WO2023157900A1 - Probe unit, inspection device, inspection system, inspection method, and method for manufacturing semiconductor laser device - Google Patents

Probe unit, inspection device, inspection system, inspection method, and method for manufacturing semiconductor laser device Download PDF

Info

Publication number
WO2023157900A1
WO2023157900A1 PCT/JP2023/005373 JP2023005373W WO2023157900A1 WO 2023157900 A1 WO2023157900 A1 WO 2023157900A1 JP 2023005373 W JP2023005373 W JP 2023005373W WO 2023157900 A1 WO2023157900 A1 WO 2023157900A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
inspection
electrode
unit
stage
Prior art date
Application number
PCT/JP2023/005373
Other languages
French (fr)
Japanese (ja)
Inventor
佳和 田村
幸典 山下
忍 駿河
茂生 林
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Publication of WO2023157900A1 publication Critical patent/WO2023157900A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer

Definitions

  • the present disclosure relates to a probe unit, an inspection device, an inspection system, an inspection method, and a method of manufacturing a semiconductor laser device.
  • Patent Document 1 there is an inspection apparatus that inspects the characteristics of an inspection target by supplying current to the inspection target using a plurality of probes (see, for example, Patent Document 1).
  • the probe supported by the support since the probe supported by the support has an elastic restoring force, when the support is moved toward the inspection object, the probe in contact with the inspection object is deformed. , it is possible to suppress the application of excessive force from the probe to the inspection object. Therefore, it is possible to suppress the inspection object from being damaged during the inspection.
  • the present disclosure is intended to solve such problems, and aims to provide a probe unit and the like that can reduce damage during inspection of an inspection target.
  • one aspect of the probe unit is a probe unit including a part of a current circuit for supplying a current to a test object, wherein the current circuit includes an elastic restoring force.
  • a first probe and a second probe having a force; a probe fixing member to which the first probe and the second probe are fixed; arranged below the probe fixing member and spaced from the probe fixing member; a probe-penetrating member having a first through-hole and a second through-hole through which the first probe and the second probe pass, respectively;
  • a portion of the first probe and the second probe that penetrates and has a facing surface facing the object to be inspected, and a portion of the first probe and the second probe that protrudes downward from the facing surface is movable in a vertical direction, and the first probe And in a state in which the second probe is not in contact with the inspection object, the lower end of the first probe is located below the lower end of the second probe.
  • one aspect of the inspection apparatus includes the probe unit, a stage having a mounting surface on which the inspection target is mounted, and a stage between the probe unit and the stage. and a height adjusting member disposed on the facing surface of the probe unit.
  • one aspect of the inspection system includes the inspection device and a transport device that transports the inspection device, and the first probe and the second probe are placed on the inspection object.
  • the inspection device is conveyed in a contact state.
  • one aspect of an inspection method is an inspection method for inspecting characteristics of an inspection object by supplying a current to the inspection object, wherein the inspection object faces the upper surface. and a device having a device top surface, the device being disposed on the top surface of the submount and supplied with the current, the submount having a first electrode disposed on the top surface.
  • the device has a second electrode disposed on the upper surface of the device
  • the inspection method includes a first contacting step of bringing a first probe into contact with the first electrode, and after the first contacting step, the a second contacting step of contacting a second probe with the second electrode while the first probe is in contact with the first electrode, wherein the first probe and the second probe are attached to the test object; It is included in a current circuit that supplies current and has elastic restoring force.
  • another aspect of the inspection method according to the present disclosure is an inspection method for inspecting characteristics of an inspection object by supplying a current to the inspection object, the inspection object: a submount having an upper surface; and an element having an element upper surface, disposed on the upper surface of the submount and supplied with the current, the submount having a first electrode disposed on the upper surface.
  • the device has a second electrode disposed on the upper surface of the device
  • the inspection method includes contacting a first probe with the first electrode and contacting a second probe with the second electrode a supply step of supplying the current to the test object in a state where the and a first detachment step of detaching the first probe from the first electrode, wherein the first probe and the second probe are included in a current circuit that supplies the current to the test object, and elastic restoring force have
  • one aspect of a method for manufacturing a semiconductor laser device is a method for manufacturing a semiconductor laser device, comprising: an assembly process for assembling the semiconductor laser device; and an inspection step of inspecting the semiconductor laser device as the inspection object, wherein the device is a semiconductor laser device.
  • FIG. 1 is a schematic side view showing the overall configuration of an inspection apparatus according to Embodiment 1;
  • FIG. 2 is a schematic top view showing the configuration of the probe unit according to Embodiment 1;
  • FIG. 2 is a schematic first cross-sectional view showing the configuration of the probe unit according to Embodiment 1;
  • FIG. 4 is a schematic second cross-sectional view showing the configuration of the probe unit according to Embodiment 1.
  • FIG. 4 is a schematic cross-sectional view showing the shape of the first probe in a state where the lower end of the first probe according to Embodiment 1 does not receive an upward force;
  • FIG. 5 is a schematic cross-sectional view showing the shape of the first probe in a state where the lower end of the first probe according to Embodiment 1 receives an upward force;
  • FIG. 4 is a schematic side view explaining each step of the inspection method according to Embodiment 1;
  • FIG. 4 is a schematic side view explaining each step of the inspection method according to Embodiment 1;
  • FIG. 4A is a schematic top view showing each step of a first position adjustment method for an inspection object in the inspection method according to the first embodiment;
  • FIG. 4A is a schematic top view showing each step of a first position adjustment method for an inspection object in the inspection method according to the first embodiment;
  • FIG. 4A is a schematic top view showing each step of a first position adjustment method for an inspection object in the inspection method according to the first embodiment;
  • FIG. 4A is a schematic top view showing each step of a first position adjustment method for an inspection object in the inspection method according to the first embodiment
  • FIG. 4A is a schematic top view showing each step of a first position adjustment method for an inspection object in the inspection method according to the first embodiment
  • FIG. 10 is a schematic top view showing each step of a second position adjustment method for the inspection target in the inspection method according to the first embodiment
  • FIG. 10 is a schematic top view showing each step of a second position adjustment method for the inspection target in the inspection method according to the first embodiment
  • FIG. 10 is a schematic top view showing each step of a second position adjustment method for the inspection target in the inspection method according to the first embodiment
  • FIG. 10 is a schematic top view showing each step of a second position adjustment method for the inspection target in the inspection method according to the first embodiment
  • FIG. 10 is a schematic top view showing each step of a second position adjustment method for the inspection target in the inspection method according to the first embodiment;
  • FIG. 4 is a schematic side view explaining each step of the inspection method according to Embodiment 1;
  • FIG. 4 is a schematic side view explaining each step of the inspection method according to Embodiment 1;
  • FIG. 4 is a schematic side view explaining each step of the inspection method according to Embodiment 1;
  • FIG. 4 is a schematic side view explaining each step of the inspection method according to Embodiment 1;
  • FIG. 4 is a schematic side view explaining each step of the inspection method according to Embodiment 1;
  • 4A and 4B are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1;
  • FIG. 4A and 4B are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1;
  • FIG. 4A and 4B are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1;
  • FIG. 4A and 4B are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1;
  • FIG. 4A and 4B are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1;
  • FIG. 4A and 4B are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1;
  • FIG. 4A and 4B are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1;
  • FIG. FIG. FIG. 1 are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1;
  • FIG. 5 is a schematic diagram showing the positional relationship between the first probe and the first through-hole when the first probe according to Embodiment 1 does not exhibit a buckling phenomenon;
  • FIG. 5 is a schematic diagram showing the positional relationship between the first probe and the first through-hole when the first probe according to Embodiment 1 exhibits a buckling phenomenon;
  • 1 is a schematic top view showing the overall configuration of an inspection system according to Embodiment 1;
  • FIG. FIG. 4 is a schematic top view showing the overall configuration of an inspection system according to a modification of Embodiment 1; 4 is a flow chart showing the flow of the method for manufacturing the semiconductor laser device according to Embodiment 1;
  • FIG. 5 is a schematic cross-sectional view showing part of a probe unit according to Modification 1;
  • FIG. 11 is a schematic cross-sectional view showing part of a probe unit according to Modification 2;
  • FIG. 11 is a schematic cross-sectional view showing part of a probe unit according to Modification 3;
  • FIG. 11 is a schematic cross-sectional view showing part of a probe unit according to Modification 4;
  • FIG. 11 is a schematic top view showing a part of a probe penetrating member of a probe unit according to modification 5;
  • FIG. 11 is a schematic top view showing a part of a probe penetrating member of a probe unit according to modification 6;
  • FIG. 21 is a schematic cross-sectional view showing part of a probe unit according to Modification 7;
  • FIG. 21 is a schematic side view showing the configuration of each probe of the probe unit according to modification 8;
  • FIG. 21 is a schematic side view showing the configuration of each probe of the probe unit according to modification 8;
  • FIG. 21 is a schematic side view showing the configuration of each probe of the probe unit according to modification 8;
  • FIG. 21 is a schematic cross-sectional view showing part of a probe unit according to Modification 9;
  • FIG. 21 is a schematic cross-sectional view showing part of a probe unit according to Modification 10;
  • 4 is a schematic perspective view showing a first example of a penetrating member inclined surface and a stage inclined surface according to Embodiment 1.
  • FIG. FIG. 4 is a schematic cross-sectional view showing a first example of a penetrating member inclined surface and a stage inclined surface according to Embodiment 1;
  • FIG. 8 is a schematic top view showing the configuration of a probe unit according to Embodiment 2;
  • FIG. 8 is a schematic cross-sectional view showing the configuration of a probe unit according to Embodiment 2;
  • FIG. 8 is a schematic cross-sectional view showing a state in which a height adjustment member arranged in the probe unit according to Embodiment 2 is brought into contact with the stage;
  • FIG. 11 is a schematic cross-sectional view showing the configuration of a probe unit according to Embodiment 3;
  • FIG. 12 is a schematic cross-sectional view showing a state in which the unit contact surface of the height adjustment member arranged on the stage according to Embodiment 3 is brought into contact with the probe unit;
  • FIG. 11 is a schematic cross-sectional view showing the configuration of a probe unit according to Embodiment 4;
  • FIG. 11 is a schematic cross-sectional view showing a state in which a height adjustment member arranged in a probe unit according to Embodiment 4 is brought into contact with a stage;
  • FIG. 11 is a schematic top view showing the configuration of a probe unit according to Embodiment 5;
  • FIG. 11 is a schematic first cross-sectional view showing the configuration of a probe unit according to Embodiment 5;
  • FIG. 12 is a schematic second cross-sectional view showing the configuration of the probe unit according to Embodiment 5;
  • FIG. 14 is a schematic top view showing the configuration of a probe unit according to Embodiment 6;
  • FIG. 11 is a schematic first cross-sectional view showing the configuration of a probe unit according to Embodiment 6;
  • FIG. 20 is a schematic second cross-sectional view showing the configuration of the probe unit according to Embodiment 6;
  • FIG. 14 is a schematic top view showing the configuration of a probe unit according to Embodiment 7;
  • FIG. 14 is a schematic cross-sectional view showing the configuration of a probe unit according to Embodiment 7;
  • FIG. 21 is a schematic cross-sectional view showing a state in which a height adjustment member arranged in a probe unit according to Embodiment 7 is brought into contact with a stage;
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, the scales and the like are not always the same in each drawing.
  • symbol is attached
  • the terms “upper” and “lower” do not necessarily refer to vertical upper and vertical lower in absolute spatial recognition, but are terms for defining the relative positional relationship of the constituent elements.
  • the terms “above” and “below” are used not only when two components are spaced apart from each other and there is another component between the two components, but also when two components are spaced apart from each other. It also applies when they are arranged in contact with each other.
  • FIG. 1 is a schematic side view showing the overall configuration of an inspection apparatus 10 according to this embodiment.
  • Each figure shows an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other.
  • the X, Y, and Z axes are a right-handed Cartesian coordinate system.
  • 1 also shows a semiconductor laser device 80, which is an example of an object to be inspected by the inspection apparatus 10. As shown in FIG.
  • the inspection device 10 is a device that inspects the characteristics of an inspection target by supplying current to the inspection target.
  • inspection apparatus 10 includes probe unit 20, stage 70, height adjustment member 50, base 11, post 12, slide rails 13 and 15, 17 , a vertically moving member 14 , a unit moving member 16 , a connecting spring 18 and a unit supporting member 19 .
  • the base 11 is a stand on which other components of the inspection device 10 are arranged.
  • a stage 70 and a column 12 are arranged on the base 11 .
  • the stage 70 is a member having a mounting surface 70a on which an object to be inspected is mounted.
  • the placement surface 70a includes a flat surface perpendicular to the vertical direction (the Z-axis direction in FIG. 1), and the inspection target is arranged on the flat surface.
  • a suction hole 72 is formed at a position on the placement surface 70a where the inspection object is arranged.
  • the probe unit 20 is a unit that includes part of a current circuit for supplying current to the test object, and includes a first probe 30 and the like. A detailed configuration of the probe unit 20 will be described later.
  • the probe unit 20 is fixed to the unit support member 19 .
  • the height adjustment member 50 is a member arranged between the probe unit 20 and the stage 70.
  • the height adjustment member 50 is a member that can be treated as a substantially rigid body, and functions as a spacer that defines the minimum distance between the probe unit 20 and the stage 70 .
  • the height adjusting member 50 is a plate-like member having a thickness corresponding to the minimum distance between the probe unit 20 and the stage 70 and is fixed to the probe unit 20 .
  • the height adjustment member 50 has a unit contact surface 50 b that contacts the probe unit 20 and a stage contact surface 50 a that contacts the stage 70 .
  • the stage contact surface 50a is a rough surface. In this embodiment, the stage contact surface 50a is a rough surface.
  • a rough surface may be defined as a surface having an arithmetic mean roughness Ra of 0.2 ⁇ m or more, for example.
  • the arithmetic average roughness Ra of the stage contact surface 50a and the unit contact surface 50b may be, for example, 0.8 ⁇ m or more and 1.6 ⁇ m or less.
  • the height adjustment member 50 is made of SUS440C, and the stage contact surface 50a has an arithmetic mean roughness Ra of 1.2 ⁇ m.
  • the material forming the height adjustment member 50 is not particularly limited as long as it can be treated as a substantially rigid body.
  • the arithmetic mean roughness Ra of the mounting surface 70a of the stage 70 may be, for example, 0.1 ⁇ m or more and 2.0 ⁇ m or less.
  • the material forming the stage 70 is a WC—Co alloy (a sintered body of tungsten carbide and cobalt), and the arithmetic mean roughness Ra of the mounting surface 70a is 0.15 ⁇ m.
  • the strut 12 is a columnar member erected on the base 11 .
  • the strut 12 extends vertically.
  • the slide rail 13 is a rail-shaped member fixed to the strut 12 .
  • the slide rail 13 has a fixed portion and a slide portion, and the slide portion is supported so as to be vertically slidable with respect to the fixed portion.
  • a fixed portion of the slide rail 13 is fixed to the column 12 , and a sliding portion of the slide rail 13 is fixed to the vertically moving member 14 .
  • the vertically moving member 14 is a member that moves vertically with respect to the column 12 .
  • the vertically moving member 14 is fixed to the slide rail 13 and moves vertically. More specifically, the vertically moving member 14 is fixed to the slide portion of the slide rail 13 and moves vertically with respect to the fixed portion of the slide rail 13 together with the slide portion.
  • the vertically moving member 14 has a vertically extending portion and a horizontally extending portion.
  • a vertically extending portion of the vertically moving member 14 is fixed to the slide portion of the slide rail 13 .
  • the horizontally extending portion of the vertically moving member 14 extends in the Y-axis direction in the example shown in FIG.
  • a slide rail 15 is fixed to the portion of the vertically moving member 14 extending in the horizontal direction.
  • the slide rail 15 is a rail-shaped member fixed to the vertically moving member 14 .
  • the slide rail 15 has a fixed portion and a slide portion, and the slide portion is horizontally slidably supported with respect to the fixed portion.
  • the slide portion is supported by the fixed portion of the slide rail 15 so as to be slidable in the Y-axis direction.
  • the fixed portion of the slide rail 15 is fixed to the horizontally extending portion of the vertically moving member 14
  • the sliding portion of the slide rail 15 is fixed to the unit moving member 16 .
  • the unit moving member 16 is a member that moves the unit supporting member 19 .
  • the unit moving member 16 moves horizontally with respect to the vertical moving member 14 .
  • the unit moving member 16 is fixed to the slide rail 15 and moves in the Y-axis direction. More specifically, the unit moving member 16 is fixed to the slide portion of the slide rail 15 and moves in the Y-axis direction with respect to the fixed portion of the slide rail 15 together with the slide portion.
  • the unit moving member 16 has a horizontally extending portion and a vertically extending portion. A horizontally extending portion of the unit moving member 16 is fixed to a slide portion of the slide rail 15 .
  • One end of a slide rail 17 and a connection spring 18 are fixed to the vertically extending portion of the unit moving member 16 .
  • the slide rail 17 is a rail-shaped member fixed to the unit moving member 16 .
  • the slide rail 17 has a fixed portion and a slide portion, and the slide portion is supported by the fixed portion so as to be vertically slidable.
  • the fixed portion of the slide rail 17 is fixed to the vertically extending portion of the unit moving member 16
  • the sliding portion of the slide rail 17 is fixed to the unit support member 19 . That is, the slide rail 17 connects the unit supporting member 19 to the unit moving member 16 so as to be vertically slidable.
  • connection spring 18 is an elastic member that connects the unit moving member 16 and the unit support member 19 .
  • the connection spring 18 has one end connected to the unit moving member 16 and the other end fixed to the unit support member 19 .
  • the unit support member 19 is a member that supports the probe unit 20.
  • the unit support member 19 is fixed to the slide rail 17 .
  • the unit support member 19 is fixed to the slide portion of the slide rail 17 .
  • the other end of the connection spring 18 is fixed to the unit support member 19 .
  • the unit support member 19 supports the probe unit 20 to which the height adjustment member 50 is fixed.
  • the unit support member 19 is integrated with the probe unit 20 and the height adjustment member 50 .
  • the height adjustment member 50 can be pressed against the stage 70 with a force corresponding to the spring constant of the connection spring 18 while suppressing the application of excessive force. In other words, with the above configuration, it is possible to easily maintain the force for fixing the probe unit 20 to the stage 70 while maintaining the positional relationship between the probe unit 20 and the stage 70 .
  • the height adjustment member 50 has a long distance from the lower end of the support 12 that is connected to the base 11 so that it does not substantially vibrate with respect to the base 11 . Moreover, a plurality of members are interposed between the column 12 and the height adjusting member 50 . Therefore, the height adjusting member 50 is likely to vibrate.
  • the shape formed by the plurality of members intervening from the post 12 to the height adjustment member 50 is not linear but C-shaped, so that even more vibration occurs. It's easy to do.
  • the spring constant of the connection spring 18 is appropriately set, and the vibration can be suppressed by pressing the height adjustment member 50 against the stage 70.
  • the relative position of the height adjustment member 50 to the stage 70 is Shifting can be suppressed. For example, even when the entire inspection apparatus 10 is moved while the height adjustment member 50 is pressed against the stage 70 , it is possible to suppress the displacement of the height adjustment member 50 relative to the stage 70 . That is, it is possible to prevent the first probe 30 of the probe unit 20 from being displaced relative to the semiconductor laser device 80 , and reduce damage to the semiconductor laser device 80 during inspection.
  • FIG. 2, 3, and 4 are a schematic top view, first cross-sectional view, and second cross-sectional view, respectively, showing the configuration of the probe unit 20 according to this embodiment.
  • FIG. 3 shows a cross section along line III-III shown in FIG.
  • FIG. 3 shows a cross section taken along line IV-IV shown in FIG. 3 and 4 also show the height adjustment member 50, the stage 70, and the semiconductor laser device 80 to be inspected.
  • 2 and 4 also show a measuring device 90 for measuring the light from the light emitting point 82e of the semiconductor laser device 80.
  • the measuring device 90 has a light receiving section 92 that receives light, and measures, for example, the power of the received light.
  • the probe unit 20 includes a first probe 30, a second probe 40, and a unit body 21, as shown in FIGS.
  • the unit main body 21 is the main body of the probe unit 20, to which the first probe 30 and the second probe 40 are fixed.
  • the unit main body 21 has a cavity 21v inside when viewed in cross section.
  • the unit body 21 has a probe fixing member 24 and a probe penetrating member 23 .
  • the probe fixing member 24 is a member to which the first probe 30 and the second probe 40 are fixed.
  • the probe fixing member 24 is a plate-like member in which a first fixing hole 27a and a second fixing hole 27b are formed.
  • the first probe 30 is fixed to the probe fixing member 24 with an adhesive 28 while being inserted into the first fixing hole 27a.
  • the second probe 40 is fixed to the probe fixing member 24 with the adhesive 28 while being inserted into the second fixing hole 27b.
  • the probe penetrating member 23 is arranged below the probe fixing member 24 and spaced from the probe fixing member 24, and has a first through hole 26a and a second through hole 26b through which the first probe 30 and the second probe 40 respectively pass. It is a member that is formed.
  • the probe penetrating member 23 is a plate-like member in which a first through hole 26a and a second through hole 26b are formed.
  • a cavity 21 v is present between the probe fixing member 24 and the probe penetrating member 23 .
  • the first probe 30 and the second probe 40 are inserted into the first through-hole 26a and the second through-hole 26b, respectively, and are not fixed to the probe-penetrating member 23 .
  • the probe penetrating member 23 has a facing surface 21u through which the first probe 30 and the second probe 40 penetrate and which faces the inspection target.
  • the facing surface 21u includes a flat portion perpendicular to the vertical direction.
  • the first probe 30 and the second probe 40 have portions protruding downward from the facing surface 21u.
  • the portion protruding downward from the facing surface 21u is vertically movable and perpendicular to the surface of the semiconductor laser device 80 with which the second probe 40 contacts. are arranged so that
  • the probe penetrating member 23 has a penetrating member inclined surface 21s that is inclined with respect to the vertical direction on the facing surface 21u.
  • the penetrating member inclined surface 21s rises with increasing distance from the first through hole 26a and the second through hole 26b.
  • the penetrating member inclined surface 21s is positioned between the position above the inspection target on the facing surface 21u and the outer edge of the facing surface 21u. Since the facing surface 21u has the penetrating member inclined surface 21s, physical interference between the measuring device 90 and the probe unit 20 can be reduced when the measuring device 90 approaches the probe unit 20.
  • the penetrating member inclined surface 21s in a portion facing the light propagation path of the opposing surface 21u, the light emitted from the inspection object can be Blocking by the facing surface 21u can be reduced.
  • the penetrating member inclined surface 21s is a light reflection suppressing surface.
  • a light reflection suppressing surface refers to a surface having a front reflectance of 3% or less at the wavelength of light emitted from an inspection object. As a result, it is possible to prevent the light from the inspection object from being diffusely reflected on the penetrating member inclined surface 21s and becoming noise in the light measurement.
  • the light reflection suppressing surface for example, a matte black coated surface, a roughened surface, or the like can be used.
  • the first probe 30 and the second probe 40 are included in a current circuit for supplying current to the test object, and are conductive members having elastic restoring force.
  • each of the first probe 30 and the second probe 40 includes a metal wire having elastic restoring force.
  • the first probe 30 extends vertically and has a lower end 31 and an upper end 32 .
  • the second probe 40 extends vertically and has a lower end 41 and an upper end 42 .
  • the upper end 32 of the first probe and the upper end 42 of the second probe 40 are located above the probe fixing member 24 .
  • the lower end 31 of the first probe and the lower end 41 of the second probe 40 are positioned below the probe penetrating member 23 .
  • the lower end 31 of the first probe 30 is positioned below the lower end 41 of the second probe 40 when the first probe 30 and the second probe 40 are not in contact with the test object.
  • the length L1 from the facing surface 21u to the lower end 31 of the first probe 30 (that is, the length of the portion of the first probe 30 protruding from the facing surface 21u) is It is longer than the length L2 from the surface 21u to the lower end 41 of the second probe 40 (that is, the length of the portion of the second probe 40 protruding from the facing surface 21u).
  • a semiconductor laser device 80 to be inspected according to the present embodiment has, as shown in FIG. .
  • the element 82 is an edge emitting semiconductor laser element to which current is supplied.
  • the submount 84 has a first electrode disposed on the top surface of the submount 84
  • the device 82 has a device top surface
  • the height d1 from the lower surface of the submount 84 to the first electrode (that is, the vertical dimension from the mounting surface 70a of the stage 70 to the first electrode), and the second electrode of the element 82 from the lower surface of the submount 84
  • the following inequalities hold for the height d2 (that is, the vertical dimension from the mounting surface 70a of the stage 70 to the second electrode) and the lengths L1 and L2 described above.
  • FIG. 5 is a schematic cross-sectional view showing the shape of the first probe 30 according to the present embodiment when the lower end 31 of the first probe 30 does not receive an upward force.
  • FIG. 6 is a schematic cross-sectional view showing the shape of the first probe 30 in a state where the lower end 31 of the first probe 30 according to the present embodiment receives an upward force.
  • the first probe 30 extends linearly in the vertical direction when the lower end 31 does not receive an upward force.
  • the first probe 30 exhibits the buckling phenomenon. That is, when the lower end 31 of the first probe 30 and the lower end 41 of the second probe 40 receive an upward force, the first probe 30 deforms in a direction intersecting the vertical direction.
  • the first probe 30 when the upward force applied to the lower end 31 is released, the first probe 30 returns to its original shape, as shown in FIG. Thus, the first probe 30 has elastic restoring force.
  • the elastic restoring force of the first probe 30 is represented by F1
  • the spring constant of the first probe 30 is represented by k1
  • the displacement amount of the lower end 31 of the first probe 30 is represented by Lx1
  • the second probe 40 also exhibits a buckling phenomenon like the first probe 30. Further, when the elastic restoring force of the second probe 40 is represented by F2, the spring constant of the second probe 40 is represented by k2, and the displacement amount of the lower end 41 of the second probe 40 is represented by Lx2, the following equation holds.
  • the first probe 30 and the second probe 40 have elastic restoring force. Further, since the above inequalities (2) and (3) hold, the height adjustment member 50 and the probe unit 20 are lowered until the stage contact surface 50a of the height adjustment member 50 contacts the mounting surface 70a of the stage 70. In this case, the displacement amount Lx1 of the lower end 31 of the first probe 30 and the displacement amount Lx2 of the lower end 41 of the second probe 40 are represented by the following equations.
  • Lx1 L1+d1-H>0 (6)
  • Lx2 L2+d2-H>0 (7)
  • each probe can be vertically pressed against the contact surface of each probe in the semiconductor laser device 80 by the elastic restoring forces represented by the above formulas (4) and (5).
  • horizontal force is not applied to the contact surface, so that horizontal displacement of each probe on the surface of the semiconductor laser device can be suppressed.
  • the stage 70 is a member having a mounting surface 70a on which an object to be inspected is mounted, as described above.
  • the mounting surface 70a has a stage inclined surface 70s inclined with respect to the vertical direction.
  • the stage inclined surface 70s descends as it approaches the end of the mounting surface 70a. Since the mounting surface 70 a has the stage inclined surface 70 s in this way, physical interference between the measuring device 90 and the stage 70 can be reduced when the measuring device 90 is brought closer to the probe unit 20 .
  • a light-emitting device such as a semiconductor laser device is used as an inspection object, the light is blocked by the mounting surface 70a by arranging the stage inclined surface 70s in a portion facing the light propagation path of the mounting surface 70a.
  • the stage inclined surface 70s may be a light reflection suppressing surface.
  • the light reflection suppressing surface for example, a black surface, a rough surface, or the like can be used similarly to the penetrating member inclined surface 21s.
  • FIG. 7, 8, and 17 to 21 are schematic side views explaining each step of the inspection method according to this embodiment.
  • 9 to 12 are schematic top views showing each step of the first position adjustment method for the inspection object in the inspection method according to the present embodiment.
  • 13 to 16 are schematic top views showing each step of the second position adjustment method for the inspection object in the inspection method according to the present embodiment.
  • the inspection method according to the present embodiment is a method of inspecting characteristics of an inspection object by supplying a current to the inspection object.
  • the inspection is performed using the inspection apparatus 10 .
  • an example of an object to be inspected an example of inspecting a semiconductor laser device 80 will be described below.
  • an object to be inspected is put into the inspection apparatus 10.
  • a semiconductor laser device 80 to be inspected is mounted on a mounting surface 70a of a stage 70 provided in the inspection apparatus 10.
  • a collet or the like can be used to move the semiconductor laser device 80 .
  • the semiconductor laser device 80 is arranged on the suction holes 72 of the mounting surface 70a.
  • the position of the semiconductor laser device 80 placed on the mounting surface 70a is adjusted to place the semiconductor laser device 80 at a predetermined position.
  • the position adjustment method is not particularly limited, a first position adjustment method and a second position adjustment method will be described below as examples of the position adjustment method.
  • FIG. 1 the frame Fm is arranged on the mounting surface 70a of the stage 70, as shown in FIG.
  • the frame Fm is arranged at a position corresponding to a predetermined position of the semiconductor laser device 80 (that is, a target position for position adjustment).
  • the frame Fm is arranged on the mounting surface 70a of the stage 70 so that the semiconductor laser device 80 is positioned inside the rectangular annular frame Fm.
  • a through-hole is formed in the frame Fm, and the semiconductor laser device 80 is pushed in the negative direction in the X-axis direction using a push rod Pm passing through the through-hole.
  • the position of the frame Fm is fixed so that the frame Fm does not move with respect to the placement surface 70a.
  • the semiconductor laser device 80 is pressed against the inner wall of the frame Fm on the negative side in the X-axis direction. Adjusted to the position defined by the inner wall.
  • the position of the semiconductor laser device 80 before movement is indicated by a dotted line.
  • the semiconductor laser device 80 is pushed forward in the Y-axis direction using a push rod Pm passing through another through hole formed in the frame Fm.
  • the position of the frame Fm is fixed so that the frame Fm does not move with respect to the placement surface 70a.
  • the semiconductor laser device 80 is pressed against the inner wall of the frame Fm on the positive side in the Y-axis direction. Adjusted to the position defined by the inner wall.
  • the position of the semiconductor laser device 80 before movement is indicated by a dotted line.
  • the position of the semiconductor laser device 80 is adjusted by pressing the semiconductor laser device 80 against the inner wall of the frame Fm with the position of the inner wall of the frame Fm aligned with the predetermined position of the semiconductor laser device 80 . It can be performed. In order to perform these position adjustments smoothly, it is preferable that the placement surface 70a be a smooth surface.
  • FIG. 13 In the second position adjustment method, first, the frame Fm is arranged on the mounting surface 70a of the stage 70, as shown in FIG. The frame Fm is arranged on the mounting surface 70a of the stage 70 so that the semiconductor laser device 80 is positioned inside the rectangular annular frame Fm.
  • a predetermined position of the semiconductor laser device 80 that is, a target position for position adjustment
  • the frame Fm is moved in the positive direction of the X-axis.
  • the semiconductor laser device 80 is moved in the positive X-axis direction, as shown in FIG. In FIG. 14, the positions of the frame Fm and the semiconductor laser device 80 before movement are indicated by dotted lines.
  • the frame Fm is moved in the positive direction of the Y-axis.
  • the inner wall of the frame Fm pushes the semiconductor laser device 80 in the positive Y-axis direction, thereby moving the semiconductor laser device 80 in the positive Y-axis direction as shown in FIG.
  • the positions of the frame Fm and the semiconductor laser device 80 before movement are indicated by dotted lines.
  • the position of the semiconductor laser device 80 can be adjusted by pushing the semiconductor laser device 80 with the inner wall of the frame Fm. Further, according to the second position adjustment method, when the position of the semiconductor laser device 80 is adjusted, the position can be continuously adjusted in the X-axis direction and the Y-axis direction using only one jig, the frame body Fm. It can be carried out. Therefore, the time required for position adjustment can be reduced.
  • the stage 70 of the inspection device 10 has suction holes 72 for sucking the inspection target.
  • the inspection apparatus 10 includes a frame Fm that surrounds the inspection target attracted to the stage 70 .
  • the inspection apparatus 10 adjusts the position of the inspection object by moving the frame Fm.
  • the probe unit 20 is moved from the retracted position to above the stage 70 as shown in FIG.
  • the probe unit 20 is moved above the stage 70 by moving the unit moving member 16 in the negative Y-axis direction.
  • the probe unit 20 is lowered to bring the first probe 30 and the second probe 40 (not shown in FIG. 18) of the probe unit 20 into contact with the semiconductor laser device 80.
  • the stage contact surface 50a of the height adjustment member 50 is pressed against the mounting surface 70a of the stage 70 by lowering the vertically moving member 14 .
  • the first probe 30 and the second probe 40 of the probe unit 20 are pressed against the first electrode and the second electrode of the semiconductor laser device 80, respectively.
  • the characteristics of the semiconductor laser device 80 are inspected.
  • a measuring device for measuring the power of light emitted from the semiconductor laser device 80 is used.
  • the probe unit 20 is raised to separate the first probe 30 and the second probe 40 (not shown in FIG. 19) from the semiconductor laser device 80.
  • the probe unit 20 and the height adjustment member 50 are raised by raising the vertically moving member 14 .
  • the first probe 30 and the second probe 40 of the probe unit 20 are separated from the first electrode and the second electrode of the semiconductor laser device 80, respectively.
  • the probe unit 20 is moved from above the stage 70 to the retracted position.
  • the probe unit 20 is retracted by moving the unit moving member 16 in the positive Y-axis direction.
  • the semiconductor laser device 80 is ejected from the inspection device 10. Then, as shown in FIG. That is, the semiconductor laser device 80 is moved from the mounting surface 70 a of the stage 70 of the inspection device 10 to the outside of the inspection device 10 .
  • a vacuum collet or the like can be used while the suction by the suction holes is stopped.
  • the semiconductor laser device 80 to be inspected can be inspected.
  • FIGS. 22 to 28 are schematic cross-sectional views for explaining the operation of the probe unit 20 according to this embodiment.
  • the states of the probe unit 20 in the steps shown in FIGS. 17, 18 and 19 of the inspection method described above are shown in FIGS. 22, 25 and 28, respectively.
  • the state of the probe unit 20 from the process shown in FIG. 17 to the process shown in FIG. 18 is shown in FIGS. 22-25.
  • the state of the probe unit 20 from the step shown in FIG. 18 to the step shown in FIG. 19 is shown in FIGS. 25-28.
  • the probe unit 20 is positioned above the stage 70, and the first probe 30 and the second probe 40 are not in contact with the semiconductor laser device 80, as shown in FIG. . Also, the height adjustment member 50 is not in contact with the stage 70 .
  • the first probe 30 is moved to the first electrode (not shown in FIG. 23) arranged on the upper surface of the submount 84 of the semiconductor laser device 80. shown) (first contact step).
  • the second probe 40 is not in contact with the second electrode arranged on the top surface of the element 82 of the semiconductor laser device 80 .
  • the height adjustment member 50 does not contact the mounting surface 70 a of the stage 70 .
  • the probe unit 20 is gradually lowered while the first probe 30 is in contact with the first electrode, so that the second probe 40 is connected to the semiconductor laser device as shown in FIG. 80 is brought into contact with a second electrode (not shown in FIG. 24) arranged on the upper surface of the element 82 (second contacting step).
  • the lower end 31 of the first probe 30 is displaced upward with respect to the probe penetrating member 23 . Accordingly, as shown in FIG. 24, the first probe 30 bends in the cavity 21v. That is, the first probe 30 exhibits a buckling phenomenon.
  • the lower end 31 of the first probe 30 presses the first electrode toward the stage 70 with the elastic restoring force represented by Equation (4).
  • the first probe 30 causes a buckling phenomenon, the portion of the first probe 30 protruding downward from the facing surface 21u continues to be perpendicular to the contact surface of the semiconductor laser.
  • the probe unit 20 is gradually lowered to move the stage contact surface 50a of the height adjustment member 50. It is pressed against the mounting surface 70 a of the stage 70 .
  • the elastic restoring force corresponding to the displacement of the lower end 31 is further increased. That is, the force with which the lower end 31 of the first probe 30 presses the first electrode toward the stage 70 becomes stronger.
  • the lower end 41 of the second probe 40 is displaced upward with respect to the probe penetrating member 23 .
  • the second probe 40 bends in the cavity 21v. That is, the second probe 40 exhibits a buckling phenomenon.
  • the lower end 41 of the second probe 40 presses the second electrode toward the stage 70 with the elastic restoring force represented by Equation (5).
  • the second probe 40 causes a buckling phenomenon, the portion of the second probe 40 protruding downward from the facing surface 21u continues to maintain a state perpendicular to the contact surface of the semiconductor laser.
  • a current is supplied to the semiconductor laser device 80 to be inspected while the first probe 30 is in contact with the first electrode and the second probe 40 is in contact with the second electrode. (supply process).
  • supply process By supplying a current to the semiconductor laser device 80 through the first probe 30 and the second probe 40, the characteristics of the semiconductor laser device 80 are inspected.
  • the stage contact surface 50a of the height adjustment member 50 is separated from the mounting surface 70a of the stage 70, as shown in FIG.
  • the second probe 40 is separated from the second electrode as shown in FIG. 27 (second detachment step).
  • the second probe 40 has returned to the state before exhibiting the buckling phenomenon due to the elastic restoring force.
  • the first probe 30 is separated from the first electrode as shown in FIG. 28 (first detachment step).
  • the first probe 30 has returned to the state before exhibiting the buckling phenomenon due to the elastic restoring force.
  • the probe unit 20 can be used to inspect the inspection target.
  • the probe unit 20 is a unit including part of a current circuit for supplying current to an object to be inspected.
  • the probe unit 20 includes a first probe 30 and a second probe 40, which are included in the current circuit and have an elastic restoring force, a probe fixing member 24 to which the first probe 30 and the second probe 40 are fixed, and a probe fixing member.
  • the probe penetrating member 23 has a facing surface 21u through which the first probe 30 and the second probe 40 penetrate and which faces the inspection target.
  • the portions of the first probe 30 and the second probe 40 that protrude downward from the facing surfaces are vertically movable.
  • the lower end 31 of the first probe 30 is positioned below the lower end 41 of the second probe 40 when the first probe 30 and the second probe 40 are not in contact with the test object.
  • the lower end 31 of the first probe 30 is attached to the first electrode lower in height than the second electrode. can be brought into contact first and pressed against the mounting surface 70a.
  • the semiconductor laser device 80 has a first electrode with which the lower end 31 of the first probe 30 contacts and a second electrode with which the lower end 41 of the second probe 40 contacts.
  • the first electrode is positioned below the second electrode, and the difference in vertical position between the lower end 31 of the first probe 30 and the lower end 41 of the second probe 40 is greater than the difference in the positions of Therefore, when the probe unit 20 is brought closer to the semiconductor laser device 80, the first probe 30 can be reliably brought into contact with the first electrode before the second probe 40 comes into contact with the second electrode.
  • the low portion (first electrode) of the semiconductor laser device 80 is pressed against the mounting surface 70a before the high portion (second electrode), the high portion is pressed against the mounting surface 70a first, the possibility that the semiconductor laser device 80 will topple over (that is, roll over) can be reduced. Therefore, it is possible to reduce the damage caused by the semiconductor laser device 80 falling down during inspection.
  • the displacement of the lower end 41 of the second probe 40 with respect to the probe penetrating member 23 in the supply step should be smaller than the displacement of the lower end 31 of the first probe 30 with respect to the probe penetrating member 23. can be done. Therefore, the force with which the lower end 41 of the second probe 40 presses the second electrode is more likely to be reduced than the force with which the lower end 31 of the first probe 30 presses the first electrode. Therefore, it is possible to suppress the formation of probe traces (that is, dents) on the second electrode.
  • relatively soft Au may be used as the second electrode of the element 82 of the semiconductor laser device 80 . In this case, the probe unit 20 according to the present embodiment is particularly effective because the second electrode is likely to have probe marks.
  • the first probe 30 can be separated from the first electrode after the second probe 40 is separated from the second electrode. Accordingly, since the first probe 30 presses the first electrode when the second probe 40 is separated from the second electrode, it is possible to reduce the lifting of the semiconductor laser device 80 together with the second probe 40 . Therefore, it is possible to reduce damage caused by dropping the semiconductor laser device 80 after being lifted.
  • relatively soft Au may be used as the second electrode. Easy to stick. Therefore, when the second probe 40 is separated from the second electrode, the semiconductor laser device 80 is easily lifted. Therefore, the probe unit 20 according to this embodiment is particularly effective.
  • the first probe 30 and the second probe 40 of the probe unit 20 may exhibit a buckling phenomenon.
  • FIG. 29 is a schematic diagram showing the positional relationship between the first probe 30 and the first through-hole 26a when the first probe 30 according to the present embodiment does not exhibit the buckling phenomenon.
  • FIG. 30 is a schematic diagram showing the positional relationship between the first probe 30 and the first through-hole 26a when the first probe 30 according to the present embodiment exhibits a buckling phenomenon. 29 and 30 show a sectional view (a) of the first through hole 26a and the first probe 30, and a top view (b) and a bottom view (c) of the first through hole 26a.
  • the first probe 30 when the first probe 30 does not exhibit the buckling phenomenon, the first probe 30 is not pressed against the inner wall surrounding the first through-hole 26a, and therefore the first through-hole 26a is not pressed. can move freely. That is, along with the vibration of the probe unit 20, the first probe 30 near the through hole also vibrates.
  • the first probe 30 when the first probe 30 exhibits a buckling phenomenon, it deviates in a direction perpendicular to the vertical direction. The first probe 30 is pressed against the inner wall surrounding the first through hole 26a. In this case, the movement of the first probe 30 is restricted by the frictional force between the first probe 30 and the inner wall surrounding the first through hole 26a.
  • vibration of the first probe 30 can be suppressed.
  • a case will be described in which the stage 70 on which the probe unit 20 and the inspection object are placed is moved while the first probe 30 and the second probe 40 are pressed against the inspection object.
  • the first probe 30 and the second probe 40 exhibit a buckling phenomenon, by moving the stage 70 on which the probe unit 20 and the test object are placed, the first probe 30 and the second probe 40 Even if a vibrational force is applied to the first probe 30 and the second probe 40, the frictional force can suppress the vibration near the through holes of the first probe 30 and the second probe 40. FIG. Therefore, it is possible to suppress damage to the inspection target due to vibration of each probe.
  • the facing surface 21u of the probe unit 20 may have a penetrating member inclined surface 21s that is inclined with respect to the vertical direction.
  • the penetrating member inclined surface 21s rises with increasing distance from the first through hole 26a and the second through hole 26b.
  • the facing surface 21u With the facing surface 21u with the penetrating member inclined surface 21s in this way, physical interference between the measuring device 90 and the probe unit 20 can be reduced when the measuring device 90 approaches the probe unit 20. Further, when a light-emitting element such as a semiconductor laser element is used as an inspection target, light is blocked by the opposing surface 21u by arranging the penetrating member inclined surface 21s in a portion facing the light propagation path of the opposing surface 21u. can be reduced.
  • a light-emitting element such as a semiconductor laser element
  • the penetrating member inclined surface 21s according to the present embodiment may be a light reflection suppressing surface.
  • the inspection apparatus 10 includes a probe unit 20, a stage 70 having a mounting surface 70a on which an object to be inspected is mounted, and a height adjustment member disposed between the probe unit 20 and the stage 70. 50.
  • the height adjustment member 50 can function as a spacer that defines the minimum distance between the probe unit 20 and the stage 70. Therefore, even when the position control accuracy of the mechanism for driving the probe unit 20 of the inspection apparatus 10 is low, the distance between the probe unit 20 and the stage 70 can be precisely controlled by the height adjustment member 50 . Therefore, it is possible to prevent the probe unit 20 and the stage 70 from being too close to each other, thereby applying excessive stress to the inspection target and damaging the inspection target.
  • vibration of the probe unit 20 can be suppressed. Therefore, it is possible to suppress the inspection object from being damaged by each probe as each probe vibrates.
  • the height adjusting member 50 may be arranged on the facing surface 21u of the probe unit 20. Thereby, the height adjusting member 50 can be retracted together with the probe unit 20 . Therefore, when the inspection target is placed on the mounting surface 70a of the stage 70, physical interference of the height adjusting member 50 with a collet or the like for moving the inspection target can be reduced.
  • the mounting surface 70a of the stage 70 may have a stage inclined surface 70s inclined with respect to the vertical direction.
  • the stage inclined surface 70s descends as it approaches the end of the mounting surface 70a.
  • the mounting surface 70 a has the stage inclined surface 70 s in this way, physical interference between the measuring device 90 and the stage 70 can be reduced when the measuring device 90 is brought closer to the probe unit 20 . Further, when a light-emitting device such as a semiconductor laser device is used as an inspection object, the light is blocked by the mounting surface 70a by arranging the stage inclined surface 70s in a portion facing the light propagation path of the mounting surface 70a. can be reduced.
  • the stage inclined surface 70s according to the present embodiment may be a light reflection suppressing surface.
  • the stage 70 may have suction holes 72 for sucking the inspection target.
  • the inspection apparatus 10 may include a frame Fm surrounding the inspection object attracted to the stage 70 . The inspection apparatus 10 adjusts the position of the inspection object by moving the frame Fm.
  • the inspection method is an inspection method for inspecting characteristics of an inspection object by supplying current to the inspection object.
  • a semiconductor laser device 80 which is an example of an object to be inspected, has a submount 84 having an upper surface, and an element 82 having an upper surface of an element, arranged on the upper surface of the submount 84, and supplied with current.
  • the submount 84 has a first electrode located on the top surface and the device 82 has a second electrode located on the top surface of the device.
