WO2023158277A1 - 유기 실리콘-유기 반도체 복합체 및 이를 포함하는 유기 반도체 막 - Google Patents

유기 실리콘-유기 반도체 복합체 및 이를 포함하는 유기 반도체 막 Download PDF

Info

Publication number
WO2023158277A1
WO2023158277A1 PCT/KR2023/002373 KR2023002373W WO2023158277A1 WO 2023158277 A1 WO2023158277 A1 WO 2023158277A1 KR 2023002373 W KR2023002373 W KR 2023002373W WO 2023158277 A1 WO2023158277 A1 WO 2023158277A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic semiconductor
organic silicon
organic
composite
Prior art date
Application number
PCT/KR2023/002373
Other languages
English (en)
French (fr)
Inventor
김도환
권혁민
정욱진
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2023158277A1 publication Critical patent/WO2023158277A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present application relates to an organic silicon-organic semiconductor composite and an organic semiconductor film comprising the same.
  • Organic semiconductors include a pi-conjugated structure in which double bonds and single bonds between carbon atoms are alternately repeated.
  • the pi-conjugated structure has electrical and optical properties different from those of existing organic molecules, and at the same time, solution processes or It has the advantage of easy mass synthesis.
  • it is expected to be a next-generation material that can be applied to the bio field because it is superior in light weight and flexibility compared to inorganic materials used in electronic devices.
  • Organic semiconductors have a structure of a single molecule or a polymer. Typical single molecule organic semiconductors include pentacene and tetracene, and polymer materials include polyacetylene and polythiophene. there is.
  • Organic materials having a pi-conjugated structure are applied to electronic devices including light emitting diodes, solar cells, transistors, etc. through relatively high electrical conductivity, light emission characteristics and light absorption characteristics.
  • the present application is to provide an organic silicon-organic semiconductor composite and an organic semiconductor film comprising the same.
  • a first aspect of the present application is an organic silicon-organic semiconductor composite formed by crosslinking an organic silicon precursor represented by Formula 1 and an organic semiconductor, wherein the organic silicon precursors are polymerized with each other to form an organic silicon network,
  • An organic silicon-organic semiconductor composite is provided:
  • A is an azide group, a sulfonylazide group, a benzophenone group, a diazirine group, or a dizophenyl ester group;
  • R is a substituted or unsubstituted, linear or branched C 1-10 alkylene group, C 3-10 cycloalkylene group, linear or branched C 1-10 heteroalkylene group, or C 3-10 A heterocycloalkylene group of
  • X 1 , X 2 , and X 3 are each independently hydrogen; hydroxy group; halogen group; cyano group; formyl group; carboxyl group; carbamoyl group; amino group; Substituted or unsubstituted, C 1-30 alkyl group, C 3-30 cycloalkyl group, C 2-30 alkenyl group, C 3-30 cycloalkenyl group, C 2-30 alkynyl group, C 1-30 alkoxy group, C 1-30 alkylthio group, C 3-30 arylether group, C 3-30 arylthioether group, C 3-30 aryl group, C 3-30 heteroaryl group, C 1-30 alkylcarbonyl group, C 3-30 arylcarbonyl group, C 1-30 alkoxycarbonyl group, C 3-30 aryloxycarbonyl group, C 1-30 alkylcarbonyloxy group, or C 1-30 aryl It is a carbonyloxy group,
  • At least one of X 1 , X 2 , and X 3 is a hydroxyl group, a C 1-30 alkoxy group, or a halogen group;
  • heteroatom included in the heteroalkylene group, the heterocycloalkylene group, and the heteroaryl group is selected from N, O, S, and P,
  • n 0 to 2;
  • a second aspect of the present application relates to an organic semiconductor film comprising an organic silicon-organic semiconductor composite formed by cross-linking an organic silicon precursor represented by Formula 1 and an organic semiconductor, wherein the organic silicon precursors are polymerized with each other
  • A is an azide group, a sulfonylazide group, a benzophenone group, a diazirine group, or a dizophenyl ester group;
  • R is a substituted or unsubstituted, linear or branched C 1-10 alkylene group, C 3-10 cycloalkylene group, linear or branched C 1-10 heteroalkylene group, or C 3-10 A heterocycloalkylene group of
  • X 1 , X 2 , and X 3 are each independently hydrogen; hydroxy group; halogen group; cyano group; formyl group; carboxyl group; carbamoyl group; amino group; Substituted or unsubstituted, C 1-30 alkyl group, C 3-30 cycloalkyl group, C 2-30 alkenyl group, C 3-30 cycloalkenyl group, C 2-30 alkynyl group, C 1-30 alkoxy group, C 1-30 alkylthio group, C 3-30 arylether group, C 3-30 arylthioether group, C 3-30 aryl group, C 3-30 heteroaryl group, C 1-30 alkylcarbonyl group, C 3-30 arylcarbonyl group, C 1-30 alkoxycarbonyl group, C 3-30 aryloxycarbonyl group, C 1-30 alkylcarbonyloxy group, or C 1-30 aryl It is a carbonyloxy group,
  • At least one of X 1 , X 2 , and X 3 is a hydroxyl group, a C 1-30 alkoxy group, or a halogen group;
  • heteroatom included in the heteroalkylene group, the heterocycloalkylene group, and the heteroaryl group is selected from N, O, S, and P,
  • n 0 to 2;
  • the organic silicon-organic semiconductor composite according to the embodiments of the present application is characterized in that chemical resistance of the organic semiconductor is improved by using an organic silicon precursor including an azide functional group and a silane functional group.
  • the organic silicon-organic semiconductor composite according to embodiments of the present application is chemically bonded to an organic silicon network and an organic semiconductor, and has a characteristic of securing chemical resistance to a small molecule type organic semiconductor and a low molecular weight polymer type organic semiconductor. there is.
  • FIG. 1 is a flowchart illustrating a manufacturing process of an organic silicon-organic semiconductor composite and a film including the same, according to an embodiment of the present disclosure.
  • Figures a and b of Figure 2 in an embodiment of the present application, shows the reaction mechanism appearing in the organic silicon-organic semiconductor composite.
  • FIG. 3 is a schematic diagram showing a process of forming an organic silicon-organic semiconductor composite in one embodiment of the present application.
  • FIG. 4 is a photograph of patterning an organic semiconductor film according to an embodiment of the present disclosure.
  • 5a and b are graphs showing gel fractions of membranes prepared in Comparative Example 1 and Example 1, respectively, in one example of the present application.
  • step of or “step of” used throughout the present specification does not mean “step for”.
  • a first aspect of the present application is an organic silicon-organic semiconductor composite formed by crosslinking an organic silicon precursor represented by Formula 1 and an organic semiconductor, wherein the organic silicon precursors are polymerized with each other to form an organic silicon network,
  • An organic silicon-organic semiconductor composite is provided:
  • A is an azide group, a sulfonylazide group, a benzophenone group, a diazirine group, or a dizophenyl ester group;
  • R is a substituted or unsubstituted, linear or branched C 1-10 alkylene group, C 3-10 cycloalkylene group, linear or branched C 1-10 heteroalkylene group, or C 3-10 A heterocycloalkylene group of
  • X 1 , X 2 , and X 3 are each independently hydrogen; hydroxy group; halogen group; cyano group; formyl group; carboxyl group; carbamoyl group; amino group; Substituted or unsubstituted, C 1-30 alkyl group, C 3-30 cycloalkyl group, C 2-30 alkenyl group, C 3-30 cycloalkenyl group, C 2-30 alkynyl group, C 1-30 alkoxy group, C 1-30 alkylthio group, C 3-30 arylether group, C 3-30 arylthioether group, C 3-30 aryl group, C 3-30 heteroaryl group, C 1-30 alkylcarbonyl group, C 3-30 arylcarbonyl group, C 1-30 alkoxycarbonyl group, C 3-30 aryloxycarbonyl group, C 1-30 alkylcarbonyloxy group, or C 1-30 aryl It is a carbonyloxy group,
  • At least one of X 1 , X 2 , and X 3 is a hydroxyl group, a C 1-30 alkoxy group, or a halogen group;
  • heteroatom included in the heteroalkylene group, the heterocycloalkylene group, and the heteroaryl group is selected from N, O, S, and P,
  • n 0 to 2;
  • R, X 1 , X 2 , or X 3 when R, X 1 , X 2 , or X 3 is substituted, each independently a halogen group, a hydroxyl group, an amino group, a cyano group, a nitro group, and a C 6-10 aryl It may be substituted with one or more substituents selected from the group consisting of, but may not be limited thereto.
  • R, X 1 , X 2 , or X 3 when the R, X 1 , X 2 , or X 3 is substituted, each independently may be substituted with a halogen group.
  • alkyl (group) may include each linear or branched, saturated or unsaturated C 1-30 alkyl (group), for example, methyl, ethyl, propyl, butyl , pentyl, hexyl, hepyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosanyl, or all possible isomers thereof It may include, but may not be limited thereto.
  • the C 1-30 alkyl group is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n- pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, n-hexyl group, isohexyl group, sec-hexyl group, tert-hexyl group, n-heptyl group, isoheptyl group, sec-heptyl group, tert-heptyl group, n-octyl group, isooctyl group, sec-octyl group, tert-octyl group, n-nonyl group, isononyl group, sec-nonyl group, tert-nonyl group, n-decyl group, isode
