WO2023159383A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2023159383A1
WO2023159383A1 PCT/CN2022/077446 CN2022077446W WO2023159383A1 WO 2023159383 A1 WO2023159383 A1 WO 2023159383A1 CN 2022077446 W CN2022077446 W CN 2022077446W WO 2023159383 A1 WO2023159383 A1 WO 2023159383A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
layer
adjustment part
display panel
path adjustment
Prior art date
Application number
PCT/CN2022/077446
Other languages
English (en)
French (fr)
Inventor
舒适
李翔
李伟
于勇
李少辉
姚琪
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000240.4A priority Critical patent/CN116940883A/zh
Priority to US18/017,550 priority patent/US20240264490A1/en
Priority to PCT/CN2022/077446 priority patent/WO2023159383A1/zh
Publication of WO2023159383A1 publication Critical patent/WO2023159383A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display panel and a display device.
  • Micro LED has the advantages of long life, high reliability, high color purity, modularity, customization, and repairability, and is the most likely alternative to Organic Light-Emitting Diode (OLED) in the future. ) display technology.
  • micro-light-emitting diodes include chip luminous uniformity and mass transfer yield.
  • the above problems will be important problems that will affect the development of micro-light-emitting diode technology in the foreseeable future.
  • color conversion technology is also a way to effectively improve the above problems.
  • the color conversion technology performs photoluminescence through the color conversion layer arranged on the light-emitting side of the micro-light-emitting diode, and then realizes the color conversion function.
  • micro-light emitting diodes only one color of micro-light emitting diodes can be provided in the display panel, thereby reducing the dependence of display panel manufacturers on micro-light-emitting diodes, especially red micro-light-emitting diodes with complex processes, high technical difficulties, and low yield.
  • the color conversion technology can simplify the original three mass transfers (red micro-LEDs, blue micro-LEDs, and green micro-luminescent diodes) to one, greatly reducing the yield loss and repair workload caused by mass transfers .
  • the present disclosure provides a display panel and a display device.
  • a display panel including:
  • a light emitting device layer disposed between the first base substrate and the color conversion layer
  • liquid crystal layer disposed between the light emitting device layer and the color conversion layer
  • the light-emitting device layer includes a light-emitting device
  • the liquid crystal layer includes a first optical path adjustment part and a second optical path adjustment part arranged at intervals
  • the orthographic projection of the first optical path adjustment part on the first base substrate At least partially overlap with the orthographic projection of the light emitting device on the first base substrate, the orthographic projection of the second optical path adjustment part on the first base substrate and the light emitting device on the first base substrate Orthographic spacing on a substrate substrate;
  • the second optical path adjustment part has at least a first state, and when the second optical path adjustment part is in the first state, the light emitted by the light emitting device is incident on the light source through the first optical path adjustment part.
  • the light of the second optical path adjustment part is refracted to narrow the light emitting angle of the light emitting device, or the part of the light is scattered at least once.
  • the display panel further includes:
  • the second optical path adjustment part has the first state and the second state
  • the second optical path adjustment part is configured to: respond to the electric field applied by the first driving component, in the first state and the second state switch between the second states; when the second optical path adjustment part is in the first state, the refractive index of the second optical path adjustment part is smaller than the refractive index of the first optical path adjustment part, so that the refraction of the light incident on the second optical path adjusting portion by the first optical path adjusting portion; when the second optical path adjusting portion is in the second state, the refractive index of the second optical path adjusting portion
  • the refractive indices of the first optical path adjustment parts are substantially the same.
  • the orthographic projection of the first driving component on the first base substrate and the orthographic projection of the first optical path adjustment part on the first base substrate are arranged at intervals.
  • the display panel further includes:
  • the first driving component includes a first electrode located in the first electrode layer and a second electrode located in the second electrode layer.
  • the display panel further includes a pixel circuit layer disposed between the light emitting device layer and the first base substrate;
  • the pixel circuit layer includes a first thin film transistor, the first end of the light emitting device is electrically connected to the first pole of the first thin film transistor through a first connection electrode;
  • the first connecting electrode and the first electrode are arranged in the same layer and made of the same material.
  • the second electrode is electrically connected to the first voltage terminal, and the first electrode is electrically connected to the second terminal of the light emitting device and the second voltage terminal; or,
  • the second electrode is electrically connected to the first voltage terminal, and the first electrode is electrically connected to the first terminal of the light emitting device.
  • the display panel further includes a third electrode layer disposed on a side of the liquid crystal layer close to the first base substrate, and the first driving component includes a a third electrode, the third electrode includes a first sub-electrode and a second sub-electrode arranged at intervals;
  • the first driving component is configured to: generate the electric field in response to a first electrical signal supplied to the first sub-electrode and a second electrical signal supplied to the second sub-electrode.
  • the electrical signal provided to the first driving component includes an AC signal.
  • the liquid crystal in the second optical path adjustment part includes a first liquid crystal and a second liquid crystal, and the second liquid crystal is obtained by irradiating a photopolymer liquid crystal material with ultraviolet light under a preset electric field;
  • the second liquid crystal is configured to keep the long axis of the first liquid crystal in a preset direction, so that the second optical path adjusting part is always in the first state.
  • the display panel further includes:
  • the liquid crystals in the first optical path adjustment part and the second optical path adjustment part both include a third liquid crystal
  • the first optical path adjustment part has a third state and a fourth state
  • the first optical path adjustment part is configured is: switching between the third state and the fourth state in response to an electric field applied by the second drive assembly;
  • the third liquid crystals in the first optical path adjusting part are in an orderly arrangement,
  • the third liquid crystals in the second optical path adjustment part are arranged in disorder, so that the light incident from the first optical path adjustment part to the second optical path adjustment part is scattered;
  • the second optical path adjusting part and the third liquid crystal in the first optical path adjusting part are in the same state. order.
  • the display panel further includes a fourth electrode layer disposed on the side of the liquid crystal layer away from the first base substrate and a fourth electrode layer disposed between the light emitting device layer and the first base substrate.
  • the second driving component includes a fourth electrode located in the fourth electrode layer, and the fourth electrode is electrically connected to the third voltage terminal;
  • the pixel circuit layer includes a first thin film transistor, the first end of the light emitting device is electrically connected to the first thin film transistor, and the second end of the light emitting device is electrically connected to a fourth voltage end;
  • the second driving component is configured to generate an electric field in response to a voltage difference between the fourth electrode and the first end of the light emitting device; or, in response to the fourth electrode and the first end of the light emitting device.
  • the voltage difference between the two terminals creates an electric field.
  • the third liquid crystal includes at least one of polymer dispersed liquid crystal and interpenetrating polymer liquid crystal.
  • the display panel further includes:
  • a retaining wall layer disposed on the first base substrate
  • the color conversion layer includes a plurality of quantum dots of different colors
  • the wall layer includes a wall
  • the wall separates the plurality of quantum dots from each other;
  • the second optical path adjustment part is configured to: when the second optical path adjustment part is in the first state, make the light incident on the second optical path adjustment part from the first optical path adjustment part toward the barrier wall shoot.
  • the display panel includes the first drive assembly as claimed in claim 2;
  • the retaining wall includes a reflective material
  • the display panel further includes:
  • a light absorbing layer disposed on the side of the barrier layer close to the first base substrate
  • the light-absorbing layer includes a light-absorbing portion, and an orthographic projection of the light-absorbing portion on the first base substrate at least partially overlaps an orthographic projection of the barrier wall on the first base substrate.
  • the light absorbing portion includes a plurality of color resists stacked in a thickness direction of the display panel, wherein different color resists have different colors; or,
  • the light absorbing part includes a black matrix.
  • the light emitting device includes a micro light emitting diode.
  • the display panel further includes a first alignment layer disposed on a side of the liquid crystal layer close to the first base substrate, and a first alignment layer disposed on a side of the liquid crystal layer away from the first base substrate.
  • the second alignment layer on the side, the alignment angles of the first alignment layer and the second alignment layer are the same; or,
  • the liquid crystals in the liquid crystal layer include self-aligned liquid crystal materials.
  • the display panel further includes a spacer layer located between the color conversion layer and the first base substrate;
  • the spacer layer includes a spacer, and the orthographic projection of the spacer on the first substrate is spaced from the orthographic projection of the first optical path adjustment part on the first substrate .
  • a second aspect of the present disclosure provides a display device, which includes the above-mentioned display panel.
  • Fig. 1 schematically shows a schematic diagram of a display panel in a ratio
  • Fig. 2 schematically shows a plan view of a display panel in an embodiment of the present disclosure
  • Fig. 3 schematically shows one of the cross-sectional views in the display area in an embodiment of the present disclosure
  • Fig. 4 and Fig. 5 schematically show the schematic diagrams of the second optical path adjustment part switching between the first state and the second state in the embodiment of the present disclosure
  • Fig. 6 schematically shows the second cross-sectional view of the display panel in the embodiment of the present disclosure
  • FIG. 7 schematically shows a third cross-sectional view of a display panel in an embodiment of the present disclosure
  • FIG. 8 schematically shows a fourth cross-sectional view of a display panel in an embodiment of the present disclosure
  • FIG. 9 schematically shows a fifth cross-sectional view of a display panel in an embodiment of the present disclosure.
  • FIG. 10 schematically shows a sixth cross-sectional view of a display panel in an embodiment of the present disclosure
  • FIG. 11 schematically shows a seventh cross-sectional view of a display panel in an embodiment of the present disclosure.
  • connection may refer to a physical connection, an electrical connection, a communicative connection, and/or a fluid connection.
  • the X-axis, Y-axis, and Z-axis are not limited to the three axes of the rectangular coordinate system, and may be interpreted in a wider sense.
  • the X-axis, Y-axis, and Z-axis may be perpendicular to each other, or may represent different directions that are not perpendicular to each other.
  • X, Y, and Z and "at least one selected from the group consisting of X, Y, and Z” may be interpreted as meaning only X, only Y, only Z, or Any combination of two or more of X, Y and Z such as XYZ, XYY, YZ and ZZ.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • first means for describing various components, components, elements, regions, layers and/or sections
  • these components, components, elements, regions, layers and/or parts should not be limited by these terms. Rather, these terms are used to distinguish one component, component, element, region, layer and/or section from another.
  • a first component, first member, first element, first region, first layer, and/or first portion discussed below could be termed a second component, second member, second element, second region , the second layer and/or the second portion, without departing from the teachings of the present disclosure.
  • spatially relative terms such as “upper,” “lower,” “left,” “right,” etc. may be used herein to describe the relationship between one element or feature and another element or feature as shown in the figures. relation. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” or “above” the other elements or features.
  • the expression “thickness” refers to the dimension along the surface perpendicular to the display panel on which each film layer is disposed, that is, the dimension along the light emitting direction of the display panel.
  • patterning process generally includes steps such as photoresist coating, exposure, development, etching, and photoresist stripping.
  • one patterning process means a process of forming patterned layers, components, members, etc. using one mask.
  • the expressions “same layer”, “set in the same layer” or similar expressions refer to the use of the same film forming process to form a film layer for forming a specific pattern, and then use the same mask to pass a patterning process to the film.
  • Layer structure formed by layer patterning may include multiple exposure, development or etching processes, and the specific pattern in the formed layer structure may be continuous or discontinuous. These specific graphics may also be at different heights or have different thicknesses.
  • the expression “electrically connected” may mean that two components or elements are directly electrically connected, for example, component or element A is in direct contact with component or element B, and electrical signals may be transmitted between the two; It can mean that two components or elements are electrically connected through a conductive medium such as a conductive wire, for example, a component or element A is electrically connected with a component or element B through a conductive wire, so as to transmit electrical signals between the two parts or elements; it can also represent Two components or elements are electrically connected through at least one electronic component, for example, component or element A is electrically connected to component or element B through at least one thin film transistor, so as to transmit electrical signals between the two components or elements.
  • Fig. 1 schematically shows a schematic diagram of a display panel in a comparison example, as shown in Fig. 1, in this comparative example, the display panel adopts the color conversion technology, specifically, the display panel includes a first base substrate 11, a A light emitting device layer 12 on a base substrate 11, a color conversion layer 13 located on a side of the light emitting device layer 12 away from the first base substrate 11, a second substrate located on a side of the color conversion layer 13 away from the first base substrate 11 The base substrate 14 and the pixel circuit layer 15 located between the light emitting device layer 12 and the first base substrate 11 and the like.
  • the light emitting device layer 12 may include a plurality of light emitting devices 121, and the light emitting devices 121 may include electroluminescent devices, such as micro light emitting diodes (Micro LEDs) and the like.
  • the color conversion layer 13 includes a plurality of quantum dots 131 .
  • the quantum dots 131 are arranged in one-to-one correspondence with the light emitting devices 121 .
  • the quantum dots 131 include photoluminescent materials capable of wavelength conversion. The light emitted by the light emitting device 121 can be converted into a desired color after passing through the corresponding quantum dots 131 , thereby realizing the color conversion function.
  • the inventors have found in research that during the manufacturing process of the display panel, the light-emitting device layer 12 is firstly formed on the first base substrate 11 , and the color conversion layer 13 is formed on the second base substrate 14 . After that, the first base substrate 11 formed with the light-emitting device layer 12 and the second base substrate 14 formed with the color conversion layer 13 are subjected to cell alignment and other processes to combine them together to obtain a display panel.
  • the side of the light-emitting device layer 12 away from the first base substrate 11 has a certain buffer space, which makes the preparation In the obtained display panel, there is a certain distance between the light emitting device layer 12 and the color conversion layer 13 .
  • the quantum dot 131 on the left is a green quantum dot
  • the quantum dot 131 on the right is a red quantum dot.
  • FIG. 2 schematically shows a plan view of the display panel in the embodiment of the present disclosure.
