WO2023157860A1 - 腸内細菌叢再現モデル - Google Patents

腸内細菌叢再現モデル Download PDF

Info

Publication number
WO2023157860A1
WO2023157860A1 PCT/JP2023/005153 JP2023005153W WO2023157860A1 WO 2023157860 A1 WO2023157860 A1 WO 2023157860A1 JP 2023005153 W JP2023005153 W JP 2023005153W WO 2023157860 A1 WO2023157860 A1 WO 2023157860A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
intestinal
intestinal model
culture
acid
Prior art date
Application number
PCT/JP2023/005153
Other languages
English (en)
French (fr)
Inventor
直 佐藤
祐樹 齊藤
浩和 辻
敏 松本
Original Assignee
株式会社ヤクルト本社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヤクルト本社 filed Critical 株式会社ヤクルト本社
Publication of WO2023157860A1 publication Critical patent/WO2023157860A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to an intestinal model in which intestinal microflora or feces are inoculated into a culture tank and cultured anaerobically, more specifically, an intestinal microbiota reproduction model.
  • Patent Document 1 discloses a method of anaerobically culturing while maintaining the compositional balance of the intestinal microflora cell group. Specifically, it is proposed to rapidly cool the GAM medium after autoclaving to reduce the amount of dissolved oxygen, add a predetermined organic acid, and then culture anaerobically.
  • the basal medium is specified as GAM medium, etc.
  • the purpose of the present invention is to provide a novel intestinal model that is more similar to the human intestinal flora, a culture medium for the intestinal model, and a method for evaluating functional ingredients using the intestinal model.
  • the present inventors unexpectedly succeeded in creating a new intestinal model by selecting a medium different from the GAM medium of Patent Document 1 as a basal medium.
  • the preparation method of the intestinal tract model of the present invention and its evaluation method will be described in detail in the following paragraphs such as Examples.
  • the characteristics of the intestinal model of the present invention are as follows.
  • An intestinal model in which intestinal flora or feces are inoculated into a culture tank and cultured anaerobically, The pH of the medium for the intestinal model is maintained at 5.0 to 8.0, and the sugar source in the medium for the intestinal model does not contain glucose and is selected from at least arabinoxylan and/or xyloglucan.
  • An intestinal model characterized by containing a composition containing an indigestible carbohydrate.
  • composition containing the indigestible carbohydrate contains at least one carbohydrate selected from the group consisting of pectin, starch, and mucin.
  • a method for evaluating a functional ingredient using the intestinal model comprises: a first step of adding the functional component to a medium and culturing intestinal flora or feces to obtain a first culture solution; a second step of culturing the intestinal flora or feces without adding the functional ingredient to the medium to obtain a second culture solution; A third step of evaluating the functional component by comparing the first culture solution and the second culture solution, Evaluation methods that include
  • an intestinal model in which intestinal microflora or feces are inoculated into a culture tank and cultured anaerobically.
  • a culture medium for producing an intestinal model and a method for evaluating a functional ingredient using the intestinal model.
  • FIG. 1 is a flow showing a method for preparing an intestinal model.
  • FIG. 2 is a flow showing a method for evaluating functional ingredients using an intestinal model.
  • FIG. 3 shows the amounts of medium components per liter of PY medium.
  • FIG. 4 shows the amounts of medium components per liter of GMM medium.
  • FIG. 5 shows the amounts of medium components per liter of BHI medium.
  • FIG. 6 shows the amounts of medium components per liter of GAM medium.
  • FIG. 7 shows the final component amounts of the indigestible carbohydrate-containing composition when 1 L of medium was prepared.
  • FIG. 8 shows the final component amounts of sugar sources containing glucose when 1 L of GMM medium was prepared.
  • FIG. 9 shows the final component amounts of the mixture of short-chain fatty acids when 1 L of medium was prepared.
  • FIG. 1 is a flow showing a method for preparing functional ingredients using an intestinal model.
  • FIG. 3 shows the amounts of medium components per liter of PY medium.
  • FIG. 4 shows the amounts of medium components
  • FIG. 10A shows changes over time in culture solution pH.
  • FIG. 10B shows the time-dependent changes in culture solution pH for PY-L medium and PY-LS medium.
  • FIG. 11 shows the measured organic acid concentrations in the culture medium.
  • FIG. 12 shows total bacterial counts.
  • FIG. 13 shows the results of cluster analysis based on the obtained sequences.
  • FIG. 14 shows the results of UniFrac distance analysis of the obtained sequences.
  • FIG. 15 shows the occupancy rate of Enterobacteriaceae in feces and each medium.
  • FIG. 16 shows the results of diversity analysis of bacterial flora in samples.
  • FIG. 17 shows changes over time in the pH of the culture solution.
  • FIG. 18 shows the analysis results of bacterial lawn composition and ⁇ -diversity.
  • FIG. 19 shows changes over time in the pH of the culture solution.
  • FIG. 20 shows the analysis results of bacterial lawn composition and ⁇ -diversity.
  • FIG. 21 shows changes over time in the number of bifidobacter
  • the intestinal model of the present invention is anaerobically cultured by inoculating intestinal flora or feces in a culture tank.
  • the medium of the intestinal model is characterized by maintaining the pH at 5.0 to 8.0.
  • the intestinal model medium does not contain glucose as a sugar source.
  • the intestinal model medium contains a composition containing at least an indigestible carbohydrate selected from arabinoxylan and/or xyloglucan.
  • a PY medium or a GMM medium may be selected as the basal medium.
  • a short-chain fatty acid may be added to suppress an increase in the composition ratio of specific bacteria (Enterobacteriaceae) in the bacterial flora.
  • PY-L medium, GMM-L medium, or PY-LS medium may be selected as the basal medium.
  • the pH of the intestinal model was adjusted using the buffer PIPES, or sodium hydroxide, potassium hydroxide, sodium carbonate, or sodium bicarbonate or hydrochloric acid.
  • the term "intestinal model” refers to a culture model that reproduces human intestinal microflora.
  • the term “intestinal model culture medium” refers to a culture medium capable of producing a culture model that reproduces human intestinal microflora.
  • step S1001 the medium preparation is performed in step S1001. Methods of media preparation are detailed in later paragraphs.
  • step S1002 the medium is autoclaved to reduce dissolved oxygen in the medium and sterilized.
  • step S1003 the medium is aerated with an anaerobic gas (mixed gas of nitrogen, carbon dioxide, and hydrogen) and transferred to a culture tank, and in step S1004, the medium is inoculated with feces or intestinal flora.
  • step S1003 is a step of making the intestinal model anaerobic.
  • the anaerobic gas in addition to the above gases, nitrogen, carbon dioxide, or a mixed gas of both can be used.
  • the feces or intestinal flora to be inoculated into the medium in step S1004 is not particularly limited, and the feces collected from the subject can be used as they are or after being diluted with sterilized phosphate buffer or the like. Cultivation is performed in step S1005, appropriate fractionation is performed in step S1006, an evaluation test is performed in step S1007, and the operation is finished.
  • the basal medium used in the present invention may be PY medium (Peptone Yeast extract medium) or GMM medium (Gut Microbiota Medium) (Goodman AL et al. Proc Natl Acad Sci USA 108, 6252-6257).
  • PY medium Peptone Yeast extract medium
  • GMM medium Gut Microbiota Medium
  • the PY medium is particularly preferable from the viewpoint of the diversity of bacterial flora.
  • Commercially available media can also be used if none of the media contain glucose.
  • the sugar source of the above basal medium does not contain glucose. This is because glucose is absorbed in the small intestine, so it is presumed that the lower gastrointestinal tract including the large intestine is in a state of glucose depletion.
  • a composition containing at least an indigestible saccharide selected from arabinoxylan and/or xyloglucan is used as the saccharide source.
  • Low-digestible carbohydrates generally refer to carbohydrates that are difficult to digest by human digestive enzymes.
  • compositions containing arabinoxylan and/or xyloglucan are used as indigestible carbohydrates.
  • a composition obtained by adding a sugar source to the indigestible carbohydrate may be used, and the sugar source may contain pectin, starch, or mucin.
  • a composition containing indigestible sugars containing arabinoxylan, xyloglucan, pectin, starch and mucin as preferred sugar sources can be added to the medium.
  • Indigestible carbohydrates are not particularly limited as long as they contain carbohydrates that are difficult to digest by human digestive enzymes.
  • ingredients generally contained in dietary ingredients, including insoluble polysaccharides may be used.
  • Arabinoxylan and xyloglucan are both types of hemicellulose polysaccharides, and arabinoxylan is a basic chain in which arabinose is linked by ⁇ -1,3 bonds to a main chain composed of xylose linked by ⁇ -1,4 bonds.
  • xyloglucan has a main chain of cellulose in which glucose is linked by ⁇ -1,4 bonds, and xylose as a side chain is linked by ⁇ -1,6 bonds to form side chains.
  • arabinoxylan or xyloglucan may be omitted from the composition containing the indigestible carbohydrate and added to the medium.
  • the sugar source in the medium preferably has a lower limit of 4 g/L or more. More preferably, the lower limit is 5 g/L or more. More preferably, it is 7 g/L or more. Also, the upper limit is preferably 21 g/L or less. More preferably, the upper limit is 20 g/L or less. More preferably, the upper limit is 19 g/L or less.
  • the sugar source referred to here refers to sugars other than glucose that can be assimilated by intestinal bacteria.
  • the sugar source which is the main energy source for intestinal bacteria
  • the normal bacterial flora may not be formed.
  • Excessive addition of the source may cause a significant increase in the concentration of organic acids and an extreme decrease in pH, which may greatly change the composition of the bacterial flora and greatly deviate from the normal intestinal environment. is.
  • short-chain fatty acids may be added to the medium in order to adjust the balance of the composition ratio of the bacterial flora.
  • a short-chain fatty acid refers to a fatty acid having 7 or less carbon atoms among fatty acids in which one carboxyl group is bonded to an alkyl group.
  • acetic acid, propionic acid, butyric acid, or isovaleric acid may be used as short-chain fatty acids. More preferably, mixtures of acetic acid, propionic acid, butyric acid and isovaleric acid may be used.
  • Acetic acid: propionic acid: butyric acid: isovaleric acid may be prepared at a mixing ratio of 1-180:0.2-80:0.2-80:0.1-40. More preferably, Acetic acid: propionic acid: butyric acid: isovaleric acid may be prepared at a mixing ratio of 30:8:4:1.
  • the total amount of these short-chain fatty acids added is preferably 20 mM or more, more preferably 30 mM or more, and preferably 60 mM or less, more preferably 50 mM or less. The reason for this is that there is a certain amount of single-chain fatty acids in the normal intestinal environment, which plays a role in suppressing pathogenic bacteria and maintaining normal bacterial flora.
  • Short fatty acids are produced by bacteria during culture, but since there are bacteria that assimilate acetic acid, it is particularly preferable to add at least acetic acid at the start of culture.
  • the medium of the present invention contains so-called primary bile acids such as cholic acid and chenodeoxycholic acid contained in bile, or taurine, glycine, and the like. may be added as a medium component.
  • so-called secondary bile acids such as deoxycholic acid and lithocholic acid, which are produced by deconjugated and metabolic conversion by intestinal bacteria, may be added.
  • a bilirubin conjugate, also contained in bile may also be added.
