WO2023159615A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2023159615A1
WO2023159615A1 PCT/CN2022/078446 CN2022078446W WO2023159615A1 WO 2023159615 A1 WO2023159615 A1 WO 2023159615A1 CN 2022078446 W CN2022078446 W CN 2022078446W WO 2023159615 A1 WO2023159615 A1 WO 2023159615A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
substrate
along
size
compensation structure
Prior art date
Application number
PCT/CN2022/078446
Other languages
English (en)
French (fr)
Inventor
李伟
张小凤
陈延青
张昭
李必奇
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/078446 priority Critical patent/WO2023159615A1/zh
Priority to CN202280000324.8A priority patent/CN117063114A/zh
Publication of WO2023159615A1 publication Critical patent/WO2023159615A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • Embodiments of the present disclosure relate to but are not limited to the field of display technologies, and in particular, relate to a display panel and a display device.
  • Curved display panels have become more popular due to their better viewing angle characteristics and wide field of view. Curved display panels are widely used in large-sized products with display functions such as computers, televisions (TVs), medical monitoring devices, and vehicle-mounted central control devices.
  • display functions such as computers, televisions (TVs), medical monitoring devices, and vehicle-mounted central control devices.
  • An embodiment of the present disclosure provides a display panel, including: a first substrate and a second substrate oppositely arranged, and the first substrate and the second substrate are curved structures;
  • the first substrate includes a first base, and a black matrix layer disposed on a side of the first base close to the second substrate;
  • the second substrate includes a second base, and a plurality of first signal lines disposed on a side of the second base close to the first substrate, and the plurality of first signal lines extend along a second direction and along Arranged in a fourth direction, the fourth direction intersects the second direction in the curved surface where the second substrate is located;
  • the black matrix layer includes a plurality of first body structures corresponding to the plurality of first signal lines, at least one side of the first body structure is provided with a first compensation structure, where the first substrate is located In the curved surface, the first body structure and the first compensation structure extend along the second direction and are arranged along the fourth direction, and the fourth direction and the second direction intersects;
  • An orthographic projection of any one of the first signal lines on the second substrate is located within a range of orthographic projections of the corresponding first body structure and the first compensation structure on the second substrate.
  • the display panel is bent toward a side of the second substrate away from the first substrate, and in a fourth direction, in any set of the first body structure and the first compensation
  • the first compensation structure is located between the first body structure and the first centerline; or, the display panel is bent toward the side of the first substrate away from the second substrate, and the fourth side upwardly, in any set of said first body structure and said first compensation structure, said first body structure is located between said first compensation structure and said first midline; wherein said first midline is the centerline of the display panel extending along the second direction.
  • the display panel includes a first side and a second side disposed opposite to each other along a fourth direction. From the first compensation structure at the midline position to the first compensation structure far away from the third midline position, the size along the fourth direction gradually decreases; between the first midline and the second side, from the first compensation structure close to the fourth midline position The size of the first compensation structure along the fourth direction gradually decreases to a position away from the fourth midline;
  • the third centerline is the centerline of the display panel extending along the second direction between the first centerline and the first side, and the fourth centerline is between the first centerline and the second side A centerline between the display panels extends along the second direction.
  • the display panel is divided into a plurality of regions along the fourth direction, and the plurality of regions include a first region and two k-th regions, where 2 ⁇ k ⁇ N, N is a positive integer greater than or equal to 2, and for any value of k, the two areas corresponding to any value of k are set symmetrically with respect to the first midline along the fourth direction;
  • the multiple first compensation structures located in the first area have the same size along the fourth direction, and the multiple first compensation structures located in the area corresponding to the same k value have the same size along the fourth direction.
  • the multiple regions include one first region, two second regions, and two third regions, the first region is arranged symmetrically with respect to the first midline along the fourth direction, and the two third regions
  • the second area is arranged symmetrically with respect to the first center line along the fourth direction, and the two third areas are arranged symmetrically with respect to the first center line along the fourth direction;
  • the first area and the third area are arranged symmetrically relative to the third center line along the fourth direction, and the second area is arranged relative to the third center line along the fourth direction.
  • the third center line is arranged symmetrically; the display panel located between the first center line and the second side, the first area and the third area are arranged symmetrically with respect to the fourth center line along the fourth direction, and the second area It is arranged symmetrically with respect to the fourth centerline along the fourth direction.
  • each of the two sides of the first centerline is divided into N-2 concentric annular areas, and the area located at the center of the inner side of the annular area is the first area.
  • the area located on the periphery of the annular area is the Nth area
  • any Jth area on the display panel contains two, J ranges from 1 to N, and the two Jth areas are located on both sides of the first centerline and the two Jth areas
  • the regions are symmetrical with respect to the first centerline in the fourth direction, and any Jth region is arranged symmetrically with respect to the second centerline, and the second centerline is the centerline of the display panel extending along the fourth direction;
  • the multiple first compensation structures located in the first area have the same size along the fourth direction, and the multiple first compensation structures located in the area corresponding to the same J value have the same size along the fourth direction.
  • the multiple areas include two first areas, two second areas, and two third areas
  • the second area is an annular area
  • the first area is located in the annular area of the second area
  • the third area is located in the peripheral area of the annular area of the second area.
  • the size of the structures along the fourth direction gradually decreases.
  • the size of the first compensation structure along the fourth direction is based on the size of the first base and the second base along the bending direction, the first substrate and the second base. At least one of the size of the second substrate along the second direction, the size of the first substrate and the second substrate along the fourth direction, and the radius of curvature of the display panel is set, and the radius of curvature of the display panel is The radius of curvature of the surface.
  • the size of the first compensation structure along the fourth direction is proportional to the size of the first base and the second base along the bending direction.
  • the size of the first substrate and the second substrate along the second direction, the size of the first substrate and the second substrate along the fourth direction, and the curvature of the display panel When the radii are kept constant, the dimension of the first compensation structure along the fourth direction has a linear relationship with the sum of the dimensions of the first base and the second base along the bending direction.
  • the size of the first compensation structure in the fourth direction is the same as that of the first base and the second base along the curve
  • the relationship between dimensions in the direction is expressed by the following formula:
  • x is the sum of the dimensions of the first substrate and the second substrate in the bending direction
  • y is the dimension of the first compensation structure along the fourth direction
  • x is greater than or equal to 0.3 microns and less than or equal to 1 micron
  • y is greater than or equal to Equal to 8 microns, less than or equal to 30 microns.
  • the size of the first compensation structure in the fourth direction is proportional to the sizes of the first substrate and the second substrate along the fourth direction.
  • the The dimension of the first compensation structure along the fourth direction has a linear relationship with the dimension of the first substrate and the second substrate along the fourth direction; the aspect ratio is the dimension of the display panel along the second direction and The ratio of the size of the display panel along the fourth direction.
  • the radius of curvature is 780 mm
  • the aspect ratio of the display panel is 55%
  • x is the size of the first substrate and the second substrate along the fourth direction
  • y is the size of the first compensation structure along the fourth direction
  • x is greater than or equal to 250 mm and less than or equal to 550 mm
  • y is greater than or equal to 8 microns, less than or equal to 20 microns.
  • the radius of curvature is 780 mm
  • the aspect ratio of the display panel is 37%
  • x is the size of the first substrate and the second substrate along the fourth direction
  • y is the size of the first compensation structure along the fourth direction
  • x is greater than or equal to 250 mm and less than or equal to 550 mm
  • y is greater than or equal to 5 microns, less than or equal to 15 microns.
  • the dimension of the first compensation structure in the fourth direction is proportional to the width-to-length ratio
  • the aspect ratio is a ratio of the size of the display panel along the second direction to the size of the display panel along the fourth direction.
  • the dimensions of the first substrate and the second substrate along the bending direction are both 0.15 mm
  • the dimensions of the first substrate and the second substrate along the fourth direction are 327.7 mm
  • the relationship between the size of the first compensation structure in the fourth direction and the aspect ratio is expressed by the following formula:
  • x is the aspect ratio of the display panel
  • y is the size of the first compensation structure along the fourth direction; the value range of x is greater than or equal to 10%, less than or equal to 60%; y is greater than or equal to 0.9 microns, less than Or equal to 9 microns.
  • the size of the first compensation structure in the fourth direction is proportional to the displacement of the display panel along the bending direction
  • the displacement of the display panel along the bending direction is the vertical distance between the midline position of the display panel with the curved structure extending along the second direction and the midpoint of the line connecting the two ends of the display panel with the curved structure.
  • the size of the first compensation structure along the fourth direction is expressed by the following formula:
  • x is the displacement of the display panel along the bending direction
  • y is the dimension of the first compensation structure along the fourth direction
  • the value range of x is greater than or equal to 2 millimeters, less than or equal to 14 millimeters
  • y is greater than or equal to 1 micron, less than or equal to 8 microns.
  • the amount of displacement of the display panel along the bending direction has the following relationship with the radius of curvature of the display panel:
  • L is the size of the display panel along the fourth direction
  • R is the curvature radius of the curved surface where the display panel is located
  • M is the displacement in the bending direction of the display panel.
  • the curvature radius R may be 780 mm to 5000 mm
  • the displacement M in the bending direction of the display panel may be 2 mm to 14 mm.
  • the black matrix layer further includes a second compensation structure, and the second compensation structure and the first compensation structure are arranged symmetrically with respect to a center line extending along the second direction of the first body structure.
  • the first substrate further includes a plurality of color-resisting elements disposed on a side of the first substrate close to the second substrate, and within the curved surface where the first substrate is located, the plurality of color-resisting elements A color-resistive element is arranged alternately with the first body structure and the first compensation structure in the fourth direction, and extends along the second direction.
  • the first substrate is further provided with a first alignment layer and a plurality of supporting structures, and the black matrix layer and the plurality of color-resistive elements are located between the first alignment layer and the first Between the substrates, the support structure is disposed on a side of the first alignment layer close to the second substrate;
  • the black matrix layer further includes a plurality of third body structures corresponding to the plurality of support structures, at least one of the third body structures is provided with a third compensation structure, and within the curved surface where the first substrate is located, The third compensating structure is located on one side of the third body structure in a fourth direction;
  • the orthographic projection of the support structure on the second substrate is located within the range of the orthographic projections of the third body structure and the third compensation structure on the second substrate; the third body structure and the first The body structure has an overlapping area; the size of the third body structure and the third compensation structure along the fourth direction is larger than the size of the first body structure and the first compensation structure along the fourth direction.
  • the size of the third compensation structure along the fourth direction is set in the same manner as the size of the first compensation structure along the fourth direction.
  • the display panel is bent toward a side of the second substrate away from the first substrate, and in a fourth direction, in any set of the third body structure and the third compensation
  • the third compensation structure is located between the third body structure and the first center line; or, the display panel is bent toward the side of the first substrate away from the second substrate, in the fourth direction, in any In a group of the third body structure and the third compensation structure, the third body structure is located between the third compensation structure and the first center line; wherein, the first center line is the edge of the display panel The midline extending in the second direction.
  • the side of the second substrate close to the first substrate is further provided with a plurality of second signal lines and via holes, and the second signal lines are along the curved surface of the second substrate. extending in the fourth direction and arranged along the second direction;
  • the black matrix layer further includes a plurality of second body structures corresponding to the plurality of second signal lines, and the plurality of second body structures extend along a fourth direction within the curved surface of the first substrate, and along the Arrangement in the second direction;
  • Orthographic projections of the plurality of second signal lines and the via holes on the second substrate are located within a range of the corresponding orthographic projections of the second body structure on the second substrate;
  • the black matrix layer further includes a fourth compensation structure, and the fourth compensation structure and the third compensation structure are arranged symmetrically with respect to a center line extending along the second direction of the third body structure.
  • the black matrix layer further includes a fifth compensation structure and a sixth compensation structure, and the fifth compensation structure and the sixth compensation structure extend along a fourth direction relative to the third body structure Midline symmetry setting.
  • Embodiments of the present disclosure further provide a display device, including the display panel described in any one of the above embodiments.
  • FIG. 1a is a schematic cross-sectional structure diagram of a display panel in an unbent state provided by an embodiment of the present disclosure
  • FIG. 1b is a schematic cross-sectional structure diagram of a display panel provided by an embodiment of the present disclosure
  • FIG. 1c is a schematic diagram of a cross-sectional structure of a display panel provided by an embodiment of the present disclosure
  • FIG. 1d is a schematic diagram of a partial planar structure of a display panel provided by an embodiment of the present disclosure
  • FIG. 1e is a schematic diagram of a partial planar structure of a display panel provided by an embodiment of the present disclosure
  • FIG. 1f is a schematic cross-sectional structure diagram of a display panel in an unbent state provided by an embodiment of the present disclosure
  • FIG. 2a is a schematic plan view of an analog display panel provided by an exemplary embodiment of the present disclosure
  • FIG. 2b is a schematic cross-sectional structure diagram of an analog display panel provided by an exemplary embodiment of the present disclosure
  • FIG. 2c and FIG. 2d are dislocation distribution diagrams of a simulated display panel according to an exemplary embodiment of the present disclosure
  • Fig. 2e is a schematic diagram of light leakage of a curved display panel
  • FIG. 2f is a dislocation distribution diagram of a simulated display panel provided by an exemplary embodiment of the present disclosure.
  • FIG. 2g is a dislocation distribution diagram of a simulated display panel provided by an exemplary embodiment of the present disclosure
  • Figure 3a is a schematic diagram showing the relationship between the maximum misalignment of a simulated curved display panel and the thickness of the substrate;
  • Figure 3b is a schematic diagram showing the relationship between the maximum misalignment of a simulated curved display panel and the thickness of the substrate;
  • Figure 3c is a schematic diagram showing the relationship between the maximum misalignment of a simulated curved display panel and the length of the display surface;
  • Figure 3d is a schematic diagram showing the relationship between the maximum misalignment of a simulated curved display panel and the width-to-length ratio of the display panel;
  • Fig. 4a is a schematic diagram of light leakage of a curved display panel
  • Figure 4b is a schematic diagram of light leakage from a curved display panel with a special-shaped structure
  • Figure 5a shows a schematic cross-sectional structure of a display panel
  • Figure 5b is a schematic diagram of a partial planar structure of a display panel in an unbent state
  • FIG. 6a is a schematic diagram of a partial planar structure of a display panel provided by an exemplary embodiment of the present disclosure
  • FIG. 6b is a schematic cross-sectional structure diagram of a display panel
  • FIG. 6c is a schematic cross-sectional structure diagram of a display panel provided by an exemplary embodiment of the present disclosure.
  • FIG. 6d is a schematic cross-sectional structure diagram of a display panel provided by an exemplary embodiment of the present disclosure.
  • FIG. 7a is a schematic diagram of a partial planar structure of a display panel provided by an exemplary embodiment of the present disclosure.
  • Figure 7b shows a schematic cross-sectional structure of a display panel
  • FIG. 7c is a schematic cross-sectional structure diagram of a display panel provided by an exemplary embodiment of the present disclosure.
  • FIG. 7d is a schematic cross-sectional structure diagram of a display panel provided by an exemplary embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a partial planar structure of a display surface provided by an exemplary embodiment of the present disclosure.
  • FIG. 9a is a schematic diagram of a partial planar structure of a display panel provided by an exemplary embodiment of the present disclosure.
  • FIG. 9b is a schematic diagram of a partial planar structure of a display panel provided by an exemplary embodiment of the present disclosure.
  • FIG. 10a is a schematic diagram of a partial planar structure of a display panel provided by an exemplary embodiment of the present disclosure
  • FIG. 10b is a schematic diagram of a partial planar structure of a display panel provided by an exemplary embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a planar structure of a display panel area division provided by an exemplary embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a planar structure of a display panel area division provided by an exemplary embodiment of the present disclosure.
  • connection should be interpreted in a broad sense.
  • it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two components.
  • electrically connected includes the case where constituent elements are connected together through an element having some kind of electrical function.
  • the "element having some kind of electrical action” is not particularly limited as long as it can transmit and receive electrical signals between connected components.
  • Examples of “elements having a certain electrical function” include not only electrodes and wirings but also switching elements such as transistors, resistors, inductors, capacitors, other elements having one or more functions, and the like.
  • parallel refers to a state where the angle formed by two straight lines is -10° to 10°, and thus may include a state where the angle is -5° to 5°.
  • perpendicular refers to a state in which the angle formed by two straight lines is 80° to 100°, and therefore, an angle of 85° to 95° may be included.
  • film and “layer” are interchangeable.
  • conductive layer may sometimes be replaced with “conductive film”.
  • insulating film may sometimes be replaced with “insulating layer”.
  • triangle, rectangle, trapezoid, pentagon, or hexagon in this specification are not strictly defined, and may be approximate triangles, rectangles, trapezoids, pentagons, or hexagons, etc., and there may be some small deformations caused by tolerances. There can be chamfers, arc edges, deformations, etc.
  • Thickness in the present disclosure is the dimension of the film layer in the direction perpendicular to the substrate.
  • curvature A standard for measuring curved display panels is curvature, which can indicate the degree of curvature of a curved display panel.
  • curvature For a curved display panel with a determined size, the smaller the curvature, the larger the curvature of the display panel and the smaller the degree of curvature.
  • the reciprocal of the radius of curvature is the curvature.
  • Different types of products are used in different environments, and have different requirements for size and curvature.
  • the common radius of curvature is 2000 mm, 3000 mm, etc., and there is a tendency to develop to a smaller radius of curvature (such as 1500 mm, 750 mm) to adapt to different Application scenario or usage environment.
  • a TFT liquid crystal display panel For a TFT liquid crystal display panel, it generally includes a color filter substrate, an array substrate, and a liquid crystal layer located between the color filter substrate and the array substrate, etc., and the curved surface is generally curved with different curvatures by cold bending or hot bending. Affected by the Young's modulus and Poisson's ratio of the material, the internal structure will change when it is bent, and the color filter substrate and array substrate will be prone to misalignment and offset, which will easily cause poor image quality problems such as cross-color.
  • the macroscopic performance is that light leakage will occur under the effect of the dark state picture, and as the curvature of the bending radius decreases, the stress increases. Larger, the more obvious the light leakage.