  • the display panel of the embodiment of the present disclosure may have a display area AA and In the non-display area NA located outside the display area AA, the display area AA is provided with a plurality of pixel units P arranged in an array along the first direction and the second direction, wherein the first direction may include the row direction of the display panel, or That is, the horizontal direction in FIG. 2 , the second direction may include the column direction of the display panel, that is, the vertical direction in FIG. 2 .
  • Each pixel unit P may include a plurality of sub-pixels, and each sub-pixel may include a light emitting device which will be mentioned below.
  • Fig. 3 schematically shows one of the cross-sectional views in the display area in the embodiment of the present disclosure, combined with Fig. 2 and Fig. 3, in the embodiment of the present disclosure, the display panel includes: a first base substrate 21, and a The color conversion layer 22 , the light emitting device layer 23 , and the liquid crystal layer 24 on the first base substrate 21 .
  • the light emitting device layer 23 is disposed between the first base substrate 21 and the color conversion layer 22
  • the liquid crystal layer 24 is disposed between the light emitting device layer 23 and the color conversion layer 22 .
  • the light emitting device layer 23 includes a light emitting device 231.
  • the light emitting device layer 23 includes a plurality of light emitting devices 231.
  • the light emitting device 231 may include an electroluminescent device.
  • the light emitting device 231 may include an organic electroluminescent device.
  • OLED Organic Light-Emitting Diode
  • Micro LED Micro LED
  • the display panel in the embodiment of the present disclosure will be described below by taking the light emitting device 231 including a micro light emitting diode (Micro LED) as an example.
  • the display panel also includes a pixel circuit layer 26 disposed on the side of the light emitting device layer 23 close to the first base substrate 21, the pixel circuit layer 26 includes a plurality of pixel circuits (not shown in the figure), at least one pixel circuit and one light emitting device 231 are correspondingly arranged and electrically connected, for example, the pixel circuit and the light emitting device 231 are arranged in one-to-one correspondence and electrically connected.
  • the display panel also includes a gate drive circuit and a data drive chip (not shown in the figure) disposed on the first base substrate 21 and located in the non-display area NA. The gate drive circuit and the data drive chip can be connected through corresponding The gate line and the data line are electrically connected to a plurality of pixel circuits, and each pixel circuit drives the light emitting device 231 corresponding to the pixel circuit to emit light.
  • the liquid crystal layer 24 includes a first optical path adjustment part 241 and a second optical path adjustment part 242 arranged at intervals, the orthographic projection of the first optical path adjustment part 241 on the first base substrate 21 and the light emitting device 231 on the first base substrate 21
  • the orthographic projection of the light-emitting device 231 on the first base substrate 21 and the orthographic projection of the light-emitting device 231 on the first base substrate 21 are spaced apart.
  • the light emitting device layer 23 may include a plurality of light emitting devices 231 , and different light emitting devices 231 have different colors.
  • the plurality of light emitting devices 231 may include red light emitting devices, green light emitting devices and blue light emitting devices.
  • the liquid crystal layer 24 may include a plurality of first optical path adjustment parts 241 and a plurality of second optical path adjustment parts 242 .
  • At least one light emitting device 231 may be provided corresponding to at least one first optical path adjustment part 241 , and different light emitting devices 231 correspond to different first optical path adjustment parts 241 .
  • the light emitting device 231 may be provided in a one-to-one correspondence with the first optical path adjusting part 241 .
  • the orthographic projection of at least one first optical path adjustment part 241 on the first base substrate 21 may at least partially overlap the orthographic projection of its corresponding light emitting device 231 on the first base substrate 21, so that the light emitting When the device 231 emits light, the light emitted by the light emitting device 231 can pass through the first optical path adjustment part 241 and then exit.
  • the liquid crystal layer 24 may include a plurality of second optical path adjustment parts 242, and one second optical path adjustment part 242 may be arranged between two adjacent first optical path adjustment parts 241 along the first direction; A second optical path adjustment portion 242 may be arranged between two adjacent first optical path adjustment portions 241 in two directions; or, a second optical path adjustment portion 242 may be arranged between two adjacent first optical path adjustment portions 241 along the first direction. There are two optical path adjustment parts 242, and a second optical path adjustment part 242 is also arranged between two adjacent first optical path adjustment parts 241 along the second direction.
  • first optical path adjustment parts 241 adjacent along the first direction and the second optical path adjustment part 242 located between the two first optical path adjustment parts 241 are taken as an example.
  • the working principle of the first optical path adjustment unit 241 and the second optical path adjustment unit 242 will be described.
  • the second optical path adjustment unit 242 has at least a first state.
  • the second optical path adjustment part 242 is in the first state, among the light emitted by the light emitting device 231 , the light incident on the second optical path adjustment part 242 through the first optical path adjustment part 241 is refracted to narrow the light emission of the light emitting device 231 angle, or cause at least one scattering of that portion of the light.
  • a solid color picture such as a red picture, a green picture and a blue picture, for any light emitting device 231 in FIG.
  • the obliquely incident light will be refracted, and the refracted The angle is greater than the incident angle, which can narrow the light emitting angle of the light emitting device 231, and improve the problem of color crossover caused by the light emitted by the light emitting device 231 entering other quantum dots 221, thereby improving the color purity of the pure color picture.
  • the light emitting device 231 on the right side in FIG. 3 after the light emitted by it is narrowed by the second optical path adjusting part 242 , the light that can enter the quantum dot 221 on the left will be greatly reduced.
  • the liquid crystals in the second optical path adjustment part 242 are arranged in disorder and the liquid crystals in the first optical path adjustment part 241 are in an orderly arrangement, the The light at 242 can be scattered, and the intensity of the light is weakened every time there is a scattering.
  • the light emitting device 231 on the right side in FIG. When the light can be scattered one or more times, it is difficult for this part of the light to pass through the second optical path adjustment part 242, so that the problem of cross-color can also be improved.
  • the specific content of this setting scheme will be introduced in detail below, and will not be repeated here. .
  • the solid-color picture may refer to all or a part of the image displayed on the display panel.
  • a solid-color picture may refer to a picture displayed by one or more pixel units P.
  • Each pixel unit P may include a plurality of sub-pixels, and the sub-pixels in the same pixel unit P have different colors.
  • a plurality of sub-pixels include red sub-pixels, green sub-pixels and blue sub-pixels, and "pure color" may refer to a The color of one of the sub-pixels in the pixel unit P, for example, a solid color may include red, green and blue.
  • the light incident from the first optical path adjustment part 241 to the second optical path adjustment part 242 can be refracted or scattered.
  • the possible refraction of the light incident on the second optical path adjusting part 242 by the part 241 will be further described.
  • the display panel further includes a first driving component 25
  • the second optical path adjustment part 242 is configured to: respond to the electric field applied by the first driving component 25 , in the first state and switch between the second state.
  • the display panel includes a plurality of first driving components 25, at least one first driving component 25 is provided corresponding to one second optical path adjusting part 242, and the second optical path adjusting parts 242 corresponding to different first driving components 25 are different.
  • the first driving assembly 25 and the second optical path adjustment part 242 are provided in a one-to-one correspondence.
  • the second optical path adjustment part 242 may be configured to switch between the first state and the second state in response to the electric field applied by the corresponding first driving assembly 25 .
  • At least one first driving component 25 may include two plate-shaped electrodes positioned on opposite sides of the liquid crystal layer 24; or, at least one first driving component 25 may include a slit electrode positioned on one side of the liquid crystal layer 24, specifically It will be introduced in detail below and will not be repeated here.
  • the refractive index of the second optical path adjustment part 242 is smaller than the refractive index of the first optical path adjustment part 241, so that Refracting the light incident from the first optical path adjustment part to the second optical path adjustment part, at this time, the light emitting angle of the light emitting device 231 can be narrowed, thereby improving the cross-color problem and improving the color purity of the pure color picture .
  • the second optical path adjustment unit 242 can be in the second state.
  • the refractive index of the second optical path adjusting portion 242 is substantially the same as that of the first optical path adjusting portion 241 , and at this time, the output light of the light emitting device 231 The angle remains the same, for the two light emitting devices 231 in Figure 5, the light emitted by the light emitting device 231 on the left can not only be incident on the quantum dot 221 above it, but also be incident on the quantum dot 221 on the right; the same reason , the light emitted by the light-emitting device 231 on the right can not only be incident on the quantum dot 221 above it, but also incident on the quantum dot 221 on the left, so that the intensity of the light source incident on each quantum dot
  • the mixed color picture may refer to all or a part of the image displayed on the display panel.
  • a mixed color picture may refer to a picture displayed by one or more pixel units.
  • pure color can refer to the color of one sub-pixel in a pixel unit, and correspondingly, mixed color can refer to the color formed by mixing multiple sub-pixels in a pixel unit, for example, yellow, cyan, magenta , white, etc.
  • FIG. 6 schematically shows the second cross-sectional view of the display panel in the embodiment of the present disclosure.
  • the display panel further includes: a retaining wall arranged on the first base substrate 21 Layer 27.
  • the color conversion layer 22 includes a plurality of quantum dots 221
  • the quantum dots 221 include photoluminescent materials capable of wavelength conversion, for example, the quantum dots 221 may include organic photoluminescent materials such as CdSe and InP. Different quantum dots 221 have different colors, for example, the plurality of quantum dots 221 may include red quantum dots, green quantum dots and blue quantum dots.
  • the quantum dots 221 may be doped with reflective materials, and the light utilization efficiency of the quantum dots 221 may be improved by doping the quantum dots 221 with reflective materials.
  • the barrier wall layer 27 includes a barrier wall 271 that may include an opaque material, and the barrier wall 271 separates the plurality of quantum dots 221 from each other.
  • the second optical path adjustment part 242 is specifically configured as follows: when the second optical path adjustment part 242 is in the first state, the second optical path adjustment part 242 can make the light incident on the second optical path adjustment part 242 from the first optical path adjustment part 241 toward Retaining wall 271 exits. When the second optical path adjustment part 242 is in the first state, at least part of the light incident from the first optical path adjustment part 241 to the second optical path adjustment part 242 is emitted toward at least one quantum dot 221 .
  • the retaining wall layer 27 includes a plurality of retaining walls 271, and the orthographic projection of at least one retaining wall 271 on the first base substrate 21 is set corresponding to at least one second optical path adjustment part 242, for example, the retaining wall 271 and the first The two optical path adjusting parts 242 are provided in one-to-one correspondence.
  • the orthographic projection of at least one blocking wall 271 on the first base substrate 21 and the corresponding orthographic projection of the second optical path adjusting portion 242 on the first base substrate 21 at least partially overlap.
  • the orthographic projection of at least one blocking wall 271 on the first base substrate 21 covers the orthographic projection of the second optical path adjusting portion 242 corresponding to the blocking wall 271 on the first base substrate 21 .
  • the second optical path adjustment part 242 can make the light incident from the first optical path adjustment part 241 to the second optical path adjustment part 242 correspond to the direction of the second optical path adjustment part 242
  • the retaining wall 271 exits.
  • the light emitted by it is mainly divided into two parts, one of which passes through the first optical path adjustment part 241 and exits toward the quantum dot 221 located above the light-emitting device 231, so that the light emitted by the quantum dot 221 to achieve color conversion.
  • the other part passes through the first optical path adjustment part 241 and then enters the second optical path adjustment part 242.
  • the orthographic projection on the base substrate 21 covers the orthographic projection of the second optical path adjustment part 242 corresponding to the barrier 271 on the first base substrate 21, so if the deflected light still has a larger light exit angle , then, the deflected light can be blocked by the blocking wall 271 above the second optical path adjustment part 242, and will not enter the left quantum dot 221, thereby further improving the problem of cross-color.
  • the second optical path adjustment part 242 when the second optical path adjustment part 242 is in the second state, at least part of the light incident from the first optical path adjustment part 241 to the second optical path adjustment part 242 is emitted towards at least one quantum dot 221 , in this way, the intensity of the light source incident on each quantum dot 221 becomes larger, so that the display brightness can be increased, and the display power consumption can be reduced.
  • the barrier wall 271 may include a light-absorbing material, or the barrier wall 271 may include a reflective material, and the light utilization efficiency of the quantum dots 221 may be improved by doping the reflective material in the barrier wall 271 .
  • the display panel further includes: The light absorbing layer 28 on one side of the first base substrate 21 .
  • the light-absorbing layer 28 includes a light-absorbing portion 281 , the orthographic projection of the light-absorbing portion 281 on the first base substrate 21 at least partially overlaps the orthographic projection of the barrier wall 271 on the first base substrate 21 .
  • the light absorbing part 281 can absorb the light emitted from the second optical path adjustment part 242 and absorb the light reflected back to the second optical path adjustment part 242 by the blocking wall 271, thereby preventing the The problem of light crosstalk caused by multiple reflections between the layer 27 and the first base substrate 21 .
  • the light absorbing portion 281 includes a plurality of color resists stacked in the thickness direction of the display panel, wherein different color resists have different colors, for example, the plurality of color groups may include a red color group, a green color group, and a green color group. color group and blue color group.
  • the light absorbing part 281 includes a black matrix.
  • the liquid crystals in the liquid crystal layer 24 may include positive liquid crystals or negative liquid crystals.
  • the positive liquid crystal may refer to a liquid crystal material satisfying ⁇ 1> ⁇ 2, and n1>n2, where ⁇ 1 represents the dielectric constant of the positive liquid crystal in a horizontal state, and ⁇ 2 represents the dielectric constant of the positive liquid crystal in a vertical state, n1 represents the refractive index when the positive liquid crystal is in a horizontal state, and n2 represents the refractive index when the positive liquid crystal is in a vertical state.
