be controlled to decrease. When the intake air pressure of the engine 1 is lower than the fifth reference threshold, the flow of exhaust gas entering the turbine chamber of the second turbocharger 3 needs to be controlled to increase.
  • the fourth reference threshold is greater than the fifth reference threshold, and the intake pressure of the engine 1 can be controlled within the range from the fifth reference threshold to the fourth reference threshold through the above steps.
  • both the responsiveness of the engine 1 during high-speed operation and the responsiveness of low-speed operation can be taken into account, the design requirements for the exhaust pipe are reduced, and the Protect the turbocharger and reduce the possibility of the turbocharger being damaged.
  • the embodiment of the present application also provides an engine turbocharging system.
  • the engine turbocharging system provided in the present application will be described below in conjunction with FIG. 2 .
  • the engine turbocharging system described below is the same as the engine turbocharging system described above.
  • the pressurization methods can be referred to each other correspondingly.
  • the embodiment of the present application provides an engine turbocharging system, including an engine 1, a first turbocharger 2, a second turbocharger 3, a first valve 4, a second valve 5 and an engine Control module, wherein, the A/R value of the first turbocharger 2 is less than the A/R value of the second turbocharger 3, and the A/R value is between the air inlet area of the turbine chamber and the radius of the turbine ratio.
  • Both the boost chamber outlet of the first turbocharger 2 and the boost chamber outlet of the second turbocharger 3 are connected to the intake port of the engine 1 through the first air intake pipeline. Both the inlet of the boost chamber of the first turbocharger 2 and the inlet of the boost chamber of the second turbocharger 3 are connected to the air filter 10 through the second intake pipeline.
  • the first air intake pipeline includes a first main pipe and two first branch pipes, and the first ends of the two first branch pipes are respectively connected to the boost chamber outlet of the first turbocharger 2 and the supercharging chamber of the second turbocharger 3.
  • the chamber outlet is connected, the second ends of the two first branch pipes are connected with the first end of the first main pipe, and the second end of the first main pipe is connected with the air intake of the engine 1.
  • An intercooler 9 is provided on the first main pipe to cool down the gas before it enters the engine 1, reduce the thermal load of the engine 1, improve the ventilation efficiency of the engine 1 and the power of the engine 1, and avoid direct entry of high-temperature gas
  • the engine 1 causes the engine 1 to knock, or even damage and stall the problem.
  • the turbine chamber inlet of the first turbocharger 2 and the turbine chamber inlet of the second turbocharger 3 are all connected with the exhaust port of the engine 1 by the first exhaust pipeline, and the first exhaust pipeline is connected by the second exhaust pipeline. Both the outlet of the turbine chamber of the first turbocharger 2 and the outlet of the turbine chamber of the second turbocharger 3 are connected to the muffler 11 to reduce the exhaust noise of the engine 1 and to discharge the high-temperature gas safely and effectively.
  • the high-temperature gas enters the tail gas treatment device after passing through the muffler 11 to treat the tail gas.
  • the first exhaust pipeline includes a second main pipe and two second branch pipes, the first end of the second main pipe is connected with the exhaust port of the engine 1, and the first ends of the two second branch pipes are connected with the second main pipe of the second main pipe.
  • the ends are connected, and the second ends of the two second branch pipes are respectively connected with the inlet of the turbine chamber of the first turbocharger 2 and the inlet of the turbine chamber of the second turbocharger 3 .
  • the first valve 4 and the second valve 5 are respectively arranged on the two second branch pipes, the first valve 4 is used to control the on-off between the inlet of the turbine chamber of the first turbocharger 2 and the exhaust port of the engine 1, The second valve 5 is used to control the connection between the inlet of the turbine chamber of the second turbocharger 3 and the exhaust port of the engine 1 .
  • a first rotational speed sensor is arranged inside the engine 1 for collecting the rotational speed value of the engine 1 .
  • the first rotational speed sensor, the first valve 4 and the second valve 5 are all electrically connected to the engine control module, and the above-mentioned engine control module is used to acquire the rotational speed value of the engine 1 collected by the first rotational speed sensor, and control the first rotational speed value of the engine 1 according to the rotational speed value of the engine 1 The action of the first valve 4 and the second valve 5.
  • the first valve 4 When the rotational speed value of the engine 1 collected by the first rotational speed sensor was lower than the first reference threshold, that is, when the engine 1 was running at a low speed, the first valve 4 was opened, the second valve 5 was closed, and the first turbocharger 2 was used alone to The intake line of the engine 1 supplies compressed air to ensure the responsiveness of the engine 1 at low speeds.
  • the intake pipeline of 1 provides compressed air to ensure the responsiveness of the engine 1 at high-speed operation, so that the engine 1 can take into account both the responsiveness at high-speed operation and the responsiveness at low-speed operation.
  • a bypass pipeline is also provided at the exhaust port of the engine 1, and a third valve 6 is provided on the bypass pipeline, and the opening degree of the third valve 6 can be adjusted.
  • one end of the bypass pipeline may be connected to the second main pipe, and the other end of the bypass pipeline may be connected to the second exhaust pipeline.