  • An embodiment of the present disclosure provides a display panel, as shown in FIG. 1b to FIG. 1c , which may include a first substrate 11 and a second substrate 12 oppositely arranged, and the first substrate 11 and the second substrate 12 are curved surface structures;
  • the first substrate 11 may include a first base 1101, and a black matrix layer 111 disposed on a side of the first base 1101 close to the second substrate 12;
  • the second substrate 12 may include a second base 1201, and a plurality of first signal lines 121 disposed on a side of the second base 1201 close to the first substrate 11.
  • the plurality of first signal lines 121 extend along the second direction Y, and along the The fourth direction W is arranged, and the fourth direction W intersects the second direction Y within the curved surface where the second substrate 12 is located;
  • the black matrix layer 111 may include a plurality of first body structures a1 corresponding to a plurality of signal lines 121, at least one side of the first body structure a1 is provided with a first compensation structure b1, and within the curved surface where the first substrate 11 is located,
  • the first body structure a1 and the first compensation structure b1 extend along the second direction Y and extend along the fourth direction, and the fourth direction intersects the second direction within the curved surface where the first substrate 11 is located;
  • the orthographic projection of any one of the first signal lines 121 on the second substrate 12 is within the range of the orthographic projections of the corresponding first body structure a1 and first compensation structure b1 on the second substrate 12 .
  • the first compensation structure is arranged on one side of at least one first body structure in the black matrix layer, so that the orthographic projection of the first signal line on the second substrate is located in the corresponding first body structure
  • the orthographic projection of the first compensation structure and the second substrate color crossover of the curved display panel and light leakage of the display panel under the effect of a dark picture are avoided to a large extent.
  • the fourth direction W is perpendicular to the second direction Y, that is, the first The four directions W are the directions along which the curvature of the curved surface where the display panel is located extends.
  • the display panel is bent toward the side of the second substrate 12 away from the first substrate 11 , in the fourth direction W, in any set of first body structures a1 and b1 first
  • the first compensation structure b1 is located between the first body structure a1 and the first center line; wherein, the first center line is the center line (Q-Q) of the display panel extending along the second direction Y.
  • the center of curvature of the curved surface where the display panel is located is located on the side of the first substrate 11 away from the second substrate 12 .
  • FIG. 1a and FIG. 1d which are respectively a schematic cross-sectional structure diagram and a schematic plan structure diagram of the display panel shown in FIG. 1b in an unbent state
  • the first signal line 121 is on the second substrate 12
  • the orthographic projection of is located within the range of the orthographic projection of the corresponding first body structure a1 on the second substrate 12, and the orthographic projection of the midline of the first body structure a1 extending along the second direction Y on the second substrate 12 is the same as the first signal
  • the orthographic projections of the midline of the line 121 extending along the second direction Y on the second substrate 12 overlap, and in any set of the first body structure a1 and the first compensation structure b1, the first compensation structure b1 is located in the first body structure a1 and between the first midline Q-Q.
  • the display panel is bent toward the side of the first substrate 11 away from the second substrate 12, in the fourth direction, in any set of the first body structure a1 and the first compensation structure In b1, the first body structure a1 is located between the first compensation structure b1 and the first centerline; wherein, the first centerline is the centerline (Q-Q) of the display panel extending along the second direction Y.
  • the center of curvature of the curved surface where the display panel is located is located on the side of the second substrate 12 away from the first substrate 11 .
  • FIG. 1e and FIG. 1f they are respectively a schematic view of the planar structure and a schematic view of the cross-sectional structure of the display panel shown in FIG. 1c in an unbent state, and the first signal line 121 is on the second substrate 12.
  • the orthographic projection of is located within the range of the orthographic projection of the corresponding first body structure a1 on the second substrate 12, and the orthographic projection of the midline of the first body structure a1 extending along the second direction Y on the second substrate 12 is the same as that of the corresponding first body structure a1 on the second substrate 12.
  • the orthographic projections of the centerline of a signal line 121 extending along the second direction Y on the second substrate 12 overlap.
  • the first body The structure a1 is located between the first compensation structure b1 and the first center line, as shown in FIG. 1 e ; wherein, the first center line is the center line (Q-Q) of the display panel along the second direction Y.
  • the first signal line 121 may be a data signal line
  • the first substrate 11 may be a color filter substrate
  • the second substrate 12 may be an array substrate.
  • the size of the first compensation structure b1 along the fourth direction W may be based on the size of the first base 1101 and the second base 1201 along the bending direction, the first substrate 11 and the second base 1101. At least one of the size of the second substrate 12 along the second direction Y, the size of the first substrate 11 and the second substrate 12 along the fourth direction W, and the radius of curvature R of the display panel is set, and the radius of curvature R of the display panel is where the display panel is located. The radius of curvature of the surface.
  • the dimensions of the first base 1101 and the second base 1201 along the bending direction can be understood as the thickness of the first base 1101 and the second base 1201, the first substrate 11 and the second substrate 12 along the second direction
  • the size of Y can be understood as the width of the first substrate 11 and the second substrate 12 or the width of the display panel
  • the size of the first substrate 11 and the second substrate 12 along the fourth direction W can be understood as the width of the first substrate 11 and the second substrate.
  • the size of the first compensation structure b1 along the fourth direction W is proportional to the sizes of the first base 1101 and the second base 1201 along the bending direction.
  • the size of the first substrate 11 and the second substrate 13 along the second direction Y, the size of the first substrate 11 and the second substrate 12 along the fourth direction W, and the radius of curvature of the display panel are kept constant.
  • the size of the first compensation structure b1 along the fourth direction W has a linear relationship with the sum of the sizes of the first base 1101 and the second base 1201 along the bending direction.
  • the size of the first compensation structure b1 in the fourth direction W may be the maximum misalignment of the ordinate in FIG.
  • the substrate thickness on the abscissa may be the sum of the dimensions (ie thicknesses) of the first substrate 1101 and the second substrate 1201 along the bending direction.
  • the size of the first compensation structure b1 in the fourth direction W is the same as that of the first substrate 11 and the second substrate 12 in the bending direction.
  • the relationship between dimensions can be expressed by the following formula:
  • x is the sum of the dimensions of the first substrate 1101 and the second substrate 1201 in the bending direction
  • y is the dimension of the first compensation structure b1 along the fourth direction W
  • x is greater than or equal to 0.3 microns, and is less than or equal to 1 micron
  • y is greater than or equal to 8 microns and less than or equal to 30 microns.
  • the size of the first compensation structure b1 in the fourth direction W is proportional to the sizes of the first substrate 11 and the second substrate 12 along the fourth direction W.
  • the dimension of the first compensation structure b1 along the fourth direction W has a linear relationship with the dimension of the first substrate 11 and the second substrate 12 along the fourth direction W; the aspect ratio is the dimension of the display panel along the second direction Y and A ratio of dimensions of the display panel along the fourth direction W.
  • the size of the first compensation structure b1 in the fourth direction W can be the maximum misalignment of the ordinate in Figure 3c, and the size of the first substrate 11 and the second substrate 12 along the fourth direction W can be The length of the substrate on the abscissa in 3c, the size of the first compensation structure b1 in the fourth direction W, and the sizes of the first substrate 11 and the second substrate 12 along the fourth direction W may have a linear relationship.
  • the first The relationship between the size of the compensation structure b1 in the fourth direction W and the sizes of the first substrate 11 and the second substrate 12 along the fourth direction W can be expressed by the following formula:
  • x is the size of the first substrate 11 and the second substrate 12 along the fourth direction W
  • y is the size of the first compensation structure b1 along the fourth direction W
  • x is greater than or equal to 250 mm and less than or equal to 550 mm
  • y is greater than or equal to 8 microns and less than or equal to 20 microns.
  • the first The relationship between the size of the compensation structure b1 in the fourth direction W and the sizes of the first substrate 11 and the second substrate 12 along the fourth direction W can be expressed by the following formula:
  • x is the size of the first substrate 11 and the second substrate 12 along the fourth direction W
  • y is the size of the first compensation structure b1 along the fourth direction W
  • x is greater than or equal to 250 mm and less than or equal to 550 mm
  • y is greater than or equal to 5 microns and less than or equal to 15 microns.
  • the size of the first compensation structure b1 in the fourth direction W is proportional to the width and length; as shown in Figure 3d, the first compensation structure b1
  • the size of the structure b1 along the fourth direction W may be the maximum displacement of the ordinate in FIG. 3d.
  • the dimensions of the first substrate 1101 and the second substrate 1201 along the bending direction are both 0.15 millimeters, and the first substrate 11 and the second substrate 12 are In a display panel with a size of 327.7 mm in four directions W, the relationship between the size of the first compensation structure b1 in the fourth direction W and the aspect ratio can be expressed by the following formula:
  • x is the aspect ratio of the display panel
  • y is the size of the first compensation structure b1 along the fourth direction W; the value range of x is greater than or equal to 10%, less than or equal to 60%; y is greater than or equal to 0.9 microns , less than or equal to 9 microns.
  • the size of the first compensation structure b1 in the fourth direction W may be proportional to the displacement of the display panel along the bending direction;
  • the displacement of the display panel along the bending direction is the vertical distance between the midline of the curved display panel extending along the second direction Y and the midpoint of the line connecting the two ends of the curved display panel.
  • M is the displacement of the display panel along the bending direction.
  • the size of the first substrate 11 and the second substrate 12 along the second direction Y, the size of the first substrate 11 and the second substrate 12 along the fourth direction W, the first base 1101 and the second base 1201 When the dimensions along the bending direction remain unchanged, the dimension of the first compensation structure b1 along the fourth direction W has a linear relationship with the displacement of the display panel along the bending direction. As shown in Figure 3b, the first compensation structure b1 The dimension along the fourth direction W may be the maximum misalignment of the ordinate in Fig. 3b.
  • the size of the first compensation structure b1 along the fourth direction W has a linear relationship with the displacement of the display panel along the bending direction .
  • the first compensating structure b1 along the fourth is expressed by the following formula:
  • x is the displacement of the display panel along the bending direction
  • y is the dimension of the first compensation structure b1 along the fourth direction W
  • the value range of x is greater than or equal to 2 millimeters, less than or equal to 14 millimeters
  • y is greater than or equal to 1 micron, less than or equal to 8 microns.
  • the amount of displacement of the display panel along the bending direction has the following relationship with the radius of curvature of the display panel:
  • L is the size of the display panel along the fourth direction W
  • R is the curvature radius of the curved surface where the display panel is located
  • M is the displacement in the bending direction of the display panel.
  • the curvature radius R may be 780 mm to 5000 mm
  • the displacement M in the bending direction of the display panel may be 2 mm to 14 mm.
  • the black matrix layer 111 may further include a second compensation structure b2, and the second compensation structure b2 and the first compensation structure b1 extend along the second direction Y relative to the first body structure a1.
  • Midline symmetry setting In the embodiment of the present disclosure, the first compensation structure b1 and the second compensation structure b2 are arranged symmetrically on both sides of the first body structure a1 , the compensation method is simple and the process can be simplified.
  • the first substrate 11 further includes a plurality of color-resistive elements 112 disposed on the side of the first base 1101 close to the second substrate 12 , and within the curved surface where the first substrate 11 is located,
  • the plurality of color-resistive elements 112 are arranged alternately with the first body structure a1 and the first compensation structure b1 in the fourth direction W, and extend along the second direction Y.
  • the first substrate 11 is further provided with a first alignment layer 113 and a plurality of supporting structures 103, and a black matrix layer 111 and a plurality of color-resisting elements 112 are located Between the first alignment layer 113 and the first substrate 1101, the support structure 103 is disposed on the side of the first alignment layer 113 close to the second substrate 12;
  • the black matrix layer may also include a plurality of third body structures a3 corresponding to the plurality of support structures 103, at least one third body structure a3 is provided with a third compensation structure b3, within the curved surface where the first substrate 11 is located, on the second
  • the third compensation structure b3 in four directions W is located on one side of the third body structure a3;
  • the orthographic projection of the support structure 103 on the second substrate 12 is within the range of the orthographic projections of the third body structure a3 and the third compensating structure b3 on the second substrate 12; the third body structure a3 overlaps with the first body structure a1 Region; the size of the third body structure a3 and the third compensation structure b3 along the fourth direction W is greater than the size of the first body structure a1 and the first compensation structure b1 along the fourth direction W.
  • the size of the third compensation structure a3 along the fourth direction W is set in the same manner as the size of the first compensation structure a1 along the fourth direction W. That is, the size of the third compensation structure b3 along the fourth direction W depends on the size of the first substrate 1101 and the second substrate 1201 along the bending direction of the display panel, the size of the first substrate 11 and the second substrate 12 along the second direction Y, the first The substrate 11 and the second substrate 12 are arranged along at least one of the size of the fourth direction W and the radius of curvature of the display panel.
  • the radius of curvature of the display panel is the radius of curvature of the curved surface on which the display panel is located.
  • the display panel is bent toward the side of the second substrate 12 away from the first substrate 11, in the fourth direction W, in any group of third bodies Among the structure a3 and the third compensation structure b3, the third compensation structure b3 is located between the third body structure a3 and the first centerline, wherein the first centerline is within the curved surface where the display panel is located, and the display panel extends along the second direction Y midline.
  • the display panel is bent toward the side of the first substrate 11 away from the second substrate 12, in the fourth direction W, in any group of third bodies
  • the third body structure a3 is located between the third compensation structure b3 and the first centerline, wherein the first centerline is within the curved surface where the display panel is located, and the display panel extends along the second direction Y midline.
  • the supporting structure 103 on the display panel can be replaced by the corresponding third body structure a3 and the third compensation structure b3.
  • the compensation structure b3 is shielded to avoid light leakage or cross-color phenomenon caused by the displacement of the first substrate 11 and the second substrate 12 due to the bending of the display panel.
  • a plurality of second signal lines 122 and via holes 123 are provided on the side of the second substrate 1201 close to the first substrate 11, and the second signal lines 122 are on the second
  • the curved surface where the second substrate 12 is located extends along the fourth direction W and is arranged along the second direction Y;
  • the black matrix layer 111 may further include a plurality of second body structures a2 corresponding to the plurality of second signal lines 122, and the plurality of second body structures a2 extend along the fourth direction W within the curved surface of the first substrate 11 and along the second Arranged in the direction Y, and arranged in the fourth direction W;
  • the orthographic projections of the plurality of second signal lines 122 and via holes 123 on the second substrate 12 are located within the range of the orthographic projection of the corresponding second body structure a2 on the second substrate 12;
  • first body structure a1 There is an overlapping area among the first body structure a1 , the second body structure a2 and the third body structure a3 .
  • the black matrix layer 111 may further include a fourth compensation structure b4, and the fourth compensation structure b4 and the third compensation structure b3 extend along the second direction Y relative to the third body structure a3. Midline symmetry setting.
  • the black matrix layer 111 may further include a fifth compensation structure b5 and a sixth compensation structure b6, and the fifth compensation structure b5 and the sixth compensation structure b6 are along the edge of the third body structure a3.
  • the central line extending in the fourth direction W is arranged symmetrically.
  • the third compensation structure b3 to the sixth compensation structure b6 can be set on the third body structure a3, so that the support structure 103 can be completely covered by the third body structure a3 and the third compensation structure b3 to the sixth compensation structure.
  • the liquid crystal layer between the first substrate 11 and the second substrate 12 will Abnormal display caused by abnormal orientation usually occurs in the area.
  • the third body structure a3 on the black matrix layer and the third compensation structure b3 to the sixth compensation structure b6 arranged around the third body structure a3 can block the display due to the support structure 103 Scratching the alignment layer results in an abnormal display area, so that the problem of abnormal display of the display panel caused by the scratching of the alignment layer by the support structure 103 can be avoided as much as possible.
  • St2 is the dimension of the third compensation structure b3 and the fourth compensation structure b4 along the fourth direction
  • St3 is the dimension of the fifth compensation structure b5 and the sixth compensation structure b6 along the second direction Y.
  • a plurality of first black matrix structures 1111, a plurality of second black matrix structures 1112 and a plurality of third black matrix structures 1113 may be arranged on the black matrix layer 111; any one of the first black matrix structures
  • the structure 1111 can be composed of the above-mentioned first body structure a1 and the first compensation structure b1 arranged on one side of the first body structure; or any one of the first black matrix structures 1111 can be composed of the above-mentioned first body structure a1, the first compensation structure b1 and the second compensation structure b2;
  • any second black matrix structure 1112 can be composed of the above-mentioned second body structure a2;
  • any third black matrix structure 1113 can be composed of the above-mentioned third body structure a3 and arranged around the third body structure
  • the third compensation structure b3 to the sixth compensation structure b6 are formed.
  • the plurality of first black matrix structures 1111, the plurality of second black matrix structures 1112, and the plurality of third black matrix structures 1113 may be integrally formed structures.
  • the display panel includes a first side D1 and a second side D2 oppositely arranged along a fourth direction W.
  • the size of the first compensation structure b1 along the fourth direction W gradually decreases from the position close to the third center line P-P to the first compensation structure b1 far away from the third center line P-P;
  • the size of the first compensation structure b1 near the fourth center line O-O to the first compensation structure b1 away from the fourth center line O-O gradually decreases in size along the fourth direction W;
  • the third center line P-P is the center line extending along the second direction of the display panel located between the first center line Q-Q and the first side D1
  • the fourth center line O-O is the center line of the display panel located between the first center line Q-Q and the second side D2 along the second direction.
  • the midline extending in the Y direction.
  • the size of the direction W is larger than the size of the displacement amount Shift1 along the fourth direction W (in the fourth direction W, the displacement amount Shift2 is located between the third centerline P-P and the displacement amount Shift1); correspondingly, between the first centerline Q-Q and the first In the area of the display panel between the sides D1, the size along the fourth direction gradually decreases from the first compensation structure b1 close to the third centerline P-P to the first compensation structure b1 away from the third centerline P-P, for example, as shown in FIG.
  • the size of the compensation amount St12 of the first compensation structure b1 along the fourth direction W is larger than the size of the compensation amount St11 of the first compensation structure b1 along the fourth direction W (the compensation amount St12 is located between the third centerline P-P and the compensation amount St11 between).