  • the negative liquid crystal may refer to a liquid crystal material satisfying ⁇ 3 ⁇ 4, and n1 ⁇ n2, wherein ⁇ 3 represents the dielectric constant when the negative liquid crystal is in a horizontal state, and ⁇ 4 represents the dielectric constant when the negative liquid crystal is in a vertical state, n3 represents the refractive index when the negative liquid crystal is in a horizontal state, and n4 represents the refractive index when the positive liquid crystal is in a negative liquid crystal.
  • the liquid crystals in the liquid crystal layer 24 when the liquid crystals in the liquid crystal layer 24 include positive liquid crystals, the liquid crystals in the first optical path adjustment part 241 can always be kept in a horizontal state, and the initial state of the liquid crystals in the second optical path adjustment part 242 Also for horizontal state.
  • the initial state of the liquid crystal in the second optical path adjusting part 242 may refer to the state of the liquid crystal in the second optical path adjusting part 242 when the first driving assembly 25 does not apply an electric field to the second optical path adjusting part 242 .
  • the refractive index of the second optical path adjusting portion 242 is approximately the same as that of the first optical path adjusting portion 241, therefore, when the second optical path adjusting portion 242 When in the second state, the liquid crystal in the second optical path adjustment part 242 can be in an initial state, that is, the liquid crystal in the second optical path adjustment part 242 can be in a horizontal state.
  • the first drive assembly 25 applies an electric field to the second optical path adjustment part 242
  • at least part of the liquid crystals in the second optical path adjustment part 242 can be in a vertical state, because the liquid crystals in the first optical path adjustment part 241 are always kept in a horizontal state.
  • the refractive index of the second optical path adjustment part 242 at this time is smaller than the refractive index of the first optical path adjustment part 241, so that the light incident from the first optical path adjustment part 241 to the second optical path adjustment part 242 is deflected, so that Narrow the light angle.
  • the refractive index of the second optical path adjusting portion 242 is smaller than that of the first optical path adjusting portion 241, therefore, when the liquid crystal in the liquid crystal layer 24 includes positive
  • the first state may specifically refer to a state in which at least part of the liquid crystal in the second optical path adjustment part 242 is in a vertical state by applying an electric field.
  • the liquid crystals in the liquid crystal layer 24 include negative liquid crystals
  • the liquid crystals in the first optical path adjustment part 241 can always be kept in a vertical state, and the initial state of the liquid crystals in the second optical path adjustment part 242 is also in a vertical state.
  • the liquid crystal in the second optical path adjusting part 242 can be in an initial state, that is, the liquid crystal in the second optical path adjusting part 242 can be in a vertical state.
  • the first drive assembly 25 applies an electric field to the second optical path adjustment part 242
  • at least part of the liquid crystals in the second optical path adjustment part 242 can be in a horizontal state, because the liquid crystals in the first optical path adjustment part 241 are always kept in a vertical state. Therefore, the refractive index of the second optical path adjustment part 242 at this time is smaller than the refractive index of the first optical path adjustment part 241, so that the light incident from the first optical path adjustment part 241 to the second optical path adjustment part 242 is deflected, so that Narrow the light angle. Therefore, when the liquid crystals in the liquid crystal layer 24 include negative liquid crystals, the first state may specifically refer to a state in which at least part of the liquid crystals in the second optical path adjusting part 242 is in a horizontal state by applying an electric field.
  • the display panel further includes a first alignment layer (not shown) disposed on the side of the liquid crystal layer 24 close to the first base substrate 21 and disposed on a side of the liquid crystal layer 24 away from the first base substrate 21
  • the alignment angles of the first alignment layer and the second alignment layer are the same. In this way, when the first driving component 25 does not apply an electric field to the second optical path adjustment portion 242, the liquid crystal in the second optical path adjustment portion 242 can be in an initial state under the action of the first alignment layer and the second alignment layer.
  • the liquid crystal in the liquid crystal layer 24 includes a self-aligned liquid crystal material, so that when the first drive assembly 25 does not apply an electric field to the second optical path adjustment portion 242, the liquid crystal in the second optical path adjustment portion 242
  • the liquid crystal can also be in the initial state without using the first alignment layer and the second alignment layer, so that the first alignment layer and the second alignment layer can be omitted, thereby simplifying the process steps.
  • the orthographic projection of the first drive assembly 25 on the first base substrate 21 and the orthographic projection of the first optical path adjustment part 241 on the first base substrate 21 are spaced apart, thereby preventing the first drive assembly from The electric field generated by 25 interferes with the liquid crystal in the first optical path adjustment part 241, so that the liquid crystal in the first optical path adjustment part 241 can always be kept in a horizontal state (or a vertical state).
  • the electrical signal provided to the first drive assembly 25 may include a DC signal or an AC signal.
  • the voltage of the AC signal may be Set from 1V to 50V.
  • the first driving component 25 may include two plate electrodes arranged on opposite sides of the liquid crystal layer 24 , or may include a slit electrode arranged on one side of the liquid crystal layer 24 . Firstly, referring to FIG. 6 , it will be described that the first drive assembly 25 includes two plate electrodes.
  • the display panel further includes: a first electrode layer 291 disposed on the side of the liquid crystal layer 24 close to the first base substrate 21 , and a first electrode layer 291 disposed on the side of the liquid crystal layer 24 away from the first base substrate 21 .
  • Two electrode layers 292 .
  • the first driving component 25 includes a first electrode 251 located in the first electrode layer 291 and a second electrode 252 located in the second electrode layer 292 , and both the first electrode 251 and the second electrode 252 include plate electrodes.
  • the orthographic projection of the second electrode 252 on the first substrate 21 covers the orthographic projection of the first electrode 251 on the first substrate 21 .
  • the orthographic projection of the second electrode 252 on the first base substrate 21 , the orthographic projection of the barrier wall 271 on the first base substrate 21 , and the light absorbing portion 281 on the first base substrate 21 at least partially overlap.
  • the material of the second electrode 252 may include a light-transmitting conductive material, so that the light emitted by the second optical path adjustment part 242 toward the second electrode 252 can pass through the second electrode 252 to be absorbed by the light absorbing part 281, so that it can avoid
  • the second electrode 252 reflects the light back to the second optical path adjustment part 242, thereby preventing multiple reflections of the light between the second electrode 252 and the first base substrate 21, and avoiding problems such as cross-color caused by it.
  • the area of the orthographic projection of the second electrode 252 on the first base substrate 21 may be substantially the same as the area of the orthographic projection of the first electrode 251 on the first base substrate 21 .
  • the area of the orthographic projection of the second electrode 252 on the first base substrate 21 is greater than the area of the orthographic projection of the first electrode 251 on the first base substrate 21 .
  • the display panel further includes a pixel circuit layer 26 disposed between the light emitting device layer 23 and the first base substrate 21 .
  • the pixel circuit layer 26 includes a first thin film transistor 31 , and the light emitting device 231 is electrically connected to a first electrode of the first thin film transistor 311 through a first connection electrode 321 .
  • the first connecting electrode 321 and the first electrode 251 are arranged in the same layer and made of the same material.
  • setting in the same layer refers to forming by using the same patterning process.
  • one patterning process may include multiple exposure, development or etching processes, and the specific pattern in the formed layer structure may be continuous or discontinuous. These specific graphics may also be at different heights or have different thicknesses.
  • the first electrode layer 291 is located on a side of the first alignment layer close to the first base substrate 21
  • the second electrode layer 292 is located on a side of the second alignment layer away from the first base substrate 21 .
  • the first thin film transistor 31 may include a light emission control transistor in the pixel circuit, the first thin film transistor 31 may be electrically connected to a driving transistor, and the driving transistor may respond to the voltage difference between its gate and source. , to generate a driving current, the first thin film transistor 31 can be configured to: transmit the driving current generated by the driving transistor to the first connection electrode 321 in response to the control of the light emission control signal, and then transmit the driving current to the light emission through the first connection electrode 321 device 231 to drive the light emitting device 231 to emit light.
  • the area of the orthographic projection of the second electrode 252 on the first base substrate 21 is larger than the area of the orthographic projection of the first electrode 251 on the first base substrate 21, so that the second electrode 252 can be made
  • the area of the first electrode 251 is as small as possible to prevent the layout of the first electrode 251 from affecting the first connection electrode 321 and reduce the risk of short circuit of the first connection electrode 321 or related circuit devices.
  • the area of the second electrode 252 can be increased as much as possible, so that the range of the electric field generated by the first drive assembly 25 can be as large as possible, and the fringe electric field in the electric field can make the liquid crystal affected by it be in a vertical position.
  • the light emitted by the first optical path adjustment part 241 will be deflected to a certain extent here, and this part of the light will continue to be deflected when it reaches the second optical path adjustment part 242 , which is beneficial to further narrow the light emitting angle of the light emitting device 231, so as to better improve the problem of cross-color.
  • the pixel circuit layer 26 includes a semiconductor layer 41, a gate insulating layer 42, a gate layer 43, an interlayer insulating layer 44, a source-drain metal layer 45 and an organic insulating layer 46, the active layer 41, the gate
  • the electrode insulating layer 42, the gate layer 43, the interlayer insulating layer 44, the source-drain metal layer 45 and the organic insulating layer 46 are sequentially arranged on the first base substrate 21 and the light emitting device along the direction gradually away from the first base substrate 21. Between layers 23.
  • the active layer 311 of the first thin film transistor 31 is located in the semiconductor layer 41
  • the gate 312 of the first thin film transistor 31 is located in the gate layer 43
  • the first electrode 3131 and the second electrode 3132 of the first thin film transistor are located in
  • the active layer 311 of the first thin film transistor includes a first pole connection portion, a second pole connection portion, and a channel portion located between the first pole connection portion and the second pole connection portion, and the channel The part and the gate 312 are arranged facing each other.
  • the first pole 3131 of the first thin film transistor 31 is electrically connected to the first pole connection part through the first via hole penetrating the interlayer insulating layer 44 and the gate insulating layer 42, and the second pole 3132 of the first thin film transistor 31 is electrically connected to the first pole connecting part through the penetrating layer.
  • the inter-insulating layer 44 and the second via hole of the gate insulating layer 42 are point-connected to the second electrode connection portion.
  • the first connection electrode 321 is electrically connected to the first electrode 3131 of the first thin film transistor 31 through the third via hole penetrating through the organic insulating layer 46 .
  • one is a source
  • the other is a drain.
  • the second pole 3132 of the first thin film transistor 31 may be electrically connected to the driving transistor, so that the first thin film transistor can respond to the control of the light emission control signal, and conduct the driving transistor and the first connecting electrode 321, thereby turning the driving transistor on.
  • the driving current generated by the driving transistor is transmitted to the first connection electrode 321 .
  • the material of the active layer may include low-temperature polysilicon semiconductors, oxide semiconductors, and the like.
  • Figure 7 schematically shows the third cross-sectional view of the display panel in the embodiment of the present disclosure.
  • the second electrode 252 is electrically connected to the first voltage terminal
  • the first electrode 251 is connected to the The second terminal 231a of the light emitting device 231 is electrically connected to the second voltage terminal.
  • the first electrode layer 291 further includes a second connection electrode 322, the second terminal 231a of the light emitting device 231 can be electrically connected to the second voltage terminal through the second connection electrode 322, and the second voltage terminal can be a constant voltage terminal , such as the low-level voltage terminal VSS.
  • the first voltage terminal can also be a constant voltage terminal, so that a constant electric field is generated between the first electrode 251 and the second electrode 252, so that the second optical path adjustment part 242 is kept in the first state .
  • Figure 8 schematically shows the fourth cross-sectional view of the display panel in the embodiment of the present disclosure.
  • the second electrode 252 is electrically connected to the first voltage terminal, and the first electrode 251 is connected to the The first end 231b of the light emitting device 231 is electrically connected, so that whether an electric field is generated between the first electrode 251 and the second electrode 252 can be controlled by an electrical signal provided to the first end 231b of the light emitting device 231, so that the second optical path adjustment part 242 is switchable between a first state and a second state.
  • the first electrode 251 arranged in the above manner can keep the electrical signal between the second end 231a (or first end 231b) of the light emitting device 231 consistent with the first electrode 251, so that The problem that the deflection of the liquid crystal caused by the difference in electrical signals between the two terminals 231a and the first electrode 251 is disturbed.
  • FIG. 9 schematically shows a fifth cross-sectional view of the display panel in the embodiment of the present disclosure.
  • the first drive assembly 25 includes slit electrodes will be described below.
  • the display panel further includes a third electrode layer 293 disposed on the side of the liquid crystal layer 24 close to the first base substrate 21 , and the first driving component 25 includes a third electrode 2931 located in the third electrode layer 293
  • the third electrode 2931 includes a first sub-electrode 2931a and a second sub-electrode 2931b arranged at intervals, and the first sub-electrode 2931a and the second sub-electrode 2931b form a slit electrode.
  • the first driving component 25 is configured to generate an electric field in response to the first electrical signal supplied to the first sub-electrode 2931a and the second electrical signal supplied to the second sub-electrode 2932b, wherein the first electrical signal and the second The voltage of the electrical signal is different.
  • the first driving component 25 forms an electric field, and the liquid crystal in the second optical path adjustment part 242 is deflected under the action of the horizontal component of the fringe electric field in the electric field , so that the refractive index of the second optical path adjustment part 242 is reduced, and then the light incident from the first optical path adjustment part 241 to the second optical path adjustment part 242 is deflected, so as to narrow the light output angle of the light emitting device 231 .
  • the third electrode layer 293 is located on a side of the first alignment layer 331 close to the first base substrate 21 , and the first connection electrodes 321 ′ and the second connection electrodes 322 ′ may be located in the third electrode layer.