  • a second rotational speed sensor is provided inside the first turbocharger 2 for collecting the rotational speed value of the first turbocharger 2 .
  • a third rotational speed sensor is arranged inside the second turbocharger 3 for collecting the rotational speed value of the second turbocharger 3 .
  • the above-mentioned second rotational speed sensor, the third rotational speed sensor and the third valve 6 are all electrically connected to the engine control module, and the above-mentioned engine control module is used to obtain the rotational speed value and the third rotational speed of the first turbocharger 2 collected by the second rotational speed sensor
  • the sensor collects the rotational speed value of the second turbocharger 3 , and controls the opening degree of the third valve 6 according to the rotational speed value of the first turbocharger 2 or the rotational speed value of the second turbocharger 3 .
  • an intake pressure sensor is provided at the intake port of the engine 1 for collecting the intake pressure value of the engine 1 .
  • the intake air pressure sensor may be arranged in the first main pipe at a position between the intercooler 9 and the intake port of the engine 1 .
  • the intake pressure sensor is electrically connected to the engine control module, and the engine control module is used to obtain the intake pressure value of the engine 1 collected by the intake pressure sensor, and control the opening of the third valve 6 according to the intake pressure value of the engine 1 .
  • the intake pressure value of the engine 1 is less than the fifth reference threshold, if the engine 1 is running at a low speed, it is necessary to control the flow of exhaust gas entering the turbine chamber of the first turbocharger 2 to increase; if the engine 1 is running at a high speed, it is necessary to The exhaust gas flow rate entering the turbine chamber of the second turbocharger 3 is controlled to increase, so as to control the intake air pressure of the engine 1 within the range of the fifth reference threshold to the fourth reference threshold.
  • a first one-way valve 7 that only allows gas to flow from the first turbocharger 2 to the engine 1 is provided at the outlet of the boosting chamber of the first turbocharger 2.
  • the outlet of the boost chamber of the compressor 3 is provided with a second one-way valve 8 that only allows gas to flow from the second turbocharger 3 to the engine 1, so as to prevent the boost chamber of the first turbocharger 2 and the second