  • the display panel may be divided into a plurality of regions along the fourth direction W, and the plurality of regions include a first region H1 and two k-th regions Hk, wherein, 2 ⁇ k ⁇ N, N is a positive integer greater than or equal to 2, for any value of k, the two areas Hk corresponding to any value of k are arranged symmetrically with respect to the first center line along the fourth direction W; the area located in the first area H1
  • the dimensions of the plurality of first compensation structures b1 along the fourth direction W are the same, and the dimensions of the plurality of first compensation structures 1 located in the region Hk corresponding to the same k value are the same along the fourth direction W.
  • the multiple regions include one first region H1, two second regions H2, and two third regions H3, and the first region H1 is along the fourth direction W
  • the two second regions H2 are arranged symmetrically with respect to the first centerline Q-Q along the fourth direction W
  • the two third regions H3 are arranged symmetrically with respect to the first centerline Q-Q along the fourth direction W.
  • the first region H1 and the third region H3 are arranged symmetrically with respect to the third center line P-P along the fourth direction W, and the second region H2 Arranged symmetrically along the fourth direction W with respect to the third centerline P-P; in the display panel located between the first centerline Q-Q and the second side D2, the first area H1 and the third area H3 are arranged along the fourth direction W relative to the fourth centerline O-O Symmetrically arranged, the second region H2 is arranged symmetrically along the fourth direction W with respect to the fourth center line O-O.
  • the size of the first compensation structure b1 along the fourth direction W gradually decreases from the first compensation structure b1 to the region away from the third center line P-P; on the display panel located on the first center line Q-Q close to the second side D2, on the fourth center line O-O From the first compensation structure b1 in the O-O region close to the fourth centerline to the first compensation structure b1 in the O-O region away from the fourth centerline, the size of the first compensation structure b1 gradually decreases along the fourth direction W.
  • the size of the third compensation structure b3 along the fourth direction W gradually decreases from the third compensation structure b3 to the region away from the third center line P-P; it is located on the display panel on the first center line Q-Q close to the second side D2, on the fourth center line O-O From the third compensation structure b3 in the region near the fourth centerline O-O to the third compensation structure b3 in the region farther from the fourth centerline O-O, the size of the third compensation structure b3 gradually decreases along the fourth direction W.
  • each of the two sides of the first midline Q-Q is divided into N-2 concentric annular areas, and the area located at the center of the inner side of the annular area is the first Area T1, the area located on the periphery of the annular area is the Nth area Tn, any Jth area TJ on the display panel includes two, J takes a value from 1 to N, and the two Jth areas TJ are located on the first middle line Q-Q
  • the two Jth regions TJ are symmetrical to the first centerline in the fourth direction W, and any one Jth region TJ is arranged symmetrically to the second centerline, and the second centerline is the centerline extending along the fourth direction W of the display panel;
  • the multiple first compensation structures b1 located in the first region T1 have the same size along the fourth direction W, and the multiple first compensation structures b1 located in the region TJ corresponding to the same J value have the same size along the fourth direction W.
  • the multiple areas include two first areas T1, two second areas T2, and two third areas T3, and the second area is a T2 annular area , the first area T1 is located in the center of the annular area of the second area T2, and the third area T3 is located in the peripheral area of the annular area of the second area T2.
  • the size of a compensation structure b1 along the fourth direction W gradually decreases.
  • the third compensation structure b3 in the area close to the third central line P-P to the third compensation structure b3 in the area far from the third central line P-P
  • the size of the structure b3 along the fourth direction W gradually decreases; on the display panel located on the side of the first center line Q-Q close to the second side D2, from the third compensation structure b3 in the area close to the fourth center line O-O to far away from the fourth center line O-O
  • the size of the third compensation structure b3 in the region along the fourth direction W gradually decreases.
  • the third compensation structure b3 and the fourth compensation structure b4 on the curved surface where the display panel is located, on the same side of the first center line, from the third compensation structure b3 and the fourth compensation structure b4 in the area close to the center of the annular area to the position far away from the center of the annular area
  • the size of the third compensation structure b3 and the fourth compensation structure b4 in the region along the fourth direction W gradually decreases.
  • the dimensions of the first compensation structure b1 to the fourth compensation structure b4 along the fourth direction W may be arranged in the same manner.
  • b1 to b4 are all based on the dimensions of the first substrate 1101 and the second substrate 1201 along the bending direction, the dimensions of the first substrate 11 and the second substrate 12 along the second direction Y, the dimensions of the first substrate 11 and the second substrate 12 along the At least one of the dimensions of the four directions W and the radius of curvature of the display panel is set.
  • the second compensation structure b2 on the curved surface where the display panel is located, on the same side of the first midline Q-Q, from the second compensation structure b2 in the area close to the center of the ring-shaped area to the second compensation structure b2 in the area far from the center of the ring-shaped area
  • the size of the second compensation structure b2 along the fourth direction W gradually decreases.
  • the compensation structure is provided on the first body structure a1, the second body structure a2, and the third body structure a3, which can avoid the dislocation of the first substrate 11 and the second substrate 12 after the display panel is bent.
  • the orthographic projection of the centerline position of the first black matrix structure 1111 (including the first body structure a1 and the first compensation structure b1) along the second direction Y on the first substrate 11 It may overlap with the orthographic projection of the first signal line 121 on the first substrate 11 .
  • the orthographic projection of the central position of the third black matrix structure 1113 (including the third body structure a3 and the third compensation structure) on the first substrate 11 may overlap with the orthographic projection of the supporting structure 103 on the first substrate at the midline position.
  • the orthographic projection of the support structure 103 on the first substrate 11 may be located in the central area of the orthographic projection of the third body structure a3 on the first substrate 11 .
  • a curved surface simulation model can be established by simulation software (such as Ansys workbench software) to simulate the display panel, and the first body structure a1 and the second body structure a1 on the first substrate 11 can be simulated.
  • the amount of misalignment between the data signal lines 121 on the two substrates 12 is calculated based on the amount of misalignment obtained through simulation to compensate the first body structure a1.
  • the misalignment of the actual product can be measured by actually manufacturing a curved display panel. quantity.
  • the display panel with a curved surface structure can simulate the distribution of misalignment by simulating the curved surface model.
  • the fixed axis H at the bending center of the panel, the curvature radius R of the display panel is calculated by loading the displacement in the third direction Z, as shown in Figure 2b, the relationship between the displacement M in the third direction Z and the curvature radius R can be calculated by The following formula expresses:
  • L is the length of the display panel along the fourth direction W
  • R is the radius of curvature
  • M is the displacement in the third direction Z
  • the value of the angle F is (L/2)/R.
  • the displacement M loaded in the third direction Z may be the distance between the center position of the curved display panel and the midpoint of the line connecting the two ends of the curved display panel.
  • the displacement amount shift color filter substrate position-array substrate position, as shown in Figure 2c and Figure 2d, it is a distribution diagram of the displacement amount generated by observing the color filter substrate 11 and the array substrate 12 from different viewing angles, and it is displayed on the display
  • the magnitude of the shift amount shift is different, wherein, the depth of the color of c1 only represents the different offset or shift amount on the left side of the center line extending along the second direction Y of the display panel (that is, the first center line Q-Q and the first center line Q-Q and The amount of misalignment generated by the upper and lower substrates in the area of the display panel between the first side D1), the depth of the color of c2 only represents the different offset or misalign
  • the stress birefringence of the color filter substrate 11 and the array substrate 12 produces a phase difference, coupled with the influence of the anisotropy of the liquid crystal, often produces light leakage, which can pass through the dark state.
  • the transmittance can be evaluated by the following formula:
  • ⁇ xy represents the shear force inside the color filter substrate 11 and the array substrate 12 under the action of external force
  • t represents the thickness of the color filter substrate 11 and the array substrate 12 (which can be the size of the first substrate 11 and the second substrate 12 along the bending direction )
  • SOC represents the photoelastic coefficient of the color filter substrate 11 and the array substrate 12
  • T represents the degree of light leakage of the display panel
  • the degree of light leakage T is positively correlated with the square of the thickness of the substrate and the square of the shear force ⁇ xy .
  • the degree of light leakage T can be evaluated by the square distribution of the shear force ⁇ xy , and the degree of light leakage T is positively correlated with the square distribution of the shear force ⁇ xy , as shown in FIG. 2 e .
  • the color filter substrate 11 may be referred to as an upper substrate
  • the array substrate 12 may be referred to as a lower substrate; wherein, the bases in the upper and lower substrates may be referred to as glass.
  • the upper substrate can be basically simplified to a model with only the above-mentioned first substrate 1101
  • the lower substrate can be simplified to a model with only the above-mentioned second substrate 1201 .
  • the shift amount shift of the upper and lower substrates in the first direction X is divided into left and right sides of the fixed axis H (the position of the bending center, which can also be the position of the first midline Q-Q above).
  • the two sides of the fixed axis H are offset, that is, the offset from the fixed axis H along the opposite direction of the first direction X and the offset from the fixed axis H along the first direction X, as shown in Fig. 2a and Fig. 2c.
  • the size of the dislocation amount after bending may be the size of the above-mentioned first compensation structure b1 along the fourth direction W.
  • the dislocation distribution structure observed in the plane of XY in FIG. 2 is actually an orthographic projection of the dislocation along the fourth direction W on the plane of the first direction X and the second direction Y.
  • the simulation results can be It can be seen that the misalignment amount of the upper and lower substrates of the display panel with an aspect ratio of 16:9 is greater than the misalignment amount of the upper and lower substrates of the display panel with an aspect ratio of 16:6.
  • the shift amount shift of the upper and lower substrates is generally related to the base thickness of the upper and lower substrates, the radius of curvature (which can be called the bending radius), the size of the display panel, and the aspect ratio of the display panel.
  • Factors related to the amount of misalignment may also include the materials of the substrate and the sealant. The following simulation is based on the comparison of glass and sealant of the same material with the maximum amount of misalignment shift:
  • the size of the display substrate may be 14.6 inches, and the radius of curvature of the display panel may be 780 mm.
  • the bending radius R (which can be called curvature The smaller the radius R), the greater the maximum displacement shift; as shown in Figure 3b, the maximum displacement shift is proportional to the displacement M along the third direction Z.
  • R5000 indicates that the radius of curvature is 5000 mm
  • R3000 indicates that the radius of curvature is 3000 mm
  • R2000 indicates that the radius of curvature is 2000 mm
  • R780 indicates that the radius of curvature is 780 mm.
  • the substrate length L (the size of the display panel along the fourth direction W) increases from 250 mm to about 550 mm (corresponding to a display panel size of about 10 inches to 22 inches left and right), and the maximum shift shift is linearly related to the length of the substrate.
  • the bending radius (ie curvature radius) of the display panel and the substrate thickness are the same (for example, the length of the display panel along the fourth direction W is 327.7 mm, the curvature radius of the display panel is 780 mm, and the thickness of the upper and lower substrates Both are 0.15 mm), the smaller the width-to-length ratio of the display panel, the smaller the shift amount shift of the upper and lower substrates, as shown in Figure 3d, in the case of the width-to-length ratio W/L>10%, the maximum shift amount shift and the width-length The ratio W/L is basically linear.
  • the size, bending radius (curvature radius), and substrate thickness of the display panel can be initially extended to different requirements and situations to design display panels that meet different requirements and application scenarios.
  • the shift amount shift of the upper and lower substrates of the display panel will generally be larger than that of a normal-shaped display.
  • the misalignment of the panel is small, and the degree of light leakage is small.
  • the maximum shift amount of the upper and lower substrates is 6.1 microns; while in the case of a special-shaped display panel, the maximum shift amount of the upper and lower substrates is 4.3 microns, corresponding to a conventional vehicle-mounted pixel of 50 microns ⁇ 150 microns, using a black matrix ( Black Matrix, abbreviated as BM) for unilateral compensation, the estimated difference in opening (which can be called transmittance) is 5%, and the black matrix is used for bilateral compensation, and the estimated difference in opening is 10%.
  • Black Matrix abbreviated as BM
  • Figure 4a it is a schematic diagram of the light leakage distribution of a 15.6-inch non-special-shaped display panel
  • Figure 4b is a schematic diagram of the light leakage distribution of a 15.6-inch special-shaped display panel. schematic diagram. It can be seen from Figure 4a and Figure 4b that for the same size display panel, the degree of light leakage in the case of special-shaped design is weaker than that of the non-special-shaped display panel. The display effect is better than that of a non-special-shaped display panel.
  • the color filter substrate 11 may include a first base 1101, and a black matrix layer 111 (BM ), the color resistance element 112, the first alignment layer 113 covering the black matrix layer 111 and the color resistance element 112, the color resistance element 112 may include a first color resistance element 1121, a second color resistance element 1122 and a third color resistance element 1123 , the black matrix layer 111 may include a first black matrix structure 1111, a second black matrix structure 1112, and a third black matrix structure 1113; the array substrate 12 may include a second substrate 1201, and data signal lines disposed on the second substrate 1201 121 (SD), gate signal line 122 (Gate), via hole 123 (Via hole), pixel electrode 124, second alignment layer 125 covering the pixel electrode 124, a liquid crystal is arranged between the color filter substrate 11 and the array substrate 12 Layer 102 and support structure 103 (PS), the support structure 103 may include
  • the main support structure 1031 (Main PS) is arranged on the upper and lower substrates. Under normal conditions, the main support structure 1031 can touch the lower substrate and play a role in supporting the upper and lower substrates.
  • the auxiliary support structure 1032 is under normal conditions. The bottom will not touch the lower substrate, and the auxiliary support structure 1032 can contact the lower substrate after the display panel is pressed, so as to play the role of auxiliary support.
  • the main function of the black matrix layer 111 is to shield light, and may be made of one or more materials including photoresin, black resin, and chromium.
  • the first black matrix structure 1111 can be used to divide pixels, the first black matrix structure 1111 and the data signal lines 121 both extend along the second direction Y, and the first black matrix structure 1111 extends along the fourth direction W.
  • the size is larger than the size of the data signal line 121 along the fourth direction W, the orthographic projection of the data signal line 121 on the array substrate 12 falls within the range of the orthographic projection of the first black matrix structure 1111 on the array substrate 12, and the first black
  • the orthographic projection of the matrix structure 1111 on the array substrate 12 is symmetrical along the fourth direction W relative to the center line extending along the second direction Y of the orthographic projection of the data signal lines 121 on the array substrate 12, and there are fluctuations in the manufacturing process of the display panel.
  • the first black matrix structure 1111 and the data signal line 121 are designed in such a way that the size BM_Data of the first black matrix 1111 along the first direction X and the size SD CD of the data signal line 121 along the first direction X can have the following relationship :
  • the alignment of the upper and lower substrates ie, the color filter substrate 11 and the array substrate 12 ) and fluctuations on one side of the first black matrix structure 1111 will not affect the function of the black matrix layer 111 to divide pixels and avoid cross-color.
  • the second black matrix structure 1112 is used to shield the gate signal lines 122 (Gate) and via holes 123 on the array substrate 12 (thin film transistors are also arranged on the array substrate 12, and the via holes are thin film transistors and connection via hole of the pixel electrode 124), the second black matrix structure 1112 and the gate signal line 122 all extend along the fourth direction W, and the orthographic projection of the gate signal line 122 and the via hole 123 on the array substrate 12 falls into the second The black matrix 1112 is within the range of the orthographic projection on the array substrate 12 .
  • the third black matrix structure 1113 is used to block the support structure 103, and the third black matrix structure 1113 may include a first sub-black matrix structure 11131 for blocking the main support structure 1031 (Main PS) and a Blocking the second sub-black matrix structure 11132 of the auxiliary support structure 1032 (Sub PS), the orthographic projection of the main support structure 1031 on the array substrate 12 falls within the range of the orthographic projection of the first sub-black matrix structure 11131 on the array substrate 12
  • the orthographic projection of the auxiliary supporting structure 1032 on the array substrate 12 falls within the range of the orthographic projection of the first sub-black matrix structure 11131 on the array substrate 12 .
  • the center position of the orthographic projection of the main support structure 1031 on the array substrate 12 coincides with the center position of the orthographic projection of the first sub-black matrix structure 11131 on the array substrate 12, and the auxiliary support structure 1032 is on the array substrate 12
  • the central position of the orthographic projection on 12 coincides with the central position of the orthographic projection of the first sub-black matrix structure 11131 on the array substrate 12. Symmetrical structure.
  • the third black matrix structure 1113 performs a certain expansion compensation relative to the support structure 103 (the third compensation structure b3 to the sixth compensation structure b6 are set in the third body structure a3), which can make the first alignment layer 113 (PI) and
  • the second alignment layer 125 can be oriented normally, which can avoid poor light leakage caused by the support structure 103 scratching the second alignment layer 125 on the side of the array substrate 12 after the external force acts.
  • the black matrix structure in the black matrix 111 in the curved display panel is compensated, and the following compensation methods are proposed from the compensation position and compensation size (that is, the size of the compensation structure in the display panel along the fourth direction), as shown in Table 1:
  • the first direction X shown in Table 1 represents the orthographic projection of the displacement amount of the display panel along the fourth direction W in the first direction X.
  • method 2 has the largest pixel opening loss, and the large coverage area of the compensation structure results in a low aperture ratio, while method 5 has the smallest aperture loss (higher aperture ratio), but has a greater risk of light leakage.
  • PPI pixel density unit
  • BM_Data compensates on both sides, and the effect of the opening is small, with a size of 14.6 inches (pixel size 168.3 microns * 168.3 microns), and a bending radius R of 780 mm Take the display panel as an example.
  • the compensation method of 7 microns on one side of the black matrix structure can increase the pixel aperture ratio by 10%.
  • the aperture ratio may be the ratio of the area of the light-transmitting part of the pixel to the total area of the pixel, or the aperture ratio may be the ratio of the light-transmitting part of the pixel after the black matrix layer 111 shielding part and the wiring part are removed.
  • the ratio between the area and the area of the overall pixel, or the aperture ratio may be the ratio of the portion through which light can pass in the overall area of the pixel to the overall area of the pixel.
  • the compensation methods of the first black matrix structure 1111 and the third black matrix structure 1113 are described below:
  • the display panel is bent towards the side of the second substrate 12 away from the first substrate 11.
  • a first compensation structure b1 is provided on the side close to the first midline Q-Q, and the compensation amount is St1, and no compensation structure may be provided on the side away from the first midline.
  • Figure 6b shows that when the first compensation structure is not provided, after the display panel is bent, there is a shift amount shift between each first black matrix structure 1111 and the corresponding signal line 121 along the fourth direction W on the side close to the first centerline , the compensation amount St1 of the first compensation structure b1 along the fourth direction W in FIG. 6a is consistent (equal or approximate) with the corresponding shift amount shift along the fourth direction W in FIG.