  • Peptone is a medium component obtained by hydrolyzing proteins into amino acids or low-molecular-weight peptides. Peptone is not particularly limited as long as it is peptone for microbial culture medium. Specific examples of peptone include casein peptone, meat peptone, cardiac muscle peptone, gelatin peptone, soybean peptone, and the like.
  • Yeast extract is a medium component obtained by extracting the active ingredients of yeast through autolysis, enzymatic treatment, hot water treatment, etc.
  • the yeast extract is not particularly limited as long as it is a yeast extract for microbial culture media.
  • Specific examples of the yeast extract include baker's yeast (yeast extract), brewer's yeast extract, and the like.
  • Hemin is a medium component containing iron-containing porphyrin. Hemin is a general term for salts produced by binding hematin to acids, and hematin is a compound in which trivalent iron is bound to a porphyrin ring.
  • Cysteine is an amino acid with an SH-group in the molecule.
  • L-cysteine is preferred as a medium component.
  • Cysteine hydrochloride is the hydrochloride salt of L-cysteine. Depending on the solubility in the medium, it may be added in the form of L-cysteine or in the form of its hydrochloride.
  • Vitamins include fat-soluble vitamins such as vitamins A, D, E and K, water-soluble vitamins such as vitamin B group and vitamin C, riboflavin (vitamin G), biotin (vitamin H) and all other vitamins, or ubiquinone, Vitamin-like acting factors such as lipoic acid may be included as medium components.
  • the minerals may contain calcium, iron, magnesium, potassium, sodium, etc. as medium components.
  • human breast milk oligosaccharides, lactose, whey protein, casein, oils and fats, etc. are further added to the medium of the present invention as medium components within a range that does not affect the evaluation of the functional ingredients. You may
  • Human breast milk oligosaccharides are a type of oligosaccharides that are effective in regulating the intestinal environment of infants, and are mainly composed of glucose, galactose, fucose, N-acetylglucosamine, N-acetylneuraminic acid, Galactosyl lactose, sialyllactose and the like are known.
  • Whey protein is a protein in an aqueous solution obtained by removing milk fat, casein, etc. from milk such as cow's milk.
  • Casein is a type of phosphoprotein contained in milk such as cow's milk and cheese.
  • Fats and oils are esters of fatty acids and glycerin, including milk fats and vegetable fats.
  • the pH of the medium is maintained in the range of 5.0 to 8.0 from the viewpoint of preparing a human intestinal model. Exceeding the above pH range is undesirable because it is out of the physiological range of the human digestive tract.
  • the intestinal tract model of the present invention can be used for both upper gastrointestinal flora analysis and lower gastrointestinal flora analysis. It is preferably used for bacterial flora analysis of the lower gastrointestinal tract.
  • the pH may be adjusted.
  • the method of pH adjustment depends on the culture method.
  • Culture techniques include batch culture, semi-continuous culture, or continuous culture. Batch culture is a method of culturing without feeding nutrient sources, medium components, etc., or withdrawing the culture solution. good at what it can do.
  • continuous culture is a method of culturing while continuously adding medium components and recovering the culture solution
  • semi-continuous culture is a method of collecting a part of the culture solution during cultivation and at the same time replenishing new medium components. It is a culture method that Continuous culture and semi-continuous culture can supply the substrates necessary for the growth of microorganisms and discharge the culture medium in which metabolites have accumulated. It is excellent in that it can analyze plexus changes.
  • the pH of the intestinal model is adjusted by dissolving the medium components with Good's buffer represented by PIPES and other buffers to give it buffering capacity.
  • the pH during culture may be adjusted using an alkaline solution such as sodium hydroxide or hydrochloric acid.
  • an alkaline solution such as sodium hydroxide or hydrochloric acid.
  • potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, etc. can be used instead of sodium hydroxide. preferable.
  • the amount of sugar source in the medium is basically as indicated in the previous paragraph.
  • sugar refers not only to monosaccharides and oligosaccharides, but also to oligosaccharides, polysaccharides, glycosides, sugars).
  • sugar refers not only to monosaccharides and oligosaccharides, but also to oligosaccharides, polysaccharides, glycosides, sugars.
  • sugar including proteins, nucleic acids, sugar derivatives such as sugar alcohols and amino sugars, or other substances containing sugars in their chemical structures
  • the total amount should be used to adjust the sugar source added. This is to prevent a decrease in pH due to excessive acid production by bacteria.
  • the amount of the sugar source in the medium given in the previous paragraph should be followed.
  • a functional ingredient is a test substance that has the potential to affect the bacterial composition and metabolic activity of the intestinal flora.
  • sugars or derivatives thereof (herein sugars are oligosaccharides, polysaccharides, glycosides, glycoproteins, nucleic acids or other sugars in their chemical structure) that may be utilized by the intestinal flora. containing substances), peptides, amino acids, or derivatives thereof, lipids, flavonoids, polyphenols, microorganisms such as lactic acid bacteria and yeast, or other physiologically active ingredients, pharmaceuticals, drugs equivalent to pharmaceuticals, or Includes substances that are or are capable of being administered nasally, gastrically, or enterally. Each of them may be used as a single item, a mixture of two or more, or a form contained in food.
  • Figure 2 briefly explains the method of evaluating functional ingredients using an intestinal model.
  • intestinal flora or feces are inoculated and cultured in a medium added with a functional component to obtain a first culture solution.
  • the culture procedure is the same as the method shown in the intestinal model production flow of FIG. 1, except that the functional component is added to the medium.
  • the functional ingredient may be added after adding intestinal flora or feces to the medium and culturing for a certain period of time, or may be added to the medium at the same time as or before adding intestinal flora or feces. .
  • step S2002 intestinal flora or feces are inoculated and cultured in a medium to which no functional ingredient is added to obtain a second culture solution.
  • the culture procedure is the same as the method shown in the intestinal model production flow of FIG.
  • steps S2001 and S2002 culture is performed for the same time under the same conditions, except for the presence or absence of addition of functional ingredients.
  • the order of steps S2001 and S2002 may be reversed, and a part of the culture solution after adding intestinal flora or feces to the medium and culturing for a certain period of time is collected as a second culture solution, and the rest of the culture solution is collected.
  • a culture solution obtained by adding a functional component to the culture solution and culturing for a certain period of time may be used as the first culture solution.
  • step S2003 the first culture solution obtained in step S2001 and the second culture solution obtained in step S2002 are compared to perform an evaluation test of the functional components, and the operation ends.
  • the evaluation tests in Fig. 1 include time-dependent changes in the pH of the fractionated medium, evaluation of the organic acid production amount in the medium, and cluster analysis based on the organic acid concentration.
  • metabolome analysis which enables comprehensive analysis of metabolites, can also be used.
  • evaluation is performed using microflora composition analysis, cluster analysis, ⁇ -diversity analysis, ⁇ -diversity analysis (UniFrac analysis), etc. by meta-16S analysis based on the 16S rRNA gene sequence derived from the bacteria in the culture medium. It is also possible to evaluate by metagenome analysis based on bacterial genome sequences, gene expression analysis by RNA sequencing, and the like.
  • the same method is used also about the evaluation of the functional component of FIG.
  • Example 1 ⁇ Method for preparing medium> A method for preparing the medium will be described.
  • the composition of the basal medium for PY medium and GMM medium is as shown in FIG. 3 for PY medium and in FIG. 4 for GMM medium.
  • the composition of the BHI medium of the comparative example is shown in FIG. 5, and the composition of the GAM medium (Gifu-Anaerobic Medium: manufactured by Nissui Pharmaceutical Co., Ltd.) is shown in FIG.
  • a composition containing the indigestible sugar shown in FIG. was added (PY-L medium, BHI-L medium).
  • the GMM medium either the composition containing the indigestible sugar shown in FIG. 7 or the sugar source containing glucose shown in FIG. 8 was added as the sugar source.
  • the former is referred to as GMM-L medium and the latter simply as GMM medium.
  • the sugar sources for the comparative GAM medium are listed in FIG. 6 along with other basal media.
  • PY medium a composition containing an indigestible carbohydrate was added to the sugar source (PY-L medium), and a mixture of short-chain fatty acids shown in FIG.
  • PY-LS medium a medium containing the composition
  • Figures 3 to 6 show the amount of medium components per liter.
  • Figures 7-9 show the final component amounts when 1 L of medium was prepared.
  • the basal medium components other than the sugar source shown in FIGS. 3, 4, and 5 per 1 L were dissolved in 0.2 M PIPES buffer (pH 6.5) to make 0.5 L, and then autoclaved at 121° C. for 15 minutes. did.
  • the PY-LS medium was prepared by dissolving a mixture of basal medium components other than the sugar source per 1 L shown in FIG. 3 and short-chain fatty acids per 1 L shown in FIG. After making 5 L, it was sterilized in an autoclave at 121° C. for 15 minutes. These correspond to double concentration basal medium.
  • the sugar source solution in Figure 8 for use in the GMM medium was dissolved in 0.5 L of purified water. 7 for use in PY-L medium, PY-LS medium, GMM-L medium, and BHI-L medium (the total amount of sugar source shown in FIG. 7 is 8 g/L). ), first dissolve the mucin in 1N NaOH, add purified water, adjust the pH to around 6.5 with 6N HCl solution, add other sugar sources and dissolve with heating, then add purified water. The volume was increased to 0.5L. All sugar source solutions were autoclaved at 121° C. for 15 minutes before use. This corresponds to a double concentration sugar solution.
  • the 2-fold concentration basal medium and the 2-fold concentration sugar solution are diluted 2-fold by mixing equal amounts immediately before use, and the final use medium (PY-L medium, PY-LS medium, GMM medium, GMM-L medium , BHI-L medium).
  • Example 2 A culture method will be described.
  • 50 ml of the above medium prewarmed to 37° C. was placed in a 100 ml medium bottle with a 0.2 ⁇ m filter unit (Shibata Kagaku) and diluted 10-fold with anaerobic-substituted PBS containing 0.1% cysteine hydrochloride.
  • Each medium bottle was inoculated with 0.1% (v/v) feces of 4 healthy adults A to D (ages 31 to 42). After inoculation, it was stirred and cultured at 300 rpm for 48 hours at 37°C.
  • the chamber is filled with a gas phase of nitrogen, carbon dioxide, and hydrogen at a ratio of 90:7:3.
  • Example 3 ⁇ pH measurement of feces and medium> A portion of the culture solution was sampled at 18 hours, 24 hours and 48 hours after the culture, and the pH of the culture solution was measured with a pH meter. Results are shown in FIGS. 10A and 10B.
  • FIG. 10A shows the results of culturing and fractionating PY-L medium, GMM medium, GMM-L medium, BHI-L medium, and GAM medium among the media shown in Example 1 as in Examples 2 and 3. It is a measured value of the culture solution pH.
  • Graphs i to iv in FIG. 10A show changes in medium pH over time for donors A to D, respectively.
  • the vertical axis indicates pH, and the horizontal axis indicates culture time (hr).
  • the pH of the inoculated faeces was 6.6, 6.2, 6.7 and 5.7 in the order of donor A, donor B, donor C and donor D, respectively. All the collected media had a pH within the range of 5.0 to 8.0 and maintained a physiological pH.