  • the unstable pressure of the boost chamber of the turbocharger 3 adversely affects the intake air of the engine 1 .
  • the engine turbocharging system in the embodiment of the present application can not only make the engine 1 take into account both the responsiveness of the high-speed operation and the responsiveness of the low-speed operation, reduce the design requirements for the exhaust pipe, but also protect the Turbocharger, reduce the possibility of turbocharger being damaged.
  • an embodiment of the present application further provides a work machine, including the engine turbocharging system provided in any one of the above embodiments. It has all the advantages of the above-mentioned engine turbocharging system, which will not be repeated here.
  • the derivation process of the beneficial effect of the working machine in the embodiment of the present application is generally similar to the derivation process of the above-mentioned beneficial effect of the engine turbocharging system, so it will not be repeated here.
  • the working machine in this embodiment may be an excavator or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

一种发动机(1)涡轮增压方法及发动机(1)涡轮增压系统,其中,发动机(1)涡轮增压方法包括获取发动机(1)的转速值;当发动机(1)的转速值小于第一参照阈值时,单独利用第一涡轮增压器(2)的增压室为发动机(1)的进气管路提供压缩空气,否则,单独利用第二涡轮增压器(3)的增压室为发动机(1)的进气管路提供压缩空气;其中,第一涡轮增压器(2)的A/R值小于第二涡轮增压器(3)的A/R值,A/R值为涡轮室的进气口面积与涡轮的半径之间的比值。

Description

发动机涡轮增压方法及发动机涡轮增压系统
相关申请的交叉引用
本申请要求于2022年2月25日提交的申请号为202210191165.6,发明名称为“发动机涡轮增压方法及发动机涡轮增压系统”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及工程机械技术领域,尤其涉及一种发动机涡轮增压方法及发动机涡轮增压系统。
背景技术
发动机在运行过程中,若对发动机突然加载,发动机的转速会有一定程度的下降,需要通过增加发动机的进气量,使发动机的转速恢复,发动机的响应性则是指使发动机的转速恢复所需的时间。
现有技术中,为使涡轮增压发动机能够同时兼顾发动机在高速运转时的响应性和低速运转时的响应性,一般对发动机配备两个涡轮增压器。当发动机低速运转时,利用其中一个涡轮增压器进行增压,当发动机高速运转时,两个涡轮增压器同时进行增压。需要在发动机的排气通道连接两个排气管,分别与两个涡轮增压器连接,两个涡轮增压器同时运行时,若两个排气管内的排气量分配比例不均匀,存在损坏涡轮增压器的隐患,故对两个排气管的设计要求较高。
因此,如何解决现有技术中的双涡轮增压发动机对排气管的设计要求较高、存在损坏涡轮增压器的隐患的问题,成为本领域技术人员所要解决的重要技术问题。
发明内容
本申请提供一种发动机涡轮增压方法及发动机涡轮增压系统,用以解决现有技术中的双涡轮增压发动机对排气管的设计要求较高、存在损坏涡轮增压器的隐患的缺陷。
本申请提供一种发动机涡轮增压方法,包括:
获取发动机的转速值;
当所述发动机的转速值小于第一参照阈值且大于零时,控制所述发动机排出的废气进入第一涡轮增压器的涡轮室、以单独利用所述第一涡轮增压器的增压室为所述发动机的进气管路提供压缩空气,否则,控制所述发动机排出的废气进入第二涡轮增压器的涡轮室、以单独利用所述第二涡轮增压器的增压室为所述发动机的进气管路提供压缩空气;
其中,所述第一涡轮增压器的A/R值小于所述第二涡轮增压器的A/R值,所述A/R值为涡轮室的进气口面积与涡轮的半径之间的比值。
根据本申请提供的一种发动机涡轮增压方法,还包括:
获取所述第一涡轮增压器的转速值和所述第二涡轮增压器的转速值;
当所述第一涡轮增压器的转速值大于第二参考阈值时,控制进入所述第一涡轮增压器的涡轮室的废气流量减小;
或当所述第二涡轮增压器的转速值大于第三参考阈值时,控制进入所述第二涡轮增压器的涡轮室的废气流量减小。