  • the display panel further includes a fourth electrode layer disposed on the side of the liquid crystal layer 24 facing away from the first base substrate 21, the first driving component 25 includes a fourth electrode located in the fourth electrode layer, and the second The four electrodes include slit electrodes.
  • the fourth electrode layer 293 is located on a side of the second alignment layer 332 away from the first base substrate 21 .
  • the display panel also includes a fifth electrode layer disposed on the side of the liquid crystal layer 24 close to the first base substrate 21, the fifth electrode layer may be located on the side of the first alignment layer 331 close to the first base substrate 21, and the first connection electrode 321 may be located in the fifth electrode layer.
  • the liquid crystal in the liquid crystal layer 24 includes a first liquid crystal and a second liquid crystal
  • the second liquid crystal is obtained by irradiating a photopolymer liquid crystal material with ultraviolet light under a preset electric field.
  • the second liquid crystal is configured to keep the long axis of the first liquid crystal in the second optical path adjustment part 242 in a preset direction, so that the second optical path adjustment part 242 is always in the first state.
  • a preset electric field can be applied to the second optical path adjustment part 242 through the first driving assembly 25, so that the first liquid crystal and the first liquid crystal in the second optical path adjustment part 242
  • the second liquid crystal is deflected, and at this time, it can be cured by ultraviolet light irradiation, so that the active monomers in the liquid crystal molecules are polymerized and cross-linked, and the arrangement of the first liquid crystal and the second liquid crystal is fixed. In this way, in subsequent use, there is no need to provide a driving signal to the second optical path adjustment unit 242, thereby reducing power consumption.
  • the display panel further includes a second base substrate 51 disposed opposite to the first base substrate 21, a color filter layer 52 disposed on the side of the color conversion layer 22 close to the second base substrate 51, and a black The matrix layer 53 , wherein the black matrix layer 53 is provided with openings, the color filter layer 52 includes a plurality of filter portions 521 , and the plurality of filter portions 521 are disposed in the openings of the black matrix layer 53 .
  • the display panel further includes an encapsulation layer 54 disposed on the side of the light absorbing layer 28 away from the second base substrate 51 , and the encapsulation layer 54 is used to connect the encapsulation layer 54 to each of the second base substrate 51 .
  • the film layer is encapsulated.
  • the second electrode layer 292 in the above embodiments may be disposed on the side of the encapsulation layer 54 away from the second base substrate 51 .
  • the display panel further includes a sealant (not shown in the figure), and the sealant is used to encapsulate the liquid crystal layer 24.
  • the thickness of the sealant can be made larger, so that The liquid crystal layer 24 has a larger cell thickness, thereby offsetting the problem of sinking in the central region of the liquid crystal layer 24 .
  • the display panel further includes a spacer layer 34 located between the color conversion layer 22 and the first base substrate 21 .
  • the spacer layer 34 includes a plurality of spacers 341, and the orthographic projection of the spacers on the first base substrate 21 and the orthographic projection of the first optical path adjustment part 241 on the first base substrate 21 are arranged at intervals.
  • the thickness of the spacer 341 may be set to 5 ⁇ m to 30 ⁇ m.
  • one end of the spacer 341 may be in contact with the first alignment layer, and the other end of the spacer 341 may be in contact with the second alignment layer, and the spacer 341 may make the liquid crystal layer 24 everywhere
  • the cell thickness of the liquid crystal layer 24 is kept consistent, so that the liquid crystal layer 24 does not need to maintain a larger cell thickness to improve the problem of sagging in the middle region of the liquid crystal layer 24, and a smaller cell thickness is beneficial to further improve the above-mentioned cross-color problem.
  • the display panel of the embodiment of the present disclosure can control the light output angle of the light-emitting device 231 by using the first optical path adjustment part 241 and the second optical path adjustment part 242, so that when displaying a solid-color picture, the problem of cross-color can be solved and the improvement can be improved.
  • Color purity; while displaying color mixing, multiple light-emitting devices 231 can be used as a light source for one quantum dot 221, thereby improving display brightness and reducing display power consumption.
  • Fig. 10 schematically shows the sixth cross-sectional view of the display panel in the embodiment of the present disclosure
  • Fig. 11 schematically shows the seventh cross-sectional view of the display panel in the embodiment of the present disclosure
  • the third liquid crystal in Fig. 10 includes Polymer dispersed liquid crystal
  • the third liquid crystal in FIG. 11 includes interpenetrating polymer liquid crystal.
  • the possible scattering of the light incident from the first optical path adjustment part 241 to the second optical path adjustment part 242 will be further described below with reference to FIG. 10 and FIG. 11 .
  • the display panel further includes: a second driving component 61 disposed on the first base substrate 21 .
  • the liquid crystals in the first optical path adjustment part 241 and the second optical path adjustment part 242 both include a third liquid crystal, and optionally, the third liquid crystal includes at least one of polymer-dispersed liquid crystals and interpenetrating polymer liquid crystals .
  • the first optical path adjusting part 241 has a third state and a fourth state, and the first optical path adjusting part 241 is configured to switch between the third state and the fourth state in response to the electric field applied by the second driving assembly 61 .
  • the third liquid crystals in the first optical path adjustment part 241 are arranged in an orderly manner, and the third liquid crystals in the second optical path adjustment part 242 are in an orderly arrangement.
  • the three liquid crystals are arranged in disorder, so as to scatter the light incident from the first optical path adjustment part to the second optical path adjustment part 242 .
  • both the second optical path adjusting part 242 and the third liquid crystals in the first optical path adjusting part are arranged in disorder.
  • the first optical path adjustment part 241 can transmit light, for example, the long axis direction of the third liquid crystal and the thickness direction of the display panel Same, that is, the direction of the long axis of the third liquid crystal is perpendicular to the plane where the first base substrate 21 is located.
  • the light incident from the first optical path adjustment part to the second optical path adjustment part 242 can be scattered, and through reasonable configuration, the second optical path adjustment part can 242 is opaque, so that the light incident from the first optical path adjustment part to the second optical path adjustment part 242 cannot pass through the second optical path adjustment part 242, thereby preventing the occurrence of cross-color problems.