  • FIG. 10B shows measured pH values of the culture solution when PY-L medium and PY-LS medium among the media shown in Example 1 were cultured and fractionated in the same manner as in Examples 2 and 3.
  • FIG. With respect to donors A and B, part of the culture solution was sampled at 24 hours and 48 hours after cultivation, and the pH of the culture solution was measured with a pH meter.
  • donors C and D a part of the culture solution was sampled at 8 hours, 24 hours and 48 hours after the culture, and the pH of the culture solution was measured with a pH meter.
  • the graph shows the change in medium pH over time for each of Donors AD.
  • the vertical axis indicates pH
  • the horizontal axis indicates culture time (hr).
  • PY-L and PY-LS media were similar in pH variation. In addition, all data maintained physiological pH.
  • Example 4 ⁇ Organic acid concentration and composition> After 24 hours or 48 hours of culture, a portion of the culture medium was sampled and deproteinized with a perchloric acid solution, and then various organic acid concentrations in the culture medium were measured by ion exclusion high-performance liquid chromatography. The results are shown in FIG.
  • FIG. 11 shows the results when PY-L medium, GMM medium, GMM-L medium, BHI-L medium, and GAM medium among the media shown in Example 1 were cultured and fractionated in the manner described in Examples 2 and 3. It is a measured value of the organic acid concentration of the culture solution.
  • Graphs i-iv show the organic acid concentration of the medium for donors AD, respectively.
  • the vertical axis of the graph indicates, from the top, donor stool samples, GAM medium, GMM medium, GMM-L medium, BHI-L medium, and PY-L medium after culturing for 24 hours and 48 hours.
  • the horizontal axis indicates the organic acid concentration (mmol/L). Concentration in feces was expressed as (mmol/Kg feces).
  • the specific gravities of the media shown in FIG. 11 are all approximately 1.
  • the concentration of organic acids in the human lower gastrointestinal tract ranges up to about 200 mmol/Kg contents (Cummings JH et al. 1987 Gut 28, 1221-1227).
  • GAM medium of the comparative example
  • the organic acid concentration deviated from the upper limit of the physiological range after culturing for 48 hours or longer. Therefore, it was revealed that GAM medium is not preferable as a medium for use in the intestinal model of the present invention.
  • PYL-L medium, BHI-L medium and GMM-L medium maintained the physiological range of organic acid concentration. This test revealed that PYL-L medium, BHI-L medium, or GMM-L medium is suitable as a medium candidate for the intestinal model.
  • the total number of bacteria in the culture medium was determined using the extracted DNA as a template, according to a previously reported method (Shima T et al. 2019 Benef Microbes. 10: 814-854), using a primer set ( Fuller Z, et al. 2007 Br J Nutr. 98(2): 364-72) was used for measurement by a quantitative PCR method.
  • the V1-V2 region of the 16S rRNA gene of intestinal bacteria was amplified by PCR. These amplified products were subjected to next-generation sequencer MiSeq (Illumina) to obtain nucleotide sequences. The obtained sequence information was subjected to analysis by QIIME2, and a unique sequence (feature) was obtained by removing sequence errors, chimeric sequences, etc. by DADA2. The sequences obtained by the analysis are collated with the database (silva138 and 16S RefSeq records provided by NCBI (both versions are as of December 2019)), and the phylogenetic classification of bacteria is performed to identify bacterial groups in feces and culture media. We calculated the composition ratio for each.
  • FIG. 12 shows the culture of PY-L medium, GMM medium, GMM-L medium, GAM medium, and BHI-L medium among the media shown in Example 1 after 24 hours in the same manner as in Examples 2 and 3.
  • Fig. 4 shows the results of analyzing the total number of bacteria in the culture medium when the liquid was fractionated.
  • the vertical axis of the data in FIG. 12 indicates the name of feces and each medium (24 hours after culture).
  • the horizontal axis indicates values of analysis results.
  • FIG. 13 The results of cluster analysis based on the composition ratio of features in the culture solution when the culture solution was fractionated are shown.
  • clusters were formed for each individual, within which feces and PY-L formed the same subcluster. That is, it was revealed that PY-L was most similar to the feature configuration in feces.
  • FIG. 14 shows that among the media shown in Example 1, PY-L medium, GMM medium, GMM-L medium, BHI-L medium, and GAM medium were used in the same manner as in Examples 2 and 3 after 24 hours.
  • Fig. 4 shows the analysis results of the UniFrac distance from stool when the culture solution was fractionated. Regarding the UniFrac distance, the closer the value is to 0, the more preferable the intestinal model is.
  • the vertical axis indicates the name of the medium, and the horizontal axis indicates the result of qualitative analysis for a) and the result of qualitative and quantitative analysis for b).
  • Fig. 14 the results of analyzing the UniFrac distance from the feces for the features obtained by the bacterial flora analysis show that both Unweighted, which is evaluated based only on the presence or absence of the feature, and Weighted UniFrac, which is evaluated based on the presence and absence of the feature as well as the abundance , the PY-L medium was the closest to feces, and the former was significantly shorter than the GAM medium. Furthermore, next to the PY-L medium, the GMM-L medium was closer to feces.
  • the PY-L medium formed a bacterial lawn most similar to feces.
  • the PY-L medium tended to have a slightly higher occupancy rate of Enterobacteriaceae, which is a coliform, as in Comparative Example GAM (not shown). Therefore, an attempt was made to improve the medium in order to suppress excessive growth of Enterobacteriaceae in the PY-L medium. As a result, as shown in FIGS.
  • FIG. 15 shows the occupancy rate of Enterobacteriaceae when the PY-L medium and PY-LS medium of the medium shown in Example 1 were fractionated after 24 hours in the same manner as in Examples 2 and 3. indicate.
  • FIG. 16 shows the results of comparing ⁇ -diversity and ⁇ -diversity in GAM, PY-L medium and PY-LS medium.
  • the PY-LS medium supplemented with short-chain fatty acids showed higher diversity than the comparative GAM medium in the number of features and the Shannon index, and further the PY-LS medium and the PY-L medium. It was found that there was no significant difference between Furthermore, regarding ⁇ diversity in the lower row, the PY-LS medium has a UniFrac distance (both unweighted and weighted) closer to feces than the comparative GAM medium, and there is a significant difference between the PY-LS medium and the PY-L medium.
  • PY-L medium, GMM-L medium, or PY-LS medium was selected as the medium for the intestinal model in order to construct an evaluation system that mimics the intestinal environment in terms of both metabolic activity and bacterial flora composition. It was found that it is better to select It was found that PY-L medium or PY-LS medium should preferably be selected.
  • Example 6 ⁇ Effect test of PIPES> When the medium was prepared without using the buffer used for the medium preparation in Example 1, it was tested what kind of bacterial lawn composition it would be.
  • medium components using PIPES in Example 1, the components of the PY-L medium in FIG. ) and sterilized in an autoclave at 121° C. for 15 minutes.
  • the basal medium components other than the sugar source per 1 L were dissolved in 0.5 L of distilled water (DW) and autoclaved at 121° C. for 15 minutes. Subsequent procedures are as shown in the first embodiment. Results are shown in FIGS. 17 and 18.
  • FIG. 17 and 18 Results are shown in FIGS. 17 and 18.
  • Fig. 17 shows the results of measuring the pH of a portion of the culture medium immediately after medium preparation and after 24 hours or 48 hours of culture for donors A and C.
  • the pH was maintained within the physiological range with and without PIPES. Also, when PIPES was used, the width of pH variation over time was kept smaller. Both are at a level that can withstand practical use as an intestinal model.
  • Fig. 18 shows the analysis results of the bacterial flora composition ratio and ⁇ -diversity.
  • the upper row shows the occupancy rate of bacterial flora at the Family level in feces, medium with PIPES, and medium without PIPES.
  • the composition of the bacteria is Lachnospiraceae, Prevotellaceae, Bifidobacteriaceae, Bacteroidaceae, Ruminococcaceae, Veillonellaceae, Erysipelotrichaceae, and Enteroba in order from the left, referring to feces. cteriaceae, Peptostreptococcaceae, and other groups. From FIG.
  • Example 7 ⁇ Test on amount of sugar source> As shown in Example 1, the present invention uses a composition containing an indigestible sugar as a sugar source. Here, a test was conducted to see what kind of effect the bacterial flora would have if the total amount (8 g/L) of the sugar source in FIG. 7 shown in Example 1 was halved (4 g/L). Specifically, in Example 1, when the composition (8 g/L) containing an indigestible carbohydrate shown in FIG. 7 was added to the PY-L medium shown in FIG. It was added in half (4 g/L). Subsequent procedures are as shown in the first embodiment.
  • FIG. 19 shows the results of measuring the pH of a portion of the culture medium taken immediately after medium preparation, 24 hours or 48 hours after culture for donors A, B, and D.
  • the pH remained within the physiological range both when the amount of the composition containing the indigestible carbohydrate as the sugar source was equal to that of Example 1 and when it was halved. Further, when the amount of the composition containing the indigestible carbohydrate was reduced to half of that in Example 1, the fluctuation range of pH over time was maintained even smaller. Both are at a level that can withstand practical use as an intestinal model.
  • FIG. 20 shows the analysis results of the ⁇ -diversity test and the like.
  • the upper row shows the bacterial flora in each of feces, PY-L medium supplemented with sugar sources (LDCs) in the same amount as in Example 1, and PY-L medium supplemented with half the sugar source in Example 1 (LDCs1/2). shows the occupancy rate at the Family level.
  • LDCs sugar sources
  • the composition of bacteria is Lachnospiraceae, Bacteroidaceae, Bifidobacteriaceae, Ruminococcaceae, Prevotellaceae, Veillonellaceae, Erysipelotrichaceae, Porph yromonadaceae, Clostridiales; f, and other groups. From FIG.
  • the composition ratio of bacteria such as Bacteroidaceae and Porphyromonadaceae is slightly reduced for all of donors A, B, and D, and the composition ratio of bacteria such as Lachnospiraceae and Bifidobacteriaceae is Although there was a slight increase, the compositional balance of the bacterial flora was generally maintained. From the ⁇ -diversity analysis results in the lower row, the PY-L medium (LDCs1/2) to which half the sugar source of Example 1 was added slightly decreased the number of features and the Shannon index, but the diversity of the bacterial flora was generally maintained.
  • LDCs1/2 PY-L medium
  • the sugar source in the medium preferably has a lower limit of 4 g/L or more, more preferably a lower limit of 5 g/L or more, from the viewpoint of diversity of bacterial flora. It has been found that the concentration is preferably 7 g/L or more. Further, it has become clear that the upper limit is preferably 21 g/L or less, more preferably 20 g/L or less, and still more preferably 19 g/L or less.
  • compositions containing indigestible carbohydrates were added to the PY-LS medium for the purpose of suppressing excessive acid production and pH decrease. The amount was halved.
  • LDCs indigestible carbohydrates
  • 50 ml of PY-LS medium 0.1% feces of two healthy adults A and D diluted 10-fold with anaerobic-substituted PBS containing 0.1% cysteine hydrochloride were inoculated and placed under anaerobic gloves at 37°C for 24 hours. It was cultured in a box to form a bacterial lawn.
  • Example 9 ⁇ Measurement of the number of bifidobacteria> The number of bifidobacteria in the culture medium was measured by a quantitative PCR method using a primer set specific to bacteria of the genus Bifidobacterium according to a previous report (Matsuki T et al. 2004 Appl Environ Microbiol, 70: 167-173). Results are shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