根据本申请提供的一种发动机涡轮增压方法,还包括:
获取所述发动机的进气压力值;
当所述发动机的进气压力值大于第四参考阈值时,控制进入所述第一涡轮增压器的涡轮室的废气流量减小;当所述发动机的进气压力值小于第五参考阈值时,控制进入所述第一涡轮增压器的涡轮室的废气流量增加;
或当所述发动机的进气压力值大于第四参考阈值时,控制进入所述第二涡轮增压器的涡轮室的废气流量减小;当所述发动机的进气压力值小于第五参考阈值时,控制进入所述第二涡轮增压器的涡轮室的废气流量增加,所述第四参考阈值大于所述第五参考阈值。
本申请还提供一种发动机涡轮增压系统,包括发动机、第一涡轮增压器、第二涡轮增压器、第一阀门、第二阀门和发动机控制模块,所述第一涡轮增压器的A/R值小于所述第二涡轮增压器的A/R值,所述A/R值为涡轮室的进气口面积与涡轮的半径之间的比值;
所述第一涡轮增压器的增压室出口和所述第二涡轮增压器的增压室出口均与所述发动机的进气口连接,所述第一涡轮增压器的涡轮室进口和 所述第二涡轮增压器的涡轮室进口均与所述发动机的排气口连接,所述第一阀门配置为控制所述第一涡轮增压器的涡轮室进口与所述发动机的排气口之间的通断,所述第二阀门配置为控制所述第二涡轮增压器的涡轮室进口与所述发动机的排气口之间的通断;
所述发动机的内部设置有用于采集所述发动机的转速值的第一转速传感器,所述第一转速传感器、第一阀门和第二阀门均与所述发动机控制模块电连接,所述发动机控制模块设置为获取所述第一转速传感器采集的所述发动机的转速值、并根据所述发动机的转速值控制所述第一阀门和所述第二阀门的动作。
根据本申请提供的一种发动机涡轮增压系统,所述发动机的排气口处还设置有旁通管路,所述旁通管路上设置有第三阀门,所述第三阀门的开度可以调节。
根据本申请提供的一种发动机涡轮增压系统,所述第一涡轮增压器的内部设置有用于采集所述第一涡轮增压器的转速值的第二转速传感器,所述第二涡轮增压器的内部设置有用于采集所述第二涡轮增压器的转速值的第三转速传感器;
所述第二转速传感器、所述第三转速传感器和所述第三阀门均与所述发动机控制模块电连接,所述发动机控制模块设置为获取所述第二转速传感器采集的所述第一涡轮增压器的转速值和所述第三转速传感器采集的所述第二涡轮增压器的转速值、并根据所述第一涡轮增压器的转速值或所述第二涡轮增压器的转速值控制所述第三阀门的开度。
根据本申请提供的一种发动机涡轮增压系统,所述发动机的进气口处设置有用于采集所述发动机的进气压力值的进气压力传感器,所述进气压力传感器与所述发动机控制模块电连接,所述发动机控制模块设置为获取所述进气压力传感器采集的所述发动机的进气压力值、并根据所述发动机的进气压力值控制所述第三阀门的开度。
根据本申请提供的一种发动机涡轮增压系统,所述第一涡轮增压器的增压室出口处设置有仅供气体从所述第一涡轮增压器向所述发动机流通的第一单向阀;
所述第二涡轮增压器的增压室出口处设置有仅供气体从所述第二涡 轮增压器向所述发动机流通的第二单向阀。
根据本申请提供的一种发动机涡轮增压系统,还包括中冷器,所述第一涡轮增压器的增压室出口和所述第二涡轮增压器的增压室出口均与所述中冷器的进口端连接,所述发动机的进气口与所述中冷器的出口端连接。
本申请还提供一种作业机械,包括如上述的发动机涡轮增压系统。
本申请提供的发动机涡轮增压方法,适用于具有两个涡轮增压器的发动机增压系统,其中两个涡轮增压器分别为第一涡轮增压器和第二涡轮增压器,且第二涡轮增压器的A/R值大于第一涡轮增压器的A/R值,第二涡轮增压器在高转速区域的增压反应较快,第一涡轮增压器在低转速区域的增压反应较快。本申请中的发动机涡轮增压方法根据发动机的转速值,控制选用相应的涡轮增压器,当发动机的转速小于第一参照阈值时,利用第一涡轮增压器对发动机的进气管路提供压缩空气,以确保发动机在低速运转时的响应性;当发动机的转速高于第一参照阈值时,利用第二涡轮增压器对发动机的进气管路提供压缩空气,以确保发动机在高速运转时的响应性,从而发动机能够同时兼顾高速运转时的响应性和低速运转时的响应性,而且,虽然需要在发动机的排气口连接两个排气管,但在发动机高速运转和低速运转时,发动机的废气均仅进入一个涡轮增压器的涡轮室,不涉及对发动机的废气进行比例分配的问题,从而避免了因排气量分配比例不均导致的涡轮增压器容易被损坏的问题,进而降低了对排气管的设计要求。
进一步,本申请提供的发动机涡轮增压系统,具有第一涡轮增压器和第二涡轮增压器,第一涡轮增压器的A/R值小于第二涡轮增压器的A/R值。在发动机低速运转时,打开第一阀门,关闭第二阀门,单独利用第一涡轮增压器对发动机的进气管路提供压缩空气,以确保发动机在低速运转时的响应性;在发动机高速运转时,打开第二阀门,关闭第一阀门,单独利用第二涡轮增压器对发动机的进气管路提供压缩空气,以确保发动机在高速运转时的响应性,从而使得发动机能够同时兼顾高速运转时的响应性和低速运转时的响应性,而且在发动机高速运转和低速运转时,发动机的废气均仅进入一个涡轮增压器的涡轮室,不涉及对发动机的废气进行比例分配的问题,避免了因排气量分配比例不均导致的涡轮增压器容易被损坏的问题,降低了对排气管的设计要求。
进一步,在本申请提供的作业机械中,由于具备如上所述的发动机涡轮增压系统,因此同样具备如上所述的各种优势。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的发动机涡轮增压方法的流程图;
图2是本申请提供的发动机涡轮增压系统的结构示意图。
附图标记:
1:发动机;           2:第一涡轮增压器;   3:第二涡轮增压器;
4:第一阀门;         5:第二阀门;         6:第三阀门;
7:第一单向阀;       8:第二单向阀;       9:中冷器;
10:空气滤清器;      11:消音器。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1至图2描述本申请的发动机涡轮增压方法。