  • the light incident from the first optical path adjustment part 241 to the second optical path adjustment part 242 may not only be scattered, but also reflected, depending on the second optical path adjustment part
  • the actual configuration of the third liquid crystal in 242 can be specifically determined according to needs.
  • the display panel further includes a fourth electrode layer disposed on the side of the liquid crystal layer 24 away from the first base substrate 21 and a pixel circuit layer disposed between the light emitting device layer 23 and the first base substrate 21
  • the second driving component 61 includes a fourth electrode 611 located in the fourth electrode layer, the fourth electrode 611 is electrically connected to the third voltage terminal, and optionally, the third voltage terminal is a constant voltage terminal.
  • the pixel circuit layer 26 includes a first thin film transistor 31, the first end 231b of the light emitting device 231 is electrically connected to the first thin film transistor 31, and the second end 231a of the light emitting device 231 is electrically connected to the fourth voltage end.
  • the fourth voltage terminal is a constant voltage terminal.
  • the light emitting device 231 may include a plurality of stacked film layers, wherein the multiple film layers include a first light emitting electrode layer and a second light emitting electrode layer, and the first end 231b of the light emitting device 231 may be connected to the first light emitting electrode layer. Layers are electrically connected, and the second end 231a of the light emitting device 231 may be electrically connected to the second end 231a of the second light emitting electrode layer.
  • the first end 231b of the first light-emitting electrode layer may be located on the side of the second end 231a of the second light-emitting electrode layer close to the first base substrate 21.
  • the second driving component 61 can be configured to respond to the fourth electrode 611 and the second end of the light-emitting device 231.
  • the voltage difference between 231a generates an electric field.
  • the first terminal 231b can be connected between the second terminal 231a and the second terminal 231a of the second light emitting electrode layer of the light emitting device 231.
  • a constant electric field is generated between the four electrodes 611, so that the first optical path adjusting part 241 can be kept in the third state after being switched to the third state.
  • the first end 231b of the first light-emitting electrode layer may be located on the side of the second end 231a of the second light-emitting electrode layer away from the first base substrate 21.
  • the four electrodes 611 are closer, and the first light-emitting electrode layer is electrically connected to the first end 231b of the light-emitting device 231. Therefore, the second driving component 61 can be configured to respond to the fourth electrode 611 and the first end of the light-emitting device 231.
  • the voltage difference between 231b generates an electric field.
  • the first terminal 231b of the light emitting device 231 receives the driving signal transmitted by the first thin film transistor 31, the light emitting device 231 emits light, and at the same time, the first light emitting device 231 emits light
  • An electric field is generated between the first end 231 b of the electrode layer and the fourth electrode 611 , so that the first optical path adjustment unit 241 switches to the third state only when the light emitting device 231 emits light, thereby reducing power consumption.
  • the present disclosure also provides a display device, which includes the above-mentioned display panel.
  • the display device may include a tablet personal computer (PC), a smart phone, a personal digital assistant (PDA), a portable multimedia player, a game console, or a wrist-watch electronic device, and the like.
  • PC personal computer
  • PDA personal digital assistant
  • the embodiments of the present disclosure do not intend to limit the types of display devices.
  • the display device can be used not only in large electronic devices such as televisions (TVs) or external billboards, but also in medium or small electronic devices such as PCs, notebook computers, car navigation devices, or cameras. middle.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开提供了一种显示面板,其中,包括:第一衬底基板、色转换层、发光器件层以及液晶层;其中,发光器件层包括发光器件,液晶层包括间隔设置的第一光路调节部和第二光路调节部,第一光路调节部在第一衬底基板上的正投影与发光器件在第一衬底基板上的正投影至少部分交叠,第二光路调节部在第一衬底基板上的正投影与发光器件在第一衬底基板上的正投影间隔设置;以及,第二光路调节部至少具有第一状态,当第二光路调节部处于第一状态时,使发光器件发出的光线中,经第一光路调节部入射至第二光路调节部的光线发生折射,以收窄发光器件的发光角度,或者使该部分光线发生至少一次散射。本公开还提供了一种显示装置。

Description

显示面板和显示装置 技术领域
本公开涉及显示技术领域,具体涉及一种显示面板和显示装置。
背景技术
微发光二极管(Micro LED)具有长寿命、高信赖性、高色纯度、模块化、可定制、可修复等优势,是未来最有可能成为替代有机电致发光二极管(Organic Light-Emitting Diode,OLED)的显示技术。
目前微发光二极管的技术发展所面临的挑战包括芯片发光均匀性和巨量转移良率等。以上问题在可预见的未来都将是长期影响微发光二极管技术发展的重要难题。除了在诸如垒晶均匀性等方面的努力外,色转换技术也是一种能够有效改善以上问题的方式。色转换技术通过设置在微发光二极管出光侧的色转换层来进行光致发光,进而实现色转换功能。这样一来,可以仅在显示面板中设置一种颜色的微发光二极管,从而减少显示面板厂商对微发光二极管的依赖,特别是工艺复杂、技术难度大、良率低的红色微发光二极管。而且,色转换技术可以将原有的三次巨量转移(红色微发光二极管、蓝色微发光二极管和绿色微发光二极管)简化至一次,大幅降低因巨量转移导致的良率损失和修复工作量。
但是,在采用色转换技术的显示面板中,微发光二极管与色转换层之间存在较大间距,而这会引起串色现象,进而影响显示效果。
发明内容
鉴于上述问题,本公开提供了一种显示面板和显示装置。
根据本公开的第一个方面,提供了一种显示面板,其中,包括:
第一衬底基板;
设置在所述第一衬底基板上的色转换层;
设置在所述第一衬底基板和所述色转换层之间的发光器件层;以及,
设置在所述发光器件层和所述色转换层之间的液晶层;
其中,所述发光器件层包括发光器件,所述液晶层包括间隔设置的第一光路调节部和第二光路调节部,所述第一光路调节部在所述第一衬底基板上的正投影 与所述发光器件在所述第一衬底基板上的正投影至少部分交叠,所述第二光路调节部在所述第一衬底基板上的正投影与所述发光器件在所述第一衬底基板上的正投影间隔设置;以及,
所述第二光路调节部至少具有第一状态,当所述第二光路调节部处于所述第一状态时,使所述发光器件发出的光线中,经所述第一光路调节部入射至所述第二光路调节部的光线发生折射,以收窄所述发光器件的发光角度,或者使该部分光线发生至少一次散射。
根据本公开的实施例,所述显示面板还包括:
设置在所述第一衬底基板上的第一驱动组件;
其中,所述第二光路调节部具有所述第一状态和第二状态,所述第二光路调节部配置为:响应于所述第一驱动组件施加的电场,在所述第一状态和所述第二状态之间切换;当所述第二光路调节部处于所述第一状态时,所述第二光路调节部的折射率小于所述第一光路调节部的折射率,以使从所述第一光路调节部入射至所述第二光路调节部的光线的发生折射;当所述第二光路调节部处于所述第二状态时,所述第二光路调节部的折射率与所述第一光路调节部的折射率大致相同。
根据本公开的实施例,所述第一驱动组件在所述第一衬底基板上的正投影与所述第一光路调节部在所述第一衬底基板上的正投影间隔设置。
根据本公开的实施例,所述显示面板还包括:
设置在所述液晶层靠近所述第一衬底基板一侧的第一电极层;
设置在所述液晶层背离所述第一衬底基板一侧的第二电极层;
其中,所述第一驱动组件包括位于所述第一电极层中的第一电极和位于所述第二电极层中的第二电极。
根据本公开的实施例,所述显示面板还包括设置在所述发光器件层与所述第一衬底基板之间的像素电路层;
所述像素电路层包括第一薄膜晶体管,所述发光器件的第一端通过第一连接电极与所述第一薄膜晶体管的第一极电连接;
其中,所述第一连接电极与所述第一电极同层设置且材料相同。
根据本公开的实施例,所述第二电极与第一电压端电连接,所述第一电极与所述发光器件的第二端和第二电压端电连接;或者,
所述第二电极与第一电压端电连接,所述第一电极与所述发光器件的第一端 电连接。
根据本公开的实施例,所述显示面板还包括设置在所述液晶层靠近所述第一衬底基板一侧的第三电极层,所述第一驱动组件包括位于所述第三电极层中的第三电极,所述第三电极包括间隔设置的第一子电极和第二子电极;
其中,所述第一驱动组件配置为:响应于提供至所述第一子电极的第一电信号和提供至所述第二子电极的第二电信号,产生所述电场。
根据本公开的实施例,向所述第一驱动组件提供的电信号包括交流信号。
根据本公开的实施例,所述第二光路调节部中的液晶包括第一液晶和第二液晶,所述第二液晶由光聚合物型液晶材料在预设电场下经紫外光照射后得到;
其中,所述第二液晶配置为,使所述第一液晶的长轴保持在预设方向上,以使所述第二光路调节部始终处于所述第一状态。
根据本公开的实施例,所述显示面板还包括:
设置在所述第一衬底基板上的第二驱动组件;
其中,所述第一光路调节部和所述第二光路调节部中的液晶均包括第三液晶,所述第一光路调节部具有第三状态和第四状态,所述第一光路调节部配置为:响应于所述第二驱动组件施加的电场,在所述第三状态和所述第四状态之间切换;
当所述第一光路调节部处于所述第三状态,且所述第二光路调节部处于所述第一状态时,所述第一光路调节部中的所述第三液晶呈有序排列,所述第二光路调节部中的所述第三液晶呈无序排列,以使从所述第一光路调节部入射至所述第二光路调节部的光线的发生散射;当所述第一光路调节部处于所述第四状态,且所述第二光路调节部处于所述第一状态时,所述第二光路调节部与所述第一光路调节部中的所述第三液晶均呈无序排列。
根据本公开的实施例,所述显示面板还包括设置在所述液晶层背离所述第一衬底基板一侧的第四电极层和设置在所述发光器件层与所述第一衬底基板之间的像素电路层,所述第二驱动组件包括位于所述第四电极层中的第四电极,所述第四电极与第三电压端电连接;
其中,所述像素电路层包括第一薄膜晶体管,所述发光器件的第一端与所述第一薄膜晶体管电连接,所述发光器件的第二端与第四电压端电连接;
所述第二驱动组件配置为,响应于所述第四电极和所述发光器件的第一端之间的电压差,产生电场;或者,响应于所述第四电极和所述发光器件的第二端之 间的电压差,产生电场。
根据本公开的实施例,所述第三液晶包括聚合物分散型液晶和网络互穿聚合物型液晶中的至少一者。
根据本公开的实施例,所述显示面板还包括:
设置在所述第一衬底基板上的挡墙层;
其中,所述色转换层包括多个不同颜色的量子点,所述挡墙层包括挡墙,所述挡墙将多个所述量子点彼此间隔开;以及,
所述第二光路调节部配置为:当所述第二光路调节部处于所述第一状态时,使从所述第一光路调节部入射至该第二光路调节部的光线朝向所述挡墙出射。
根据本公开的实施例,所述显示面板包括如权利要求2所述的第一驱动组件;
当所述第二光路调节部处于所述第二状态时,使从所述第一光路调节部入射至该第二光路调节部的至少部分光线朝向至少一个所述量子点出射。