  • the C 3-30 cycloalkyl group may be a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, or a cyclooctyl group, but may not be limited thereto.
  • alkenyl (group) refers to a monovalent hydrocarbon group in which at least one carbon-carbon double bond is included in an alkyl (group) having 2 or more carbon atoms among the above-defined alkyl (groups). , It may include linear or branched C 2-30 alkenyl (group), but may not be limited thereto.
  • alkynyl (group) refers to a monovalent hydrocarbon group in which at least one carbon-carbon triple bond is included in an alkyl (group) having 2 or more carbon atoms among the above-defined alkyl (groups). As such, it may include linear or branched C 2-30 alkynyl (group), but may not be limited thereto.
  • aryl (group) refers to a monovalent functional group formed by removing hydrogen atoms present in one or more rings of an arene, such as phenyl, biphenyl, terphenyl (terphenyl), naphthyl, anthryl, phenanthryl, pyrenyl, or all possible isomers thereof, but may not be limited thereto.
  • the arene is a hydrocarbon group having an aromatic ring, and may include a monocyclic or multicyclic hydrocarbon group, and the multicyclic carbon hydrogen group may include one or more aromatic rings and include an aromatic ring or a non-aromatic ring as an additional ring. However, it may not be limited thereto.
  • cycloalkyl (group) is in the form of a monovalent functional group having a saturated hydrocarbon ring, and may include C 3-30 cycloalkyl (group), for example, cyclopropyl, cycloalkyl It may include butyl, cyclopentyl, cyclohexyl, cyclohepyl, cyclooctyl, or all possible isomers thereof, but may not be limited thereto.
  • alkoxy (group) is a form in which the above-defined alkyl group and an oxygen atom are bonded, and may include C 1-30 alkoxy (group), for example, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexyloxy, hepyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy, tridecyloxy, tetradecyloxy, pentadecyloxy, It may include hexadecyloxy, heptadecyloxy, octadecyloxy, nonadecyloxy, eicosanyloxy, or all possible isomers thereof, but may not be limited thereto.
  • the C 1-30 alkoxy group is a methoxy group, an ethoxy group, a propyloxy group, an iso-propyloxy group, an iso-butyloxy group, a sec-butyloxy group, a tert-butyloxy group, It may be a pentyloxy group, hexyloxy group, heptyloxy group, or octyloxy group, but may not be limited thereto.
  • halogen group or “halo group” means that a halogen element belonging to Group 17 of the periodic table is included in a compound in the form of a functional group, and the halogen element is, for example, F or Cl. , Br, or I, but is not limited thereto.
  • R is a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexyl group, It may be a silene group, a cycloheptylene group, or a cyclooctylene group, but may not be limited thereto.
  • the X 1 , X 2 , and X 3 are each independently a hydroxy group, a methoxy group, an ethoxy group, a propyloxy group, an iso-propyloxy group, an iso-butyloxy group, It may be sec-butyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, phenyloxy group, chlorine, bromine, or iodine, but may not be limited thereto.
  • the X 1 , X 2 , and X 3 may be polymerized with each other to form an organic silicon network, thereby improving chemical resistance of the organic silicon-organic semiconductor composite.
  • the organic silicon precursor It may be, but may not be limited thereto.
  • the organic semiconductor may have a mobility of about 10 ⁇ 5 cm 2 /Vs or higher.
  • the organic semiconductor has a mobility of about 10 -5 cm 2 /Vs to about 10 2 cm 2 /Vs, about 10 -4 cm 2 /Vs to about 10 2 cm 2 /Vs, from about 10 -3 cm 2 /Vs to about 10 2 cm 2 /Vs, from about 10 -5 cm 2 /Vs to about 10 cm 2 /Vs, from about 10 -4 cm 2 /Vs to about 10 cm 2 / Vs, or about 10 -3 cm 2 /Vs to about 10 cm 2 /Vs.
  • the organic semiconductor is poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-secondary- Butylphenyl)diphenylamine)] (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)]; TFB), poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] MEH-PPV), poly[[2,2′-bithiophene]-5,5′-diyl(9,9-dioctyl-9H-fluorene-2,7-diyl)] (poly[ [2,2′-bithiophene]-5,5′-diyl(9,9-diocty
  • the crosslinking of the organic silicon precursor and the organic semiconductor may be performed by a reaction in which the A is inserted into a C-H bond of the organic semiconductor.
  • the cross-linking of the organic silicon precursor and the organic semiconductor may be a chemical bonding between the organic silicon network and the organic semiconductor.
  • chemical resistance of the organic silicon-organic semiconductor composite may be improved through crosslinking of the organic silicon precursor and the organic semiconductor.
  • a second aspect of the present application relates to an organic semiconductor film comprising an organic silicon-organic semiconductor composite formed by cross-linking an organic silicon precursor represented by Formula 1 and an organic semiconductor, wherein the organic silicon precursors are polymerized with each other
  • A is an azide group, a sulfonylazide group, a benzophenone group, a diazirine group, or a dizophenyl ester group;
  • R is a substituted or unsubstituted, linear or branched C 1-10 alkylene group, C 3-10 cycloalkylene group, linear or branched C 1-10 heteroalkylene group, or C 3-10 A heterocycloalkylene group of
  • X 1 , X 2 , and X 3 are each independently hydrogen; hydroxy group; halogen group; cyano group; formyl group; carboxyl group; carbamoyl group; amino group; Substituted or unsubstituted, C 1-30 alkyl group, C 3-30 cycloalkyl group, C 2-30 alkenyl group, C 3-30 cycloalkenyl group, C 2-30 alkynyl group, C 1-30 alkoxy group, C 1-30 alkylthio group, C 3-30 arylether group, C 3-30 arylthioether group, C 3-30 aryl group, C 3-30 heteroaryl group, C 1-30 alkylcarbonyl group, C 3-30 arylcarbonyl group, C 1-30 alkoxycarbonyl group, C 3-30 aryloxycarbonyl group, C 1-30 alkylcarbonyloxy group, or C 1-30 aryl It is a carbonyloxy group,
  • At least one of X 1 , X 2 , and X 3 is a hydroxyl group, a C 1-30 alkoxy group, or a halogen group;
  • heteroatom included in the heteroalkylene group, the heterocycloalkylene group, and the heteroaryl group is selected from N, O, S, and P,
  • n 0 to 2;
  • the organic semiconductor film may be used as a charge transport layer of a solar cell, diode, or transistor, but may not be limited thereto.
  • An organic silicon-organic semiconductor composite was prepared according to the flowchart of FIG. 1 .
  • 6-azidosulfonylhexyltriethoxysilane (6-ASHTES) organic silicon, represented as Compound 2 below, was solutionized to a concentration of 10 mg/mL using a chlorobenzene solvent at room temperature.
  • 6-ASHTES includes a silane functional group and an azide functional group at both ends, respectively.
  • the silicon network formed by the silane group helps to improve the chemical resistance of the applied thin film, and the azide group is universal. As a result, the chemical resistance of organic semiconductors can be secured.
  • Figure 2 shows the mechanism of the reaction between organic silicon (6-ASHTES) and an organic semiconductor
  • a silanol functional group is generated through a hydrolysis reaction between a silane functional group and water molecules, , The resulting silanol functional group undergoes condensation reaction with other silane and silanol functional groups to form siloxane, thereby forming a silicon network.
  • This is the C-H insertion reaction that takes place.
  • the organic semiconductor layer into which 6-ASHTES is introduced undergoes a siloxane formation reaction and a C-H insertion reaction simultaneously through heat treatment.
  • siloxane between 6-ASHTES is formed due to the hydration and condensation reaction of the silane functional group, and chemical crosslinking between the azide functional group and organic semiconductor molecules is performed at the same time, and through this, an organic silicon-organic semiconductor composite can be formed (FIG. 3 ).
  • the fabricated thin film was patterned using a photolithography process.
  • AZ-5214E from Merck a positive photoresist, was used as a photoresist, and spin coating was performed at 4000 rpm for 40 seconds. Thereafter, a linear pattern having a width of 10 ⁇ m was formed through a reactive-ion etching process (FIG. 4).
  • FIG. 4 when a photolithography process is performed on an organic semiconductor including 6-ASHTES, it can be seen that the organic semiconductor layer does not melt and a high-resolution pattern is implemented.
  • the gel fraction of the thin films prepared in Example 1 and Comparative Example 1 was evaluated (Fig. 5 a and b).
  • a thin film introducing 6-ASHTES as organic silicon (Example 1, Fig. 5 b)
  • a thin film introducing BTS-C8 (Comparative Example 1, Fig. 5 a)
  • the gel fraction is high. Accordingly, it was confirmed that chemical resistance of the organic semiconductor thin film could be secured when 6-ASHTES was used, compared to conventional organic silicon precursors containing only silane functional groups.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