通过研究、试验发现,涡轮增压器的A/R值(指涡轮增压器的涡轮室的进气口面积与涡轮的半径之间的比值)越小,发动机1的废气在涡轮增压器的涡轮室内的流速较高,使得涡轮在低转速区域的增压反应较快,涡轮迟滞减低,涡轮也就能在较低的转速区域取得较高的增压;但也会加大排气背压高转速废气流量不足,使高转速时马力有限。相对地,涡轮增压器的A/R值越大,发动机1的废气在涡轮增压器的涡轮室内的流通阻力越小,能量损失越小,能够在高转速区域产生更大的动力,高转高出力的倾 向相当明确。
因此,A/R值相对较大的涡轮增压器在高转速区域的增压反应较快,A/R值相对较小的涡轮增压器在低转速区域的增压反应较快。
如图1和图2所示,本申请实施例提供的发动机涡轮增压方法适用于具有两个涡轮增压器的发动机增压系统,其中两个涡轮增压器分别为第一涡轮增压器2和第二涡轮增压器3,且第二涡轮增压器3的A/R值大于第一涡轮增压器2的A/R值,即,第二涡轮增压器3在高转速区域的增压反应较快,第一涡轮增压器2在低转速区域的增压反应较快。
本申请实施例中的发动机涡轮增压方法中,需要实时获取发动机1的转速值,根据获取的发动机1的转速值,控制选用相应的涡轮增压器。
具体来说,当发动机1的转速值小于第一参照阈值时,控制发动机1排出的废气进入第一涡轮增压器2的涡轮室,以单独利用第一涡轮增压器2的增压室为发动机1的进气管路提供压缩空气,确保发动机1在低速运转时的响应性。当发动机1的转速高于第一参照阈值时,控制发动机1排出的废气进入第二涡轮增压器3的涡轮室,以单独利用第二涡轮增压器3的增压室为发动机1的进气管路提供压缩空气,确保发动机1在高速运转时的响应性,从而发动机1能够同时兼顾高速运转时的响应性和低速运转时的响应性,扩大了发动机1的可使用转速范围,提升了燃油经济性。
而且,虽然需要发动机1的排气口连接两个排气管,但在发动机1高速运转和低速运转时,发动机1的废气均仅进入一个涡轮增压器的涡轮室,不涉及对发动机1的废气进行比例分配的问题,从而避免了因排气量分配比例不均导致的涡轮增压器容易被损坏的问题,进而降低了对排气管的设计要求。
发动机1的转速值指发动机1的曲轴每分钟的回转数,通常在发动机1的内部设置转速传感器,使转速传感器与发动机1的飞轮上的信号齿相对应,利用转速传感器和信号齿对发动机1的飞轮的转速进行测量,使发动机1的飞轮的转速作为发动机1的转速。发动机控制模块与发动机1内部的转速传感器电连接,可以获取发动机1的转速值。
本申请实施例中的发动机涡轮增压方法还包括根据涡轮增压器的转速值对进入涡轮增压器的涡轮室的废气流量进行控制的步骤。
具体来说,可以获取第一涡轮增压器2的转速值和第二涡轮增压器3的转速值。当第一涡轮增压器2的转速值大于第二参考阈值时,需要控制进入第一涡轮增压器2的涡轮室的废气流量减小;当第二涡轮增压器3的转速值大于第三参考阈值时,需要控制进入第二涡轮增压器3的涡轮室的废气流量减小。如此,可以避免第一涡轮增压器2的转速值和第二涡轮增压器3的转速值过大,减少第一涡轮增压器2和第二涡轮增压器3损坏的可能性,对第一涡轮增压器2和第二涡轮增压器3具有保护作用,有利于延长第一涡轮增压器2和第二涡轮增压器3的使用寿命。
涡轮增压器的转速值指涡轮室的涡轮或增压室的叶轮每分钟的回转数,可以在涡轮室或增压室内设置转速传感器,对涡轮或叶轮的转速进行测量,使涡轮或叶轮的转速作为涡轮增压器的转速。发动机控制模块与该转速传感器电连接,可以获取涡轮增压器的转速值。
由于上述根据涡轮增压器的转速值对进入涡轮增压器的涡轮室的废气流量进行控制的过程会影响发动机1的进气压力值,故,对进入涡轮增压器的涡轮室的废气流量的控制过程中,还需要考虑到发动机1的进气压力值,避免发动机1的进气压力过低,影响发动机1的性能。
本实施例中的发动机涡轮增压方法还包括根据发动机1的进气压力值对进入涡轮增压器的涡轮室的废气流量进行控制的步骤。
具体来说,可以获取发动机1的进气压力值。
在发动机1处于低速运转状态时,当发动机1的进气压力值大于第四参考阈值时,则需要控制进入第一涡轮增压器2的涡轮室的废气流量减小。当发动机1的进气压力值小于第五参考阈值时,则需要控制进入第一涡轮增压器2的涡轮室的废气流量增加。
在发动机1处于高速运转状态时,当发动机1的进气压力值大于第四参考阈值时,则需要控制进入第二涡轮增压器3的涡轮室的废气流量减小。当发动机1的进气压力值小于第五参考阈值时,则需要控制进入第二涡轮增压器3的涡轮室的废气流量增加。上述第四参考阈值大于第五参考阈值,通过上述步骤可以将发动机1的进气压力值控制在第五参考阈值至第四参考阈值的范围内。
综上所述,通过本申请实施例中的发动机涡轮增压方法既能够使发动 机1同时兼顾高速运转时的响应性和低速运转时的响应性,降低了对排气管的设计要求,又能够保护涡轮增压器,减小涡轮增压器被损坏的可能。
另一方面,本申请实施例还提供一种发动机涡轮增压系统,下面结合图2,对本申请提供的发动机涡轮增压系统进行描述,下文描述的发动机涡轮增压系统与上文描述的发动机涡轮增压方法可相互对应参照。
如图2所示,本申请实施例提供一种发动机涡轮增压系统,包括发动机1、第一涡轮增压器2、第二涡轮增压器3、第一阀门4、第二阀门5和发动机控制模块,其中,第一涡轮增压器2的A/R值小于第二涡轮增压器3的A/R值,A/R值为涡轮室的进气口面积与涡轮的半径之间的比值。
通过第一进气管路将第一涡轮增压器2的增压室出口和第二涡轮增压器3的增压室出口均与发动机1的进气口连接。通过第二进气管路将第一涡轮增压器2的增压室进口和第二涡轮增压器3的增压室进口均与空气滤清器10连接。