根据本公开的实施例,所述挡墙包括反射材料,所述显示面板还包括:
设置在所述挡墙层靠近所述第一衬底基板一侧的光吸收层;
所述光吸收层包括光吸收部,所述光吸收部在所述第一衬底基板上的正投影与所述挡墙在所述第一衬底基板上的正投影至少部分交叠。
根据本公开的实施例,所述光吸收部包括在所述显示面板的厚度方向上叠置的多个色阻,其中,不同的色阻的颜色不同;或者,
所述光吸收部包括黑矩阵。
根据本公开的实施例,所述发光器件包括微发光二极管。
根据本公开的实施例,所述显示面板还包括设置在所述液晶层靠近所述第一衬底基板一侧的第一配向层以及设置在所述液晶层背离所述第一衬底基板一侧的第二配向层,所述第一配向层和所述第二配向层的配向角相同;或者,
所述液晶层中的液晶包括自取向液晶材料。
根据本公开的实施例,所述显示面板还包括位于所述色转换层与所述第一衬底基板之间的隔垫物层;
所述隔垫物层包括隔垫物,所述隔垫物在所述第一衬底基板上的正投影与所述第一光路调节部在所述第一衬底基板上的正投影间隔设置。
本公开的第二方面提供了一种显示装置,其中,包括上述的显示面板。
附图说明
通过以下参照附图对本公开实施例的描述,本公开的上述内容以及其他目的、特征和优点将更为清楚,在附图中:
图1示意性示出了一对比例中显示面板的示意图;
图2示意性示出了本公开实施例中显示面板的平面图;
图3示意性示出了本公开实施例中显示区中的截面图之一;
图4和图5示意性示出了本公开实施例中第二光路调节部在第一状态和第二状态之间切换的示意图;
图6示意性示出了本公开实施例中显示面板的截面图之二;
图7示意性示出了本公开实施例中显示面板的截面图之三;
图8示意性示出了本公开实施例中显示面板的截面图之四;
图9示意性示出了本公开实施例中显示面板的截面图之五;
图10示意性示出了本公开实施例中显示面板的截面图之六;
图11示意性示出了本公开实施例中显示面板的截面图之七。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开的保护范围。
需要说明的是,在附图中,为了清楚和/或描述的目的,可以放大元件的尺寸和相对尺寸。如此,各个元件的尺寸和相对尺寸不必限于图中所示的尺寸和相对尺寸。在说明书和附图中,相同或相似的附图标号指示相同或相似的部件。
当元件被描述为“在”另一元件“上”、“连接到”另一元件或“结合到”另一元件时,所述元件可以直接在所述另一元件上、直接连接到所述另一元件或直接结合到所述另一元件,或者可以存在中间元件。然而,当元件被描述为“直接在”另一元件“上”、“直接连接到”另一元件或“直接结合到”另一元件时,不存在中间元件。用于描述元件之间的关系的其他术语和/或表述应当以类似的方式解释,例如,“在……之间”对“直接在……之间”、“相邻”对“直接相邻”或“在……上”对“直接 在……上”等。此外,术语“连接”可指的是物理连接、电连接、通信连接和/或流体连接。此外,X轴、Y轴和Z轴不限于直角坐标系的三个轴,并且可以以更广泛的含义解释。例如,X轴、Y轴和Z轴可彼此垂直,或者可代表彼此不垂直的不同方向。出于本公开的目的,“X、Y和Z中的至少一个”和“从由X、Y和Z构成的组中选择的至少一个”可以被解释为仅X、仅Y、仅Z、或者诸如XYZ、XYY、YZ和ZZ的X、Y和Z中的两个或更多个的任何组合。如文中所使用的,术语“和/或”包括所列相关项中的一个或多个的任何组合和所有组合。
需要说明的是,虽然术语“第一”、“第二”等可以在此用于描述各种部件、构件、元件、区域、层和/或部分,但是这些部件、构件、元件、区域、层和/或部分不应受到这些术语限制。而是,这些术语用于将一个部件、构件、元件、区域、层和/或部分与另一个相区分。因而,例如,下面讨论的第一部件、第一构件、第一元件、第一区域、第一层和/或第一部分可以被称为第二部件、第二构件、第二元件、第二区域、第二层和/或第二部分,而不背离本公开的教导。
为了便于描述,空间关系术语,例如,“上”、“下”、“左”、“右”等可以在此被使用,来描述一个元件或特征与另一元件或特征如图中所示的关系。应理解,空间关系术语意在涵盖除了图中描述的取向外,装置在使用或操作中的其它不同取向。例如,如果图中的装置被颠倒,则被描述为“在”其它元件或特征“之下”或“下面”的元件将取向为“在”其它元件或特征“之上”或“上面”。
本领域技术人员应该理解,在本文中,除非另有说明,表述“厚度”指的是沿垂直于显示面板设置有各个膜层的表面的尺寸,即沿显示面板的出光方向的尺寸。
在本文中,除非另有说明,表述“构图工艺”一般包括光刻胶的涂布、曝光、显影、刻蚀、光刻胶的剥离等步骤。表述“一次构图工艺”意指使用一块掩模板形成图案化的层、部件、构件等的工艺。
需要说明的是,表述“同一层”,“同层设置”或类似表述,指的是采用同一成膜工艺形成用于形成特定图形的膜层,然后利用同一掩模板通过一次构图工艺对该膜层图案化所形成的层结构。根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而形成的层结构中的特定图形可以是连续的也可以是不连续的。这些特定图形还可能处于不同的高度或者具有不同的厚度。
在本文中,除非另有说明,表述“电连接”可以表示两个部件或元件直接电连接,例如,部件或元件A与部件或元件B直接接触,并且二者之间可以传递电 信号;也可以表示两个部件或元件通过例如导电线的导电媒介电连接,例如,部件或元件A通过导电线与部件或元件B电连接,以在两个部件或元件之间传递电信号;还可以表示两个部件或元件通过至少一个电子元器件电连接,例如,部件或元件A通过至少一个薄膜晶体管与部件或元件B电连接,以在两个部件或元件之间传递电信号。
图1示意性示出了一对比例中显示面板的示意图,如图1所示,在该对比例中,显示面板采用色转换技术,具体地,显示面板包括第一衬底基板11、位于第一衬底基板11上的发光器件层12、位于发光器件层12远离第一衬底基板11一侧的色转换层13、位于色转换层13远离第一衬底基板11一侧的第二衬底基板14以及位于发光器件层12与第一衬底基板11之间的像素电路层15等。发光器件层12可以包括多个发光器件121,发光器件121可以包括电致发光器件,例如微发光二极管(Micro LED)等。色转换层13包括多个量子点131。可选地,量子点131与发光器件121一一对应设置。量子点131包括能够进行波长转换的光致发光材料,发光器件121发出的光线在经过与其对应的量子点131后,能够转换为所需的颜色,进而实现色转换功能。
发明人在研究中发现,在显示面板的制备过程中,一半首先将发光器件层12形成在第一衬底基板11上,以及将色转换层13形成在第二衬底基板14上。之后,再使形成有发光器件层12的第一衬底基板11和形成有色转换层13的第二衬底基板14进行对盒等工艺以使二者结合在一起,从而得到显示面板。在上述过程中,为保证发光器件层12中的发光器件121不会受到外力影响而损伤,需要使发光器件层12远离第一衬底基板11的一侧具有一定的缓冲空间,这就使得制备得到的显示面板中,发光器件层12和色转换层13之间存在一定距离。例如,请继续参照图1,假设左侧的量子点131为绿色量子点,右侧的量子点131为红色量子点,当需要显示红色画面时,位于红色量子点下方的发光器件121进行发光,由于发光器件层12和色转换层13之间存在一定距离,因此,右侧的发光器件121发出的光线的一部分将会传播至左侧的绿色量子点中,进而出现串色现象,影响显示效果。
有鉴于此,本公开实施例提供一种显示面板,图2示意性示出了本公开实施例中显示面板的平面图,如图2所示,本公开实施例的显示面板可以具有显示区AA和位于显示区AA之外的非显示区NA,显示区AA中设置有沿第一方向和 第二方向呈阵列分布的多个像素单元P,其中,第一方向可以包括显示面板的行方向,也即图2中的水平方向,第二方向可以包括显示面板的列方向,也即图2中的竖直方向。每个像素单元P可以包括多个子像素,每个子像素可以包括有一个下文将会提到的发光器件。图3示意性示出了本公开实施例中显示区中的截面图之一,结合图2和图3所示,在本公开实施例中,显示面板包括:第一衬底基板21、以及设置在第一衬底基板21上的色转换层22、发光器件层23、液晶层24。其中,发光器件层23设置在第一衬底基板21和色转换层22之间,液晶层24设置在发光器件层23和色转换层22之间。
在本公开实施例中,发光器件层23包括发光器件231,可选地,发光器件层23包括多个发光器件231,发光器件231可以包括电致发光器件,例如,发光器件231可以包括有机电致发光二极管(Organic Light-Emitting Diode,OLED)或者微发光二极管(Micro LED)。可选地,下文以发光器件231包括微发光二极管(Micro LED)为例,对本公开实施例的显示面板进行说明。
显示面板还包括设置在发光器件层23靠近第一衬底基板21一侧的像素电路层26,像素电路层26包括多个像素电路(图中未示出),至少一个像素电路与一个发光器件231对应设置并电连接,例如,像素电路与发光器件231一一对应设置并电连接。显示面板还包括设置在第一衬底基板21上且位于非显示区NA中的栅极驱动电路和数据驱动芯片(图中未示出)等,栅极驱动电路和数据驱动芯片可以通过相应的栅线和数据线与多个像素电路电连接,进而通过每个像素电路驱动与该像素电路相应的发光器件231进行发光。
液晶层24包括间隔设置的第一光路调节部241和第二光路调节部242,第一光路调节部241在第一衬底基板21上的正投影与发光器件231在第一衬底基板21上的正投影至少部分交叠,第二光路调节部242在第一衬底基板21上的正投影与发光器件231在第一衬底基板21上的正投影间隔设置。
在本公开实施例中,发光器件层23可以包括多个发光器件231,不同的发光器件231的颜色不同,例如,多个发光器件231可以包括红色发光器件、绿色发光器件和蓝色发光器件。液晶层24可以包括多个第一光路调节部241和多个第二光路调节部242。至少一个发光器件231可以与至少一个第一光路调节部241对应设置,不同的发光器件231所对应的第一光路调节部241不同。例如,发光器件231可以与第一光路调节部241一一对应设置。可选地,至少一个第一光路 调节部241在第一衬底基板21上的正投影可以与其对应的发光器件231在第一衬底基板21上的正投影至少部分交叠,从而使得该发光器件231在进行发光时,该发光器件231发出的光线能够经过第一光路调节部241后出射。
可选地,液晶层24可以包括多个第二光路调节部242,沿第一方向相邻的两个第一光路调节部241之间可以设置有一个第二光路调节部242;或者,沿第二方向相邻的两个第一光路调节部241之间可以设置有一个第二光路调节部242;再或者,沿第一方向相邻的两个第一光路调节部241之间设置有一个第二光路调节部242,并且,沿第二方向相邻的两个第一光路调节部241之间也设置有一个第二光路调节部242。
请参照图3,下面以沿第一方向相邻的两个第一光路调节部241和位于该两个第一光路调节部241之间的第二光路调节部242为例,对本公开实施例中第一光路调节部241和第二光路调节部242的工作原理进行说明。
在本公开实施例中,第二光路调节部242至少具有第一状态。当第二光路调节部242处于第一状态时,使发光器件231发出的光线中,经第一光路调节部241入射至第二光路调节部242的光线发生折射,以收窄发光器件231的发光角度,或者使该部分光线发生至少一次散射。以经第一光路调节部241入射至第二光路调节部242的光线发生折射为例,当显示纯色画面时,例如红色画面、绿色画面和蓝色画面等,对于图3中任一个发光器件231,该发光器件231发出的光线在经过第一光路调节部241入射至第二光路调节部242时,由于是从光密介质到光疏介质,因此,斜向入射的光线将发生折射,且折射角大于入射角,这样能够收窄该发光器件231的出光角度,改善了该发光器件231发出的光线入射至其他量子点221中而发生的串色问题,从而提高纯色画面的色纯度。例如,对于图3中右侧的发光器件231,其发出的光线在经过第二光路调节部242收窄后,能够入射至左侧的量子点221中的光线将大大降低。
需要说明的是,当第二光路调节部242中的液晶呈无序排列,且第一光路调节部241中的液晶呈有序排列时,从第一光路调节部241入射至第二光路调节部242的光线的能够发生散射,每发生一次散射,光线强度即被减弱,对于图3中右侧的发光器件231发出的光线,当经第一光路调节部241入射至第二光路调节部242的光线的能够发生一次或多次散射时,该部分光线难以穿过第二光路调节部242,从而也能够改善串色问题,该设置方案的具体内容将在下文进行详细介 绍,在此先不赘述。
需要说明的是,在本公开实施例中,纯色画面可以是指显示面板所显示的图像中的全部或者一部分。例如,纯色画面可以是指一个或多个像素单元P所显示的画面。每个像素单元P可以包括多个子像素,同一个像素单元P中的子像素的颜色不同,例如,多个子像素包括红色子像素、绿色子像素和蓝色子像素,“纯色”可以是指一个像素单元P中其中一个子像素的颜色,例如,纯色可以包括红色、绿色和蓝色。
在本公开实施例中,从第一光路调节部241入射至第二光路调节部242的光线的能够发生折射或散射,下面首先结合图2至图9对本公开实施例中,从第一光路调节部241入射至第二光路调节部242的光线的能够发生折射进行进一步地说明。
图4和图5示意性示出了本公开实施例中第二光路调节部在第一状态和第二状态之间切换的示意图,其中,图4中第二光路调节部处在第一状态,图5中第二光路调节部处在第二状态。结合图4和图5所示,在一些具体实施例中,显示面板还包括第一驱动组件25,第二光路调节部242配置为:响应于第一驱动组件25施加的电场,在第一状态和第二状态之间切换。
可选地,显示面板包括多个第一驱动组件25,至少一个第一驱动组件25与一个第二光路调节部242对应设置,不同的第一驱动组件25所对应的第二光路调节部242不同,例如,第一驱动组件25与第二光路调节部242一一对应设置。第二光路调节部242可以配置为:响应于与其相应的第一驱动组件25施加的电场,在第一状态和第二状态之间切换。
可选地,至少一个第一驱动组件25可以包括位于液晶层24相对两侧的两个板状电极;或者,至少一个第一驱动组件25可以包括位于液晶层24一侧的狭缝电极,具体将在下文进行详细介绍,在此先不赘述。
对于纯色画面,例如红色画面、绿色画面和蓝色画面等,当第二光路调节部242处于第一状态时,第二光路调节部242的折射率小于第一光路调节部241的折射率,以使从所述第一光路调节部入射至所述第二光路调节部的光线的发生折射,此时,能够收窄该发光器件231的出光角度,从而改善串色问题,提高纯色画面的色纯度。对于混色画面,例如黄色画面、青色画面、品红色画面、白色画面等,可以使第二光路调节部242处于第二状态。在本公开实施例中,当第二光 路调节部242处于第二状态时,第二光路调节部242的折射率与第一光路调节部241的折射率大致相同,此时,发光器件231的出光角度不变,对于图5中的两个发光器件231,左侧的发光器件231发出的光线除了可以入射至其上方的量子点221之外,还可以入射至右侧的量子点221;同理,右侧的发光器件231发出的光线除了可以入射至其上方的量子点221之外,还可以入射至左侧的量子点221,这样一来,入射至每个量子点221中的光源的强度变大,从而可以提高显示亮度,进而降低显示功耗。
需要说明的是,在本公开实施例中,混色画面可以是指显示面板所显示的图像中的全部或者一部分。例如,混色画面可以是指一个或多个像素单元所显示的画面。如前文所述,“纯色”可以是指一个像素单元中其中一个子像素的颜色,相应的,混色可以是指一个像素单元中由多个子像素混合形成的颜色,例如,黄色、青色、品红色、白色等。
图6示意性示出了本公开实施例中显示面板的截面图之二,如图6所示,在一些具体实施例中,显示面板还包括:设置在第一衬底基板21上的挡墙层27。其中,色转换层22包括多个量子点221,量子点221包括能够进行波长转换的光致发光材料,例如,量子点221可以包括CdSe和InP等有机的光致发光材料。不同的量子点221的颜色不同,例如,多个量子点221可以包括红色量子点、绿色量子点和蓝色量子点。
可选地,量子点221中可以掺杂反射材料,通过在量子点221中掺杂反射材料,可以提高量子点221的光利用率。
挡墙层27包括挡墙271,挡墙271可以包括不透光材料,挡墙271将多个量子点221彼此间隔开。第二光路调节部242具体配置为:当第二光路调节部242处于第一状态时,第二光路调节部242能够使从第一光路调节部241入射至该第二光路调节部242的光线朝向挡墙271出射。当第二光路调节部242处于第一状态时,使从第一光路调节部241入射至该第二光路调节部242的至少部分光线朝向至少一个量子点221出射。
可选地,挡墙层27包括多个挡墙271,至少一个挡墙271在第一衬底基板21上的正投影与至少一个第二光路调节部242对应设置,例如,挡墙271与第二光路调节部242一一对应设置。至少一个挡墙271在第一衬底基板21上的正投影和与其相对应的第二光路调节部242在第一衬底基板21上的正投影至少部 分交叠。
可选地,至少一个挡墙271在第一衬底基板21上的正投影覆盖与该挡墙271相对应的第二光路调节部242在第一衬底基板21上的正投影。
当第二光路调节部242处于第一状态时,第二光路调节部242能够使从第一光路调节部241入射至该第二光路调节部242的光线朝向与该第二光路调节部242相对应的挡墙271出射。请继续参照图6,对于右侧的发光器件231,其发出的光线主要分为两部分,其中一部分通过第一光路调节部241朝向位于该发光器件231上方的量子点221出射,以在量子点221中实现色转换。另一部分则通过第一光路调节部241后入射至第二光路调节部242,由于该部分光线从光密介质入射至光疏介质,因此,该部分光线向上偏折,由于挡墙271在第一衬底基板21上的正投影覆盖与该挡墙271相对应的第二光路调节部242在第一衬底基板21上的正投影,因此,倘若偏折后的光线仍然具有较大的出光角度,那么,该偏折后的光线可以被第二光路调节部242上方的挡墙271所阻挡,而不会入射至左侧的量子点221中,从而进一步地改善了串色的问题。