嫌気的に培養する新規の腸管モデルおよびその製法を提供する。 新規の腸管モデルは、培地のpHが5.0~8.0に維持され、かつ培地において、糖源はグルコースを含まず、かつかつ少なくともアラビノキシランおよび/またはキシログルカンから選ばれる難消化性糖質を含む組成物を含有することを特徴とする。

Description

腸内細菌叢再現モデル
 本発明は、培養槽に腸内細菌叢または糞便を接種して嫌気的に培養する腸管モデル、詳しくは腸内細菌叢再現モデルに関する。
 従来、食品素材の腸内での動態解析には動物試験やヒト試験が行われている。しかし、これらの試験は侵襲的な処置を伴うことが多いため、近年ではインビトロでの解析方法が研究されてきている。
 例えば、特許文献1は腸内細菌叢の細胞群の構成バランスを維持したまま嫌気的に培養する手法を開示する。具体的には、GAM培地をオートクレーブ後に急冷させて溶存酸素量を減少させ、所定の有機酸を添加した後に嫌気的に培養を行うことを提案する。
国際公開WO2015/136916
 しかし、特許文献1による手法では、例えば基礎培地をGAM培地に特定してしまう等、人工的な腸管モデルの作製に関し、本来のヒトの腸内細菌叢の構成バランスに更に近似させるための研究・開発を行う余地が残っていた。
 そこで、本発明は、ヒトの腸内細菌叢に更に近似させた新規の腸管モデル、腸管モデルの培地、および腸管モデルを用いた機能性成分の評価方法を提供することを目的とする。
 本発明者らは、鋭意研究を行った結果、意外にも特許文献1のGAM培地とは異なる培地を基礎培地として選定することにより、新規の腸管モデルを作製することに成功した。本発明の腸管モデルの作製手法およびその評価手法に関しては、以下の実施例等の段落において詳述する。本発明の腸管モデルの特徴については、以下の通りである。
 [1]培養槽に腸内細菌叢または糞便を接種して嫌気的に培養する腸管モデルであって、
 前記腸管モデルの培地のpHは5.0~8.0に維持することを特徴とし、かつ
 前記腸管モデルの培地において、糖源はグルコースを含まず、かつ少なくともアラビノキシランおよび/またはキシログルカンから選ばれる難消化性糖質を含む組成物を含有することを特徴とする、腸管モデル。
 [2]前記難消化性糖質を含む組成物は、ペクチン、スターチ、およびムチンから成る群から選択される少なくとも1つの糖質を含有する、前記[1]に記載の腸管モデル。
 [3]前記難消化性糖質を含む組成物は、アラビノキシラン、キシログルカン、ペクチン、スターチ、およびムチンを含有する、前記[2]に記載の腸管モデル。
 [4]前記腸管モデルの培地において、短鎖脂肪酸をさらに含有することを特徴とする、前記[1]~[3]のいずれか一つに記載の腸管モデル。
 [5]前記短鎖脂肪酸は、酢酸、プロピオン酸、酪酸、およびイソ吉草酸から成る群から少なくとも1つ選択される、前記[4]に記載の腸管モデル。
 [6]前記短鎖脂肪酸は、酢酸、プロピオン酸、酪酸、およびイソ吉草酸を含有する、前記[5]に記載の腸管モデル。
[7]前記培地はPY培地またはGMM培地である、前記[1]~[6]のいずれか一つに記載の腸管モデル。
 [8]前記培地はPY-L培地、PY-LS培地またはGMM-L培地である、前記[1]~[7]のいずれか一つに記載の腸管モデル。
 [9]前記腸管モデルのpH調整を行う場合に、
 前記培養槽の培地のpH調整はPIPESを用いて調整される、または
 前記培地のpH調整は水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、もしくは炭酸水素ナトリウムまたは塩酸を用いて調整されることを特徴とする、前記[1]~[8]のいずれか一つに記載の腸管モデル。
 [10]培養槽に腸内細菌叢または糞便を接種して嫌気的に培養する腸管モデルの培地であって、
 前記腸管モデルの培地のpHは5.0~8.0に維持することを特徴とし、かつ
 前記腸管モデルの培地において、糖源としてグルコースを含まず、かつ少なくともアラビノキシランおよび/またはキシログルカンから選ばれる難消化性糖質を含む組成物を含有することを特徴とする、培地。
 [11]ペプトン類、酵母エキス、ヘミン、システインもしくはシステイン塩酸塩、ビタミン類、またはミネラルを含有する、前記[10]に記載の培地。
 [12]前記[1]~[9]のいずれか一つに記載の腸管モデルを用いた機能性成分の評価方法であって、前記評価方法は:
 前記機能性成分を培地に添加して腸内細菌叢または糞便を培養して第1の培養液を取得する第1の工程と;
 前記機能性成分を培地に添加せずに前記腸内細菌叢または糞便を培養して第2の培養液を取得する第2の工程と;
 前記第1の培養液と前記第2の培養液を比較して前記機能性成分の評価を行う第3の工程、
を包含する評価方法。
 本発明によれば、培養槽に腸内細菌叢または糞便を接種して嫌気的に培養する腸管モデルを提供することができる。また、本発明によれば、腸管モデルを作製するための培地、腸管モデルを用いた機能性成分の評価方法を提供することもできる。
図1は腸管モデルの作製方法を示すフローである。 図2は腸管モデルを用いた機能性成分の評価方法を示すフローである。 図3はPY培地の1L当たりの培地の成分量を示す。 図4はGMM培地の1L当たりの培地の成分量を示す。 図5はBHI培地の1L当たりの培地の成分量を示す。 図6はGAM培地の1L当たりの培地の成分量を示す。 図7は培地1Lを調製した際の難消化性糖質を含む組成物の最終成分量を示す。 図8はGMM培地1Lを調製した際のグルコースを含む糖源の最終成分量を示す。 図9は培地1Lを調製した際の短鎖脂肪酸の混合物の最終成分量を示す。 図10Aは培養液pHの経時変化を示す。 図10BはPY-L培地とPY-LS培地に関する培養液pHの経時変化を示す。 図11は培養液中の有機酸濃度の測定値を示す。 図12は総菌数を示す。 図13は得られた配列を基にクラスター解析を行った結果を示す。 図14は得られた配列のUniFrac距離の解析結果を示す。 図15は糞便および各培地中におけるEnterobacteriaceaeの占有率を示す。 図16はサンプル中の菌叢の多様性解析結果を示す。 図17は培養液pHの経時変化を示す。 図18は菌叢構成およびα多様性の解析結果を示す。 図19は培養液pHの経時変化を示す。 図20は菌叢構成およびα多様性の解析結果を示す。 図21は培養液中のビフィズス菌数の経時的変化を示す。
 以下、本発明の腸管モデルの作製方法、解析手法、および腸管モデルの用途について詳細に説明するが、以下に記載する構成要件の説明は、本発明の一実施態様としての一例であり、これらの内容に特定されるものではない。
 本発明の腸管モデルは、培養槽に腸内細菌叢または糞便を接種して嫌気的に培養する。腸管モデルの培地のpHは5.0~8.0に維持することを特徴とする。また、腸管モデルの培地は、糖源としてグルコースを含まない。また、腸管モデルの培地は、少なくともアラビノキシランおよび/またはキシログルカンから選ばれる難消化性糖質を含む組成物を含有する。また、菌叢の多様性の観点から、基礎培地として、PY培地またはGMM培地を選定してもよい。また、基礎培地にPY培地を用いる場合は、短鎖脂肪酸を添加して、菌叢中の特定の菌(Enterobacteriaceae)の構成比の上昇を抑制してもよい。また、代謝活性および菌叢構成の観点から、基礎培地としてPY-L培地、GMM-L培地、またはPY-LS培地を選定してもよい。さらに、培養時の菌叢の多様性を維持するために、緩衝液のPIPES、または水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、もしくは炭酸水素ナトリウムまたは塩酸を用いて、腸管モデルのpH調整を行ってもよい。なお、本発明において「腸管モデル」とはヒトの腸内細菌叢を再現した培養モデルを指す。また、本発明において「腸管モデルの培地」とはヒトの腸内細菌叢を再現した培養モデルを作製可能な培地を指す。
 まず、腸管モデルの作製方法を、図1のフローを用いて簡潔に説明する。操作を開始すると、ステップS1001で培地調製を行う。培地調製の方法は、後の段落で詳しく述べる。次に、ステップS1002で培地のオートクレーブを行い、培地中の溶存酸素を減少させるとともに、滅菌処理を行う。次に、培地をステップS1003で嫌気的ガス(窒素、二酸化炭素、水素の混合ガス)に曝気して培養槽に移し、ステップS1004で培地に糞便または腸内菌叢を接種する。ステップS1003は腸管モデルを嫌気状態にするステップであり、嫌気ガスとしては、上記のガスのほかに、窒素または二酸化炭素あるいは両者の混合ガス等を用いることができ、また、嫌気ガスを培地に通気させてもよい。また、ステップS1004で培地に接種される糞便または腸内菌叢は特に制限はなく、被験者から回収した糞便等をそのまま、あるいは、滅菌したリン酸バッファー等で希釈して使用することができる。ステップS1005で培養を行い、ステップS1006で適宜分取し、ステップS1007で評価試験を行い、操作を終える。
 本発明で使用する基礎培地は、PY培地(Peptone Yeast extract medium)またはGMM培地(Gut Microbiota Medium)(Goodman AL et al. Proc Natl Acad Sci USA 108, 6252-6257)を使用してよい。これらの中でも、菌叢の多様性の観点から、特にPY培地が好ましい。どの培地もグルコースを含まなければ市販の培地を使用することもできる。
 上記基礎培地の糖源にグルコースは含まない。グルコースは小腸で吸収されてしまうため、大腸を含む下部消化管ではグルコース枯渇の状態になると推測されるためである。本発明では糖源として少なくともアラビノキシランおよび/またはキシログルカンから選ばれる難消化性糖質を含む組成物を用いる。
 難消化性糖質(Low-digestible carbohydrates:LDCs)は、ヒトの消化酵素によって消化されにくい糖質を一般にいう。本発明では、難消化性糖質としてアラビノキシランおよび/またはキシログルカンを含む組成物を使用する。また、菌叢の多様性の観点から、難消化性糖質に更に糖源を添加した組成物を使用してもよく、糖源としてはペクチン、スターチ、またはムチンを含んでいてもよい。好ましい糖源として、アラビノキシラン、キシログルカン、ペクチン、スターチおよびムチンを含有する、難消化性糖質を含む組成物を培地に添加することができる。なお、難消化性糖質は、ヒトの消化酵素によって消化されにくい糖質を有するものであれば特に限定されない。例えば、上記の成分以外にも、不溶性多糖類を含め一般に食餌成分に含まれるものを用いてもよい。