  • the inspection method includes a first contact step of contacting the first probe 30 with the first electrode, and after the first contact step, the second probe 40 is contacted with the first electrode while the first probe 30 is in contact with the first electrode. and a second contacting step of contacting the electrode.
  • the first probe 30 and the second probe 40 are included in a current circuit that supplies current to the test object, and have elastic restoring force.
  • the inspection method it is possible to reliably bring the first probe 30 into contact with the first electrode before the second probe 40 comes into contact with the second electrode.
  • the low portion (first electrode) of the test object is pressed against the mounting surface 70a before the high portion (second electrode)
  • the high portion is pressed first.
  • the possibility of the inspection object falling down can be reduced. Therefore, it is possible to reduce the damage caused by the inspection object falling down during the inspection.
  • the inspection method according to the present embodiment can be implemented using, for example, the inspection apparatus 10 described above.
  • a semiconductor laser device 80 which is an example of an object to be inspected, has a submount 84 having an upper surface, and an element 82 having an upper surface of an element, arranged on the upper surface of the submount 84, and supplied with current.
  • the submount 84 has a first electrode located on the top surface and the device 82 has a second electrode located on the top surface of the device.
  • the inspection method includes a supply step of supplying a current to the inspection target while the first probe 30 is in contact with the first electrode and the second probe 40 is in contact with the second electrode, and after the supply step, a second It includes a second detachment step of detaching the two probes 40 from the second electrode, and a first detachment step of detaching the first probe 30 from the first electrode after the second detachment step.
  • the first probe 30 and the second probe 40 are included in a current circuit that supplies current to the test object, and have elastic restoring force.
  • the inspection method according to this embodiment is particularly effective.
  • the inspection method according to the present embodiment can be implemented using, for example, the inspection apparatus 10 described above.
  • FIG. 31 is a schematic top view showing the overall configuration of the inspection system 1 according to this embodiment.
  • FIG. 32 is a schematic top view showing the overall configuration of an inspection system 1a according to a modification of the present embodiment.
  • FIGS. 31 and 32 also show a measuring device 90 used in the inspection and a semiconductor laser device 80 as an example of an object to be inspected.
  • the inspection system 1 includes an inspection device 10 and a transport device 5 that transports the inspection device 10 .
  • the transport device 5 is a turntable that has a circular shape and rotates about its center as a rotation axis, and transports the inspection device 10 arranged on the transport device 5 in the circumferential direction.
  • the inspection system 1 includes a plurality of inspection devices 10.
  • twelve inspection devices 10 are arranged in a circle along the circular edge of the transport device 5.
  • the inspection apparatus 10 is arranged on a circle with a radius of about 300 mm at intervals of 30 degrees.
  • the average moving speed of the inspection device 10 is, for example, about 200 mm/second, and the time required for moving the central angle of 30 degrees is, for example, about 0.8 seconds.
  • the inspection device 10 executes each step of the inspection method described above according to the position of the transport destination transported by the transport device 5 . That is, the inspection device 10 is first transported to the 5 o'clock position of the transport device 5 shown in FIG. Subsequently, the inspection device 10 is stopped after being transported counterclockwise to the 4 o'clock position of the transport device 5, and the position of the inspection object is adjusted. Subsequently, the inspection apparatus 10 is conveyed counterclockwise to the 3 o'clock position of the conveying apparatus 5 and then stopped, and the probe unit 20 is moved. Here, the first probe 30 and the second probe 40 are brought into contact with the inspection object.
  • the inspection device 10 is transported counterclockwise to the 2 o'clock position of the transport device 5 in a state in which the first probe 30 and the second probe 40 are in contact with the inspection object, and then stopped.
  • a predetermined current is supplied, the characteristics are measured (that is, an inspection is performed), and the current supply is stopped.
  • the inspection device 10 repeatedly transports and stops counterclockwise from the 1 o'clock position to the 8 o'clock position of the transport device 5 while the first probe 30 and the second probe 40 are in contact with the inspection object. and inspects the object to be inspected each time it stops.
  • seven tests are performed. Each inspection may be a different inspection, or the same inspection may be performed multiple times. For example, in each test, the magnitude of the current and voltage supplied to the test object may be changed, or the waveform of the current may be changed.
  • a measuring device is arranged at each of the plurality of inspection positions to measure the inspection target.
  • the inspection device 10 is transported counterclockwise to the 7 o'clock position of the transport device 5 with the first probe 30 and the second probe 40 in contact with the inspection object, and then stopped. evacuate. Subsequently, the inspection apparatus 10 is stopped after being conveyed counterclockwise to the 6 o'clock position of the conveying apparatus 5, and the inspection target is discharged.
  • the inspection apparatus 10 is transported while the first probe 30 and the second probe 40 are in contact with the inspection target. Therefore, when performing a plurality of inspections at different positions, it is not necessary to move and retract the probe unit 20 each time it is moved.
  • the movement and retraction of the probe unit 20 are processes that require a particularly long time.
  • the distance that the probe unit 20 moves in the horizontal direction is about 100 mm, and the movement takes about 0.8 seconds. That is, the average moving speed is about 125 mm/sec.
  • probe marks formed on the inspection object by the first probe 30 and the second probe 40 can be reduced. Furthermore, it takes about 0.8 seconds to move the probe unit 20 in the vertical direction. By reducing the number of moving and retracting steps of the probe unit 20 that require a relatively long time in this manner, a significant reduction in inspection time can be realized.
  • the number of times the first probe 30 and the second probe 40 are brought into contact with and separated from the inspection object can be reduced, so probe marks formed on the inspection object can be reduced.
  • the inspection apparatus 10 includes a height adjustment member 50 arranged between the probe unit 20 and the stage 70 .
  • the height adjustment member 50 can be pressed against the mounting surface 70a of the stage 70 when the first probe 30 and the second probe 40 are brought into contact with the inspection object. Therefore, when the inspection device 10 is transported, it is possible to suppress the vibration of the probe unit 20, the first probe 30, and the second probe 40 due to the frictional force between the height adjustment member 50 and the mounting surface 70a. Thereby, it is possible to suppress damage to the inspection object due to the vibration of the first probe 30 and the second probe 40 .
  • the stage contact surface 50a of the height adjustment member 50 is a rough surface, so that the frictional force between the stage contact surface 50a and the mounting surface 70a of the stage 70 can be increased. can be done. Therefore, the vibration of the probe unit 20 with respect to the stage 70 can be further suppressed when the inspection apparatus 10 is transported, and the vibration of the first probe 30 and the second probe 40 with respect to the inspection object can be further suppressed. can.
  • the plurality of inspection devices 10 can move the probe units 20 in the radial direction of the transport device 5, as shown in FIG.
  • the inspection device 10 includes a moving mechanism that moves the probe unit 20 in a direction perpendicular to the transport direction of the inspection device 10 .
  • the moving mechanism is implemented by the unit moving member 16 and the like described above. With such a moving mechanism, it is possible to reduce the occurrence of physical interference between the collet or the like used for moving the inspection object and the probe unit 20 or the like when the inspection object is loaded into the inspection apparatus 10 from the outside of the transport device 5. .
  • an inspection system 1a according to a modification of the present embodiment will be described using FIG.
  • an inspection system 1 a according to this modification includes an inspection device 10 and a transport device 5 a that transports the inspection device 10 .
  • An inspection system 1a according to this modification also includes a plurality of inspection devices 10, like the inspection system 1 described above.
  • a conveying device 5a according to this modified example differs from the above-described conveying device 5 mainly in the shape of the conveying path.
  • a conveying device 5a according to this modification has an oval shape, and a plurality of inspection devices 10 are arranged in an oval shape along the periphery of the conveying device 5a.
  • a plurality of inspection devices 10 are transported along an oval transport path. Therefore, the transport device 5a has both a transport path for transporting the inspection apparatus 10 in a straight line and a transport path for transporting the inspection apparatus 10 in an arc.
  • the average moving speed of the inspection device 10 is, for example, about 190 mm/sec, and the conveying distance per one conveying is, for example, 150 mm.
  • the time required for one transport is, for example, about 0.8 seconds.
  • the inspection device 10 is transported in a state in which the first probe 30 and the second probe 40 of the inspection device 10 are in contact with the inspection object.
  • the inspection system 1a according to this modified example can also achieve the same effect as the inspection system 1 described above.
  • FIG. 33 is a flow chart showing the flow of the method for manufacturing the semiconductor laser device 80 according to this embodiment.
  • the semiconductor laser device 80 is assembled (S10).
  • semiconductor laser device 80 includes submount 84 and element 82 .
  • Device 82 is a semiconductor laser device.
  • the semiconductor laser device 80 is assembled, for example, by preparing a submount 84 and arranging the element 82 on the upper surface of the submount 84 .
  • the semiconductor laser device 80 is inspected (S20).
  • the semiconductor laser device 80 is inspected as an inspection object using the inspection method according to the present embodiment.
  • the semiconductor laser device 80 according to this embodiment can be manufactured. According to the manufacturing method of the semiconductor laser device 80 according to the present embodiment, by using the inspection method according to the present embodiment, the same effect as the inspection method described above can be obtained, and damage to the semiconductor laser device 80 during the inspection can be prevented. can be reduced.
  • FIG. 34 is a schematic cross-sectional view showing part of the probe unit according to this modification.
  • FIG. 34 shows the configuration of the first through-hole 26a of the probe-penetrating member 23 and its periphery.
  • the probe unit of this modified example differs from the probe unit 20 described above in the configuration of the first probe 130 .
  • a first probe 130 according to this modification has a conductor 36 and an insulating film 38 .
  • the conductor 36 is a conductive member having elastic restoring force.
  • the conductor 36 is, for example, a metal wire.
  • the conductor 36 is fixed by the probe fixing member 24 and passes through the probe penetrating member 23, similarly to the first probe 30 described above.
  • the insulating film 38 is an electrically insulating film that partially covers the conductor 36 .
  • the insulating film 38 covers the portion of the conductor 36 located above the probe penetrating member 23 when the lower end 131 of the first probe 130 is not in contact with the test object.
  • a portion of the conductor 36 located in the cavity 21v may be covered while the lower end 131 of the first probe 130 is not in contact with the test object.
  • the thickness of the first probe 130 at the portion where the insulating film 38 covers the conductor 36 may be larger than the diameter of the first through hole 26a. Thereby, the insulating film 38 can prevent the first probe 130 from falling downward from the first through hole 26a.
  • the second probe may also have a conductor and an insulating film, like the first probe 130 .
  • FIG. 35 is a schematic cross-sectional view showing part of the probe unit according to this modification.
  • the probe unit according to this modified example differs from the probe unit according to modified example 1 in the configuration of the probe penetrating member 123 .
  • a first through hole 126a is formed in the probe penetrating member 123 according to this modified example.
  • the probe penetrating member 123 has a plurality of guide members 123a, 123c, 123e that are spaced apart from each other in the vertical direction.
  • a first guide hole through which the first probe 130 penetrates is formed in each of the plurality of guide members 123a, 123c, and 123e.
  • a first guide hole 126aa is formed in the guide member 123a.
  • a first guide hole 126ca is formed in the guide member 123c arranged below the guide member 123a.
  • a first guide hole 126ea is formed in the guide member 123e arranged below the guide member 123c.
  • each guide member is made of an electrically insulating material.
  • aromatic polyester, nylon, Teflon (registered trademark), fluorine resin such as polytetrafluoroethylene, or ceramics can be used.
  • a conductive member such as metal can be used as each guide member.
  • a spacer is arranged between two adjacent guide members.
  • a spacer 123b is arranged between the guide member 123a and the guide member 123c.
  • a spacer 123d is arranged between the guide member 123c and the guide member 123e.
  • a first spacer hole 126ba is formed in the spacer 123b, and a first spacer hole 126da is formed in the spacer 123d.
  • the first through hole 126a of the probe penetrating member 123 includes first guide holes 126aa, 126ca, 126ea and first spacer holes 126ba, 126da. That is, the first probe 130 passes through the first guide holes 126aa, 126ca, 126ea and the first spacer holes 126ba, 126da.
  • the centers of the first guide holes 126aa, 126ca, and 126ea are at the same position in the horizontal direction (that is, at the same position on the XY plane), and the penetrating first probe 130 is perpendicular to the bottom surface of the probe penetrating member 123. ing.
  • the diameters of the first spacer holes 126ba, 126da are larger than the diameters of the first guide holes 126aa, 126ca, 126ea. Thereby, the first probe 130 is guided to the first guide holes 126aa, 126ca, 126ea.
  • the thickness of each guide member smaller than the thickness of each spacer, the area where the first probe 130 contacts the probe penetrating member 123 in the first through hole 126a can be reduced. of friction can be reduced. In order to further reduce friction, corners (edges) may be eliminated from the periphery of each first through hole of each guide member.
  • the inclination of the first probe 130 can be reduced.
  • each spacer by setting the thickness of each spacer to a predetermined thickness or less determined based on the spring constant of the first probe 130, it is possible to suppress the first probe 130 from buckling in each first spacer hole.
  • the second through hole of the probe penetrating member 123 can also have the same configuration as the first through hole 126a.
  • FIG. 36 is a schematic cross-sectional view showing part of the probe unit according to this modification.
  • the probe unit according to this modified example differs from the probe unit according to modified example 2 in the configuration of the probe penetrating member 223 .
  • the probe penetrating member 223 has a plurality of guide members 223a and 223c arranged apart from each other in the vertical direction.
  • a first guide hole through which the first probe 130 penetrates is formed in each of the plurality of guide members 223a and 223c.
  • a first guide hole 226aa is formed in the guide member 223a.
  • a first guide hole 226ca is formed in the guide member 223c arranged below the guide member 223a.
  • a spacer 223b is arranged between two adjacent guide members 223a and 223c.
  • a first spacer hole 226ba is formed in the spacer 223b.
  • the first through hole 226a of the probe penetrating member 223 includes first guide holes 226aa and 226ca and a first spacer hole 226ba. That is, the first probe 130 passes through the first guide holes 226aa and 226ca and the first spacer hole 226ba.
  • the diameter of the first spacer hole 226ba is larger than the diameter of the first guide holes 226aa and 226ca. Thereby, the first probe 130 is guided to the first guide holes 226aa and 226ca. Further, similarly to the probe penetrating member 123 according to Modification 2, by making the thickness of each guide member smaller than the thickness of the spacer 223b, the first probe 130 comes into contact with the probe penetrating member 223 in the first through hole 226a. Since the area to be covered can be reduced, friction with the probe penetrating member 223 can be reduced.
  • the gap between the first guide hole 226aa of the guide member 223a closest to the probe fixing member (that is, arranged at the top) and the first probe 130 among the plurality of guide members is It is larger than the gap between the first probe 130 and the first guide hole 226ca of the guide member 223c furthest (that is, arranged at the bottom) from the probe fixing member.
  • the guide member 223a closest to the probe fixing member among the plurality of guide members has a thickness larger than the guide member 223c farthest from the probe fixing member among the plurality of guide members.
  • each probe buckles in cavity 21v when pressed against the test object. Therefore, in the first probe 130 located in the first through hole 226a, the stress associated with the buckling of the first probe 130 increases in the portion near the cavity 21v, that is, in the uppermost portion.
  • the second through hole of the probe penetrating member 223 can also have the same configuration as the first through hole 226a.
  • FIG. 37 is a schematic cross-sectional view showing part of the probe unit according to this modification.
  • the probe unit according to this modification differs from the probe unit according to modification 3 in the configuration of the first probe 130a.
  • the first probe 130 a has a conductor 36 and an insulating film 338 .
  • the insulating film 338 according to this modified example is formed in a portion of the first probe 130 a that contacts each probe penetrating member 223 .
  • a conductive member can be used for the probe penetrating member 223, the degree of freedom of the material used for the probe penetrating member 223 can be increased.
  • the second probe can also have the same configuration as the first probe 130a.
  • FIG. 38 is a schematic top view showing part of the probe penetrating member 423 of the probe unit according to this modification.
  • the probe unit according to this modification differs from the probe unit 20 described above in the configuration of the first through hole 426 a of the probe penetrating member 423 .
  • a probe penetrating member 423 according to this modified example has a first inner wall 426w surrounding a first through hole 426a.
  • the first inner wall 426w has one or more first protrusions 426P that smoothly protrude toward the first through hole.
  • the contact area between the first inner wall 426w and the first probe 30 can be reduced. Therefore, friction between the probe penetrating member 423 and the first probe 30 can be reduced.
  • the first convex portion 426P protrudes smoothly and does not have corners, abrasion between the first probe 30 and the first inner wall 426w can be reduced.
  • FIG. 39 is a schematic top view showing part of the probe penetrating member 23 of the probe unit according to this modification.
  • the probe unit according to this modification differs from the probe unit 20 described above in the configuration of the first probe 430 .
  • the first probe 430 according to this modified example has a rectangular cross-sectional shape. Thereby, the contact area between the probe penetrating member 23 and the first probe 430 in the first through hole 26a can be reduced. Therefore, friction between the probe penetrating member 23 and the first probe 430 can be reduced.
  • the corners of the cross section of the first probe 430 may be formed in a smooth curved shape. Thereby, the wear of the first probe 430 and the probe penetrating member 23 can be reduced. Since the first probe 430 has a rectangular cross-sectional shape, it can be easily produced by etching or cutting a flat plate. This can also be used particularly in a probe unit as in Embodiment 4, which will be described later.
  • FIG. 40 is a schematic cross-sectional view showing part of the probe unit according to this modification.
  • FIG. 40 also shows a semiconductor laser device 80 as an example of an object to be inspected.
  • the probe unit according to this modified example differs from the probe unit according to modified example 1 in the configuration of the unit main body 521 and the second probe 140 .
  • a second probe 140 according to this modified example has a conductor 46 and an insulating film 48 .
  • the conductor 46 has the same configuration as the conductor 36 of the first probe 130
  • the insulating film 48 has the same configuration as the insulating film 38 of the first probe 130 . That is, the first probe 130 and the second probe 140 have the same configuration.
  • the unit main body 521 has a probe penetrating member 523 and a probe fixing member 524 .
  • the probe penetrating member 523 has a facing surface 521u that faces the object to be inspected, and a first upper surface 523a and a second upper surface 523b on the back side of the facing surface 521u.
  • the probe penetrating member 523 is formed with a first through hole 526a and a second through hole 526b.
  • the first through hole 526a penetrates vertically from the first upper surface 523a to the opposing surface 521u.
  • the second through hole 526b vertically penetrates from the second upper surface 523b to the opposing surface 521u.
  • the diameter of the first through hole 526a is larger than the diameter of the conductor 36 of the first probe 130 and smaller than the diameter of the portion of the first probe 130 where the insulating film 38 is formed.
  • the diameter of the second through hole 526b is larger than the diameter of the conductor 46 of the second probe 140 and smaller than the diameter of the portion of the second probe 140 where the insulating film 48 is formed.
  • the lower end of the portion of the first probe 130 where the insulating film 38 is formed is in contact with the upper surface (first upper surface 523a) of the first through hole 526a.
  • the lower end of the portion of the second probe 140 where the insulating film 48 is formed is in contact with the upper surface (second upper surface 523b) of the second through hole 526b.
  • the first upper surface 523a and the second upper surface 523b are different in vertical position, and the second upper surface 523b is located above the first upper surface 523a.
  • the probe fixing member 524 has a first lower surface 524a and a second lower surface 524b facing the probe penetrating member 523, and an upper surface 521t on the back side thereof.
  • the probe fixing member 524 is formed with a first fixing hole 527a and a second fixing hole 527b.
  • the first fixing hole 527a vertically penetrates from the upper surface 521t to the first lower surface 524a.
  • the second fixing hole 527b vertically penetrates from the upper surface 521t to the second lower surface 524b.
  • the diameter of the first fixing hole 527a is larger than the diameter of the conductor 36 of the first probe 130 and smaller than the diameter of the portion of the first probe 130 where the insulating film 38 is formed.
  • the diameter of the second fixing hole 527b is larger than the diameter of the conductor 46 of the second probe 140 and smaller than the diameter of the portion of the second probe 140 where the insulating film 48 is formed.
  • the upper end of the portion of the first probe 130 on which the insulating film 38 is formed is in contact with the lower surface (first lower surface 524a) of the first fixing hole 527a.
  • the upper end of the portion of the second probe 140 on which the insulating film 48 is formed is in contact with the lower surface (second lower surface 524b) of the second fixing hole 527b.
  • the first lower surface 524a and the second lower surface 524b have different vertical positions, and the second lower surface 524b is located above the first lower surface 524a.
  • the length of the portion where the insulating film 38 is not formed on the lower end 131 side of the first probe 130 and the length of the second probe 140 is also equal. Therefore, due to the difference in height between the first upper surface 523a and the second upper surface 523b of the probe penetrating member 523, the difference in the vertical position of the lower end 131 of the first probe 130 and the vertical position of the lower end 141 of the second probe 140 is It is determined.
  • the difference in the vertical position of the lower end 131 of the first probe 130 and the vertical position of the lower end 141 of the second probe 140 can be adjusted. Adjustable.
  • the height difference between the first upper surface 523 a and the second upper surface 523 b of the probe penetrating member 523 may be equal to the height difference between the first lower surface 524 a and the second lower surface 524 b of the probe fixing member 524 .
  • the length from the first upper surface 523a of the probe penetrating member 523 to the first lower surface 524a of the probe fixing member 524, and the length from the second upper surface 523b of the probe penetrating member 523 to the second lower surface 524b of the probe fixing member 524 The length may be equal to the length of the portion of the first probe 130 covered with the insulating film 38 (that is, the length of the portion of the second probe 140 covered with the insulating film 48).
  • FIGS. 41 to 43 are schematic side views showing the configuration of each probe of the probe unit according to this modified example.
  • FIGS. 41 to 43 also show the height adjusting member 50 and a semiconductor laser device 80 as an example of an object to be inspected.
  • the length L1 of the portion protruding from the facing surface 21u of the first probe 30, the length L2 of the portion protruding from the facing surface 21u of the second probe 40, the height H of the height adjustment member 50, and the semiconductor laser Various examples are conceivable for the relationship between the height d1 from the lower surface of the submount 84 of the device 80 to the first electrode and the height d2 from the lower surface of the submount 84 to the second electrode of the element 82 .
  • the height adjusting member 50 can be brought into contact with the stage 70 without physical interference between the semiconductor laser device 80 and the facing surface 21u.
  • FIGS. 41 to 43 show the relative position of the semiconductor laser device 80 with respect to the height adjustment member 50 when the height adjustment member 50 is in contact with the stage 70 by dashed lines. As shown in FIGS. 41 to 43, the height adjustment member 50 can be brought into contact with the stage 70 without physical interference between the semiconductor laser device 80 and the facing surface 21u.
  • FIG. 44 is a schematic cross-sectional view showing part of the probe unit according to this modification.
  • FIG. 44 also shows a detailed configuration of a semiconductor laser device 80 as an example of an inspection target.
  • the probe unit according to this modification differs from the probe unit 20 in the configurations of the first probe 230, the second probe 240, and the unit main body 621.
  • the semiconductor laser device 80 has a submount 84 and an element 82, as shown in FIG.
  • the submount 84 has a lower surface 84b and an upper surface 84a behind the lower surface 84b.
  • a first electrode 85 is arranged on the upper surface 84 a of the submount 84 .
  • the element 82 has an element lower surface 82b and an element upper surface 82a behind the element lower surface 82b. Element 82 is positioned on top surface 84 a of submount 84 . The element 82 has a second electrode 83 arranged on an upper surface 82a of the element.
  • Each semiconductor laser device 80 described above also has a detailed configuration as shown in FIG.
  • first probe 230 and the second probe 240 are the same.
  • first probe 230 and second probe 240 may be made of the same material.
  • the second probe 240 may be thinner than the first probe 230 .
  • the spring constant of the second probe 240 becomes smaller than the spring constant of the first probe 230, so damage to the second electrode 83 with which the second probe 240 contacts can be reduced.
  • the unit main body 621 has a probe penetrating member 623 and a probe fixing member 624 .
  • the probe penetrating member 623 has a facing surface 621u that faces the object to be inspected, and a first upper surface 623a and a second upper surface 623b on the back side of the facing surface 621u.
  • the probe penetrating member 623 is formed with a first through hole 626a and a second through hole 626b.
  • the first through hole 626a penetrates vertically from the first upper surface 623a to the opposing surface 621u.
  • the second through hole 626b penetrates vertically from the second upper surface 623b to the opposing surface 621u.
  • the first upper surface 623a and the second upper surface 623b have the same vertical position.
  • the probe fixing member 624 has a first lower surface 624a and a second lower surface 624b facing the probe penetrating member 623, and an upper surface 621t on the back side thereof.
  • the probe fixing member 624 is formed with a first fixing hole 627a and a second fixing hole 627b.
  • the first fixing hole 627a vertically penetrates from the upper surface 621t to the first lower surface 624a.
  • the second fixing hole 627b vertically penetrates from the upper surface 621t to the second lower surface 624b.
  • the first lower surface 624a and the second lower surface 624b have different vertical positions, and the second lower surface 624b is located above the first lower surface 624a.
  • the length from the probe fixing member 624 of the second probe 240 to the probe penetrating member 623 is the length from the probe fixing member 624 of the first probe 230 to the probe penetrating member 623. It can be longer than the length. This makes it easier for the second probe 240 to buckle than for the first probe 230 .
  • the spring constant of second probe 240 is smaller than the spring constant of first probe 230 . As a result, the elastic restoring force that accompanies the buckling of the second probe 240 can be reduced, so damage to the second electrode 83 with which the second probe 240 contacts can be reduced.
  • the first upper surface 623a and the second upper surface 623b have the same vertical position, but the second upper surface 623b may be arranged below the first upper surface 623a.
  • the length from the probe fixing member 624 of the second probe 240 to the probe penetrating member 623 can be further increased. Therefore, the elastic restoring force accompanying buckling of the second probe 240 can be further reduced.
  • FIG. 45 is a schematic cross-sectional view showing part of the probe unit according to this modification.
  • FIG. 45 also shows a detailed configuration of a semiconductor laser device 80 as an example of an inspection target.
  • the probe unit according to this modified example differs from the probe unit according to modified example 9 in the configuration of the first probe 330 and the second probe 340 .
  • the radius of curvature of the lower end 341 of the second probe 340 according to this modification is larger than the radius of curvature of the lower end 331 of the first probe 330 .
  • the second probe 340 may be thinner than the first probe 330.
  • the spring constant of the second probe 340 becomes smaller than the spring constant of the first probe 330, so damage to the second electrode 83 with which the second probe 340 contacts can be further reduced.
  • FIG. 46 and 47 are a schematic perspective view and a cross-sectional view, respectively, showing a first example of a penetrating member inclined surface 21s and a stage inclined surface 70s according to this embodiment.
  • FIG. 47 represents the cross section indicated by the dashed line in FIG.
  • FIG. 48 is a schematic cross-sectional view showing a second example of the penetrating member inclined surface 21s and the stage inclined surface 70s according to the present embodiment.
  • FIG. 46 and 47 are a schematic perspective view and a cross-sectional view, respectively, showing a first example of a penetrating member inclined surface 21s and a stage inclined surface 70s according to this embodiment.
  • FIG. 47 represents the cross section indicated by the dashed line in FIG.
  • FIG. 48 is a schematic cross-sectional view showing a second example of the penetrating member inclined surface 21s and the stage inclined surface 70s according to the present embodiment.
  • FIG. 49 is a schematic perspective view showing a third example of the penetrating member inclined surface 21s and the stage inclined surface 70s according to the present embodiment.
  • FIG. 50 is a schematic cross-sectional view showing a fourth example of the penetrating member inclined surface 21s according to the present embodiment.
  • a planar (that is, flat) penetrating member inclined surface is formed on a portion of the facing surface 21u that faces the laser beam LB from the semiconductor laser device 80. As shown in FIGS. 21s are formed. A planar stage inclined surface 70s is formed in a portion of the mounting surface 70a facing the laser beam LB from the semiconductor laser device 80. As shown in FIG.
  • the inclination angle ⁇ 2 of the penetrating member inclined surface 21s and the stage inclined surface 70s (with respect to the horizontal plane perpendicular to the vertical direction) varies depending on the vertical divergence angle ⁇ of the laser beam LB. may be determined.
  • the tilt angle ⁇ 2 may be set to about 23 degrees.
  • the inclination angle ⁇ 2 may be increased as in the second embodiment shown in FIG. This can reduce the physical interference of the measuring device 90 and the like with the stage 70 and the probe unit 20 .
  • the tilt angle ⁇ 2 may be 45 degrees or more.
  • the inclination angle ⁇ 2 may be 45 degrees or less. As a result, a maximum path for heat diffusion from the semiconductor laser device 80 to the stage 70 can be ensured. Therefore, the heat dissipation characteristics of the stage 70 can be enhanced.
  • the penetrating member inclined surface 21s and the stage inclined surface 70s are curved in accordance with the vertical divergence angle ⁇ 1 and the horizontal divergence angle ⁇ 2 of the laser beam LB. may have the shape of In the example shown in FIG. 49, the penetrating member inclined surface 21s and the stage inclined surface 70s have a side shape of an elliptical cone with the light emitting point of the semiconductor laser device 80 as the apex.
  • the first through hole 26a through which the first probe 30 penetrates penetrates the penetrating member inclined surface 21s.
  • the second through hole 26b through which the second probe 40 penetrates may penetrate through the penetrating member inclined surface 21s.
  • Embodiment 2 A probe unit according to Embodiment 2 will be described.
  • the probe unit according to this embodiment differs from the probe unit 20 according to the first embodiment in the shape of each probe.
  • the probe unit according to the present embodiment will be described below with reference to FIGS. 51 to 53, focusing on differences from the probe unit 20 according to the first embodiment.
  • FIG. 51 and 52 are a schematic top view and a cross-sectional view, respectively, showing the configuration of the probe unit 720 according to this embodiment.
  • FIG. 52 shows a cross section taken along line XXXXXII--XXXXII shown in FIG.
  • FIG. 53 is a schematic cross-sectional view showing a state in which the height adjustment member 50 arranged in the probe unit 720 according to this embodiment is brought into contact with the stage 70.
  • the probe unit 720 according to this embodiment differs from the probe unit 20 according to Embodiment 1 in the shapes of the first probe 30 and the second probe 40.
  • FIG. 51 the probe unit 720 according to this embodiment differs from the probe unit 20 according to Embodiment 1 in the shapes of the first probe 30 and the second probe 40.
  • the first probe 30 has a first deviation portion 34 that is deviated in the first deviation direction from the lower end 31 of the first probe 30 when viewed from above.
  • the first deflection direction is the positive Y-axis direction.
  • the first deflection portion 34 includes the upper end 32 of the first probe 30 and is inclined in the positive Y-axis direction with respect to the vertical direction.
  • the second probe 40 has a second deviation portion 44 that is deviated in the second deviation direction from the lower end 41 of the second probe 40 when viewed from above.
  • the second deflection direction is the Y-axis negative direction.
  • the second offset portion 44 includes the upper end 42 of the second probe 40 and is inclined in the Y-axis direction negative with respect to the vertical direction.
  • the first fixing hole 27a formed in the probe fixing member 24 of the probe unit 720 may be arranged at a position shifted from directly above the first through hole 26a, You may extend in the direction inclined with respect to the direction.
  • the second fixing hole 27b may be arranged at a position shifted from directly above the second through hole 26b, or may extend in a direction inclined with respect to the vertical direction.
  • the first probe 30 and the second probe 40 are pre-bent without coming into contact with the test object.
  • each probe can be easily buckled, so that the linearity of the elastic restoring force with respect to the amount of displacement of the lower end of each probe can be enhanced.
  • the dependence of the spring constant of each probe on the amount of displacement can be reduced. Therefore, it becomes easier to control the magnitude of the elastic restoring force.
  • the direction of buckling of each probe can be controlled.
  • the first deflection direction and the second deflection direction are non-parallel to the arrangement directions of the first probes 30 and the second probes 40 .
  • the direction of buckling of the first probe 30 is parallel to the first deflection direction
  • the direction of buckling of the second probe 40 is parallel to the second deflection direction
  • the buckling can suppress the displacement of the first probe 30 and the second probe 40 in their arrangement direction. Therefore, contact between the first probe 30 and the second probe 40 can be suppressed.
  • the first deflection direction is opposite to the second deflection direction. As a result, as shown in FIG.
  • the direction in which the first probe 30 is displaced by buckling (negative direction in the Y-axis direction) and the direction in which the second probe 40 is displaced by buckling (positive direction in the Y-axis direction) are different. Since the directions are reversed, contact can be suppressed when the first probe 30 and the second probe 40 are buckled.
  • the first probe 30 can suppress vibration in the direction parallel to the first deflection direction
  • the second probe 40 can suppress vibration in the direction parallel to the second deflection direction.
  • the first deflection direction and the second deflection direction may be parallel to the transport direction. As a result, vibration of each probe that accompanies transportation of the probe unit 720 can be suppressed.
  • the first deflection direction and the second deflection direction may be parallel to the direction of maximum acceleration during transportation of the inspection apparatus including the probe unit 720 .
  • each deflection orientation may be parallel to the tangential direction of the circumference.
  • Embodiment 3 A probe unit according to Embodiment 3 will be described.
  • the probe unit according to this embodiment differs from the probe unit 720 according to the second embodiment mainly in the deflection direction of each probe.
  • the probe unit according to the present embodiment will be described below with reference to FIGS. 54 and 55, focusing on differences from the probe unit 720 according to the second embodiment.
  • FIG. 54 is a schematic cross-sectional view showing the configuration of the probe unit 720a according to this embodiment.
  • FIG. 55 is a schematic cross-sectional view showing a state in which the unit contact surface 150b of the height adjustment member 150 arranged on the stage 70 according to this embodiment is brought into contact with the probe unit 720a.
  • the first deflection direction (X-axis direction negative direction) of the first probe 30 and the second deflection direction (X-axis direction negative direction) of the second probe 40 are the same. It is parallel to the arrangement direction (X-axis direction) of the first probes 30 and the second probes 40 .
  • the buckling directions of the first probe 30 and the second probe 40 are also the same. Therefore, even in such a configuration, contact between the first probe 30 and the second probe 40 can be suppressed.
  • the vertical interval ⁇ z between the first probe 30 and the second probe 40 may be increased. This configuration can be realized by making the pre-bent angle of the second probe 40 larger than the pre-bent angle of the first probe 30, or the like. Thereby, the contact between the first probe 30 and the second probe 40 can be further suppressed.
  • the height adjustment member 150 is arranged on the mounting surface 70 a of the stage 70 .
  • the unit main body 21 has a facing surface 21u that faces the height adjusting member 150 .
  • At least one of the unit contact surface 150b and the opposing surface 21u is a rough surface.
  • the unit contact surface 150b is a rough surface.
  • the height adjusting member 150 has a positioning portion 156 .
  • the positioning portion 156 is a member used for positioning the inspection object. For example, by pressing the inspection object against the positioning portion 156, the inspection object can be arranged at a predetermined position.
  • the probe unit 720a having the configuration described above, it is possible to suppress damage to the inspection target in the same manner as the probe unit 20 according to the first embodiment.
  • Embodiment 4 A probe unit according to Embodiment 4 will be described.
  • the probe unit according to this embodiment differs from the probe unit 720 according to the second embodiment mainly in the shape of each probe.
  • the probe unit according to the present embodiment will be described below with reference to FIGS. 56 and 57, focusing on differences from the probe unit 720 according to the second embodiment.
  • FIG. 56 is a schematic cross-sectional view showing the configuration of the probe unit 820 according to this embodiment.
  • FIG. 57 is a schematic cross-sectional view showing a state in which the height adjustment member 50 arranged in the probe unit 820 according to this embodiment is brought into contact with the stage 70.
  • FIG. 56 is a schematic cross-sectional view showing the configuration of the probe unit 820 according to this embodiment.
  • FIG. 57 is a schematic cross-sectional view showing a state in which the height adjustment member 50 arranged in the probe unit 820 according to this embodiment is brought into contact with the stage 70.
  • a probe unit 820 according to the present embodiment differs from the probe unit 720 according to Embodiment 2 in the shapes of the first probe 830 and the second probe 840 .
  • the first probe 830 has a first deviation portion 834 that is deviated in the first deviation direction from the lower end 831 of the first probe 830 in top view.
  • the distance between the position of the upper end 832 of the first probe 830 and the position of the lower end 831 in top view is zero. That is, the position of the upper end 832 and the position of the lower end 831 of the first probe 830 in top view match.
  • an axis 830A parallel to the vertical direction passes through the lower end 831 and the upper end 832 of the first probe 830 .
  • the first deflection portion 834 of the first probe 830 has a U-shape.
  • the first deflection direction is the positive direction in the X-axis direction.
  • the second probe 840 has a second deviation portion 844 that is deviated in the second deviation direction from the lower end 841 of the second probe 840 in top view.
  • the distance between the position of the upper end 842 of the second probe 840 and the position of the lower end 841 in top view is zero. That is, the position of the upper end 842 and the position of the lower end 841 of the second probe 840 in top view match.
  • an axis 840A parallel to the vertical direction passes through the lower end 841 and the upper end 842 of the second probe 840.
  • the second deflection portion 844 of the second probe 840 has a U-shape.
  • the second deflection direction is the negative direction of the X-axis.
  • each probe having such a configuration, when the lower end of each probe comes into contact with the test object and receives an upward force, deformation is concentrated near each deviation portion. Therefore, the displacement in the direction perpendicular to the up-down direction can be reduced in the portion corresponding to each through-hole of each probe. Therefore, friction between each probe and the probe penetrating member 23 can be reduced.
  • the first deflection direction and the second deflection direction are parallel to the arrangement directions of the first probe 830 and the second probe 840 .
  • the first deflection direction is the direction away from the second probe 840 and the second deflection direction is the direction away from the first probe 830, contact between the first probe 830 and the second probe 840 can be suppressed. .
  • Embodiment 5 A probe unit according to Embodiment 5 will be described.
  • the probe unit according to this embodiment differs from the probe unit 820 according to the fourth embodiment mainly in the deflection direction of each probe.
  • the probe unit according to the present embodiment will be described below with reference to FIGS. 58 to 60, focusing on differences from the probe unit 820 according to the fourth embodiment.
  • FIG. 58, 59, and 60 are a schematic top view, first cross-sectional view, and second cross-sectional view, respectively, showing the configuration of the probe unit 820a according to this embodiment.
  • FIG. 59 shows a cross section taken along line XXXXIX-XXXXXIX of FIG.
  • FIG. 60 shows a section taken along line XXXXX-XXXXX in FIG.
  • a probe unit 820a according to the present embodiment differs from the probe unit 820 according to the fourth embodiment in the direction of deflection of the first probe 830 and the second probe 840.
  • the first probe 830 has a first deviation portion 834 that is deviated in the first deviation direction from the lower end 831 of the first probe 830 in top view.
  • the first deflection direction is the positive Y-axis direction.
  • the second probe 840 has a second deviation portion 844 that is deviated in the second deviation direction from the lower end 841 of the second probe 840 in top view.
  • the second deflection direction is the positive Y-axis direction.
  • the first deflection direction and the second deflection direction are the same. However, in this embodiment, the first deflection direction and the second deflection direction are perpendicular to the alignment direction of the first probe 830 and the second probe 840 . Therefore, contact between the first probe 830 and the second probe 840 can be suppressed.
  • Embodiment 6 A probe unit according to Embodiment 6 will be described.
  • the probe unit according to this embodiment differs from the probe unit 720 according to the second embodiment mainly in the number of each probe.
  • the probe unit according to the present embodiment will be described below with reference to FIGS. 61 to 63, focusing on differences from the probe unit 720 according to the second embodiment.
  • FIG. 62 shows a cross section taken along line XXXXXII-XXXXXII of FIG.
  • FIG. 63 shows a cross section taken along line XXXXXIII-XXXXXIII of FIG.
  • a probe unit 920 according to the present embodiment differs from the probe unit 720 according to the second embodiment in the number of first probes 30 and second probes 40 .
  • the probe unit 920 includes a plurality of first probes 30 electrically connected in parallel with each other and a plurality of second probes 40 electrically connected in parallel with each other. 61-63, the probe unit 920 comprises six first probes 30 and three second probes 40.
  • the semiconductor laser device 80 to be inspected has the first electrodes arranged on both sides of the element 82 on the upper surface of the submount 84, namely, one side and the other side. Three first probes 30 are brought into contact with the electrodes, and three first probes 30 are also brought into contact with the other first electrode. Three second probes 40 are brought into contact with the second electrodes of the element 82 .
  • the force required to press down the semiconductor laser device 80 can be shared by the plurality of first probes 30 and the plurality of second probes 40, so that the force applied to the semiconductor laser device 80 by each probe can be reduced. . Therefore, damage to the semiconductor laser device 80 can be reduced.
  • each of the plurality of first probes 30 is tilted in the first deviation direction (positive Y-axis direction), and the plurality of Each of the second probes 40 is tilted in the second deflection direction (Y-axis direction negative direction). This can prevent the plurality of first probes 30 from coming into contact with each other, and can also prevent the plurality of second probes 40 from coming into contact with each other.
  • Embodiment 7 A probe unit according to Embodiment 7 will be described.
  • the probe unit according to the present embodiment differs from the probe unit 20 according to the first embodiment in that an elastic member is provided in addition to the probe.
  • the probe unit according to the present embodiment will be described below with reference to FIGS. 64 to 66, focusing on differences from the probe unit 20 according to the first embodiment.
  • FIG. 64 and 65 are a schematic top view and a cross-sectional view, respectively, showing the configuration of the probe unit 1020 according to this embodiment.
  • FIG. 65 shows a cross section taken along line XXXXXV-XXXXXV of FIG.
  • FIG. 66 is a schematic cross-sectional view showing a state in which the height adjustment member 50 arranged in the probe unit 1020 according to this embodiment is brought into contact with the stage 70.
  • a probe unit 1020 includes a first elastic mechanism 1035 and a second elastic mechanism 1045 fixed to the probe fixing member 24 .
  • the first elastic mechanism 1035 has a first elastic member 1037 fixed to the probe fixing member 24 and a first housing 1036 housing the first elastic member 1037 and fixed to the probe fixing member 24 .
  • the first elastic member 1037 is fixed to the probe fixing member 24 via the first housing 1036 .
  • the first elastic member 1037 is stretchable in directions including vertical components.
  • the first elastic member 1037 may be, for example, a helical spring.
  • the first probe 30 is fixed to the probe fixing member 24 via the first elastic member 1037 .
  • the second elastic mechanism 1045 has a second elastic member 1047 fixed to the probe fixing member 24 and a second housing 1046 housing the second elastic member 1047 and fixed to the probe fixing member 24 .
  • the second elastic member 1047 is fixed to the probe fixing member 24 via the second housing 1046 .
  • the second elastic member 1047 is stretchable in directions including vertical components.
  • the second elastic member 1047 may be, for example, a helical spring.
  • the second probe 40 is fixed to the probe fixing member 24 via the second elastic member 1047.
  • the first elastic member 1037 and the second elastic member 1047 are elastic in directions including vertical components, and the position of the upper end 32 and the lower end 31 of the first probe 30 when viewed from the top.
  • the distance between the positions and the distance between the position of the upper end 42 of the second probe 40 and the position of the lower end 41 are greater than zero.
  • the upper end 32 of the first probe 30 and the second probe 40 It is possible to make the distance between the top end 42 of the probe 40 greater than the distance between the bottom end 31 of the first probe 30 and the bottom end 41 of the second probe 40 . Therefore, it is possible to attach an elastic mechanism larger than the distance between the tips of each probe to the upper end of each probe.
  • the vicinity of the upper end of each probe is inclined by an angle ⁇ s with respect to the vertical direction. This increases the distance between the top end 32 of the first probe 30 and the top end 42 of the second probe 40 .
  • the first elastic member 1037 and the second elastic member 1047 may expand and contract in a direction inclined with respect to the vertical direction. This makes it possible to increase the distance between the first elastic member 1037 and the second elastic member 1047, so that an elastic mechanism larger than the distance between the tips of each probe can be attached to the upper end of each probe. Become.
  • the first probe and the second probe exhibit the buckling phenomenon, but only one of the first probe and the second probe may exhibit the buckling phenomenon.
  • the probe unit and the like of the present disclosure are particularly effective in the inspection of semiconductor laser devices and the like where slight damage poses a problem.
  • Reference Signs List 1 1a inspection system 5, 5a conveying device 10 inspection device 11 base 12 post 13, 15, 17 slide rail 14 vertical movement member 16 unit movement member 18 connection spring 19 unit support member 20, 720, 720a, 820, 820a, 920, 1020 probe unit 21, 521, 621 unit body 21s penetrating member inclined surface 21u, 521u, 621u opposing surface 21v cavity 23, 123, 223, 423, 523, 623 probe penetrating member 24, 524, 624 probe fixing member 26a, 126a, 226a, 426a, 526a, 626a First through hole 26b, 526b, 626b Second through hole 27a, 527a, 627a First fixing hole 27b, 527b, 627b Second fixing hole 28
  • Adhesive 30, 130, 130a , 230, 330, 430, 830 first probes 31, 41, 131, 141, 331, 341, 831, 841 lower ends 32, 42, 832, 842 upper ends 34, 834 first