  • a curved display panel is formed after the first compensation structure b1 is set on one side of the first midline Q-Q.
  • the orthographic projection of the first signal line 121 on the first substrate 11 falls into the first black matrix structure 1111 on the first Within the scope of the orthographic projection on the substrate 11, under the condition that the setting of the first compensation structure b1 is reasonable, the orthographic projection of the centerline of the first signal line 121 extending along the second direction Y on the first substrate 11 is identical to that of the first black matrix Orthographic projections of the centerline of the structure 1111 extending along the second direction Y on the first substrate 11 overlap.
  • Figures 6b to 6d are schematic cross-sectional views of the display panel after bending.
  • the structure shown in Figure 6b does not compensate the first black matrix structure 1111 before the display panel is bent, and the structure shown in Figure 6c and Figure 6d is bent when the display panel is bent.
  • the first black matrix structure 1111 has been compensated before, and the compensation amount St1 is the size of the first compensation structure b1 along the fourth direction W.
  • the display panel is bent along the side of the first substrate 11 away from the second substrate 12, the first compensation structure b1 is arranged on the side of the first body structure a1 away from the first midline Q-Q, and the first The compensation amount St1 is equal to or close to the corresponding displacement amount Shift (as shown in FIG. 7b ).
  • Figure 7b to Figure 7d are schematic cross-sectional views of the display panel after bending, the structure shown in Figure 7b does not compensate the first body structure a1 before the display panel is bent, and the structure shown in Figure 7c and Figure 7d is before the display panel is bent The first body structure a1 is compensated.
  • the first compensation structure b1 is only provided on one side of the first body structure a1 .
  • the first compensation amount St1 is compensated along the first direction X (that is, the dimensions of the first compensation structure and the second compensation structure along the fourth direction). That is, as shown in FIG. 8 , a first compensation structure b1 and a second compensation structure b2 are provided on both sides of the first body structure a1 .
  • the second compensation amount St2 (the size of the third compensation structure b3 along the fourth direction W), compensates the third compensation amount St3 (the second direction Y) on the side away from the second center line and on the side close to the second center line.
  • the second compensation amount St2 is compensated for any one side of the third black matrix structure 1113 along the first direction X in the plane where the display panel is located.
  • the second compensation amount St2 may be the dimension of the third compensation structure b3 along the first direction X before the display panel is bent, and the dimension of the third compensation structure b3 along the fourth direction after the display panel is bent.
  • the size of the compensation amount can be regardless of the area, and all compensation positions are compensated according to the maximum displacement amount, or each black matrix structure is compensated according to the displacement amount of its own position;
  • One compensation method is to divide the display panel into different areas according to the distribution of the displacement amount shift on the display panel after the display panel is bent, and the compensation amount of each area is roughly the same as the displacement amount of the area. Reference may be made to the above description of the compensation by area division shown in FIG. 11 and FIG. 12 .
  • the way of dividing different areas for compensation because the misalignment amount of each area is different, the compensation amount of each black matrix structure will also be different, which usually leads to inconsistent aperture ratios of the display panel as a whole, and Therefore, the brightness of the display panel in different areas is inconsistent, and the brightness consistency of different areas can be achieved by adjusting the backlight brightness of the display panel (for example, increasing the backlight current in the place where the compensation amount is large), or by adjusting the second in different areas.
  • the pixel electrode 124 (PITO) on the substrate 12 is adjusted to improve the problem of inconsistent brightness of the display panel (such as adjusting the size of the pixel electrode 124 in the same pixel along the fourth direction; there are multiple pixel electrodes 124 in the same pixel.
  • the distance between the multiple pixel electrodes 124 along the fourth direction and the size of the pixel electrodes 124 along the first direction can be adjusted at the same time), or through the matching design of the thickness of the liquid crystal cell (for example, for the area with a low aperture ratio in the Adding a film layer on the liquid crystal layer to reduce the transmittance, so that the overall transmittance of the display panel remains consistent) to improve the problem of inconsistent brightness of the display panel.
  • one or more of the above methods of adjusting the pixel electrodes 124 in different regions, matching the thickness of the liquid crystal cell, and adjusting the brightness of the backlight in different regions can be used to improve the brightness inconsistency in different regions of the display panel. The problem.
  • An embodiment of the present disclosure further provides a display device, including the display panel described in any one of the above embodiments.
  • the display device may be an electronic device with a display function such as a mobile phone, a computer, a television (TV), a medical monitoring device, and a vehicle-mounted central control device.
  • a display function such as a mobile phone, a computer, a television (TV), a medical monitoring device, and a vehicle-mounted central control device.
  • the first compensation structure is provided on only one side of the first body structure in the black matrix layer, so that the orthographic projection of the first signal line on the second substrate is located on the corresponding first body structure.
  • the orthographic projection of the body structure and the first compensating structure on the second substrate color crossover of the curved display panel and light leakage of the display panel under the effect of a dark picture are avoided to a large extent.

Abstract

一种显示面板和显示装置,显示面板包第一基板(11)和第二基板(12);第一基板(11)包括第一基底(1101),以及设置在第一基底(1101)上的黑矩阵层(111);第二基板(12)包括第二基底(1201),以及设置在第二基底(1201)上的多条第一信号线(121),多条第一信号线(121)上设有沿第二方向(Y)延伸并沿第四方向(W)排布,在第二基板(12)所在的曲面内第四方向(W)与第二方向(Y)相交;黑矩阵层(111)包括与多条第一信号线(121)对应的多个第一本体结构(a1),至少一个第一本体结构(a1)的一侧设有第一补偿结构(b1),在第一基板(11)所在的曲面内,第一本体结构(a1)和第一补偿结构(b1)沿第二方向(Y)延伸,并沿第四方向(W)排布,在第一基板(11)所在的曲面内第四方向(W)与第二方向(Y)相交;任意一条第一信号线(121)在第二基板(12)上的正投影位于对应的第一本体结构(a1)和第一补偿结构(b1)在第二基板(12)上的正投影范围内。

Description

显示面板和显示装置 技术领域
本公开实施例涉及但不限于显示技术领域,尤其涉及一种显示面板和显示装置。
背景技术
近年来,曲面显示面板因具有较好的视角特性和广泛的视野而受到更多青睐。曲面显示面板在电脑、电视机(TV)、医疗监控装置、车载中控装置等大尺寸具有显示功能的产品上得到了广泛的应用。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种显示面板,包括:相对设置的第一基板和第二基板,所述第一基板和所述第二基板为曲面结构;
所述第一基板包括第一基底,以及设置在所述第一基底靠近所述第二基板一侧的黑矩阵层;
所述第二基板包括第二基底,以及设置在所述第二基底靠近所述第一基板一侧的多条第一信号线,所述多条第一信号线沿第二方向延伸,并沿第四方向排布,在所述第二基板所在的曲面内所述第四方向与所述第二方向相交;
所述黑矩阵层包括与所述多条第一信号线对应的多个第一本体结构,至少一个所述第一本体结构的一侧设有第一补偿结构,在所述第一基板所在的曲面内,所述第一本体结构和所述第一补偿结构沿第二方向延伸,并沿第四方向排布,在所述第一基板所在的曲面内所述第四方向与所述第二方向相交;
任意一条所述第一信号线在所述第二基板上的正投影位于对应的所述第一本体结构和所述第一补偿结构在所述第二基板上的正投影范围内。
在示例性实施方式中,所述显示面板朝向所述第二基板远离所述第一基板的一侧弯曲,在第四方向上,在任意一组所述第一本体结构和所述第一补偿结构中,所述第一补偿结构位于所述第一本体结构和第一中线之间;或者,所述显示面板朝向所述第一基板远离所述第二基板的一侧弯曲,在第四方向上,在任意一组所述第一本体结构和所述第一补偿结构中,所述第一本体结构位于所述第一补偿结构和所述第一中线之间;其中,所述第一中线为显示面板沿第二方向延伸的中线。
在示例性实施方式中,所述显示面板包括沿第四方向相对设置的第一边和第二边,在显示面板所在的曲面上,在第一中线与第一边之间,自靠近第三中线位置的第一补偿结构至远离第三中线位置的第一补偿结构沿第四方向的尺寸逐渐减小;在第一中线与第二边之间,自靠近第四中线位置的第一补偿结构至远离第四中线位置的第一补偿结构沿第四方向的尺寸逐渐减小;
所述第三中线为位于所述第一中线与所述第一边之间的显示面板沿第二方向延伸的中线,所述第四中线为位于所述第一中线与所述第二边之间的显示面板沿第二方向延伸的中线。
在示例性实施方式中,在显示面板所在的曲面内,将显示面板沿第四方向划分成多个区域,多个区域中包括一个第一区域和2个第k区域,其中,2≤k≤N,N为大于或者等于2的正整数,对于任意一个k的取值所对应的两个区域沿第四方向相对于第一中线对称设置;
位于第一区域中的多个第一补偿结构沿第四方向的尺寸相同,位于同一个k值所对应区域中的多个第一补偿结构沿第四方向的尺寸相同。
在示例性实施方式中,N=3,多个区域包括一个第一区域、两个第二区域、两个第三区域,第一区域沿第四方向相对于第一中线对称设置,两个第二区域沿第四方向相对于第一中线对称设置,两个第三区域沿第四方向相对于第一中线对称设置;
位于所述第一中线与所述第一边之间的显示面板,第一区域和第三区域沿第四方向相对于所述第三中线对称设置,所述第二区域沿第四方向相对于第三中线对称设置;位于所述第一中线与所述第二边之间的显示面板,第一区域和第三区域沿第四方向相对于所述第四中线对称设置,所述第二区域沿 第四方向相对于第四中线对称设置。