본원은 유기 실리콘-유기 반도체 복합체 및 이를 포함하는 유기 반도체 막에 관한 것이다.

Description

유기 실리콘-유기 반도체 복합체 및 이를 포함하는 유기 반도체 막
본원은 유기 실리콘-유기 반도체 복합체 및 이를 포함하는 유기 반도체 막에 관한 것이다.
유기 반도체는 탄소 원자간 이중결합과 단일결합이 교대로 반복되는 pi-공액구조를 포함하는 것으로서, pi-공액구조에 의해 기존의 유기 분자와는 다른 전기 및 광학적 특성을 가지며, 동시에, 용액공정이나 대량합성이 용이한 장점을 갖는다. 또한, 전자 소자에 사용되는 무기 재료들에 비하여 경량성 및 유연성이 우수하여 바이오 분야의 응용 또한 가능한 차세대 소재로 전망된다. 유기 반도체는 단분자 또는 고분자의 구조를 가지며, 대표적인 단분자 유기 반도체는 펜타센(pentacene), 테트라센(tetracene) 등이 있고 고분자 물질로는 폴리아세틸렌(polyacetylene), 폴리사이오펜(polythiophene) 등이 있다. pi-공액구조를 가진 유기 물질들은 비교적 높은 전기전도도와 발광특성 및 흡광특성을 통해 발광다이오드, 태양전지, 트랜지스터 등을 비롯한 전자소자에 적용되고 있다.
고집적도 트랜지스터 및 고해상도 발광다이오드의 개발을 위하여, 유기 반도체의 고해상도 패터닝 기술의 중요성이 커지고 있다. 그러나, 종래의 잉크젯 프린팅 공정은 액정의 크기를 줄이는 것에 기술적 한계가 있고, 전사프린팅은 대량 공정화에 한계가 있으므로, 고해상도 패터닝에 부적합하다. 이에, 유기 반도체의 고해상도 패터닝을 위하여, 실리콘 기반 반도체 공정에서 사용되는 포토리소그래피 공정 차용의 중요성이 대두되고 있다.
그러나, 유기 반도체의 패터닝에 포토리소그래피 공정을 이용하는 경우, 감광수지(photoresist) 용액을 코팅할 때 용매에 의해 유기 반도체층이 용해되어 인터-레이어 혼합(inter-layer mixing)이 발생되는 문제점이 있다. 이에, 참고문헌 "Conjugated-Polymer-Based Lateral Heterostructures Defined by High-Resolution Photolithography" (Adv. Funct. Mater. 2010, 20, 2825)은, 감광수지에 녹지 않으며 유기 반도체 박막을 녹이지 않는 유기층 및 용매를 개발해 두 층 사이에 추가로 도포함으로써 포토리소그래피를 공정을 통해 2 μm 단위의 패턴을 제작하는 것을 개시하고 있다. 그러나, 이러한 방법은 유기 반도체 층의 내화학성 형성에 기여하지 못하므로, 단일 유기반도체 층의 패턴 형성에는 사용할 수 있으나 두 층 이상의 유기 반도체를 패터닝하는 적층형 구조의 형성에는 적용할 수 없는 문제점이 있다.
본원은 유기 실리콘-유기 반도체 복합체 및 이를 포함하는 유기 반도체 막을 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 하기 화학식 1로서 표시되는 유기 실리콘 전구체 및 유기 반도체를 가교하여 형성되는, 유기 실리콘-유기 반도체 복합체로서, 상기 유기 실리콘 전구체는 서로 중합하여 유기 실리콘 네트워크를 형성하는 것인, 유기 실리콘-유기 반도체 복합체를 제공한다:
[화학식 1]
Figure PCTKR2023002373-appb-img-000001
;
상기 화학식 1에서,
A는 아자이드기, 설포닐아자이드기, 벤조페논기, 다이아지린기, 또는 다이조페닐에스터기이고,
R은, 치환 또는 비치환된, 선형 또는 분지형의 C1-10의 알킬렌기, C3-10의 시클로알킬렌기, 선형 또는 분지형의 C1-10의 헤테로알킬렌기, 또는 C3-10의 헤테로시클로알킬렌기이고,
X1, X2, 및 X3은, 각각 독립적으로, 수소; 하이드록시기; 할로겐기; 시아노기; 포르밀기; 카르복실기; 카르바모일기; 아미노기; 치환 또는 비치환된, C1-30의 알킬기, C3-30의 시클로알킬기, C2-30의 알케닐기, C3-30의 시클로알케닐기, C2-30의 알키닐기, C1-30의 알콕시기, C1-30의 알킬티오기, C3-30의 아릴에테르기, C3-30의 아릴티오에테르기, C3-30의 아릴기, C3-30의 헤테로아릴기, C1-30의 알킬카르보닐기, C3-30의 아릴카르보닐기, C1-30의 알콕시카르보닐기, C3-30의 아릴옥시카르보닐기, C1-30의 알킬카르보닐옥시기, 또는 C1-30의 아릴카르보닐옥시기이며,
X1, X2, 및 X3 중 적어도 하나 이상은 하이드록시기, C1-30의 알콕시기 또는 할로겐기이며,
상기 헤테로알킬렌기, 헤테로시클로알킬렌기, 및 헤테로아릴기에 포함되는 헤테로 원자는 N, O, S, 및 P에서 선택되는 것이며,
n은 0 내지 2임.
본원의 제 2 측면은, 하기 화학식 1로서 표시되는 유기 실리콘 전구체 및 유기 반도체를 가교하여 형성되는, 유기 실리콘-유기 반도체 복합체를 포함하는, 유기 반도체 막에 관한 것으로서, 상기 유기 실리콘 전구체는 서로 중합하여 유기 실리콘 네트워크를 형성하는 것인, 유기 반도체 막을 제공한다:
[화학식 1]
Figure PCTKR2023002373-appb-img-000002
;
상기 화학식 1에서,
A는 아자이드기, 설포닐아자이드기, 벤조페논기, 다이아지린기, 또는 다이조페닐에스터기이고,
R은, 치환 또는 비치환된, 선형 또는 분지형의 C1-10의 알킬렌기, C3-10의 시클로알킬렌기, 선형 또는 분지형의 C1-10의 헤테로알킬렌기, 또는 C3-10의 헤테로시클로알킬렌기이고,
X1, X2, 및 X3은, 각각 독립적으로, 수소; 하이드록시기; 할로겐기; 시아노기; 포르밀기; 카르복실기; 카르바모일기; 아미노기; 치환 또는 비치환된, C1-30의 알킬기, C3-30의 시클로알킬기, C2-30의 알케닐기, C3-30의 시클로알케닐기, C2-30의 알키닐기, C1-30의 알콕시기, C1-30의 알킬티오기, C3-30의 아릴에테르기, C3-30의 아릴티오에테르기, C3-30의 아릴기, C3-30의 헤테로아릴기, C1-30의 알킬카르보닐기, C3-30의 아릴카르보닐기, C1-30의 알콕시카르보닐기, C3-30의 아릴옥시카르보닐기, C1-30의 알킬카르보닐옥시기, 또는 C1-30의 아릴카르보닐옥시기이며,
X1, X2, 및 X3 중 적어도 하나 이상은 하이드록시기, C1-30의 알콕시기 또는 할로겐기이며,
상기 헤테로알킬렌기, 헤테로시클로알킬렌기, 및 헤테로아릴기에 포함되는 헤테로 원자는 N, O, S, 및 P에서 선택되는 것이며,
n은 0 내지 2임.