在一些具体实施例中,当第二光路调节部242处于所述第二状态时,使从第一光路调节241部入射至该第二光路调节部242的至少部分光线朝向至少一个量子点221出射,这样一来,入射至每个量子点221中的光源的强度变大,从而可以提高显示亮度,进而降低显示功耗。
在一些具体实施例中,挡墙271可以包括吸光材料,或者,挡墙271可以包括反射材料,通过在挡墙271中掺杂反射材料,可以提高量子点221的光利用率。当挡墙271包括反射材料时,为防止从第二光路调节部242入射至挡墙271的光线被挡墙271反射,在一些具体实施例中,显示面板还包括:设置在挡墙层27靠近第一衬底基板21一侧的光吸收层28。光吸收层28包括光吸收部281,光吸收部281在第一衬底基板21上的正投影与挡墙271在第一衬底基板21上的正投影至少部分交叠。
在本公开实施例中,通过光吸收部281可以吸收从第二光路调节部242出射的光线,以及吸收被挡墙271反射回第二光路调节部242的光线,从而防止出现由于光线在挡墙层27与第一衬底基板21之间发生多次反射而引起的光线串扰的问题。
在一些具体实施例中,光吸收部281包括在显示面板的厚度方向上叠置的多 个色阻,其中,不同的色阻的颜色不同,例如,多个色组可以包括红色色组、绿色色组和蓝色色组。或者,光吸收部281包括黑矩阵。
在一些具体实施例中,液晶层24中的液晶可以包括正性液晶或者负性液晶。正性液晶可以是指满足ε1>ε2,且n1>n2的液晶材料,其中,ε1表示正性液晶处于水平状态时的介电常数,ε2表示正性液晶处于竖直状态时的介电常数,n1表示正性液晶处于水平状态时的折射率,n2表示正性液晶处于竖直状态时的折射率。负性液晶可以是指满足ε3<ε4,且n1<n2的液晶材料,其中,ε3表示负性液晶处于水平状态时的介电常数,ε4表示负性液晶处于竖直状态时的介电常数,n3表示负性液晶处于水平状态时的折射率,n4表示正性液晶处于负性液晶时的折射率。
在本公开实施例中,当液晶层24中的液晶包括正性液晶时,可以使第一光路调节部241中的液晶始终保持在水平状态,使第二光路调节部242中的液晶的初始状态也为水平状态。其中,第二光路调节部242中的液晶的初始状态可以是指:当第一驱动组件25未向第二光路调节部242施加电场时,第二光路调节部242中的液晶所处的状态。如前文所述,由于当第二光路调节部242处于第二状态时,第二光路调节部242的折射率与第一光路调节部241的折射率大致相同,因此,当第二光路调节部242处于第二状态时,可以使第二光路调节部242中的液晶为初始状态,也即,使第二光路调节部242中的液晶处于水平状态。当第一驱动组件25向第二光路调节部242施加电场时,可以使第二光路调节部242中的至少部分液晶处于竖直状态,由于第一光路调节部241中的液晶始终保持在水平状态,因此,此时的第二光路调节部242的折射率小于第一光路调节部241的折射率,从而使得从第一光路调节部241入射至第二光路调节部242的光线发生偏折,以收窄出光角度。如前文所述,由于当第二光路调节部242处于第一状态时,第二光路调节部242的折射率小于第一光路调节部241的折射率,因此,当液晶层24中的液晶包括正性液晶时,第一状态具体可以是指通过施加电场,使得第二光路调节部242中的至少部分液晶处于竖直状态的状态。
当液晶层24中的液晶包括负性液晶时,可以使第一光路调节部241中的液晶始终保持在竖直状态,使第二光路调节部242中的液晶的初始状态也为竖直状态。当第二光路调节部242处于第二状态时,可以使第二光路调节部242中的液晶为初始状态,也即,使第二光路调节部242中的液晶处于竖直状态。当第一驱 动组件25向第二光路调节部242施加电场时,可以使第二光路调节部242中的至少部分液晶处于水平状态,由于第一光路调节部241中的液晶始终保持在竖直状态,因此,此时的第二光路调节部242的折射率小于第一光路调节部241的折射率,从而使得从第一光路调节部241入射至第二光路调节部242的光线发生偏折,以收窄出光角度。因此,当液晶层24中的液晶包括负性液晶时,第一状态具体可以是指通过施加电场,使得第二光路调节部242中的至少部分液晶处于水平状态的状态。
在一些具体实施例中,显示面板还包括设置在液晶层24靠近第一衬底基板21一侧的第一配向层(图中未示出)以及设置在液晶层24背离第一衬底基板21一侧的第二配向层(图中未示出),第一配向层和第二配向层的配向角相同。这样一来,当第一驱动组件25未向第二光路调节部242施加电场时,第二光路调节部242中的液晶能够在第一配向层和第二配向层的作用下而处于初始状态。
在另一些具体实施例中,液晶层24中的液晶包括自取向液晶材料,这样一来,当第一驱动组件25未向第二光路调节部242施加电场时,第二光路调节部242中的液晶无需借助第一配向层和第二配向层也可以处于初始状态,从而可以省去第一配向层和第二配向层,进而简化工艺步骤。
在一些具体实施例中,第一驱动组件25在第一衬底基板21上的正投影与第一光路调节部241在第一衬底基板21上的正投影间隔设置,从而防止第一驱动组件25产生的电场对第一光路调节部241中的液晶产生干扰,进而使得第一光路调节部241中的液晶可以始终保持在水平状态(或者竖直状态)。
在一些具体实施例中,向第一驱动组件25提供的电信号可以包括直流信号或者交流信号,可选地,当向第一驱动组件25提供的电信号包括交流信号时,交流信号的电压可以设置为1V至50V。通过向第一驱动组件25提供交流信号,可以防止第二光路调节部242中的液晶发生极化,延长第二光路调节部242的使用寿命。
在一些具体实施例中,第一驱动组件25可以包括设置在液晶层24相对两侧的两个板状电极,也可以包括设置在液晶层24一侧的狭缝电极。下面首先结合图6,对第一驱动组件25包括两个板状电极进行说明。
在本公开实施例中,显示面板还包括:设置在液晶层24靠近第一衬底基板21一侧的第一电极层291、以及设置在液晶层24背离第一衬底基板21一侧的第 二电极层292。其中,第一驱动组件25包括位于第一电极层291中的第一电极251和位于第二电极层292中的第二电极252,第一电极251和第二电极252均包括板状电极。可选地,第二电极252在第一衬底基板21上的正投影覆盖第一电极251在第一衬底基板21上的正投影。
在本公开实施例中,第二电极252在第一衬底基板21上的正投影、挡墙271在第一衬底基板21上的正投影、光吸收部281在第一衬底基板21上的正投影和第二光路调节部242在第一衬底基板21上的正投影至少部分交叠。第二电极252的材料可以包括透光导电材料,从而使第二光路调节部242朝向第二电极252出射的光线可以穿过第二电极252以被光吸收部281吸收,这样一来,可以避免第二电极252将光线反射回第二光路调节部242,从而防止光线在第二电极252与第一衬底基板21之间发生多次反射,避免出现由此导致的串色等问题。
在本公开实施例中,第二电极252在第一衬底基板21上的正投影的面积可以与第一电极251在第一衬底基板21上的正投影的面积大致相同。或者,第二电极252在第一衬底基板21上的正投影的面积大于第一电极251在第一衬底基板21上的正投影的面积。
在一些具体实施例中,显示面板还包括设置在发光器件层23与第一衬底基板21之间的像素电路层26。像素电路层26包括第一薄膜晶体管31,发光器件231通过第一连接电极321与第一薄膜晶体管311的第一极电连接。其中,第一连接电极321与第一电极251同层设置且材料相同。
需要说明的是,在本公开实施例中,同层设置指的是采用同一构图工艺形成。根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而形成的层结构中的特定图形可以是连续的也可以是不连续的。这些特定图形还可能处于不同的高度或者具有不同的厚度。
可选地,第一电极层291位于第一配向层靠近第一衬底基板21的一侧,第二电极层292位于第二配向层背离第一衬底基板21的一侧。
在本公开实施例中,第一薄膜晶体管31可以包括像素电路中的发光控制晶体管,第一薄膜晶体管31可以与驱动晶体管电连接,驱动晶体管可以响应于其栅极和源极之间的电压差,产生驱动电流,第一薄膜晶体管31可以配置为:响应于发光控制信号的控制,将驱动晶体管产生的驱动电流传输至第一连接电极321,进而通过第一连接电极321将驱动电流传输至发光器件231,以驱动发光 器件231进行发光。
在本公开实施例中,第二电极252在第一衬底基板21上的正投影的面积大于第一电极251在第一衬底基板21上的正投影的面积,这样一来,可以使得第一电极251的面积尽量小,防止第一电极251的布设影响第一连接电极321,降低第一连接电极321或者相关电路器件短路的风险。在此基础上,可以使得第二电极252的面积尽量增大,从而使得第一驱动组件25所产生的电场的范围尽量大,并且,电场中的边缘电场能够使得其所影响的液晶处于竖直状态和水平状态之间的倾斜状态,第一光路调节部241出射的光线在此处时将会发生一定程度的偏折,而这部分光线在到达第二光路调节部242时,继续发生偏折,而这有利于进一步收窄发光器件231的出光角度,从而能够更好地改善串色问题。
在本公开实施例中,像素电路层26包括半导体层41、栅极绝缘层42、栅极层43、层间绝缘层44、源漏金属层45和有机绝缘层46,有源层41、栅极绝缘层42、栅极层43、层间绝缘层44、源漏金属层45和有机绝缘层46沿逐渐远离第一衬底基板21的方向,依次设置在第一衬底基板21与发光器件层23之间。其中,第一薄膜晶体管31的有源层311位于半导体层41中,第一薄膜晶体管31的栅极位312于栅极层43中,第一薄膜晶体管的第一极3131和第二极3132位于源漏金属层45中,第一薄膜晶体管的有源层311包括第一极连接部、第二极连接部以及位于第一极连接部和第二极连接部之间的沟道部,沟道部与栅极312正对设置。第一薄膜晶体管31的第一极3131通过贯穿层间绝缘层44和栅极绝缘层42的第一过孔与第一极连接部电连接,第一薄膜晶体管31的第二极3132通过贯穿层间绝缘层44和栅极绝缘层42的第二过孔与第二极连接部点连接。第一连接电极321通过贯穿有机绝缘层46的第三过孔与第一薄膜晶体管31的第一极3131电连接。其中,第一薄膜晶体管31的第一极3131和第二极3132中,一者为源极,另一者为漏极。可选地,第一薄膜晶体管31的第二极3132可以与驱动晶体管电连接,从而使得第一薄膜晶体管能够响应于发光控制信号的控制,将驱动晶体管与第一连接电极321导通,进而将驱动晶体管产生的驱动电流传输至第一连接电极321。
可选地,有源层的材料可以包括可为低温多晶硅半导体和氧化物半导体等。
图7示意性示出了本公开实施例中显示面板的截面图之三,如图7所示,在一些具体实施例中,第二电极252与第一电压端电连接,第一电极251与发光器 件231的第二端231a和第二电压端电连接。可选地,第一电极层291还包括第二连接电极322,发光器件231的第二端231a可以通过第二连接电极322与第二电压端电连接,第二电压端可以为一恒定电压端,例如低电平电压端VSS。在本公开实施例中,第一电压端也可以为一恒定电压端,从而在第一电极251和第二电极252之间产生恒定的电场,以使第二光路调节部242保持在第一状态。
图8示意性示出了本公开实施例中显示面板的截面图之四,如图8所示,在一些具体实施例中,第二电极252与第一电压端电连接,第一电极251与发光器件231的第一端231b电连接,从而可以通过提供至发光器件231的第一端231b的电信号控制第一电极251和第二电极252之间是否产生电场,以使第二光路调节部242能够在第一状态和第二状态之间切换。
采用上述方式设置的第一电极251,能够使得发光器件231的第二端231a(或者第一端231b)与第一电极251之间的电信号保持一致,因此,可以避免由于发光器件231的第二端231a与第一电极251之间的电信号不同而导致的液晶偏转受到干扰的问题。
图9示意性示出了本公开实施例中显示面板的截面图之五,如图9所示,下面对第一驱动组件25包括狭缝电极进行说明。
在一些具体实施例中,显示面板还包括设置在液晶层24靠近第一衬底基板21一侧的第三电极层293,第一驱动组件25包括位于第三电极层293中的第三电极2931,第三电极2931包括间隔设置的第一子电极2931a和第二子电极2931b,第一子电极2931a和第二子电极2931b构成狭缝电极。其中,第一驱动组件25配置为:响应于提供至第一子电极2931a的第一电信号和提供至第二子电极2932b的第二电信号,产生电场,其中,第一电信号和第二电信号的电压不同。
在本公开实施例中,在向第一驱动组件25提供驱动信号之后,第一驱动组件25形成电场,第二光路调节部242中的液晶在电场中的边缘电场的水平分量的作用下发生偏转,从而使得第二光路调节部242的折射率降低,进而使得从第一光路调节部241入射至第二光路调节部242的光线发生偏转,以收窄发光器件231的出光角度。可选地,第三电极层293位于第一配向层331靠近第一衬底基板21的一侧,第一连接电极321'和第二连接电极322'可以位于第三电极层中。需要说明的是,本公开实施例中的未详尽说明可以参见前述实施例,在此不再赘述。
在另一些具体实施例中,显示面板还包括设置在液晶层24背离第一衬底基板21一侧的第四电极层,第一驱动组件25包括位于第四电极层中的第四电极,第四电极包括狭缝电极。可选地,第四电极层293位于第二配向层332背离第一衬底基板21的一侧。显示面板还包括设置在液晶层24靠近第一衬底基板21一侧的第五电极层,第五电极层可以位于第一配向层331靠近第一衬底基板21的一侧,第一连接电极321可以位于第五电极层中。采用上述方式设置的第一驱动组件25,第一驱动组件25的电极(也即第四电极)与第一连接电极位于不同层,从而更好地降低了对第一连接电极走线的影响。
在另一些具体实施例中,液晶层24中的液晶包括第一液晶和第二液晶,第二液晶由光聚合物型液晶材料在预设电场下经紫外光照射后得到。其中,第二液晶配置为,使第二光路调节部242中的第一液晶的长轴保持在预设方向上,以使第二光路调节部242始终处于第一状态。
在本公开实施例中,在完成显示面板的对盒工艺后,可以通过第一驱动组件25向第二光路调节部242施加预设电场,以使得第二光路调节部242中的第一液晶和第二液晶发生偏转,此时,可以通过紫外光照射固化,使得液晶分子中活性单体发生聚合交联,固定第一液晶和第二液晶的排列。这样一来,在后续使用中,无需再向第二光路调节部242提供驱动信号,从而能够降低功耗。
在一些具体实施例中,显示面板还包括与第一衬底基板21相对设置的第二衬底基板51、设置在色转换层22靠近第二衬底基板51一侧的滤色层52和黑矩阵层53,其中,黑矩阵层53上设置有开口,滤色层52包括多个滤光部521,多个滤光部521设置在黑矩阵层53的开口中。
在一些具体实施例中,显示面板还包括设置在光吸收层28远离第二衬底基板51一侧的封装层54,封装层54用于对封装层54与第二衬底基板51上的各个膜层进行封装。上述实施例中的第二电极层292可以设置在封装层54背离第二衬底基板51的一侧。
在一些具体实施例中,显示面板还包括封框胶(图中未示出),封框胶用于对液晶层24进行封装,可选地,可以使得封框胶的厚度较大,从而使得液晶层24具有较大的盒厚,进而抵消液晶层24中部区域下陷的问题。
在另一些具体实施例中,显示面板还包括位于色转换层22与第一衬底基板21之间的隔垫物层34。隔垫物层34包括多个隔垫物341,隔垫物在第一衬底基 板21上的正投影与第一光路调节部241在第一衬底基板21上的正投影间隔设置,可选地,隔垫物341的厚度可以设置为5μm至30μm。
在本公开实施例中,隔垫物341的一端可以与第一配向层相接触,隔垫物341的另一端可以与第二配向层相接触,通过隔垫物341可以使得液晶层24各处的盒厚保持一致,这样一来,无需使得液晶层24保持较大的盒厚即可改善液晶层24中部区域下陷问题,而较小的盒厚有利于进一步改善上述的串色问题。
综上,采用本公开实施例的显示面板,其利用第一光路调节部241和第二光路调节部242可以控制发光器件231的出光角度,从而在显示纯色画面时,可以解决串色问题,提高色纯度;而在显示混色时,可以利用多个发光器件231作为一个量子点221的光源,从而提高显示亮度,降低显示功耗。
图10示意性示出了本公开实施例中显示面板的截面图之六,图11示意性示出了本公开实施例中显示面板的截面图之七,其中,图10中的第三液晶包括聚合物分散型液晶,图11中的第三液晶包括网络互穿聚合物型液晶。下面结合图10和图11对本公开实施例中,从第一光路调节部241入射至第二光路调节部242的光线的能够发生散射进行进一步地说明。
在一些具体实施例中,显示面板还包括:设置在第一衬底基板21上的第二驱动组件61。
其中,第一光路调节部241和第二光路调节部242中的液晶均包括第三液晶,可选地,第三液晶包括聚合物分散型液晶和网络互穿聚合物型液晶中的至少一者。第一光路调节部241具有第三状态和第四状态,第一光路调节部241配置为:响应于第二驱动组件61施加的电场,在第三状态和第四状态之间切换。
当第一光路调节部241处于第三状态,且第二光路调节部242处于第一状态时,第一光路调节部241中的第三液晶呈有序排列,第二光路调节部242中的第三液晶呈无序排列,以使从第一光路调节部入射至第二光路调节部242的光线的发生散射。当第一光路调节部241处于第四状态,且第二光路调节部242处于第一状态时,第二光路调节部242与第一光路调节部中的第三液晶均呈无序排列。