在示例性实施方式中,在显示面板所在的曲面内,在第一中线两侧中的每一侧均划分成N-2个同心的环形区域,位于环形区域内侧中心位置的区域为第一区域,位于环形区域外围的区域为第N区域,在显示面板上任意一个第J区域均包含两个,J取值为1至N,两个第J区域位于第一中线两侧且两个第J区域在第四方向上相对于第一中线对称,任意一个第J区域相对于第二中线对称设置,第二中线为显示面板沿第四方向延伸的中线;
位于第一区域位置的多个第一补偿结构沿第四方向的尺寸相同,位于同一个J值所对应区域中的多个第一补偿结构沿第四方向的尺寸相同。
在示例性实施方式中,N=3,多个区域中包括两个第一区域、两个第二区域、两个第三区域,第二区域为环形区域,第一区域位于第二区域的环形区域的中心位置,第三区域位于第二区域的环形区域的外围区域。
在示例性实施方式中,在显示面板所在的曲面上,在第一中线的同一侧,自靠近环形区域中心位置所在区域中的第一补偿结构至远离环形区域中心位置所在区域中的第一补偿结构沿第四方向的尺寸逐渐减小。
在示例性实施方式中,在所述显示面板所在的曲面内,所述第一补偿结构沿第四方向的尺寸根据所述第一基底和第二基底沿弯曲方向的尺寸、第一基板和第二基板沿第二方向的尺寸、所述第一基板和所述第二基板沿第四方向的尺寸、显示面板的曲率半径中的至少一个设置,所述显示面板的曲率半径为所述显示面板所在曲面的曲率半径。
在示例性实施方式中,在显示面板所在的曲面内,所述第一补偿结构沿第四方向上的尺寸与所述第一基底和所述第二基底沿弯曲方向上的尺寸成正比。
在示例性实施方式中,在所述第一基板和所述第二基板沿第二方向的尺寸、所述第一基板和所述第二基板沿第四向的尺寸和所述显示面板的曲率半径均保持不变的情况下,所述第一补偿结构沿第四方向的尺寸与所述第一基底和所述第二基底沿弯曲方向的尺寸之和呈线性关系。
在示例性实施方式中,在尺寸为14.6英寸、曲率半径为780毫米的显示 面板中,所述第一补偿结构在第四方向上的尺寸与所述第一基底和所述第二基底沿弯曲方向上的尺寸之间的关系通过以下公式表达:
y=30.314x-0.1673;
其中,x为第一基底、第二基底在弯曲方向上的尺寸之和,y为第一补偿结构沿第四方向上的尺寸;x大于或者等于0.3微米,小于或者等于1微米;y大于或者等于8微米,小于或者等于30微米。
在示例性实施方式中,在显示面板所在的曲面内,所述第一补偿结构在第四方向上的尺寸与所述第一基板、所述第二基板沿第四方向的尺寸成正比。
在示例性实施方式中,在所述第一基底和所述第二基底沿弯曲方向的尺寸、所述显示面板的宽长比和所述显示面板的曲率半径均保持不变的情况下,所述第一补偿结构沿第四方向的尺寸与所述第一基板和所述第二基板沿第四方向的尺寸呈线性关系;所述宽长比为在显示面板沿第二方向上的尺寸与显示面板沿第四方向上的尺寸的比值。
在示例性实施方式中,在所述第一基底和所述第二基底沿弯曲方向上的尺寸均为0.2微米、曲率半径为780毫米、显示面板的宽长比为55%的显示面板中,所述第一补偿结构在第四方向上的尺寸与所述第一基板、所述第二基板沿第四方向的尺寸之间的关系通过以下公式表达:
y=0.0364x+0.0131;
其中,x为第一基板、第二基板沿第四方向上的尺寸,y为第一补偿结构沿第四方向上的尺寸;x大于或者等于250毫米,小于或者等于550毫米;y大于或者等于8微米,小于或者等于20微米。
在示例性实施方式中,在所述第一基底和所述第二基底在弯曲方向上的尺寸均为0.2毫米、曲率半径为780毫米、显示面板的宽长比为37%的显示面板中,所述第一补偿结构在第四方向上的尺寸与第所述一基板、所述第二基板沿第四方向的尺寸之间的关系通过以下公式表达:
y=0.0231x-0.1021;
其中,x为第一基板、第二基板沿第四方向上的尺寸,y为第一补偿结构沿第四方向上的尺寸;x大于或者等于250毫米,小于或者等于550毫米; y大于或者等于5微米,小于或者等于15微米。
在示例性实施方式中,在宽长比大于或者等于10%且小于或者等于60%的范围内,在曲率半径、所述第一基底和所述第二基底沿弯曲方向的尺寸、所述第一基板和所述第二基板沿第四方向的尺寸均保持不变的情况下,所述第一补偿结构在第四方向上的尺寸与宽长比成正比;
所述宽长比为显示面板沿第二方向上的尺寸与显示面板沿第四方向上的尺寸的比值。
在示例性实施方式中,在曲率半径为780毫米、所述第一基底和所述第二基底沿弯曲方向的尺寸均为0.15毫米、第一基板和第二基板沿第四方向的尺寸为327.7毫米的显示面板中,所述第一补偿结构在第四方向上的尺寸与宽长比之间的关系通过以下公式表达:
y=19.536x-1.823;
其中,x为显示面板的宽长比,y为第一补偿结构沿第四方向上的尺寸;x取值范围为大于或者等于10%,小于或者等于60%;y大于或者等于0.9微米,小于或者等于9微米。
在示例性实施方式中,所述第一补偿结构在第四方向上的尺寸与显示面板沿弯曲方向的位移量成正比;
所述显示面板沿弯曲方向的位移量为曲面结构的显示面板沿第二方向延伸的中线位置与曲面结构的显示面板两端连线中点位置之间的垂直距离。
在示例性实施方式中,在所述第一基板和所述第二基板沿第二方向的尺寸、所述第一基板和所述第二基板沿第四向的尺寸、所述第一基底和所述第二基底沿弯曲方向的尺寸均保持不变的情况下,所述第一补偿结构沿第四方向的尺寸与所述显示面板沿弯曲方向的位移量呈线性关系。
在示例性实施方式中,在尺寸为12.3英寸、所述第一基底和所述第二基底沿弯曲方向的尺寸均为0.2毫米的显示面板中,所述第一补偿结构沿第四方向的尺寸与所述显示面板沿弯曲方向的位移量通过以下公式表达:
y=0.5221x-0.017;
其中,x为所述显示面板沿弯曲方向的位移量,y为第一补偿结构沿第四 方向上的尺寸;x取值范围为大于或者等于2毫米,小于或者等于14毫米;y大于或者等于1微米,小于或者等于8微米。
在示例性实施方式中,显示面板沿弯曲向的位移量与显示面板的曲率半径具有以下关系:
M=R–R*cos((L/2)/R);
其中,L为显示面板沿第四方向上的尺寸,R为显示面板所在曲面的曲率半径,M为在显示面板弯曲方向上的位移量。在示例性实施方式中,曲率半径R可以为780毫米至5000毫米,在显示面板弯曲方向上的位移量M可以为2毫米至14毫米。
在示例性实施方式中,所述黑矩阵层还包括第二补偿结构,所述第二补偿结构和所述第一补偿结构相对于所述第一本体结构沿第二方向延伸的中线对称设置。
在示例性实施方式中,所述第一基板还包括设置在所述第一基底靠近所述第二基板一侧的多个色阻元件,在所述第一基板所在的曲面内,所述多个色阻元件与所述第一本体结构和所述第一补偿结构在第四方向上交替设置,并沿第二方向延伸。
在示例性实施方式中,所述第一基板还设有第一取向层和多个支撑结构,所述黑矩阵层和所述多个色阻元件位于所述第一取向层和所述第一基底之间,所述支撑结构设置于所述第一取向层靠近第二基板的一侧;
所述黑矩阵层还包括与所述多个支撑结构对应的多个第三本体结构,至少一个所述第三本体结构上设有第三补偿结构,在所述第一基板所在的曲面内,在第四方向上所述第三补偿结构位于所述第三本体结构的一侧;
所述支撑结构在第二基板上的正投影位于所述第三本体结构和所述第三补偿结构在所述第二基板上的正投影范围内;所述第三本体结构和所述第一本体结构存在重叠区域;所述第三本体结构和所述第三补偿结构沿第四方向上的尺寸大于所述第一本体结构和所述第一补偿结构沿第四方向上的尺寸。
在示例性实施方式中,在所述显示面板所在的曲面内,所述第三补偿结构沿第四方向的尺寸与所述第一补偿结构沿第四方向的尺寸设置方式相同。
在示例性实施方式中,所述显示面板朝向所述第二基板远离所述第一基板的一侧弯曲,在第四方向上,在任意一组所述第三本体结构和所述第三补偿结构中,所述第三补偿结构位于所述第三本体结构和第一中线之间;或者,所述显示面板朝向第一基板远离第二基板的一侧弯曲,在第四方向上,在任意一组所述第三本体结构和所述第三补偿结构中,所述第三本体结构位于所述第三补偿结构和所述第一中线之间;其中,所述第一中线为显示面板沿第二方向延伸的中线。
在示例性实施方式中,所述第二基底靠近所述第一基板的一侧还设有多个第二信号线和过孔,所述第二信号线在所述第二基板所在曲面内沿第四方向延伸,并沿第二方向排布;
所述黑矩阵层还包括与所述多个第二信号线对应的多个第二本体结构,所述多个第二本体结构在所述第一基板所在曲面内沿第四方向延伸,并沿第二方向排布;
所述多个第二信号线和所述过孔在所述第二基板上的正投影位于对应的所述第二本体结构在第二基板上的正投影的范围内;
所述第一本体结构、所述第二本体结构和所述第三本体结构存在重叠区域。
在示例性实施方式中,所述黑矩阵层还包括第四补偿结构,所述第四补偿结构与所述第三补偿结构相对于所述第三本体结构沿第二方向延伸的中线对称设置。
在示例性实施方式中,所述黑矩阵层还包括第五补偿结构和第六补偿结构,所述第五补偿结构和所述第六补偿结构相对于所述第三本体结构沿第四方向延伸的中线对称设置。
本公开实施例还提供一种显示装置,包括上述任一实施例所述的显示面板。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。附图中每个部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1a所示为本公开实施例提供的在显示面板未弯曲状态下的剖面结构示意图;
图1b所示为本公开实施例提供的在显示面板的剖面结构示意图;
图1c所示为本公开实施例提供的在显示面板的剖面结构示意图;
图1d所示为本公开实施例提供的在显示面板的局部平面结构示意图;
图1e所示为本公开实施例提供的在显示面板的局部平面结构示意图;
图1f所示为本公开实施例提供的在显示面板未弯曲状态下的剖面结构示意图;
图2a所示为本公开示例性实施方式提供的一种模拟显示面板的平面结构示意图;
图2b所示为本公开示例性实施方式提供的一种模拟显示面板的剖面结构示意图;
图2c和图2d所示为本公开示例性实施方式一种模拟显示面板的错位分布图;
图2e所示为一种曲面显示面板漏光示意图;
图2f所示为本公开示例性实施方式提供的一种模拟显示面板的错位分布图;
图2g所示为本公开示例性实施方式提供的一种模拟显示面板的错位分布图;
图3a所示为一种模拟曲面显示面板最大错位量与基板厚度之间的关系示意图;
图3b所示为一种模拟曲面显示面板最大错位量与基板厚度之间的关系示意图;
图3c所示为一种模拟曲面显示面板最大错位量与显示面长度之间的关系示意图;
图3d所示为一种模拟曲面显示面板最大错位量与显示面板宽长比之间的关系示意图;
图4a所示为一种曲面显示面板漏光示意图;
图4b所示为一种异形结构的曲面显示面板漏光示意图;
图5a所示为一种显示面板的剖面结构示意图;
图5b所示为一种在显示面板未弯曲状态下的局部平面结构示意图;
图6a所示为本公开示例性实施例提供的一种在显示面板的局部平面结构示意图;
图6b所示为一种在显示面板的剖面结构示意图;
图6c所示为本公开示例性实施例提供的一种在显示面板的剖面结构示意图;
图6d所示为本公开示例性实施例提供的一种在显示面板的剖面结构示意图;
图7a所示为本公开示例性实施例提供的一种在显示面板的局部平面结构示意图;
图7b所示为一种在显示面板的剖面结构示意图;
图7c所示为本公开示例性实施例提供的一种在显示面板的剖面结构示意图;
图7d所示为本公开示例性实施例提供的一种在显示面板的剖面结构示意图;
图8所示为本公开示例性实施例提供的一种在显示面的局部平面结构示意图;
图9a所示为本公开示例性实施例提供的一种在显示面板的局部平面结构示意图;
图9b所示为本公开示例性实施例提供的一种在显示面板的局部平面结构示意图;
图10a所示为本公开示例性实施例提供的一种在显示面板的局部平面结构示意图;
图10b所示为本公开示例性实施例提供的一种在显示面板的局部平面结构示意图;
图11所示为本公开示例性实施例提供的一种显示面板区域划分平面结构示意图;
图12所示为本公开示例性实施例提供的一种显示面板区域划分平面结构示意图。
具体实施方式
下文中将结合附图对本公开的实施例进行详细说明。实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。为了保持本公开实施例的以下说明清楚且简明,本公开省略了部分已知功能和已知部件的详细说明。本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计
本公开中的附图比例可以作为实际工艺中的参考,但不限于此。例如:每个膜层的厚度和间距、每个信号线的宽度和间距,可以根据实际情况进行调整。本公开中所描述的附图仅是结构示意图,本公开的一个方式不局限于附图所示的形状或数值等。
本说明书中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本说明书中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参 照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述每个构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本说明书中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本说明书中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且可以包括晶体管等开关元件、电阻器、电感器、电容器、其它具有一种或多种功能的元件等。
在本说明书中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,可以包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,可以包括85°以上且95°以下的角度的状态。
在本说明书中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。
本说明书中三角形、矩形、梯形、五边形或六边形等并非严格意义上的,可以是近似三角形、矩形、梯形、五边形或六边形等,可以存在公差导致的一些小变形,可以存在导角、弧边以及变形等。
本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
本公开中的“厚度”为膜层在垂直于基底方向上的尺寸。
衡量曲面显示面板的一个标准是曲率,曲率可以表示曲面显示面板的弯 曲程度,对于尺寸确定的曲面显示面板,曲率越小,显示面板弧度越大、弯曲程度越小,曲率半径的倒数为曲率,曲率半径越大,显示面板的弯曲程度越小,曲率半径越小,显示面板的弯曲程度越大。不同类型产品使用环境差异,对尺寸及曲率有不同需求,常见的曲率半径有2000毫米、3000毫米等,且有向更小曲率半径(如1500毫米、750毫米)发展的趋势,以适应不同的应用场景或使用环境。
对于薄膜晶体管液晶显示面板,一般包含彩膜基板、阵列基板和位于彩膜基板和阵列基板之间的液晶层等,曲面一般是通过冷弯或者热弯方式实现不同曲率的弯曲形态。受材料杨氏模量和泊松比影响,弯曲时内部结构会发生变化,彩膜基板和阵列基板会易发生错位偏移,容易产生串色等画质不良的问题。另外,由于受弯曲外力作用后基板的光弹性特性影响,产生相位差,加之液晶的各项异性,宏观表现为在暗态画面效果下会产生漏光,随着弯曲半径曲率的减小,应力越大,漏光越明显。
本公开实施例提供一种显示面板,如图1b至图1c所示,可以包括相对设置的第一基板11和第二基板12,第一基板11和第二基板12为曲面结构;
第一基板11可以包括第一基底1101,以及设置在第一基底1101靠近第二基板12一侧的黑矩阵层111;
第二基板12可以包括第二基底1201,以及设置在第二基底1201靠近第一基板11一侧的多条第一信号线121,多条第一信号线121沿第二方向Y延伸,并沿第四方向W排布,在第二基板12所在的曲面内第四方向W与第二方向Y相交;
黑矩阵层111可以包括与多条信号线121对应的多个第一本体结构a1,至少一个第一本体结构a1的一侧设有第一补偿结构b1,在第一基板11所在的曲面内,第一本体结构a1和第一补偿结构b1沿第二方向Y延伸,并沿第四方向延伸,在第一基板11所在的曲面内第四方向与第二方向相交;
任意一条第一信号线121在第二基板12上的正投影位于对应的第一本体结构a1和第一补偿结构b1在第二基板12上的正投影范围内。
本公开实施例提供的显示面板,通过在黑矩阵层中至少一个第一本体结构的一侧设置第一补偿结构,使得第一信号线在第二基板上的正投影位于对 应的第一本体结构和第一补偿结构在第二基板上的正投影的范围内,在很大程度上避免了曲面显示面板串色以及显示面板在暗态画面效果下产生漏光的现象。
在示例性实施方式中,在第二基板12所在的曲面内(或者在第一基板11所在的曲面内,或者显示面板所在的曲面内),第四方向W与第二方向Y垂直,即第四方向W为显示面板所在曲面的弧度延伸的方向。
在示例性实施方式中,如图1b所示,显示面板朝向第二基板12远离第一基板11的一侧弯曲,在第四方向W上,在任意一组第一本体结构a1和b1第一补偿结构中,第一补偿结构b1位于第一本体结a1构和第一中线之间;其中,第一中线为显示面板沿第二方向Y延伸的中线(Q-Q)。在图1b所示结构中,显示面板所在曲面的曲率中心位于第一基板11远离第二基板12的一侧。
在示例性实施方式中,如图1a和图1d所示,分别为图1b所示显示面板在未弯曲的状态下的剖面结构示意图和平面结构示意图,第一信号线121在第二基板12上的正投影位于对应的第一本体结构a1在第二基板12上的正投影范围内,且第一本体结构a1沿第二方向Y延伸的中线在第二基板12上的正投影与第一信号线121沿第二方向Y延伸的中线在第二基板12上的正投影重叠,在任意一组第一本体结构a1和第一补偿结构b1中,第一补偿结构b1位于第一本体结a1构和第一中线Q-Q之间。
在示例性实施方式中,如图1c所示,显示面板朝向第一基板11远离第二基板12的一侧弯曲,在第四方向上,在任意一组第一本体结构a1和第一补偿结构b1中,第一本体结构a1位于第一补偿结构b1和第一中线之间;其中,第一中线为显示面板沿第二方向Y延伸的中线(Q-Q)。在图1c所示构中,显示面板所在曲面的曲率中心位于第二基板12远离第一基板11的一侧。
在示例性实施方式中,如图1e和图1f所示,分别为图1c所示显示面板在未弯曲的状态下的平结构示意图和平剖面结构示意图,第一信号线121在第二基板12上的正投影位于对应的第一本体结构a1在第二基板12上的正投影范围内,且第一本体结构a1沿第二方向Y延伸的中线在第二基板12上的正投影与对应的第一信号线121沿第二方向Y延伸的中线在第二基板12上 的正投影重叠,在第四方向W上,在任意一组第一本体结构a1和第一补偿结构b1中,第一本体结构a1位于第一补偿结构b1和第一中线之间,如图1e所示;其中,第一中线为显示面板沿第二方向Y的中线(Q-Q)。
在本公开实施例中,第一信号线121可以为数据信号线,第一基板11可以为彩膜基板,第二基板12可以为阵列基板。
在示例性实施方式中,在显示面板所在的曲面内,第一补偿结构b1沿第四方向W的尺寸可以根据第一基底1101和第二基底1201沿弯曲方向的尺寸、第一基板11和第二基板12沿第二方向Y的尺寸、第一基板11和第二基板12沿第四向W的尺寸、显示面板的曲率半径R中的至少一个设置,显示面板的曲率半径R为显示面板所在曲面的曲率半径。
在本公开实施方式中,根据第一基底1101和第二基底1201沿弯曲方向的尺寸可以理解为第一基底1101和第二基底1201的厚度,第一基板11和第二基板12沿第二方向Y的尺寸可以理解为第一基板11和第二基板12的宽度或者为显示面板的宽度,第一基板11和第二基板12沿第四向W的尺寸可以理解为第一基板11和第二基板12的长度或者显示面板的长度。
在示例性实施方式中,在显示面板所在的曲面内,第一补偿结构b1沿第四方向W上的尺寸与第一基底1101和第二基底1201在弯曲方向上的尺寸成正比。