본원의 구현예들에 따른 유기 실리콘-유기 반도체 복합체는, 아자이드 작용기 및 실란 작용기를 포함하는 유기 실리콘 전구체를 사용함으로써, 유기 반도체의 내화학성을 증진시키는 특징이 있다.
본원의 구현예들에 따른 유기 실리콘-유기 반도체 복합체는, 유기 실리콘 네트워크와 유기 반도체가 화학적으로 결합하는 것으로서, 소분자형 유기 반도체 및 분자량이 낮은 고분자형 유기 반도체에 내화학성을 확보할 수 있는 특징이 있다.
도 1은, 본원의 일 실시예에 있어서, 유기 실리콘-유기 반도체 복합체 및 이를 포함하는 막의 제조 과정을 나타내는 순서도이다.
도 2의 a 및 b는, 본원의 일 실시예에 있어서, 유기 실리콘-유기 반도체 복합체 내에서 나타나는 반응 메커니즘을 나타낸 것이다.
도 3은, 본원의 일 실시예에 있어서, 유기 실리콘-유기 반도체 복합체의 형성 과정을 나타낸 모식도이다.
도 4는, 본원의 일 실시예에 있어서, 유기 반도체 막을 패터닝한 사진이다.
도 5의 a 및 b는, 본원의 일 실시예에 있어서, 각각 비교예 1 및 실시예 1에서 제조한 막의 겔 분율을 나타내는 그래프이다.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서 사용되는 정도의 용어 “~ 하는 단계” 또는 “~의 단계”는 “~를 위한 단계”를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.
본원의 제 1 측면은, 하기 화학식 1로서 표시되는 유기 실리콘 전구체 및 유기 반도체를 가교하여 형성되는, 유기 실리콘-유기 반도체 복합체로서, 상기 유기 실리콘 전구체는 서로 중합하여 유기 실리콘 네트워크를 형성하는 것인, 유기 실리콘-유기 반도체 복합체를 제공한다:
[화학식 1]
Figure PCTKR2023002373-appb-img-000003
;
상기 화학식 1에서,
A는 아자이드기, 설포닐아자이드기, 벤조페논기, 다이아지린기, 또는 다이조페닐에스터기이고,
R은, 치환 또는 비치환된, 선형 또는 분지형의 C1-10의 알킬렌기, C3-10의 시클로알킬렌기, 선형 또는 분지형의 C1-10의 헤테로알킬렌기, 또는 C3-10의 헤테로시클로알킬렌기이고,
X1, X2, 및 X3은, 각각 독립적으로, 수소; 하이드록시기; 할로겐기; 시아노기; 포르밀기; 카르복실기; 카르바모일기; 아미노기; 치환 또는 비치환된, C1-30의 알킬기, C3-30의 시클로알킬기, C2-30의 알케닐기, C3-30의 시클로알케닐기, C2-30의 알키닐기, C1-30의 알콕시기, C1-30의 알킬티오기, C3-30의 아릴에테르기, C3-30의 아릴티오에테르기, C3-30의 아릴기, C3-30의 헤테로아릴기, C1-30의 알킬카르보닐기, C3-30의 아릴카르보닐기, C1-30의 알콕시카르보닐기, C3-30의 아릴옥시카르보닐기, C1-30의 알킬카르보닐옥시기, 또는 C1-30의 아릴카르보닐옥시기이며,
X1, X2, 및 X3 중 적어도 하나 이상은 하이드록시기, C1-30의 알콕시기 또는 할로겐기이며,
상기 헤테로알킬렌기, 헤테로시클로알킬렌기, 및 헤테로아릴기에 포함되는 헤테로 원자는 N, O, S, 및 P에서 선택되는 것이며,
n은 0 내지 2임.
본원의 일 구현예에 있어서, 상기 R, X1, X2, 또는 X3이 치환되는 경우, 각각 독립적으로, 할로겐기, 하이드록시기, 아미노기, 시아노기, 니트로기, 및 C6-10 아릴기로 이루어진 군으로부터 선택되는 하나 이상의 치환기로 치환되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 R, X1, X2, 또는 X3이 치환되는 경우, 각각 독립적으로, 할로겐기로 치환되는 것일 수 있다.
본원 명세서 전체에서, 용어 "알킬(기)"은, 각각 선형 또는 분지형의 포화 또는 불포화의 C1-30 알킬(기)을 포함하는 것일 수 있으며, 예를 들어, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 헵실, 옥틸, 노닐, 데실, 운데실, 도데실, 트리데실, 테트라데실, 펜타데실, 헥사데실, 헵타데실, 옥타데실, 노나데실, 에이코사닐, 또는 이들의 가능한 모든 이성질체를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 C1-30의 알킬기는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, sec-부틸기, tert-부틸기, n-펜틸기, 이소펜틸기, sec-펜틸기, tert-펜틸기, n-헥실기, 이소헥실기, sec-헥실기, tert-헥실기, n-헵틸기, 이소헵틸기, sec-헵틸기, tert-헵틸기, n-옥틸기, 이소옥틸기, sec-옥틸기, tert-옥틸기, n-노닐기, 이소노닐기, sec-노닐기, tert-노닐기, n-데실기, 이소데실기, sec-데실기, 또는 tert-데실기일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 C3-30의 시클로알킬기는 시클로펜틸기, 시클로헥실기, 시클로헵틸기, 또는 시클로옥틸기일 수 있으나, 이에 제한되지 않을 수 있다.
본원 명세서 전체에서, 용어 "알케닐(기)"는 상기 정의된 알킬(기) 중 탄소수 2 이상의 알킬(기)에 적어도 하나의 탄소-탄소 이중 결합이 포함된 형태의 1 가의 탄화수소기를 의미하는 것으로서, 선형 또는 분지형의 C2-30 알케닐(기)을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원 명세서 전체에서, 용어 "알키닐(기)"은, 상기 정의된 알킬(기) 중 탄소수 2 이상의 알킬(기)에 적어도 하나의 탄소-탄소 삼중 결합이 포함된 형태의 1 가의 탄화수소기를 의미하는 것으로서, 선형 또는 분지형의 C2-30 알키닐(기)을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원 명세서 전체에서, 용어 "아릴(기)"은, 아렌(arene)의 하나 이상의 고리에 존재하는 수소 원자의 제거에 의해 형성되는 1 가의 작용기를 의미하며, 예를 들어 페닐, 바이페닐, 터페닐 (terphenyl), 나프틸 (naphthyl), 안트릴 (anthryl), 페난트릴 (phenanthryl), 피레닐 (pyrenyl), 또는 이들의 가능한 모든 이성질체를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 아렌은 방향족 고리를 가지는 탄화수소기로서, 단일환 또는 복수환 탄화수소기를 포함하며, 상기 복수환 탄소수소기는 하나 이상의 방향족 고리를 포함하고, 부가적인 고리로서 방향족 고리 또는 비방향족 