在本公开实施例中,当第一光路调节部241中的第三液晶呈有序排列时,第一光路调节部241能够透射光线,例如,第三液晶的长轴方向与显示面板的厚度方向相同,也即,第三液晶的长轴方向垂直于第一衬底基板21所在板面。当第二光路调节部242中的第三液晶呈无序排列时,从第一光路调节部入射至第二光 路调节部242的光线的能够发生散射,通过合理配置,能够使得第二光路调节部242不透光,从而使得从第一光路调节部入射至第二光路调节部242的光线无法穿过第二光路调节部242,从而防止发生串色问题。
需要说明的是,在本公开实施例中,从第一光路调节部241入射至第二光路调节部242的光线的除了能够发生散射之外,还可以发生反射,这取决于第二光路调节部242中第三液晶的实际配置,具体可以根据需要确定。
在一些具体实施例中,显示面板还包括设置在液晶层24背离第一衬底基板21一侧的第四电极层和设置在发光器件层23与第一衬底基板21之间的像素电路层,第二驱动组件61包括位于第四电极层中的第四电极611,第四电极611与第三电压端电连接,可选地,第三电压端为一恒定电压端。
其中,像素电路层26包括第一薄膜晶体管31,发光器件231的第一端231b与第一薄膜晶体管31电连接,发光器件231的第二端231a与第四电压端电连接,可选地,第四电压端为一恒定电压端。
可选地,发光器件231可以包括叠置的多个膜层,其中,多个膜层包括第一发光电极层和第二发光电极层,发光器件231的第一端231b可以与第一发光电极层电连接,发光器件231的第二端231a可以与第二发光电极层电连接第二端231a。
可选地,第一发光电极层第一端231b可以位于第二发光电极层第二端231a靠近第一衬底基板21的一侧,此时,由于第二发光电极层第二端231a与第四电极611更近,且第二发光电极层与发光器件231的第二端231a电连接,因此,可以使得第二驱动组件61配置为,响应于第四电极611和发光器件231的第二端231a之间的电压差,产生电场。这样一来,在显示面板上电后,第一端231b由于第三电压端和第四电压端均为恒定电压端,因此,可以在发光器件231的第二发光电极层第二端231a和第四电极611之间产生恒定的电场,以使第一光路调节部241在切换至第三状态后能够保持在第三状态。
可选地,第一发光电极层第一端231b可以位于第二发光电极层第二端231a背离第一衬底基板21的一侧,此时,由于第一发光电极层第一端231b与第四电极611更近,且第一发光电极层与发光器件231的第一端231b电连接,因此,可以使得第二驱动组件61配置为,响应于第四电极611和发光器件231的第一端231b之间的电压差,产生电场。这样一来,在显示面板上电后,当发光器件 231的第一端231b接收到由第一薄膜晶体管31传输的驱动信号时,发光器件231进行发光,同时,在发光器件231的第一发光电极层第一端231b与第四电极611之间产生电场,从而使得第一光路调节部241在发光器件231发光时才切换至第三状态,从而降低功耗。
需要说明的是,本公开实施例中的未详尽说明可以参见前述实施例,例如,色转换层22和挡墙层27等结构均可以与前述实施例相同,在此不再赘述。
本公开还提供一种显示装置,该显示装置包括上述的显示面板。
在本公开的其他实施方式中,显示装置可以包括平板个人计算机(PC)、智能手机、个人数字助理(PDA)、便携式多媒体播放器、游戏机或腕表式电子装置等。然而,本公开的实施例并不意图限制显示装置的类型。在一些示例性实施例中,显示装置不仅可用于诸如电视机(TV)或外部广告牌等大型电子装置中,而且可用于诸如PC、笔记本式计算机、汽车导航装置或相机等中型或小型电子装置中。
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。本公开的范围由所附权利要求及其等同物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。

Claims (20)

  1. 一种显示面板,其中,包括:
    第一衬底基板;
    设置在所述第一衬底基板上的色转换层;
    设置在所述第一衬底基板和所述色转换层之间的发光器件层;以及,
    设置在所述发光器件层和所述色转换层之间的液晶层;
    其中,所述发光器件层包括发光器件,所述液晶层包括间隔设置的第一光路调节部和第二光路调节部,所述第一光路调节部在所述第一衬底基板上的正投影与所述发光器件在所述第一衬底基板上的正投影至少部分交叠,所述第二光路调节部在所述第一衬底基板上的正投影与所述发光器件在所述第一衬底基板上的正投影间隔设置;以及,
    所述第二光路调节部至少具有第一状态,当所述第二光路调节部处于所述第一状态时,使所述发光器件发出的光线中,经所述第一光路调节部入射至所述第二光路调节部的光线发生折射,以收窄所述发光器件的发光角度,或者使该部分光线发生至少一次散射。
  2. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    设置在所述第一衬底基板上的第一驱动组件;
    其中,所述第二光路调节部具有所述第一状态和第二状态,所述第二光路调节部配置为:响应于所述第一驱动组件施加的电场,在所述第一状态和所述第二状态之间切换;当所述第二光路调节部处于所述第一状态时,所述第二光路调节部的折射率小于所述第一光路调节部的折射率,以使从所述第一光路调节部入射至所述第二光路调节部的光线的发生折射;当所述第二光路调节部处于所述第二状态时,所述第二光路调节部的折射率与所述第一光路调节部的折射率大致相同。
  3. 根据权利要求2所述的显示面板,其中,所述第一驱动组件在所述第一衬底基板上的正投影与所述第一光路调节部在所述第一衬底基板上的正投影间隔设置。
  4. 根据权利要求2所述的显示面板,其中,所述显示面板还包括:
    设置在所述液晶层靠近所述第一衬底基板一侧的第一电极层;
    设置在所述液晶层背离所述第一衬底基板一侧的第二电极层;
    其中,所述第一驱动组件包括位于所述第一电极层中的第一电极和位于所述第二电极层中的第二电极。
  5. 根据权利要求4所述的显示面板,其中,所述显示面板还包括设置在所述发光器件层与所述第一衬底基板之间的像素电路层;
    所述像素电路层包括第一薄膜晶体管,所述发光器件的第一端通过第一连接电极与所述第一薄膜晶体管的第一极电连接;
    其中,所述第一连接电极与所述第一电极同层设置且材料相同。
  6. 根据权利要求5所述的显示面板,其中,所述第二电极与第一电压端电连接,所述第一电极与所述发光器件的第二端和第二电压端电连接;或者,
    所述第二电极与第一电压端电连接,所述第一电极与所述发光器件的第一端电连接。
  7. 根据权利要求2所述的显示面板,其中,所述显示面板还包括设置在所述液晶层靠近所述第一衬底基板一侧的第三电极层,所述第一驱动组件包括位于所述第三电极层中的第三电极,所述第三电极包括间隔设置的第一子电极和第二子电极;
    其中,所述第一驱动组件配置为:响应于提供至所述第一子电极的第一电信号和提供至所述第二子电极的第二电信号,产生所述电场。
  8. 根据权利要求2所述的显示面板,其中,向所述第一驱动组件提供的电信号包括交流信号。
  9. 根据权利要求1所述的显示面板,其中,所述第二光路调节部中的液晶包括第一液晶和第二液晶,所述第二液晶由光聚合物型液晶材料在预设电场下经紫外光照射后得到;
    其中,所述第二液晶配置为,使所述第一液晶的长轴保持在预设方向上,以 使所述第二光路调节部始终处于所述第一状态。
  10. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    设置在所述第一衬底基板上的第二驱动组件;
    其中,所述第一光路调节部和所述第二光路调节部中的液晶均包括第三液晶,所述第一光路调节部具有第三状态和第四状态,所述第一光路调节部配置为:响应于所述第二驱动组件施加的电场,在所述第三状态和所述第四状态之间切换;
    当所述第一光路调节部处于所述第三状态,且所述第二光路调节部处于所述第一状态时,所述第一光路调节部中的所述第三液晶呈有序排列,所述第二光路调节部中的所述第三液晶呈无序排列,以使从所述第一光路调节部入射至所述第二光路调节部的光线的发生散射;当所述第一光路调节部处于所述第四状态,且所述第二光路调节部处于所述第一状态时,所述第二光路调节部与所述第一光路调节部中的所述第三液晶均呈无序排列。
  11. 根据权利要求10所述的显示面板,其中,所述显示面板还包括设置在所述液晶层背离所述第一衬底基板一侧的第四电极层和设置在所述发光器件层与所述第一衬底基板之间的像素电路层,所述第二驱动组件包括位于所述第四电极层中的第四电极,所述第四电极与第三电压端电连接;
    其中,所述像素电路层包括第一薄膜晶体管,所述发光器件的第一端与所述第一薄膜晶体管电连接,所述发光器件的第二端与第四电压端电连接;
    所述第二驱动组件配置为,响应于所述第四电极和所述发光器件的第一端之间的电压差,产生电场;或者,响应于所述第四电极和所述发光器件的第二端之间的电压差,产生电场。
  12. 根据权利要求10所述的显示面板,其中,所述第三液晶包括聚合物分散型液晶和网络互穿聚合物型液晶中的至少一者。
  13. 根据权利要求1至9中任一项所述的显示面板,其中,所述显示面板还包括:
    设置在所述第一衬底基板上的挡墙层;
    其中,所述色转换层包括多个不同颜色的量子点,所述挡墙层包括挡墙,所述挡墙将多个所述量子点彼此间隔开;以及,
    所述第二光路调节部配置为:当所述第二光路调节部处于所述第一状态时,使从所述第一光路调节部入射至该第二光路调节部的光线朝向所述挡墙出射。
  14. 根据权利要求13所述的显示面板,其中,所述显示面板包括如权利要求2所述的第一驱动组件;
    当所述第二光路调节部处于所述第二状态时,使从所述第一光路调节部入射至该第二光路调节部的至少部分光线朝向至少一个所述量子点出射。
  15. 根据权利要求13所述的显示面板,其中,所述挡墙包括反射材料,所述显示面板还包括:
    设置在所述挡墙层靠近所述第一衬底基板一侧的光吸收层;
    所述光吸收层包括光吸收部,所述光吸收部在所述第一衬底基板上的正投影与所述挡墙在所述第一衬底基板上的正投影至少部分交叠。
  16. 根据权利要求15所述的显示面板,其中,所述光吸收部包括在所述显示面板的厚度方向上叠置的多个色阻,其中,不同的色阻的颜色不同;或者,
    所述光吸收部包括黑矩阵。
  17. 根据权利要求1至12中任一项所述的显示面板,其中,所述发光器件包括微发光二极管。
  18. 根据权利要求1至12中任一项所述的显示面板,其中,所述显示面板还包括设置在所述液晶层靠近所述第一衬底基板一侧的第一配向层以及设置在所述液晶层背离所述第一衬底基板一侧的第二配向层,所述第一配向层和所述第二配向层的配向角相同;或者,
    所述液晶层中的液晶包括自取向液晶材料。
  19. 根据权利要求1至12中任一项所述的显示面板,其中,所述显示面板 还包括位于所述色转换层与所述第一衬底基板之间的隔垫物层;
    所述隔垫物层包括隔垫物,所述隔垫物在所述第一衬底基板上的正投影与所述第一光路调节部在所述第一衬底基板上的正投影间隔设置。
  20. 一种显示装置,其中,包括如权利要求1至19中任一项所述的显示面板。
PCT/CN2022/077446 2022-02-23 2022-02-23 显示面板和显示装置 WO2023159383A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280000240.4A CN116940883A (zh) 2022-02-23 2022-02-23 显示面板和显示装置
US18/017,550 US20240264490A1 (en) 2022-02-23 2022-02-23 Display panel and display apparatus
PCT/CN2022/077446 WO2023159383A1 (zh) 2022-02-23 2022-02-23 显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077446 WO2023159383A1 (zh) 2022-02-23 2022-02-23 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2023159383A1 true WO2023159383A1 (zh) 2023-08-31

Family

ID=87764386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077446 WO2023159383A1 (zh) 2022-02-23 2022-02-23 显示面板和显示装置

Country Status (3)

Country Link
US (1) US20240264490A1 (zh)
CN (1) CN116940883A (zh)
WO (1) WO2023159383A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511175A (zh) * 2016-01-28 2016-04-20 武汉华星光电技术有限公司 显示面板及其制作方法
CN110596919A (zh) * 2019-08-26 2019-12-20 昆山龙腾光电有限公司 宽窄视角可切换的液晶显示面板和液晶显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773379B (zh) * 2017-02-06 2020-02-07 京东方科技集团股份有限公司 显示面板、显示装置及其控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511175A (zh) * 2016-01-28 2016-04-20 武汉华星光电技术有限公司 显示面板及其制作方法
CN110596919A (zh) * 2019-08-26 2019-12-20 昆山龙腾光电有限公司 宽窄视角可切换的液晶显示面板和液晶显示装置

Also Published As

Publication number Publication date
CN116940883A (zh) 2023-10-24
US20240264490A1 (en) 2024-08-08

Similar Documents

Publication Publication Date Title
KR20180092326A (ko) 표시 장치
CN109656050B (zh) 液晶显示设备及其制造方法
WO2014166149A1 (zh) 量子点电致发光显示器件及显示装置
KR20200099037A (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
WO2023000832A1 (zh) 显示模组和显示设备
US20240032368A1 (en) Oled display panel and display device
US20220320060A1 (en) Light-emitting panel and display device
CN114072722B (zh) 背光模组和显示装置
US20240168328A1 (en) Hybrid display device and spliced display device
PH12019000058A1 (en) Display device
KR20220111806A (ko) 디스플레이 모듈 및 그 제조 방법
KR20220111809A (ko) 디스플레이 모듈 및 그 제조 방법
WO2018107736A1 (zh) 显示面板及显示装置
JP2006107744A (ja) 有機エレクトロルミネッセンス表示装置
US20220246673A1 (en) Display module and manufacturing method thereof
US11961947B2 (en) Substrate for manufacturing display device, display device and manufacturing method thereof
WO2021027015A1 (zh) 阵列基板及显示装置
US20190245006A1 (en) Micro led display device
CN114582246A (zh) 显示面板及其制造方法和显示装置
WO2023159383A1 (zh) 显示面板和显示装置
CN114077110B (zh) 一种阵列基板、液晶显示面板及显示装置
CN111048655B (zh) 发光二极管芯片、显示面板及其制备方法和显示装置
KR20080032506A (ko) 백라이트 유닛 및 이를 이용한 액정 표시 장치
WO2023085010A1 (ja) 発光デバイスおよび画像表示装置
US20210167123A1 (en) Micro led display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000240.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927677

Country of ref document: EP

Kind code of ref document: A1