在示例性实施方式中,在第一基板11和第二基板13沿第二方向Y的尺寸、第一基板11和第二基板12沿第四向W的尺寸和显示面板的曲率半径均保持不变的情况下,第一补偿结构b1沿第四方向W的尺寸与第一基底1101和第二基底1201沿弯曲方向的尺寸之和呈线性关系。如图3a所示,第一补偿结构b1在第四方向W上的尺寸可以为图3a中纵坐标的最大错位量,第一补偿结构b1在第四方向W上的尺寸与第一基底1101和第二基底1201在弯曲方向上的尺寸之间的成线性关系。图3a中,横坐标的基底厚度可以为第一基底1101和第二基底1201沿弯曲方向上的尺寸(即厚度)之和。
在示例性实施方式中,在尺寸为14.6英寸、曲率半径为780毫米的显示面板中,第一补偿结构b1在第四方向W上的尺寸与第一基底11和第二基底12弯曲方向上的尺寸之间的关系可以通过以下公式表示:
y=30.314x-0.1673;
其中,x为第一基底1101、第二基底1201在弯曲方向上的尺寸之和,y为第一补偿结构b1沿第四方向W上的尺寸;x大于或者等于0.3微米,小于或者等于1微米;y大于或者等于8微米,小于或者等于30微米。
在示例性实施方式中,在显示面板所在的曲面内,第一补偿结构b1在第四方向W上的尺寸与第一基板11、第二基板12沿第四方向W的尺寸成正比。
在示例性实施方式中,在显示面板所在的曲面内,在第一基底1101和第二基底1201沿弯曲方向的尺寸、显示面板的宽长比、显示面板的曲率半径均保持不变的情况下,第一补偿结构b1沿第四方向W的尺寸与第一基板11和第二基板12沿第四方向W的尺寸呈线性关系;宽长比为在显示面板沿第二方向Y上的尺寸与显示面板沿第四方向W上的尺寸的比值。如图3c所示,第一补偿结构b1在第四方向W上的尺寸可以为图3c中纵坐标的最大错位量,第一基板11和第二基板12沿第四方向W的尺寸可以为图3c中横坐标的基板长度,第一补偿结构b1在第四方向W上的尺寸与第一基板11、第二基板12沿第四方向W的尺寸可以成线性关系。
在示例性实施方式中,在第一基底1101和第二基底1201沿弯曲方向上的尺寸均为0.2微米、曲率半径为780毫米、显示面板的宽长比为55%的显示面板中,第一补偿结构b1在第四方向W上的尺寸与第一基板11、第二基板12沿第四方向W的尺寸之间的关系可以通过以下公式表示:
y=0.0364x+0.0131;
其中,x为第一基板11、第二基板12沿第四方向W上的尺寸,y为第一补偿结构b1沿第四方向W上的尺寸;x大于或者等于250毫米,小于或者等于550毫米;y大于或者等于8微米,小于或者等于20微米。
在示例性实施方式中,在第一基底1101和第二基底1102沿弯曲方向上的尺寸均为0.2毫米、曲率半径为780毫米、显示面板的宽长比为37%的显示面板中,第一补偿结构b1在第四方向W上的尺寸与第一基板11、第二基板12沿第四方向W的尺寸之间的关系可以通过以下公式表达:
y=0.0231x-0.1021;
其中,x为第一基板11、第二基板12沿第四方向W上的尺寸,y为第一补偿结构b1沿第四方向W上的尺寸;x大于或者等于250毫米,小于或者等于550毫米;y大于或者等于5微米,小于或者等于15微米。
在示例性实施方式中,在宽长比大于或者等于10%且小于或者等于60%的显示面板中,在显示面板的曲率半径、第一基底1101和第二基底1201沿弯曲方向的尺寸、第一基板11和第二基板12沿第四方向W的尺寸均保持不变的情况下,第一补偿结构b1在第四方向W上的尺寸与宽长正比;如图3d所示,第一补偿结构b1沿第四方向W上的尺寸可以为图3d中纵坐标的最大错位量。
在示例性实施方式中,如图3d所示,在曲率半径为780毫米、第一基底1101和第二基底1201沿弯曲方向的尺寸均为0.15毫米、第一基板11和第二基板12沿第四方向W的尺寸为327.7毫米的显示面板中,第一补偿结构b1在第四方向W上的尺寸与宽长比之间的关系可以通过以下公式表达:
y=19.536x-1.823;
其中,x为显示面板的宽长比,y为第一补偿结构b1沿第四方向W上的尺寸;x取值范围为大于或者等于10%,小于或者等于60%;y大于或者等于0.9微米,小于或者等于9微米。
在示例性实施方式中,第一补偿结构b1在第四方向W上的尺寸可以与显示面板沿弯曲方向的位移量成正比;
显示面板沿弯曲方向的位移量为曲面显示面板沿第二方向Y延伸的中线位置与曲面显示面板两端连线中点位置之间的垂直距离。如图2b所示,M为显示面板沿弯曲方向的位移量。
在示例性实施方式中,在第一基板11和第二基板12沿第二方向Y的尺寸、第一基板11和第二基板12沿第四向W的尺寸、第一基底1101和第二基底1201沿弯曲方向的尺寸均保持不变的情况下,第一补偿结构b1沿第四方向W的尺寸与显示面板沿弯曲方向的位移量呈线性关系,如图3b所示,第一补偿结构b1沿第四方向W的尺寸可以为图3b中纵坐标的最大错位量。 在示例性实施方式中,在曲率半径为780毫米至2000毫米范围内,在第一基板11和第二基板12沿第二方向Y的尺寸、第一基板11和第二基板12沿第四向W的尺寸、第一基底1101和第二基底1201沿弯曲方向的尺寸均保持不变的情况下,第一补偿结构b1沿第四方向W的尺寸与显示面板沿弯曲方向的位移量呈线性关系。
在示例性实施方式中,如图3b所示,在尺寸为12.3英寸、第一基底1101和第二基底1102沿弯曲方向的尺寸均为0.2毫米的显示面板中,第一补偿结构b1沿第四方向W的尺寸与显示面板沿弯曲方向的位移量通过以下公式表达:
y=0.5221x-0.017;
其中,x为显示面板沿弯曲方向的位移量,y为第一补偿结构b1沿第四方向W上的尺寸;x取值范围为大于或者等于2毫米,小于或者等于14毫米;y大于或者等于1微米,小于或者等于8微米。
在示例性实施方式中,显示面板沿弯曲方向的位移量与显示面板的曲率半径具有以下关系:
M=R–R*cos((L/2)/R);
如图2b所示,L为显示面板沿第四方向W上的尺寸,R为显示面板所在曲面的曲率半径,M为在显示面板弯曲方向上的位移量。在示例性实施方式中,曲率半径R可以为780毫米至5000毫米,在显示面板弯曲方向上的位移量M可以为2毫米至14毫米。
在示例性实施方式中,如图8所示,黑矩阵层111还可以包括第二补偿结构b2,第二补偿结构b2和第一补偿结构b1相对于第一本体结构a1沿第二方向Y延伸的中线对称设置。在本公开实施例中,在第一本体结构a1的两侧对称的设置第一补偿结构b1和第二补偿结构b2,补偿方式简便,可以简化工艺。
在示例性实施方式中,如图1所示,第一基板11还包括设置在第一基底1101靠近第二基板12一侧的多个色阻元件112,在第一基板11所在的曲面内,多个色阻元件112与第一本体结构a1和第一补偿结构b1在第四方向W 上交替设置,并沿第二方向Y延伸。
在示例性实施方式中,如图6a、图6c和图10a所示,第一基板11还设有第一取向层113和多个支撑结构103,黑矩阵层111和多个色阻元件112位于第一取向层113和第一基底1101之间,支撑结构103设置于第一取向层113靠近第二基板12的一侧;
黑矩阵层还可以包括与多个支撑结构103对应的多个第三本体结构a3,至少一个第三本体结构a3上设有第三补偿结构b3,在第一基板11所在的曲面内,在第四方向W上第三补偿结构b3位于第三本体结构a3的一侧;
支撑结构103在第二基板12上的正投影位于第三本体结构a3和第三补偿结构b3在第二基板12上的正投影的范围内;第三本体结构a3和第一本体结构a1存在重叠区域;第三本体结构a3和第三补偿结构b3沿第四方向W上的尺寸大于第一本体结构a1和第一补偿结构b1沿第四方向W上的尺寸。
在示例性实施方式中,在显示面板所在的曲面内,第三补偿结构a3沿第四方向W的尺寸与第一补偿结构a1沿第四方向W上的尺寸设置方式相同。即第三补偿结构b3沿第四方W的尺寸根据第一基底1101和第二基底1201沿显示面板弯曲方向的尺寸、第一基板11和第二基板12沿第二方向Y的尺寸、第一基板11和第二基板12沿第四向W的尺寸、显示面板的曲率半径中的至少一个设置,显示面板的曲率半径为显示面板所在曲面的曲率半径。
在示例性实施方式中,如图6a、图6c和图10a所示,显示面板朝向第二基板12远离第一基板11的一侧弯曲,在第四方向W上,在任意一组第三本体结构a3和第三补偿结构b3中,第三补偿结构b3位于第三本体结构a3和第一中线之间,其中,第一中线为在显示面板所在的曲面内,显示面板沿第二方向Y延伸的中线。
在示例性实施方式中,如图7a、图7c和图10b所示,显示面板朝向第一基板11远离第二基板12的一侧弯曲,在第四方向W上,在任意一组第三本体结构a3和第三补偿结构b3中,第三本体结构a3位于第三补偿结构b3和第一中线之间,其中,第一中线为在显示面板所在的曲面内,显示面板沿第二方向Y延伸的中线。
在本公开实施例中,通过在第三本体a1的一侧设置第三补偿结构b3, 在显示面板弯曲的状态下,显示面板上的支撑结构103可以被对应的第三本体结构a3和第三补偿结构b3遮挡,避免因显示面板弯曲导致第一基板11和第二基板12错位而产生的漏光或串色的现象。
在示例性实施方式中,如图10a和图10b所示,第二基底1201靠近第一基板11的一侧还设有多个第二信号线122和过孔123,第二信号线122在第二基板12所在曲面内沿第四方向W延伸,并沿第二方向Y排布;
黑矩阵层111还可以包括与多个第二信号线122对应的多个第二本体结构a2,多个第二本体结构a2在第一基板11所在曲面内沿第四方向W延伸并沿第二方向Y排布,并沿第四方向W排布;
多个第二信号线122和过孔123在第二基板12上的正投影位于对应的第二本体结构a2在第二基板12上的正投影的范围内;
第一本体结构a1、第二本体结构a2和第三本体结构a3存在重叠区域。
在示例性实施方式中,如图9所示,黑矩阵层111还可以包括第四补偿结构b4,第四补偿结构b4与第三补偿结构b3相对于第三本体结构a3沿第二方向Y延伸的中线对称设置。
在示例性实施方式中,如图9所示黑矩阵层111还可以包括第五补偿结构b5和第六补偿结构b6,第五补偿结构b5和第六补偿结构b6相对于第三本体结构a3沿第四方向W延伸的中线对称设置。在如图9所示结构中可以在第三本体结构a3上设置第三补偿结构b3至第六补偿结构b6,可以使得支撑结构103能够完全被第三本体结构a3和第三补偿结构b3至第六补偿结构b6所遮挡,在支撑结构103划伤第一基板11或第二基板12上的取向层的情况下,第一基板11和第二基板12之间的液晶层在取向层划伤的区域通常会出现取向异常而导致的显示异常,通过黑矩阵层上的第三本体结构a3以及设置在第三本体结构a3周边的第三补偿结构b3至第六补偿结构b6可以遮挡因支撑结构103划伤取向层导致显示异常的区域,从而可以尽量避免显示面板因支撑结构103划伤取向层导致的显示异常的问题。
在图9所示结构中,St2为第三补偿结构b3和第四补偿结构b4沿第四方向的尺寸,St3为第五补偿结构b5和第六补偿结构b6沿第二方向Y的尺寸。
在本公开示例性实施方式中,上述黑矩阵层111上可以设置多个第一黑矩阵结构1111、多个第二黑矩阵结构1112和多个第三黑矩阵结构1113;任意一个第一黑矩阵结构1111可以由上述第一本体结构a1以及设置在第一本体结构一侧的第一补偿结构b1构成;或者任意一个第一黑矩阵结构1111可以由上述第一本体结构a1、第一补偿结构b1和第二补偿结构b2构成;任意一个第二黑矩阵结构1112可以由上述第二本体结构a2构成;任意一个第三黑矩阵结构1113可以由上述第三本体结构a3以及设置在第三本体结构周边的第三补偿结构b3至第六补偿结构b6构成。
在示例性实施方式中,多个第一黑矩阵结构1111、多个第二黑矩阵结构1112和多个第三黑矩阵结构1113可以为一体成型结构。
在示例性实施方式中,如图1c、图11、图12所示,显示面板包括沿第四方向W相对设置的第一边D1和第二边D2,在显示面板所在的曲面上,在第一中线Q-Q与第一边D1之间,自靠近第三中线P-P位置的第一补偿结构b1至远离第三中线P-P位置的第一补偿结构b1沿第四方向W的尺寸逐渐减小;在第一中线Q-Q与第二边D2之间,自靠近第四中线O-O位置的第一补偿结构b1至远离第四中线O-O位置的第一补偿结构b1沿第四方向W的尺寸逐渐减小;
第三中线P-P为位于第一中线Q-Q与第一边D1之间的显示面板沿第二方向延伸的中线,第四中线O-O为位于第一中线Q-Q与第二边D2之间的显示面板沿第二方向Y延伸的中线。
如图6b所示,在第一本体结构a1未设置第一补偿结构b1的情况下,在第一中线Q-Q与第一边D1之间的显示面板区域,自靠近第三中线P-P位置的错位量Shift至远离第三中线P-P的错位量Shift沿第四方向的尺寸逐渐减小,例如,错位量Shift2和错位量Shift1均位于第三中线P-P与第一中线Q-Q之间,错位量Shift2沿第四方向W的尺寸大于错位量Shift1沿第四方向W的尺寸(在第四方向W上,错位量Shift2位于第三中线P-P和错位量Shift1之间);相应地,在第一中线Q-Q与第一边D1之间的显示面板区域,自靠近第三中线P-P位置的第一补偿结构b1至远离第三中线P-P位置的第一补偿结构b1沿第四方向的尺寸逐渐减小,例如,如图6c所示,第一补偿结构b1 的补偿量St12沿第四方向W的尺寸大于第一补偿结构b1的补偿量St11沿第四方向W的尺寸(补偿量St12位于第三中线P-P和补偿量St11之间)。
在示例性实施方式中,在显示面板所在的曲面内,可以将显示面板沿第四方向W划分成多个区域,多个区域中包括一个第一区域H1和2个第k区域Hk,其中,2≤k≤N,N为大于或者等于2的正整数,对于任意一个k的取值所对应的两个区域Hk沿第四方向W相对于第一中线对称设置;位于第一区域H1中的多个第一补偿结构b1沿第四方向W的尺寸相同,位于同一个k值所对应区域Hk中的多个第一补偿结构1沿第四方向W的尺寸相同。在示例性实施方式中,如图11所示,N=3,多个区域包括一个第一区域H1、两个第二区域H2、两个第三区域H3,第一区域H1沿第四方向W相对于第一中线Q-Q对称设置,两个第二区域H2沿第四方向W相对于第一中线Q-Q对称设置,两个第三区域H3沿第四方向W相对于第一中线Q-Q对称设置。在示例性实施方式中,位于第一中线Q-Q与第一边D1之间的显示面板,第一区域H1和第三区域H3沿第四方向W相对于第三中线P-P对称设置,第二区域H2沿第四方向W相对于第三中线P-P对称设置;位于第一中线Q-Q与第二边D2之间的显示面板,第一区域H1和第三区域H3沿第四方向W相对于第四中线O-O对称设置,第二区域H2沿第四方向W相对于第四中线O-O对称设置。
在示例性实施方式中,在图11所示划分的区域中,位于第一中线Q-Q靠近第一边D1的显示面板上,在第三中线P-P的同一侧,自靠近第三中线P-P区域中的第一补偿结构b1至远离第三中线P-P区域中的第一补偿结构b1沿第四方向W的尺寸逐渐减小;位于第一中线Q-Q靠近第二边D2的显示面板上,在第四中线O-O的同一侧,自靠近第四中线O-O区域中的第一补偿结构b1至远离第四中线O-O区域中的第一补偿结构b1沿第四方向W的尺寸逐渐减小。
在示例性实施方式中,在图11所示划分的区域中,位于第一中线Q-Q靠近第一边D1的显示面板上,在第三中线P-P的同一侧,自靠近第三中线P-P区域中的第三补偿结构b3至远离第三中线P-P区域中的第三补偿结构b3沿第四方向W的尺寸逐渐减小;位于第一中线Q-Q靠近第二边D2的显示面 板上,在第四中线O-O的同一侧,自靠近第四中线O-O区域中的第三补偿结构b3至远离第四中线O-O区域中的第三补偿结构b3沿第四方向W的尺寸逐渐减小。
在示例性实施方式中,在显示面板所在的曲面内,在第一中线Q-Q两侧中的每一侧均划分成N-2个同心的环形区域,位于环形区域内侧中心位置的区域为第一区域T1,位于环形区域外围的区域为第N区域Tn,在显示面板上任意一个第J区域TJ均包含两个,J取值为1至N,两个第J区域TJ位于第一中线Q-Q两侧且两个第J区域TJ在第四方向W上相对于第一中线对称,任意一个第J区域TJ相对于第二中线对称设置,第二中线为显示面板沿第四方向W延伸的中线;位于第一区域T1位置的多个第一补偿结构b1沿第四方向W的尺寸相同,位于同一个J值所对应区域TJ中的多个第一补偿结构b1沿第四方向W的尺寸相同。在示例性实施方式中,如图12所示,N=3,多个区域中包括两个第一区域T1、两个第二区域T2、两个第三区域T3,第二区域为T2环形区域,第一区域T1位于第二区域T2的环形区域的中心位置,第三区域T3位于第二区域T2的环形区域的外围区域。
在示例性实施方式中,在显示面板所在的曲面上,在第一中线Q-Q的同一侧,自靠近环形区域中心位置所在区域中的第一补偿结构b1至远离环形区域中心位置所在区域中的第一补偿结构b1沿第四方向W的尺寸逐渐减小。
在示例性实施方式中,位于第一中线Q-Q靠近第一边D1一侧的显示面板上,自靠近第三中线P-P区域中的第三补偿结构b3至远离第三中线P-P区域中的第三补偿结构b3沿第四方向W的尺寸逐渐减小;位于第一中线Q-Q靠近第二边D2一侧的显示面板上,自靠近第四中线O-O区域中的第三补偿结构b3至远离第四中线O-O区域中的第三补偿结构b3沿第四方向W的尺寸逐渐减小。
在示例性实施方式中,在显示面板所在的曲面上,在第一中线的同一侧,自靠近环形区域中心位置所在区域中的第三补偿结构b3和第四补偿结构b4至远离环形区域中心位置所在区域中的第三补偿结构b3和第四补偿结构b4沿第四方向W的尺寸逐渐减小。
在本公开实施方式中,第一补偿结构b1至第四补偿结构b4沿第四方向 W的尺寸的设置方式可以相同。例如,b1至b4均根据第一基底1101和第二基底1201沿弯曲方向的尺寸、第一基板11和第二基板12沿第二方向Y的尺寸、第一基板11和第二基板12沿第四方向W的尺寸、显示面板的曲率半径中的至少一个设置。
在示例性实施方式中,在显示面板所在的曲面上,在第一中线Q-Q的同一侧,自靠近环形区域中心位置所在区域中的第二补偿结构b2至远离环形区域中心位置所在区域中的第二补偿结构b2沿第四方向W的尺寸逐渐减小。
在本公开实施方式中,在第一本体结构a1、第二本体结构a2和第三本体结构a3上设置补偿结构,可以避免显示面板弯曲后因第一基板11和第二基板12产生错位而导致的漏光和色阻串色的现象,同时在显示面板暗态下,可以在一定程度上减轻显示面板漏光程度。
在本公开实施方式中,在曲面显示面板中,第一黑矩阵结构1111(包括第一本体结构a1和第一补偿结构b1)沿第二方向Y的中线位置在第一基板11上的正投影可以与第一信号线121在第一基板11上的正投影重叠。第三黑矩阵结构1113(包括第三本体结构a3和第三补偿结构被)的中心位置在第一基板11上的正投影可以与支撑结构103在的中线位置第一基板上的正投影重叠。
在显示面板弯曲之前,支撑结构103在第一基板11上的正投影可以位于第三本体结构a3在第一基板11上的正投影的中心区域。
在本公开实施例中,在制备曲面显示面板之前,可以先通过模拟软件(例如Ansys workbench软件)建立曲面仿真模型对显示面板进行模拟,模拟出第一基板11上的第一本体结构a1与第二基板12上的数据信号线121之间的错位量,根据模拟得出错位量对第一本体结构a1进行补偿,在本公开实施例中,可以通过实际制作曲面显示面板来测量实际产品的错位量。如图2a所示,曲面结构的显示面板可以通过模拟曲面模型模拟出错位量的分布,曲面仿真模型可以简单模拟出显示面板中的彩膜基板11、阵列基板12、封框胶101以及确定显示面板弯曲中心位置的固定轴H,显示面板的曲率半径R通过加载在第三方向Z的位移量来计算,如图2b所示,第三方向Z的位移量M与曲率半径R的关系可以通过以下公式表达:
M=R–R*cos((L/2)/R);
其中,L为显示面板沿第四方向W的长度,R为曲率半径,M为在第三方向Z的位移量,角度F的取值为(L/2)/R。
在本公开实施例中,加载在第三方向Z的位移量M可以为曲面显示面板中心位置与曲面显示面板两端连线中点位置之间的距离。