고리를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원 명세서 전체에서, 용어 "시클로알킬(기)"은 포화 탄화수소 고리를 가지는 1 가의 작용기의 형태로서, C3-30 시클로알킬(기)을 포함하는 것일 수 있으며, 예를 들어, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵실, 시클로옥틸 또는 이들의 가능한 모든 이성질체를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원 명세서 전체에서, 용어 "알콕시(기)"는 상기 정의된 알킬기와 산소 원자가 결합된 형태로서, C1-30 알콕시(기)를 포함하는 것일 수 있으며, 예를 들어, 메톡시, 에톡시, 프로폭시, 부톡시, 펜톡시, 헥실옥시, 헵실옥시, 옥틸옥시, 노닐옥시, 데실옥시, 운데실옥시, 도데실옥시, 트리데실옥시, 테트라데실옥시, 펜타데실옥시, 헥사데실옥시, 헵타데실옥시, 옥타데실옥시, 노나데실옥시, 에이코사닐옥시, 또는 이들의 가능한 모든 이성질체를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 C1-30의 알콕시기는 메톡시기, 에톡시기, 프로필옥시기, iso-프로필옥시기, iso-부틸옥시기, sec-부틸옥시기, tert-부틸옥시기, 펜틸옥시기, 헥실옥시기, 헵틸옥시기, 또는 옥틸옥시기일 수 있으나, 이에 제한되지 않을 수 있다.
본원 명세서 전체에서, 용어 "할로겐기" 또는 "할로기"는 주기율표의 17 족에 속하는 할로겐 원소가 작용기의 형태로서 화합물에 포함되어 있는 것을 의미하는 것으로서, 상기 할로겐 원소는, 예를 들어 F, Cl, Br, 또는 I일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 R은 메틸렌기, 에틸렌기, 프로필렌기, 부틸렌기, 펜틸렌기, 헥실렌기, 헵틸렌기, 옥틸렌기, 시클로프로필렌기, 시클로부틸렌기, 시클로펜틸렌기, 시클로헥실렌기, 시클로헵틸렌기, 또는 시클로옥틸렌기일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 X1, X2, 및 X3은, 각각 독립적으로, 하이드록시기, 메톡시기, 에톡시기, 프로필옥시기, iso-프로필옥시기, iso-부틸옥시기, sec-부틸옥시기, tert-부틸옥시기, 펜틸옥시기, 헥실옥시기, 페닐옥시기, 염소, 브로민, 또는 아이오딘일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 X1, X2, 및 X3은, 서로 중합하여 유기 실리콘 네트워크를 형성할 수 있으며, 이에 상기 유기 실리콘-유기 반도체 복합체의 내화학성이 향상될 수 있다.
본원의 일 구현예에 있어서, 상기 유기 실리콘 전구체는
Figure PCTKR2023002373-appb-img-000004
인 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 유기 반도체는 이동도가 약 10-5 cm2/Vs 이상인 것일 수 있다. 예를 들어, 본원의 일 구현예에 있어서, 상기 유기 반도체는 이동도가 약 10-5 cm2/Vs 내지 약 102 cm2/Vs, 약 10-4 cm2/Vs 내지 약 102 cm2/Vs, 약 10-3 cm2/Vs 내지 약 102 cm2/Vs, 약 10-5 cm2/Vs 내지 약 10 cm2/Vs, 약 10-4 cm2/Vs 내지 약 10 cm2/Vs, 또는 약 10-3 cm2/Vs 내지 약 10 cm2/Vs 인 것일 수 있다.
본원의 일 구현예에 있어서, 상기 유기 반도체는 폴리[(9,9-다이옥틸플루오레닐-2,7-다이일)-코-(4,4′-(N-(4-2차-부틸페닐)다이페닐아민)] (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)]; TFB), 폴리[2-메톡시-5-(2'-에틸헥실옥시)-1,4-페닐렌비닐렌] (poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene]; MEH-PPV), 폴리[[2,2'-바이티오펜]-5,5'-다이일(9,9-다이옥틸-9H-플루오렌-2,7-다이일)] (poly[[2,2′-bithiophene]-5,5′-diyl(9,9-dioctyl-9H-fluorene-2,7-diyl)]; F8T2), 폴리[N,N′-비스(4-부틸페닐) -N,N′-비스(페닐)-벤지딘] (poly[N,N′-bis(4-butylphenyl) -N,N′-bis(phenyl)-benzidine]; poly-TPD), 폴리(3-헥실티오펜-2,5-다이일) (poly(3-hexylthiophene-2,5-diyl); P3HT), 폴리[2,5-(2-옥틸도데실)-3,6-디케토피롤로피롤-알트-5,5-(2,5-디(티엔-2-yl)티에노[3,2-b]티오펜)] (poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno[3,2-b]thiophene)]; DPP-DTT), 6,13-비스(트리이소프로필실릴에티닐)펜타센 (6,13-Bis(triisopropylsilylethynyl)pentacene; TIPS-pentacene), N,N′-다이옥틸-3,4,9,10-페릴렌다이카복시이미드 (N,N′-dioctyl-3,4,9,10-perylenedicarboximide; PTCDI-C8), 트리스[2-(4-n-헥실페닐)퀴놀린)]이리듐(Ⅲ) (tris[2-(4-n-hexylphenyl)quinoline)]iridium(Ⅲ); Hex-Ir(phq)3), 또는 2,7-다이옥틸[1]벤조티에노[3,2-b][1]벤조티오펜 (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene; C8-BTBT)일 수 있다.
본원의 일 구현예에 있어서, 상기 유기 실리콘 전구체 및 상기 유기 반도체의 가교는, 상기 유기 반도체의 C-H 결합에 상기 A가 삽입되는 반응에 의해 수행되는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 유기 실리콘 전구체 및 상기 유기 반도체의 가교는, 상기 유기 실리콘 네트워크와 상기 유기 반도체가 화학적으로 결합하는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 유기 실리콘 전구체 및 상기 유기 반도체의 가교를 통하여, 상기 유기 실리콘-유기 반도체 복합체의 내화학성이 향상될 수 있다.