Abstract

This probe unit (20) comprises a first probe (30) and a second probe (40) having elastic restorative force, a probe securing member (24) to which the first probe (30) and the second probe (40) are secured, and a probe penetration member (23), which is arranged below the probe securing member (24) and at a distance from the probe securing member (24), and in which a first through-hole (26a) and a second through-hole (26b), through which the first probe (30) and the second probe (40) respectively pass, are formed. The probe penetration member (23) has an opposing surface (21u) that opposes an inspection subject, the portion of the first probe (30) and the second probe (40) protruding downward from the opposing surface (21u) is able to move freely in the vertical direction, and in a state in which the first probe (30) and the second probe (40) are not in contact with the inspection subject, a lower end (31) of the first probe (30) is positioned lower than a lower end (41) of the second probe (40).

Description

プローブユニット、検査装置、検査システム、検査方法、及び半導体レーザ装置の製造方法Probe unit, inspection device, inspection system, inspection method, and semiconductor laser device manufacturing method
 本開示は、プローブユニット、検査装置、検査システム、検査方法、及び半導体レーザ装置の製造方法に関する。 The present disclosure relates to a probe unit, an inspection device, an inspection system, an inspection method, and a method of manufacturing a semiconductor laser device.
 従来、複数のプローブを用いて、検査対象に電流を供給することで、検査対象の特性を検査する検査装置がある(例えば、特許文献1など参照)。特許文献1に記載された検査装置では、支持体によって支持されたプローブが弾性復元力を有するため、支持体を検査対象に向かって移動させた場合に、検査対象に接触したプローブが変形することで、プローブから検査対象に過大な力が加わることを抑制できる。したがって、検査時に検査対象が破損することを抑制できる。 Conventionally, there is an inspection apparatus that inspects the characteristics of an inspection target by supplying current to the inspection target using a plurality of probes (see, for example, Patent Document 1). In the inspection apparatus described in Patent Document 1, since the probe supported by the support has an elastic restoring force, when the support is moved toward the inspection object, the probe in contact with the inspection object is deformed. , it is possible to suppress the application of excessive force from the probe to the inspection object. Therefore, it is possible to suppress the inspection object from being damaged during the inspection.
特開2015-4518号公報JP 2015-4518 A
 しかしながら、特許文献1に記載されたような検査装置においても、検査対象が損傷する場合があり得る。 However, even in the inspection device as described in Patent Document 1, the inspection object may be damaged.
 本開示は、このような課題を解決するものであり、検査対象の検査時における損傷を低減できるプローブユニットなどを提供することを目的とする。 The present disclosure is intended to solve such problems, and aims to provide a probe unit and the like that can reduce damage during inspection of an inspection target.
 上記課題を解決するために、本開示に係るプローブユニットの一態様は、検査対象に電流を供給するための電流回路の一部を含むプローブユニットであって、前記電流回路に含まれ、弾性復元力を有する、第一プローブ及び第二プローブと、前記第一プローブ及び前記第二プローブが固定されるプローブ固定部材と、前記プローブ固定部材の下方に、前記プローブ固定部材から離間して配置され、前記第一プローブ及び前記第二プローブがそれぞれ貫通する第一貫通孔及び第二貫通孔が形成されているプローブ貫通部材とを備え、前記プローブ貫通部材は、前記第一プローブ及び前記第二プローブが貫通し、前記検査対象と対向する対向面を有し、前記第一プローブ及び前記第二プローブのうち、前記対向面から下方に突出する部分は、上下方向に移動自在であり、前記第一プローブ及び前記第二プローブが前記検査対象に接触していない状態において、前記第一プローブの下端は、前記第二プローブの下端より下方に位置する。 In order to solve the above problems, one aspect of the probe unit according to the present disclosure is a probe unit including a part of a current circuit for supplying a current to a test object, wherein the current circuit includes an elastic restoring force. a first probe and a second probe having a force; a probe fixing member to which the first probe and the second probe are fixed; arranged below the probe fixing member and spaced from the probe fixing member; a probe-penetrating member having a first through-hole and a second through-hole through which the first probe and the second probe pass, respectively; A portion of the first probe and the second probe that penetrates and has a facing surface facing the object to be inspected, and a portion of the first probe and the second probe that protrudes downward from the facing surface is movable in a vertical direction, and the first probe And in a state in which the second probe is not in contact with the inspection object, the lower end of the first probe is located below the lower end of the second probe.
 上記課題を解決するために、本開示に係る検査装置の一態様は、前記プローブユニットと、前記検査対象が載置される載置面を有するステージと、前記プローブユニットと前記ステージとの間に配置される高さ調整部材とを備え、前記高さ調整部材は、前記プローブユニットの前記対向面に配置される。 In order to solve the above problems, one aspect of the inspection apparatus according to the present disclosure includes the probe unit, a stage having a mounting surface on which the inspection target is mounted, and a stage between the probe unit and the stage. and a height adjusting member disposed on the facing surface of the probe unit.
 上記課題を解決するために、本開示に係る検査システムの一態様は、前記検査装置と、前記検査装置を搬送する搬送装置とを備え、前記第一プローブ及び前記第二プローブを前記検査対象に接触させた状態で、前記検査装置を搬送する。 In order to solve the above problems, one aspect of the inspection system according to the present disclosure includes the inspection device and a transport device that transports the inspection device, and the first probe and the second probe are placed on the inspection object. The inspection device is conveyed in a contact state.
 上記課題を解決するために、本開示に係る検査方法の一態様は、検査対象に電流を供給することで、前記検査対象の特性を検査する検査方法であって、前記検査対象は、上面を有するサブマウントと、素子上面を有し、前記サブマウントの前記上面に配置され、前記電流が供給される素子とを有し、前記サブマウントは、前記上面に配置される第一電極を有し、前記素子は、前記素子上面に配置される第二電極を有し、前記検査方法は、第一プローブを前記第一電極に接触させる第一接触工程と、前記第一接触工程の後に、前記第一プローブを前記第一電極に接触させた状態で、第二プローブを前記第二電極に接触させる第二接触工程とを含み、前記第一プローブ及び前記第二プローブは、前記検査対象に前記電流を供給する電流回路に含まれ、弾性復元力を有する。 In order to solve the above problems, one aspect of an inspection method according to the present disclosure is an inspection method for inspecting characteristics of an inspection object by supplying a current to the inspection object, wherein the inspection object faces the upper surface. and a device having a device top surface, the device being disposed on the top surface of the submount and supplied with the current, the submount having a first electrode disposed on the top surface. , the device has a second electrode disposed on the upper surface of the device, and the inspection method includes a first contacting step of bringing a first probe into contact with the first electrode, and after the first contacting step, the a second contacting step of contacting a second probe with the second electrode while the first probe is in contact with the first electrode, wherein the first probe and the second probe are attached to the test object; It is included in a current circuit that supplies current and has elastic restoring force.
 上記課題を解決するために、本開示に係る検査方法の他の一態様は、検査対象に電流を供給することで、前記検査対象の特性を検査する検査方法であって、前記検査対象は、上面を有するサブマウントと、素子上面を有し、前記サブマウントの前記上面に配置され、前記電流が供給される素子とを有し、前記サブマウントは、前記上面に配置される第一電極を有し、前記素子は、前記素子上面に配置される第二電極を有し、前記検査方法は、第一プローブを前記第一電極に接触させ、かつ、第二プローブを前記第二電極に接触させた状態で、前記検査対象に前記電流を供給する供給工程と、前記供給工程の後に、前記第二プローブを前記第二電極から離す第二脱離工程と、前記第二脱離工程の後に、前記第一プローブを前記第一電極から離す第一脱離工程とを含み、前記第一プローブ及び前記第二プローブは、前記検査対象に前記電流を供給する電流回路に含まれ、弾性復元力を有する。 In order to solve the above problems, another aspect of the inspection method according to the present disclosure is an inspection method for inspecting characteristics of an inspection object by supplying a current to the inspection object, the inspection object: a submount having an upper surface; and an element having an element upper surface, disposed on the upper surface of the submount and supplied with the current, the submount having a first electrode disposed on the upper surface. wherein the device has a second electrode disposed on the upper surface of the device, and the inspection method includes contacting a first probe with the first electrode and contacting a second probe with the second electrode a supply step of supplying the current to the test object in a state where the and a first detachment step of detaching the first probe from the first electrode, wherein the first probe and the second probe are included in a current circuit that supplies the current to the test object, and elastic restoring force have
 上記課題を解決するために、本開示に係る半導体レーザ装置の製造方法の一態様は、半導体レーザ装置の製造方法であって、前記半導体レーザ装置を組み立てる組立工程と、前記検査方法を用いて、前記検査対象として前記半導体レーザ装置を検査する検査工程とを含み、前記素子は、半導体レーザ素子である。 In order to solve the above-described problems, one aspect of a method for manufacturing a semiconductor laser device according to the present disclosure is a method for manufacturing a semiconductor laser device, comprising: an assembly process for assembling the semiconductor laser device; and an inspection step of inspecting the semiconductor laser device as the inspection object, wherein the device is a semiconductor laser device.
 本開示によれば、検査対象の損傷を低減できるプローブユニットなどを提供できる。 According to the present disclosure, it is possible to provide a probe unit and the like that can reduce damage to the inspection target.
実施の形態1に係る検査装置の全体構成を示す模式的な側面図である。1 is a schematic side view showing the overall configuration of an inspection apparatus according to Embodiment 1; FIG. 実施の形態1に係るプローブユニットの構成を示す模式的な上面図である。2 is a schematic top view showing the configuration of the probe unit according to Embodiment 1; FIG. 実施の形態1に係るプローブユニットの構成を示す模式的な第一の断面図である。2 is a schematic first cross-sectional view showing the configuration of the probe unit according to Embodiment 1; FIG. 実施の形態1に係るプローブユニットの構成を示す模式的な第二の断面図である。4 is a schematic second cross-sectional view showing the configuration of the probe unit according to Embodiment 1. FIG. 実施の形態1に係る第一プローブの下端が上向きに力を受けていない状態における第一プローブの形状を示す模式的な断面図である。4 is a schematic cross-sectional view showing the shape of the first probe in a state where the lower end of the first probe according to Embodiment 1 does not receive an upward force; FIG. 実施の形態1に係る第一プローブの下端が上向きに力を受けている状態における第一プローブの形状を示す模式的な断面図である。FIG. 5 is a schematic cross-sectional view showing the shape of the first probe in a state where the lower end of the first probe according to Embodiment 1 receives an upward force; 実施の形態1に係る検査方法の各工程を説明する模式的な側面図である。FIG. 4 is a schematic side view explaining each step of the inspection method according to Embodiment 1; 実施の形態1に係る検査方法の各工程を説明する模式的な側面図である。FIG. 4 is a schematic side view explaining each step of the inspection method according to Embodiment 1; 実施の形態1に係る検査方法における検査対象の第一の位置調整方法の各工程を示す模式的な上面図である。FIG. 4A is a schematic top view showing each step of a first position adjustment method for an inspection object in the inspection method according to the first embodiment; 実施の形態1に係る検査方法における検査対象の第一の位置調整方法の各工程を示す模式的な上面図である。FIG. 4A is a schematic top view showing each step of a first position adjustment method for an inspection object in the inspection method according to the first embodiment; 実施の形態1に係る検査方法における検査対象の第一の位置調整方法の各工程を示す模式的な上面図である。FIG. 4A is a schematic top view showing each step of a first position adjustment method for an inspection object in the inspection method according to the first embodiment; 実施の形態1に係る検査方法における検査対象の第一の位置調整方法の各工程を示す模式的な上面図である。FIG. 4A is a schematic top view showing each step of a first position adjustment method for an inspection object in the inspection method according to the first embodiment; 実施の形態1に係る検査方法における検査対象の第二の位置調整方法の各工程を示す模式的な上面図である。FIG. 10 is a schematic top view showing each step of a second position adjustment method for the inspection target in the inspection method according to the first embodiment; 実施の形態1に係る検査方法における検査対象の第二の位置調整方法の各工程を示す模式的な上面図である。FIG. 10 is a schematic top view showing each step of a second position adjustment method for the inspection target in the inspection method according to the first embodiment; 実施の形態1に係る検査方法における検査対象の第二の位置調整方法の各工程を示す模式的な上面図である。FIG. 10 is a schematic top view showing each step of a second position adjustment method for the inspection target in the inspection method according to the first embodiment; 実施の形態1に係る検査方法における検査対象の第二の位置調整方法の各工程を示す模式的な上面図である。FIG. 10 is a schematic top view showing each step of a second position adjustment method for the inspection target in the inspection method according to the first embodiment; 実施の形態1に係る検査方法の各工程を説明する模式的な側面図である。FIG. 4 is a schematic side view explaining each step of the inspection method according to Embodiment 1; 実施の形態1に係る検査方法の各工程を説明する模式的な側面図である。FIG. 4 is a schematic side view explaining each step of the inspection method according to Embodiment 1; 実施の形態1に係る検査方法の各工程を説明する模式的な側面図である。FIG. 4 is a schematic side view explaining each step of the inspection method according to Embodiment 1; 実施の形態1に係る検査方法の各工程を説明する模式的な側面図である。FIG. 4 is a schematic side view explaining each step of the inspection method according to Embodiment 1; 実施の形態1に係る検査方法の各工程を説明する模式的な側面図である。FIG. 4 is a schematic side view explaining each step of the inspection method according to Embodiment 1; 実施の形態1に係るプローブユニットの動作を説明するための模式的な断面図である。4A and 4B are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1; FIG. 実施の形態1に係るプローブユニットの動作を説明するための模式的な断面図である。4A and 4B are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1; FIG. 実施の形態1に係るプローブユニットの動作を説明するための模式的な断面図である。4A and 4B are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1; FIG. 実施の形態1に係るプローブユニットの動作を説明するための模式的な断面図である。4A and 4B are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1; FIG. 実施の形態1に係るプローブユニットの動作を説明するための模式的な断面図である。4A and 4B are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1; FIG. 実施の形態1に係るプローブユニットの動作を説明するための模式的な断面図である。4A and 4B are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1; FIG. 実施の形態1に係るプローブユニットの動作を説明するための模式的な断面図である。4A and 4B are schematic cross-sectional views for explaining the operation of the probe unit according to Embodiment 1; FIG. 実施の形態1に係る第一プローブが座屈現象を示していない場合の第一プローブと第一貫通孔との位置関係を示す模式図である。FIG. 5 is a schematic diagram showing the positional relationship between the first probe and the first through-hole when the first probe according to Embodiment 1 does not exhibit a buckling phenomenon; 実施の形態1に係る第一プローブが座屈現象を示している場合の第一プローブと第一貫通孔との位置関係を示す模式図である。FIG. 5 is a schematic diagram showing the positional relationship between the first probe and the first through-hole when the first probe according to Embodiment 1 exhibits a buckling phenomenon; 実施の形態1に係る検査システムの全体構成を示す模式的な上面図である。1 is a schematic top view showing the overall configuration of an inspection system according to Embodiment 1; FIG. 実施の形態1の変形例に係る検査システムの全体構成を示す模式的な上面図である。FIG. 4 is a schematic top view showing the overall configuration of an inspection system according to a modification of Embodiment 1; 実施の形態1に係る半導体レーザ装置の製造方法の流れを示すフローチャートである。4 is a flow chart showing the flow of the method for manufacturing the semiconductor laser device according to Embodiment 1; 変形例1に係るプローブユニットの一部を示す模式的な断面図である。FIG. 5 is a schematic cross-sectional view showing part of a probe unit according to Modification 1; 変形例2に係るプローブユニットの一部を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing part of a probe unit according to Modification 2; 変形例3に係るプローブユニットの一部を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing part of a probe unit according to Modification 3; 変形例4に係るプローブユニットの一部を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing part of a probe unit according to Modification 4; 変形例5に係るプローブユニットのプローブ貫通部材の一部を示す模式的な上面図である。FIG. 11 is a schematic top view showing a part of a probe penetrating member of a probe unit according to modification 5; 変形例6に係るプローブユニットのプローブ貫通部材の一部を示す模式的な上面図である。FIG. 11 is a schematic top view showing a part of a probe penetrating member of a probe unit according to modification 6; 変形例7に係るプローブユニットの一部を示す模式的な断面図である。FIG. 21 is a schematic cross-sectional view showing part of a probe unit according to Modification 7; 変形例8に係るプローブユニットの各プローブの構成を示す模式的な側面図である。FIG. 21 is a schematic side view showing the configuration of each probe of the probe unit according to modification 8; 変形例8に係るプローブユニットの各プローブの構成を示す模式的な側面図である。FIG. 21 is a schematic side view showing the configuration of each probe of the probe unit according to modification 8; 変形例8に係るプローブユニットの各プローブの構成を示す模式的な側面図である。FIG. 21 is a schematic side view showing the configuration of each probe of the probe unit according to modification 8; 変形例9に係るプローブユニットの一部を示す模式的な断面図である。FIG. 21 is a schematic cross-sectional view showing part of a probe unit according to Modification 9; 変形例10に係るプローブユニットの一部を示す模式的な断面図である。FIG. 21 is a schematic cross-sectional view showing part of a probe unit according to Modification 10; 実施の形態1に係る貫通部材傾斜面、及びステージ傾斜面の第一の実施例を示す模式的な斜視図である。4 is a schematic perspective view showing a first example of a penetrating member inclined surface and a stage inclined surface according to Embodiment 1. FIG. 実施の形態1に係る貫通部材傾斜面、及びステージ傾斜面の第一の実施例を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing a first example of a penetrating member inclined surface and a stage inclined surface according to Embodiment 1; 実施の形態1に係る貫通部材傾斜面、及びステージ傾斜面の第二の実施例を示す模式的な断面図である。FIG. 7 is a schematic cross-sectional view showing a second example of the penetrating member inclined surface and the stage inclined surface according to the first embodiment; 実施の形態1に係る貫通部材傾斜面、及びステージ傾斜面の第三の実施例を示す模式的な斜視図である。8 is a schematic perspective view showing a third example of the penetrating member inclined surface and the stage inclined surface according to the first embodiment; FIG. 実施の形態1に係る貫通部材傾斜面の第四の実施例を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing a fourth example of the penetrating member inclined surface according to the first embodiment; 実施の形態2に係るプローブユニットの構成を示す模式的な上面図である。FIG. 8 is a schematic top view showing the configuration of a probe unit according to Embodiment 2; 実施の形態2に係るプローブユニットの構成を示す模式的な断面図である。FIG. 8 is a schematic cross-sectional view showing the configuration of a probe unit according to Embodiment 2; 実施の形態2に係るプローブユニットに配置された高さ調整部材をステージに接触させた状態を示す模式的な断面図である。FIG. 8 is a schematic cross-sectional view showing a state in which a height adjustment member arranged in the probe unit according to Embodiment 2 is brought into contact with the stage; 実施の形態3に係るプローブユニットの構成を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing the configuration of a probe unit according to Embodiment 3; 実施の形態3に係るステージに配置された高さ調整部材のユニット接触面をプローブユニットに接触させた状態を示す模式的な断面図である。FIG. 12 is a schematic cross-sectional view showing a state in which the unit contact surface of the height adjustment member arranged on the stage according to Embodiment 3 is brought into contact with the probe unit; 実施の形態4に係るプローブユニットの構成を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing the configuration of a probe unit according to Embodiment 4; 実施の形態4に係るプローブユニットに配置された高さ調整部材をステージに接触させた状態を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing a state in which a height adjustment member arranged in a probe unit according to Embodiment 4 is brought into contact with a stage; 実施の形態5に係るプローブユニットの構成を示す模式的な上面図である。FIG. 11 is a schematic top view showing the configuration of a probe unit according to Embodiment 5; 実施の形態5に係るプローブユニットの構成を示す模式的な第一の断面図である。FIG. 11 is a schematic first cross-sectional view showing the configuration of a probe unit according to Embodiment 5; 実施の形態5に係るプローブユニットの構成を示す模式的な第二の断面図である。FIG. 12 is a schematic second cross-sectional view showing the configuration of the probe unit according to Embodiment 5; 実施の形態6に係るプローブユニットの構成を示す模式的な上面図である。FIG. 14 is a schematic top view showing the configuration of a probe unit according to Embodiment 6; 実施の形態6に係るプローブユニットの構成を示す模式的な第一の断面図である。FIG. 11 is a schematic first cross-sectional view showing the configuration of a probe unit according to Embodiment 6; 実施の形態6に係るプローブユニットの構成を示す模式的な第二の断面図である。FIG. 20 is a schematic second cross-sectional view showing the configuration of the probe unit according to Embodiment 6; 実施の形態7に係るプローブユニットの構成を示す模式的な上面図である。FIG. 14 is a schematic top view showing the configuration of a probe unit according to Embodiment 7; 実施の形態7に係るプローブユニットの構成を示す模式的な断面図である。FIG. 14 is a schematic cross-sectional view showing the configuration of a probe unit according to Embodiment 7; 実施の形態7に係るプローブユニットに配置された高さ調整部材をステージに接触させた状態を示す模式的な断面図である。FIG. 21 is a schematic cross-sectional view showing a state in which a height adjustment member arranged in a probe unit according to Embodiment 7 is brought into contact with a stage;
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、及び、構成要素の配置位置や接続形態などは、一例であって本開示を限定する主旨ではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be noted that each of the embodiments described below is a specific example of the present disclosure. Therefore, the numerical values, shapes, materials, constituent elements, and arrangement positions and connection forms of the constituent elements shown in the following embodiments are examples and are not intended to limit the present disclosure.
 また、各図は模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 In addition, each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, the scales and the like are not always the same in each drawing. In addition, in each figure, the same code|symbol is attached|subjected to the substantially same structure, and the overlapping description is abbreviate|omitted or simplified.
 また、本明細書において、等しいなどの要素間の関係性を示す用語、及び、平坦、平行、垂直、逆向きなどの要素の形状などを示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。 Also, in this specification, terms that indicate the relationship between elements such as equal, terms that indicate the shape of elements such as flat, parallel, perpendicular, reverse, and numerical ranges are strictly meaning only. It is not an expression that expresses but an expression that means including a substantially equivalent range, for example, a difference of several percent.
 また、本明細書において、「上」及び「下」という用語は、必ずしも絶対的な空間認識における鉛直上方及び鉛直下方を指すものではなく、構成要素の相対的な位置関係を規定するための用語として用いられる。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに接する状態で配置される場合にも適用される。 Also, in this specification, the terms "upper" and "lower" do not necessarily refer to vertical upper and vertical lower in absolute spatial recognition, but are terms for defining the relative positional relationship of the constituent elements. used as Also, the terms "above" and "below" are used not only when two components are spaced apart from each other and there is another component between the two components, but also when two components are spaced apart from each other. It also applies when they are arranged in contact with each other.
 (実施の形態1)
 実施の形態1に係るプローブユニット、検査装置、検査システム、検査方法、及び半導体レーザ装置の製造方法について説明する。
(Embodiment 1)
A probe unit, an inspection apparatus, an inspection system, an inspection method, and a method of manufacturing a semiconductor laser device according to the first embodiment will be described.
 [1-1.検査装置の全体構成]
 まず、本実施の形態に係る検査装置の全体構成について図1を用いて説明する。図1は、本実施の形態に係る検査装置10の全体構成を示す模式的な側面図である。なお、各図には、互いに直交するX軸、Y軸、及びZ軸が示されている。X軸、Y軸、及びZ軸は、右手系の直交座標系である。なお、図1には、検査装置10の検査対象の一例である半導体レーザ装置80も併せて示されている。また、各図において、Z軸方向の相対位置を説明するために、Z軸方向のある位置より、Z軸方向正側のことを示す用語として「上」を用い、Z軸方向負側のことを示す用語として「下」を用いる。
[1-1. Overall configuration of inspection device]
First, the overall configuration of an inspection apparatus according to this embodiment will be described with reference to FIG. FIG. 1 is a schematic side view showing the overall configuration of an inspection apparatus 10 according to this embodiment. Each figure shows an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other. The X, Y, and Z axes are a right-handed Cartesian coordinate system. 1 also shows a semiconductor laser device 80, which is an example of an object to be inspected by the inspection apparatus 10. As shown in FIG. In addition, in each figure, in order to explain the relative position in the Z-axis direction, the term "above" is used to indicate the positive side in the Z-axis direction from a certain position in the Z-axis direction, and the negative side in the Z-axis direction is used. Use the term "lower" to indicate
 検査装置10は、検査対象に電流を供給することで、検査対象の特性を検査する装置である。図1に示されるように、本実施の形態に係る検査装置10は、プローブユニット20と、ステージ70と、高さ調整部材50と、基台11と、支柱12と、スライドレール13、15、17と、上下移動部材14と、ユニット移動部材16と、接続ばね18と、ユニット支持部材19とを備える。 The inspection device 10 is a device that inspects the characteristics of an inspection target by supplying current to the inspection target. As shown in FIG. 1, inspection apparatus 10 according to the present embodiment includes probe unit 20, stage 70, height adjustment member 50, base 11, post 12, slide rails 13 and 15, 17 , a vertically moving member 14 , a unit moving member 16 , a connecting spring 18 and a unit supporting member 19 .
 基台11は、検査装置10の他の構成要素が配置される台である。基台11には、ステージ70及び支柱12が配置される。 The base 11 is a stand on which other components of the inspection device 10 are arranged. A stage 70 and a column 12 are arranged on the base 11 .
 ステージ70は、検査対象が載置される載置面70aを有する部材である。本実施の形態では、載置面70aは、上下方向(図1のZ軸方向)に対して垂直な平坦面を含み、当該平坦面に検査対象が配置される。載置面70aの検査対象が配置される位置には、吸着孔72が形成されている。吸着孔72を用いて、載置面70aに配置される検査対象を吸着することで、検査対象を破損することなく、一時的に載置面70aに固定できる。 The stage 70 is a member having a mounting surface 70a on which an object to be inspected is mounted. In the present embodiment, the placement surface 70a includes a flat surface perpendicular to the vertical direction (the Z-axis direction in FIG. 1), and the inspection target is arranged on the flat surface. A suction hole 72 is formed at a position on the placement surface 70a where the inspection object is arranged. By using the suction holes 72 to suck the inspection target placed on the mounting surface 70a, the inspection target can be temporarily fixed to the mounting surface 70a without being damaged.
 プローブユニット20は、検査対象に電流を供給するための電流回路の一部を含むユニットであり、第一プローブ30などを備える。プローブユニット20の詳細構成については後述する。プローブユニット20は、ユニット支持部材19に固定される。 The probe unit 20 is a unit that includes part of a current circuit for supplying current to the test object, and includes a first probe 30 and the like. A detailed configuration of the probe unit 20 will be described later. The probe unit 20 is fixed to the unit support member 19 .
 高さ調整部材50は、プローブユニット20とステージ70との間に配置される部材である。高さ調整部材50は、実質的に剛体として扱うことができる部材であり、プローブユニット20とステージ70との最小間隔を規定するスペーサとして機能する。本実施の形態では、高さ調整部材50は、プローブユニット20とステージ70との間の最小間隔に対応する厚さを有する板状部材であり、プローブユニット20に固定されている。高さ調整部材50は、プローブユニット20と接するユニット接触面50bと、ステージ70と接するステージ接触面50aとを有する。ステージ接触面50aは、粗面である。本実施の形態では、ステージ接触面50aが粗面である。これにより、ステージ接触面50aとステージ70との間の摩擦力を高めることができるため、高さ調整部材50をステージ70(の載置面70a)に押しつけることで、高さ調整部材50及びプローブユニット20の、ステージ70に対する位置ずれを抑制できる。粗面とは、例えば、算術平均粗さRaが0.2μm以上の面で定義されてもよい。ステージ接触面50a及びユニット接触面50bの算術平均粗さRaは、例えば、0.8μm以上、1.6μm以下であってもよい。本実施の形態では、高さ調整部材50は、SUS440Cで形成され、ステージ接触面50aの算術平均粗さRaは、1.2μmである。なお、高さ調整部材50を形成する材料は、実質的に剛体として扱うことができる材料であれば特に限定されない。なお、ステージ70の載置面70aの算術平均粗さRaは、例えば、0.1μm以上、2.0μm以下であってもよい。本実施の形態では、ステージ70を形成する材料は、WC-Co合金(炭化タングステンとコバルトとの焼結体)であり、載置面70aの算術平均粗さRaは、0.15μmである。このような構成により、ステージ接触面50aと載置面70aとの間において、高さ調整部材50のステージ70に対する位置ずれを抑制するために十分な摩擦力を得ることができる。 The height adjustment member 50 is a member arranged between the probe unit 20 and the stage 70. The height adjustment member 50 is a member that can be treated as a substantially rigid body, and functions as a spacer that defines the minimum distance between the probe unit 20 and the stage 70 . In this embodiment, the height adjusting member 50 is a plate-like member having a thickness corresponding to the minimum distance between the probe unit 20 and the stage 70 and is fixed to the probe unit 20 . The height adjustment member 50 has a unit contact surface 50 b that contacts the probe unit 20 and a stage contact surface 50 a that contacts the stage 70 . The stage contact surface 50a is a rough surface. In this embodiment, the stage contact surface 50a is a rough surface. As a result, the frictional force between the stage contact surface 50a and the stage 70 can be increased. Positional deviation of the unit 20 with respect to the stage 70 can be suppressed. A rough surface may be defined as a surface having an arithmetic mean roughness Ra of 0.2 μm or more, for example. The arithmetic average roughness Ra of the stage contact surface 50a and the unit contact surface 50b may be, for example, 0.8 μm or more and 1.6 μm or less. In this embodiment, the height adjustment member 50 is made of SUS440C, and the stage contact surface 50a has an arithmetic mean roughness Ra of 1.2 μm. The material forming the height adjustment member 50 is not particularly limited as long as it can be treated as a substantially rigid body. Note that the arithmetic mean roughness Ra of the mounting surface 70a of the stage 70 may be, for example, 0.1 μm or more and 2.0 μm or less. In this embodiment, the material forming the stage 70 is a WC—Co alloy (a sintered body of tungsten carbide and cobalt), and the arithmetic mean roughness Ra of the mounting surface 70a is 0.15 μm. With such a configuration, it is possible to obtain sufficient frictional force between the stage contact surface 50a and the mounting surface 70a to suppress the positional deviation of the height adjustment member 50 with respect to the stage 70 .
 支柱12は、基台11に立設される柱状部材である。支柱12は、上下方向に延在する。 The strut 12 is a columnar member erected on the base 11 . The strut 12 extends vertically.
 スライドレール13は、支柱12に固定されるレール状部材である。スライドレール13は、固定部とスライド部とを有し、固定部に対してスライド部が上下方向にスライド自在に支持されている。スライドレール13の固定部は、支柱12に固定され、スライドレール13のスライド部は、上下移動部材14に固定されている。 The slide rail 13 is a rail-shaped member fixed to the strut 12 . The slide rail 13 has a fixed portion and a slide portion, and the slide portion is supported so as to be vertically slidable with respect to the fixed portion. A fixed portion of the slide rail 13 is fixed to the column 12 , and a sliding portion of the slide rail 13 is fixed to the vertically moving member 14 .
 上下移動部材14は、支柱12に対して上下方向に移動する部材である。本実施の形態では、上下移動部材14は、スライドレール13に固定され、上下方向に移動する。より詳しくは、上下移動部材14は、スライドレール13のスライド部に固定され、スライド部とともに、スライドレール13の固定部に対して上下方向に移動する。上下移動部材14は、上下方向に延在する部分と、水平方向に延在する部分とを有する。上下移動部材14の上下方向に延在する部分がスライドレール13のスライド部に固定される。上下移動部材14の水平方向に延在する部分は、図1に示される例では、Y軸方向に延在する。上下移動部材14の水平方向に延在する部分には、スライドレール15が固定される。 The vertically moving member 14 is a member that moves vertically with respect to the column 12 . In this embodiment, the vertically moving member 14 is fixed to the slide rail 13 and moves vertically. More specifically, the vertically moving member 14 is fixed to the slide portion of the slide rail 13 and moves vertically with respect to the fixed portion of the slide rail 13 together with the slide portion. The vertically moving member 14 has a vertically extending portion and a horizontally extending portion. A vertically extending portion of the vertically moving member 14 is fixed to the slide portion of the slide rail 13 . The horizontally extending portion of the vertically moving member 14 extends in the Y-axis direction in the example shown in FIG. A slide rail 15 is fixed to the portion of the vertically moving member 14 extending in the horizontal direction.
 スライドレール15は、上下移動部材14に固定されるレール状部材である。スライドレール15は、固定部とスライド部とを有し、固定部に対してスライド部が水平方向にスライド自在に支持されている。本実施の形態では、スライドレール15の固定部に対してスライド部がY軸方向にスライド自在に支持されている。スライドレール15の固定部は、上下移動部材14の水平方向に延在する部分に固定され、スライドレール15のスライド部は、ユニット移動部材16に固定されている。 The slide rail 15 is a rail-shaped member fixed to the vertically moving member 14 . The slide rail 15 has a fixed portion and a slide portion, and the slide portion is horizontally slidably supported with respect to the fixed portion. In this embodiment, the slide portion is supported by the fixed portion of the slide rail 15 so as to be slidable in the Y-axis direction. The fixed portion of the slide rail 15 is fixed to the horizontally extending portion of the vertically moving member 14 , and the sliding portion of the slide rail 15 is fixed to the unit moving member 16 .
 ユニット移動部材16は、ユニット支持部材19を移動する部材である。本実施の形態では、ユニット移動部材16は、上下移動部材14に対して水平方向に移動する。ユニット移動部材16は、スライドレール15に固定され、Y軸方向に移動する。より詳しくは、ユニット移動部材16は、スライドレール15のスライド部に固定され、スライド部とともに、スライドレール15の固定部に対してY軸方向に移動する。ユニット移動部材16は、水平方向に延在する部分と、上下方向に延在する部分とを有する。ユニット移動部材16の水平方向に延在する部分がスライドレール15のスライド部に固定される。ユニット移動部材16の上下方向に延在する部分には、スライドレール17及び接続ばね18の一端が固定される。 The unit moving member 16 is a member that moves the unit supporting member 19 . In this embodiment, the unit moving member 16 moves horizontally with respect to the vertical moving member 14 . The unit moving member 16 is fixed to the slide rail 15 and moves in the Y-axis direction. More specifically, the unit moving member 16 is fixed to the slide portion of the slide rail 15 and moves in the Y-axis direction with respect to the fixed portion of the slide rail 15 together with the slide portion. The unit moving member 16 has a horizontally extending portion and a vertically extending portion. A horizontally extending portion of the unit moving member 16 is fixed to a slide portion of the slide rail 15 . One end of a slide rail 17 and a connection spring 18 are fixed to the vertically extending portion of the unit moving member 16 .
 スライドレール17は、ユニット移動部材16に固定されるレール状部材である。スライドレール17は、固定部とスライド部とを有し、固定部に対してスライド部が上下方向にスライド自在に支持されている。スライドレール17の固定部は、ユニット移動部材16の上下方向に延在する部分に固定され、スライドレール17のスライド部は、ユニット支持部材19に固定されている。つまり、スライドレール17は、ユニット支持部材19を、ユニット移動部材16に対して上下方向にスライド自在に接続する。 The slide rail 17 is a rail-shaped member fixed to the unit moving member 16 . The slide rail 17 has a fixed portion and a slide portion, and the slide portion is supported by the fixed portion so as to be vertically slidable. The fixed portion of the slide rail 17 is fixed to the vertically extending portion of the unit moving member 16 , and the sliding portion of the slide rail 17 is fixed to the unit support member 19 . That is, the slide rail 17 connects the unit supporting member 19 to the unit moving member 16 so as to be vertically slidable.
 接続ばね18は、ユニット移動部材16とユニット支持部材19とを接続する弾性部材である。本実施の形態では、接続ばね18の一端がユニット移動部材16に接続され、他端がユニット支持部材19に固定される。 The connection spring 18 is an elastic member that connects the unit moving member 16 and the unit support member 19 . In this embodiment, the connection spring 18 has one end connected to the unit moving member 16 and the other end fixed to the unit support member 19 .
 ユニット支持部材19は、プローブユニット20を支持する部材である。ユニット支持部材19は、スライドレール17に固定されている。本実施の形態では、ユニット支持部材19は、スライドレール17のスライド部に固定されている。また、ユニット支持部材19には、接続ばね18の他端が固定される。このように、ユニット支持部材19とユニット移動部材16とが接続ばね18及びスライドレール17を用いて接続されることで、ユニット支持部材19とユニット移動部材16との上下方向における相対位置が規制される。 The unit support member 19 is a member that supports the probe unit 20. The unit support member 19 is fixed to the slide rail 17 . In this embodiment, the unit support member 19 is fixed to the slide portion of the slide rail 17 . Also, the other end of the connection spring 18 is fixed to the unit support member 19 . By connecting the unit supporting member 19 and the unit moving member 16 using the connecting spring 18 and the slide rail 17 in this manner, the relative position of the unit supporting member 19 and the unit moving member 16 in the vertical direction is regulated. be.
 本実施の形態では、ユニット支持部材19は、高さ調整部材50が固定されたプローブユニット20を支持する。つまり、ユニット支持部材19は、プローブユニット20及び高さ調整部材50と一体化されている。 In this embodiment, the unit support member 19 supports the probe unit 20 to which the height adjustment member 50 is fixed. In other words, the unit support member 19 is integrated with the probe unit 20 and the height adjustment member 50 .
 ここで、高さ調整部材50をステージ70に接触させた状態で、ユニット移動部材16をさらに下方に移動させる向きに、ユニット移動部材16に力が加わる場合について説明する。この場合、ユニット支持部材19と一体化された高さ調整部材50がステージ70に接触しているため、ユニット支持部材19は、下方への移動ができない。ユニット移動部材16を下方に移動させる力が、接続ばね18の弾性力より大きくなると接続ばね18が延伸し、ユニット支持部材19に対して、ユニット移動部材16が下方に移動する。このように、ユニット支持部材19が、接続ばね18及びスライドレール17を介してユニット移動部材16に接続されていることで、ユニット支持部材19が支持するプローブユニット20及び高さ調整部材50に過大な力が加わることを抑制しながら、高さ調整部材50を接続ばね18のばね定数に対応する力で、ステージ70に押し当てることができる。言い換えると、上記構成により、プローブユニット20とステージ70との位置関係を維持しながら、ステージ70へのプローブユニット20を固定するための力を容易に維持することができる。 Here, a case will be described where force is applied to the unit moving member 16 in a direction to move the unit moving member 16 further downward while the height adjusting member 50 is in contact with the stage 70 . In this case, since the height adjustment member 50 integrated with the unit support member 19 is in contact with the stage 70, the unit support member 19 cannot move downward. When the force for moving the unit moving member 16 downward exceeds the elastic force of the connecting spring 18 , the connecting spring 18 extends and the unit moving member 16 moves downward with respect to the unit supporting member 19 . Since the unit support member 19 is connected to the unit moving member 16 via the connection spring 18 and the slide rail 17 in this manner, the probe unit 20 and the height adjustment member 50 supported by the unit support member 19 are excessively large. The height adjustment member 50 can be pressed against the stage 70 with a force corresponding to the spring constant of the connection spring 18 while suppressing the application of excessive force. In other words, with the above configuration, it is possible to easily maintain the force for fixing the probe unit 20 to the stage 70 while maintaining the positional relationship between the probe unit 20 and the stage 70 .
 本実施の形態では、基台11に接続されることで、基台11に対して実質的に振動しない支柱12の下端から、高さ調整部材50までの間の距離が長い。また、支柱12から高さ調整部材50までの間に複数の部材が介在する。このため、高さ調整部材50において振動が発生しやすい。特に、図1に示される例のように、支柱12から高さ調整部材50までに介在する複数の部材によって形成される形状が、直線状でなく、C字状であるため、さらに振動が発生しやすい。しかしながら、本実施の形態では、接続ばね18のばね定数を適切に設定し、高さ調整部材50をステージ70に押し付けることで振動を抑制できるため、高さ調整部材50のステージ70に対する相対位置がずれることを抑制できる。例えば、高さ調整部材50をステージ70に押し当てた状態で検査装置10全体を移動させる場合でも、高さ調整部材50のステージ70に対する相対位置がずれることを抑制できる。すなわちプローブユニット20が有する第一プローブ30などの、半導体レーザ装置80に対する相対位置がずれることを抑制でき、半導体レーザ装置80の検査時における損傷を低減できる。 In the present embodiment, the height adjustment member 50 has a long distance from the lower end of the support 12 that is connected to the base 11 so that it does not substantially vibrate with respect to the base 11 . Moreover, a plurality of members are interposed between the column 12 and the height adjusting member 50 . Therefore, the height adjusting member 50 is likely to vibrate. In particular, as in the example shown in FIG. 1, the shape formed by the plurality of members intervening from the post 12 to the height adjustment member 50 is not linear but C-shaped, so that even more vibration occurs. It's easy to do. However, in the present embodiment, the spring constant of the connection spring 18 is appropriately set, and the vibration can be suppressed by pressing the height adjustment member 50 against the stage 70. Therefore, the relative position of the height adjustment member 50 to the stage 70 is Shifting can be suppressed. For example, even when the entire inspection apparatus 10 is moved while the height adjustment member 50 is pressed against the stage 70 , it is possible to suppress the displacement of the height adjustment member 50 relative to the stage 70 . That is, it is possible to prevent the first probe 30 of the probe unit 20 from being displaced relative to the semiconductor laser device 80 , and reduce damage to the semiconductor laser device 80 during inspection.
 [1-2.プローブユニット及びステージの構成]
 本実施の形態に係るプローブユニット20及びステージ70の構成について、図2~図4を用いて説明する。図2、図3、及び図4は、それぞれ、本実施の形態に係るプローブユニット20の構成を示す模式的な上面図、第一の断面図、及び第二の断面図である。図3には、図2に示されるIII-III線における断面が示されている。図3には、図2に示されるIV-IV線における断面が示されている。なお、図3及び図4には、高さ調整部材50、ステージ70、及び検査対象である半導体レーザ装置80も併せて示されている。また、図2及び図4には、半導体レーザ装置80の発光点82eからの光を測定する測定装置90も併せて示されている。測定装置90は、光を受光する受光部92を有し、例えば、受光した光のパワーなどを測定する。
[1-2. Configuration of probe unit and stage]
The configurations of the probe unit 20 and the stage 70 according to this embodiment will be described with reference to FIGS. 2 to 4. FIG. 2, 3, and 4 are a schematic top view, first cross-sectional view, and second cross-sectional view, respectively, showing the configuration of the probe unit 20 according to this embodiment. FIG. 3 shows a cross section along line III-III shown in FIG. FIG. 3 shows a cross section taken along line IV-IV shown in FIG. 3 and 4 also show the height adjustment member 50, the stage 70, and the semiconductor laser device 80 to be inspected. 2 and 4 also show a measuring device 90 for measuring the light from the light emitting point 82e of the semiconductor laser device 80. FIG. The measuring device 90 has a light receiving section 92 that receives light, and measures, for example, the power of the received light.
 プローブユニット20は、図2及び図3に示されるように、第一プローブ30と、第二プローブ40と、ユニット本体21とを備える。 The probe unit 20 includes a first probe 30, a second probe 40, and a unit body 21, as shown in FIGS.
 ユニット本体21は、プローブユニット20の本体部であり、第一プローブ30及び第二プローブ40が固定される。ユニット本体21は、断面視で内部に空洞21vを有する。ユニット本体21は、プローブ固定部材24と、プローブ貫通部材23とを有する。 The unit main body 21 is the main body of the probe unit 20, to which the first probe 30 and the second probe 40 are fixed. The unit main body 21 has a cavity 21v inside when viewed in cross section. The unit body 21 has a probe fixing member 24 and a probe penetrating member 23 .
 プローブ固定部材24は、第一プローブ30及び第二プローブ40が固定される部材である。本実施の形態では、プローブ固定部材24は、第一固定用孔27a及び第二固定用孔27bが形成された板状部材である。第一プローブ30は、第一固定用孔27aに挿入された状態で、接着剤28によってプローブ固定部材24に固定される。第二プローブ40は、第二固定用孔27bに挿入された状態で、接着剤28によってプローブ固定部材24に固定される。 The probe fixing member 24 is a member to which the first probe 30 and the second probe 40 are fixed. In this embodiment, the probe fixing member 24 is a plate-like member in which a first fixing hole 27a and a second fixing hole 27b are formed. The first probe 30 is fixed to the probe fixing member 24 with an adhesive 28 while being inserted into the first fixing hole 27a. The second probe 40 is fixed to the probe fixing member 24 with the adhesive 28 while being inserted into the second fixing hole 27b.
 プローブ貫通部材23は、プローブ固定部材24の下方に、プローブ固定部材24から離間して配置され、第一プローブ30及び第二プローブ40がそれぞれ貫通する第一貫通孔26a及び第二貫通孔26bが形成されている部材である。本実施の形態では、プローブ貫通部材23は、第一貫通孔26a及び第二貫通孔26bが形成されている板状部材である。プローブ固定部材24とプローブ貫通部材23との間に空洞21vがある。第一プローブ30及び第二プローブ40は、それぞれ、第一貫通孔26a及び第二貫通孔26bに挿入され、プローブ貫通部材23には固定されない。プローブ貫通部材23は、第一プローブ30及び第二プローブ40が貫通し、検査対象と対向する対向面21uを有する。本実施の形態では、対向面21uは、上下方向に対して垂直な平坦な平坦部を含む。第一プローブ30及び第二プローブ40は、対向面21uより下方に突出する部分を有する。第一プローブ30及び第二プローブ40のうち、対向面21uから下方に突出する部分は、上下方向に移動自在であり、かつ、半導体レーザ装置80において第二プローブ40が接触する面に対して垂直になるように配置されている。 The probe penetrating member 23 is arranged below the probe fixing member 24 and spaced from the probe fixing member 24, and has a first through hole 26a and a second through hole 26b through which the first probe 30 and the second probe 40 respectively pass. It is a member that is formed. In this embodiment, the probe penetrating member 23 is a plate-like member in which a first through hole 26a and a second through hole 26b are formed. A cavity 21 v is present between the probe fixing member 24 and the probe penetrating member 23 . The first probe 30 and the second probe 40 are inserted into the first through-hole 26a and the second through-hole 26b, respectively, and are not fixed to the probe-penetrating member 23 . The probe penetrating member 23 has a facing surface 21u through which the first probe 30 and the second probe 40 penetrate and which faces the inspection target. In the present embodiment, the facing surface 21u includes a flat portion perpendicular to the vertical direction. The first probe 30 and the second probe 40 have portions protruding downward from the facing surface 21u. Of the first probe 30 and the second probe 40, the portion protruding downward from the facing surface 21u is vertically movable and perpendicular to the surface of the semiconductor laser device 80 with which the second probe 40 contacts. are arranged so that
 プローブ貫通部材23は、対向面21uは、上下方向に対して傾いている貫通部材傾斜面21sを有する。貫通部材傾斜面21sは、第一貫通孔26a及び第二貫通孔26bから遠ざかるにしたがって上昇する。貫通部材傾斜面21sは、対向面21uの検査対象の上方の位置と対向面21uの外縁との間に位置する。このような対向面21uが貫通部材傾斜面21sを有することで、測定装置90をプローブユニット20に接近させる場合に、測定装置90とプローブユニット20とが物理的に干渉することを低減できる。また、検査対象として、半導体レーザ素子などの発光素子を用いる場合に、対向面21uの光の伝搬経路と対向する部分に貫通部材傾斜面21sを配置することで、検査対象から発せられた光が対向面21uによって遮られることを低減できる。 The probe penetrating member 23 has a penetrating member inclined surface 21s that is inclined with respect to the vertical direction on the facing surface 21u. The penetrating member inclined surface 21s rises with increasing distance from the first through hole 26a and the second through hole 26b. The penetrating member inclined surface 21s is positioned between the position above the inspection target on the facing surface 21u and the outer edge of the facing surface 21u. Since the facing surface 21u has the penetrating member inclined surface 21s, physical interference between the measuring device 90 and the probe unit 20 can be reduced when the measuring device 90 approaches the probe unit 20. FIG. Further, when a light-emitting element such as a semiconductor laser element is used as an inspection object, by arranging the penetrating member inclined surface 21s in a portion facing the light propagation path of the opposing surface 21u, the light emitted from the inspection object can be Blocking by the facing surface 21u can be reduced.
 本実施の形態では、貫通部材傾斜面21sは、光反射抑制面である。光反射抑制面とは、検査対象から出射される光の波長において、正面反射率が3%以下のものを指す。これにより、貫通部材傾斜面21sにおいて、検査対象からの光が乱反射し、光測定におけるノイズとなることを抑制できる。光反射抑制面として、例えば、艶消し黒色塗装面、粗面処理面などを用いることができる。 In the present embodiment, the penetrating member inclined surface 21s is a light reflection suppressing surface. A light reflection suppressing surface refers to a surface having a front reflectance of 3% or less at the wavelength of light emitted from an inspection object. As a result, it is possible to prevent the light from the inspection object from being diffusely reflected on the penetrating member inclined surface 21s and becoming noise in the light measurement. As the light reflection suppressing surface, for example, a matte black coated surface, a roughened surface, or the like can be used.
 第一プローブ30及び第二プローブ40は、検査対象に電流を供給するための電流回路に含まれ、弾性復元力を有する導電部材である。本実施の形態では、第一プローブ30及び第二プローブ40の各々は、弾性復元力を有する金属ワイヤを含む。第一プローブ30は、上下方向に延在し、下端31と上端32とを有する。第二プローブ40は、上下方向に延在し、下端41と上端42とを有する。本実施の形態では、第一プローブの上端32及び第二プローブ40の上端42は、プローブ固定部材24より上方に位置する。また、第一プローブの下端31及び第二プローブ40の下端41は、プローブ貫通部材23より下方に位置する。第一プローブ30及び第二プローブ40が検査対象に接触していない状態において、第一プローブ30の下端31は、第二プローブ40の下端41より下方に位置する。言い換えると、図3に示されるように、対向面21uから第一プローブ30の下端31までの長さL1(つまり、第一プローブ30のうち対向面21uから突出する部分の長さ)は、対向面21uから第二プローブ40の下端41までの長さL2(つまり、第二プローブ40のうち対向面21uから突出する部分の長さ)より長い。 The first probe 30 and the second probe 40 are included in a current circuit for supplying current to the test object, and are conductive members having elastic restoring force. In this embodiment, each of the first probe 30 and the second probe 40 includes a metal wire having elastic restoring force. The first probe 30 extends vertically and has a lower end 31 and an upper end 32 . The second probe 40 extends vertically and has a lower end 41 and an upper end 42 . In this embodiment, the upper end 32 of the first probe and the upper end 42 of the second probe 40 are located above the probe fixing member 24 . Also, the lower end 31 of the first probe and the lower end 41 of the second probe 40 are positioned below the probe penetrating member 23 . The lower end 31 of the first probe 30 is positioned below the lower end 41 of the second probe 40 when the first probe 30 and the second probe 40 are not in contact with the test object. In other words, as shown in FIG. 3, the length L1 from the facing surface 21u to the lower end 31 of the first probe 30 (that is, the length of the portion of the first probe 30 protruding from the facing surface 21u) is It is longer than the length L2 from the surface 21u to the lower end 41 of the second probe 40 (that is, the length of the portion of the second probe 40 protruding from the facing surface 21u).