第一进气管路包括第一主管和两个第一支管,两个第一支管的第一端分别与第一涡轮增压器2的增压室出口和第二涡轮增压器3的增压室出口连接,两个第一支管的第二端均与第一主管的第一端连接,第一主管的第二端与发动机1的进气口连接。在第一主管上设置有中冷器9,用于在气体进入发动机1之前对气体进行降温,降低发动机1的热负荷,提高发动机1的换气效率和发动机1的功率,避免高温气体直接进入发动机1导致发动机1爆震、甚至损伤熄火的问题。
通过第一排气管路将第一涡轮增压器2的涡轮室进口和第二涡轮增压器3的涡轮室进口均与发动机1的排气口连接,通过第二排气管路将第一涡轮增压器2的涡轮室出口和第二涡轮增压器3的涡轮室出口均与消音器11连接,降低发动机1的排气噪音,使高温气体安全有效排出。高温气体经过消音器11后进入尾气处理装置,对尾气进行处理。
第一排气管路包括第二主管和两个第二支管,第二主管的第一端与发动机1的排气口连接,两个第二支管的第一端均与第二主管的第二端连接,两个第二支管的第二端分别与第一涡轮增压器2的涡轮室进口和第二涡轮增压器3的涡轮室进口连接。
第一阀门4和第二阀门5分别设置在两个第二支管上,第一阀门4用 于控制第一涡轮增压器2的涡轮室进口与发动机1的排气口之间的通断,第二阀门5用于控制第二涡轮增压器3的涡轮室进口与发动机1的排气口之间的通断。
在发动机1的内部设置有第一转速传感器,用于采集发动机1的转速值。第一转速传感器、第一阀门4和第二阀门5均与发动机控制模块电连接,上述发动机控制模块用于获取第一转速传感器采集的发动机1的转速值,并根据发动机1的转速值控制第一阀门4和第二阀门5的动作。
当第一转速传感器采集的发动机1的转速值低于第一参考阈值时,即发动机1低速运转时,打开第一阀门4,关闭第二阀门5,单独利用第一涡轮增压器2对发动机1的进气管路提供压缩空气,以确保发动机1在低速运转时的响应性。
当第一转速传感器采集的发动机1的转速值高于第一参考阈值时,即发动机1高速运转时,打开第二阀门5,关闭第一阀门4,单独利用第二涡轮增压器3对发动机1的进气管路提供压缩空气,以确保发动机1在高速运转时的响应性,从而使得发动机1能够同时兼顾高速运转时的响应性和低速运转时的响应性。
而且在发动机1高速运转和低速运转时,发动机1的废气均仅进入其中一个涡轮增压器的涡轮室,不涉及对发动机1的废气进行比例分配的问题,避免了因排气量分配比例不均导致的涡轮增压器容易被损坏的问题,进而降低了对排气管的设计要求。
本申请实施例中,在发动机1的排气口处还设置有旁通管路,旁通管路上设置有第三阀门6,第三阀门6的开度可以调节。具体地,可以使旁通管路的一端与第二主管连接,使旁通管路的另一端与第二排气管路连接。通过调节第三阀门6的开度,可以调节旁通管路内的气体流量,相应地,第二支管内的气体流量也得到相应调节。
本实施例中,在第一涡轮增压器2的内部设置有第二转速传感器,用于采集第一涡轮增压器2的转速值。在第二涡轮增压器3的内部设置有第三转速传感器,用于采集第二涡轮增压器3的转速值。
上述第二转速传感器、第三转速传感器和第三阀门6均与发动机控制模块电连接,上述发动机控制模块用于获取第二转速传感器采集的第一涡 轮增压器2的转速值和第三转速传感器采集的第二涡轮增压器3的转速值,并根据第一涡轮增压器2的转速值或第二涡轮增压器3的转速值控制第三阀门6的开度。
当第一涡轮增压器2的转速值大于第二参考阈值时,需要控制进入第一涡轮增压器2的涡轮室的废气流量减小,当第二涡轮增压器3的转速值大于第三参考阈值时,需要控制进入第二涡轮增压器3的涡轮室的废气流量减小。如此,可以避免第一涡轮增压器2的转速值和第二涡轮增压器3的转速值过大,减少第一涡轮增压器2和第二涡轮增压器3损坏的可能性,对第一涡轮增压器2和第二涡轮增压器3具有保护作用,有利于延长第一涡轮增压器2和第二涡轮增压器3的使用寿命。
本实施例中,在发动机1的进气口处设置有进气压力传感器,用于采集发动机1的进气压力值。具体地,可以将进气压力传感器设置在第一主管内、位于中冷器9与发动机1进气口之间的位置处。
上述进气压力传感器与发动机控制模块电连接,发动机控制模块用于获取进气压力传感器采集的发动机1的进气压力值,并根据发动机1的进气压力值控制第三阀门6的开度。
当发动机1的进气压力值大于第四参考阈值时,若发动机1为低速运转,则需要控制进入第一涡轮增压器2的涡轮室的废气流量减小,若发动机1为高速运转,则需要控制进入第二涡轮增压器3的涡轮室的废气流量减小。当发动机1的进气压力值小于第五参考阈值时,若发动机1为低速运转,则需要控制进入第一涡轮增压器2的涡轮室的废气流量增加,若发动机1为高速运转,则需要控制进入第二涡轮增压器3的涡轮室的废气流量增加,以将发动机1的进气压力值控制在第五参考阈值至第四参考阈值的范围内。
本申请实施例中,在第一涡轮增压器2的增压室出口处设置有仅供气体从第一涡轮增压器2向发动机1流通的第一单向阀7,在第二涡轮增压器3的增压室出口处设置有仅供气体从第二涡轮增压器3向发动机1流通的第二单向阀8,以避免第一涡轮增压器2的增压室和第二涡轮增压器3的增压室的压力不稳定对发动机1的进气产生不良影响。
综上所述,本申请实施例中的发动机涡轮增压系统既能够使发动机1 同时兼顾高速运转时的响应性和低速运转时的响应性,降低了对排气管的设计要求,又能够保护涡轮增压器,减小涡轮增压器被损坏的可能。
又一方面,本申请实施例还提供一种作业机械,包括上述任一实施例提供的发动机涡轮增压系统。具有上述发动机涡轮增压系统的全部优点,在此不再赘述。本申请实施例中的作业机械的有益效果的推导过程与上述发动机涡轮增压系统的有益效果的推导过程大体类似,故此处不再赘述。
本实施例中的作业机械可以为挖掘机等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种发动机涡轮增压方法,包括:
    获取发动机的转速值;
    当所述发动机的转速值小于第一参照阈值且大于零时,控制所述发动机排出的废气进入第一涡轮增压器的涡轮室、以单独利用所述第一涡轮增压器的增压室为所述发动机的进气管路提供压缩空气,否则,控制所述发动机排出的废气进入第二涡轮增压器的涡轮室、以单独利用所述第二涡轮增压器的增压室为所述发动机的进气管路提供压缩空气;