본원의 제 2 측면은, 하기 화학식 1로서 표시되는 유기 실리콘 전구체 및 유기 반도체를 가교하여 형성되는, 유기 실리콘-유기 반도체 복합체를 포함하는, 유기 반도체 막에 관한 것으로서, 상기 유기 실리콘 전구체는 서로 중합하여 유기 실리콘 네트워크를 형성하는 것인, 유기 반도체 막을 제공한다:
[화학식 1]
Figure PCTKR2023002373-appb-img-000005
;
상기 화학식 1에서,
A는 아자이드기, 설포닐아자이드기, 벤조페논기, 다이아지린기, 또는 다이조페닐에스터기이고,
R은, 치환 또는 비치환된, 선형 또는 분지형의 C1-10의 알킬렌기, C3-10의 시클로알킬렌기, 선형 또는 분지형의 C1-10의 헤테로알킬렌기, 또는 C3-10의 헤테로시클로알킬렌기이고,
X1, X2, 및 X3은, 각각 독립적으로, 수소; 하이드록시기; 할로겐기; 시아노기; 포르밀기; 카르복실기; 카르바모일기; 아미노기; 치환 또는 비치환된, C1-30의 알킬기, C3-30의 시클로알킬기, C2-30의 알케닐기, C3-30의 시클로알케닐기, C2-30의 알키닐기, C1-30의 알콕시기, C1-30의 알킬티오기, C3-30의 아릴에테르기, C3-30의 아릴티오에테르기, C3-30의 아릴기, C3-30의 헤테로아릴기, C1-30의 알킬카르보닐기, C3-30의 아릴카르보닐기, C1-30의 알콕시카르보닐기, C3-30의 아릴옥시카르보닐기, C1-30의 알킬카르보닐옥시기, 또는 C1-30의 아릴카르보닐옥시기이며,
X1, X2, 및 X3 중 적어도 하나 이상은 하이드록시기, C1-30의 알콕시기 또는 할로겐기이며,
상기 헤테로알킬렌기, 헤테로시클로알킬렌기, 및 헤테로아릴기에 포함되는 헤테로 원자는 N, O, S, 및 P에서 선택되는 것이며,
n은 0 내지 2임.
본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면에 대해 설명한 내용은 본원의 제 2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 상기 유기 반도체 막은 태양전지, 다이오드, 또는 트랜지스터의 전하수송층으로서 사용되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.
[실시예]
<실시예 1: 유기 실리콘-유기 반도체 복합체 및 이를 포함하는 막의 제조>
유기 실리콘-유기 반도체 복합체를 도 1의 순서도에 따라 제조하였다.
1) 하기 화합물 1로서 표시되는, 폴리[(9,9-다이옥틸플루오레닐-2,7-다이일)-코-(4,4′-(N-(4-2차-부틸페닐)다이페닐아민)] (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)]; TFB) 유기 반도체를 상온에서 클로로벤젠 용매를 사용하여 농도 10 mg/mL가 되도록 용액화하였다.
[화합물 1]
Figure PCTKR2023002373-appb-img-000006
.
2) 하기 화합물 2로서 표시되는, 6-아지도설포닐헥실트리에톡시실란(6-azidosulfonylhexyltriethoxysilane; 6-ASHTES) 유기 실리콘을 상온에서 클로로벤젠 용매를 사용하여 농도 10 mg/mL가 되도록 용액화하였다.
[화합물 2]
Figure PCTKR2023002373-appb-img-000007
.
6-ASHTES는 양쪽 말단에 각각 실란(silane) 작용기와 아자이드(azide) 작용기를 포함하는 것으로서, 실란기에 의해 형성되는 실리콘 네트워크는 도포된 박막의 내화학성 증진에 도움을 주며, 아자이드기는 범용적으로 유기 반도체의 내화학성을 확보해줄 수 있다.
3) 용액화된 유기 실리콘과 유기 반도체를 200 rpm에서 1 시간 동안 교반하고, 이를 SiO2 기판에 4000 rpm, 30 초 조건으로 스핀코팅한 후, 180℃에서 5 시간 동안 열처리하여 박막을 제조하였다.
도 2는, 유기 실리콘(6-ASHTES)과 유기 반도체 사이에서 일어나는 반응의 메커니즘을 나타낸 것으로서, 도 2의 a는, 실란 작용기와 물 분자 간 가수분해 반응을 통해 실란올(silanol) 작용기가 생성되고, 생성된 실란올 작용기가 다른 실란 및 실란올 작용기와 축합반응하여 실록산(siloxane)을 형성함으로써 실리콘 네트워크가 형성되는 반응이고, 도 2의 b는, 아자이드 작용기와 유기 반도체의 알킬 사슬이 반응하여 일어나는 C-H 삽입(C-H insertion) 반응이다. 6-ASHTES가 도입된 유기 반도체 층은 열처리를 통하여 실록산 형성 반응 및 C-H 삽입 반응이 동시에 일어난다. 즉, 실란 작용기의 가수 및 축합 반응으로 인해 6-ASHTES 간의 실록산이 형성됨과 동시에 아자이드 작용기와 유기 반도체 분자간의 화학적 가교가 수행되며, 이를 통하여 유기 실리콘-유기 반도체 복합체가 형성될 수 있다 (도 3).
제작한 박막을 포토리소그래피(photolithography) 공정을 이용하여 패터닝하였다. 포토레지스트(photoresist)로서 포지티브 형 포토레지스트인 머크(Merck) 사의 AZ-5214E을 사용하였으며, 4000 rpm에서 40 초 동안 스핀코팅하였다. 이후, 반응성-이온 식각 (reactive-ion etching) 공정을 통해 폭 10 μm의 선형 패턴을 형성하였다 (도 4). 도 4를 참조하여 설명하면, 6-ASHTES를 포함한 유기 반도체에 포토리소그래피 공정을 실시하였을 때, 유기 반도체 층이 녹지 않으며 고해상도의 패턴이 구현되는 것을 확인할 수 있다.
<비교예 1>
실시예 1의 TFB 유기 반도체와 유기 실리콘으로서 하기 화합물 3으로서 표시되는 1,8-비스(트리클로로실릴)옥테인(1,8-Bis(trichlorosilyl)octane; BTS-C8)을 반응시켜, 유기 반도체 박막을 제조하였다:
[화합물 3]
Figure PCTKR2023002373-appb-img-000008
.
<실험예 1>
유기 실리콘-유기 반도체 복합체 박막의 내화학성을 평가하기 위하여, 실시예 1 및 비교예 1에서 제조한 박막의 겔 분율 (gel fraction)을 평가하였다 (도 5의 a 및 b). 사용한 유기 실리콘 전구체의 질량분율이 동일할 때, 유기 실리콘으로서 6-ASHTES를 도입한 박막(실시예 1, 도 5의 b)이 BTS-C8를 도입한 박막(비교예 1, 도 5의 a)과 비교하여, 겔 분율이 높은 것을 확인할 수 있다. 이에, 종래의 실란 작용기만을 포함하는 유기 실리콘 전구체와 비교하여, 6-ASHTES 을 사용하였을 때 유기 반도체 박막의 내화학성을 확보할 수 있음을 확인하였다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (10)