 第一プローブ30の下端31及び第二プローブ40の下端41は、検査対象に押し当てられる。本実施の形態に係る検査対象の半導体レーザ装置80は、図3に示されるように、上面(図示せず)を有するサブマウント84と、サブマウント84の上面に配置される素子82とを有する。素子82は、電流が供給される端面発光型の半導体レーザ素子である。図3には示されないが、サブマウント84は、サブマウント84の上面に配置される第一電極を有し、素子82は、素子上面を有し、素子上面に配置される第二電極を有する。半導体レーザ装置80を検査するために電流を供給する際には、第一プローブ30の下端31を、サブマウント84の第一電極に接触させ、第二プローブ40の下端41を素子82の第二電極に接触させる。サブマウント84の下面から第一電極までの高さd1(つまり、ステージ70の載置面70aから第一電極までの上下方向の寸法)、及び、サブマウント84の下面から素子82の第二電極までの高さd2(つまり、ステージ70の載置面70aから第二電極までの上下方向の寸法)と、上述した長さL1、及び長さL2とについて、以下の不等式が成り立つ。 The lower end 31 of the first probe 30 and the lower end 41 of the second probe 40 are pressed against the inspection object. A semiconductor laser device 80 to be inspected according to the present embodiment has, as shown in FIG. . The element 82 is an edge emitting semiconductor laser element to which current is supplied. Although not shown in FIG. 3, the submount 84 has a first electrode disposed on the top surface of the submount 84, the device 82 has a device top surface, and has a second electrode disposed on the device top surface. . When supplying current to inspect the semiconductor laser device 80 , the lower end 31 of the first probe 30 is brought into contact with the first electrode of the submount 84 , and the lower end 41 of the second probe 40 is brought into contact with the second electrode of the device 82 . make contact with the electrode. The height d1 from the lower surface of the submount 84 to the first electrode (that is, the vertical dimension from the mounting surface 70a of the stage 70 to the first electrode), and the second electrode of the element 82 from the lower surface of the submount 84 The following inequalities hold for the height d2 (that is, the vertical dimension from the mounting surface 70a of the stage 70 to the second electrode) and the lengths L1 and L2 described above.
   L1-L2>d2-d1                (1)    L1-L2>d2-d1              (1)
 また、高さd1、高さd2、長さL1、及び長さL2と、高さ調整部材50の高さH(上下方向の寸法)とについて、以下の不等式が成り立つ。 In addition, the following inequality holds for the height d1, height d2, length L1, length L2, and height H (vertical dimension) of the height adjusting member 50.
   L1+d1>H                    (2)
   L2+d2>H                    (3)
L1+d1>H (2)
L2+d2>H (3)
 以上の関係の効果については後述する。 The effects of the above relationships will be described later.
 第一プローブ30及び第二プローブ40の弾性復元力について、図5及び図6を用いて説明する。図5は、本実施の形態に係る第一プローブ30の下端31が上向きに力を受けていない状態における第一プローブ30の形状を示す模式的な断面図である。図6は、本実施の形態に係る第一プローブ30の下端31が上向きに力を受けている状態における第一プローブ30の形状を示す模式的な断面図である。 The elastic restoring force of the first probe 30 and the second probe 40 will be explained using FIGS. 5 and 6. FIG. FIG. 5 is a schematic cross-sectional view showing the shape of the first probe 30 according to the present embodiment when the lower end 31 of the first probe 30 does not receive an upward force. FIG. 6 is a schematic cross-sectional view showing the shape of the first probe 30 in a state where the lower end 31 of the first probe 30 according to the present embodiment receives an upward force.
 図5に示されるように、本実施の形態に係る第一プローブ30は、下端31が上向きの力を受けていない状態では、上下方向に直線状に延在する。 As shown in FIG. 5, the first probe 30 according to the present embodiment extends linearly in the vertical direction when the lower end 31 does not receive an upward force.
 一方、下端31が上向きの力を受ける場合、第一プローブ30の下端31を含む部分が上向きに移動し、第一プローブ30の空洞21vに位置する部分が曲がる。このように、第一プローブ30は、座屈現象を示す。つまり、第一プローブ30の下端31及び第二プローブ40の下端41が上向きの力を受ける場合、第一プローブ30が、上下方向と交差する方向に変形する。 On the other hand, when the lower end 31 receives an upward force, the portion including the lower end 31 of the first probe 30 moves upward, and the portion of the first probe 30 located in the cavity 21v bends. Thus, the first probe 30 exhibits the buckling phenomenon. That is, when the lower end 31 of the first probe 30 and the lower end 41 of the second probe 40 receive an upward force, the first probe 30 deforms in a direction intersecting the vertical direction.
 また、下端31に加わる上向きの力が解除されると、図5に示されるように、第一プローブ30は元の形状に戻る。このように、第一プローブ30は、弾性復元力を有する。ここで、第一プローブ30の弾性復元力をF1で表し、第一プローブ30のばね定数をk1で表し、第一プローブ30の下端31の変位量をLx1で表すと、以下の式が成り立つ。 Also, when the upward force applied to the lower end 31 is released, the first probe 30 returns to its original shape, as shown in FIG. Thus, the first probe 30 has elastic restoring force. Here, when the elastic restoring force of the first probe 30 is represented by F1, the spring constant of the first probe 30 is represented by k1, and the displacement amount of the lower end 31 of the first probe 30 is represented by Lx1, the following equation holds.
   F1=k1・Lx1                  (4) (4)
 本実施の形態では、第二プローブ40も、第一プローブ30と同様に座屈現象を示す。また、第二プローブ40の弾性復元力をF2で表し、第二プローブ40のばね定数をk2で表し、第二プローブ40の下端41の変位量をLx2で表すと、以下の式が成り立つ。 In the present embodiment, the second probe 40 also exhibits a buckling phenomenon like the first probe 30. Further, when the elastic restoring force of the second probe 40 is represented by F2, the spring constant of the second probe 40 is represented by k2, and the displacement amount of the lower end 41 of the second probe 40 is represented by Lx2, the following equation holds.
   F2=k2・Lx2                  (5)    F2=k2・Lx2               (5)
 以上のように、第一プローブ30及び第二プローブ40が弾性復元力を有する。また、上記不等式(2)、(3)が成り立つことから、高さ調整部材50のステージ接触面50aがステージ70の載置面70aに接するまで、高さ調整部材50及びプローブユニット20を降下させる場合、第一プローブ30の下端31の変位量Lx1、及び第二プローブ40の下端41の変位量Lx2は、以下の式で表される。 As described above, the first probe 30 and the second probe 40 have elastic restoring force. Further, since the above inequalities (2) and (3) hold, the height adjustment member 50 and the probe unit 20 are lowered until the stage contact surface 50a of the height adjustment member 50 contacts the mounting surface 70a of the stage 70. In this case, the displacement amount Lx1 of the lower end 31 of the first probe 30 and the displacement amount Lx2 of the lower end 41 of the second probe 40 are represented by the following equations.
   Lx1=L1+d1-H>0              (6)
   Lx2=L2+d2-H>0              (7)
Lx1=L1+d1-H>0 (6)
Lx2=L2+d2-H>0 (7)
 このように、第一プローブ30の下端31、及び第二プローブ40の下端41が変位するため、上記式(4)、(5)で表される弾性復元力を半導体レーザ装置80に加えることができる。つまり、上記式(4)、(5)で表される弾性復元力で各プローブを半導体レーザ装置80における各プローブの接触面に対して垂直方向に押しつけることができる。これにより、接触面に対して水平な方向の力が加わらないので、各プローブの半導体レーザ装置表面における水平方向の位置ずれが発生することを抑制できる。 Since the lower end 31 of the first probe 30 and the lower end 41 of the second probe 40 are displaced in this manner, the elastic restoring force represented by the above formulas (4) and (5) can be applied to the semiconductor laser device 80. can. That is, each probe can be vertically pressed against the contact surface of each probe in the semiconductor laser device 80 by the elastic restoring forces represented by the above formulas (4) and (5). As a result, horizontal force is not applied to the contact surface, so that horizontal displacement of each probe on the surface of the semiconductor laser device can be suppressed.
 ステージ70は、上述したとおり、検査対象が載置される載置面70aを有する部材である。本実施の形態では、載置面70aは、図4に示されるように、上下方向に対して傾いているステージ傾斜面70sを有する。ステージ傾斜面70sは、載置面70aの端に近づくにしたがって降下する。このように載置面70aがステージ傾斜面70sを有することで、測定装置90をプローブユニット20に接近させる場合に、測定装置90とステージ70とが物理的に干渉することを低減できる。また、検査対象として、半導体レーザ素子などの発光素子を用いる場合に、載置面70aの光の伝搬経路と対向する部分にステージ傾斜面70sを配置することで、光が載置面70aによって遮られることを低減できる。本実施の形態では、ステージ傾斜面70sは、光反射抑制面であってもよい。光反射抑制面として、例えば、貫通部材傾斜面21sと同様に、黒色面、粗面などを用いることができる。 The stage 70 is a member having a mounting surface 70a on which an object to be inspected is mounted, as described above. In this embodiment, as shown in FIG. 4, the mounting surface 70a has a stage inclined surface 70s inclined with respect to the vertical direction. The stage inclined surface 70s descends as it approaches the end of the mounting surface 70a. Since the mounting surface 70 a has the stage inclined surface 70 s in this way, physical interference between the measuring device 90 and the stage 70 can be reduced when the measuring device 90 is brought closer to the probe unit 20 . Further, when a light-emitting device such as a semiconductor laser device is used as an inspection object, the light is blocked by the mounting surface 70a by arranging the stage inclined surface 70s in a portion facing the light propagation path of the mounting surface 70a. can be reduced. In the present embodiment, the stage inclined surface 70s may be a light reflection suppressing surface. As the light reflection suppressing surface, for example, a black surface, a rough surface, or the like can be used similarly to the penetrating member inclined surface 21s.
 [1-3.検査方法]
 本実施の形態に係る検査方法について、図7~図21を用いて説明する。図7、図8、図17~図21は、本実施の形態に係る検査方法の各工程を説明する模式的な側面図である。図9~図12は、本実施の形態に係る検査方法における検査対象の第一の位置調整方法の各工程を示す模式的な上面図である。図13~図16は、本実施の形態に係る検査方法における検査対象の第二の位置調整方法の各工程を示す模式的な上面図である。
[1-3. Inspection method]
An inspection method according to this embodiment will be described with reference to FIGS. 7 to 21. FIG. 7, 8, and 17 to 21 are schematic side views explaining each step of the inspection method according to this embodiment. 9 to 12 are schematic top views showing each step of the first position adjustment method for the inspection object in the inspection method according to the present embodiment. 13 to 16 are schematic top views showing each step of the second position adjustment method for the inspection object in the inspection method according to the present embodiment.
 本実施の形態に係る検査方法は、検査対象に電流を供給することで、検査対象の特性を検査する方法である。本実施の形態では、検査装置10を用いて検査を行う。検査対象の一例として、半導体レーザ装置80の検査を行う例について、以下で説明する。 The inspection method according to the present embodiment is a method of inspecting characteristics of an inspection object by supplying a current to the inspection object. In this embodiment, the inspection is performed using the inspection apparatus 10 . As an example of an object to be inspected, an example of inspecting a semiconductor laser device 80 will be described below.
 まず、図7に示されるように、検査装置10に検査対象を投入する。具体的には、図8に示されるように、検査装置10が備えるステージ70の載置面70aに検査対象である半導体レーザ装置80を載置する。半導体レーザ装置80の移動には、例えば、コレットなどを用いることができる。半導体レーザ装置80は、載置面70aの吸着孔72上に配置される。なお、検査装置10に半導体レーザ装置80を投入する際には、投入の妨げにならないように、プローブユニット20などは、ステージ70の上方以外の退避位置に退避されている。 First, as shown in FIG. 7, an object to be inspected is put into the inspection apparatus 10. Specifically, as shown in FIG. 8, a semiconductor laser device 80 to be inspected is mounted on a mounting surface 70a of a stage 70 provided in the inspection apparatus 10. As shown in FIG. For example, a collet or the like can be used to move the semiconductor laser device 80 . The semiconductor laser device 80 is arranged on the suction holes 72 of the mounting surface 70a. When the semiconductor laser device 80 is loaded into the inspection apparatus 10, the probe unit 20 and the like are retracted to a retracted position other than above the stage 70 so as not to interfere with the loading.
 続いて、図8に示されるように載置面70aに配置された半導体レーザ装置80の位置調整を行うことで、半導体レーザ装置80を所定の位置に配置する。位置調整方法は、特に限定されないが、以下では、位置調整方法の例として、第一の位置調整方法と、第二の位置調整方法とを説明する。 Subsequently, as shown in FIG. 8, the position of the semiconductor laser device 80 placed on the mounting surface 70a is adjusted to place the semiconductor laser device 80 at a predetermined position. Although the position adjustment method is not particularly limited, a first position adjustment method and a second position adjustment method will be described below as examples of the position adjustment method.
 第一の位置調整方法について、図9~図12を用いて説明する。第一の位置調整方法では、まず、半導体レーザ装置80を吸着孔72を用いて吸着させた状態で、図9に示されるように、枠体Fmをステージ70の載置面70aに配置する。枠体Fmは、半導体レーザ装置80の所定の位置(つまり、位置調整の目標位置)に対応する位置に配置される。本実施の形態では、矩形環状の枠体Fmの内部に、半導体レーザ装置80が位置するように、枠体Fmをステージ70の載置面70aに配置する。 The first position adjustment method will be explained using FIGS. 9 to 12. FIG. In the first position adjustment method, first, the frame Fm is arranged on the mounting surface 70a of the stage 70, as shown in FIG. The frame Fm is arranged at a position corresponding to a predetermined position of the semiconductor laser device 80 (that is, a target position for position adjustment). In this embodiment, the frame Fm is arranged on the mounting surface 70a of the stage 70 so that the semiconductor laser device 80 is positioned inside the rectangular annular frame Fm.
 枠体Fmには、貫通孔が形成されており、当該貫通孔を貫通する押し棒Pmを用いて、半導体レーザ装置80をX軸方向負向きに押す。この際、枠体Fmが載置面70aに対して移動しないように枠体Fmの位置を固定しておく。これにより、図10に示されるように、半導体レーザ装置80が、枠体FmのX軸方向負側の内壁に押し当てられるため、半導体レーザ装置80のX軸方向における位置が、枠体Fmの内壁によって規定された位置に調整される。なお、図10には、移動前の半導体レーザ装置80の位置が点線で示されている。 A through-hole is formed in the frame Fm, and the semiconductor laser device 80 is pushed in the negative direction in the X-axis direction using a push rod Pm passing through the through-hole. At this time, the position of the frame Fm is fixed so that the frame Fm does not move with respect to the placement surface 70a. As a result, as shown in FIG. 10, the semiconductor laser device 80 is pressed against the inner wall of the frame Fm on the negative side in the X-axis direction. Adjusted to the position defined by the inner wall. In addition, in FIG. 10, the position of the semiconductor laser device 80 before movement is indicated by a dotted line.
 続いて、図11に示されるように、枠体Fmに形成された他の貫通孔を貫通する押し棒Pmを用いて、半導体レーザ装置80をY軸方向正向きに押す。この際、枠体Fmが載置面70aに対して移動しないように枠体Fmの位置を固定しておく。これにより、図12に示されるように、半導体レーザ装置80が、枠体FmのY軸方向正側の内壁に押し当てられるため、半導体レーザ装置80のY軸方向における位置が、枠体Fmの内壁によって規定された位置に調整される。なお、図12には、移動前の半導体レーザ装置80の位置が点線で示されている。 Subsequently, as shown in FIG. 11, the semiconductor laser device 80 is pushed forward in the Y-axis direction using a push rod Pm passing through another through hole formed in the frame Fm. At this time, the position of the frame Fm is fixed so that the frame Fm does not move with respect to the placement surface 70a. As a result, as shown in FIG. 12, the semiconductor laser device 80 is pressed against the inner wall of the frame Fm on the positive side in the Y-axis direction. Adjusted to the position defined by the inner wall. In addition, in FIG. 12, the position of the semiconductor laser device 80 before movement is indicated by a dotted line.
 以上のように、枠体Fmの内壁の位置を半導体レーザ装置80の所定の位置に合わせた状態で、半導体レーザ装置80を枠体Fmの内壁に押し当てることで、半導体レーザ装置80の位置調整を行うことができる。これらの位置調整をスムーズに行うためには、載置面70aは滑らかな面である方が良い。 As described above, the position of the semiconductor laser device 80 is adjusted by pressing the semiconductor laser device 80 against the inner wall of the frame Fm with the position of the inner wall of the frame Fm aligned with the predetermined position of the semiconductor laser device 80 . It can be performed. In order to perform these position adjustments smoothly, it is preferable that the placement surface 70a be a smooth surface.
 次に、第二の位置調整方法について、図13~図16を用いて説明する。第二の位置調整方法では、まず、半導体レーザ装置80を吸着孔72を用いて吸着させた状態で、図13に示されるように、枠体Fmをステージ70の載置面70aに配置する。矩形環状の枠体Fmの内部に、半導体レーザ装置80が位置するように、枠体Fmをステージ70の載置面70aに配置する。なお、図13には、半導体レーザ装置80の所定の位置(つまり、位置調整の目標位置)が点線で示されている。続いて、図13に矢印で示されるように、枠体FmをX軸方向正向きに移動する。この際、枠体Fmの内壁で半導体レーザ装置80をX軸方向正向きに押すことで、図14に示されるように、半導体レーザ装置80をX軸方向正向きに移動する。なお、図14には、移動前の枠体Fm及び半導体レーザ装置80の位置が点線で示されている。 Next, the second position adjustment method will be explained using FIGS. 13 to 16. FIG. In the second position adjustment method, first, the frame Fm is arranged on the mounting surface 70a of the stage 70, as shown in FIG. The frame Fm is arranged on the mounting surface 70a of the stage 70 so that the semiconductor laser device 80 is positioned inside the rectangular annular frame Fm. In FIG. 13, a predetermined position of the semiconductor laser device 80 (that is, a target position for position adjustment) is indicated by a dotted line. Subsequently, as indicated by the arrow in FIG. 13, the frame Fm is moved in the positive direction of the X-axis. At this time, by pushing the semiconductor laser device 80 in the positive X-axis direction with the inner wall of the frame Fm, the semiconductor laser device 80 is moved in the positive X-axis direction, as shown in FIG. In FIG. 14, the positions of the frame Fm and the semiconductor laser device 80 before movement are indicated by dotted lines.
 続いて、図15に矢印で示されるように、枠体FmをY軸方向正向きに移動する。この際、枠体Fmの内壁で半導体レーザ装置80をY軸方向正向きに押すことで、図16に示されるように、半導体レーザ装置80をY軸方向正向きに移動する。なお、図16には、移動前の枠体Fm及び半導体レーザ装置80の位置が点線で示されている。 Subsequently, as indicated by the arrow in FIG. 15, the frame Fm is moved in the positive direction of the Y-axis. At this time, the inner wall of the frame Fm pushes the semiconductor laser device 80 in the positive Y-axis direction, thereby moving the semiconductor laser device 80 in the positive Y-axis direction as shown in FIG. In FIG. 16, the positions of the frame Fm and the semiconductor laser device 80 before movement are indicated by dotted lines.
 以上のように、枠体Fmの内壁で半導体レーザ装置80を押すことで、半導体レーザ装置80の位置調整を行うことができる。また、第二の位置調整方法によれば、半導体レーザ装置80の位置調整を行う際に、枠体Fmという一つの治具だけで、X軸方向及びY軸方向に、連続的に位置調整を行うことができる。したがって、位置調整に要する時間を低減できる。 As described above, the position of the semiconductor laser device 80 can be adjusted by pushing the semiconductor laser device 80 with the inner wall of the frame Fm. Further, according to the second position adjustment method, when the position of the semiconductor laser device 80 is adjusted, the position can be continuously adjusted in the X-axis direction and the Y-axis direction using only one jig, the frame body Fm. It can be carried out. Therefore, the time required for position adjustment can be reduced.
 このような第一の位置調整方法を用いる場合、検査装置10のステージ70は、検査対象を吸着する吸着孔72を有する。検査装置10は、ステージ70に吸着された検査対象を囲む枠体Fmを備える。検査装置10は、枠体Fmを移動させることで検査対象の位置を調整する。 When using such a first position adjustment method, the stage 70 of the inspection device 10 has suction holes 72 for sucking the inspection target. The inspection apparatus 10 includes a frame Fm that surrounds the inspection target attracted to the stage 70 . The inspection apparatus 10 adjusts the position of the inspection object by moving the frame Fm.
 半導体レーザ装置80の位置調整が完了した後、図17に示されるように、プローブユニット20を退避位置から、ステージ70の上方へ移動する。本実施の形態では、ユニット移動部材16をY軸方向負向きに移動させることで、プローブユニット20をステージ70の上方へ移動する。 After the position adjustment of the semiconductor laser device 80 is completed, the probe unit 20 is moved from the retracted position to above the stage 70 as shown in FIG. In the present embodiment, the probe unit 20 is moved above the stage 70 by moving the unit moving member 16 in the negative Y-axis direction.
 続いて、図18に示されるように、プローブユニット20を降下させることで、プローブユニット20の第一プローブ30及び第二プローブ40(図18では不図示)を半導体レーザ装置80に接触させる。本実施の形態では、上下移動部材14を降下させることで、高さ調整部材50のステージ接触面50aをステージ70の載置面70aに押し当てる。これに伴い、プローブユニット20の第一プローブ30及び第二プローブ40がそれぞれ半導体レーザ装置80の第一電極及び第二電極に押し当てられる。検査装置10のユニット支持部材19が、スライドレール17及び接続ばね18によって、ユニット移動部材16に接続されていることで、上述したように、プローブユニット20とステージ70との位置関係を維持しながら、ステージ70へのプローブユニット20を固定するための力を容易に維持することができる。この工程におけるプローブユニット20の動作の詳細については、後述する。 Subsequently, as shown in FIG. 18, the probe unit 20 is lowered to bring the first probe 30 and the second probe 40 (not shown in FIG. 18) of the probe unit 20 into contact with the semiconductor laser device 80. In the present embodiment, the stage contact surface 50a of the height adjustment member 50 is pressed against the mounting surface 70a of the stage 70 by lowering the vertically moving member 14 . Along with this, the first probe 30 and the second probe 40 of the probe unit 20 are pressed against the first electrode and the second electrode of the semiconductor laser device 80, respectively. By connecting the unit support member 19 of the inspection apparatus 10 to the unit moving member 16 by the slide rail 17 and the connection spring 18, the positional relationship between the probe unit 20 and the stage 70 is maintained as described above. , the force for fixing the probe unit 20 to the stage 70 can be easily maintained. Details of the operation of the probe unit 20 in this step will be described later.
 図18に示された状態で、半導体レーザ装置80に第一プローブ30及び第二プローブ40を介して電流を供給することで、半導体レーザ装置80の特性を検査する。検査においては、例えば、半導体レーザ装置80から出射される光のパワーを測定する測定装置などが用いられる。 In the state shown in FIG. 18, by supplying a current to the semiconductor laser device 80 through the first probe 30 and the second probe 40, the characteristics of the semiconductor laser device 80 are inspected. In the inspection, for example, a measuring device for measuring the power of light emitted from the semiconductor laser device 80 is used.
 続いて、図19に示されるように、プローブユニット20を上昇させることで、第一プローブ30及び第二プローブ40(図19では不図示)を半導体レーザ装置80から離す。本実施の形態では、上下移動部材14を上昇させることで、プローブユニット20及び高さ調整部材50を上昇させる。これに伴い、プローブユニット20の第一プローブ30及び第二プローブ40がそれぞれ半導体レーザ装置80の第一電極及び第二電極から離れる。 Subsequently, as shown in FIG. 19, the probe unit 20 is raised to separate the first probe 30 and the second probe 40 (not shown in FIG. 19) from the semiconductor laser device 80. In this embodiment, the probe unit 20 and the height adjustment member 50 are raised by raising the vertically moving member 14 . Along with this, the first probe 30 and the second probe 40 of the probe unit 20 are separated from the first electrode and the second electrode of the semiconductor laser device 80, respectively.
 続いて、図20に示されるように、プローブユニット20をステージ70の上方から退避位置へ移動する。本実施の形態では、ユニット移動部材16をY軸方向正向きに移動させることで、プローブユニット20を退避させる。 Subsequently, as shown in FIG. 20, the probe unit 20 is moved from above the stage 70 to the retracted position. In the present embodiment, the probe unit 20 is retracted by moving the unit moving member 16 in the positive Y-axis direction.
 続いて、図21に示されるように、半導体レーザ装置80を検査装置10から排出する。つまり、検査装置10のステージ70の載置面70aから、検査装置10の外部へ、半導体レーザ装置80を移動する。半導体レーザ装置80の排出には、例えば、吸着孔による吸着を停止した状態で、真空コレットなどを用いることができる。 Subsequently, as shown in FIG. 21, the semiconductor laser device 80 is ejected from the inspection device 10. Then, as shown in FIG. That is, the semiconductor laser device 80 is moved from the mounting surface 70 a of the stage 70 of the inspection device 10 to the outside of the inspection device 10 . For discharging the semiconductor laser device 80, for example, a vacuum collet or the like can be used while the suction by the suction holes is stopped.
 以上のように、検査対象である半導体レーザ装置80の検査を行うことができる。 As described above, the semiconductor laser device 80 to be inspected can be inspected.
 [1-4.プローブユニットの動作]
 本実施の形態に係る検査方法におけるプローブユニット20の動作について、図22~図28を用いて説明する。図22~図28は、本実施の形態に係るプローブユニット20の動作を説明するための模式的な断面図である。上述した検査方法の図17、図18、及び図19で示される工程におけるプローブユニット20の状態が、それぞれ、図22、図25、及び図28に示されている。図17で示される工程から図18に示される工程に至るまでのプローブユニット20の状態が、図22~図25に示されている。図18で示される工程から図19に示される工程に至るまでのプローブユニット20の状態が、図25~図28に示されている。
[1-4. Operation of probe unit]
The operation of the probe unit 20 in the inspection method according to this embodiment will be described with reference to FIGS. 22 to 28. FIG. 22 to 28 are schematic cross-sectional views for explaining the operation of the probe unit 20 according to this embodiment. The states of the probe unit 20 in the steps shown in FIGS. 17, 18 and 19 of the inspection method described above are shown in FIGS. 22, 25 and 28, respectively. The state of the probe unit 20 from the process shown in FIG. 17 to the process shown in FIG. 18 is shown in FIGS. 22-25. The state of the probe unit 20 from the step shown in FIG. 18 to the step shown in FIG. 19 is shown in FIGS. 25-28.
 図17で示される工程においては、図22に示されるように、プローブユニット20は、ステージ70の上方に位置し、第一プローブ30及び第二プローブ40は、半導体レーザ装置80と接触していない。また、高さ調整部材50は、ステージ70と接触していない。 17, the probe unit 20 is positioned above the stage 70, and the first probe 30 and the second probe 40 are not in contact with the semiconductor laser device 80, as shown in FIG. . Also, the height adjustment member 50 is not in contact with the stage 70 .
 続いて、プローブユニット20を徐々に降下させることで、図23に示されるように、第一プローブ30を半導体レーザ装置80のサブマウント84の上面に配置される第一電極(図23には不図示)に接触させる(第一接触工程)。この状態では、第二プローブ40は、半導体レーザ装置80の素子82の上面に配置される第二電極とは接触していない。また、高さ調整部材50は、ステージ70の載置面70aに接触していない。 Subsequently, by gradually lowering the probe unit 20, as shown in FIG. 23, the first probe 30 is moved to the first electrode (not shown in FIG. 23) arranged on the upper surface of the submount 84 of the semiconductor laser device 80. shown) (first contact step). In this state, the second probe 40 is not in contact with the second electrode arranged on the top surface of the element 82 of the semiconductor laser device 80 . Also, the height adjustment member 50 does not contact the mounting surface 70 a of the stage 70 .
 第一接触工程の後に、第一プローブ30を第一電極に接触させた状態で、さらにプローブユニット20を徐々に降下させることで、図24に示されるように、第二プローブ40を半導体レーザ装置80の素子82の上面に配置される第二電極(図24には不図示)に接触させる(第二接触工程)。このとき、第一プローブ30の下端31は、プローブ貫通部材23に対して上向きに変位する。これに伴い、図24に示されるように、第一プローブ30は、空洞21vにおいて曲がる。つまり、第一プローブ30は、座屈現象を示す。第一プローブ30の下端31は、式(4)で表される弾性復元力で第一電極をステージ70に向かって押しつける。第一プローブ30は座屈現象を起こすが、第一プローブ30の、対向面21uから下方に突出する部分は、半導体レーザの接触面に対して垂直な状態を保ち続ける。 After the first contact step, the probe unit 20 is gradually lowered while the first probe 30 is in contact with the first electrode, so that the second probe 40 is connected to the semiconductor laser device as shown in FIG. 80 is brought into contact with a second electrode (not shown in FIG. 24) arranged on the upper surface of the element 82 (second contacting step). At this time, the lower end 31 of the first probe 30 is displaced upward with respect to the probe penetrating member 23 . Accordingly, as shown in FIG. 24, the first probe 30 bends in the cavity 21v. That is, the first probe 30 exhibits a buckling phenomenon. The lower end 31 of the first probe 30 presses the first electrode toward the stage 70 with the elastic restoring force represented by Equation (4). Although the first probe 30 causes a buckling phenomenon, the portion of the first probe 30 protruding downward from the facing surface 21u continues to be perpendicular to the contact surface of the semiconductor laser.
 続いて、第一プローブ30及び第二プローブ40をそれぞれ第一電極及び第二電極に接触させた状態で、さらにプローブユニット20を徐々に降下させて、高さ調整部材50のステージ接触面50aをステージ70の載置面70aに押し当てる。このとき、第一プローブ30の下端31は、プローブ貫通部材23に対してさらに上向きに変位するため、下端31の変位に対応する弾性復元力はさらに大きくなる。つまり、第一プローブ30の下端31が第一電極をステージ70に向かって押しつける力はさらに強くなる。また、第二プローブ40の下端41は、プローブ貫通部材23に対して上向きに変位する。これに伴い、図25に示されるように、第二プローブ40は、空洞21vにおいて曲がる。つまり、第二プローブ40は、座屈現象を示す。第二プローブ40の下端41は、式(5)で表される弾性復元力で第二電極をステージ70に向かって押しつける。第二プローブ40は座屈現象を起こすが、第二プローブ40の、対向面21uから下方に突出する部分は、半導体レーザの接触面に対して垂直な状態を保ち続ける。 Subsequently, while the first probe 30 and the second probe 40 are in contact with the first electrode and the second electrode, respectively, the probe unit 20 is gradually lowered to move the stage contact surface 50a of the height adjustment member 50. It is pressed against the mounting surface 70 a of the stage 70 . At this time, since the lower end 31 of the first probe 30 is displaced further upward with respect to the probe penetrating member 23, the elastic restoring force corresponding to the displacement of the lower end 31 is further increased. That is, the force with which the lower end 31 of the first probe 30 presses the first electrode toward the stage 70 becomes stronger. Also, the lower end 41 of the second probe 40 is displaced upward with respect to the probe penetrating member 23 . Along with this, as shown in FIG. 25, the second probe 40 bends in the cavity 21v. That is, the second probe 40 exhibits a buckling phenomenon. The lower end 41 of the second probe 40 presses the second electrode toward the stage 70 with the elastic restoring force represented by Equation (5). Although the second probe 40 causes a buckling phenomenon, the portion of the second probe 40 protruding downward from the facing surface 21u continues to maintain a state perpendicular to the contact surface of the semiconductor laser.
 図25に示されるように、第一プローブ30を第一電極に接触させ、かつ、第二プローブ40を第二電極に接触させた状態で、検査対象である半導体レーザ装置80に電流を供給する(供給工程)。半導体レーザ装置80に第一プローブ30及び第二プローブ40を介して電流を供給することで、半導体レーザ装置80の特性を検査する。 As shown in FIG. 25, a current is supplied to the semiconductor laser device 80 to be inspected while the first probe 30 is in contact with the first electrode and the second probe 40 is in contact with the second electrode. (supply process). By supplying a current to the semiconductor laser device 80 through the first probe 30 and the second probe 40, the characteristics of the semiconductor laser device 80 are inspected.
 供給工程の後に、プローブユニット20を徐々に上昇させることで、図26に示されるように、高さ調整部材50のステージ接触面50aをステージ70の載置面70aから離す。 After the supply process, by gradually raising the probe unit 20, the stage contact surface 50a of the height adjustment member 50 is separated from the mounting surface 70a of the stage 70, as shown in FIG.
 続いて、さらに、プローブユニット20を徐々に上昇させることで、図27に示されるように、第二プローブ40を第二電極から離す(第二脱離工程)。ここで、第二プローブ40は、弾性復元力により、座屈現象を示す前の状態に戻っている。 Subsequently, by gradually raising the probe unit 20, the second probe 40 is separated from the second electrode as shown in FIG. 27 (second detachment step). Here, the second probe 40 has returned to the state before exhibiting the buckling phenomenon due to the elastic restoring force.
 続いて、さらに、プローブユニット20を徐々に上昇させることで、図28に示されるように、第一プローブ30を第一電極から離す(第一脱離工程)。ここで、第一プローブ30は、弾性復元力により、座屈現象を示す前の状態に戻っている。 Subsequently, by gradually raising the probe unit 20, the first probe 30 is separated from the first electrode as shown in FIG. 28 (first detachment step). Here, the first probe 30 has returned to the state before exhibiting the buckling phenomenon due to the elastic restoring force.
 以上のように、プローブユニット20を用いて、検査対象を検査できる。 As described above, the probe unit 20 can be used to inspect the inspection target.
 [1-5.効果など]
 本実施の形態に係るプローブユニット20、検査装置10、及び検査方法の効果について説明する。
[1-5. effects, etc.]
Effects of the probe unit 20, the inspection apparatus 10, and the inspection method according to the present embodiment will be described.
 本実施の形態に係るプローブユニット20は、検査対象に電流を供給するための電流回路の一部を含むユニットである。プローブユニット20は、当該電流回路に含まれ、弾性復元力を有する、第一プローブ30及び第二プローブ40と、第一プローブ30及び第二プローブ40が固定されるプローブ固定部材24と、プローブ固定部材24の下方に、プローブ固定部材24から離間して配置され、第一プローブ30及び第二プローブ40がそれぞれ貫通する第一貫通孔26a及び第二貫通孔26bが形成されているプローブ貫通部材23とを備える。プローブ貫通部材23は、第一プローブ30及び第二プローブ40が貫通し、検査対象と対向する対向面21uを有する。第一プローブ30及び第二プローブ40のうち、対向面から下方に突出する部分は、上下方向に移動自在である。第一プローブ30及び第二プローブ40が検査対象に接触していない状態において、第一プローブ30の下端31は、第二プローブ40の下端41より下方に位置する。 The probe unit 20 according to the present embodiment is a unit including part of a current circuit for supplying current to an object to be inspected. The probe unit 20 includes a first probe 30 and a second probe 40, which are included in the current circuit and have an elastic restoring force, a probe fixing member 24 to which the first probe 30 and the second probe 40 are fixed, and a probe fixing member. A probe penetrating member 23 in which a first through hole 26a and a second through hole 26b are formed under the member 24, spaced apart from the probe fixing member 24, and through which the first probe 30 and the second probe 40 pass, respectively. and The probe penetrating member 23 has a facing surface 21u through which the first probe 30 and the second probe 40 penetrate and which faces the inspection target. The portions of the first probe 30 and the second probe 40 that protrude downward from the facing surfaces are vertically movable. The lower end 31 of the first probe 30 is positioned below the lower end 41 of the second probe 40 when the first probe 30 and the second probe 40 are not in contact with the test object.
 これにより、検査対象として、例えば半導体レーザ装置80を用いて、プローブユニット20を半導体レーザ装置80に接近させる場合に、第二電極より高さが低い第一電極に、第一プローブ30の下端31を先に接触させて、載置面70aに押しつけることが可能となる。 As a result, for example, when the semiconductor laser device 80 is used as an object to be inspected and the probe unit 20 is brought close to the semiconductor laser device 80, the lower end 31 of the first probe 30 is attached to the first electrode lower in height than the second electrode. can be brought into contact first and pressed against the mounting surface 70a.
 本実施の形態では、式(1)が成り立つ。つまり、半導体レーザ装置80は、第一プローブ30の下端31が接する第一電極と、第二プローブ40の下端41が接する第二電極とを有する。第一電極は、第二電極より下方に位置し、第一プローブ30の下端31と第二プローブ40の下端41との上下方向の位置の差は、第一電極と第二電極との上下方向の位置の差より大きい。このため、プローブユニット20を半導体レーザ装置80に接近させる場合に、第二プローブ40が第二電極に接触する前に、第一プローブ30を第一電極に確実に接触させることができる。ここで、半導体レーザ装置80における高さが低い部分(第一電極)を、高さが高い部分(第二電極)よりも先に載置面70aに押しつける場合の方が、高さが高い部分を先に載置面70aに押しつける場合より、半導体レーザ装置80が倒れる(つまり、転がる)可能性を低減できる。したがって、半導体レーザ装置80が検査時に倒れることで損傷を受けることを低減できる。 Formula (1) holds true in the present embodiment. That is, the semiconductor laser device 80 has a first electrode with which the lower end 31 of the first probe 30 contacts and a second electrode with which the lower end 41 of the second probe 40 contacts. The first electrode is positioned below the second electrode, and the difference in vertical position between the lower end 31 of the first probe 30 and the lower end 41 of the second probe 40 is greater than the difference in the positions of Therefore, when the probe unit 20 is brought closer to the semiconductor laser device 80, the first probe 30 can be reliably brought into contact with the first electrode before the second probe 40 comes into contact with the second electrode. Here, when the low portion (first electrode) of the semiconductor laser device 80 is pressed against the mounting surface 70a before the high portion (second electrode), the high portion is pressed against the mounting surface 70a first, the possibility that the semiconductor laser device 80 will topple over (that is, roll over) can be reduced. Therefore, it is possible to reduce the damage caused by the semiconductor laser device 80 falling down during inspection.
 また、式(1)が成り立つ場合には、供給工程において、第二プローブ40の下端41のプローブ貫通部材23に対する変位を、第一プローブ30の下端31のプローブ貫通部材23に対する変位より小さくすることができる。このため、第二電極を第二プローブ40の下端41によって押しつける力を、第一電極を第一プローブ30の下端31によって押しつける力より低減しやすくなる。したがって、第二電極にプローブ痕(つまり、凹み)が形成されることを抑制できる。特に、半導体レーザ装置80の素子82が有する第二電極として比較的軟らかいAuが用いられることがある。この場合、第二電極には、プローブ痕ができやすいため、本実施の形態に係るプローブユニット20が特に有効である。 Further, when the formula (1) holds, the displacement of the lower end 41 of the second probe 40 with respect to the probe penetrating member 23 in the supply step should be smaller than the displacement of the lower end 31 of the first probe 30 with respect to the probe penetrating member 23. can be done. Therefore, the force with which the lower end 41 of the second probe 40 presses the second electrode is more likely to be reduced than the force with which the lower end 31 of the first probe 30 presses the first electrode. Therefore, it is possible to suppress the formation of probe traces (that is, dents) on the second electrode. In particular, relatively soft Au may be used as the second electrode of the element 82 of the semiconductor laser device 80 . In this case, the probe unit 20 according to the present embodiment is particularly effective because the second electrode is likely to have probe marks.
 また、式(1)が成り立つ場合には、上述したように、供給工程の後に、第二プローブ40を第二電極から離した後で、第一プローブ30を第一電極から離すことができる。これにより、第二プローブ40を第二電極から離す際に、第一プローブ30が第一電極を押しつけているため、第二プローブ40とともに、半導体レーザ装置80が持ち上がることを低減できる。したがって、半導体レーザ装置80が、持ち上がった後に落下することで、損傷を受けることを低減できる。特に、上述したとおり、第二電極として比較的軟らかいAuが用いられることがあり、この場合には、第二プローブ40の下端41が第二電極にめり込んで、第二プローブ40と第二電極とがくっつきやすい。このため、第二プローブ40を第二電極から離す際に、半導体レーザ装置80が持ち上がりやすい。したがって、本実施の形態に係るプローブユニット20が特に有効である。 Further, when the formula (1) holds, as described above, after the supply step, the first probe 30 can be separated from the first electrode after the second probe 40 is separated from the second electrode. Accordingly, since the first probe 30 presses the first electrode when the second probe 40 is separated from the second electrode, it is possible to reduce the lifting of the semiconductor laser device 80 together with the second probe 40 . Therefore, it is possible to reduce damage caused by dropping the semiconductor laser device 80 after being lifted. In particular, as described above, relatively soft Au may be used as the second electrode. Easy to stick. Therefore, when the second probe 40 is separated from the second electrode, the semiconductor laser device 80 is easily lifted. Therefore, the probe unit 20 according to this embodiment is particularly effective.
 本実施の形態に係るプローブユニット20の第一プローブ30及び第二プローブ40は、座屈現象を示してもよい。 The first probe 30 and the second probe 40 of the probe unit 20 according to this embodiment may exhibit a buckling phenomenon.
 このような第一プローブ30及び第二プローブ40の効果について、図29及び図30を用いて説明する。図29は、本実施の形態に係る第一プローブ30が座屈現象を示していない場合の第一プローブ30と第一貫通孔26aとの位置関係を示す模式図である。図30は、本実施の形態に係る第一プローブ30が座屈現象を示している場合の第一プローブ30と第一貫通孔26aとの位置関係を示す模式図である。図29及び図30には、第一貫通孔26a及び第一プローブ30の断面図(a)と、第一貫通孔26aの上面図(b)及び底面図(c)とが示されている。 The effect of such first probe 30 and second probe 40 will be described using FIGS. 29 and 30. FIG. FIG. 29 is a schematic diagram showing the positional relationship between the first probe 30 and the first through-hole 26a when the first probe 30 according to the present embodiment does not exhibit the buckling phenomenon. FIG. 30 is a schematic diagram showing the positional relationship between the first probe 30 and the first through-hole 26a when the first probe 30 according to the present embodiment exhibits a buckling phenomenon. 29 and 30 show a sectional view (a) of the first through hole 26a and the first probe 30, and a top view (b) and a bottom view (c) of the first through hole 26a.
 図29に示されるように、第一プローブ30が座屈現象を示していない場合には、第一プローブ30は、第一貫通孔26aを囲む内壁に押し付けられないため、第一貫通孔26a内で自由に移動できる。すなわち、プローブユニット20の振動に伴って、貫通孔付近の第一プローブ30も振動する。一方、図30に示されるように、第一プローブ30が座屈現象を示している場合、上下方向に対して垂直な方向に偏位するため、プローブ貫通部材23の上面と下面の位置において、第一プローブ30が第一貫通孔26aを囲む内壁に押しつけられる。この場合、第一プローブ30の移動が、第一プローブ30と、第一貫通孔26aを囲む内壁との間の摩擦力によって規制される。したがって、第一プローブ30の振動を抑制できる。例えば、第一プローブ30及び第二プローブ40を、検査対象に押し付けたまま、プローブユニット20及び検査対象が載置されたステージ70を移動させる場合について説明する。この場合、第一プローブ30及び第二プローブ40が座屈現象を示していれば、プローブユニット20及び検査対象が載置されたステージ70を移動させることで、第一プローブ30及び第二プローブ40に振動の力が加わっても、上記摩擦力によって第一プローブ30及び第二プローブ40の貫通孔付近での振動を抑制できる。したがって、各プローブが振動することによって、検査対象が損傷することを抑制できる。 As shown in FIG. 29, when the first probe 30 does not exhibit the buckling phenomenon, the first probe 30 is not pressed against the inner wall surrounding the first through-hole 26a, and therefore the first through-hole 26a is not pressed. can move freely. That is, along with the vibration of the probe unit 20, the first probe 30 near the through hole also vibrates. On the other hand, as shown in FIG. 30, when the first probe 30 exhibits a buckling phenomenon, it deviates in a direction perpendicular to the vertical direction. The first probe 30 is pressed against the inner wall surrounding the first through hole 26a. In this case, the movement of the first probe 30 is restricted by the frictional force between the first probe 30 and the inner wall surrounding the first through hole 26a. Therefore, vibration of the first probe 30 can be suppressed. For example, a case will be described in which the stage 70 on which the probe unit 20 and the inspection object are placed is moved while the first probe 30 and the second probe 40 are pressed against the inspection object. In this case, if the first probe 30 and the second probe 40 exhibit a buckling phenomenon, by moving the stage 70 on which the probe unit 20 and the test object are placed, the first probe 30 and the second probe 40 Even if a vibrational force is applied to the first probe 30 and the second probe 40, the frictional force can suppress the vibration near the through holes of the first probe 30 and the second probe 40. FIG. Therefore, it is possible to suppress damage to the inspection target due to vibration of each probe.
 本実施の形態に係るプローブユニット20の対向面21uは、上下方向に対して傾いている貫通部材傾斜面21sを有してもよい。貫通部材傾斜面21sは、第一貫通孔26a及び第二貫通孔26bから遠ざかるにしたがって上昇する。 The facing surface 21u of the probe unit 20 according to the present embodiment may have a penetrating member inclined surface 21s that is inclined with respect to the vertical direction. The penetrating member inclined surface 21s rises with increasing distance from the first through hole 26a and the second through hole 26b.
 このように対向面21uが貫通部材傾斜面21sを有することで、測定装置90をプローブユニット20に接近させる場合に、測定装置90とプローブユニット20とが物理的に干渉することを低減できる。また、検査対象として、半導体レーザ素子などの発光素子を用いる場合に、対向面21uの光の伝搬経路と対向する部分に貫通部材傾斜面21sを配置することで、光が対向面21uによって遮られることを低減できる。 By providing the facing surface 21u with the penetrating member inclined surface 21s in this way, physical interference between the measuring device 90 and the probe unit 20 can be reduced when the measuring device 90 approaches the probe unit 20. Further, when a light-emitting element such as a semiconductor laser element is used as an inspection target, light is blocked by the opposing surface 21u by arranging the penetrating member inclined surface 21s in a portion facing the light propagation path of the opposing surface 21u. can be reduced.
 本実施の形態に係る貫通部材傾斜面21sは、光反射抑制面であってもよい。 The penetrating member inclined surface 21s according to the present embodiment may be a light reflection suppressing surface.
 これにより、貫通部材傾斜面21sにおいて、検査対象からの光が乱反射し、光測定におけるノイズとなることを抑制できる。 As a result, it is possible to prevent the light from the inspection object from being diffusely reflected on the penetrating member inclined surface 21s and becoming noise in the light measurement.
 本実施の形態に係る検査装置10は、プローブユニット20と、検査対象が載置される載置面70aを有するステージ70と、プローブユニット20とステージ70との間に配置される高さ調整部材50とを備える。 The inspection apparatus 10 according to the present embodiment includes a probe unit 20, a stage 70 having a mounting surface 70a on which an object to be inspected is mounted, and a height adjustment member disposed between the probe unit 20 and the stage 70. 50.
 このような検査装置10において、高さ調整部材50は、プローブユニット20とステージ70との最小間隔を規定するスペーサとして機能することができる。したがって、検査装置10のプローブユニット20を駆動する機構の位置制御精度が低い場合にも、プローブユニット20とステージ70との間隔を、高さ調整部材50によって精密に制御できる。したがって、プローブユニット20とステージ70とを近づけ過ぎて、検査対象に過大な応力がかかり、検査対象が損傷することを抑制できる。 In such an inspection apparatus 10, the height adjustment member 50 can function as a spacer that defines the minimum distance between the probe unit 20 and the stage 70. Therefore, even when the position control accuracy of the mechanism for driving the probe unit 20 of the inspection apparatus 10 is low, the distance between the probe unit 20 and the stage 70 can be precisely controlled by the height adjustment member 50 . Therefore, it is possible to prevent the probe unit 20 and the stage 70 from being too close to each other, thereby applying excessive stress to the inspection target and damaging the inspection target.
 また、高さ調整部材50をステージ70の載置面70aに押し付けることで、プローブユニット20の振動を抑制できる。したがって、各プローブが振動することに伴って、検査対象が各プローブによって損傷することを抑制できる。 Also, by pressing the height adjustment member 50 against the mounting surface 70a of the stage 70, vibration of the probe unit 20 can be suppressed. Therefore, it is possible to suppress the inspection object from being damaged by each probe as each probe vibrates.
 本実施の形態に係る高さ調整部材50は、プローブユニット20の対向面21uに配置されてもよい。これにより、プローブユニット20とともに高さ調整部材50を退避させることができる。したがって、検査対象をステージ70の載置面70aに載置する際に、高さ調整部材50が検査対象を移動させるためのコレットなどと物理的に干渉することを低減できる。 The height adjusting member 50 according to the present embodiment may be arranged on the facing surface 21u of the probe unit 20. Thereby, the height adjusting member 50 can be retracted together with the probe unit 20 . Therefore, when the inspection target is placed on the mounting surface 70a of the stage 70, physical interference of the height adjusting member 50 with a collet or the like for moving the inspection target can be reduced.
 本実施の形態に係るステージ70の載置面70aは、上下方向に対して傾いているステージ傾斜面70sを有してもよい。ステージ傾斜面70sは、載置面70aの端に近づくにしたがって降下する。 The mounting surface 70a of the stage 70 according to the present embodiment may have a stage inclined surface 70s inclined with respect to the vertical direction. The stage inclined surface 70s descends as it approaches the end of the mounting surface 70a.
 このように載置面70aがステージ傾斜面70sを有することで、測定装置90をプローブユニット20に接近させる場合に、測定装置90とステージ70とが物理的に干渉することを低減できる。また、検査対象として、半導体レーザ素子などの発光素子を用いる場合に、載置面70aの光の伝搬経路と対向する部分にステージ傾斜面70sを配置することで、光が載置面70aによって遮られることを低減できる。 Since the mounting surface 70 a has the stage inclined surface 70 s in this way, physical interference between the measuring device 90 and the stage 70 can be reduced when the measuring device 90 is brought closer to the probe unit 20 . Further, when a light-emitting device such as a semiconductor laser device is used as an inspection object, the light is blocked by the mounting surface 70a by arranging the stage inclined surface 70s in a portion facing the light propagation path of the mounting surface 70a. can be reduced.
 本実施の形態に係るステージ傾斜面70sは、光反射抑制面であってもよい。 The stage inclined surface 70s according to the present embodiment may be a light reflection suppressing surface.
 これにより、ステージ傾斜面70sにおいて、検査対象からの光が乱反射し、光測定におけるノイズとなることを抑制できる。 As a result, it is possible to prevent the light from the inspection object from being diffusely reflected on the stage inclined surface 70s and becoming noise in the light measurement.
 本実施の形態に係る検査装置10において、ステージ70は、検査対象を吸着する吸着孔72を有してもよい。また、検査装置10は、ステージ70に吸着された検査対象を囲む枠体Fmを備えてもよい。検査装置10は、枠体Fmを移動させることで検査対象の位置を調整する。 In the inspection device 10 according to the present embodiment, the stage 70 may have suction holes 72 for sucking the inspection target. Moreover, the inspection apparatus 10 may include a frame Fm surrounding the inspection object attracted to the stage 70 . The inspection apparatus 10 adjusts the position of the inspection object by moving the frame Fm.
 これにより、検査対象の位置調整を行う際に、枠体Fmという一つの治具だけで、X軸方向及びY軸方向に、連続的に位置調整を行うことができる。したがって、位置調整に要する時間を低減できる。 As a result, when adjusting the position of the object to be inspected, it is possible to continuously adjust the position in the X-axis direction and the Y-axis direction using only one jig, the frame Fm. Therefore, the time required for position adjustment can be reduced.
 本実施の形態に係る検査方法は、検査対象に電流を供給することで、検査対象の特性を検査する検査方法である。検査対象の一例である半導体レーザ装置80は、上面を有するサブマウント84と、素子上面を有し、サブマウント84の上面に配置され、電流が供給される素子82とを有する。サブマウント84は、上面に配置される第一電極を有し、素子82は、素子上面に配置される第二電極を有する。検査方法は、第一プローブ30を第一電極に接触させる第一接触工程と、第一接触工程の後に、第一プローブ30を第一電極に接触させた状態で、第二プローブ40を第二電極に接触させる第二接触工程とを含む。第一プローブ30及び第二プローブ40は、検査対象に電流を供給する電流回路に含まれ、弾性復元力を有する。 The inspection method according to the present embodiment is an inspection method for inspecting characteristics of an inspection object by supplying current to the inspection object. A semiconductor laser device 80, which is an example of an object to be inspected, has a submount 84 having an upper surface, and an element 82 having an upper surface of an element, arranged on the upper surface of the submount 84, and supplied with current. The submount 84 has a first electrode located on the top surface and the device 82 has a second electrode located on the top surface of the device. The inspection method includes a first contact step of contacting the first probe 30 with the first electrode, and after the first contact step, the second probe 40 is contacted with the first electrode while the first probe 30 is in contact with the first electrode. and a second contacting step of contacting the electrode. The first probe 30 and the second probe 40 are included in a current circuit that supplies current to the test object, and have elastic restoring force.