    其中,所述第一涡轮增压器的A/R值小于所述第二涡轮增压器的A/R值,所述A/R值为涡轮室的进气口面积与涡轮的半径之间的比值。
  2. 根据权利要求1所述的发动机涡轮增压方法,还包括:
    获取所述第一涡轮增压器的转速值和所述第二涡轮增压器的转速值;
    当所述第一涡轮增压器的转速值大于第二参考阈值时,控制进入所述第一涡轮增压器的涡轮室的废气流量减小;
    或当所述第二涡轮增压器的转速值大于第三参考阈值时,控制进入所述第二涡轮增压器的涡轮室的废气流量减小。
  3. 根据权利要求1或2所述的发动机涡轮增压方法,还包括:
    获取所述发动机的进气压力值;
    当所述发动机的进气压力值大于第四参考阈值时,控制进入所述第一涡轮增压器的涡轮室的废气流量减小;当所述发动机的进气压力值小于第五参考阈值时,控制进入所述第一涡轮增压器的涡轮室的废气流量增加;
    或当所述发动机的进气压力值大于第四参考阈值时,控制进入所述第二涡轮增压器的涡轮室的废气流量减小;当所述发动机的进气压力值小于第五参考阈值时,控制进入所述第二涡轮增压器的涡轮室的废气流量增加,所述第四参考阈值大于所述第五参考阈值。
  4. 一种发动机涡轮增压系统,包括发动机、第一涡轮增压器、第二涡轮增压器、第一阀门、第二阀门和发动机控制模块,所述第一涡轮增 压器的A/R值小于所述第二涡轮增压器的A/R值,所述A/R值为涡轮室的进气口面积与涡轮的半径之间的比值;
    所述第一涡轮增压器的增压室出口和所述第二涡轮增压器的增压室出口均与所述发动机的进气口连接,所述第一涡轮增压器的涡轮室进口和所述第二涡轮增压器的涡轮室进口均与所述发动机的排气口连接,所述第一阀门配置为控制所述第一涡轮增压器的涡轮室进口与所述发动机的排气口之间的通断,所述第二阀门配置为控制所述第二涡轮增压器的涡轮室进口与所述发动机的排气口之间的通断;
    所述发动机的内部设置有用于采集所述发动机的转速值的第一转速传感器,所述第一转速传感器、第一阀门和第二阀门均与所述发动机控制模块电连接,所述发动机控制模块设置为获取所述第一转速传感器采集的所述发动机的转速值、并根据所述发动机的转速值控制所述第一阀门和所述第二阀门的动作。
  5. 根据权利要求4所述的发动机涡轮增压系统,其中,所述发动机的排气口处还设置有旁通管路,所述旁通管路上设置有第三阀门,所述第三阀门的开度可以调节。
  6. 根据权利要求5所述的发动机涡轮增压系统,其中,所述第一涡轮增压器的内部设置有用于采集所述第一涡轮增压器的转速值的第二转速传感器,所述第二涡轮增压器的内部设置有用于采集所述第二涡轮增压器的转速值的第三转速传感器;
    所述第二转速传感器、所述第三转速传感器和所述第三阀门均与所述发动机控制模块电连接,所述发动机控制模块设置为获取所述第二转速传感器采集的所述第一涡轮增压器的转速值和所述第三转速传感器采集的所述第二涡轮增压器的转速值、并根据所述第一涡轮增压器的转速值或所述第二涡轮增压器的转速值控制所述第三阀门的开度。
  7. 根据权利要求5或6所述的发动机涡轮增压系统,其中,所述发动机的进气口处设置有用于采集所述发动机的进气压力值的进气压力传感器,所述进气压力传感器与所述发动机控制模块电连接,所述发动机控制模块设置为获取所述进气压力传感器采集的所述发动机的进气压力值、并根据所述发动机的进气压力值控制所述第三阀门的开度。
  8. 根据权利要求4所述的发动机涡轮增压系统,其中,所述第一涡轮增压器的增压室出口处设置有仅供气体从所述第一涡轮增压器向所述发动机流通的第一单向阀;
    所述第二涡轮增压器的增压室出口处设置有仅供气体从所述第二涡轮增压器向所述发动机流通的第二单向阀。
  9. 根据权利要求4所述的发动机涡轮增压系统,还包括中冷器,所述第一涡轮增压器的增压室出口和所述第二涡轮增压器的增压室出口均与所述中冷器的进口端连接,所述发动机的进气口与所述中冷器的出口端连接。
  10. 一种作业机械,包括如权利要求4-9任一项所述的发动机涡轮增压系统。
PCT/CN2022/102356 2022-02-25 2022-06-29 发动机涡轮增压方法及发动机涡轮增压系统 WO2023159838A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210191165.6A CN114562362A (zh) 2022-02-25 2022-02-25 发动机涡轮增压方法及发动机涡轮增压系统
CN202210191165.6 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023159838A1 true WO2023159838A1 (zh) 2023-08-31

Family

ID=81716262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102356 WO2023159838A1 (zh) 2022-02-25 2022-06-29 发动机涡轮增压方法及发动机涡轮增压系统

Country Status (2)

Country Link
CN (1) CN114562362A (zh)
WO (1) WO2023159838A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114562362A (zh) * 2022-02-25 2022-05-31 上海三一重机股份有限公司 发动机涡轮增压方法及发动机涡轮增压系统
CN115506881A (zh) * 2022-09-28 2022-12-23 潍柴动力股份有限公司 一种发动机增压系统、控制方法及车辆