在本公开实施例中,将显示面板弯曲之后(在图2b中,是沿第三方向Z的反方向弯曲),在弯曲方向上产生位移量M,显示面板中的彩膜基板11和阵列基板12之间会产生错位,错位量shift=彩膜基板位置-阵列基板位置,如图2c和图2d所示,为不同视角观测彩膜基板11与阵列基板12产生的错位量分布图,在显示面板中不同的位置,错位量shift的大小不一样,其中,c1颜色的深浅仅代表位于显示面板沿第二方向Y延伸的中线左侧不同的偏移量或错位量(即第一中线Q-Q与第一边D1之间的显示面板的区域上下基板产生的错位量),c2颜色的深浅仅代表位于显示面板沿第二方向Y延伸的中线右侧不同的偏移量或错位量(即第一中线Q-Q与第二边D2之间的显示面板的区域上下基板产生的错位量),在图2c和图2d中110代表位于显示面板沿第二方向Y的中线左侧的错位量分布(即第一中线Q-Q与第一边D1之间的显示面板的区域上下基板错位量分布),120代表位于显示面板沿第二方向Y的中线右侧的错位量分布(即第一中线Q-Q与第二边D2之间的显示面板的区域上下基板错位量分布)。模拟得出的错位量可以与上述第一补偿结构b1沿第四方向W的尺寸接近或相同。
在本公开实施例中,在显示面板弯曲过程中,彩膜基板11和阵列基板12的应力双折射产生相位差,加之液晶各向异性特性影响,常常会产生漏光,漏光可以通过暗态下的透过率进行评估,可以通过以下公式得到:
Figure PCTCN2022078446-appb-000001
其中τ xy代表外力作用下彩膜基板11和阵列基板12内部的剪切力,t代表彩膜基板11和阵列基板12的厚度(可以为第一基板11和第二基板12沿弯曲方向的尺寸),SOC代表彩膜基板11和阵列基板12光弹性系数,T代表显示面板的漏光程度,漏光程度T与基板的厚度平方及所受剪切力τ xy 的平方正相关。
在示例性实施方式中,漏光程度T可以通过剪切力τ xy的平方分布进行评估,漏光程度T与剪切力τ xy的平方分布正相关,如图2e所示。
在本公开实施例中,在模拟模型中,彩膜基板11可以称为上基板,阵列基板12可以称为下基板;其中,上下基板中的基底可以称为玻璃。在模拟的模型中可以将上基本简化成只有上述第一基底1101的模型,将下基板简化成只有上述第二基底1201的模型。
下面结合图2a至图2d详细说明曲面显示面板弯曲后上下基板错位量shift的模拟结果:
(1)由于显示面板周边通过封框胶101固定,上下基板错位量shift在第一方向X上区分为固定轴H(弯曲中心位置,也可以是上述第一中线Q-Q位置)左右两侧,向固定轴H两侧偏移,即自固定轴H沿第一方向X的反方向偏移和自固定轴H沿第一方向X方向偏移,如图2a和图2c所示。弯曲之后的错位量的尺寸可以是上述第一补偿结构b1沿第四方向W的尺寸。
(2)固定轴H与第一边D1之间具有第一中轴线(即上述第三中线P-P)、固定轴H与第二边D2之间具有第二中轴线(即上述第四中线O-O),由于显示面板周边封框胶101的固定作用,上下基板错位量shift在第四方向W上自靠近第一中轴线到靠近封框胶101和固定轴H的位置,错位量shift量逐渐减小;上下基板错位量shift在第四方向W上自靠近第二中轴线到靠近封框胶101和固定轴H的位置,错位量shift量逐渐减小。即错位量在显示面板呈非等间距分布。图2中在XY所在平面内观察的错位量分布结构,实际上是沿第四方向W的错位量在第一方向X和第二方向Y所在平面上的正投影。
(3)最大错位量shift通常出现在第一中轴线和第二中轴线的位置,随显示面板尺寸比例差异错位量稍有不同。如图2f和图2g所示,不同长宽比的显示面板,错位量有一定的差异。图2f所示为模拟长宽比为16:9的显示面板上下基板错位量分布图,图2g所示为模拟长宽比为16:6的显示面板上下基板错位量分布图,从模拟效果可以看出,显示面板长宽比为16:9上下基板的错位量大于显示面板的长宽比为16:6上下基板的错位量。
通常情况下,上下基板错位量shift一般与上下基板的基底厚度、曲率半 径(可以称为弯曲半径)、显示面板的尺寸、显示面板的长宽比相关。与错位量相关的因素还可以包括基板、封框胶的材料,以下模拟基于相同材料的玻璃和封框胶以最大错位量shift做对比:
(1)在显示面板的尺寸、长宽比、弯曲半径均相同的情况下,上下基板的基底总厚度越厚,最大错位量shift越大,如图3a所示最大量shift与基板厚度呈线性关系。在本公开示例性实施方式中,图3a中基板厚度与最大错位量之间的模拟关系中,显示基板的尺寸可以为14.6英寸,显示面板的曲率半径可以为780毫米。
(2)在显示面板的尺寸、长宽比、基板厚度相同的情况下(例如,显示面板的尺寸可以为12.3英寸,上下基板的厚度可以均为0.2毫米),弯曲半径R(可以称为曲率半径R)越小,最大错位量shift越大;如图3b所示,最大错位量shift与沿第三方向Z的位移量M呈正比。图3b中,R5000表示曲率半径为5000毫米,R3000表示曲率半径为3000毫米,R2000表示曲率半径为2000毫米,R780表示曲率半径为780毫米。
(3)在显示面板的长宽比、弯曲半径(即曲率半径)、基板厚度相同的情况下(例如,显示面板的曲率半径为780毫米、上下基板的厚度均为0.2毫米),显示面板沿第四方向W的尺寸越小,上下基板基板错位量shift越小,最大错位量shift与显示面板沿第四方向的尺寸呈线性关系。如图3c所示,对于曲率半径为780mm的显示面板,基板长度L(显示面板沿第四方向W的尺寸)从250毫米增加到550毫米左右(对应显示面板的尺寸约为10寸到22寸左右),最大错位量shift与基板长度呈线性关系。图3c中,S11为模拟显示面板的宽长比为W/L=55%的情况下,最大错位量与基板长度的关系,可以通过以下近似公式计算最大错位量:y=0.0364x+0.0131,其中,y代表最大错位量,x代表基板长度;S12为模拟显示面板的宽长比为W/L=37%的情况下,最大错位量与基板长度的关系,可以通过以下近似公式计算最大错位量:y=0.0231x-0.1021,其中,y代表最大错位量,x代表基板长度。
(4)在显示面板的弯曲半径(即曲率半径)、基板厚度相同的情况下(例如,显示面板沿第四方向W的长度为327.7毫米,显示面板的曲率半径为780毫米,上下基板的厚度均为0.15毫米),显示面板的宽长比越小,上下基板 错位量shift越小,如图3d所示,在宽长比W/L>10%的情况下,最大错位量shift与宽长比W/L基本呈线性关系。
基于以上模拟结果,可以初步扩展至不同需求和不同情况对显示面板的尺寸、弯曲半径(曲率半径)、基板厚度进行设计,以设计出满足不同需求和不同应用场景的显示面板。
在本公开实施方式中,对于应用于异形结构场景下的显示面板,比如车载曲面载显示器,由于其具有局部更小宽长比,一般显示面板的上下基板错位量shift也会比正常外形的显示面板的错位量小,漏光程度小。以15.6寸的显示面板(曲率半径为780毫米,上下基板的厚度均为0.15毫米,显示面板的宽度为W=128.2毫米,显示面板的长度为L=373.8毫米)进行说明,采用非异形显示面板的情况下,上下基板最大错位量shift为6.1微米;而采用异形显示面板的情况下,上下基板最大错位量为shift 4.3微米,对应常规车载50微米×150微米的像素来说,采用黑矩阵(Black Matrix,简写为BM)进行单边补偿,预估的开口(可以称为透过率)差异为5%,采用黑矩阵进行双边进行补偿,预估的开口差异为10%。如图4a所示,为15.6英寸的非异形显示面板漏光分布示意图,图4b所示为15.6英寸的异形显示面板漏光分布示意图,图4a和图4b所示可以为相同阶梯灰度下形成的漏光示意图。由图4a和图4b可以看出,相同尺寸的显示面板,采用异形设计的情况下漏光程度要比非异形设计的显示面板漏光要弱,从而异形设计的显示面板显示效果因漏光程度弱,在显示效果上要比非异形设计的显示面板的显示效果好。
在示例性实施方式中,对于非曲面的液晶显示面板,如图5a和图5b所示,彩膜基板11可以包括第一基底1101,以及设置于第一基底1101上的黑矩阵层111(BM)、色阻元件112、覆盖黑矩阵层111和色阻元件112的第一取向层113,色阻元件112可以包括第一色阻元件1121、第二色阻元件1122和第三色阻元件1123,黑矩阵层111可以包括第一黑矩阵结构1111、第二黑矩阵结构1112和第三黑矩阵结构1113;阵列基板12可以包括第二基底1201,以及设置于第二基底1201上的数据信号线121(SD)、栅极信号线122(Gate)、过孔123(Via hole)、像素电极124、覆盖像素电极124的第二取向层125,彩膜基板11与阵列基板12之间设有液晶层102和支撑结构103(PS),支撑结构103可以包括主支撑结构1031(Main PS)和辅助支撑结构1032(Sub  PS)。在本公开实施方式中,主支撑结构1031(Main PS)设置于上下基板,在正常状态下主支撑结构1031可以接触到下基板,起到对上下基板支撑的作用,辅助支撑结构1032在正常状态下不会接触到下基板,对显示面板进行按压后辅助支撑结构1032可以接触到下基板,起到辅助支撑的作用。
在本公开实施例中,黑矩阵层111主要的作用为遮光用,可以是由包含光树脂、黑色树脂、铬材料中的一种或多种制作形成。
在示例性实施方式中,第一黑矩阵结构1111可以用于划分像素,第一黑矩阵结构1111和数据信号线121均沿第二方向Y延伸,第一黑矩阵结构1111沿第四方向W的尺寸大于数据信号线121沿第四方向W的尺寸,数据信号线121在阵列基板12上的正投影落入第一黑矩阵结构1111在阵列基板12上的正投影的范围内,且第一黑矩阵结构1111在阵列基板12上的正投影沿第四方向W上相对于数据信号线121在阵列基板12上的正投影沿第二方向Y延伸的中线对称,在制备显示面板的工艺有波动的情况下,可以使得像素开口保持不变,以及减小大视角下串色导致的显示不良。第一黑矩阵结构1111和数据信号线121采用此种设计方式,可以使得第一黑矩阵1111沿第一方向X的尺寸BM_Data与数据信号线121沿第一方向X的尺寸SD CD可以有以下关系:
Figure PCTCN2022078446-appb-000002
上下基板(即彩膜基板11和阵列基板12)对位以及第一黑矩阵结构1111单边有一定的波动也不会影响到黑矩阵层111起到划分像素、避免串色的作用。
在示例性实施方式中,第二黑矩阵结构1112用于遮挡阵列基板12上的栅极信号线122(Gate)和过孔123(阵列基板12上还设有薄膜晶体管,过孔为薄膜晶体管与像素电极124的连接过孔),第二黑矩阵结构1112和栅极信号线122均沿第四方向W延伸,栅极信号线122和过孔123在阵列基板12上的正投影落入第二黑矩阵1112在阵列基板12上的正投影的范围内。
在示例性实施方式中,第三黑矩阵结构1113用于遮挡支撑结构103,第三黑矩阵结构1113可以包括用于遮挡主支撑结构1031(Main PS)的第一子黑矩阵结构11131和用于遮挡辅助支撑结构1032(Sub PS)的第二子黑矩阵 结构11132,主支撑结构1031在阵列基板12上的正投影落入第一子黑矩阵结构11131在阵列基板12上的正投影的范围内,辅助支撑结构1032在阵列基板12上的正投影落入第一子黑矩阵结构11131在阵列基板12上的正投影的范围内。在示例性实施方式中,主支撑结构1031在阵列基板12上的正投影的中心位置与第一子黑矩阵结构11131在阵列基板12上的正投影的中心位置重合,辅助支撑结构1032在阵列基板12上的正投影的中心位置与第一子黑矩阵结构11131在阵列基板12上的正投影的中心位置重合,支撑结构103和第三黑矩阵结构1113均为沿第四方向W延伸的中线呈对称结构。第三黑矩阵结构1113相对于支撑结构103进行了一定的外扩补偿(在第三本体结构a3设置第三补偿结构b3至第六补偿结构b6),可以使得第一取向层113(PI)和第二取向层125可以正常取向,可以避免外力作用后支撑结构103划伤阵列基板12一侧的第二取向层125引起的漏光不良。
下面对曲面显示面板中黑矩阵111中的黑矩阵结构进行补偿,从补偿位置以及补偿尺寸(即显示面板中补偿结构沿第四方向尺寸)提出以下几种补偿方式,如表1所示:
表1 黑矩阵补偿方式
Figure PCTCN2022078446-appb-000003
在表1中所示的第一方向X代表的是显示面板沿第四方向W的错位量在第一方向X的正投影。
在表1的六种补偿方式中,方式二像素开口损失最大,补偿结构覆盖面积较大导致开口率低,方式五开口损失最小(开口率较高),但漏光风险较大。对于低像素密度单位(Pixels Per Inch,简写为PPI)<150的显示面板,BM_Data双侧补偿,开口影响小,以尺寸为14.6寸(像素尺寸168.3微米*168.3微米)、弯曲半径R为780毫米的显示面板为例,相较于黑矩阵结构BM两侧补偿7微米的补偿方式,黑矩阵结构单侧补偿7微米的补偿方式像素开口率可以提升10%。在示例性实施方式中,开口率可以是像素可透光部分的面积与像素总面积的比值,或者,开口率可以是像素中除去黑矩阵层111遮挡部分和走线部分后光线可通过部分的面积和像素整体的面积之间的比值,或者开口率可以是在像素整体面积中,光线可通过部分与像素整体面积的比值。
下面对第一黑矩阵结构1111和第三黑矩阵结构1113的补偿方式进行说明:
(1)BM_Data偏移方向补偿-不对称补偿
如图6a至图6c所示,显示面板朝向第二基板12远离第一基板11的一侧弯曲,显示面板弯曲之前(如图6a所示),在显示面板所在平面内,对应任意一个第一黑矩阵结构1111,在靠近第一中线Q-Q的一侧设置第一补偿结构b1,补偿量为St1,在远离第一中线的一侧可以不设置补偿结构。图6b为未设置第一补偿结构的情况下,显示面板弯曲后每个第一黑矩阵结构1111与对应的信号线121之间沿第四方向W在靠近第一中线的一侧产生错位量shift,图6a中第一补偿结构b1沿第四方向W的补偿量St1与图6b中沿第四方向W上对应的错位量shift一致(相等或近似);图6c为第一黑矩阵结构1111靠近第一中线Q-Q的一侧设置第一补偿结构b1后弯曲形成的曲面显示面板,显示面板弯曲后第一信号线121在第一基板11上的正投影落入第一黑矩阵结构1111在第一基板11上的正投影的范围内,在第一补偿结构b1设置比较合理的情况下,第一信号线121沿第二方向Y延伸的中线在第一基板11上的正投影与第一黑矩阵结构1111沿第二方向Y延伸的中线在第一基板11上的正投影重叠。
如图6b至图6d所示为显示面板弯曲之后的剖面示意图,图6b所示结构在显示面板弯曲之前未对第一黑矩阵结构1111进行补偿,图6c和图6d所示结构在显示面板弯曲之前对第一黑矩阵结构1111进行了补偿,补偿量St1为第一补偿结构b1沿第四方向W的尺寸。
如图7a至图7d所示,显示面板沿第一基板11远离第二基板12的一侧弯曲,第一补偿结构b1设置在第一本体结构a1远离第一中线Q-Q的一侧,且第一补偿量St1与对应的错位量Shift(如图7b所示)相等或接近。
如图7b至图7d所示为显示面板弯曲之后的剖面示意图,图7b所示结构在显示面板弯曲之前未对第一本体结构a1进行补偿,图7c和图7d所示结构在显示面板弯曲之前对第一本体结构a1进行了补偿。
在图6和图7所示补偿方式中,仅在第一第一本体结构a1的单侧设置第一补偿结构b1。
(2)BM_Data两侧同时补偿-相对于SD对称
如图8所示,显示面板弯曲之前,在显示面板所在平面内,对位于第一中线两侧的任意一个第一黑矩阵结构1111,在靠近第一中线的一侧和远离第一中线的一侧,沿第一方向X均补偿第一补偿量St1(即第一补偿结构和第二补偿结构沿第四方向的尺寸)。即图8所示在第一本体结构a1的两侧均设有第一补偿结构b1和第二补偿结构b2。
(3)BM_PS XY方向同时补偿
如图9所示,显示面板弯曲之前,在显示面板所在平面内,对于任意一个第三黑矩阵结构1113沿第一方向X在远离第一中线的一侧和靠近第一中线的一侧均补偿第二补偿量St2(第三补偿结构b3沿第四方向W的尺寸),沿第二方向Y在远离第二中线的一侧和靠近第二中线的一侧均补偿第三补偿量St3(第五补偿结构b5和第六补偿结构b6沿第二方向Y的尺寸),其中,第二中线为显示面板沿第一方向延伸(显示面板弯曲后沿第四方向延伸)的中线。
(4)BM_PS 偏移方向补偿
如图10所示,显示面板弯曲之前,在显示面板所在平面内,对于任意一 个第三黑矩阵结构1113沿第一方向X的一侧补偿第二补偿量St2。第二补偿量为St2可以为在显示面板弯曲之前第三补偿结构b3沿第一方向X的尺寸,在显示面板弯曲之后第三补偿结构b3沿第四方向的尺寸。
对于上述(1)-(4)几种补偿方式,补偿量的大小可以不分区域,所有补偿位置均按照最大错位量进行补偿,或者每个黑矩阵结构根据自身位置的错位量进行补偿;另一种补偿方式是按照显示面板弯曲后错位量shift在显示面板的分布情况,对显示面板划分成不同的区域,每个区域的补偿量与该区域的错位量大体一致,具体划分区域的补偿方式可以参考上文对图11和图12所示按区域划分进行补偿的说明。
图11和图12所示划分不同区域进行补偿的方式,由于每个区域的错位量不同,每个黑矩阵结构的补偿量也会有所不同,通常会导致显示面板整体的开口率不一致,并因此导致不同区域显示面板的亮度不一致,可以通过调整显示面板的背光亮度实现不同区域的亮度一致性(例如,将补偿量大的地方的背光电流调大),或者可以通过对不同区域中第二基板12上的像素电极124(PITO)进行调整来改善显示面板亮度不一致的问题(如调整同一个像素中像素电极124沿第四方向的尺寸;在同一个像素中有多个像素电极124的情况下,可以同时调整多个像素电极124之间的沿第四方向的距离和像素电极124沿第一方向的尺寸),或者通过对液晶盒厚的匹配设计(例如,对开口率低的区域在液晶层上增设膜层来降低透过率,使得显示面板整体透过率保持一致)来改善显示面板亮度不一致的问题。在本公开实施例中,可以采用上述对不同区域的像素电极124进行调整、对液晶盒厚的匹配设计、调整不同区域的背光亮度中的一种或多种方式来改善显示面板不同区域亮度不一致的问题。
本公开实施例还提供了一种显示装置,包括上述任一实施例所述的显示面板。
在本公开实施方式中,显示装置可以为手机、电脑、电视机(TV)、医疗监控装置、车载中控装置等具有显示功能的电子设备。
本公开实施例提供的显示面板和显示装置,通过在黑矩阵层中只是一个第一本体结构的一侧设置第一补偿结构,使得第一信号线在第二基板上的正 投影位于对应的第一本体结构和第一补偿结构在第二基板上的正投影的范围内,在很大程度上避免了曲面显示面板串色以及显示面板在暗态画面效果下产生漏光的现象。
本公开实施例附图只涉及本公开实施例涉及到的结构,其他结构可参考通常设计。
在不冲突的情况下,本公开实施例即实施例中的特征可以相互组合以得到新的实施例。
虽然本公开实施例所揭露的实施方式如上,但的内容仅为便于理解本公开实施例而采用的实施方式,并非用以限定本公开实施例。任何本公开实施例所属领域内的技术人员,在不脱离本公开实施例所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开实施例的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (30)

  1. 一种显示面板,包括:相对设置的第一基板和第二基板,所述第一基板和所述第二基板为曲面结构;
    所述第一基板包括第一基底,以及设置在所述第一基底靠近所述第二基板一侧的黑矩阵层;
    所述第二基板包括第二基底,以及设置在所述第二基底靠近所述第一基板一侧的多条第一信号线,所述多条第一信号线沿第二方向延伸,并沿第四方向排布,在所述第二基板所在的曲面内所述第四方向与所述第二方向相交;
    所述黑矩阵层包括与所述多条第一信号线对应的多个第一本体结构,至少一个所述第一本体结构的一侧设有第一补偿结构,在所述第一基板所在的曲面内,所述第一本体结构和所述第一补偿结构沿第二方向延伸,并沿第四方向排布,在所述第一基板所在的曲面内所述第四方向与所述第二方向相交;
    任意一条所述第一信号线在所述第二基板上的正投影位于对应的所述第一本体结构和所述第一补偿结构在所述第二基板上的正投影范围内。