 このような検査方法により、第二プローブ40が第二電極に接触する前に、第一プローブ30を第一電極に確実に接触させることができる。ここで、検査対象における高さが低い部分(第一電極)を、高さが高い部分(第二電極)よりも先に載置面70aに押しつける場合の方が、高さが高い部分を先に載置面70aに押しつける場合より、検査対象が倒れる可能性を低減できる。したがって、検査対象が検査時に倒れることで損傷を受けることを低減できる。本実施の形態に係る検査方法は、例えば、上述した検査装置10を用いて実現できる。 By such an inspection method, it is possible to reliably bring the first probe 30 into contact with the first electrode before the second probe 40 comes into contact with the second electrode. Here, when the low portion (first electrode) of the test object is pressed against the mounting surface 70a before the high portion (second electrode), the high portion is pressed first. As compared with the case of pressing against the placement surface 70a, the possibility of the inspection object falling down can be reduced. Therefore, it is possible to reduce the damage caused by the inspection object falling down during the inspection. The inspection method according to the present embodiment can be implemented using, for example, the inspection apparatus 10 described above.
 本実施の形態に係る他の検査方法は、検査対象に電流を供給することで、検査対象の特性を検査する検査方法である。検査対象の一例である半導体レーザ装置80は、上面を有するサブマウント84と、素子上面を有し、サブマウント84の上面に配置され、電流が供給される素子82とを有する。サブマウント84は、上面に配置される第一電極を有し、素子82は、素子上面に配置される第二電極を有する。検査方法は、第一プローブ30を第一電極に接触させ、かつ、第二プローブ40を第二電極に接触させた状態で、検査対象に電流を供給する供給工程と、供給工程の後に、第二プローブ40を第二電極から離す第二脱離工程と、第二脱離工程の後に、第一プローブ30を第一電極から離す第一脱離工程とを含む。第一プローブ30及び第二プローブ40は、検査対象に電流を供給する電流回路に含まれ、弾性復元力を有する。 Another inspection method according to the present embodiment is an inspection method for inspecting characteristics of an inspection object by supplying a current to the inspection object. A semiconductor laser device 80, which is an example of an object to be inspected, has a submount 84 having an upper surface, and an element 82 having an upper surface of an element, arranged on the upper surface of the submount 84, and supplied with current. The submount 84 has a first electrode located on the top surface and the device 82 has a second electrode located on the top surface of the device. The inspection method includes a supply step of supplying a current to the inspection target while the first probe 30 is in contact with the first electrode and the second probe 40 is in contact with the second electrode, and after the supply step, a second It includes a second detachment step of detaching the two probes 40 from the second electrode, and a first detachment step of detaching the first probe 30 from the first electrode after the second detachment step. The first probe 30 and the second probe 40 are included in a current circuit that supplies current to the test object, and have elastic restoring force.
 このような検査方法により、第二プローブ40を第二電極から離す際に、第一プローブ30が第一電極を押しつけているため、第二プローブ40とともに、検査対象が持ち上がることを低減できる。したがって、検査対象が、持ち上がった後に落下することで、損傷を受けることを低減できる。特に、上述したとおり、第二電極として比較的軟らかいAuが用いられることがあり、この場合には、第二プローブ40が第二電極にめり込んで、第二プローブ40と第二電極とがくっつきやすい。このため、第二プローブ40を第二電極から離す際に、検査対象が持ち上がりやすい。したがって、本実施の形態に係る検査方法が特に有効である。本実施の形態に係る検査方法は、例えば、上述した検査装置10を用いて実現できる。 With such an inspection method, when the second probe 40 is separated from the second electrode, the first probe 30 presses against the first electrode, so that lifting of the inspection object together with the second probe 40 can be reduced. Therefore, it is possible to reduce the damage caused by the inspection target dropping after being lifted. In particular, as described above, relatively soft Au may be used as the second electrode. In this case, the second probe 40 sinks into the second electrode, and the second probe 40 and the second electrode tend to stick together. . Therefore, when the second probe 40 is separated from the second electrode, the test object is easily lifted. Therefore, the inspection method according to this embodiment is particularly effective. The inspection method according to the present embodiment can be implemented using, for example, the inspection apparatus 10 described above.
 [1-6.検査システム]
 本実施の形態に係る検査装置10を備える検査システムについて図31及び図32を用いて説明する。図31は、本実施の形態に係る検査システム1の全体構成を示す模式的な上面図である。図32は、本実施の形態の変形例に係る検査システム1aの全体構成を示す模式的な上面図である。図31及び図32には、検査において用いる測定装置90及び検査対象の一例である半導体レーザ装置80も併せて示されている。
[1-6. inspection system]
An inspection system including the inspection apparatus 10 according to this embodiment will be described with reference to FIGS. 31 and 32. FIG. FIG. 31 is a schematic top view showing the overall configuration of the inspection system 1 according to this embodiment. FIG. 32 is a schematic top view showing the overall configuration of an inspection system 1a according to a modification of the present embodiment. FIGS. 31 and 32 also show a measuring device 90 used in the inspection and a semiconductor laser device 80 as an example of an object to be inspected.
 図31に示されるように、本実施の形態に係る検査システム1は、検査装置10と、検査装置10を搬送する搬送装置5とを備える。 As shown in FIG. 31 , the inspection system 1 according to the present embodiment includes an inspection device 10 and a transport device 5 that transports the inspection device 10 .
 図31に示される例では、搬送装置5は、円形状の形状を有し、中心を回転軸として回転するターンテーブルであり、搬送装置5に配置された検査装置10を周方向に搬送する。 In the example shown in FIG. 31, the transport device 5 is a turntable that has a circular shape and rotates about its center as a rotation axis, and transports the inspection device 10 arranged on the transport device 5 in the circumferential direction.
 検査システム1は、複数の検査装置10を備える。図31に示される例では、検査システム1では、12個の検査装置10が搬送装置5の円形状の端縁に沿って円状に配置されている。本実施の形態では、検査装置10は、半径300mm程度の円周上に、中心角30度ごとに配置される。検査装置10の平均移動速度は、例えば、200mm/秒程度であり、中心角30度分の移動に要する時間は、例えば、0.8秒程度である。 The inspection system 1 includes a plurality of inspection devices 10. In the example shown in FIG. 31, in the inspection system 1, twelve inspection devices 10 are arranged in a circle along the circular edge of the transport device 5. In the example shown in FIG. In this embodiment, the inspection apparatus 10 is arranged on a circle with a radius of about 300 mm at intervals of 30 degrees. The average moving speed of the inspection device 10 is, for example, about 200 mm/second, and the time required for moving the central angle of 30 degrees is, for example, about 0.8 seconds.
 検査装置10は、搬送装置5によって搬送された搬送先の位置に応じて、上述した検査方法の各工程を実行する。つまり、検査装置10は、まず、図31に示される搬送装置5の5時の位置まで搬送された後に停止され、検査対象が投入される。続いて、検査装置10は、搬送装置5の4時の位置まで反時計回りに搬送された後に停止され、検査対象の位置調整を行う。続いて、検査装置10は、搬送装置5の3時の位置まで反時計回りに搬送された後に停止され、プローブユニット20を移動する。ここで、第一プローブ30及び第二プローブ40を検査対象に接触させる。続いて、検査装置10は、第一プローブ30及び第二プローブ40を検査対象に接触させた状態で、搬送装置5の2時の位置まで反時計回りに搬送された後に停止され、検査対象に所定の電流を供給し、特性を測定し(つまり検査を行い)、電流の供給を停止する。続いて、検査装置10は、第一プローブ30及び第二プローブ40を検査対象に接触させた状態で、搬送装置5の1時の位置から8時の位置まで反時計回りに搬送及び停止が繰り返され、停止するたびに検査対象の検査を行う。図31に示される例では、七回の検査を行う。各検査は、それぞれ異なる検査であってもよいし、同一の検査が複数回行われてもよい。例えば、各検査において、検査対象に供給する電流及び電圧の大きさを変えたり、電流の波形を変えたりしてもよい。図31には、図示を省略しているが、複数の検査位置の各々には、測定装置が配置されて、検査対象の測定を行う。 The inspection device 10 executes each step of the inspection method described above according to the position of the transport destination transported by the transport device 5 . That is, the inspection device 10 is first transported to the 5 o'clock position of the transport device 5 shown in FIG. Subsequently, the inspection device 10 is stopped after being transported counterclockwise to the 4 o'clock position of the transport device 5, and the position of the inspection object is adjusted. Subsequently, the inspection apparatus 10 is conveyed counterclockwise to the 3 o'clock position of the conveying apparatus 5 and then stopped, and the probe unit 20 is moved. Here, the first probe 30 and the second probe 40 are brought into contact with the inspection object. Subsequently, the inspection device 10 is transported counterclockwise to the 2 o'clock position of the transport device 5 in a state in which the first probe 30 and the second probe 40 are in contact with the inspection object, and then stopped. A predetermined current is supplied, the characteristics are measured (that is, an inspection is performed), and the current supply is stopped. Subsequently, the inspection device 10 repeatedly transports and stops counterclockwise from the 1 o'clock position to the 8 o'clock position of the transport device 5 while the first probe 30 and the second probe 40 are in contact with the inspection object. and inspects the object to be inspected each time it stops. In the example shown in Figure 31, seven tests are performed. Each inspection may be a different inspection, or the same inspection may be performed multiple times. For example, in each test, the magnitude of the current and voltage supplied to the test object may be changed, or the waveform of the current may be changed. Although not shown in FIG. 31, a measuring device is arranged at each of the plurality of inspection positions to measure the inspection target.
 続いて、検査装置10は、第一プローブ30及び第二プローブ40を検査対象に接触させた状態で、搬送装置5の7時の位置まで反時計回りに搬送された後に停止され、プローブユニット20を退避させる。続いて、検査装置10は、搬送装置5の6時の位置まで反時計回りに搬送された後に停止され、検査対象を排出する。 Subsequently, the inspection device 10 is transported counterclockwise to the 7 o'clock position of the transport device 5 with the first probe 30 and the second probe 40 in contact with the inspection object, and then stopped. evacuate. Subsequently, the inspection apparatus 10 is stopped after being conveyed counterclockwise to the 6 o'clock position of the conveying apparatus 5, and the inspection target is discharged.
 このような検査を12個の検査装置10の各々において行うことで、同時に7個の検査対象の検査を行うことができるため、多数の検査対象の検査に要する時間を短縮できる。 By performing such an inspection in each of the 12 inspection apparatuses 10, seven inspection objects can be inspected at the same time, so the time required to inspect a large number of inspection objects can be shortened.
 また、本実施の形態に係る検査装置10は、第一プローブ30及び第二プローブ40を検査対象に接触させた状態で、検査装置10を搬送する。このため、複数の検査を別の位置で行う際に、移動の度にプローブユニット20の移動及び退避を行う必要がなくなる。検査の各工程のうち、プローブユニット20の移動及び退避は、特に時間を要する工程である。例えば、プローブユニット20が水平方向に移動する距離100mm程度であり、移動には0.8秒程度を要する。つまり、平均移動速度は、125mm/秒程度である。また、プローブユニット20の水平方向の移動後、プローブユニット20の振動が止まるまで待機してもよい。振動が止まった後に上下方向に移動することで、第一プローブ30及び第二プローブ40により検査対象に形成されるプローブ痕を低減できる。さらに、プローブユニット20の上下方向の移動に0.8秒程度要する。このように比較的長い時間を要するプローブユニット20の移動及び退避工程の回数を削減することで、大幅な検査時間短縮を実現できる。 Also, the inspection apparatus 10 according to the present embodiment is transported while the first probe 30 and the second probe 40 are in contact with the inspection target. Therefore, when performing a plurality of inspections at different positions, it is not necessary to move and retract the probe unit 20 each time it is moved. Among the inspection processes, the movement and retraction of the probe unit 20 are processes that require a particularly long time. For example, the distance that the probe unit 20 moves in the horizontal direction is about 100 mm, and the movement takes about 0.8 seconds. That is, the average moving speed is about 125 mm/sec. Alternatively, after the probe unit 20 moves in the horizontal direction, it may wait until the vibration of the probe unit 20 stops. By moving vertically after the vibration stops, probe marks formed on the inspection object by the first probe 30 and the second probe 40 can be reduced. Furthermore, it takes about 0.8 seconds to move the probe unit 20 in the vertical direction. By reducing the number of moving and retracting steps of the probe unit 20 that require a relatively long time in this manner, a significant reduction in inspection time can be realized.
 また、本実施の形態では、第一プローブ30及び第二プローブ40を検査対象に対して接触及び脱離させる回数を削減できるため、検査対象に形成されるプローブ痕を低減できる。 In addition, in the present embodiment, the number of times the first probe 30 and the second probe 40 are brought into contact with and separated from the inspection object can be reduced, so probe marks formed on the inspection object can be reduced.
 本実施の形態に係る検査装置10は、プローブユニット20とステージ70との間に配置される高さ調整部材50を備える。これにより、第一プローブ30及び第二プローブ40を検査対象に接触させる際に、高さ調整部材50をステージ70の載置面70aに押しつけることができる。したがって、検査装置10を搬送する際に、高さ調整部材50と載置面70aとの間の摩擦力によって、プローブユニット20、第一プローブ30及び第二プローブ40が振動することを抑制できる。これにより、第一プローブ30及び第二プローブ40の振動によって検査対象が損傷することを抑制できる。 The inspection apparatus 10 according to this embodiment includes a height adjustment member 50 arranged between the probe unit 20 and the stage 70 . Thereby, the height adjustment member 50 can be pressed against the mounting surface 70a of the stage 70 when the first probe 30 and the second probe 40 are brought into contact with the inspection object. Therefore, when the inspection device 10 is transported, it is possible to suppress the vibration of the probe unit 20, the first probe 30, and the second probe 40 due to the frictional force between the height adjustment member 50 and the mounting surface 70a. Thereby, it is possible to suppress damage to the inspection object due to the vibration of the first probe 30 and the second probe 40 .
 また、本実施の形態では、上述したとおり高さ調整部材50のステージ接触面50aが粗面であるため、ステージ接触面50aとステージ70の載置面70aとの間の摩擦力を増大させることができる。したがって、検査装置10を搬送する際にプローブユニット20がステージ70に対して振動することをより一層抑制でき、第一プローブ30及び第二プローブ40が検査対象に対して振動することをより一層抑制できる。 Further, in this embodiment, as described above, the stage contact surface 50a of the height adjustment member 50 is a rough surface, so that the frictional force between the stage contact surface 50a and the mounting surface 70a of the stage 70 can be increased. can be done. Therefore, the vibration of the probe unit 20 with respect to the stage 70 can be further suppressed when the inspection apparatus 10 is transported, and the vibration of the first probe 30 and the second probe 40 with respect to the inspection object can be further suppressed. can.
 また、本実施の形態に係る複数の検査装置10は、図31に示されるように、搬送装置5の半径方向にプローブユニット20を移動させることができる。言い換えると、検査装置10は、検査装置10の搬送方向に垂直な方向に、プローブユニット20を移動する移動機構を備える。なお、移動機構は、上述した、ユニット移動部材16などによって実現される。このような移動機構により、検査対象を搬送装置5の外部から検査装置10に投入する際に、検査対象の移動に用いるコレットなどとプローブユニット20などとの物理的干渉が発生することを低減できる。 Also, the plurality of inspection devices 10 according to the present embodiment can move the probe units 20 in the radial direction of the transport device 5, as shown in FIG. In other words, the inspection device 10 includes a moving mechanism that moves the probe unit 20 in a direction perpendicular to the transport direction of the inspection device 10 . The moving mechanism is implemented by the unit moving member 16 and the like described above. With such a moving mechanism, it is possible to reduce the occurrence of physical interference between the collet or the like used for moving the inspection object and the probe unit 20 or the like when the inspection object is loaded into the inspection apparatus 10 from the outside of the transport device 5. .
 次に、本実施の形態の変形例に係る検査システム1aについて、図32を用いて説明する。図32に示されるように、本変形例に係る検査システム1aは、検査装置10と、検査装置10を搬送する搬送装置5aとを備える。本変形例に係る検査システム1aも、上述した検査システム1と同様に複数の検査装置10を備える。 Next, an inspection system 1a according to a modification of the present embodiment will be described using FIG. As shown in FIG. 32 , an inspection system 1 a according to this modification includes an inspection device 10 and a transport device 5 a that transports the inspection device 10 . An inspection system 1a according to this modification also includes a plurality of inspection devices 10, like the inspection system 1 described above.
 本変形例に係る搬送装置5aは、主に、搬送経路の形状において、上述した搬送装置5と相違する。本変形例に係る搬送装置5aは、長円形状を有し、搬送装置5aの周縁にそって長円形状に複数の検査装置10が配置される。複数の検査装置10は、長円形状の搬送経路に沿って搬送される。このため、搬送装置5aは、検査装置10を直線状に搬送する搬送経路と、円弧状に搬送する搬送経路とを併せ持つ。検査装置10の平均移動速度は、例えば、190mm/秒程度であり、一回の搬送当たりの搬送距離は、例えば、150mmである。一回の搬送に要する時間は、例えば、0.8秒程度である。 A conveying device 5a according to this modified example differs from the above-described conveying device 5 mainly in the shape of the conveying path. A conveying device 5a according to this modification has an oval shape, and a plurality of inspection devices 10 are arranged in an oval shape along the periphery of the conveying device 5a. A plurality of inspection devices 10 are transported along an oval transport path. Therefore, the transport device 5a has both a transport path for transporting the inspection apparatus 10 in a straight line and a transport path for transporting the inspection apparatus 10 in an arc. The average moving speed of the inspection device 10 is, for example, about 190 mm/sec, and the conveying distance per one conveying is, for example, 150 mm. The time required for one transport is, for example, about 0.8 seconds.
 本変形例に係る検査システム1aにおいても、検査装置10の第一プローブ30及び第二プローブ40を検査対象に接触させた状態で、検査装置10を搬送する。これにより、本変形例に係る検査システム1aにおいても、上述した検査システム1と同様の効果が奏される。 Also in the inspection system 1a according to this modified example, the inspection device 10 is transported in a state in which the first probe 30 and the second probe 40 of the inspection device 10 are in contact with the inspection object. As a result, the inspection system 1a according to this modified example can also achieve the same effect as the inspection system 1 described above.
 [1-7.半導体レーザ装置の製造方法]
 本実施の形態に係る半導体レーザ装置80の製造方法について、図33を用いて説明する。図33は、本実施の形態に係る半導体レーザ装置80の製造方法の流れを示すフローチャートである。
[1-7. Method for manufacturing a semiconductor laser device]
A method of manufacturing the semiconductor laser device 80 according to this embodiment will be described with reference to FIG. FIG. 33 is a flow chart showing the flow of the method for manufacturing the semiconductor laser device 80 according to this embodiment.
 図33に示されるように、まず、半導体レーザ装置80を組み立てる(S10)。本実施の形態では、半導体レーザ装置80は、サブマウント84と、素子82とを備える。素子82は、半導体レーザ素子である。半導体レーザ装置80は、例えば、サブマウント84を準備し、サブマウント84の上面に素子82を配置することで組み立てられる。 As shown in FIG. 33, first, the semiconductor laser device 80 is assembled (S10). In this embodiment, semiconductor laser device 80 includes submount 84 and element 82 . Device 82 is a semiconductor laser device. The semiconductor laser device 80 is assembled, for example, by preparing a submount 84 and arranging the element 82 on the upper surface of the submount 84 .
 続いて、半導体レーザ装置80を検査する(S20)。本実施の形態に係る半導体レーザ装置80の製造方法では、本実施の形態に係る検査方法を用いて、検査対象として半導体レーザ装置80を検査する。 Then, the semiconductor laser device 80 is inspected (S20). In the manufacturing method of the semiconductor laser device 80 according to the present embodiment, the semiconductor laser device 80 is inspected as an inspection object using the inspection method according to the present embodiment.
 以上のように、本実施の形態に係る半導体レーザ装置80を製造できる。本実施の形態に係る半導体レーザ装置80の製造方法によれば、本実施の形態に係る検査方法を用いることで、上述した検査方法と同様の効果が奏され、検査における半導体レーザ装置80の損傷を低減できる。 As described above, the semiconductor laser device 80 according to this embodiment can be manufactured. According to the manufacturing method of the semiconductor laser device 80 according to the present embodiment, by using the inspection method according to the present embodiment, the same effect as the inspection method described above can be obtained, and damage to the semiconductor laser device 80 during the inspection can be prevented. can be reduced.
 [1-8.プローブユニットの変形例]
 本実施の形態の変形例に係るプローブユニットについて説明する。
[1-8. Modification of Probe Unit]
A probe unit according to a modification of the present embodiment will be described.
 [1-8-1.変形例1]
 本実施の形態の変形例1に係るプローブユニットについて、図34を用いて説明する。図34は、本変形例に係るプローブユニットの一部を示す模式的な断面図である。図34には、プローブ貫通部材23の第一貫通孔26a及びその周辺の構成が示されている。
[1-8-1. Modification 1]
A probe unit according to Modification 1 of the present embodiment will be described with reference to FIG. 34 . FIG. 34 is a schematic cross-sectional view showing part of the probe unit according to this modification. FIG. 34 shows the configuration of the first through-hole 26a of the probe-penetrating member 23 and its periphery.
 図34に示されるように、本変形例のプローブユニットは、第一プローブ130の構成において、上述したプローブユニット20と相違する。本変形例に係る第一プローブ130は、導電体36と、絶縁膜38とを有する。 As shown in FIG. 34, the probe unit of this modified example differs from the probe unit 20 described above in the configuration of the first probe 130 . A first probe 130 according to this modification has a conductor 36 and an insulating film 38 .
 導電体36は、弾性復元力を有する導電部材である。導電体36は、例えば、金属ワイヤである。導電体36は、上述した第一プローブ30と同様に、プローブ固定部材24で固定され、プローブ貫通部材23を貫通する。 The conductor 36 is a conductive member having elastic restoring force. The conductor 36 is, for example, a metal wire. The conductor 36 is fixed by the probe fixing member 24 and passes through the probe penetrating member 23, similarly to the first probe 30 described above.
 絶縁膜38は、導電体36の一部を覆う電気絶縁性の膜である。本変形例では、第一プローブ130の下端131が検査対象に接触していない状態において、絶縁膜38は、導電体36のうち、プローブ貫通部材23より上方に位置する部分を覆う。第一プローブ130の下端131が検査対象に接触していない状態において、導電体36のうち、空洞21vに位置する部分を覆ってもよい。図34に示されるように、絶縁膜38が導電体36を覆う部分における第一プローブ130の太さは、第一貫通孔26aの径より大きくてもよい。これにより、絶縁膜38が、第一プローブ130が第一貫通孔26aから下方に落下することを抑制できる。 The insulating film 38 is an electrically insulating film that partially covers the conductor 36 . In this modification, the insulating film 38 covers the portion of the conductor 36 located above the probe penetrating member 23 when the lower end 131 of the first probe 130 is not in contact with the test object. A portion of the conductor 36 located in the cavity 21v may be covered while the lower end 131 of the first probe 130 is not in contact with the test object. As shown in FIG. 34, the thickness of the first probe 130 at the portion where the insulating film 38 covers the conductor 36 may be larger than the diameter of the first through hole 26a. Thereby, the insulating film 38 can prevent the first probe 130 from falling downward from the first through hole 26a.
 なお、第二プローブも、第一プローブ130と同様に、導電体と絶縁膜とを有していてもよい。 Note that the second probe may also have a conductor and an insulating film, like the first probe 130 .
 [1-8-2.変形例2]
 本実施の形態の変形例2に係るプローブユニットについて、図35を用いて説明する。図35は、本変形例に係るプローブユニットの一部を示す模式的な断面図である。
[1-8-2. Modification 2]
A probe unit according to Modification 2 of the present embodiment will be described with reference to FIG. 35 . FIG. 35 is a schematic cross-sectional view showing part of the probe unit according to this modification.
 本変形例に係るプローブユニットは、プローブ貫通部材123の構成において、変形例1に係るプローブユニットと相違する。 The probe unit according to this modified example differs from the probe unit according to modified example 1 in the configuration of the probe penetrating member 123 .
 本変形例に係るプローブ貫通部材123には、第一貫通孔126aが形成されている。プローブ貫通部材123は、互いに上下方向に離間して配置される複数のガイド部材123a、123c、123eを有する。複数のガイド部材123a、123c、123eの各々には、第一プローブ130が貫通する第一ガイド孔が形成されている。図35に示されるように、ガイド部材123aには、第一ガイド孔126aaが形成されている。また、ガイド部材123aの下方に配置されるガイド部材123cには、第一ガイド孔126caが形成されている。また、ガイド部材123cの下方に配置されるガイド部材123eには、第一ガイド孔126eaが形成されている。本変形例では、各ガイド部材は、電気絶縁性の材料で形成される。各ガイド部材は、例えば、芳香族ポリエステル、ナイロン、テフロン(登録商標)、ポリテトラフルオロエチレン等のフッ素樹脂、又は、セラミックスなどを用いることができる。第一プローブ130のうち各ガイド部材と接触する部分に絶縁膜が形成されている場合には、各ガイド部材として金属などの導電部材を用いることができる。 A first through hole 126a is formed in the probe penetrating member 123 according to this modified example. The probe penetrating member 123 has a plurality of guide members 123a, 123c, 123e that are spaced apart from each other in the vertical direction. A first guide hole through which the first probe 130 penetrates is formed in each of the plurality of guide members 123a, 123c, and 123e. As shown in FIG. 35, a first guide hole 126aa is formed in the guide member 123a. A first guide hole 126ca is formed in the guide member 123c arranged below the guide member 123a. A first guide hole 126ea is formed in the guide member 123e arranged below the guide member 123c. In this modification, each guide member is made of an electrically insulating material. For each guide member, for example, aromatic polyester, nylon, Teflon (registered trademark), fluorine resin such as polytetrafluoroethylene, or ceramics can be used. When an insulating film is formed on the portion of the first probe 130 that contacts each guide member, a conductive member such as metal can be used as each guide member.
 本変形例では、隣り合う二つのガイド部材の間にスペーサが配置されている。ガイド部材123aとガイド部材123cとの間には、スペーサ123bが配置されている。ガイド部材123cとガイド部材123eとの間には、スペーサ123dが配置されている。 In this modified example, a spacer is arranged between two adjacent guide members. A spacer 123b is arranged between the guide member 123a and the guide member 123c. A spacer 123d is arranged between the guide member 123c and the guide member 123e.
 スペーサ123bには、第一スペーサ孔126baが形成されており、スペーサ123dには、第一スペーサ孔126daが形成されている。 A first spacer hole 126ba is formed in the spacer 123b, and a first spacer hole 126da is formed in the spacer 123d.
 プローブ貫通部材123の第一貫通孔126aは、第一ガイド孔126aa、126ca、126eaと、第一スペーサ孔126ba、126daとを含む。つまり、第一プローブ130は、第一ガイド孔126aa、126ca、126eaと、第一スペーサ孔126ba、126daとを貫通する。第一ガイド孔126aa、126ca、126eaの各中心は水平方向で同じ位置(つまり、XY平面において同じ位置)にあり、貫通する第一プローブ130は、プローブ貫通部材123の底面に対して垂直となっている。 The first through hole 126a of the probe penetrating member 123 includes first guide holes 126aa, 126ca, 126ea and first spacer holes 126ba, 126da. That is, the first probe 130 passes through the first guide holes 126aa, 126ca, 126ea and the first spacer holes 126ba, 126da. The centers of the first guide holes 126aa, 126ca, and 126ea are at the same position in the horizontal direction (that is, at the same position on the XY plane), and the penetrating first probe 130 is perpendicular to the bottom surface of the probe penetrating member 123. ing.
 第一スペーサ孔126ba、126daの径は、第一ガイド孔126aa、126ca、126eaの径より大きい。これにより、第一プローブ130は、第一ガイド孔126aa、126ca、126eaにガイドされる。ここで、各ガイド部材の厚さを各スペーサの厚さより小さくすることで、第一プローブ130が第一貫通孔126a内でプローブ貫通部材123と接触する面積を低減できるため、プローブ貫通部材123との摩擦を低減できる。さらに摩擦を低減するためには、各ガイド部材の各第一貫通孔の周縁における角部(エッジ部)を無くしてもよい。 The diameters of the first spacer holes 126ba, 126da are larger than the diameters of the first guide holes 126aa, 126ca, 126ea. Thereby, the first probe 130 is guided to the first guide holes 126aa, 126ca, 126ea. Here, by making the thickness of each guide member smaller than the thickness of each spacer, the area where the first probe 130 contacts the probe penetrating member 123 in the first through hole 126a can be reduced. of friction can be reduced. In order to further reduce friction, corners (edges) may be eliminated from the periphery of each first through hole of each guide member.
 また、上下方向に配置された各ガイド部材に形成された各第一ガイド孔における第一プローブ130との隙間を十分に小さくすることで、第一プローブ130の傾きを低減できる。 Further, by sufficiently reducing the gap between the first probe 130 and the first guide hole formed in each guide member arranged in the vertical direction, the inclination of the first probe 130 can be reduced.
 また、各スペーサの厚さを第一プローブ130のばね定数に基づいて決定された所定の厚さ以下にすることで、第一プローブ130が各第一スペーサ孔で座屈することを抑制できる。 Also, by setting the thickness of each spacer to a predetermined thickness or less determined based on the spring constant of the first probe 130, it is possible to suppress the first probe 130 from buckling in each first spacer hole.
 なお、図示しないが、プローブ貫通部材123の第二貫通孔も第一貫通孔126aと同様の構成とすることができる。 Although not shown, the second through hole of the probe penetrating member 123 can also have the same configuration as the first through hole 126a.
 [1-8-3.変形例3]
 本実施の形態の変形例3に係るプローブユニットについて、図36を用いて説明する。図36は、本変形例に係るプローブユニットの一部を示す模式的な断面図である。
[1-8-3. Modification 3]
A probe unit according to Modification 3 of the present embodiment will be described with reference to FIG. FIG. 36 is a schematic cross-sectional view showing part of the probe unit according to this modification.
 本変形例に係るプローブユニットは、プローブ貫通部材223の構成において、変形例2に係るプローブユニットと相違する。 The probe unit according to this modified example differs from the probe unit according to modified example 2 in the configuration of the probe penetrating member 223 .
 プローブ貫通部材223は、互いに上下方向に離間して配置される複数のガイド部材223a、223cを有する。複数のガイド部材223a、223cの各々には、第一プローブ130が貫通する第一ガイド孔が形成されている。図36に示されるように、ガイド部材223aには、第一ガイド孔226aaが形成されている。また、ガイド部材223aの下方に配置されるガイド部材223cには、第一ガイド孔226caが形成されている。 The probe penetrating member 223 has a plurality of guide members 223a and 223c arranged apart from each other in the vertical direction. A first guide hole through which the first probe 130 penetrates is formed in each of the plurality of guide members 223a and 223c. As shown in FIG. 36, a first guide hole 226aa is formed in the guide member 223a. A first guide hole 226ca is formed in the guide member 223c arranged below the guide member 223a.
 本変形例では、隣り合う二つのガイド部材223aとガイド部材223cとの間にスペーサ223bが配置されている。スペーサ223bには、第一スペーサ孔226baが形成されている。 In this modified example, a spacer 223b is arranged between two adjacent guide members 223a and 223c. A first spacer hole 226ba is formed in the spacer 223b.
 プローブ貫通部材223の第一貫通孔226aは、第一ガイド孔226aa、226caと、第一スペーサ孔226baとを含む。つまり、第一プローブ130は、第一ガイド孔226aa、226caと、第一スペーサ孔226baとを貫通する。 The first through hole 226a of the probe penetrating member 223 includes first guide holes 226aa and 226ca and a first spacer hole 226ba. That is, the first probe 130 passes through the first guide holes 226aa and 226ca and the first spacer hole 226ba.
 第一スペーサ孔226baの径は、第一ガイド孔226aa、226caの径より大きい。これにより、第一プローブ130は、第一ガイド孔226aa、226caにガイドされる。また、変形例2に係るプローブ貫通部材123と同様に、各ガイド部材の厚さをスペーサ223bの厚さより小さくすることで、第一プローブ130が第一貫通孔226a内でプローブ貫通部材223と接触する面積を低減できるため、プローブ貫通部材223との摩擦を低減できる。 The diameter of the first spacer hole 226ba is larger than the diameter of the first guide holes 226aa and 226ca. Thereby, the first probe 130 is guided to the first guide holes 226aa and 226ca. Further, similarly to the probe penetrating member 123 according to Modification 2, by making the thickness of each guide member smaller than the thickness of the spacer 223b, the first probe 130 comes into contact with the probe penetrating member 223 in the first through hole 226a. Since the area to be covered can be reduced, friction with the probe penetrating member 223 can be reduced.
 本変形例では、複数のガイド部材のうちプローブ固定部材に最も近い(つまり、最も上に配置される)ガイド部材223aの第一ガイド孔226aaと第一プローブ130との隙間は、複数のガイド部材のうちプローブ固定部材から最も遠い(つまり、最も下に配置される)ガイド部材223cの第一ガイド孔226caと第一プローブ130との隙間より大きい。これにより、ガイド部材223cの第一ガイド孔226caによって、第一プローブ130の位置を精密に規制しつつ、ガイド部材223aと第一プローブ130との摩擦を低減できる。 In this modified example, the gap between the first guide hole 226aa of the guide member 223a closest to the probe fixing member (that is, arranged at the top) and the first probe 130 among the plurality of guide members is It is larger than the gap between the first probe 130 and the first guide hole 226ca of the guide member 223c furthest (that is, arranged at the bottom) from the probe fixing member. Thereby, the friction between the guide member 223a and the first probe 130 can be reduced while the position of the first probe 130 is precisely regulated by the first guide hole 226ca of the guide member 223c.
 また、本変形例では、複数のガイド部材のうちプローブ固定部材に最も近いガイド部材223aの厚さは、複数のガイド部材のうちプローブ固定部材から最も遠いガイド部材223cの厚さより大きい。ここで、上述したように、各プローブは、検査対象に押し付けられた場合に、空洞21vにおいて座屈する。このため、第一貫通孔226aに位置する第一プローブ130のうち、空洞21vに近い、つまり最も上に位置する部分において、第一プローブ130の座屈に伴う応力が大きくなる。本変形例のように、複数のガイド部材のうち最も上に配置されるガイド部材223aの厚さを大きくすることで、第一プローブ130の第一貫通孔226a内における上下方向に対する傾きを低減できる。 Also, in this modification, the guide member 223a closest to the probe fixing member among the plurality of guide members has a thickness larger than the guide member 223c farthest from the probe fixing member among the plurality of guide members. Here, as described above, each probe buckles in cavity 21v when pressed against the test object. Therefore, in the first probe 130 located in the first through hole 226a, the stress associated with the buckling of the first probe 130 increases in the portion near the cavity 21v, that is, in the uppermost portion. By increasing the thickness of the uppermost guide member 223a among the plurality of guide members as in this modified example, the inclination of the first probe 130 in the vertical direction in the first through hole 226a can be reduced. .
 なお、図示しないが、プローブ貫通部材223の第二貫通孔も第一貫通孔226aと同様の構成とすることができる。 Although not shown, the second through hole of the probe penetrating member 223 can also have the same configuration as the first through hole 226a.
 [1-8-4.変形例4]
 本実施の形態の変形例4に係るプローブユニットについて、図37を用いて説明する。図37は、本変形例に係るプローブユニットの一部を示す模式的な断面図である。
[1-8-4. Modification 4]
A probe unit according to Modification 4 of the present embodiment will be described with reference to FIG. FIG. 37 is a schematic cross-sectional view showing part of the probe unit according to this modification.
 本変形例に係るプローブユニットは、第一プローブ130aの構成において、変形例3に係るプローブユニットと相違する。 The probe unit according to this modification differs from the probe unit according to modification 3 in the configuration of the first probe 130a.
 第一プローブ130aは、導電体36と絶縁膜338とを有する。本変形例に係る絶縁膜338は、第一プローブ130aのうち各プローブ貫通部材223と接触する部分に絶縁膜338が形成されている。これにより、プローブ貫通部材223を介して、第一プローブ130aと他の導電部材との間で短絡が発生することを抑制できる。また、プローブ貫通部材223において導電部材を用いることができるため、プローブ貫通部材223において用いる材料の自由度を高めることができる。 The first probe 130 a has a conductor 36 and an insulating film 338 . The insulating film 338 according to this modified example is formed in a portion of the first probe 130 a that contacts each probe penetrating member 223 . As a result, it is possible to suppress the occurrence of a short circuit between the first probe 130a and another conductive member via the probe penetrating member 223 . Moreover, since a conductive member can be used for the probe penetrating member 223, the degree of freedom of the material used for the probe penetrating member 223 can be increased.
 なお、第二プローブも第一プローブ130aと同様の構成とすることができる。 The second probe can also have the same configuration as the first probe 130a.
 [1-8-5.変形例5]
 本実施の形態の変形例5に係るプローブユニットについて、図38を用いて説明する。図38は、本変形例に係るプローブユニットのプローブ貫通部材423の一部を示す模式的な上面図である。
[1-8-5. Modification 5]
A probe unit according to Modification 5 of the present embodiment will be described with reference to FIG. FIG. 38 is a schematic top view showing part of the probe penetrating member 423 of the probe unit according to this modification.
 本変形例に係るプローブユニットは、プローブ貫通部材423の第一貫通孔426aの構成において、上述したプローブユニット20と相違する。 The probe unit according to this modification differs from the probe unit 20 described above in the configuration of the first through hole 426 a of the probe penetrating member 423 .
 本変形例に係るプローブ貫通部材423は、第一貫通孔426aを囲む第一内壁426wを有する。プローブ貫通部材423の上面視において、第一内壁426wは、第一貫通孔に向かって滑らかに突出する1以上の第一凸部426Pを有する。これにより、第一内壁426wと、第一プローブ30との接触面積を低減できる。したがって、プローブ貫通部材423と第一プローブ30との間の摩擦を低減できる。また、第一凸部426Pが滑らかに突出し、角部を有さないため、第一プローブ30と第一内壁426wとの間の摩耗を低減できる。また、第一プローブ30が第一凸部426Pによって削られることでダストが発生して、検査対象に付着し、検査後の特性変化を引き起こすことを低減できる。 A probe penetrating member 423 according to this modified example has a first inner wall 426w surrounding a first through hole 426a. In a top view of the probe penetrating member 423, the first inner wall 426w has one or more first protrusions 426P that smoothly protrude toward the first through hole. Thereby, the contact area between the first inner wall 426w and the first probe 30 can be reduced. Therefore, friction between the probe penetrating member 423 and the first probe 30 can be reduced. In addition, since the first convex portion 426P protrudes smoothly and does not have corners, abrasion between the first probe 30 and the first inner wall 426w can be reduced. In addition, it is possible to reduce the occurrence of dust generated by scraping the first probe 30 by the first convex portion 426P, adhering to the inspection target, and causing a characteristic change after the inspection.
 [1-8-6.変形例6]
 本実施の形態の変形例6に係るプローブユニットについて、図39を用いて説明する。図39は、本変形例に係るプローブユニットのプローブ貫通部材23の一部を示す模式的な上面図である。
[1-8-6. Modification 6]
A probe unit according to Modification 6 of the present embodiment will be described with reference to FIG. FIG. 39 is a schematic top view showing part of the probe penetrating member 23 of the probe unit according to this modification.
 本変形例に係るプローブユニットは、第一プローブ430の構成において、上述したプローブユニット20と相違する。 The probe unit according to this modification differs from the probe unit 20 described above in the configuration of the first probe 430 .
 本変形例に係る第一プローブ430は、矩形状の断面形状を有する。これにより、第一貫通孔26aにおけるプローブ貫通部材23と第一プローブ430との接触面積を低減できる。したがって、プローブ貫通部材23と第一プローブ430との間の摩擦を低減できる。第一プローブ430の断面の角部は、滑らかな曲線状となるように形成されていてもよい。これにより、第一プローブ430及びプローブ貫通部材23の摩耗を低減できる。この第一プローブ430は、矩形状の断面形状を有しているため、平板からのエッチング加工あるいは切断加工により容易に作成しうる。これは、特に後述の実施の形態4のようなプローブユニットにおいても用いることができる。 The first probe 430 according to this modified example has a rectangular cross-sectional shape. Thereby, the contact area between the probe penetrating member 23 and the first probe 430 in the first through hole 26a can be reduced. Therefore, friction between the probe penetrating member 23 and the first probe 430 can be reduced. The corners of the cross section of the first probe 430 may be formed in a smooth curved shape. Thereby, the wear of the first probe 430 and the probe penetrating member 23 can be reduced. Since the first probe 430 has a rectangular cross-sectional shape, it can be easily produced by etching or cutting a flat plate. This can also be used particularly in a probe unit as in Embodiment 4, which will be described later.
 [1-8-7.変形例7]
 本実施の形態の変形例7に係るプローブユニットについて、図40を用いて説明する。図40は、本変形例に係るプローブユニットの一部を示す模式的な断面図である。図40には、検査対象の一例として半導体レーザ装置80も併せて示されている。
[1-8-7. Modification 7]
A probe unit according to Modification 7 of the present embodiment will be described with reference to FIG. FIG. 40 is a schematic cross-sectional view showing part of the probe unit according to this modification. FIG. 40 also shows a semiconductor laser device 80 as an example of an object to be inspected.
 本変形例に係るプローブユニットは、ユニット本体521及び第二プローブ140の構成において、変形例1に係るプローブユニットと相違する。 The probe unit according to this modified example differs from the probe unit according to modified example 1 in the configuration of the unit main body 521 and the second probe 140 .
 本変形例に係る第二プローブ140は、導電体46と、絶縁膜48とを有する。導電体46は、第一プローブ130の導電体36と同一の構成を有し、絶縁膜48は、第一プローブ130の絶縁膜38と同一の構成を有する。つまり、第一プローブ130と第二プローブ140とは、同一の構成を有する。 A second probe 140 according to this modified example has a conductor 46 and an insulating film 48 . The conductor 46 has the same configuration as the conductor 36 of the first probe 130 , and the insulating film 48 has the same configuration as the insulating film 38 of the first probe 130 . That is, the first probe 130 and the second probe 140 have the same configuration.
 ユニット本体521は、プローブ貫通部材523と、プローブ固定部材524とを有する。 The unit main body 521 has a probe penetrating member 523 and a probe fixing member 524 .
 プローブ貫通部材523は、検査対象と対向する対向面521uと、対向面521uの裏側の第一上面523a及び第二上面523bとを有する。プローブ貫通部材523には、第一貫通孔526aと、第二貫通孔526bとが形成されている。第一貫通孔526aは、第一上面523aから対向面521uまでを上下方向に貫通する。第二貫通孔526bは、第二上面523bから対向面521uまでを上下方向に貫通する。第一貫通孔526aの径は、第一プローブ130の導電体36の径より大きく、第一プローブ130のうち絶縁膜38が形成された部分の径よりも小さい。第二貫通孔526bの径は、第二プローブ140の導電体46の径より大きく、第二プローブ140のうち絶縁膜48が形成された部分の径よりも小さい。第一プローブ130のうち絶縁膜38が形成された部分の下端は、第一貫通孔526aの上面(第一上面523a)に接している。また、第二プローブ140のうち絶縁膜48が形成された部分の下端は、第二貫通孔526bの上面(第二上面523b)に接している。図40に示されるように、第一上面523aと第二上面523bとは上下方向位置が異なり、第二上面523bの方が、第一上面523aより上方に位置する。 The probe penetrating member 523 has a facing surface 521u that faces the object to be inspected, and a first upper surface 523a and a second upper surface 523b on the back side of the facing surface 521u. The probe penetrating member 523 is formed with a first through hole 526a and a second through hole 526b. The first through hole 526a penetrates vertically from the first upper surface 523a to the opposing surface 521u. The second through hole 526b vertically penetrates from the second upper surface 523b to the opposing surface 521u. The diameter of the first through hole 526a is larger than the diameter of the conductor 36 of the first probe 130 and smaller than the diameter of the portion of the first probe 130 where the insulating film 38 is formed. The diameter of the second through hole 526b is larger than the diameter of the conductor 46 of the second probe 140 and smaller than the diameter of the portion of the second probe 140 where the insulating film 48 is formed. The lower end of the portion of the first probe 130 where the insulating film 38 is formed is in contact with the upper surface (first upper surface 523a) of the first through hole 526a. Also, the lower end of the portion of the second probe 140 where the insulating film 48 is formed is in contact with the upper surface (second upper surface 523b) of the second through hole 526b. As shown in FIG. 40, the first upper surface 523a and the second upper surface 523b are different in vertical position, and the second upper surface 523b is located above the first upper surface 523a.
 プローブ固定部材524は、プローブ貫通部材523と対向する第一下面524a及び第二下面524bと、それらの裏側の上面521tとを有する。プローブ固定部材524には、第一固定用孔527aと、第二固定用孔527bとが形成されている。第一固定用孔527aは、上面521tから第一下面524aまでを上下方向に貫通する。第二固定用孔527bは、上面521tから第二下面524bまでを上下方向に貫通する。第一固定用孔527aの径は、第一プローブ130の導電体36の径より大きく、第一プローブ130のうち絶縁膜38が形成された部分の径よりも小さい。第二固定用孔527bの径は、第二プローブ140の導電体46の径より大きく、第二プローブ140のうち絶縁膜48が形成された部分の径よりも小さい。第一プローブ130のうち絶縁膜38が形成された部分の上端は、第一固定用孔527aの下面(第一下面524a)に接している。第二プローブ140のうち絶縁膜48が形成された部分の上端は、第二固定用孔527bの下面(第二下面524b)に接している。図40に示されるように、第一下面524aと第二下面524bとは上下方向位置が異なり、第二下面524bの方が、第一下面524aより上方に位置する。 The probe fixing member 524 has a first lower surface 524a and a second lower surface 524b facing the probe penetrating member 523, and an upper surface 521t on the back side thereof. The probe fixing member 524 is formed with a first fixing hole 527a and a second fixing hole 527b. The first fixing hole 527a vertically penetrates from the upper surface 521t to the first lower surface 524a. The second fixing hole 527b vertically penetrates from the upper surface 521t to the second lower surface 524b. The diameter of the first fixing hole 527a is larger than the diameter of the conductor 36 of the first probe 130 and smaller than the diameter of the portion of the first probe 130 where the insulating film 38 is formed. The diameter of the second fixing hole 527b is larger than the diameter of the conductor 46 of the second probe 140 and smaller than the diameter of the portion of the second probe 140 where the insulating film 48 is formed. The upper end of the portion of the first probe 130 on which the insulating film 38 is formed is in contact with the lower surface (first lower surface 524a) of the first fixing hole 527a. The upper end of the portion of the second probe 140 on which the insulating film 48 is formed is in contact with the lower surface (second lower surface 524b) of the second fixing hole 527b. As shown in FIG. 40, the first lower surface 524a and the second lower surface 524b have different vertical positions, and the second lower surface 524b is located above the first lower surface 524a.
 本変形例では、第一プローブ130と第二プローブ140とが同一の構成を有するため、第一プローブ130の下端131側の絶縁膜38が形成されていない部分の長さと、第二プローブ140の下端141側の絶縁膜48が形成されていない部分の長さも等しい。したがって、プローブ貫通部材523の第一上面523aと第二上面523bとの高さの差によって、第一プローブ130の下端131の上下方向位置及び第二プローブ140の下端141の上下方向位置の差が決定される。これにより、第一上面523aと第二上面523bとの高さの差を調整することによって、第一プローブ130の下端131の上下方向位置及び第二プローブ140の下端141の上下方向位置の差を調整できる。 In this modification, since the first probe 130 and the second probe 140 have the same configuration, the length of the portion where the insulating film 38 is not formed on the lower end 131 side of the first probe 130 and the length of the second probe 140 The length of the portion where the insulating film 48 is not formed on the lower end 141 side is also equal. Therefore, due to the difference in height between the first upper surface 523a and the second upper surface 523b of the probe penetrating member 523, the difference in the vertical position of the lower end 131 of the first probe 130 and the vertical position of the lower end 141 of the second probe 140 is It is determined. Accordingly, by adjusting the height difference between the first upper surface 523a and the second upper surface 523b, the difference in the vertical position of the lower end 131 of the first probe 130 and the vertical position of the lower end 141 of the second probe 140 can be adjusted. Adjustable.
 プローブ貫通部材523の第一上面523aと第二上面523bとの高さの差は、プローブ固定部材524の第一下面524aと第二下面524bとの高さの差と等しくてもよい。また、プローブ貫通部材523の第一上面523aからプローブ固定部材524の第一下面524aまでの長さ、及び、プローブ貫通部材523の第二上面523bからプローブ固定部材524の第二下面524bまでの長さは、第一プローブ130の絶縁膜38で覆われている部分の長さ(つまり、第二プローブ140の絶縁膜48で覆われている部分の長さ)と等しくてもよい。これにより、プローブ固定部材524に対する各プローブの相対位置を各絶縁膜によって調整(つまり位置決め)できる。 The height difference between the first upper surface 523 a and the second upper surface 523 b of the probe penetrating member 523 may be equal to the height difference between the first lower surface 524 a and the second lower surface 524 b of the probe fixing member 524 . Also, the length from the first upper surface 523a of the probe penetrating member 523 to the first lower surface 524a of the probe fixing member 524, and the length from the second upper surface 523b of the probe penetrating member 523 to the second lower surface 524b of the probe fixing member 524 The length may be equal to the length of the portion of the first probe 130 covered with the insulating film 38 (that is, the length of the portion of the second probe 140 covered with the insulating film 48). Thereby, the relative position of each probe with respect to the probe fixing member 524 can be adjusted (that is, positioned) by each insulating film.
 [1-8-8.変形例8]
 本実施の形態の変形例8に係るプローブユニットについて、図41~図43を用いて説明する。図41~図43は、本変形例に係るプローブユニットの各プローブの構成を示す模式的な側面図である。図41~図43には、高さ調整部材50と、検査対象の一例である半導体レーザ装置80とが併せて示されている。
[1-8-8. Modification 8]
A probe unit according to Modification 8 of the present embodiment will be described with reference to FIGS. 41 to 43. FIG. 41 to 43 are schematic side views showing the configuration of each probe of the probe unit according to this modified example. FIGS. 41 to 43 also show the height adjusting member 50 and a semiconductor laser device 80 as an example of an object to be inspected.
 第一プローブ30の対向面21uから突出する部分の長さL1、及び、第二プローブ40の対向面21uから突出する部分の長さL2と、高さ調整部材50の高さHと、半導体レーザ装置80のサブマウント84の下面から第一電極までの高さd1、及び、サブマウント84の下面から素子82の第二電極までの高さd2との関係として、種々の例が想定される。 The length L1 of the portion protruding from the facing surface 21u of the first probe 30, the length L2 of the portion protruding from the facing surface 21u of the second probe 40, the height H of the height adjustment member 50, and the semiconductor laser Various examples are conceivable for the relationship between the height d1 from the lower surface of the submount 84 of the device 80 to the first electrode and the height d2 from the lower surface of the submount 84 to the second electrode of the element 82 .
 例えば、図41に示されるように、以下の式(8)が成立する場合があり得る。 For example, as shown in FIG. 41, the following formula (8) may hold.
   L1>L2>H                     (8)    L1>L2>H (8)
 また、図42に示されるように、以下の式(9)が成立する場合があり得る。 Also, as shown in FIG. 42, the following equation (9) may hold.
   L1>H>L2                     (9)    L1>H>L2                   (9)
 また、図43に示されるように、以下の式(10)が成立する場合があり得る。 Also, as shown in FIG. 43, the following formula (10) may hold.
   H>L1>L2                    (10)    H>L1>L2                  (10)