 また、アラビノキシランとキシログルカンに関しては、共にヘミセルロース多糖の一種であり、アラビノキシランはキシロースがβ-1,4結合で連なって構成された主鎖に対してアラビノースがα-1,3結合で結合した基本構造を有するのに対し、キシログルカンはグルコースがβ-1,4結合で連なったセルロースを主鎖としつつキシロースが側鎖としてα-1,6結合で結合して側鎖を形成するため、構造的にも類似する部位が存在する。従って、難消化性糖質を含む組成物中からアラビノキシランまたはキシログルカンのうち一方を省いて培地に添加してもよい。
 培地中の糖源は、菌叢の多様性の観点から、難消化性糖質を含む組成物を含めて、下限が4g/L以上となることが好ましい。より好ましくは、下限が5g/L以上となることが好ましい。更に好ましくは、7g/L以上となることが好ましい。また、上限は21g/L以下となることが好ましい。より好ましくは上限が20g/L以下となることが好ましい。更に好ましくは上限が19g/L以下となることが好ましい。ここで言う糖源とは、グルコース以外の腸内細菌が資化可能な糖を指す。その理由は、下限を下回ると、培養中に腸内細菌の主要なエネルギー源となる糖源が不足し、正常に菌叢を形成できなくなる可能性があるためであり、上限を上回ると、糖源の過剰添加によって有機酸濃度が大幅に上昇してpHの極端な低下が起こり、菌叢構成も大きく変化してしまい、通常の腸管内の環境とは大きく乖離してしまう可能性があるためである。
 また、上記の糖源の他に、菌叢の構成比のバランスを調整するために、短鎖脂肪酸を更に培地に添加してもよい。短鎖脂肪酸とは、アルキル基にカルボキシル基が1つ結合した脂肪酸のうち、炭素数7以下のものをいう。本発明では、短鎖脂肪酸として酢酸、プロピオン酸、酪酸、またはイソ吉草酸を用いてもよい。より好ましくは、酢酸、プロピオン酸、酪酸、およびイソ吉草酸の混合物を用いてもよい。上記混合物は、
酢酸:プロピオン酸:酪酸:イソ吉草酸
=1~180:0.2~80:0.2~80:0.1~40の混合比で調製してもよい。さらに好ましくは、
酢酸:プロピオン酸:酪酸:イソ吉草酸
=30:8:4:1の混合比で調製してもよい。これらの短鎖脂肪酸の添加量は、合計で20mM以上とすることが好ましく、30mM以上とすることがより好ましい、また、60mM以下とすることが好ましく、50mM以下とすることより好ましい。その理由は、通常の腸内環境には単鎖脂肪酸が一定量存在しており、病原菌などを抑えて菌叢を正常に維持する役割を果たしているため、下限を下回ると、正常な菌叢が形成されなくなる可能性があり、上限を上回ると、菌叢が短鎖脂肪酸に耐性を持つ腸内細菌に偏ってしまう恐れがあるためである。なお、短脂肪酸は培養中に細菌によって作り出されるが、酢酸を資化する細菌も存在していることから、培養開始時には少なくとも酢酸を添加しておくことが特に好ましい。
 上記の培地の添加物に加えて、本発明の培地には、ペプトン類、酵母エキス、ヘミン、システインまたはシステイン塩酸塩、ビタミン類、ミネラルを添加してもよい。また、実際の腸内環境を考慮して腸管モデルを作製する観点から、本発明の培地には、胆汁中に含まれるコール酸、ケノデオキシコール酸といった、いわゆる1次胆汁酸もしくはそれらにタウリンやグリシン等が結合した抱合体を培地成分として加えてもよい。あるいは、これらが腸内細菌によって脱抱合化および代謝変換されて生じるデオキシコール酸やリトコール酸といった、いわゆる2次胆汁酸を添加してもよい。また、同じく胆汁中に含まれる、ビリルビン抱合体を加えてもよい。
 ペプトンは、タンパク質をアミノ酸または低分子ペプチドまで加水分解した培地成分である。ペプトンとしては、微生物培地用のペプトンであれば特に限定されない。ペプトンの具体例として、カゼインペプトン、獣肉ペプトン、心筋ペプトン、ゼラチンペプトン、大豆ペプトン等が挙げられる。
 酵母エキスは、酵母の有効成分を自己消化、酵素処理、熱水処理等で抽出した培地成分である。酵母エキスとしては、微生物培地用の酵母エキスであれば特に限定されない。酵母エキスの具体例として、パン酵母(Yeast extract)、ビール酵母のエキス等が挙げられる。
 ヘミンは、鉄を含むポルフィリンを含有する培地成分である。ヘミンは、ヘマチンが酸と結合して生じる塩の総称であり、ヘマチンとはポルフィリン環に三価鉄が結合した化合物である。
 システインは、分子中にSH-基を有するアミノ酸である。培地成分としてはL-システインが好ましい。システイン塩酸塩は、L-システインの塩酸塩である。培地への溶解性に応じてL-システインの形態で添加するかその塩酸塩の形態で添加するか適宜調整してもよい。
 ビタミン類は、ビタミンA、D、E、K等の脂溶性ビタミン、ビタミンB群やビタミンC等の水溶性ビタミン、リボフラビン(ビタミンG)、ビオチン(ビタミンH)その他の全てのビタミン、またはユビキノン、リポ酸等のビタミン様作用因子を培地成分として含んでいてもよい。
 ミネラルは、カルシウム、鉄、マグネシウム、カリウム、ナトリウム等を、培地成分として含んでいてもよい。
 上記の物質に加えて、機能性成分の評価に影響を与えない範囲で、本発明の培地には、ヒト母乳オリゴ糖、乳糖、乳清タンパク質、カゼイン、または油脂類等を培地成分としてさらに添加してもよい。
 ヒト母乳オリゴ糖は、乳児の腸内環境を整えるのに有効なオリゴ糖の一種であり、主にグルコース、ガラクトース、フコース、N-アセチルグルコサミン、N-アセチルノイラミン酸によって構成され、フコシルラクトース、ガラクトシルラクトース、シアリルラクトース等が知られている。
 乳清タンパク質は、牛乳等の乳から乳脂肪分やカゼイン等を除いた水溶液のタンパク質である。
 カゼインは、牛乳等の乳やチーズ等に含まれるリンタンパク質の一種である。
 油脂類は、脂肪酸とグリセリンのエステルで、乳脂、植物性脂肪等を含む。
 本発明では、ヒトの腸管モデルを作製する観点から、培地はpHを5.0~8.0の範囲に維持される。上記のpH範囲を逸脱すると、ヒトの消化管の生理的範囲から外れるため好ましくない。なお、本発明の腸管モデルは、上部消化管の菌叢解析、下部消化管の菌叢解析のいずれにも用いることができる。好ましくは、下部消化管の菌叢解析に用いることが望ましい。
 長期間にわたり菌叢の多様性を維持する観点から、pH調整を行ってもよい。pH調整の手法は、培養手法に拠る。培養手法には、バッチ培養、半連続培養、または連続培養がある。バッチ培養は栄養源や培地成分などの流加や培養液の抜き取りを伴わずに培養する手法であり、比較的安価かつ簡便に構築ができる点、機能性成分による菌叢変化を短時間で解析できる点で優れている。
 また、連続培養は培地成分の添加と培養液の回収を連続的に行いながら培養する手法であり、半連続培養は培養中に培養液の一部を回収するのと同時に、新しい培地成分を補充する培養方法である。連続培養および半連続培養は、微生物の増殖に必要な基質の供給と代謝産物が蓄積した培養液の排出を行うことができるため、長時間の培養や機能性成分を長期間投与した場合の菌叢変化を解析できる点で優れている。
 腸管モデルのpHは、培地成分をPIPESに代表されるグッド緩衝液やその他の緩衝液を用いて溶解し、緩衝能を持たせることによって調整される。培養中のpHは、水酸化ナトリウム等のアルカリ溶液または塩酸を用いてpH調整してもよい。アルカリ溶液に関しては、水酸化ナトリウムの代わりに水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム等を代替え的に用いることもできるが、添加量の調整の容易さの観点から、水酸化ナトリウムを用いることが好ましい。
 糖源の量とpH調整の関係性について説明する。培地中の糖源の量は、基本的には、先の段落に示した通りである。ただし、培養液のpH調整を行わない場合であって、かつ被験物質が糖である場合(ここでいう糖とは、単糖や少糖類だけではなく、オリゴ糖、多糖、配糖体、糖タンパク質、核酸、糖アルコールやアミノ糖等の糖誘導体またはその他の化学構造式中に糖を含有する物質を含む)には、培地由来の糖源の量に被験物質の糖の量を足し合わせた総量を用いて、添加する糖源の調整を行う必要がある。これは、菌の過剰な酸の産生によるpHの低下を抑止するためである。pH調整を行う場合は、被験物質が糖であったとしても、先の段落に示した培地の糖源の量の規定に従う。
 図1に説明した要領で腸管モデルを作製した後、その腸管モデルを用いて機能性成分を評価する場合には、以下のような手順で評価を行う。
 なお、機能性成分とは、腸内細菌叢の細菌構成や代謝活性に影響を与える可能性を有する被験物質をいう。例えば、腸内細菌叢によって利用される可能性のある糖、またはその誘導体(ここでいう糖とは、オリゴ糖、多糖、配糖体、糖タンパク質、核酸またはその他の化学構造式中に糖を含有する物質を含む)、ペプチド、アミノ酸、またはその誘導体、脂質、フラボノイド類、ポリフェノール類、乳酸菌や酵母等の微生物等、またはその他の生理活性成分、医薬品、医薬品に準じるもの、また、経口、経鼻、経胃、経腸投与される、またはそのような投与が可能な物質を含む。それぞれ単品としても、複数混合しても、また食品に含まれた形であってもよい。
 図2は、腸管モデルを用いた機能性成分の評価方法を簡単に説明する。操作を開始すると、ステップS2001において、機能性成分を添加した培地に腸内細菌叢または糞便を接種して培養し、第1の培養液を取得する。培養の手順は、機能性成分を培地に添加する以外は、図1の腸管モデルの作製フローで示した手法と同様である。なお、機能性成分は、腸内細菌叢または糞便を培地に添加して一定時間培養した後に添加してもよく、腸内細菌叢または糞便と同時またはそれより前に培地に添加してもよい。
 次に、ステップS2002において、機能性成分を添加していない培地に腸内細菌叢または糞便を接種して培養し、第2の培養液を取得する。培養の手順は、図1の腸管モデルの作製フローで示した手法と同様である。ステップS2001とステップS2002は、機能性成分の添加の有無以外は、同時間、同じ条件で培養を行う。なお、ステップS2001とステップS2002は順序を入れ替えてもよく、腸内細菌叢または糞便を培地に添加して一定時間培養した後の培養液を一部回収して第2の培養液とし、残りの培養液に機能性成分を加えて一定時間培養した培養液を第1の培養液としてもよい。
 次に、ステップS2003において、ステップS2001で取得した1の培養液とステップS2002で取得した第2の培養液を比較して、機能性成分の評価試験を行い、操作を終了する。