  1. 하기 화학식 1로서 표시되는 유기 실리콘 전구체 및 유기 반도체를 가교하여 형성되는,
    유기 실리콘-유기 반도체 복합체로서,
    상기 유기 실리콘 전구체는 서로 중합하여 유기 실리콘 네트워크를 형성하는 것인, 유기 실리콘-유기 반도체 복합체:
    [화학식 1]
    Figure PCTKR2023002373-appb-img-000009
    ;
    상기 화학식 1에서,
    A는 아자이드기, 설포닐아자이드기, 벤조페논기, 다이아지린기, 또는 다이조페닐에스터기이고,
    R은, 치환 또는 비치환된, 선형 또는 분지형의 C1-10의 알킬렌기, C3-10의 시클로알킬렌기, 선형 또는 분지형의 C1-10의 헤테로알킬렌기, 또는 C3-10의 헤테로시클로알킬렌기이고,
    X1, X2, 및 X3은, 각각 독립적으로, 수소; 하이드록시기; 할로겐기; 시아노기; 포르밀기; 카르복실기; 카르바모일기; 아미노기; 치환 또는 비치환된, C1-30의 알킬기, C3-30의 시클로알킬기, C2-30의 알케닐기, C3-30의 시클로알케닐기, C2-30의 알키닐기, C1-30의 알콕시기, C1-30의 알킬티오기, C3-30의 아릴에테르기, C3-30의 아릴티오에테르기, C3-30의 아릴기, C3-30의 헤테로아릴기, C1-30의 알킬카르보닐기, C3-30의 아릴카르보닐기, C1-30의 알콕시카르보닐기, C3-30의 아릴옥시카르보닐기, C1-30의 알킬카르보닐옥시기, 또는 C1-30의 아릴카르보닐옥시기이며,
    X1, X2, 및 X3 중 적어도 하나 이상은 하이드록시기, C1-30의 알콕시기 또는 할로겐기이며,
    상기 헤테로알킬렌기, 헤테로시클로알킬렌기, 및 헤테로아릴기에 포함되는 헤테로 원자는 N, O, S, 및 P에서 선택되는 것이며,
    n은 0 내지 2임.
  2. 제 1 항에 있어서,
    상기 R은 메틸렌기, 에틸렌기, 프로필렌기, 부틸렌기, 펜틸렌기, 헥실렌기, 헵틸렌기, 옥틸렌기, 시클로프로필렌기, 시클로부틸렌기, 시클로펜틸렌기, 시클로헥실렌기, 시클로헵틸렌기, 또는 시클로옥틸렌기인 것인, 유기 실리콘-유기 반도체 복합체.
  3. 제 1 항에 있어서,
    상기 X1, X2, 및 X3은, 각각 독립적으로, 하이드록시기, 메톡시기, 에톡시기, 프로필옥시기, iso-프로필옥시기, iso-부틸옥시기, sec-부틸옥시기, tert-부틸옥시기, 펜틸옥시기, 헥실옥시기, 페닐옥시기, 염소, 브로민, 또는 아이오딘인 것인, 유기 실리콘-유기 반도체 복합체.
  4. 제 1 항에 있어서,
    상기 유기 실리콘 전구체는
    Figure PCTKR2023002373-appb-img-000010
    인 것인, 유기 실리콘-유기 반도체 복합체.
  5. 제 1 항에 있어서,
    상기 유기 반도체는 이동도가 10-5 cm2/Vs 이상인 것인, 유기 실리콘 복합체.
  6. 제 1 항에 있어서,
    상기 유기 반도체는 이동도가 10-5 cm2/Vs 내지 102 cm2/Vs인 것인, 유기 실리콘 복합체.
  7. 제 1 항에 있어서,
    상기 유기 반도체는 TFB(poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)]), MEH-PPV(poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene]), F8T2 (poly[[2,2′-bithiophene]-5,5′-diyl(9,9-dioctyl-9H-fluorene-2,7-diyl)]), poly-TPD(poly[bis(4-butypheny)-bis(phenyl)benzidine]), P3HT(poly(3-hexylthiophene-2,5-diyl)), DPP-DTT (poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno[3,2-b]thiophene)]), TIPS-pentacene (6,13-Bis(triisopropylsilylethynyl)pentacene), PTCDI-C8 (N,N′-Dioctyl-3,4,9,10-perylenedicarboximide), Hex-Ir(phq)3 (tris[2-(4-n-hexylphenyl)quinoline)]iridium(Ⅲ)), 또는 C8-BTBT(2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene)인 것인, 유기 실리콘 복합체.
  8. 제 1 항에 있어서,
    상기 유기 실리콘 전구체 및 상기 유기 반도체의 가교는, 상기 유기 반도체의 C-H 결합에 상기 A가 삽입되는 반응에 의해 수행되는 것인, 유기 실리콘-유기 반도체 복합체.
  9. 하기 화학식 1로서 표시되는 유기 실리콘 전구체 및 유기 반도체를 가교하여 형성되는, 유기 실리콘-유기 반도체 복합체를 포함하는,
    유기 반도체 막에 관한 것으로서,
    상기 유기 실리콘 전구체는 서로 중합하여 유기 실리콘 네트워크를 형성하는 것인, 유기 반도체 막:
    [화학식 1]
    Figure PCTKR2023002373-appb-img-000011
    ;
    상기 화학식 1에서,
    A는 아자이드기, 설포닐아자이드기, 벤조페논기, 다이아지린기, 또는 다이조페닐에스터기이고,
    R은, 치환 또는 비치환된, 선형 또는 분지형의 C1-10의 알킬렌기, C3-10의 시클로알킬렌기, 선형 또는 분지형의 C1-10의 헤테로알킬렌기, 또는 C3-10의 헤테로시클로알킬렌기이고,
    X1, X2, 및 X3은, 각각 독립적으로, 수소; 하이드록시기; 할로겐기; 시아노기; 포르밀기; 카르복실기; 카르바모일기; 아미노기; 치환 또는 비치환된, C1-30의 알킬기, C3-30의 시클로알킬기, C2-30의 알케닐기, C3-30의 시클로알케닐기, C2-30의 알키닐기, C1-30의 알콕시기, C1-30의 알킬티오기, C3-30의 아릴에테르기, C3-30의 아릴티오에테르기, C3-30의 아릴기, C3-30의 헤테로아릴기, C1-30의 알킬카르보닐기, C3-30의 아릴카르보닐기, C1-30의 알콕시카르보닐기, C3-30의 아릴옥시카르보닐기, C1-30의 알킬카르보닐옥시기, 또는 C1-30의 아릴카르보닐옥시기이며,
    X1, X2, 및 X3 중 적어도 하나 이상은 하이드록시기, C1-30의 알콕시기 또는 할로겐기이며,
    상기 헤테로알킬렌기, 헤테로시클로알킬렌기, 및 헤테로아릴기에 포함되는 헤테로 원자는 N, O, S, 및 P에서 선택되는 것이며,
    n은 0 내지 2임.
  10. 제 9 항에 있어서,
    상기 유기 반도체 막은 태양전지, 다이오드, 또는 트랜지스터의 전하수송층으로서 사용되는 것인, 유기 반도체 막.
PCT/KR2023/002373 2022-02-21 2023-02-20 유기 실리콘-유기 반도체 복합체 및 이를 포함하는 유기 반도체 막 WO2023158277A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0022084 2022-02-21
KR1020220022084A KR20230125447A (ko) 2022-02-21 2022-02-21 유기 실리콘-유기 반도체 복합체 및 이를 포함하는 유기 반도체 막