 上記いずれの場合にも以下の式(11)が成り立てば、半導体レーザ装置80と対向面21uとが物理的に干渉することなく、高さ調整部材50をステージ70に接触させることができる。 In any of the above cases, if the following formula (11) holds, the height adjusting member 50 can be brought into contact with the stage 70 without physical interference between the semiconductor laser device 80 and the facing surface 21u.
   H>d2>d1                    (11)    H>d2>d1                  (11)
 なお、図41~図43には、高さ調整部材50をステージ70に接触させた状態における半導体レーザ装置80の高さ調整部材50に対する相対位置が破線で示されている。図41~図43に示されるように、半導体レーザ装置80と対向面21uとが物理的に干渉することなく、高さ調整部材50をステージ70に接触させることができる。 41 to 43 show the relative position of the semiconductor laser device 80 with respect to the height adjustment member 50 when the height adjustment member 50 is in contact with the stage 70 by dashed lines. As shown in FIGS. 41 to 43, the height adjustment member 50 can be brought into contact with the stage 70 without physical interference between the semiconductor laser device 80 and the facing surface 21u.
 [1-8-9.変形例9]
 本実施の形態の変形例9に係るプローブユニットについて、図44を用いて説明する。図44は、本変形例に係るプローブユニットの一部を示す模式的な断面図である。図44には、検査対象の一例として半導体レーザ装置80の詳細構成も併せて示されている。
[1-8-9. Modification 9]
A probe unit according to Modification 9 of the present embodiment will be described with reference to FIG. 44 . FIG. 44 is a schematic cross-sectional view showing part of the probe unit according to this modification. FIG. 44 also shows a detailed configuration of a semiconductor laser device 80 as an example of an inspection target.
 本変形例に係るプローブユニットは、第一プローブ230、第二プローブ240、及びユニット本体621の構成において、上記プローブユニット20と相違する。 The probe unit according to this modification differs from the probe unit 20 in the configurations of the first probe 230, the second probe 240, and the unit main body 621.
 半導体レーザ装置80は、図44に示されるように、サブマウント84と、素子82とを有する。サブマウント84は、下面84bと、下面84bの裏側の上面84aとを有する。サブマウント84の上面84aには、第一電極85が配置されている。 The semiconductor laser device 80 has a submount 84 and an element 82, as shown in FIG. The submount 84 has a lower surface 84b and an upper surface 84a behind the lower surface 84b. A first electrode 85 is arranged on the upper surface 84 a of the submount 84 .
 素子82は、素子下面82bと、素子下面82bの裏側の素子上面82aとを有する。素子82は、サブマウント84の上面84aに配置される。素子82は、素子上面82aに第二電極83が配置されている。 The element 82 has an element lower surface 82b and an element upper surface 82a behind the element lower surface 82b. Element 82 is positioned on top surface 84 a of submount 84 . The element 82 has a second electrode 83 arranged on an upper surface 82a of the element.
 なお、上述の各半導体レーザ装置80も図44に示されるような詳細構成を有する。 Each semiconductor laser device 80 described above also has a detailed configuration as shown in FIG.
 本変形例では、第一プローブ230及び第二プローブ240の弾性係数が同一である。例えば、第一プローブ230及び第二プローブ240は、同一の材料で形成されていてもよい。また、第二プローブ240は第一プローブ230より細くてもよい。これにより、第二プローブ240のばね定数は、第一プローブ230のばね定数より小さくなるため、第二プローブ240が接触する第二電極83の損傷を低減できる。 In this modified example, the elastic modulus of the first probe 230 and the second probe 240 are the same. For example, first probe 230 and second probe 240 may be made of the same material. Also, the second probe 240 may be thinner than the first probe 230 . As a result, the spring constant of the second probe 240 becomes smaller than the spring constant of the first probe 230, so damage to the second electrode 83 with which the second probe 240 contacts can be reduced.
 ユニット本体621は、プローブ貫通部材623と、プローブ固定部材624とを有する。 The unit main body 621 has a probe penetrating member 623 and a probe fixing member 624 .
 プローブ貫通部材623は、検査対象と対向する対向面621uと、対向面621uの裏側の第一上面623a及び第二上面623bとを有する。プローブ貫通部材623には、第一貫通孔626aと、第二貫通孔626bとが形成されている。第一貫通孔626aは、第一上面623aから対向面621uまでを上下方向に貫通する。第二貫通孔626bは、第二上面623bから対向面621uまでを上下方向に貫通する。本変形例では、図44に示されるように、第一上面623aと第二上面623bとは上下方向位置が同一である。 The probe penetrating member 623 has a facing surface 621u that faces the object to be inspected, and a first upper surface 623a and a second upper surface 623b on the back side of the facing surface 621u. The probe penetrating member 623 is formed with a first through hole 626a and a second through hole 626b. The first through hole 626a penetrates vertically from the first upper surface 623a to the opposing surface 621u. The second through hole 626b penetrates vertically from the second upper surface 623b to the opposing surface 621u. In this modified example, as shown in FIG. 44, the first upper surface 623a and the second upper surface 623b have the same vertical position.
 プローブ固定部材624は、プローブ貫通部材623と対向する第一下面624a及び第二下面624bと、それらの裏側の上面621tとを有する。プローブ固定部材624には、第一固定用孔627aと、第二固定用孔627bとが形成されている。第一固定用孔627aは、上面621tから第一下面624aまでを上下方向に貫通する。第二固定用孔627bは、上面621tから第二下面624bまでを上下方向に貫通する。図44に示されるように、第一下面624aと第二下面624bとは上下方向位置が異なり、第二下面624bの方が、第一下面624aより上方に位置する。 The probe fixing member 624 has a first lower surface 624a and a second lower surface 624b facing the probe penetrating member 623, and an upper surface 621t on the back side thereof. The probe fixing member 624 is formed with a first fixing hole 627a and a second fixing hole 627b. The first fixing hole 627a vertically penetrates from the upper surface 621t to the first lower surface 624a. The second fixing hole 627b vertically penetrates from the upper surface 621t to the second lower surface 624b. As shown in FIG. 44, the first lower surface 624a and the second lower surface 624b have different vertical positions, and the second lower surface 624b is located above the first lower surface 624a.
 ユニット本体621が以上のような構成を有することにより、第二プローブ240のプローブ固定部材624からプローブ貫通部材623までの長さは、第一プローブ230のプローブ固定部材624からプローブ貫通部材623までの長さより長くてもよい。これにより、第一プローブ230より、第二プローブ240の方が座屈しやすくなる。言い換えると、第二プローブ240のばね定数は、第一プローブ230のばね定数より小さくなる。これにより、第二プローブ240の座屈を伴う弾性復元力を低減できるため、第二プローブ240が接触する第二電極83の損傷を低減できる。 With the unit main body 621 configured as described above, the length from the probe fixing member 624 of the second probe 240 to the probe penetrating member 623 is the length from the probe fixing member 624 of the first probe 230 to the probe penetrating member 623. It can be longer than the length. This makes it easier for the second probe 240 to buckle than for the first probe 230 . In other words, the spring constant of second probe 240 is smaller than the spring constant of first probe 230 . As a result, the elastic restoring force that accompanies the buckling of the second probe 240 can be reduced, so damage to the second electrode 83 with which the second probe 240 contacts can be reduced.
 なお、図44に示される例では、第一上面623aと第二上面623bとは上下方向位置が同一であったが、第二上面623bを第一上面623aより下方に配置してもよい。これにより、第二プローブ240のプローブ固定部材624からプローブ貫通部材623までの長さをより一層長くできる。したがって、第二プローブ240の座屈を伴う弾性復元力をより一層低減できる。 In the example shown in FIG. 44, the first upper surface 623a and the second upper surface 623b have the same vertical position, but the second upper surface 623b may be arranged below the first upper surface 623a. Thereby, the length from the probe fixing member 624 of the second probe 240 to the probe penetrating member 623 can be further increased. Therefore, the elastic restoring force accompanying buckling of the second probe 240 can be further reduced.
 [1-8-10.変形例10]
 本実施の形態の変形例10に係るプローブユニットについて、図45を用いて説明する。図45は、本変形例に係るプローブユニットの一部を示す模式的な断面図である。図45には、検査対象の一例として半導体レーザ装置80の詳細構成も併せて示されている。
[1-8-10. Modification 10]
A probe unit according to Modification 10 of the present embodiment will be described with reference to FIG. FIG. 45 is a schematic cross-sectional view showing part of the probe unit according to this modification. FIG. 45 also shows a detailed configuration of a semiconductor laser device 80 as an example of an inspection target.
 本変形例に係るプローブユニットは、第一プローブ330、及び第二プローブ340の構成において、変形例9に係るプローブユニットと相違する。 The probe unit according to this modified example differs from the probe unit according to modified example 9 in the configuration of the first probe 330 and the second probe 340 .
 本変形例に係る第二プローブ340の下端341の曲率半径は、第一プローブ330の下端331の曲率半径より大きい。 The radius of curvature of the lower end 341 of the second probe 340 according to this modification is larger than the radius of curvature of the lower end 331 of the first probe 330 .
 これにより、第二プローブ340の下端341が半導体レーザ装置80の第二電極83を押す圧力を低減できる。したがって、第二電極83の損傷を低減できる。 Thereby, the pressure that the lower end 341 of the second probe 340 presses against the second electrode 83 of the semiconductor laser device 80 can be reduced. Therefore, damage to the second electrode 83 can be reduced.
 さらに、第二プローブ340は第一プローブ330より細くてもよい。これにより、第二プローブ340のばね定数は、第一プローブ330のばね定数より小さくなるため、第二プローブ340が接触する第二電極83の損傷をより一層低減できる。 Furthermore, the second probe 340 may be thinner than the first probe 330. As a result, the spring constant of the second probe 340 becomes smaller than the spring constant of the first probe 330, so damage to the second electrode 83 with which the second probe 340 contacts can be further reduced.
 [1-8-11.実施例]
 本実施の形態のプローブユニット20の貫通部材傾斜面21s、及びステージ70のステージ傾斜面70sの実施例について、図46~図50を用いて説明する。図46及び図47は、それぞれ本実施の形態に係る貫通部材傾斜面21s、及びステージ傾斜面70sの第一の実施例を示す模式的な斜視図及び断面図である。図47は、図46に一点鎖線で示された断面を表す。図48は、本実施の形態に係る貫通部材傾斜面21s、及びステージ傾斜面70sの第二の実施例を示す模式的な断面図である。図49は、本実施の形態に係る貫通部材傾斜面21s、及びステージ傾斜面70sの第三の実施例を示す模式的な斜視図である。図50は、本実施の形態に係る貫通部材傾斜面21sの第四の実施例を示す模式的な断面図である。
[1-8-11. Example]
Examples of the penetrating member inclined surface 21s of the probe unit 20 of the present embodiment and the stage inclined surface 70s of the stage 70 will be described with reference to FIGS. 46 to 50. FIG. 46 and 47 are a schematic perspective view and a cross-sectional view, respectively, showing a first example of a penetrating member inclined surface 21s and a stage inclined surface 70s according to this embodiment. FIG. 47 represents the cross section indicated by the dashed line in FIG. FIG. 48 is a schematic cross-sectional view showing a second example of the penetrating member inclined surface 21s and the stage inclined surface 70s according to the present embodiment. FIG. 49 is a schematic perspective view showing a third example of the penetrating member inclined surface 21s and the stage inclined surface 70s according to the present embodiment. FIG. 50 is a schematic cross-sectional view showing a fourth example of the penetrating member inclined surface 21s according to the present embodiment.
 図46及び図47に示されるように、第一の実施例においては、対向面21uのうち半導体レーザ装置80からのレーザ光LBと対向する部分に平面状(つまり平坦な)の貫通部材傾斜面21sが形成されている。また、載置面70aのうち半導体レーザ装置80からのレーザ光LBと対向する部分に平面状のステージ傾斜面70sが形成されている。 As shown in FIGS. 46 and 47, in the first embodiment, a planar (that is, flat) penetrating member inclined surface is formed on a portion of the facing surface 21u that faces the laser beam LB from the semiconductor laser device 80. As shown in FIGS. 21s are formed. A planar stage inclined surface 70s is formed in a portion of the mounting surface 70a facing the laser beam LB from the semiconductor laser device 80. As shown in FIG.
 また、図47に示されるように、レーザ光LBの上下方向における発散角αに応じて、貫通部材傾斜面21sの及びステージ傾斜面70sの(上下方向に対して垂直な水平面に対する)傾斜角度β2を決定してもよい。例えば、半導体レーザ装置80の素子82としてGaN系、又はAlGaInAsP系で、発散角αが46度程度の半導体レーザ素子を用いる場合、傾斜角度β2を23度程度に設定してもよい。 Further, as shown in FIG. 47, the inclination angle β2 of the penetrating member inclined surface 21s and the stage inclined surface 70s (with respect to the horizontal plane perpendicular to the vertical direction) varies depending on the vertical divergence angle α of the laser beam LB. may be determined. For example, when a GaN-based or AlGaInAsP-based semiconductor laser element having a divergence angle α of about 46 degrees is used as the element 82 of the semiconductor laser device 80, the tilt angle β2 may be set to about 23 degrees.
 なお、図48に示される第二の実施例のように、傾斜角度β2を大きくしてもよい。これにより、測定装置90などが、ステージ70及びプローブユニット20と物理的に干渉することを低減できる。例えば、傾斜角度β2は、45度以上であってもよい。 It should be noted that the inclination angle β2 may be increased as in the second embodiment shown in FIG. This can reduce the physical interference of the measuring device 90 and the like with the stage 70 and the probe unit 20 . For example, the tilt angle β2 may be 45 degrees or more.
 一方で、傾斜角度β2は、45度以下であってもよい。これにより、半導体レーザ装置80からステージ70に拡散する熱の経路を最大限に確保できる。したがって、ステージ70の放熱特性を高めることができる。 On the other hand, the inclination angle β2 may be 45 degrees or less. As a result, a maximum path for heat diffusion from the semiconductor laser device 80 to the stage 70 can be ensured. Therefore, the heat dissipation characteristics of the stage 70 can be enhanced.
 また、図49に示される第三の実施例のように、貫通部材傾斜面21s及びステージ傾斜面70sは、レーザ光LBの上下方向の発散角α1及び水平方向の発散角α2に合わせて曲面状の形状を有してもよい。図49に示される例では、貫通部材傾斜面21s及びステージ傾斜面70sは、半導体レーザ装置80の発光点を頂点とする楕円錐の側面状の形状を有する。 Further, as in the third embodiment shown in FIG. 49, the penetrating member inclined surface 21s and the stage inclined surface 70s are curved in accordance with the vertical divergence angle α1 and the horizontal divergence angle α2 of the laser beam LB. may have the shape of In the example shown in FIG. 49, the penetrating member inclined surface 21s and the stage inclined surface 70s have a side shape of an elliptical cone with the light emitting point of the semiconductor laser device 80 as the apex.
 また、図50に示される第四の実施例のように、対向面21uが貫通部材傾斜面21sを有する場合、第一プローブ30が貫通する第一貫通孔26aが貫通部材傾斜面21sを貫通してもよい。同様に、第二プローブ40が貫通する第二貫通孔26bが貫通部材傾斜面21sを貫通してもよい。 50, when the facing surface 21u has the penetrating member inclined surface 21s, the first through hole 26a through which the first probe 30 penetrates penetrates the penetrating member inclined surface 21s. may Similarly, the second through hole 26b through which the second probe 40 penetrates may penetrate through the penetrating member inclined surface 21s.
 (実施の形態2)
 実施の形態2に係るプローブユニットについて説明する。本実施の形態に係るプローブユニットは、各プローブの形状において、実施の形態1に係るプローブユニット20と相違する。以下、本実施の形態に係るプローブユニットについて、実施の形態1に係るプローブユニット20との相違点を中心に図51~図53を用いて説明する。
(Embodiment 2)
A probe unit according to Embodiment 2 will be described. The probe unit according to this embodiment differs from the probe unit 20 according to the first embodiment in the shape of each probe. The probe unit according to the present embodiment will be described below with reference to FIGS. 51 to 53, focusing on differences from the probe unit 20 according to the first embodiment.
 図51及び図52は、それぞれ、本実施の形態に係るプローブユニット720の構成を示す模式的な上面図、及び断面図である。図52には、図51に示されるXXXXXII-XXXXXII線における断面が示されている。図53は、本実施の形態に係るプローブユニット720に配置された高さ調整部材50をステージ70に接触させた状態を示す模式的な断面図である。 51 and 52 are a schematic top view and a cross-sectional view, respectively, showing the configuration of the probe unit 720 according to this embodiment. FIG. 52 shows a cross section taken along line XXXXXII--XXXXXII shown in FIG. FIG. 53 is a schematic cross-sectional view showing a state in which the height adjustment member 50 arranged in the probe unit 720 according to this embodiment is brought into contact with the stage 70. FIG.
 図51及び図52に示されるように、本実施の形態に係るプローブユニット720は、第一プローブ30及び第二プローブ40の形状において、実施の形態1に係るプローブユニット20と相違する。 As shown in FIGS. 51 and 52, the probe unit 720 according to this embodiment differs from the probe unit 20 according to Embodiment 1 in the shapes of the first probe 30 and the second probe 40. FIG.
 本実施の形態に係る第一プローブ30は、上面視において、第一プローブ30の下端31から第一偏位向きに偏位している第一偏位部34を有する。本実施の形態では、第一偏位向きは、Y軸方向正向きである。第一偏位部34は、第一プローブ30の上端32を含み、上下方向に対してY軸方向正向きに傾いている。 The first probe 30 according to the present embodiment has a first deviation portion 34 that is deviated in the first deviation direction from the lower end 31 of the first probe 30 when viewed from above. In this embodiment, the first deflection direction is the positive Y-axis direction. The first deflection portion 34 includes the upper end 32 of the first probe 30 and is inclined in the positive Y-axis direction with respect to the vertical direction.
 本実施の形態に係る第二プローブ40は、上面視において、第二プローブ40の下端41から第二偏位向きに偏位している第二偏位部44を有する。本実施の形態では、第二偏位向きは、Y軸方向負向きである。第二偏位部44は、第二プローブ40の上端42を含み、上下方向に対してY軸方向負向きに傾いている。 The second probe 40 according to the present embodiment has a second deviation portion 44 that is deviated in the second deviation direction from the lower end 41 of the second probe 40 when viewed from above. In this embodiment, the second deflection direction is the Y-axis negative direction. The second offset portion 44 includes the upper end 42 of the second probe 40 and is inclined in the Y-axis direction negative with respect to the vertical direction.
 このような構成を実現するために、プローブユニット720のプローブ固定部材24に形成された第一固定用孔27aは、第一貫通孔26aの直上からずれた位置に配置されてもよいし、上下方向に対して傾いた方向に延在してもよい。同様に、第二固定用孔27bは、第二貫通孔26bの直上からずれた位置に配置されてもよいし、上下方向に対して傾いた方向に延在してもよい。 In order to realize such a configuration, the first fixing hole 27a formed in the probe fixing member 24 of the probe unit 720 may be arranged at a position shifted from directly above the first through hole 26a, You may extend in the direction inclined with respect to the direction. Similarly, the second fixing hole 27b may be arranged at a position shifted from directly above the second through hole 26b, or may extend in a direction inclined with respect to the vertical direction.
 以上のように、第一プローブ30及び第二プローブ40が、検査対象と接触することなしに、予め曲げられている。これにより、各プローブを座屈しやすくすることができるため、各プローブの下端の変位量に対する弾性復元力の線形性を高めることができる。つまり、各プローブのばね定数の変位量依存性を低減できる。したがって、弾性復元力の大きさを制御しやすくなる。また、各プローブが予め曲げられているため、各プローブの座屈の方向を制御できる。 As described above, the first probe 30 and the second probe 40 are pre-bent without coming into contact with the test object. As a result, each probe can be easily buckled, so that the linearity of the elastic restoring force with respect to the amount of displacement of the lower end of each probe can be enhanced. In other words, the dependence of the spring constant of each probe on the amount of displacement can be reduced. Therefore, it becomes easier to control the magnitude of the elastic restoring force. Also, since each probe is pre-bent, the direction of buckling of each probe can be controlled.
 また、本実施の形態では、第一偏位向き及び第二偏位向きは、第一プローブ30及び第二プローブ40の配列方向とは、非平行である。図53に示されるように、第一プローブ30の座屈の方向は、第一偏位向きに平行となり、第二プローブ40の座屈の方向は、第二偏位向きに平行となるため、座屈によって、第一プローブ30及び第二プローブ40がそれらの配列方向に偏位することを抑制できる。したがって、第一プローブ30と第二プローブ40とが接触することを抑制できる。また、本実施の形態では、第一偏位向きは、第二偏位向きに対して逆向きである。これにより、図53に示されるように、座屈によって第一プローブ30が変位する向き(Y軸方向負向き)と、座屈によって第二プローブ40が変位する向き(Y軸方向正向き)が逆向きになるため、第一プローブ30と第二プローブ40とが座屈したときに、接触することを抑制できる。 Also, in the present embodiment, the first deflection direction and the second deflection direction are non-parallel to the arrangement directions of the first probes 30 and the second probes 40 . As shown in FIG. 53, the direction of buckling of the first probe 30 is parallel to the first deflection direction, and the direction of buckling of the second probe 40 is parallel to the second deflection direction, The buckling can suppress the displacement of the first probe 30 and the second probe 40 in their arrangement direction. Therefore, contact between the first probe 30 and the second probe 40 can be suppressed. Also, in this embodiment, the first deflection direction is opposite to the second deflection direction. As a result, as shown in FIG. 53, the direction in which the first probe 30 is displaced by buckling (negative direction in the Y-axis direction) and the direction in which the second probe 40 is displaced by buckling (positive direction in the Y-axis direction) are different. Since the directions are reversed, contact can be suppressed when the first probe 30 and the second probe 40 are buckled.
 また、第一プローブ30は、第一偏位向きに平行な方向における振動を抑制することができ、第二プローブ40は、第二偏位向きに平行な方向における振動を抑制することができるため、プローブユニット720を搬送する場合には、第一偏位向き及び第二偏位向きは、搬送方向に平行であってもよい。これにより、プローブユニット720の搬送に伴う各プローブの振動を抑制できる。 In addition, the first probe 30 can suppress vibration in the direction parallel to the first deflection direction, and the second probe 40 can suppress vibration in the direction parallel to the second deflection direction. , when transporting the probe unit 720, the first deflection direction and the second deflection direction may be parallel to the transport direction. As a result, vibration of each probe that accompanies transportation of the probe unit 720 can be suppressed.
 第一偏位向き及び第二偏位向きは、プローブユニット720を備える検査装置の搬送時における最大加速度方向に平行であってもよい。例えば、上術した検査システム1のように円周に沿って検査装置が搬送される場合には、各偏位向きは、円周の接線方向に平行であってもよい。これにより、プローブユニット720の搬送に伴う各プローブの振動を抑制できる。 The first deflection direction and the second deflection direction may be parallel to the direction of maximum acceleration during transportation of the inspection apparatus including the probe unit 720 . For example, if the inspection device is transported along a circumference, as in the inspection system 1 described above, each deflection orientation may be parallel to the tangential direction of the circumference. As a result, vibration of each probe that accompanies transportation of the probe unit 720 can be suppressed.
 以上のような構成を有するプローブユニット720によっても、実施の形態1に係るプローブユニット20と同様に検査対象の損傷を抑制できる。 With the probe unit 720 having the configuration as described above, damage to the inspection object can be suppressed in the same manner as the probe unit 20 according to the first embodiment.
 (実施の形態3)
 実施の形態3に係るプローブユニットについて説明する。本実施の形態に係るプローブユニットは、主に各プローブの偏位向きにおいて、実施の形態2に係るプローブユニット720と相違する。以下、本実施の形態に係るプローブユニットについて、実施の形態2に係るプローブユニット720との相違点を中心に図54及び図55を用いて説明する。
(Embodiment 3)
A probe unit according to Embodiment 3 will be described. The probe unit according to this embodiment differs from the probe unit 720 according to the second embodiment mainly in the deflection direction of each probe. The probe unit according to the present embodiment will be described below with reference to FIGS. 54 and 55, focusing on differences from the probe unit 720 according to the second embodiment.
 図54は、本実施の形態に係るプローブユニット720aの構成を示す模式的な断面図である。図55は、本実施の形態に係るステージ70に配置された高さ調整部材150のユニット接触面150bをプローブユニット720aに接触させた状態を示す模式的な断面図である。 FIG. 54 is a schematic cross-sectional view showing the configuration of the probe unit 720a according to this embodiment. FIG. 55 is a schematic cross-sectional view showing a state in which the unit contact surface 150b of the height adjustment member 150 arranged on the stage 70 according to this embodiment is brought into contact with the probe unit 720a.
 本実施の形態に係るプローブユニット720aにおいては、第一プローブ30の第一偏位向き(X軸方向負向き)及び第二プローブ40の第二偏位向き(X軸方向負向き)は、同じ向きであり、第一プローブ30及び第二プローブ40の配列方向(X軸方向)に平行である。この場合、図55に示されるように、第一プローブ30及び第二プローブ40の座屈の向きも同じ向きである。このためこのような構成においても第一プローブ30と第二プローブ40との接触を抑制できる。また、この構成においては、第一プローブ30と第二プローブ40との上下方向における間隔Δzを大きくしてもよい。この構成は、第二プローブ40の予め曲げている角度を、第一プローブ30の予め曲げている角度より大きくすることなどによって実現できる。これにより、第一プローブ30と第二プローブ40との接触をより一層抑制できる。 In the probe unit 720a according to the present embodiment, the first deflection direction (X-axis direction negative direction) of the first probe 30 and the second deflection direction (X-axis direction negative direction) of the second probe 40 are the same. It is parallel to the arrangement direction (X-axis direction) of the first probes 30 and the second probes 40 . In this case, as shown in FIG. 55, the buckling directions of the first probe 30 and the second probe 40 are also the same. Therefore, even in such a configuration, contact between the first probe 30 and the second probe 40 can be suppressed. Moreover, in this configuration, the vertical interval Δz between the first probe 30 and the second probe 40 may be increased. This configuration can be realized by making the pre-bent angle of the second probe 40 larger than the pre-bent angle of the first probe 30, or the like. Thereby, the contact between the first probe 30 and the second probe 40 can be further suppressed.
 また、本実施の形態では、高さ調整部材150は、ステージ70の載置面70aに配置される。ユニット本体21は高さ調整部材150対向する対向面21uを有する。ユニット接触面150b及び対向面21uの少なくとも一方は、粗面である。本実施の形態では、ユニット接触面150bが粗面である。このような構成によっても、高さ調整部材150にプローブユニット720aを押しつけることで、プローブユニット720aの対向面21uとステージ70の載置面70aとの間隔を精密に制御でき、かつ、プローブユニット720aの振動を抑制できる。 Also, in the present embodiment, the height adjustment member 150 is arranged on the mounting surface 70 a of the stage 70 . The unit main body 21 has a facing surface 21u that faces the height adjusting member 150 . At least one of the unit contact surface 150b and the opposing surface 21u is a rough surface. In this embodiment, the unit contact surface 150b is a rough surface. Even with such a configuration, by pressing the probe unit 720a against the height adjustment member 150, the distance between the facing surface 21u of the probe unit 720a and the mounting surface 70a of the stage 70 can be precisely controlled, and the probe unit 720a vibration can be suppressed.
 また、本実施の形態に係る高さ調整部材150は、位置決め部156を有する。位置決め部156は、検査対象の位置決めのために用いられる部材であり、例えば、位置決め部156に検査対象を押し当てることで、検査対象を所定の位置に配置できる。 Also, the height adjusting member 150 according to the present embodiment has a positioning portion 156 . The positioning portion 156 is a member used for positioning the inspection object. For example, by pressing the inspection object against the positioning portion 156, the inspection object can be arranged at a predetermined position.
 以上のような構成を有するプローブユニット720aによっても、実施の形態1に係るプローブユニット20と同様に検査対象の損傷を抑制できる。 With the probe unit 720a having the configuration described above, it is possible to suppress damage to the inspection target in the same manner as the probe unit 20 according to the first embodiment.
 (実施の形態4)
 実施の形態4に係るプローブユニットについて説明する。本実施の形態に係るプローブユニットは、主に各プローブの形状において、実施の形態2に係るプローブユニット720と相違する。以下、本実施の形態に係るプローブユニットについて、実施の形態2に係るプローブユニット720との相違点を中心に図56及び図57を用いて説明する。
(Embodiment 4)
A probe unit according to Embodiment 4 will be described. The probe unit according to this embodiment differs from the probe unit 720 according to the second embodiment mainly in the shape of each probe. The probe unit according to the present embodiment will be described below with reference to FIGS. 56 and 57, focusing on differences from the probe unit 720 according to the second embodiment.
 図56は、本実施の形態に係るプローブユニット820の構成を示す模式的な断面図である。図57は、本実施の形態に係るプローブユニット820に配置された高さ調整部材50をステージ70に接触させた状態を示す模式的な断面図である。 FIG. 56 is a schematic cross-sectional view showing the configuration of the probe unit 820 according to this embodiment. FIG. 57 is a schematic cross-sectional view showing a state in which the height adjustment member 50 arranged in the probe unit 820 according to this embodiment is brought into contact with the stage 70. FIG.
 本実施の形態に係るプローブユニット820は、第一プローブ830及び第二プローブ840の形状において、実施の形態2に係るプローブユニット720と相違する。 A probe unit 820 according to the present embodiment differs from the probe unit 720 according to Embodiment 2 in the shapes of the first probe 830 and the second probe 840 .
 第一プローブ830は、上面視において、第一プローブ830の下端831から第一偏位向きに偏位している第一偏位部834を有する。上面視における第一プローブ830の上端832の位置と下端831との位置と間の距離は0である。つまり、上面視における第一プローブ830の上端832の位置と下端831との位置とは一致する。さらに言い換えると、上下方向に平行な軸830Aが第一プローブ830の下端831と上端832とを通る。本実施の形態では、第一プローブ830の第一偏位部834は、U字状の形状を有する。第一偏位向きは、X軸方向正向きである。 The first probe 830 has a first deviation portion 834 that is deviated in the first deviation direction from the lower end 831 of the first probe 830 in top view. The distance between the position of the upper end 832 of the first probe 830 and the position of the lower end 831 in top view is zero. That is, the position of the upper end 832 and the position of the lower end 831 of the first probe 830 in top view match. In other words, an axis 830A parallel to the vertical direction passes through the lower end 831 and the upper end 832 of the first probe 830 . In this embodiment, the first deflection portion 834 of the first probe 830 has a U-shape. The first deflection direction is the positive direction in the X-axis direction.
 第二プローブ840は、上面視において、第二プローブ840の下端841から第二偏位向きに偏位している第二偏位部844を有する。上面視における第二プローブ840の上端842の位置と下端841との位置と間の距離は0である。つまり、上面視における第二プローブ840の上端842の位置と下端841との位置とは一致する。さらに言い換えると、上下方向に平行な軸840Aが第二プローブ840の下端841と上端842とを通る。本実施の形態では、第二プローブ840の第二偏位部844は、U字状の形状を有する。第二偏位向きは、X軸方向負向きである。 The second probe 840 has a second deviation portion 844 that is deviated in the second deviation direction from the lower end 841 of the second probe 840 in top view. The distance between the position of the upper end 842 of the second probe 840 and the position of the lower end 841 in top view is zero. That is, the position of the upper end 842 and the position of the lower end 841 of the second probe 840 in top view match. In other words, an axis 840A parallel to the vertical direction passes through the lower end 841 and the upper end 842 of the second probe 840. As shown in FIG. In this embodiment, the second deflection portion 844 of the second probe 840 has a U-shape. The second deflection direction is the negative direction of the X-axis.
 このような構成を有する各プローブでは、各プローブの下端が検査対象に接触して上向きに力を受けた場合、変形は各偏位部付近に集中する。このため、各プローブの各貫通孔に対応する部分における、上下方向に対して垂直な方向の変位を低減できる。したがって、各プローブとプローブ貫通部材23との摩擦を低減できる。 With each probe having such a configuration, when the lower end of each probe comes into contact with the test object and receives an upward force, deformation is concentrated near each deviation portion. Therefore, the displacement in the direction perpendicular to the up-down direction can be reduced in the portion corresponding to each through-hole of each probe. Therefore, friction between each probe and the probe penetrating member 23 can be reduced.
 また、本実施の形態では、第一偏位向きと第二偏位向きとが、第一プローブ830及び第二プローブ840の配列方向に平行である。しかしながら、第一偏位向きが第二プローブ840から遠ざかる向きであり、第二偏位向きが第一プローブ830から遠ざかる向きであるため、第一プローブ830と第二プローブ840との接触を抑制できる。 Also, in the present embodiment, the first deflection direction and the second deflection direction are parallel to the arrangement directions of the first probe 830 and the second probe 840 . However, since the first deflection direction is the direction away from the second probe 840 and the second deflection direction is the direction away from the first probe 830, contact between the first probe 830 and the second probe 840 can be suppressed. .
 (実施の形態5)
 実施の形態5に係るプローブユニットについて説明する。本実施の形態に係るプローブユニットは、主に各プローブの偏位向きにおいて、実施の形態4に係るプローブユニット820と相違する。以下、本実施の形態に係るプローブユニットについて、実施の形態4に係るプローブユニット820との相違点を中心に図58~図60を用いて説明する。
(Embodiment 5)
A probe unit according to Embodiment 5 will be described. The probe unit according to this embodiment differs from the probe unit 820 according to the fourth embodiment mainly in the deflection direction of each probe. The probe unit according to the present embodiment will be described below with reference to FIGS. 58 to 60, focusing on differences from the probe unit 820 according to the fourth embodiment.
 図58、図59、及び図60は、それぞれ、本実施の形態に係るプローブユニット820aの構成を示す模式的な上面図、第一の断面図、及び第二の断面図である。図59には、図58のXXXXXIX-XXXXXIX線における断面が示されている。図60には、図58のXXXXXX-XXXXXX線における断面が示されている。 58, 59, and 60 are a schematic top view, first cross-sectional view, and second cross-sectional view, respectively, showing the configuration of the probe unit 820a according to this embodiment. FIG. 59 shows a cross section taken along line XXXXXIX-XXXXXIX of FIG. FIG. 60 shows a section taken along line XXXXXX-XXXXXX in FIG.
 本実施の形態に係るプローブユニット820aは、第一プローブ830及び第二プローブ840の偏位向きにおいて、実施の形態4に係るプローブユニット820と相違する。 A probe unit 820a according to the present embodiment differs from the probe unit 820 according to the fourth embodiment in the direction of deflection of the first probe 830 and the second probe 840.
 第一プローブ830は、上面視において、第一プローブ830の下端831から第一偏位向きに偏位している第一偏位部834を有する。本実施の形態では、第一偏位向きは、Y軸方向正向きである。 The first probe 830 has a first deviation portion 834 that is deviated in the first deviation direction from the lower end 831 of the first probe 830 in top view. In this embodiment, the first deflection direction is the positive Y-axis direction.
 第二プローブ840は、上面視において、第二プローブ840の下端841から第二偏位向きに偏位している第二偏位部844を有する。本実施の形態では、第二偏位向きは、Y軸方向正向きである。 The second probe 840 has a second deviation portion 844 that is deviated in the second deviation direction from the lower end 841 of the second probe 840 in top view. In this embodiment, the second deflection direction is the positive Y-axis direction.
 本実施の形態では、第一偏位向きと第二偏位向きとが、同じ向きである。しかしながら、本実施の形態では、第一偏位向きと第二偏位向きとが、第一プローブ830及び第二プローブ840の配列方向に垂直である。このため、第一プローブ830と第二プローブ840との接触を抑制できる。 In the present embodiment, the first deflection direction and the second deflection direction are the same. However, in this embodiment, the first deflection direction and the second deflection direction are perpendicular to the alignment direction of the first probe 830 and the second probe 840 . Therefore, contact between the first probe 830 and the second probe 840 can be suppressed.
 (実施の形態6)
 実施の形態6に係るプローブユニットについて説明する。本実施の形態に係るプローブユニットは、主に各プローブの本数において、実施の形態2に係るプローブユニット720と相違する。以下、本実施の形態に係るプローブユニットについて、実施の形態2に係るプローブユニット720との相違点を中心に図61~図63を用いて説明する。
(Embodiment 6)
A probe unit according to Embodiment 6 will be described. The probe unit according to this embodiment differs from the probe unit 720 according to the second embodiment mainly in the number of each probe. The probe unit according to the present embodiment will be described below with reference to FIGS. 61 to 63, focusing on differences from the probe unit 720 according to the second embodiment.
 図61、図62、及び図63は、それぞれ、本実施の形態に係るプローブユニット920の構成を示す模式的な上面図、第一の断面図、及び第二の断面図である。図62には、図61のXXXXXXII-XXXXXXII線における断面が示されている。図63には、図61のXXXXXXIII-XXXXXXIII線における断面が示されている。 61, 62, and 63 are a schematic top view, a first cross-sectional view, and a second cross-sectional view, respectively, showing the configuration of the probe unit 920 according to this embodiment. FIG. 62 shows a cross section taken along line XXXXXXII-XXXXXXII of FIG. FIG. 63 shows a cross section taken along line XXXXXXIII-XXXXXXIII of FIG.
 本実施の形態に係るプローブユニット920は、第一プローブ30及び第二プローブ40の本数において、実施の形態2に係るプローブユニット720と相違する。 A probe unit 920 according to the present embodiment differs from the probe unit 720 according to the second embodiment in the number of first probes 30 and second probes 40 .
 プローブユニット920は、互いに電気的に並列接続された複数の第一プローブ30と、互いに電気的に並列接続された複数の第二プローブ40とを備える。図61~図63に示される例では、プローブユニット920は、6本の第一プローブ30と3本の第二プローブ40とを備える。また、本実施の形態では、検査対象である半導体レーザ装置80は、サブマウント84の上面の素子82に対して一方側と他方側の両側に第一電極が配置されており、一方の第一電極に3本の第一プローブ30が接触され、他方の第一電極にも3本の第一プローブ30が接触される。また素子82の第二電極には、3本の第二プローブ40が接触される。 The probe unit 920 includes a plurality of first probes 30 electrically connected in parallel with each other and a plurality of second probes 40 electrically connected in parallel with each other. 61-63, the probe unit 920 comprises six first probes 30 and three second probes 40. In the example shown in FIGS. In the present embodiment, the semiconductor laser device 80 to be inspected has the first electrodes arranged on both sides of the element 82 on the upper surface of the submount 84, namely, one side and the other side. Three first probes 30 are brought into contact with the electrodes, and three first probes 30 are also brought into contact with the other first electrode. Three second probes 40 are brought into contact with the second electrodes of the element 82 .
 これにより、半導体レーザ装置80を押さえつけるために必要な力を、複数の第一プローブ30及び複数の第二プローブ40で分担することができるため、各プローブが半導体レーザ装置80に加える力を低減できる。したがって、半導体レーザ装置80の損傷を低減できる。 As a result, the force required to press down the semiconductor laser device 80 can be shared by the plurality of first probes 30 and the plurality of second probes 40, so that the force applied to the semiconductor laser device 80 by each probe can be reduced. . Therefore, damage to the semiconductor laser device 80 can be reduced.
 また、複数の第一プローブ30及び複数の第二プローブ40を用いて半導体レーザ装置80に電流を供給するため、より多くの電流を供給しやすくなる。 Also, since current is supplied to the semiconductor laser device 80 using the plurality of first probes 30 and the plurality of second probes 40, more current can be easily supplied.
 また、本実施の形態では、実施の形態2に係るプローブユニット720と同様に、複数の第一プローブ30の各々は、第一偏位向き(Y軸方向正向き)に傾いており、複数の第二プローブ40の各々は、第二偏位向き(Y軸方向負向き)に傾いている。これにより、複数の第一プローブ30が互いに接触することを抑制でき、かつ、複数の第二プローブ40が互いに接触することを抑制できる。 Further, in the present embodiment, similarly to the probe unit 720 according to the second embodiment, each of the plurality of first probes 30 is tilted in the first deviation direction (positive Y-axis direction), and the plurality of Each of the second probes 40 is tilted in the second deflection direction (Y-axis direction negative direction). This can prevent the plurality of first probes 30 from coming into contact with each other, and can also prevent the plurality of second probes 40 from coming into contact with each other.
 (実施の形態7)
 実施の形態7に係るプローブユニットについて説明する。本実施の形態に係るプローブユニットは、プローブ以外に弾性部材を備える点において、実施の形態1に係るプローブユニット20と相違する。以下、本実施の形態に係るプローブユニットについて、実施の形態1に係るプローブユニット20との相違点を中心に図64~図66を用いて説明する。
(Embodiment 7)
A probe unit according to Embodiment 7 will be described. The probe unit according to the present embodiment differs from the probe unit 20 according to the first embodiment in that an elastic member is provided in addition to the probe. The probe unit according to the present embodiment will be described below with reference to FIGS. 64 to 66, focusing on differences from the probe unit 20 according to the first embodiment.
 図64及び図65は、それぞれ、本実施の形態に係るプローブユニット1020の構成を示す模式的な上面図、及び断面図である。図65には、図64のXXXXXXV-XXXXXXV線における断面が示されている。図66は、本実施の形態に係るプローブユニット1020に配置された高さ調整部材50をステージ70に接触させた状態を示す模式的な断面図である。 64 and 65 are a schematic top view and a cross-sectional view, respectively, showing the configuration of the probe unit 1020 according to this embodiment. FIG. 65 shows a cross section taken along line XXXXXXV-XXXXXXV of FIG. FIG. 66 is a schematic cross-sectional view showing a state in which the height adjustment member 50 arranged in the probe unit 1020 according to this embodiment is brought into contact with the stage 70. FIG.
 本実施の形態に係るプローブユニット1020は、プローブ固定部材24に固定される第一弾性機構1035及び第二弾性機構1045を備える。 A probe unit 1020 according to the present embodiment includes a first elastic mechanism 1035 and a second elastic mechanism 1045 fixed to the probe fixing member 24 .
 第一弾性機構1035は、プローブ固定部材24に固定される第一弾性部材1037と、第一弾性部材1037を収容し、プローブ固定部材24に固定される第一筺体1036とを有する。本実施の形態では、第一弾性部材1037は、第一筺体1036を介してプローブ固定部材24に固定される。第一弾性部材1037は、上下方向の成分を含む方向において伸縮自在である。第一弾性部材1037は、例えば、つるまきばねであってもよい。 The first elastic mechanism 1035 has a first elastic member 1037 fixed to the probe fixing member 24 and a first housing 1036 housing the first elastic member 1037 and fixed to the probe fixing member 24 . In this embodiment, the first elastic member 1037 is fixed to the probe fixing member 24 via the first housing 1036 . The first elastic member 1037 is stretchable in directions including vertical components. The first elastic member 1037 may be, for example, a helical spring.
 本実施の形態では、第一プローブ30は、第一弾性部材1037を介してプローブ固定部材24に固定される。 In this embodiment, the first probe 30 is fixed to the probe fixing member 24 via the first elastic member 1037 .
 第二弾性機構1045は、プローブ固定部材24に固定される第二弾性部材1047と、第二弾性部材1047を収容し、プローブ固定部材24に固定される第二筺体1046とを有する。本実施の形態では、第二弾性部材1047は、第二筺体1046を介してプローブ固定部材24に固定される。第二弾性部材1047は、上下方向の成分を含む方向において伸縮自在である。第二弾性部材1047は、例えば、つるまきばねであってもよい。 The second elastic mechanism 1045 has a second elastic member 1047 fixed to the probe fixing member 24 and a second housing 1046 housing the second elastic member 1047 and fixed to the probe fixing member 24 . In this embodiment, the second elastic member 1047 is fixed to the probe fixing member 24 via the second housing 1046 . The second elastic member 1047 is stretchable in directions including vertical components. The second elastic member 1047 may be, for example, a helical spring.
 本実施の形態では、第二プローブ40は、第二弾性部材1047を介してプローブ固定部材24に固定される。 In this embodiment, the second probe 40 is fixed to the probe fixing member 24 via the second elastic member 1047.
 このような構成において、第一弾性部材1037のばね定数を第一プローブ30のばね定数より小さくすることで、図66に示されるように、主として第一弾性部材1037の弾性復元力によって、検査対象である半導体レーザ装置80を押さえつけることができる。また、第二弾性部材1047のばね定数を第二プローブ40のばね定数より小さくすることで、図66に示されるように、主として第二弾性部材1047の弾性復元力によって、検査対象である半導体レーザ装置80を押さえつけることができる。 In such a configuration, by making the spring constant of the first elastic member 1037 smaller than the spring constant of the first probe 30, as shown in FIG. The semiconductor laser device 80 can be pressed down. Further, by making the spring constant of the second elastic member 1047 smaller than the spring constant of the second probe 40, as shown in FIG. The device 80 can be held down.
 したがって、必ずしも各プローブを座屈させる必要がないため、各プローブの下端の変位量に対する弾性復元力の線形性を高めることができる。つまり、弾性復元力の大きさを制御しやすくなる。 Therefore, since it is not necessary to buckle each probe, it is possible to improve the linearity of the elastic restoring force with respect to the amount of displacement of the lower end of each probe. That is, it becomes easier to control the magnitude of the elastic restoring force.
 本実施の形態では、第一弾性部材1037及び第二弾性部材1047は、上下方向の成分を含む方向において伸縮自在であり、上面視における、第一プローブ30の上端32の位置と下端31との位置と間の距離、及び、第二プローブ40の上端42の位置と下端41との位置との間の距離(図65に示される距離Dp)は、0より大きい。これにより、例えば、検査対象が微小であり、第一プローブ30の下端31と、第二プローブ40の下端41とを接近させる必要がある場合においても、第一プローブ30の上端32と、第二プローブ40の上端42との間の距離を、第一プローブ30の下端31と第二プローブ40の下端41との間の距離より大きくすることが可能となる。したがって、各プローブの先端の間隔より大きい弾性機構を各プローブの上端に取り付けることが可能となる。 In the present embodiment, the first elastic member 1037 and the second elastic member 1047 are elastic in directions including vertical components, and the position of the upper end 32 and the lower end 31 of the first probe 30 when viewed from the top. The distance between the positions and the distance between the position of the upper end 42 of the second probe 40 and the position of the lower end 41 (the distance Dp shown in FIG. 65) are greater than zero. As a result, for example, even when the object to be inspected is very small and it is necessary to bring the lower end 31 of the first probe 30 and the lower end 41 of the second probe 40 close to each other, the upper end 32 of the first probe 30 and the second probe 40 It is possible to make the distance between the top end 42 of the probe 40 greater than the distance between the bottom end 31 of the first probe 30 and the bottom end 41 of the second probe 40 . Therefore, it is possible to attach an elastic mechanism larger than the distance between the tips of each probe to the upper end of each probe.
 本実施の形態では、図65に示されるように、各プローブの上端付近が上下方向に対して角度θsだけ傾いている。これにより、第一プローブ30の上端32と、第二プローブ40の上端42との間の距離を増大させている。また、これに合わせて、第一弾性部材1037及び第二弾性部材1047は、上下方向に対して傾いた方向に伸縮してもよい。これにより、第一弾性部材1037と第二弾性部材1047との間の距離を増大することが可能となるため、各プローブの先端の間隔より大きい弾性機構を各プローブの上端に取り付けることが可能となる。 In the present embodiment, as shown in FIG. 65, the vicinity of the upper end of each probe is inclined by an angle θs with respect to the vertical direction. This increases the distance between the top end 32 of the first probe 30 and the top end 42 of the second probe 40 . Also, in accordance with this, the first elastic member 1037 and the second elastic member 1047 may expand and contract in a direction inclined with respect to the vertical direction. This makes it possible to increase the distance between the first elastic member 1037 and the second elastic member 1047, so that an elastic mechanism larger than the distance between the tips of each probe can be attached to the upper end of each probe. Become.
 (変形例など)
 以上、本開示に係るプローブユニットなどについて、各実施の形態に基づいて説明したが、本開示は、上記各実施の形態に限定されるものではない。
(Modified example, etc.)
As described above, the probe unit and the like according to the present disclosure have been described based on each embodiment, but the present disclosure is not limited to each of the above embodiments.
 例えば、上記実施の形態1などにおいては、第一プローブ及び第二プローブが座屈現象を示したが、第一プローブ及び第二プローブの一方だけが座屈現象を示してもよい。 For example, in Embodiment 1 and the like, the first probe and the second probe exhibit the buckling phenomenon, but only one of the first probe and the second probe may exhibit the buckling phenomenon.
 また、上記各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, it is realized by arbitrarily combining the constituent elements and functions of the above embodiments without departing from the scope of the present disclosure, as well as the forms obtained by applying various modifications that a person skilled in the art can think of for the above embodiments. Any form is also included in the present disclosure.
 本開示のプローブユニットなどは、特に、わずかな損傷が問題となる半導体レーザ装置などの検査において特に有効である。 The probe unit and the like of the present disclosure are particularly effective in the inspection of semiconductor laser devices and the like where slight damage poses a problem.
 1、1a 検査システム
 5、5a 搬送装置
 10 検査装置
 11 基台
 12 支柱
 13、15、17 スライドレール
 14 上下移動部材
 16 ユニット移動部材
 18 接続ばね
 19 ユニット支持部材
 20、720、720a、820、820a、920、1020 プローブユニット
 21、521、621 ユニット本体
 21s 貫通部材傾斜面
 21u、521u、621u 対向面
 21v 空洞
 23、123、223、423、523、623 プローブ貫通部材
 24、524、624 プローブ固定部材
 26a、126a、226a、426a、526a、626a 第一貫通孔
 26b、526b、626b 第二貫通孔
 27a、527a、627a 第一固定用孔
 27b、527b、627b 第二固定用孔
 28 接着剤
 30、130、130a、230、330、430、830 第一プローブ
 31、41、131、141、331、341、831、841 下端
 32、42、832、842 上端
 34、834 第一偏位部
 36、46 導電体
 38、48、338 絶縁膜
 40、140、240、340、840 第二プローブ
 50、150 高さ調整部材
 50a ステージ接触面
 50b、150b ユニット接触面
 70 ステージ
 70a 載置面
 70s ステージ傾斜面
 72 吸着孔
 80 半導体レーザ装置
 82 素子
 82a 素子上面
 82b 素子下面
 82e 発光点
 83 第二電極
 84 サブマウント
 84a 上面
 84b 下面
 85 第一電極
 90 測定装置
 92 受光部
 123a、123c、123e、223a、223c ガイド部材
 123b、123d、223b スペーサ
 126aa、126ca、126ea、226aa、226ca 第一ガイド孔
 126ba、126da、226ba 第一スペーサ孔
 156 位置決め部
 426P 第一凸部
 426w 第一内壁
 521t、621t 上面
 523a、623a 第一上面
 523b、623b 第二上面
 524a、624a 第一下面
 524b、624b 第二下面
 830A、840A 軸
 1035 第一弾性機構
 1036 第一筺体
 1037 第一弾性部材
 1045 第二弾性機構
 1046 第二筺体
 1047 第二弾性部材
 Fm 枠体
 LB レーザ光
 Pm 押し棒
Reference Signs List 1, 1a inspection system 5, 5a conveying device 10 inspection device 11 base 12 post 13, 15, 17 slide rail 14 vertical movement member 16 unit movement member 18 connection spring 19 unit support member 20, 720, 720a, 820, 820a, 920, 1020 probe unit 21, 521, 621 unit body 21s penetrating member inclined surface 21u, 521u, 621u opposing surface 21v cavity 23, 123, 223, 423, 523, 623 probe penetrating member 24, 524, 624 probe fixing member 26a, 126a, 226a, 426a, 526a, 626a First through hole 26b, 526b, 626b Second through hole 27a, 527a, 627a First fixing hole 27b, 527b, 627b Second fixing hole 28 Adhesive 30, 130, 130a , 230, 330, 430, 830 first probes 31, 41, 131, 141, 331, 341, 831, 841 lower ends 32, 42, 832, 842 upper ends 34, 834 first deviations 36, 46 conductors 38, 48, 338 insulating film 40, 140, 240, 340, 840 second probe 50, 150 height adjustment member 50a stage contact surface 50b, 150b unit contact surface 70 stage 70a mounting surface 70s stage inclined surface 72 suction hole 80 semiconductor laser Device 82 Element 82a Upper surface of element 82b Lower surface of element 82e Light emitting point 83 Second electrode 84 Submount 84a Upper surface 84b Lower surface 85 First electrode 90 Measuring device 92 Light receiving part 123a, 123c, 123e, 223a, 223c Guide member 123b, 123d, 223b Spacer 126aa, 126ca, 126ea, 226aa, 226ca first guide hole 126ba, 126da, 226ba first spacer hole 156 positioning portion 426P first projection 426w first inner wall 521t, 621t upper surface 523a, 623a first upper surface 523b, 623b second upper surface 524a, 624a first lower surface 524b, 624b second lower surface 830A, 840A shaft 1035 first elastic mechanism 1036 first housing 1037 first elastic member 1045 second elastic mechanism 1046 second housing 1047 second elastic member Fm frame LB laser beam Pm Push rod