 図1の評価試験としては、分取した培地のpHの経時変化、培地における有機酸生産量の評価、有機酸濃度に基づくクラスター解析が挙げられる。また、代謝産物を網羅的に解析可能なメタボローム解析も用いることができる。さらに、培養液中の細菌由来の16S rRNA遺伝子配列を基にしたメタ16S解析による菌叢構成解析、クラスター解析、α多様性解析、β多様性解析(UniFrac解析)等を用いて評価を行う。細菌のゲノム配列を基にしたメタゲノム解析やRNAシークエンスによる遺伝子発現解析等による評価も可能である。なお、図2の機能性成分の評価についても、同様の手法を用いる。
(実施例1)
〈培地の調製方法〉
 培地の調製方法について説明する。PY培地、GMM培地関する基礎培地の組成は、PY培地は図3、GMM培地は図4に示す通りである。比較例のBHI培地の組成は図5に、GAM培地(Gifu-Anaerobic Medium:日水製薬株式会社製)の組成は、図6に示す。
 PY培地、BHI培地に関しては、糖源として図7に示す難消化性糖質を含む組成物(以下、当該組成物を含む培地を、培地の名前に「L」と記載して示すことがある)を添加した(PY-L培地、BHI-L培地)。GMM培地に関しては、糖源として図7に示す難消化性糖質を含む組成物と、図8のグルコースを含む糖源のいずれかを添加した。便宜的に、前者をGMM-L培地、後者を単にGMM培地とする。比較例のGAM培地の糖源は図6に他の基礎培地と共に記載されている。
 また、PY培地に関しては、糖源に難消化性糖質を含む組成物を添加した場合(PY-L培地)と、PY-L培地の組成に、更に図9に示す短鎖脂肪酸の混合物(以下、当該組成物を含む培地を、培地名の後ろに「S」と記載して示すことがある)を添加した場合(PY-LS培地)について検討した。
 図3~6は、1L当たりの培地の成分量を示している。図7~9は、培地1Lを調製した際の最終成分量として示している。まず、図3、4、5に示す1L当たりの糖源以外の基礎培地成分を、0.2M PIPESバッファー(pH6.5)に溶解して0.5Lとした後、121℃、15分間オートクレーブ滅菌した。PY-LS培地は、図3に示す1L当たりの糖源以外の基礎培地成分および図9に示す1L当たりの短鎖脂肪酸の混合物を0.2M PIPESバッファー(pH6.5)に溶解して0.5Lとした後、121℃、15分間オートクレーブ滅菌した。これらは、2倍濃度基礎培地に相当する。
 次に、GMM培地に用いるための図8の糖源溶液を、0.5Lの精製水に溶解した。また、PY-L培地、PY-LS培地、GMM-L培地、BHI―L培地で使用するための図7の糖源溶液(なお、図7に示される糖源の総量は8g/Lである。)については、まずムチンを1N NaOHに溶解した後に精製水を加え、6N HCl溶液にてpHを6.5付近に調整し、他の糖源を加えて加温溶解した後、精製水で0.5Lにメスアップした。糖源溶液はいずれも、121℃、15分間オートクレーブ減菌して使用した。これは、2倍濃度糖溶液に相当する。
 次に、2倍濃度基礎培地および2倍濃度糖溶液を減菌後、嫌気チャンバー(チャンバー内の嫌気ガス組成は窒素、二酸化炭素、水素が90:7:3)へ搬入し、2日間嫌気置換を行った。2倍濃度基礎培地および2倍濃度糖溶液は使用直前にそれぞれ等量混合することで2倍希釈し、最終的な使用培地(PY-L培地、PY-LS培地、GMM培地、GMM-L培地、BHI-L培地)とした。
 比較例のGAM培地の調製に関して説明する。図6の表は、GAM培地に関し1L当たりの成分量を記載する。当該1L当たりの成分59.0gを1Lの0.1Mリン酸バッファー(pH6.5)に溶解し、115℃で15分間オートクレーブ減菌した後に嫌気チャンバー(チャンバー内の嫌気ガス組成は窒素、二酸化炭素、水素が90:7:3)へ搬入し、2日間嫌気置換を行ってから使用した。
(実施例2)
〈培養方法〉
 培養方法について説明する。嫌気チャンバー内において、予め37℃に温めた上記培地を、100ml容の0.2μmフィルターユニット付きメディウム瓶(柴田科学)に50ml入れ、嫌気置換した0.1%システイン塩酸塩含有PBSにより10倍希釈した健常成人A~Dの4名(年齢31~42歳)の糞便をそれぞれのメディウム瓶に0.1%(v/v)接種した。接種後、37℃で48時間、300rpmで撹拌培養した。なお、チャンバー内は窒素、二酸化炭素、水素が90:7:3の気相で満たしている。
(実施例3)
〈糞便および培地のpH測定〉
 培養後、18時間、24時間、48時間に培養液の一部をサンプリングし、培養液のpHをpHメーターにて測定した。結果を図10Aおよび図10Bに示す。
 図10Aは、実施例1で示した培地のうち、PY-L培地、GMM培地、GMM-L培地、BHI-L培地、およびGAM培地を実施例2、3の要領で培養、分取した際の培養液pHの測定値である。
 図10Aのグラフi~ivは、提供者A~Dそれぞれに関する培地のpHの経時変化を示す。縦軸がpH、横軸が培養時間(hr)を示す。接種した糞便のpHは、提供者A、提供者B、提供者C、提供者Dの順に、それぞれ、6.6、6.2、6.7、5.7であった。分取したいずれの培地も、pHは5.0~8.0の範囲内であり、生理的なpHを維持していた。
(実施例3の追加試験)
〈糞便および培地のpH測定〉
 図10Bは、実施例1で示した培地のうち、PY-L培地およびPY-LS培地を実施例2、3の要領で培養、分取した際の培養液pHの測定値である。分取した時間は、提供者A、Bに関しては、培養後、24時間、48時間に培養液の一部をサンプリングし、培養液のpHをpHメーターにて測定した。提供者C、Dに関しては、培養後、8時間、24時間、48時間に培養液の一部をサンプリングし、培養液のpHをpHメーターにて測定した。グラフは、提供者A~Dそれぞれに関する培地のpHの経時変化を示す。縦軸がpH、横軸が培養時間(hr)を示す。PY-L培地およびPY-LS培地は、pHの変動が類似した。また、どのデータも生理的なpHを維持していた。
(実施例4)
〈有機酸濃度および組成〉
 培養24時間または48時間後に培養液の一部を採取して過塩素酸溶液にて除タンパクを行った後、培養液中の各種有機酸濃度をイオン排除高速液体クロマトグラフィーにより測定した。結果を図11に示す。
 図11は、実施例1で示した培地のうち、PY-L培地、GMM培地、GMM-L培地、BHI-L培地、およびGAM培地を実施例2、3の要領で培養、分取した際の培養液の有機酸濃度の測定値である。グラフi~ivは、提供者A~Dそれぞれに関する培地の有機酸濃度を示す。グラフの縦軸は、上段から順に、提供者の糞便、以降、24時間、48時間培養後のGAM培地、GMM培地、GMM-L培地、BHI-L培地、PY-L培地のサンプルを示す。横軸は、有機酸濃度(mmol/L)を示す。糞便中の濃度は(mmol/Kg糞便)で表した。なお、図11に記載した培地の比重は、すべてほぼ1である。
 図11から、全ての培地で培養時間の経過に伴って総有機酸濃度が高まることが明らかになった。また、比較例のGAM培地では、総有機酸濃度が最も高くなった。
 ここで、一般に、ヒトの下部消化管内の有機酸濃度は、約200mmol/Kg内容物までの範囲であることが知られている(Cummings JH et al. 1987 Gut 28, 1221-1227)。比較例のGAM培地を用いた場合、48時間以上の培養を続けると、有機酸濃度が生理的範囲の上限から逸脱した。そのため、GAM培地は本発明の腸管モデルに使用する培地として好ましくないことが明らかとなった。一方で、PY-L培地、BHI-L培地、GMM-L培地に関しては、有機酸濃度に関する生理的範囲を維持した。本試験からPY-L培地、BHI-L培地、またはGMM-L培地は腸管モデルの培地候補として適切であることが明らかとなった。
(実施例5)
〈総菌数の測定および菌叢解析〉
 糞便および培養液から、既報(Matsuki T et al. 2004 Appl Environ Microbiol 70,7220-7228)に従い、ビーズフェノール法にてDNA抽出を行った。
 培養液中の総菌数は、抽出したDNAを鋳型として既報(Shima T et al. 2019 Benef Microbes. 10:814-854)の方法に従い、細菌16S rRNA遺伝子の共通配列を基にしたプライマーセット(Fuller Z, et al. 2007 Br J Nutr. 98(2):364-72)を用いて定量的PCR法により測定した。
 抽出したDNAを鋳型とし、PCR法にて腸内細菌の16S rRNA遺伝子のV1~V2領域を増幅した。これらの増幅産物を次世代シークエンサーMiSeq(イルミナ社)に供し、塩基配列を取得した。得られた配列情報はQIIME2による解析に供し、DADA2によってシークエンスエラーやキメラ配列等を除くことでユニーク配列(feature)を得た。解析により得られた配列をデータベース(silva138 ならびにNCBIが提供する16S RefSeq records (バージョンはいずれも2019年12月時点))と照合し、細菌の系統分類を行うことで糞便および培養液中における菌群ごとの構成比率を算出した。また、代表配列を基にクラスター解析ならびにfeature数およびShannon指数等の多様性解析を行うとともに、代表配列から系統樹を作成し、系統樹の枝の長さの割合を基にUniFrac距離を算出してサンプル間における菌群構成の相違を解析した。
 図12は、実施例1で示した培地のうち、PY-L培地、GMM培地、GMM-L培地、GAM培地、およびBHI-L培地を実施例2、3の要領で24時間経過後の培養液を分取した場合の、培地の総菌数の解析を行った結果を示す。
 図12のデータの縦軸は糞便および各培地(培養24時間後)の名称を示す。横軸は、解析結果の値を示している。定量的PCR法により総菌数を測定した結果、GMM培地以外の培地の総菌数は、糞便中の総菌数との間に有意差はなかった。各培地のうちPY-L培地の総菌数が最も高く、1×1010 cells/ml程度であった。
 更に、図13は実施例1で示した培地のうち、PY-L培地、GMM培地、GMM-L培地、BHI-L培地、およびGAM培地を実施例2、3の要領で24時間経過後の培養液を分取した場合の、培養液中のfeatureの構成比を基にクラスター解析を行った結果を示す。図13では、個人ごとにクラスターを形成し、その中では糞便とPY-Lが同じサブクラスターを形成した。すなわち、PY-Lが最も糞便中のfeature構成に近似したことが明らかとなった。