  2. 根据权利要求1所述的显示面板,其中,所述显示面板朝向所述第二基板远离所述第一基板的一侧弯曲,在第四方向上,在任意一组所述第一本体结构和所述第一补偿结构中,所述第一补偿结构位于所述第一本体结构和第一中线之间;或者,所述显示面板朝向所述第一基板远离所述第二基板的一侧弯曲,在第四方向上,在任意一组所述第一本体结构和所述第一补偿结构中,所述第一本体结构位于所述第一补偿结构和所述第一中线之间;其中,所述第一中线为显示面板沿第二方向延伸的中线。
  3. 根据权利要求1或2所述的显示面板,其中,所述显示面板包括沿第四方向相对设置的第一边和第二边,在显示面板所在的曲面上,在第一中线与第一边之间,自靠近第三中线位置的第一补偿结构至远离第三中线位置的第一补偿结构沿第四方向的尺寸逐渐减小;在第一中线与第二边之间,自靠近第四中线位置的第一补偿结构至远离第四中线位置的第一补偿结构沿第四方向的尺寸逐渐减小;
    所述第三中线为位于所述第一中线与所述第一边之间的显示面板沿第二 方向延伸的中线,所述第四中线为位于所述第一中线与所述第二边之间的显示面板沿第二方向延伸的中线。
  4. 根据权利要求3所述的显示面板,其中,在显示面板所在的曲面内,将显示面板沿第四方向划分成多个区域,多个区域中包括一个第一区域和2个第k区域,其中,2≤k≤N,N为大于或者等于2的正整数,对于任意一个k的取值所对应的两个区域沿第四方向相对于第一中线对称设置;
    位于第一区域中的多个第一补偿结构沿第四方向的尺寸相同,位于同一个k值所对应区域中的多个第一补偿结构沿第四方向的尺寸相同。
  5. 根据权利要求4所述的显示面板,其中,N=3,多个区域包括一个第一区域、两个第二区域、两个第三区域,第一区域沿第四方向相对于第一中线对称设置,两个第二区域沿第四方向相对于第一中线对称设置,两个第三区域沿第四方向相对于第一中线对称设置;
    位于所述第一中线与所述第一边之间的显示面板,第一区域和第三区域沿第四方向相对于所述第三中线对称设置,所述第二区域沿第四方向相对于第三中线对称设置;位于所述第一中线与所述第二边之间的显示面板,第一区域和第三区域沿第四方向相对于所述第四中线对称设置,所述第二区域沿第四方向相对于第四中线对称设置。
  6. 根据权利要求1所述的显示面板,其中,在显示面板所在的曲面内,在第一中线两侧中的每一侧均划分成N-2个同心的环形区域,位于环形区域内侧中心位置的区域为第一区域,位于环形区域外围的区域为第N区域,在显示面板上任意一个第J区域均包含两个,J取值为1至N,两个第J区域位于第一中线两侧且两个第J区域在第四方向上相对于第一中线对称,任意一个第J区域相对于第二中线对称设置,第二中线为显示面板沿第四方向延伸的中线;
    位于第一区域位置的多个第一补偿结构沿第四方向的尺寸相同,位于同一个J值所对应区域中的多个第一补偿结构沿第四方向的尺寸相同。
  7. 根据权利要求6所述的显示面板,其中,N=3,多个区域中包括两个第一区域、两个第二区域、两个第三区域,第二区域为环形区域,第一区域位于第二区域的环形区域的中心位置,第三区域位于第二区域的环形区域的 外围区域。
  8. 根据权利要求6或7所述的显示面板,其中,在显示面板所在的曲面上,在第一中线的同一侧,自靠近环形区域中心位置所在区域中的第一补偿结构至远离环形区域中心位置所在区域中的第一补偿结构沿第四方向的尺寸逐渐减小。
  9. 根据权利要求1所述的显示面板,其中,在所述显示面板所在的曲面内,所述第一补偿结构沿第四方向的尺寸根据所述第一基底和第二基底沿弯曲方向的尺寸、第一基板和第二基板沿第二方向的尺寸、所述第一基板和所述第二基板沿第四方向的尺寸、显示面板的曲率半径中的至少一个设置,所述显示面板的曲率半径为所述显示面板所在曲面的曲率半径。
  10. 根据权利要求1至9任一项所述的显示面板,其中,在显示面板所在的曲面内,所述第一补偿结构沿第四方向上的尺寸与所述第一基底和第所述二基底沿弯曲方向上的尺寸成正比。
  11. 根据权利要求10所述的显示面板,其中,在所述第一基板和所述第二基板沿第二方向的尺寸、所述第一基板和所述第二基板沿第四向的尺寸和所述显示面板的曲率半径均保持不变的情况下,所述第一补偿结构沿第四方向的尺寸与所述第一基底和所述第二基底沿弯曲方向的尺寸之和呈线性关系。
  12. 根据权利要求11所述的显示面板,其中,在尺寸为14.6英寸、曲率半径为780毫米的显示面板中,所述第一补偿结构在第四方向上的尺寸与所述第一基底和所述第二基底沿弯曲方向上的尺寸之间的关系通过以下公式表达:
    y=30.314x-0.1673;
    其中,x为第一基底、第二基底在弯曲方向上的尺寸之和,y为第一补偿结构沿第四方向上的尺寸;x大于或者等于0.3微米,小于或者等于1微米;y大于或者等于8微米,小于或者等于30微米。
  13. 根据权利要求1至10任一项所述的显示面板,其中,在显示面板所在的曲面内,所述第一补偿结构在第四方向上的尺寸与所述第一基板、所述第二基板沿第四方向的尺寸成正比。
  14. 根据权利要求13所述的显示面板,其中,在所述第一基底和所述第二基底沿弯曲方向的尺寸、所述显示面板的宽长比和所述显示面板的曲率半径均保持不变的情况下,所述第一补偿结构沿第四方向的尺寸与所述第一基板和所述第二基板沿第四方向的尺寸呈线性关系;所述宽长比为在显示面板沿第二方向上的尺寸与显示面板沿第四方向上的尺寸的比值。
  15. 根据权利要求14所述的显示面板,其中,在所述第一基底和所述第二基底沿弯曲方向上的尺寸均为0.2微米、曲率半径为780毫米、显示面板的宽长比为55%的显示面板中,所述第一补偿结构在第四方向上的尺寸与所述第一基板、所述第二基板沿第四方向的尺寸之间的关系通过以下公式表达:
    y=0.0364x+0.0131;
    其中,x为第一基板、第二基板沿第四方向上的尺寸,y为第一补偿结构沿第四方向上的尺寸;x大于或者等于250毫米,小于或者等于550毫米;y大于或者等于8微米,小于或者等于20微米。
  16. 根据权利要求14所述的显示面板,其中,在所述第一基底和所述第二基底在弯曲方向上的尺寸均为0.2毫米、曲率半径为780毫米、显示面板的宽长比为37%的显示面板中,所述第一补偿结构在第四方向上的尺寸与第所述一基板、所述第二基板沿第四方向的尺寸之间的关系通过以下公式表达:
    y=0.0231x-0.1021;
    其中,x为第一基板、第二基板沿第四方向上的尺寸,y为第一补偿结构沿第四方向上的尺寸;x大于或者等于250毫米,小于或者等于550毫米;y大于或者等于5微米,小于或者等于15微米。
  17. 根据权利要求1至10任一项所述的显示面板,其中,在宽长比大于或者等于10%且小于或者等于60%的范围内,在曲率半径、所述第一基底和所述第二基底沿弯曲方向的尺寸、所述第一基板和所述第二基板沿第四方向的尺寸均保持不变的情况下,所述第一补偿结构在第四方向上的尺寸与宽长比成正比;
    所述宽长比为显示面板沿第二方向上的尺寸与显示面板沿第四方向上的尺寸的比值。
  18. 根据权利要求17所述的显示面板,其中,在曲率半径为780毫米、所述第一基底和所述第二基底沿弯曲方向的尺寸均为0.15毫米、第一基板和第二基板沿第四方向的尺寸为327.7毫米的显示面板中,所述第一补偿结构在第四方向上的尺寸与宽长比之间的关系通过以下公式表达:
    y=19.536x-1.823;
    其中,x为显示面板的宽长比,y为第一补偿结构沿第四方向上的尺寸;x取值范围为大于或者等于10%,小于或者等于60%;y大于或者等于0.9微米,小于或者等于9微米。
  19. 根据权利要求1至10任一项所述的显示面板,其中,所述第一补偿结构在第四方向上的尺寸与显示面板沿弯曲方向的位移量成正比;
    所述显示面板沿弯曲方向的位移量为曲面结构的显示面板沿第二方向延伸的中线位置与曲面结构的显示面板两端连线中点位置之间的垂直距离。
  20. 根据权利要求19所述的显示面板,其中,在所述第一基板和所述第二基板沿第二方向的尺寸、所述第一基板和所述第二基板沿第四向的尺寸、所述第一基底和所述第二基底沿弯曲方向的尺寸均保持不变的情况下,所述第一补偿结构沿第四方向的尺寸与所述显示面板沿弯曲方向的位移量呈线性关系。
  21. 根据权利要求20所述的显示面板,其中,在尺寸为12.3英寸、所述第一基底和所述第二基底沿弯曲方向的尺寸均为0.2毫米的显示面板中,所述第一补偿结构沿第四方向的尺寸与所述显示面板沿弯曲方向的位移量通过以下公式表达:
    y=0.5221x-0.017;
    其中,x为所述显示面板沿弯曲方向的位移量,y为第一补偿结构沿第四方向上的尺寸;x取值范围为大于或者等于2毫米,小于或者等于14毫米;y大于或者等于1微米,小于或者等于8微米。
  22. 根据权利要求19所述的显示面板,其中,显示面板沿弯曲向的位移量与显示面板的曲率半径具有以下关系:
    M=R–R*cos((L/2)/R);
    其中,L为显示面板沿第四方向上的尺寸,R为显示面板所在曲面的曲率半径,M为在显示面板弯曲方向上的位移量。
  23. 根据权利要求1至10任一项所述的显示面板,其中,所述黑矩阵层还包括第二补偿结构,所述第二补偿结构和所述第一补偿结构相对于所述第一本体结构沿第二方向延伸的中线对称设置。
  24. 根据权利要求1至10任一项所述的显示面板,其中,所述第一基板还包括设置在所述第一基底靠近所述第二基板一侧的多个色阻元件,在所述第一基板所在的曲面内,所述多个色阻元件与所述第一本体结构和所述第一补偿结构在第四方向上交替设置,并沿第二方向延伸。
  25. 根据权利要求1至10任一项的所述显示面板,其中,所述第一基板还设有第一取向层和多个支撑结构,所述黑矩阵层和所述多个色阻元件位于所述第一取向层和所述第一基底之间,所述支撑结构设置于所述第一取向层靠近第二基板的一侧;
    所述黑矩阵层还包括与所述多个支撑结构对应的多个第三本体结构,至少一个所述第三本体结构上设有第三补偿结构,在所述第一基板所在的曲面内,在第四方向上所述第三补偿结构位于所述第三本体结构的一侧;
    所述支撑结构在第二基板上的正投影位于所述第三本体结构和所述第三补偿结构在所述第二基板上的正投影范围内;所述第三本体结构和所述第一本体结构存在重叠区域;所述第三本体结构和所述第三补偿结构沿第四方向上的尺寸大于所述第一本体结构和所述第一补偿结构沿第四方向上的尺寸。
  26. 根据权利要求25所述的显示面板,其中,所述显示面板朝向所述第二基板远离所述第一基板的一侧弯曲,在第四方向上,在任意一组所述第三本体结构和所述第三补偿结构中,所述第三补偿结构位于所述第三本体结构和第一中线之间;或者,所述显示面板朝向第一基板远离第二基板的一侧弯曲,在第四方向上,在任意一组所述第三本体结构和所述第三补偿结构中,所述第三本体结构位于所述第三补偿结构和所述第一中线之间;其中,所述第一中线为显示面板沿第二方向延伸的中线。
  27. 根据权利要求26所述的显示面板,其中,所述第二基底靠近所述第一基板的一侧还设有多个第二信号线和过孔,所述第二信号线在所述第二基 板所在曲面内沿第四方向延伸,并沿第二方向排布;
    所述黑矩阵层还包括与所述多个第二信号线对应的多个第二本体结构,所述多个第二本体结构在所述第一基板所在曲面内沿第四方向延伸,并沿第二方向排布;
    所述多个第二信号线和所述过孔在所述第二基板上的正投影位于对应的所述第二本体结构在第二基板上的正投影的范围内;
    所述第一本体结构、所述第二本体结构和所述第三本体结构存在重叠区域。
  28. 根据权利要求26或27所述的显示面板,其中,所述黑矩阵层还包括第四补偿结构,所述第四补偿结构与所述第三补偿结构相对于所述第三本体结构沿第二方向延伸的中线对称设置。
  29. 根据权利要求25至28任一项所述的显示面板,其中,所述黑矩阵层还包括第五补偿结构和第六补偿结构,所述第五补偿结构和所述第六补偿结构相对于所述第三本体结构沿第四方向延伸的中线对称设置。
  30. 一种显示装置,包括至少一个如权利要求1至29任一项的显示面板。
PCT/CN2022/078446 2022-02-28 2022-02-28 显示面板和显示装置 WO2023159615A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/078446 WO2023159615A1 (zh) 2022-02-28 2022-02-28 显示面板和显示装置
CN202280000324.8A CN117063114A (zh) 2022-02-28 2022-02-28 显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/078446 WO2023159615A1 (zh) 2022-02-28 2022-02-28 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2023159615A1 true WO2023159615A1 (zh) 2023-08-31

Family

ID=87764469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078446 WO2023159615A1 (zh) 2022-02-28 2022-02-28 显示面板和显示装置

Country Status (2)

Country Link
CN (1) CN117063114A (zh)
WO (1) WO2023159615A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104570467A (zh) * 2014-12-31 2015-04-29 友达光电股份有限公司 显示面板
CN104714322A (zh) * 2013-12-17 2015-06-17 三星显示有限公司 弯曲显示面板
US20150362796A1 (en) * 2014-06-13 2015-12-17 Lg Display Co., Ltd. Curved liquid crystal display device and color filter substrate for the same
CN107664859A (zh) * 2016-07-29 2018-02-06 乐金显示有限公司 显示装置
CN108132560A (zh) * 2018-01-03 2018-06-08 厦门天马微电子有限公司 显示面板及显示装置
CN108469700A (zh) * 2018-03-30 2018-08-31 厦门天马微电子有限公司 显示面板及显示装置
CN109445166A (zh) * 2018-12-19 2019-03-08 武汉华星光电技术有限公司 一种显示面板及显示装置
CN110515244A (zh) * 2019-08-30 2019-11-29 厦门天马微电子有限公司 一种曲面显示面板及显示装置
JP2020021029A (ja) * 2018-08-03 2020-02-06 堺ディスプレイプロダクト株式会社 表示パネルおよび表示パネル装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714322A (zh) * 2013-12-17 2015-06-17 三星显示有限公司 弯曲显示面板
US20150362796A1 (en) * 2014-06-13 2015-12-17 Lg Display Co., Ltd. Curved liquid crystal display device and color filter substrate for the same
CN104570467A (zh) * 2014-12-31 2015-04-29 友达光电股份有限公司 显示面板
CN107664859A (zh) * 2016-07-29 2018-02-06 乐金显示有限公司 显示装置
CN108132560A (zh) * 2018-01-03 2018-06-08 厦门天马微电子有限公司 显示面板及显示装置
CN108469700A (zh) * 2018-03-30 2018-08-31 厦门天马微电子有限公司 显示面板及显示装置
JP2020021029A (ja) * 2018-08-03 2020-02-06 堺ディスプレイプロダクト株式会社 表示パネルおよび表示パネル装置
CN109445166A (zh) * 2018-12-19 2019-03-08 武汉华星光电技术有限公司 一种显示面板及显示装置
CN110515244A (zh) * 2019-08-30 2019-11-29 厦门天马微电子有限公司 一种曲面显示面板及显示装置

Also Published As

Publication number Publication date
CN117063114A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
TW594135B (en) Wide viewing-angle liquid crystal display and the manufacturing method thereof
TW293093B (zh)
US7554631B2 (en) Liquid crystal display device
WO2018099122A1 (zh) 显示面板及其制备方法、显示装置
US9465256B2 (en) Liquid crystal display panel and manufacturing method thereof
US20190018272A1 (en) Display panel and display device
WO2022001415A1 (zh) 显示面板及其制备方法、显示装置
WO2021232556A1 (zh) 显示面板及电子装置
JP2006293343A (ja) 液晶表示装置及び表示装置
US7830484B2 (en) TFT array substrate for inspection and method for inspection using the same
US20230122068A1 (en) Color filter substrate, method for manufacturing the same, and display panel
US9658492B2 (en) Display panel
WO2023159615A1 (zh) 显示面板和显示装置
KR101174778B1 (ko) Ffs 모드 액정표시장치
US11086173B2 (en) Display device
CN109283761B (zh) 一种显示面板、显示面板的制作方法和显示装置
CN111722447A (zh) 显示装置
JP2007156221A (ja) ディスプレイおよび電子機器
CN106940503B (zh) 显示设备
KR20160085397A (ko) 곡면형 액정 표시 장치
KR101411445B1 (ko) 액정 표시 장치 및 액정 표시 장치의 제조 방법
KR102212245B1 (ko) 곡면 액정표시장치
KR20150137278A (ko) 어레이 기판 및 이를 포함하는 액정 표시 장치
US11531239B2 (en) Electronic device comprising a patterned electrode having at least one sub-portion with a first included angle between one of a plurality of branch portions and a first absorption axis
TWI759984B (zh) 顯示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927896

Country of ref document: EP

Kind code of ref document: A1