Claims (42)

  1.  検査対象に電流を供給するための電流回路の一部を含むプローブユニットであって、
     前記電流回路に含まれ、弾性復元力を有する、第一プローブ及び第二プローブと、
     前記第一プローブ及び前記第二プローブが固定されるプローブ固定部材と、
     前記プローブ固定部材の下方に、前記プローブ固定部材から離間して配置され、前記第一プローブ及び前記第二プローブがそれぞれ貫通する第一貫通孔及び第二貫通孔が形成されているプローブ貫通部材とを備え、
     前記プローブ貫通部材は、前記第一プローブ及び前記第二プローブが貫通し、前記検査対象と対向する対向面を有し、
     前記第一プローブ及び前記第二プローブのうち、前記対向面から下方に突出する部分は、上下方向に移動自在であり、
     前記第一プローブ及び前記第二プローブが前記検査対象に接触していない状態において、前記第一プローブの下端は、前記第二プローブの下端より下方に位置する
     プローブユニット。
    A probe unit including part of a current circuit for supplying current to a test object,
    a first probe and a second probe included in the current circuit and having an elastic restoring force;
    a probe fixing member to which the first probe and the second probe are fixed;
    a probe penetrating member having a first through-hole and a second through-hole formed below the probe-fixing member, spaced from the probe-fixing member and through which the first probe and the second probe pass, respectively; with
    The probe penetrating member has a facing surface facing the inspection object through which the first probe and the second probe penetrate,
    Of the first probe and the second probe, the portion protruding downward from the facing surface is vertically movable,
    A probe unit in which the lower end of the first probe is positioned below the lower end of the second probe when the first probe and the second probe are not in contact with the inspection target.
  2.  前記プローブ固定部材に固定される第一弾性部材及び第二弾性部材を備え、
     前記第一プローブは、前記第一弾性部材を介して前記プローブ固定部材に固定され、
     前記第二プローブは、前記第二弾性部材を介して前記プローブ固定部材に固定される
     請求項1に記載のプローブユニット。
    comprising a first elastic member and a second elastic member fixed to the probe fixing member;
    The first probe is fixed to the probe fixing member via the first elastic member,
    The probe unit according to claim 1, wherein the second probe is fixed to the probe fixing member via the second elastic member.
  3.  前記第一弾性部材及び前記第二弾性部材は、上下方向の成分を含む方向において伸縮自在であり、
     上面視における、前記第一プローブの上端の位置と下端との位置と間の距離、及び、前記第二プローブの上端の位置と下端との位置との間の距離の少なくとも一方は、0より大きい
     請求項2に記載のプローブユニット。
    the first elastic member and the second elastic member are stretchable in a direction including a vertical component;
    At least one of the distance between the upper end position and the lower end position of the first probe and the distance between the upper end position and the lower end position of the second probe in top view is greater than 0 The probe unit according to claim 2.
  4.  前記第一弾性部材及び前記第二弾性部材の少なくとも一方は、上下方向に対して傾いた方向に伸縮する
     請求項2又は3に記載のプローブユニット。
    4. The probe unit according to claim 2, wherein at least one of said first elastic member and said second elastic member expands and contracts in a direction inclined with respect to the vertical direction.
  5.  前記第一プローブ及び前記第二プローブの少なくとも一方は、座屈現象を示す
     請求項1に記載のプローブユニット。
    2. The probe unit according to claim 1, wherein at least one of said first probe and said second probe exhibits a buckling phenomenon.
  6.  前記第一プローブは、上面視において、前記第一プローブの下端から第一偏位向きに偏位している第一偏位部を有し、
     前記第二プローブは、上面視において、前記第二プローブの下端から第二偏位向きに偏位している第二偏位部を有し、
     前記第一偏位部は、前記第一プローブの上端を含み、上下方向に対して傾いており、
     前記第二偏位部は、前記第二プローブの上端を含み、上下方向に対して傾いている
     請求項5に記載のプローブユニット。
    The first probe has a first deviation portion that is deviated in the first deviation direction from the lower end of the first probe when viewed from above,
    The second probe has a second deviation portion that is deviated in the second deviation direction from the lower end of the second probe in top view,
    The first deviation portion includes the upper end of the first probe and is inclined with respect to the vertical direction,
    6. The probe unit according to claim 5, wherein the second deviation portion includes the upper end of the second probe and is inclined with respect to the vertical direction.
  7.  前記第一偏位向き及び前記第二偏位向きは、前記第一プローブ及び前記第二プローブの配列方向とは、非平行であり、
     前記第一偏位向きは、前記第二偏位向きに対して逆向きである
     請求項6に記載のプローブユニット。
    The first deflection direction and the second deflection direction are non-parallel to the arrangement direction of the first probe and the second probe,
    7. The probe unit according to claim 6, wherein said first deflection direction is opposite to said second deflection direction.
  8.  互いに電気的に並列接続され前記第一偏位向きに傾いている複数の前記第一プローブ、及び、互いに電気的に並列接続され前記第二偏位向きに傾いている複数の前記第二プローブの少なくとも一方を備える
     請求項6又は7に記載のプローブユニット。
    a plurality of said first probes electrically connected in parallel with each other and inclined in said first deflection direction; and a plurality of said second probes electrically connected in parallel with each other and inclined in said second deflection direction. 8. A probe unit according to claim 6 or 7, comprising at least one.
  9.  前記第一プローブは、上面視において、前記第一プローブの下端から第一偏位向きに偏位している第一偏位部を有し、
     前記第二プローブは、上面視において、前記第二プローブの下端から第二偏位向きに偏位している第二偏位部を有し、
     上面視における、前記第一プローブの上端の位置と下端との位置と間の距離、及び、前記第二プローブの上端の位置と下端との位置との間の距離の少なくとも一方は、0である
     請求項1に記載のプローブユニット。
    The first probe has a first deviation portion that is deviated in the first deviation direction from the lower end of the first probe when viewed from above,
    The second probe has a second deviation portion that is deviated in the second deviation direction from the lower end of the second probe in top view,
    At least one of the distance between the upper end position and the lower end position of the first probe and the distance between the upper end position and the lower end position of the second probe in a top view is 0 The probe unit according to claim 1.
  10.  前記第二プローブのばね定数は、前記第一プローブのばね定数より小さい
     請求項1~9のいずれか1項に記載のプローブユニット。
    The probe unit according to any one of Claims 1 to 9, wherein the spring constant of the second probe is smaller than the spring constant of the first probe.
  11.  前記第一プローブ及び前記第二プローブの弾性係数が同一であり、
     前記第二プローブは前記第一プローブより細い、又は、前記第二プローブの前記プローブ固定部材から前記プローブ貫通部材までの長さは、前記第一プローブの前記プローブ固定部材から前記プローブ貫通部材までの長さより長い
     請求項10に記載のプローブユニット。
    The first probe and the second probe have the same elastic modulus,
    The second probe is thinner than the first probe, or the length from the probe fixing member of the second probe to the probe penetrating member is the length from the probe fixing member of the first probe to the probe penetrating member The probe unit according to claim 10, longer than the length.
  12.  前記第二プローブの下端の曲率半径は、前記第一プローブの下端の曲率半径より大きい
     請求項1~11のいずれか1項に記載のプローブユニット。
    The probe unit according to any one of claims 1 to 11, wherein the radius of curvature of the lower end of the second probe is larger than the radius of curvature of the lower end of the first probe.
  13.  複数の前記第一プローブ、及び複数の前記第二プローブの少なくとも一方を備える
     請求項1~7、9~12のいずれか1項に記載のプローブユニット。
    The probe unit according to any one of claims 1 to 7 and 9 to 12, comprising at least one of a plurality of said first probes and a plurality of said second probes.
  14.  前記プローブ貫通部材は、互いに上下方向に離間して配置される複数のガイド部材を有し、
     前記複数のガイド部材の各々には、前記第一プローブが貫通する第一ガイド孔が形成されている
     請求項1~13のいずれか1項に記載のプローブユニット。
    The probe penetrating member has a plurality of guide members spaced apart from each other in the vertical direction,
    The probe unit according to any one of claims 1 to 13, wherein each of the plurality of guide members is formed with a first guide hole through which the first probe passes.
  15.  前記複数のガイド部材のうち前記プローブ固定部材に最も近いガイド部材の前記第一ガイド孔と前記第一プローブとの隙間は、前記複数のガイド部材のうち前記プローブ固定部材から最も遠いガイド部材の前記第一ガイド孔と前記第一プローブとの隙間より大きい
     請求項14に記載のプローブユニット。
    Among the plurality of guide members, the gap between the first guide hole of the guide member closest to the probe fixing member and the first probe is The probe unit according to claim 14, wherein the gap is larger than the gap between the first guide hole and the first probe.
  16.  前記複数のガイド部材のうち前記プローブ固定部材に最も近いガイド部材の厚さは、前記複数のガイド部材のうち前記プローブ固定部材から最も遠いガイド部材の厚さより大きい
     請求項14に記載のプローブユニット。
    15. The probe unit according to claim 14, wherein the guide member closest to the probe fixing member among the plurality of guide members has a thickness greater than the thickness of the guide member farthest from the probe fixing member among the plurality of guide members.
  17.  前記プローブ貫通部材は、前記第一貫通孔を囲む第一内壁を有し、前記プローブ貫通部材の上面視において、前記第一内壁は、前記第一貫通孔に向かって滑らかに突出する1以上の第一凸部を有する
     請求項1~16のいずれか1項に記載のプローブユニット。
    The probe penetrating member has a first inner wall surrounding the first through hole, and in a top view of the probe penetrating member, the first inner wall smoothly protrudes toward the first through hole. The probe unit according to any one of Claims 1 to 16, which has a first projection.
  18.  前記プローブ貫通部材の前記対向面は、上下方向に対して傾いている貫通部材傾斜面を有し、
     前記貫通部材傾斜面は、前記第一貫通孔及び前記第二貫通孔から遠ざかるにしたがって上昇する
     請求項1~17のいずれか1項に記載のプローブユニット。
    The facing surface of the probe penetrating member has a penetrating member inclined surface that is inclined with respect to the vertical direction,
    The probe unit according to any one of Claims 1 to 17, wherein the penetrating member inclined surface rises with increasing distance from the first through hole and the second through hole.
  19.  前記貫通部材傾斜面は、光反射抑制面である
     請求項18に記載のプローブユニット。
    The probe unit according to claim 18, wherein the penetrating member inclined surface is a light reflection suppressing surface.
  20.  請求項1~19のいずれか1項に記載のプローブユニットと、
     前記検査対象が載置される載置面を有するステージと、
     前記プローブユニットと前記ステージとの間に配置される高さ調整部材とを備え、
     前記高さ調整部材は、前記プローブユニットの前記対向面に配置される
     検査装置。
    A probe unit according to any one of claims 1 to 19,
    a stage having a mounting surface on which the inspection object is mounted;
    A height adjustment member disposed between the probe unit and the stage,
    The inspection device, wherein the height adjustment member is arranged on the facing surface of the probe unit.
  21.  請求項1~19のいずれか1項に記載のプローブユニットと、
     前記検査対象が配置されるステージと、
     前記プローブユニットと前記ステージとの間に配置される高さ調整部材とを備え、
     前記高さ調整部材は、前記ステージの載置面に配置される
     検査装置。
    A probe unit according to any one of claims 1 to 19,
    a stage on which the inspection target is arranged;
    A height adjustment member disposed between the probe unit and the stage,
    The inspection apparatus, wherein the height adjustment member is arranged on the mounting surface of the stage.
  22.  前記高さ調整部材の、前記ステージと接するステージ接触面は、粗面である
     請求項20に記載の検査装置。
    21. The inspection apparatus according to claim 20, wherein a stage contact surface of said height adjustment member that contacts said stage is a rough surface.
  23.  前記高さ調整部材の、前記プローブユニットと接するユニット接触面、及び前記プローブユニットの、前記調整部材と対向する前記対向面の少なくとも一方は、粗面である
     請求項21に記載の検査装置。
    22. The inspection apparatus according to claim 21, wherein at least one of the unit contact surface of the height adjustment member that contacts the probe unit and the facing surface of the probe unit that faces the adjustment member is a rough surface.
  24.  前記プローブユニットを支持するユニット支持部材と、
     前記ユニット支持部材を移動するユニット移動部材と、
     前記ユニット支持部材を、前記ユニット移動部材に対して上下方向にスライド自在に接続するスライドレールと、
     前記プローブユニットと前記ユニット移動部材とを接続する接続ばねとをさらに備える
     請求項20~23のいずれか1項に記載の検査装置。
    a unit support member that supports the probe unit;
    a unit moving member that moves the unit supporting member;
    a slide rail that connects the unit support member so as to be vertically slidable with respect to the unit moving member;
    The inspection apparatus according to any one of claims 20 to 23, further comprising a connection spring that connects the probe unit and the unit moving member.
  25.  前記載置面は、上下方向に対して傾いているステージ傾斜面を有し、
     前記ステージ傾斜面は、前記載置面の端に近づくにしたがって降下する
     請求項20~24のいずれか1項に記載の検査装置。
    The mounting surface has a stage inclined surface that is inclined with respect to the vertical direction,
    The inspection apparatus according to any one of claims 20 to 24, wherein said stage inclined surface descends as it approaches an end of said mounting surface.
  26.  前記ステージ傾斜面は、光反射抑制面である
     請求項25に記載の検査装置。
    The inspection apparatus according to claim 25, wherein the stage inclined surface is a light reflection suppressing surface.
  27.  請求項20~26のいずれか1項に記載の検査装置と、
     前記検査装置を搬送する搬送装置とを備え、
     前記第一プローブ及び前記第二プローブを前記検査対象に接触させた状態で、前記検査装置を搬送する
     検査システム。
    The inspection device according to any one of claims 20 to 26,
    A transport device for transporting the inspection device,
    An inspection system that transports the inspection device while the first probe and the second probe are in contact with the inspection target.
  28.  前記第一プローブは、上面視において、前記第一プローブの下端から第一偏位向きに偏位している第一偏位部を有し、
     前記第二プローブは、上面視において、前記第二プローブの下端から第二偏位向きに偏位している第二偏位部を有し、
     前記第一偏位向き及び前記第二偏位向きは、前記検査装置の搬送方向に平行である
     請求項27に記載の検査システム。
    The first probe has a first deviation portion that is deviated in the first deviation direction from the lower end of the first probe when viewed from above,
    The second probe has a second deviation portion that is deviated in the second deviation direction from the lower end of the second probe in top view,
    28. The inspection system of claim 27, wherein the first deflection orientation and the second deflection orientation are parallel to the transport direction of the inspection device.
  29.  前記第一プローブは、上面視において、前記第一プローブの下端から第一偏位向きに偏位している第一偏位部を有し、
     前記第二プローブは、上面視において、前記第二プローブの下端から第二偏位向きに偏位している第二偏位部を有し、
     前記第一偏位向き及び前記第二偏位向きは、前記検査装置の搬送時における最大加速度方向に平行である
     請求項27に記載の検査システム。
    The first probe has a first deviation portion that is deviated in the first deviation direction from the lower end of the first probe when viewed from above,
    The second probe has a second deviation portion that is deviated in the second deviation direction from the lower end of the second probe in top view,
    28. The inspection system of claim 27, wherein the first deflection direction and the second deflection direction are parallel to a direction of maximum acceleration during transportation of the inspection device.
  30.  前記検査装置は、前記検査装置の搬送方向に垂直な方向に、前記プローブユニットを移動する移動機構を備える
     請求項27~29のいずれか1項に記載の検査システム。
    The inspection system according to any one of claims 27 to 29, wherein the inspection device includes a moving mechanism that moves the probe unit in a direction perpendicular to the transport direction of the inspection device.
  31.  前記第一プローブは、上面視において、前記第一プローブの下端から第一偏位向きに偏位している第一偏位部を有し、
     前記第二プローブは、上面視において、前記第二プローブの下端から第二偏位向きに偏位している第二偏位部を有し、
     前記第一偏位向き及び前記第二偏位向きは、前記プローブユニットの移動方向に平行である
     請求項27に記載の検査システム。
    The first probe has a first deviation portion that is deviated in the first deviation direction from the lower end of the first probe when viewed from above,
    The second probe has a second deviation portion that is deviated in the second deviation direction from the lower end of the second probe in top view,
    28. The inspection system of claim 27, wherein the first deflection orientation and the second deflection orientation are parallel to the direction of travel of the probe unit.
  32.  前記ステージは、前記検査対象を吸着する吸着孔を有し、
     前記検査装置は、前記ステージに吸着された前記検査対象を囲む枠体を備え、
     前記検査装置は、前記枠体を移動させることで前記検査対象の位置を調整する
     請求項27~31のいずれか1項に記載の検査システム。
    The stage has a suction hole for sucking the inspection object,
    The inspection device includes a frame surrounding the inspection object sucked to the stage,
    The inspection system according to any one of claims 27 to 31, wherein the inspection device adjusts the position of the object to be inspected by moving the frame.
  33.  前記検査対象は、前記第一プローブの下端が接する第一電極と、前記第二プローブの下端が接する第二電極とを有し、
     前記第一電極は、前記第二電極より下方に位置し、
     前記第一プローブの下端と前記第二プローブの下端との上下方向の位置の差は、前記第一電極と前記第二電極との上下方向の位置の差より大きい
     請求項27~32のいずれか1項に記載の検査システム。
    The test object has a first electrode with which the lower end of the first probe is in contact, and a second electrode with which the lower end of the second probe is in contact,
    The first electrode is positioned below the second electrode,
    33. Any one of claims 27 to 32, wherein the vertical positional difference between the lower end of the first probe and the lower end of the second probe is greater than the vertical positional difference between the first electrode and the second electrode. The inspection system according to item 1.
  34.  前記検査対象は、端面発光型の半導体レーザ素子を含み、
     前記プローブ貫通部材の前記対向面は、上下方向に対して傾いている貫通部材傾斜面を有し、
     前記貫通部材傾斜面は、前記第一貫通孔及び前記第二貫通孔から遠ざかるにしたがって上昇する
     請求項27~33のいずれか1項に記載の検査システム。
    The inspection object includes an edge-emitting semiconductor laser device,
    The facing surface of the probe penetrating member has a penetrating member inclined surface that is inclined with respect to the vertical direction,
    The inspection system according to any one of Claims 27 to 33, wherein the penetrating member inclined surface rises with increasing distance from the first through hole and the second through hole.
  35.  前記貫通部材傾斜面は、光反射抑制面である
     請求項34に記載の検査システム。
    The inspection system according to claim 34, wherein the penetrating member inclined surface is a light reflection suppressing surface.
  36.  前記検査対象は、端面発光型の半導体レーザ素子を含み、
     前記載置面は、上下方向に対して傾いているステージ傾斜面を有し、
     前記ステージ傾斜面は、前記載置面の端に近づくにしたがって降下する
     請求項27~33のいずれか1項に記載の検査システム。
    The inspection object includes an edge-emitting semiconductor laser device,
    The mounting surface has a stage inclined surface that is inclined with respect to the vertical direction,
    The inspection system according to any one of claims 27 to 33, wherein said stage inclined surface descends as it approaches an end of said mounting surface.
  37.  前記ステージ傾斜面は、光反射抑制面である
     請求項36に記載の検査システム。
    37. The inspection system of claim 36, wherein the stage inclined surface is a light reflection suppression surface.
  38.  検査対象に電流を供給することで、前記検査対象の特性を検査する検査方法であって、
     前記検査対象は、
     上面を有するサブマウントと、
     素子上面を有し、前記サブマウントの前記上面に配置され、前記電流が供給される素子とを有し、
     前記サブマウントは、前記上面に配置される第一電極を有し、
     前記素子は、前記素子上面に配置される第二電極を有し、
     前記検査方法は、
     第一プローブを前記第一電極に接触させる第一接触工程と、
     前記第一接触工程の後に、前記第一プローブを前記第一電極に接触させた状態で、第二プローブを前記第二電極に接触させる第二接触工程とを含み、
     前記第一プローブ及び前記第二プローブは、前記検査対象に前記電流を供給する電流回路に含まれ、弾性復元力を有する
     検査方法。
    An inspection method for inspecting characteristics of an inspection object by supplying a current to the inspection object,
    The inspection target is
    a submount having a top surface;
    a device having a device top surface, a device placed on the top surface of the submount and supplied with the current;
    the submount has a first electrode disposed on the top surface;
    The element has a second electrode disposed on the top surface of the element,
    The inspection method is
    a first contacting step of contacting a first probe with the first electrode;
    After the first contact step, a second contact step of contacting the second probe with the second electrode while the first probe is in contact with the first electrode,
    Said 1st probe and said 2nd probe are contained in the electric current circuit which supplies the said electric current to the said test object, and have an elastic restoring force. Inspection method.
  39.  検査対象に電流を供給することで、前記検査対象の特性を検査する検査方法であって、
     前記検査対象は、
     上面を有するサブマウントと、
     素子上面を有し、前記サブマウントの前記上面に配置され、前記電流が供給される素子とを有し、
     前記サブマウントは、前記上面に配置される第一電極を有し、
     前記素子は、前記素子上面に配置される第二電極を有し、
     前記検査方法は、
     第一プローブを前記第一電極に接触させ、かつ、第二プローブを前記第二電極に接触させた状態で、前記検査対象に前記電流を供給する供給工程と、
     前記供給工程の後に、前記第二プローブを前記第二電極から離す第二脱離工程と、
     前記第二脱離工程の後に、前記第一プローブを前記第一電極から離す第一脱離工程とを含み、
     前記第一プローブ及び前記第二プローブは、前記検査対象に前記電流を供給する電流回路に含まれ、弾性復元力を有する
     検査方法。
    An inspection method for inspecting characteristics of an inspection object by supplying a current to the inspection object,
    The inspection target is
    a submount having a top surface;
    a device having a device top surface, a device placed on the top surface of the submount and supplied with the current;
    the submount has a first electrode disposed on the top surface;
    The element has a second electrode disposed on the top surface of the element,
    The inspection method is
    a supply step of supplying the current to the test object while the first probe is in contact with the first electrode and the second probe is in contact with the second electrode;
    a second desorption step of detaching the second probe from the second electrode after the supply step;
    a first desorption step of detaching the first probe from the first electrode after the second desorption step;
    Said 1st probe and said 2nd probe are contained in the electric current circuit which supplies the said electric current to the said test object, and have an elastic restoring force. Inspection method.
  40.  請求項20~26のいずれか1項に記載の検査装置、又は、請求項27~32のいずれか1項に記載の検査システムを用いて、前記検査対象に前記電流を供給することで、前記検査対象の特性を検査する検査方法であって、
     前記検査対象は、
     上面を有するサブマウントと、
     素子上面を有し、前記サブマウントの前記上面に配置され、前記電流が供給される素子とを有し、
     前記サブマウントは、前記上面に配置される第一電極を有し、
     前記素子は、前記素子上面に配置される第二電極を有し、
     前記検査方法は、
     前記第一プローブを前記第一電極に接触させる第一接触工程と、
     前記第一接触工程の後に、前記第一プローブを前記第一電極に接触させた状態で、前記第二プローブを前記第二電極に接触させる第二接触工程とを含む
     検査方法。
    By using the inspection apparatus according to any one of claims 20 to 26 or the inspection system according to any one of claims 27 to 32, by supplying the current to the inspection object, the An inspection method for inspecting characteristics of an object to be inspected,
    The inspection target is
    a submount having a top surface;
    a device having a device top surface, a device placed on the top surface of the submount and supplied with the current;
    the submount has a first electrode disposed on the top surface;
    The element has a second electrode disposed on the top surface of the element,
    The inspection method is
    a first contacting step of contacting the first probe with the first electrode;
    and a second contacting step of contacting the second probe with the second electrode while the first probe is in contact with the first electrode after the first contacting step.
  41.  請求項20~26のいずれか1項に記載された検査装置、又は、請求項27~32のいずれか1項に記載された検査システムを用いて、前記検査対象に前記電流を供給することで、前記検査対象の特性を検査する検査方法であって、
     前記検査対象は、
     上面を有するサブマウントと、
     素子上面を有し、前記サブマウントの前記上面に配置され、前記電流が供給される素子とを有し、
     前記サブマウントは、前記上面に配置される第一電極を有し、
     前記素子は、前記素子上面に配置される第二電極を有し、
     前記検査方法は、
     前記第一プローブを前記第一電極に接触させ、かつ、前記第二プローブを前記第二電極に接触させた状態で、前記検査対象に前記電流を供給する供給工程と、
     前記供給工程の後に、前記第二プローブを前記第二電極から離す第二脱離工程と、
     前記第二脱離工程の後に、前記第一プローブを前記第一電極から離す第一脱離工程とを含む
     検査方法。
    By supplying the current to the inspection object using the inspection apparatus according to any one of claims 20 to 26 or the inspection system according to any one of claims 27 to 32 , an inspection method for inspecting characteristics of the inspection object,
    The inspection target is
    a submount having a top surface;
    a device having a device top surface, a device placed on the top surface of the submount and supplied with the current;
    the submount has a first electrode disposed on the top surface;
    The element has a second electrode disposed on the top surface of the element,
    The inspection method is
    a supply step of supplying the current to the test object while the first probe is in contact with the first electrode and the second probe is in contact with the second electrode;
    a second desorption step of detaching the second probe from the second electrode after the supply step;
    and a first detachment step of detaching the first probe from the first electrode after the second detachment step.
  42.  半導体レーザ装置の製造方法であって、
     前記半導体レーザ装置を組み立てる組立工程と、
     請求項38~41のいずれか1項に記載の検査方法を用いて、前記検査対象として前記半導体レーザ装置を検査する検査工程とを含み、
     前記素子は、半導体レーザ素子である
     半導体レーザ装置の製造方法。
    A method for manufacturing a semiconductor laser device,
    an assembling step of assembling the semiconductor laser device;
    an inspection step of inspecting the semiconductor laser device as the inspection object using the inspection method according to any one of claims 38 to 41,
    A method for manufacturing a semiconductor laser device, wherein the element is a semiconductor laser element.
PCT/JP2023/005373 2022-02-18 2023-02-16 Probe unit, inspection device, inspection system, inspection method, and method for manufacturing semiconductor laser device WO2023157900A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263311547P 2022-02-18 2022-02-18
US63/311,547 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023157900A1 true WO2023157900A1 (en) 2023-08-24