 さらに、図14は実施例1で示した培地のうち、PY-L培地、GMM培地、GMM-L培地、BHI-L培地、およびGAM培地を実施例2、3の要領で24時間経過後の培養液を分取した場合の、糞便からのUniFrac距離の解析結果を示す。UniFrac距離に関しては、値0が近づく程、腸管モデルとして好ましいことを示す。縦軸は培地の名称を示し、横軸は、a)が質的解析の結果、b)が質・量的解析の結果を示す。
 図14では、菌叢解析により得られたfeatureについて、糞便からのUniFrac距離を解析した結果、featureの有無のみで評価するUnweightedおよびfeatureの有無に加えて存在量も加味して評価するWeighted UniFracともに、PY-L培地が最も糞便に近く、前者ではGAM培地と比較して有意に短かった。さらにPY-L培地に次いで、GMM-L培地が糞便に近かった。
 図10~図14に示すように、PY-L培地は最も糞便に近い菌叢が形成された。ただし、PY-L培地は、比較例GAMと同様に大腸菌群であるEnterobacteriaceaeの占有率が若干高くなる傾向が認められた(不図示)。そこで、PY-L培地におけるEnterobacteriaceaeの過剰な増殖を抑制するため、培地の改良を試みた。その結果、図15、16に示すように、PY-L培地に短鎖脂肪酸を添加した培地(PY-LS培地)では、Enterobacteriaceaeの占有率の上昇のみを抑制しつつ、PY-L培地と同様の菌叢の多様性を維持することが明らかとなった。
 図15は、実施例1で示した培地のうち、PY-L培地およびPY-LS培地を実施例2、3の要領で24時間経過後の培養液を分取した場合の、Enterobacteriaceaeの占有率を示す。
 図15において、提供者CおよびDにおいて、対照のPY-L培地中のEnterobacteriaceaeの占有率は、短鎖脂肪酸を添加することで抑制された。
 更に、図16は、GAM、PY-L培地およびPY-LS培地のα多様性とβ多様性を比較した結果を示す。上段のα多様性に関しては、短鎖脂肪酸を添加したPY-LS培地が、feature数、Shannon指数において、比較対象のGAM培地よりも高い多様性を示し、更にPY-LS培地とPY-L培地との間に有意差は無いことが明らかとなった。更に、下段のβ多様性に関しても、PY-LS培地はUniFrac距離(unweightedおよびweightedともに)が比較対象のGAM培地よりも糞便に近く、更にPY-LS培地とPY-L培地との間に有意差は無いことが明らかとなった。なお、有意水準は0.05とした。図15および図16から、短鎖脂肪酸をPY-L培地に添加すると、Enterobacteriaceaeにのみ影響し、他の菌叢の多様性には影響を及ぼさないことが明らかとなった。併せて、図10BのpHの経時変化がPY-L培地とPY-LS培地で同様の変動を示すことも本結果を裏付けている。
 以上の結果より、代謝活性ならびに菌叢構成の両面から、腸内環境を模した評価系を構築するために、腸管モデルの培地として、PY-L培地、GMM-L培地、またはPY-LS培地を選定するとよいことが明らかとなった。好ましくは、PY-L培地、またはPY-LS培地を選定するとよいことが明らかとなった。
(実施例6)
〈PIPESの効果試験〉
 実施例1で培地調製に用いた緩衝液を用いずに培地調製を行った場合、どのような菌叢構成となるかを試験した。PIPESを用いた培地成分に関しては、実施例1において、図3のPY-L培地の成分について、1L当たりの糖源以外の基礎培地成分を、0.5Lの0.2M PIPESバッファー(pH6.5)に溶解し、121℃、15分間オートクレーブ滅菌した。もう片方のPIPES無しの培地成分に関しては、1L当たりの糖源以外の基礎培地成分を、0.5Lの蒸留水(DW)に溶解し、121℃、15分間オートクレーブ滅菌した。以降の要領は、実施例1に示す通りである。結果を図17および図18に示す。
 図17は、提供者A、Cに関し、培地調製直後、培養24時間または48時間後の培養液の一部を採取してpHを測定した結果である。PIPESを使用する場合も、使用しない場合にも、pHは生理的範囲内に維持された。また、PIPESを使用する場合には経時のpH変動幅を更に小さく維持した。いずれも腸管モデルとして実用性に耐えうるレベルである。
 図18は、菌叢の構成比率およびα多様性の解析結果である。上段は、糞便、PIPESを用いた培地、PIPESを用いなかった培地のそれぞれにおける菌叢のFamilyレベルでの占有率を示す。菌の構成は、糞便を参照して、左から順にLachnospiraceae、Prevotellaceae、Bifidobacteriaceae、Bacteroidaceae、Ruminococcaceae、Veillonellaceae、Erysipelotrichaceae、Enterobacteriaceae、Peptostreptococcaceae、その他の群となる。図18から、PIPESを使用せず培養した場合は、提供者A、Cともに、Lachnospiraceae、Bacteroidaceae等の菌の構成比が低下する一方で、Bifidobacteriaceae、Veillonellaceae等の菌の構成比は増加したが、全体的には菌叢の構成に関し占有率のバランスは概ね維持された。一方、下段の解析結果からは、feature数とShannon指数の両方の観点から、α多様性はやや低下したものの、PIPESを用いなくても実用性に耐えうるものであることが明らかとなった。PIPESを使用する場合には、糞便の菌叢の多様性を更に維持することが明らかとなった。
(実施例7)
〈糖源の量に関する試験〉
 実施例1に示す通り、本発明では糖源に難消化性糖質を含む組成物を用いる。ここで、実施例1に示す図7の糖源の総量(8g/L)を半量(4g/L)にした場合に菌叢にどのような影響を及ぼすのか試験を行った。具体的には、実施例1で図3のPY-L培地に図7の難消化性糖質を含む組成物(8g/L)を添加する場合に、一方のPY-L培地の糖源を半量(4g/L)にして添加した。以降の要領は、実施例1に示す通りである。
 結果を図19、図20に示す。図19は、提供者A、B、Dに関し、培地調製の直後、培養24時間または48時間後の培養液の一部を採取してpHを測定した結果である。
 図19において、糖源として難消化性糖質を含む組成物の量を実施例1と等量にした場合と、半分にした場合のいずれにおいても、pHは生理的範囲を維持した。また、難消化性糖質を含む組成物の量を実施例1の半量にした場合には経時のpH変動幅を更に小さく維持した。いずれも腸管モデルとして実用性に耐えうるレベルである。
 また、図20は、α多様性試験等の解析結果である。上段は、糞便、実施例1と等量の糖源(LDCs)を添加したPY-L培地、実施例1の半分の糖源を添加したPY-L培地(LDCs1/2)のそれぞれにおける菌叢のFamilyレベルでの占有率を示す。菌の構成は、糞便を参照した場合、左から順に、Lachnospiraceae、Bacteroidaceae、Bifidobacteriaceae、Ruminococcaceae、Prevotellaceae、Veillonellaceae、Erysipelotrichaceae、Porphyromonadaceae、Clostridiales;f、その他の群となる。図20からは、糖源の量を半分にした場合は、提供者A、B、Dともに、Bacteroidaceae、Porphyromonadaceae等の菌の構成比が若干低下し、かつLachnospiraceae、Bifidobacteriaceae等の菌の構成比は若干増加するものの、概ね菌叢の構成バランスは維持された。下段のα多様性解析結果から、実施例1の半分の糖源を添加したPY-L培地(LDCs1/2)ではfeature数、Shannon指数が若干低下するものの、概ね菌叢の多様性が維持されることが確認された。実施例1と等量の糖源(LDCs)を添加したPY-L培地においても、糞便の菌叢の多様性を更に維持することが明らかとなった。
いずれも腸管モデルとして実用性に耐えうるレベルである。
 以上の結果から、培地中の糖源は、菌叢の多様性の観点から、下限が4g/L以上となることが好ましく、より好ましくは、下限が5g/L以上となることが好ましく、更に好ましくは、7g/L以上となることが好ましいことが明らかとなった。また、上限は21g/L以下となることが好ましく、より好ましくは上限が20g/L以下となることが好ましく、更に好ましくは上限が19g/L以下となることが好ましいことが明らかとなった。
(実施例8)
〈バッチ培養モデルの実用性の検証〉
 バッチ培養モデルの実用性を検証することを目的に、本モデルを用いてガラクトオリゴ糖のビフィズス菌の増殖促進効果を評価した。ガラクトオリゴ糖として、市販のガラクトオリゴ糖液「オリゴメイト55N」(ヤクルト薬品工業社)の主成分である4’-galactosyllactose(4’-GL)を用いた。本試験では、4’-GLの発酵性を評価するため、過剰な酸の産生とpH低下の抑制を目的とし、PY-LS培地に加える難消化性糖質を含む組成物(LDCs)の添加量を半量とした。嫌気置換した0.1%システイン塩酸塩含有PBSにより10倍希釈した健常成人A、D2名の糞便をPY-LS培地50 mlに0.1%接種し、37℃のもと24時間、嫌気グローブボックス内で培養して菌叢を形成させた。次に、2.5 mlの培養液を除いた後、同量の5%もしくは10%(w/v)4’-GL溶液を加えて4’-GLの最終濃度を0.25%もしくは0.5%とした(培養0時間)。なお、4’-GLの代わりに滅菌水を2.5 ml加えた培地を対照とした。4’-GL添加後から4、6、8および24時間後に培養液をサンプリングし、ビフィズス菌の菌数測定に供した。
(実施例9)
〈ビフィズス菌数の測定〉
 培養液中のビフィズス菌数は、既報(Matsuki T et al. 2004 Appl Environ Microbiol, 70:167-173)に従い、Bifidobacterium属細菌に特異的なプライマーセットを用いた定量的PCR法によって測定した。結果を、図21に示す。
 図21から、提供者A、Dのいずれも、4’-GL添加後のビフィズス菌の菌数が増加していることが確認できた。4’-GLはビフィズス菌の増殖効果が知られている素材である。従って、本発明のバッチ培養モデルは適切な実用性を示した。
 本出願は、2022年2月17日に出願された日本特許出願である特願2022-022642号に基づく優先権を主張し、当該日本特許出願のすべての記載内容を援用する。