Publications (1)

Publication Number Publication Date
WO2023158277A1 true WO2023158277A1 (ko) 2023-08-24

Family

ID=87578692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002373 WO2023158277A1 (ko) 2022-02-21 2023-02-20 유기 실리콘-유기 반도체 복합체 및 이를 포함하는 유기 반도체 막

Country Status (2)

Country Link
KR (1) KR20230125447A (ko)
WO (1) WO2023158277A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551504A (en) * 1984-01-18 1985-11-05 Union Carbide Corporation Water curable, azide sulfonyl silane modified ethylene polymers
JPH1087994A (ja) * 1996-09-10 1998-04-07 Polymertech Kk 複合導電性高分子および組成物ならびにその製造方法
JP2012174805A (ja) * 2011-02-18 2012-09-10 Sharp Corp 有機トランジスタ、表示装置及び有機トランジスタの製造方法
KR20160112903A (ko) * 2015-03-19 2016-09-28 숭실대학교산학협력단 유기반도체 화합물 및 제조방법
KR20220008234A (ko) * 2020-07-13 2022-01-20 앰비라이트 인크. 열적으로 안정적이고, 내용매성인 전도성 중합체 복합체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551504A (en) * 1984-01-18 1985-11-05 Union Carbide Corporation Water curable, azide sulfonyl silane modified ethylene polymers
JPH1087994A (ja) * 1996-09-10 1998-04-07 Polymertech Kk 複合導電性高分子および組成物ならびにその製造方法
JP2012174805A (ja) * 2011-02-18 2012-09-10 Sharp Corp 有機トランジスタ、表示装置及び有機トランジスタの製造方法
KR20160112903A (ko) * 2015-03-19 2016-09-28 숭실대학교산학협력단 유기반도체 화합물 및 제조방법
KR20220008234A (ko) * 2020-07-13 2022-01-20 앰비라이트 인크. 열적으로 안정적이고, 내용매성인 전도성 중합체 복합체

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAOPRASERT PEERASAK, SPALENKA JOSEF W., PETERSON DANE L., RUTHER ROSE E., HAMERS ROBERT J., EVANS PAUL G., GOPALAN PADMA: "Grafting of poly(3-hexylthiophene) brushes on oxides using click chemistry", JOURNAL OF MATERIALS CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 20, no. 13, 1 January 2010 (2010-01-01), GB , pages 2651 - 2658, XP093085372, ISSN: 0959-9428, DOI: 10.1039/B920233A *
PENG YANG, WANTAI YANG: "Surface Chemoselective Phototransformation of C–H Bonds on Organic Polymeric Materials and Related High-Tech Applications", CHEMICAL REVIEWS, AMERICAN CHEMICAL SOCIETY, US, vol. 113, no. 7, 10 July 2013 (2013-07-10), US , pages 5547 - 5594, XP055769274, ISSN: 0009-2665, DOI: 10.1021/cr300246p *

Also Published As

Publication number Publication date
KR20230125447A (ko) 2023-08-29

Similar Documents

Publication Publication Date Title
Yang et al. The effects of side chains on the charge mobilities and functionalities of semiconducting conjugated polymers beyond solubilities
WO2010117158A2 (ko) 카바졸이 함유된 전도성 고분자 및 그를 이용한 유기 광기전력 장치
KR100824026B1 (ko) 전계 효과 트랜지스터 및 전계 효과 물질 및 이들의 제조방법
JP6499966B2 (ja) 有機半導体電子デバイス
WO2011068305A2 (ko) 파이렌 화합물이 도입된 전도성 고분자 및 그를 이용한 유기 태양전지
AU2002220818A1 (en) Field effect transistors and materials and methods for their manufacture
CN102482291A (zh) 有机半导体
JP2007088016A (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス、有機薄膜トランジスタ及び有機エレクトロルミネッセンス素子
EP3179517B1 (en) Organic field effect transistor and method for producing organic semiconductor crystal
WO2023158277A1 (ko) 유기 실리콘-유기 반도체 복합체 및 이를 포함하는 유기 반도체 막
WO2011081302A2 (ko) 전도성 고분자 중합체, 전도성 고분자 조성물, 전도성 고분자 조성물막 및 이를 이용한 유기광전소자
US20160351839A1 (en) Organic thin-film transistor
JP5157079B2 (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
TW201539817A (zh) 有機薄膜電晶體
US10158088B2 (en) Organic semiconductor liquid composition, organic semiconductor element, and method for preparing organic semiconductor element
JP2007088224A (ja) 有機半導体材料、該有機半導体材料を用いた有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
KR20210041125A (ko) 유기 반도성 제제
CN102844903A (zh) 有机半导体
WO2024063458A1 (ko) 도핑된 유기반도체 박막의 제조방법
WO2019045326A2 (ko) 유기 반도체 화합물 및 이를 이용한 전자 소자
WO2024080719A1 (ko) 기계적 유연성이 향상된 산화아연 나노입자 박막
WO2015147477A1 (ko) 다이케토피롤로피롤 중합체 및 이를 채용하고 있는 유기 전자 소자
JP2007059686A (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
Ngo Veres et a1.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756689

Country of ref document: EP

Kind code of ref document: A1