Family

ID=87578384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005373 WO2023157900A1 (en) 2022-02-18 2023-02-16 Probe unit, inspection device, inspection system, inspection method, and method for manufacturing semiconductor laser device

Country Status (1)

Country Link
WO (1) WO2023157900A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184076A (en) * 1986-10-08 1988-07-29 Yokogawa Hewlett Packard Ltd Mounting apparatus for board to be tested
JPH0783797A (en) * 1993-09-10 1995-03-31 Fujitsu Ltd Modulation and spectral testing method and device for semiconductor laser
KR20100138154A (en) * 2009-06-24 2010-12-31 정영석 Electrical tester for led device
JP2011069829A (en) * 1994-11-15 2011-04-07 Formfactor Inc Probe card assembly, kit, and method for using them
JP2015190942A (en) * 2014-03-28 2015-11-02 株式会社ソシオネクスト Inspection device, inspection method, and probe card
JP2016130714A (en) * 2015-01-15 2016-07-21 パイオニア株式会社 Measuring device and aligning method
JP2019179875A (en) * 2018-03-30 2019-10-17 株式会社日本マイクロニクス Prober
US20200225277A1 (en) * 2019-01-15 2020-07-16 Tzu-Yi Kuo Micro LED Display Panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184076A (en) * 1986-10-08 1988-07-29 Yokogawa Hewlett Packard Ltd Mounting apparatus for board to be tested
JPH0783797A (en) * 1993-09-10 1995-03-31 Fujitsu Ltd Modulation and spectral testing method and device for semiconductor laser
JP2011069829A (en) * 1994-11-15 2011-04-07 Formfactor Inc Probe card assembly, kit, and method for using them
KR20100138154A (en) * 2009-06-24 2010-12-31 정영석 Electrical tester for led device
JP2015190942A (en) * 2014-03-28 2015-11-02 株式会社ソシオネクスト Inspection device, inspection method, and probe card
JP2016130714A (en) * 2015-01-15 2016-07-21 パイオニア株式会社 Measuring device and aligning method
JP2019179875A (en) * 2018-03-30 2019-10-17 株式会社日本マイクロニクス Prober
US20200225277A1 (en) * 2019-01-15 2020-07-16 Tzu-Yi Kuo Micro LED Display Panel

Similar Documents

Publication Publication Date Title
TWI816895B (en) Method and apparatus to increase transfer speed of semiconductor devices with micro-adjustment
TWI784972B (en) Exposure apparatus, manufacturing method of flat panel display, device manufacturing method, and exposure method
TW200936294A (en) Slide stage, and slide stage movable in x- and y-directions
WO2016024364A1 (en) Mounting device and measurement method
JP2022172214A (en) Bonding method and bonding apparatus
TWI765918B (en) Carrier device, exposure apparatus, exposure method, manufacturing method of flat panel display, device manufacturing method, and carrying method
JP2001345599A (en) Electrical component loading method, electrical component handling method, and electrical component loading equipment
US10958194B2 (en) Piezoelectric drive device, piezoelectric motor, robot, electronic component transport apparatus, and printer
JP4043339B2 (en) Test method and test apparatus
EP2708843A1 (en) Shape measuring apparatus
JP2020074397A (en) Pick-up apparatus and implementation apparatus for semiconductor chip
JP4330512B2 (en) Component mounting equipment
WO2023157900A1 (en) Probe unit, inspection device, inspection system, inspection method, and method for manufacturing semiconductor laser device
KR102330577B1 (en) Electronic component pickup apparatus and bonding apparatus
JPH09214187A (en) Electronic-part mounting apparatus
JP4554578B2 (en) Substrate transport device and printed solder inspection device having the same
CN108696178B (en) Piezoelectric driving device, electronic component conveying device, robot, and projector
JP2003258071A (en) Substrate holding apparatus and aligner
JP2014017328A (en) Mounting device and measuring method
WO2015122449A1 (en) Component mounting device and detection device
JP2007146995A (en) Static pressure slider
CN104221137A (en) Substrate conveying apparatus, exposure apparatus, substrate supporting apparatus, and method for manufacturing device
JP2010140921A (en) Device and method for mounting ball, and apparatus for manufacturing electronic component
JP2005340780A (en) Electronic component mounting device and electronic component mounting method
CN117665338B (en) Chuck assembly and probe station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756425

Country of ref document: EP

Kind code of ref document: A1