 

Claims (12)

  1.  培養槽に腸内細菌叢または糞便を接種して嫌気的に培養する腸管モデルであって、
     前記腸管モデルの培地のpHは5.0~8.0に維持することを特徴し、かつ
     前記腸管モデルの培地において、糖源はグルコースを含まず、かつ少なくともアラビノキシランおよび/またはキシログルカンから選ばれる難消化性糖質を含む組成物を含有することを特徴とする、腸管モデル。
  2.  前記難消化性糖質を含む組成物は、ペクチン、スターチ、およびムチンから成る群から選択される少なくとも1つの糖質を含有する、請求項1に記載の腸管モデル。
  3.  前記難消化性糖質を含む組成物は、アラビノキシラン、キシログルカン、ペクチン、スターチ、およびムチンを含有する、請求項2に記載の腸管モデル。
  4.  前記腸管モデルの培地において、短鎖脂肪酸をさらに含有することを特徴とする、請求項1~3のいずれか一項に記載の腸管モデル。
  5.  前記短鎖脂肪酸は、酢酸、プロピオン酸、酪酸、およびイソ吉草酸から成る群から少なくとも1つ選択される、請求項4に記載の腸管モデル。
  6.  前記短鎖脂肪酸は、酢酸、プロピオン酸、酪酸、およびイソ吉草酸を含有する、請求項5に記載の腸管モデル。
  7.  前記培地はPY培地またはGMM培地である請求項1~6のいずれか一項に記載の腸管モデル。
  8. 前記培地はPY-L培地、PY-LS培地またはGMM-L培地である、請求項1~7のいずれか一項に記載の腸管モデル。
  9.  前記腸管モデルのpH調整を行う場合に、
    前記培養槽の培地のpH調整はPIPESを用いて調整される、または
     前記培地のpH調整は水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、もしくは炭酸水素ナトリウムまたは塩酸を用いて調整されることを特徴とする、請求項1~8のいずれか一項に記載の腸管モデル。
  10.  培養槽に腸内細菌叢または糞便を接種して嫌気的に培養する腸管モデルの培地であって、
     前記腸管モデルの培地のpHは5.0~8.0に維持することを特徴とし、かつ
     前記腸管モデルの培地において、糖源としてグルコースを含まず、かつ少なくともアラビノキシランおよび/またはキシログルカンから選ばれる難消化性糖質を含む組成物を含有することを特徴とする、培地。
  11.  ペプトン類、酵母エキス、ヘミン、システインもしくはシステイン塩酸塩、ビタミン類、またはミネラルを含有する、請求項10に記載の培地。
  12.  請求項1~9のいずれか一項に記載の腸管モデルを用いた機能性成分の評価方法であって、前記評価方法は:
     前記機能性成分を培地に添加して腸内細菌叢または糞便を培養して第1の培養液を取得する第1の工程と;
     前記機能性成分を培地に添加せずに前記腸内細菌叢または糞便を培養して第2の培養液を取得する第2の工程と;
     前記第1の培養液と前記第2の培養液を比較して前記機能性成分の評価を行う第3の工程、
    を包含する評価方法。

     
PCT/JP2023/005153 2022-02-17 2023-02-15 腸内細菌叢再現モデル WO2023157860A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-022642 2022-02-17
JP2022022642 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023157860A1 true WO2023157860A1 (ja) 2023-08-24

Family

ID=87578340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005153 WO2023157860A1 (ja) 2022-02-17 2023-02-15 腸内細菌叢再現モデル

Country Status (1)

Country Link
WO (1) WO2023157860A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147277A1 (ja) * 2014-03-28 2015-10-01 株式会社ヤクルト本社 酪酸産生菌及びその利用
JP2015188368A (ja) * 2014-03-28 2015-11-02 株式会社ヤクルト本社 酪酸産生菌保有非ヒト動物モデル及びその作製方法
WO2020203782A1 (ja) * 2019-03-29 2020-10-08 株式会社ヤクルト本社 食事由来の多糖の利用性が高い新規ビフィドバクテリウム属細菌

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147277A1 (ja) * 2014-03-28 2015-10-01 株式会社ヤクルト本社 酪酸産生菌及びその利用
JP2015188368A (ja) * 2014-03-28 2015-11-02 株式会社ヤクルト本社 酪酸産生菌保有非ヒト動物モデル及びその作製方法
WO2020203782A1 (ja) * 2019-03-29 2020-10-08 株式会社ヤクルト本社 食事由来の多糖の利用性が高い新規ビフィドバクテリウム属細菌

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PIETER VAN DEN ABBEELE, KOEN VENEMA, TOM VAN DE WIELE, WILLY VERSTRAETE, SAM POSSEMIERS: "Different Human Gut Models Reveal the Distinct Fermentation Patterns of Arabinoxylan versus Inulin", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 61, no. 41, 16 October 2013 (2013-10-16), US , pages 9819 - 9827, XP055513035, ISSN: 0021-8561, DOI: 10.1021/jf4021784 *
TINGTING CHEN, WENMIN LONG, CHENHONG ZHANG, SHUANG LIU, LIPING ZHAO, BRUCE R. HAMAKER: "Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota", SCIENTIFIC REPORTS, vol. 7, no. 1, 1 December 2017 (2017-12-01), XP055676533, DOI: 10.1038/s41598-017-02995-4 *

Similar Documents

Publication Publication Date Title
US20220133814A1 (en) Faecalibacterium prausnitzii and desulfovibrio piger for use in the treatment or prevention of diabetes and bowel diseases
Cummings et al. Collaborative JPEN‐Clinical Nutrition Scientific Publications Role of intestinal bacteria in nutrient metabolism
WO2022110542A1 (zh) 改善肠道微环境健康的母乳低聚糖及其应用
CN106414711B (zh) 丁酸产生菌及其利用
EP3511407A1 (en) Christensenella intestinihominis and application thereof
CN110106119B (zh) 一株分离自母乳的鼠李糖乳杆菌m9及其应用
US11147843B2 (en) Method of preventing or treating obesity using a novel strain of Parabacteroides goldsteinii
CN110527717A (zh) 用于2型糖尿病的生物标志物及其用途
JP2007507214A (ja) プレバイオティック効果の分析
CN116676225B (zh) 一株具有安神助眠功效的鼠李糖乳杆菌lr-28菌株、发酵产物、嘉眠菌群组合剂及应用
TWI519644B (zh) 生產玻尿酸之益生菌株及其用途
JP2022048204A (ja) 適応のための方法
JP4445204B2 (ja) 肥満および糖尿病の予防・治療用微生物
CN113797232A (zh) 具有缓解胰岛素抵抗功能的组合物及其应用
BRPI0407176B1 (pt) composições compreendendo uma ou mais cepas de bifidobacterium e seus usos
WO2023157860A1 (ja) 腸内細菌叢再現モデル
Sabater-Molina et al. Effects of fructooligosaccharides on cecum polyamine concentration and gut maturation in early-weaned piglets
Arrigoni et al. In vitro fermentability of a commercial wheat germ preparation and its impact on the growth of bifidobacteria
CN104780788A (zh) 多糖用于护理的婴儿和/或婴儿的肠道健康的用途
CN116270758A (zh) 乳双歧杆菌ty-s01在控制体重方面中的新应用
CA3179561A1 (en) Composition for improving gut microbiota
JP2022518261A (ja) プレバイオティクス剤として使用するための酵母製品およびそれを含む組成物
Mathers et al. Digestion and metabolism of carbohydrates
CN114681492B (zh) 改善代谢性疾病的肠道益生菌及其应用
RU2797466C2 (ru) Faecalibacterium prausnitzii и desulfovibrio piger для применения при лечении или предупреждении диабета и заболеваний кишечника

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756385

Country of ref document: EP

Kind code of ref document: A1