CN115638048B (zh) * 2022-12-26 2023-04-18 潍柴动力股份有限公司 双增压系统及其增压控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030050110A (ko) * 2001-12-18 2003-06-25 현대자동차주식회사 차량용 터보챠저
EP1710415A1 (de) * 2005-04-04 2006-10-11 ABB Turbo Systems AG Mehrstufige Aufladung
CN102272426A (zh) * 2009-03-06 2011-12-07 丰田自动车株式会社 多级增压系统控制装置
CN111350555A (zh) * 2018-12-20 2020-06-30 通用汽车环球科技运作有限责任公司 带流量控制阀的双涡卷涡轮
CN114562362A (zh) * 2022-02-25 2022-05-31 上海三一重机股份有限公司 发动机涡轮增压方法及发动机涡轮增压系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101082302B (zh) * 2006-05-30 2012-05-30 卡特彼勒公司 具有串联涡轮增压器的发动机的空气流系统
US8297053B2 (en) * 2008-07-31 2012-10-30 Caterpillar Inc. Exhaust system having parallel asymmetric turbochargers and EGR
CN202718754U (zh) * 2012-09-12 2013-02-06 吴爽 涡轮增压器排气端智能可变a/r值机构
CN104632356B (zh) * 2014-12-18 2017-04-12 清华大学 带压缩空气储存装置的并联式发动机两级增压系统及车辆
CN108757158B (zh) * 2018-08-10 2023-09-19 芜湖钻石航空发动机有限公司 一种活塞发动机用涡轮增压器控制机构及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030050110A (ko) * 2001-12-18 2003-06-25 현대자동차주식회사 차량용 터보챠저
EP1710415A1 (de) * 2005-04-04 2006-10-11 ABB Turbo Systems AG Mehrstufige Aufladung
CN102272426A (zh) * 2009-03-06 2011-12-07 丰田自动车株式会社 多级增压系统控制装置
CN111350555A (zh) * 2018-12-20 2020-06-30 通用汽车环球科技运作有限责任公司 带流量控制阀的双涡卷涡轮
CN114562362A (zh) * 2022-02-25 2022-05-31 上海三一重机股份有限公司 发动机涡轮增压方法及发动机涡轮增压系统

Also Published As

Publication number Publication date
CN114562362A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2023159838A1 (zh) 发动机涡轮增压方法及发动机涡轮增压系统
KR102440581B1 (ko) 엔진 시스템
CN105464769A (zh) 一种双流道动力涡轮系统及其控制方法
CN105386857A (zh) 内燃机二级增压控制系统及其控制方法
KR102588946B1 (ko) 차량의 서지 발생 방지방법
KR102633858B1 (ko) 엔진 시스템 및 이의 제어 방법
KR20150010842A (ko) 엔진 시스템
CN205154376U (zh) 内燃机二级增压控制系统
JPS6050980B2 (ja) 排気タ−ボ過給式エンジンにおける排気ガス還流装置
KR20030047305A (ko) 터보 차져 시스템 및 그 제어방법
KR102109422B1 (ko) 3단 터보 차저 시스템 및 그 제어방법
CN103615324B (zh) 一种量调节式增压内燃机的进排气端双节气门控制方法及其实现机构
CN219865232U (zh) 一种相继增压系统
CA3116795C (en) Exhaust gas recirculation system and engine
JP5067268B2 (ja) 過給機付きエンジンの過給圧制御装置
JPS58195023A (ja) 排気タ−ボ過給機付き内燃機関
JPH03275939A (ja) 過給機付エンジンの制御方法
JPS5843568B2 (ja) 内燃機関の排気タ−ボ過給装置
KR20210064637A (ko) 터보차저 엔진의 서지 저감장치
CN115506881A (zh) 一种发动机增压系统、控制方法及车辆
JPS6140415A (ja) 排気タ−ボ過給機付エンジンの制御装置
JPH0540272Y2 (zh)
KR100773697B1 (ko) 터보-차져 엔진의 과급 압력 조절 시스템 및 그 방법
JP2675838B2 (ja) 排気ターボ過給機付エンジンの制御装置
CN116146333A (zh) 一种用于拖网渔船相继增压系统的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928108

Country of ref document: EP

Kind code of ref document: A1